1 / 19100%
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
3D E2EdE2
z.ir eBEE2dEQ BE
FRB
Tdnz NKBT
Inz
P
ZNhz
V2
N.f
NKBT Na
7
from2
yfyt9mgh
mvzhng3DE
PCDGds VEdE
ez fe DGdsx.BE xconstant
lnZNhzconstant
tNlnv
3NtnBF
KBT.tn
Zfree
energy
P1
KBT
P
VNKBT
U
3N
3NKBT 3KBT
in eqiii
Macroscopicstate evolvestoincrease
the
number
of microscopicstate
GIng Sik
Bing Sklnw
We
wantheat
flows
fromhigh
temperaturetolow
temperature
Ch4 ThermalradiationandPlanckDistribution
4.1PlanckDistribution photons
EMeǖÉÉ
radiationpower
energyquantized EatWEw
Assumption EnsE0Eo no 3E
1
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Zwéw p
Plank Ééntw Éxn xt1converge
of1xx3x4
xfnn xixix xu.it
dnlzwktnlle.AM n_n
fix 1f
w
tnwēw
fǐinwn
Discussion sin no
hw isone
particle photon QuantizedEM
wave
histhenumber
ofphotons
EM
wave ĒEeiwt
n
number
of
photons
Uw nw7 tw
So m5W KBT
énw KBT
Statistics mǏhPn
n.fi pwofofthe
Zw enn.no
Fnnwēn
Btw
aw
Summary E
nnwzutf.nu Ǐēmnw
uw i
m
4.2 BlakBody System
ofphotons
TotalEnergy
Should U
uw
fuw
Dlwidw
of
States
between
wand
wtdw
ZeBE eBcawntscw.it
ze Bswi.e.BE
we
zwzwz
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
hzEtnzw zZw
Zwz
TH Epc
U__ EEu
wfuwpwuw
UEZu wcan
change
continuously Uw
change
quantized
by
hw
Dmdw ofstates
between
wandwtdwlo.io
lefttoright
Radiation
power Radium in
vnum
tytzdīuanīon
Fiuv
ifave
aA
Accurate
result
cuiicosodnki
ci.in
wummufo.in
p
ucjisosinododtsinododolpiwizpolauiza
n.ns.pe
polarization
pw icuw8pwdw e
iff.wpwvolume.vn
Max
paws
isrearedat282 ev1.6
mozevw red
color
U
Swuw
Dmdw leu kp.TT 104k
U9uwDmsdwffnwczi.no
xIii of
ii 22d
we
1WTT.TT
jxux a4
ex
euT4 an
constant
GB
5167x108
wnik4
saV3
P5
Pv
uat
ideal
gasPFNKBTXT
Pvxv
Photon Nphotons x3
ZZuZv.B Bhi
FKBTlogz Flv.tl Flu
B
FUTS do Tds Pdv d
FSdtpdv
P1
equation
of
state
s
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Uor UFtTS F
For
blank
bodyradiation
Z
eBEE scwn.sn ______
ē
BE
Zw
Zw ē
BE
Ěēwefenw
In
zElnzw Eenu e
BM fenii e
BWJDmdwF.it
nz
fencrē
Dwuw
3D nike or Epc cspeed
of
light
zx V4
xvwzdwF
jffenltfwjvwzdw BWf.co
nstantfenue
nxzdx af.no constant
constant F.fmzm
za
P
4x
T4 a
KB44
s
avkp.is
uFs4avkB4T4 avkpn avk.tt
P
uuenergydensity
For
Ideal
gas Npanicles Nis
fixed
PKNKBTU NK.no
va
TUN
u
o
vP
uu
In
both
case P
uiiiiiii.in
pressure
FmimǎiǎiFcomes
from
collisions
per
unit
time nY
474
nAv particles
collide
to
the
wall
nizmv isthechange
ofpfoveunpaui.ie
Fn
Avmv
P
nvmv ns
temvzp
soast.co because Enk
BT
quantummechanics
Gas
ofFawnsatoaPto tomy
T
in it
100 aicuvuy
2op.is
p2 0100 anuvacy
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
EPRPF
pz.ch
an
angeHeisenberg
inequality
Butinequality
lPlait PIi lEt Pili ifEPRisright
correlation Pan āb
ciblpiaik.mn If ǕEPR
iswrong
pressure
Entwotw.z.tw energy
quantized AtT
Thinking at T.cn 100 Photons
excited ofphotons
rios
was otwok
BT hw
EKBTJ.in
hwan
any
quantum Eno UTKBT 4
of
photons hwan cannotǗǜiiiphoton Cih
PDlwuw
wzdw
S.io
w3
Sun Ideal
gas
Thermal
Pressure Rnk
BT banana
gravity Temperatureisdue
to
fusion fusion
vequivehighenwgygl.us
sure
thermal
pressure
M
RFNG
9
pNBT
Tsun book temperature
4
sun
Rs earth
IRe
r
4
4
44
41Ts
KBT two
those twakBTEw kp.tlnw
togive
energy
totuparticle
OPP hi no
no na ocnw nwnw.in
and
energy
isto
high
photons
6w
Where
Phnom
photons
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1
Dmdw T
三井
UN.tn TT4 Cure
Phonon
lstun
Photon
1hw
phonons Nw
an
w
Nw fhwidw 3N no
longer
depends
ontemperature
U
NwkBT 3NKBTCr
3NKBcconstaniiixminn.cn
distance
between
two
particles
31
3
EEius
S
wzdwn3 4
3
w36
yu3 w6
wK
vs KD 6
aminimumxisseparation
distance
Ch5 Chemical Potential MandGibbsDistribution
5.1 Whats
uand
what
isitfor
ThermalEqual
ībnum
1zV
fixed
N
fixed 9gig
dg
so
Now suppose we
already
reachedthermalEqurnium
Allow NandNz
toexchange
dg
dgyzkg.dgz.gg
Ǘǜif9
ibnum
in
g
dgz 702
gz
ON g
on Remainder Thermalequilibrium
g
gzc
𩇫i
Mdg
gzdgtg.dgz.in
dung
202
dg g.ge Hit uiuzdN.co ggz 0
M
ggz
0
dg gzdg.tg.dg.no
Thermal Chemicalpotential
FixV1Nallowsheat
exchange
my
Fixus allowNtoexchange N.tn constant
dg g.gl0
dgn.gg
z
𩇫
dN
g.ge
duu3
9dg cu.tn d
N
5.2 Physical meaning
of
ME
do dvp
d
V
dotdv
d
V
AllowNtoexchange
do mud
V4 d
vÌǜud
N
do
do4
dV
d
N
td
oduP
d
Vud
N
HUNd
VP
d
Vtdoud
N
vdptvdpdH
T.deVdptud
Nu
uis
theOHchange
byadding 1particle tothesystem
FvisUto dv ao pdvtudN
odt
odtdE
odi Pdv.nu
d
Nu
uisthefree
energy
increase
by
adding
oneparticle
Gibbsfunction GUTo P
V
dUtdotpdv udN
odt.tv
dp 6ditVdp
dGodttvdp ud
N
uP
uis
the o
G
by
adding 1particletothe
system
condition fixT
and
PGNu
Mis Gibbs
function
per
particle
GUT
SP
v
5.3 Some
example
IdealGas Z
UN
QNE
FNennhomAssumeTis
not
changing
with
heat
uten
uchi umgh
Inmgh
constant earth
Thin nm
mg
dGud
NN
du
sae vap.ua
N
du
dp
Siddi_
Yiap
critical temperature To
separationdistance
E
i
To quantum
gas
6.2generalproperties
ofFermions and
BosonsGas low
temperature
Bosons so
oft IdenticalQuantum
States 442.1
Fermions s
oft 44can
considerFok
Boson Fermions
iEs
aiii jito
EFlzpto
nEFanparn.us
at Espin
upspin
down
ground
state
To
iiii
11
1iinclassical ideal
Gas
ii
1Pn
KBT
1
a
F
inkBTP
nafs.us T
T
6.2Femi Divac Distribution andBose Einstein
Distribution
Fermions
lBosons
fanistuprobability
for
one
DoneatE
andan
aFermi Diva Distribution
E
2IN et
EN
011
xeytr.dk
zxělKBTtx.in__
NoN1
fpn.si talk
Henkin
At
Tso
f10s.su
Is.ua u
tinn Fermi
Dirac
distribution
Atno fun il
t.F G.in to q
anN
C
pCut
Nk
B
Cu
Nk
Bx.yzmotion Translation
NKB
Nk
BTranslation rotation OzNz
NKB
Nk
BTranslation
notation vibration
maximum
freedom 2freedom yotwo
freedom
of
rotation
Cu
Nk
Biii
g
Trai
fTv
as
ItRot
Trash
Rott
Vi
bra
6.4 Reversible Isothermal process AndIsentropic
process
Isothermalprocess Fans
tant
For
Ideal
Gas PV NKBT
lions
tant
Fconstant 00w_w
Ǜjiyw
00 now
PKNKBT constant
owfidv ffNYdvECMNKBTffq NKBTClogvz l.gr NKBT
log
aITS Fans
tisf.sn
sNKBE.tn
StSi Nk
BIn
V2 1n
u
Nk
BIn
Tds
dutpdvxi.in
Nk
BonNYT
du
not1312 d
s
N
SNk
BEntenv constant
Isentropic process aosconstant
adiabatic
UIconstant Tconstant
wzfpdvefNYTdvtNKBT.nl
Translation U
NKBTENk.BE_In
1constant NY constant
constant v7312 constant
PV
NKBT
pi 2constant
upv
constant
Pv513 constant PvE
constant
ourfav Rv
5131
Equationof
State relationship
of RVT
classicalideal
gas PV NKBT
Other
condition isothermal constant
adiabatic Sconstant or a
ForAdīabic wTv PVE
constant FEcp cv
NKBPvsvvv.TT
constant PF
NK
pus
T
T
d
sduP
dv
odvP
d
Van Pav
Pvs
Vfinal
equation
contains
onlyPM
fidnv0
Pdvtfvdptpdv
otfispdvtf.vdpldiudedbypvill.fi
𠵍
1invIn
Pconstant
1hPconstant In
v51np
ionstantNky.iq_
constant
In
constant PVE
constant
pro CP.li Pzvi
wffdvcfǜdv cVfC1
viv7
fi
iifiRu Bu
NKBT NKBTzie.cn_an uv2
CH7 Fermion
gasandBoson
gas
7󻃩1Fermi
gas
i
fa__G
f
i
Fok
Qi EF EF
vs nY
N
If
any
states
available
many
states
weinke
ToNffDad
Es
Dad
EyV
PE
spin
agony h
2MEkm
312Ed
Neff
Dads 4
lzmpkfT.si 4
z
m
312
in
G
312 3
in an213
classical quantum
AFF
1separation
distance
nzmst
3m
n312
QIEFVS.ru YG
n213
Tok IFincreasexto
lower
energy
IFseparation
distance
3D E
Separation
distance
Tedreally
fast
Separation
distance
szfemions
tin
513
in in13
ns.F han4
3EF
hcn113
2D EnY
n
12 qn
40
2D EPc
n
12
hen2
mental
sTIE KBE
KU
Ǎimlength
unit
EF 1io
er
104k
Q2 02
Hk1
112 m
VNa
NEF 12 nH12
s
EF v
Fok
3D EDkidE
Eds.ae
Nff
Dads EIFDads
0S
EfknsdstokfEF.mn
AENEAS
FE12d
sA213
UASEF
Eds A215
EF
Q3 P2TOKI
Pins
For
Fermions3Dat Fok
pinEt N
EPC
P
三台 E
spc
C
vSEEN
DFEdE
it
fi
CFDEF kas Fyi
Dgf
e
eif jf.name
Letx9
𦭛
o
KBTǗ
fq
ForKBT EF
Cu DKBT
2dx
increase
temperature
If ns.x xndx fixolf Slxxo
dXgusug
If
each
particle
ksn E
KR.TN
DkoE DEFkBT number
of
electron
matters
to a
kept
the
energyi
0N
a
N
N
Ne
lemons are in d
EEE
ESF
DEF 𦭐NfDads A
Ea
fAcids A
Dan 12
Q4 un2
D
kids to
Nffoff
as T
Tfkid
EfDad
E
e1
change mum tomake IfaDads
a
NffDd fffDdstf.fidE
ffDkidEhifa
Dcsds fTnl fIE Disde number
of
States
available
ofparticles
at Est of
holes
at Est ft hole
aair
bubbles
in
water
hole 1electrons empty
si
dE ynn.rrrl
fai lefu.lk 1
iii
if
If Da constant un
ucoielauilnnniinwatw.mx
init For
election fki
ehnn.li
ii
If increase
with
Eun un
If decrease
with
Eun suis
E
DIE E2117
unkumconstzpum
umikspuisu.ws
7.2 BoseGas No
pail
exclusionprinciple
AthighTn
13 classical
ideal
gas only
workingathigh
utin
ASTti AtTc where n_n13 quantum
behavior
show
up
At ok Allparticlesgoes
to E0Statequantum
state
Bosons forpositiveinfinityforE
u.ffiei.tl
for
negativeinfinity for
Bosons f1
TTc name
separation distance classical fevmions.fi
TTTin
o
uttm
quantum
regime
TT
BE largepositionofparticlesgoto Eo state BEcondensation
AtTBE.IT
𨰻
inn
ForEFJzms.IT
inn
NParticles classical Thigh NETIn
uco
Tus
NN
oNiiii
Incited
state
AtTBE.TN T
BE
TT
BE
NNNi
ok No Neqf.ie 1
ui
NNot fail Dkid
soas
NO
N
number
of
particles
at
excited
state Ni
Nis a
system withoutconservation
of
number
of
particles uo
NT
when
instant 0
Eqn0is vid only
forTT
BE
ForTT
BE f
N
then we
need
to
haveuto inorder
forNN
dEek
nnlkBT.IN
fDk
dEeE1kBT
13DE
ImDads V4YdP z.ms
Jzmcan7312Ends
aHow
doesNdepend
onT
letxEk51
NNI
KEPTdx xT2
NN312
QǛiNNNN11
PJETBEN.in
ffDk1dEeE1kBTBE i
ff my Ends
elk
BT
BE_can7312 KBTBE
312ff
It dx TYdxfe xfet
fxyzfemnxdx
fxnfe
nxdxeett
nx.fi dxriff etat
2MKBTBE
312
p
2612defines
T
BE
KBTBE z.TL
lI
__13 li
N
KBT pnoiiiiiiiiiiiiicauses.at
nation
on iiiftiiiimmnwofpaf
fov
KTBENFSe.LI Diii N
will
behave
more
like
the
ideal
gas
nad
P
Ǜftn
Bosons
T
iiseparation
distance
T
Nfffn_Dkd
ETT
BE
Dismiss
CO
SS
E
for
example If D_constant N.ru d
sKBTxolN.is
not
bounded No
total
number
N
in
this
case Nos ifTtok
217 E
Dudexconstant
d
E
CH8 Heat Work
energy levels
i
if
ofPonies
Nisi
ii
fix
energy
even fix
N.in
ange
energy
level
in
change
distribution
ǜo
iiiiiingedThwmaiiijifswwovky.lk
efficiency
8CarnotCycle
Isothermalprocessto
absorb
heat
from ahigh
temperature
sourceTn
RV
B以下 Ken
tu
temperature
fuwe
deliver 20 Adiabaticprocess to
deliver
the
work
when
we
Change
以后
work
IsothermalprocesstochangPV
PsV3
P4
V4
Adiabatic
process
tobring
the
engine
back
to
its
original
state
1174
V4Tz R以下
Takeclassical
ideal
gasasanexample
PKNKBTOIP.li Pz.li
heatabsorbed
by
ideal
gas Q
work
delivered
by
ideal
gas w
w.JP
dvz.fi
NYTd
vNKBT.fi NKBT.in
awNk
Binti Heat
from
50
nenO_engine___yu
AdiabaticlPz.vz
B
Ǚjii
Ajihi
v5
pzvipzlipz.liBUT
hpzvzpz.is iT_T _an uynN
Isothermal113V32174V4
wfipdvfyidvsameaSONkpn.ino
aNkpn
ooutside
give
work
toit
Heat
delivered
toTz
some heat engine work
02 aNKBT.mySome
a0
Adiabatic iii
W4 an Cnn
The
net
heat
ai iv
The
network
QFOQ.noheat
absorbed heat
delivered
by
engine
toTzSource
Cannotcycle ideal
gas OOQFNKBT.tn
N
m30OQFNKBT.tnYi
Qheatabsorbed
by
engine 003
0New
Quantity
Q2
a
ain
OU energy
changeofengine ow NKBT.tnNKBTz.tn0
0W work delivered
byengine 200Q2 0
004 a
Ǘiii_
40004
𧃍
4
Tu work
delivered
by
engine conservation
of
energy
WE
Ǐow
ownowztowz.nu 002
NKBT.tn
INKBT.tnusing rcptr
NKB.pk
Area
Pdv NKBT.tn
P
v
hyun ce
E
what's
therelationbetween WilliQ2
yQ
21
Engine Absorb
QfromTsome fansw
W
Q_Q
BVFNKBTRUFNKBTBUFNKBTZP4U4
NKBTz.BE
P3V35 T.VE V3
PNP P4V48 T.li Tzvi
1
ineugasomyy_NKBT.tn
NKBTztnlYDNKBT.tn
1Tzlnlǚl
T.nl
the
changeafter
onecycle
anton
engine
Qfrom
Tosyofor
one
system
Best G
oszD1upper
limit
effiienyos
s.is becausecos
ent
4521 increased
Sz best
refīgevatov
wefficiency
a产品
C
H10 PhaseTransition
10.1 Clap
tyron Equation liquidvapor
transition
PAt
the
phase
transition
fǜqǜiy At TThisMg system
win
favor
gas
AtTcTa Mung system
win
favorliquid
qiwǘfAt To MEMgsystem
willatequilibrium
ii v
up Ti Tds
dutpdvdu
sditvdl.edu d
sP
d
V
sfv02dFSdtPd
VEUns
dH Tds vdpH
utpvj.jo
d
Gs
dV
d
PGUT
St
PU
P
ǛĪǙ duc dug S.mu MSgdtvgdp
fo csg s.im vgusdp
iǔfiii
5
Tis
gsu EL
Latin
Heat
experiment P1atm 1000c L540kid
lkgt 2.26 106Jlkgt
o
0356at
mlk
the
roeg o
0357at
mlk
Tis si L
fun
cov.cn
via vwater
10
Vanda Wael's equationofstate
Go
fromideal
gasto realistic
gas
ideal
gas EEm PFNKBT
Ignored intentionsbetween
particles
Ignored the
finite
stageofparticles
Pforce
perunit
areaexperienced
by
the
wall
Vvolume availableto
the
motion
oftanparticle
In Buildamodelto consider
the
finite
stageeffect
PVN
bNKBT
fYola
meof
each
particles
volume
available
to
the
motion
of
particles
2Interaction attractiveinteraction interaction
reduce
the
pressure
than
the
wall only
close
to
Pon
thecontainer should
be
less
thantupofaeuga.imiji im nni
wan
Pto
PrNb NKBT
ifV
ideal op m
a
opxnimbevofconisi.rs instant
nfoneoteacnpari.ie
kop z.mustone
of
each
particle
kv 1ofnations inA
P
1N_N
bNKBT
an attractive
acorepulsive
Does
Uenergy depend
on
V2
PNNm
NKBTUdoe.nu
depend
onv
Pt
rN
bNKBT
U
depends
on
v
U
depends
on
v
doTdstpav
P𦐒vP
PVN
b
NKBTPii.at
Vial
PVN
bn
RT
UN
KBT ideal
gas PV NKBT
How
about PtrN
bNKBT
abto.PN NbkNKBTnoimera.mnbetween
particles
UN
NKBT 0
Guess Ito ui
energy
iii
duTds_Pd
V
E出品
o
P
U
NKBTwnena U
NKBTHowab.us
TdS dU PdV
ENkBdT qYdv Y
duds
d
V
s
KBtnmtNKR.tn
N_N
bitconstant independent
ofadepend
on
b
liquidgasphase
tranīstīon
PA isliquid Bis
gas Btnat Pd
Gs
dv
d
P
mgig
iiiiiiii iii.si
y
P
iii
Students also viewed