# Week 5 BUS 308 assignment

RSaleem
(Not rated)
(Not rated)
Chat
 Week 5 Correlation and Regression For each question involving a statistical test below, list the null and alternate hypothesis statements.  Use .05 for your significance level in making your decisions. For full credit, you need to also show the statistical outcomes - either the Excel test result or the calculations you performed. 1 Create a correlation table for the variables in our data set. (Use analysis ToolPak function Correlation.) a. Interpret the results.  What variables seem to be important in seeing if we pay males and females equally for equal work? 2 Below is a regression analysis for salary being predicted/explained by the other variables in our sample  (Mid, age, ees, sr, raise, and deg variables.) (Note: since salary and compa are different ways of expressing an employee’s salary, we do not want to have both used in the same regression.) Ho: The regression equation is not significant. Ha: The regression equation is significant. Ho: The regression coefficient for each variable is not significant Ha: The regression coefficient for each variable is significant Sal The analysis used Sal as the y (dependent variable) and SUMMARY OUTPUT mid, age, ees, sr, g, raise, and deg as the dependent variables (entered as a range). Regression Statistics Multiple R 0.99215498 R Square 0.9843715 Adjusted R Square 0.98176675 Standard Error 2.59277631 Observations 50 ANOVA df SS MS F Significance F Regression 7 17783.7 2540.52 377.914 8.44043E-36 Residual 42 282.345 6.72249 Total 49 18066 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -4.009 3.775 -1.062 0.294 -11.627 3.609 -11.627 3.609 Mid 1.220 0.030 40.674 0.000 1.159 1.280 1.159 1.280 Age 0.029 0.067 0.439 0.663 -0.105 0.164 -0.105 0.164 EES -0.096 0.047 -2.020 0.050 -0.191 0.000 -0.191 0.000 SR -0.074 0.084 -0.876 0.386 -0.244 0.096 -0.244 0.096 G 2.552 0.847 3.012 0.004 0.842 4.261 0.842 4.261 Raise 0.834 0.643 1.299 0.201 -0.462 2.131 -0.462 2.131 Deg 1.002 0.744 1.347 0.185 -0.500 2.504 -0.500 2.504 Interpretation: Do you reject or not reject the regression null hypothesis? Do you reject or not reject the null hypothesis for each variable? What is the regression equation, using only significant variables if any exist? What does result tell us about equal pay for equal work for males and females? 3 Perform a regression analysis using compa as the dependent variable and the same independent variables as used in question 2.  Show the result, and interpret your findings by answering the same questions. Note: be sure to include the appropriate hypothesis statements. 4 Based on all of your results to date, is gender a factor in the pay practices of this company?  Why or why not? Which is the best variable to use in analyzing pay practices - salary or compa?  Why? 5 Why did the single factor tests and analysis (such as t and single factor ANOVA tests on salary equality) not provide a complete answer to our salary equality question? What outcomes in your life or work might benefit from a multiple regression examination rather than a simpler one variable test?

 Score: Week 5 Correlation and Regression <1 point> 1. Create a correlation table for the variables in our data set. (Use analysis ToolPak or StatPlus:mac LE function Correlation.) a. Reviewing the data levels from week 1, what variables can be used in a Pearson's Correlation table (which is what Excel produces)? b. Place table here (C8): c. Using r = approximately .28 as the signicant r value (at p = 0.05) for a correlation between 50 values, what variables are significantly related to Salary? To compa? d. Looking at the above correlations - both significant or not - are there any surprises -by that I mean any relationships you expected to be meaningful and are not and vice-versa? e. Does this help us answer our equal pay for equal work question? <1 point> 2 Below is a regression analysis for salary being predicted/explained by the other variables in our sample  (Midpoint, age, performance rating, service,  gender, and degree variables. (Note: since salary and compa are different ways of expressing an employee’s salary, we do not want to have both used in the same regression.) Plase interpret the findings. Ho: The regression equation is not significant. Ha: The regression equation is significant. Ho: The regression coefficient for each variable is not significant Note: technically we have one for each input variable. Ha: The regression coefficient for each variable is significant Listing it this way to save space. Sal SUMMARY OUTPUT Regression Statistics Multiple R 0.9915591 R Square 0.9831894 Adjusted R Square 0.9808437 Standard Error 2.6575926 Observations 50 ANOVA df SS MS F Significance F Regression 6 17762.3 2960.38 419.1516 1.812E-36 Residual 43 303.7003 7.0628 Total 49 18066 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -1.749621 3.618368 -0.4835 0.631166 -9.046755 5.5475126 -9.04675504 5.54751262 Midpoint 1.2167011 0.031902 38.1383 8.66E-35 1.1523638 1.2810383 1.152363828 1.28103827 Age -0.004628 0.065197 -0.071 0.943739 -0.136111 0.1268547 -0.13611072 0.1268547 Performace Rating -0.056596 0.034495 -1.6407 0.108153 -0.126162 0.0129695 -0.12616237 0.01296949 Service -0.0425 0.084337 -0.5039 0.616879 -0.212582 0.1275814 -0.21258209 0.12758138 Gender 2.4203372 0.860844 2.81159 0.007397 0.6842792 4.1563952 0.684279192 4.15639523 Degree 0.2755334 0.799802 0.3445 0.732148 -1.337422 1.8884885 -1.33742165 1.88848848 Note: since Gender and Degree are expressed as 0 and 1, they are considered dummy variables and can be used in a multiple regression equation. Interpretation: For the Regression as a whole: What is the value of the F statistic: What is the p-value associated with this value: Is the p-value <0.05? Do you reject or not reject the null hypothesis: What does this decision mean for our equal pay question: For each of the coefficients: Intercept Midpoint Age Perf. Rat. Service Gender Degree What is the coefficient's p-value for each of the variables: Is the p-value < 0.05? Do you reject or not reject each null hypothesis: What are the coefficients for the significant variables? Using only the significant variables, what is the equation? Salary = Is gender a significant factor in salary: If so, who gets paid more with all other things being equal? How do we know? <1 point> 3 Perform a regression analysis using compa as the dependent variable and the same independent variables as used in question 2.  Show the result, and interpret your findings by answering the same questions. Note: be sure to include the appropriate hypothesis statements. Regression hypotheses Ho: Ha: Coefficient hyhpotheses (one to stand for all the separate variables) Ho: Ha: Place D94 in output box. Interpretation: For the Regression as a whole: What is the value of the F statistic: What is the p-value associated with this value: Is the p-value < 0.05? Do you reject or not reject the null hypothesis: What does this decision mean for our equal pay question: For each of the coefficients: Intercept Midpoint Age Perf. Rat. Service Gender Degree What is the coefficient's p-value for each of the variables: Is the p-value < 0.05? Do you reject or not reject each null hypothesis: What are the coefficients for the significant variables? Using only the significant variables, what is the equation? Compa = Is gender a significant factor in compa: If so, who gets paid more with all other things being equal? How do we know? <1 point> 4 Based on all of your results to date, Do we have an answer to the question of are males and females paid equally for equal work? If so, which gender gets paid more? How do we know? Which is the best variable to use in analyzing pay practices - salary or compa?  Why? What is most interesting or surprising about the results we got doing the analysis during the last 5 weeks? <2 points> 5 Why did the single factor tests and analysis (such as t and single factor ANOVA tests on salary equality) not provide a complete answer to our salary equality question? What outcomes in your life or work might benefit from a multiple regression examination rather than a simpler one variable test?

• 10 years ago
Perfect Solution, I have added The Latest Solution as well.

Purchase the answer to view it

• week_5-bus.xlsx
• new_bus308_week_5_data_solutionset.xlsx