3. (25 points) Find the current i_1 in the circuit using <u>mesh analysis</u>.

Show your work clearly and box your final answers with proper units for full credit.

Part 3: Problems. Show your work clearly and box your final answers with proper units for full credit.

1. (25 points) Assuming ideal op amps, determine v_1 , v_2 , i_1 , and i_2 in the circuit below.

2. (25 points) The switch has been open a long time. At t = 0, the switch closes. Find $v_L(t)$ for t > 0.

3. (25 points) The switch has been open a long time. At t = 0, the switch closes. Find i(t) for t < 0 and t > 0.

- 4. (25 points) Consider the network of capacitors connected to the current source that is turned on at t = 0 (u(t) is the unit step function, which is 0 for t < 0, and 1 for $t \ge 0$).
 - a) (10 points) Determine C_{ab} , the equivalent capacitance seen by the current source.
 - b) (10 points) Find $v_c(t)$ as a function of time and plot it with respect to time if $v_c(0^-) = 2V$,
 - c) (BONUS: +2 points) If the breakdown voltages of the 2μF capacitors are each 100V (beyond which dielectric breakdown occurs), at what point in time will these capacitors be damaged?

