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ABSTRACT
Cloud computing systems have become not only popular, but exten-
sively used. They are supported and exploited by both industry and
academia. Cloud providers have diversified and so did the software
offered by their systems. Infrastructure as a Service (IaaS) clouds
are now available from single virtual machine use cases, such as a
personal server, to specialized high performance or machine learn-
ing engines. This popularity has been brought by the low-cost and
risk-free feature of renting computing resources instead of buying
them, in a large, one-time investment. Furthermore, clouds permit
their clients the use of elasticity.


Elasticity is the most relevant feature of cloud computing. It
refers to the clients’ ability to easily change the number of rented
resources in a live environment. This permits the entire system to
handle differences in load. Most cloud clients serve web applica-
tions or services to third parties. In these cases, load differences can
be correlated to the number of users for the service and elasticity
is used to handle differences in what is called user load. Most of
the scientific literature approaches elasticity looking solely at user
load. To give a clearer understanding, the majority of cloud frame-
works in use today work as follows: they start a number of worker
nodes, and tasks are assigned to them for execution. Only when the
user load changes, the number of workers is adjusted, if any.


In this paper, we propose an alternative approach, where the
number of workers depends on the actual requirements coming
from the different execution steps of an application. We show such
an idea can be achieved for several workflows from different fields
and that it can bring significant benefits to execution time and cost.
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1. INTRODUCTION
Cloud computing [1], [2] has changed the ITC industry. Compa-


nies like Amazon1, Google2 and Microsoft3 have built large com-
puting clusters of as many as 1 million servers4. Each server can
run multiple virtual machines and these virtual machines are rented
to customers. This type of service, where virtual machines are
rented, is called Infrastructure as a Service (IaaS). This paper fo-
cuses on IaaS clouds, since the mechanism we propose best fits the
needs of IaaS clients. However, it can easily be applied to Platform
as a Service (PaaS) and Software as a Service (SaaS).


Cloud computing did not innovate with the idea of renting com-
pute resources. This was previously done by multiple companies,
usually telecom companies which had small clusters and large band-
width access. The innovative factor, and still the most important
in cloud computing is elasticity. In cloud computing elasticity
represents the ability to vary the number of resources (worker
nodes in the case of IaaS) depending on demand. When NIST
defined cloud computing [3], it listed “Rapid elasticity” and “On-
demand self-service” (the enabler of elasticity) as essential charac-
teristics.


In the context of cloud computing demand is not clearly de-
fined and usually holds the meaning of user load. An obvious
example would be Netflix5, a cloud client for Amazon6, which of-
fers streaming services to third parties. The third parties, clients
for Netflix, represent the users in user load, number of concur-
rent clients accessing the service. Netflix (and most cloud clients)


1https://aws.amazon.com/ec2/
2https://cloud.google.com/compute/
3https://azure.microsoft.com/en-us/
4https://www.microsoft.com/en-us/server-cloud/cloud-os/
global-datacenters.aspx
5https://www.netflix.com/
6https://aws.amazon.com/solutions/case-studies/netflix/








uses elasticity to enable applications which continuously receive
inputs (user requests for Netflix) and generate outputs (video
streams for Netflix) to vary the number of resources depend-
ing on the number of inputs over time, user load. In the related
work, Section 2, we show that in most scientific papers that tackle
elasticity demand takes this form.


We propose an alternative use case for elasticity and cloud com-
puting. Take applications whose execution can be separated
in multiple steps and different steps require different optimal
numbers of resources. Using elasticity these applications can
be executed having the optimal number of resources for each
individual step. Here, demand is given by the application and not
by outside factors like user load.


There are many applications whose execution can be split into
multiple steps (we offer a few examples in Section 3). A large
class of this type of applications is the one where execution can be
split into Directed Acyclic Graphs (DAG). DAG workflows have
received a lot of attention in the scientific literature, especially with
regards to scheduling [4]. These are applications that so far do not
make use of cloud elasticity. Using our method this can change.


2. RELATED WORK
All definitions of elasticity state that it is dependent on demand,


without going in detail of what demand is: When NIST defined
cloud computing [3] they explained the essential characteristic “rapid
elasticity” as “Capabilities can be elastically provisioned and re-
leased, in some cases automatically, to scale rapidly outward and
inward commensurate with demand”; In [5] the authors define
elasticity as “the degree to which a system is able to adapt to
workload changes by provisioning and deprovisioning resources in
an autonomic manner, such that at each point in time the avail-
able resources match the current demand as closely as possible”;
Another definition [6] describes the need of cloud systems to be
“highly scalable” as “Infrastructure providers pool large amount
of resources from data centers and make them easily accessible. A
service provider can easily expand its service to large scales in or-
der to handle rapid increase in service demands (e.g., flash-crowd
effect).”


The purpose of elasticity as defined in [7] is to provide: perfor-
mance, cost, increase infrastructure capacity, energy. All of these
can be related to user load. We found demand to generally mean
user load. There are a few exceptions in the literature, where elas-
ticity is being used to take advantage of:


Available resources when not all resources are available from
the start, elasticity can be used to permit an application to take ad-
vantage of resources that become available later in its execution. In
[8] the authors introduced elastic algorithms. Elastic algorithms are
a class of algorithms which depending on the amount of resources
at their disposal provide a different level of accuracy for the results.
Algorithms that provide results with different accuracy depending
on execution time have been addressed before, but the idea that
the accuracy can change with the amount of resources is new. In
contrast, [9] take resource usage maximization as the main factor
when dealing with multi-tenant clusters. They propose that clus-
ter utilization should be maximized and that this can be achieved
by elastically varying the number of resources for each application,
even when the number of applications changes in time. The authors
of [10] show that the number of used resources can be changed dur-
ing execution even when the application is not designed to take this
into account. They start a distributed application on multiple virtual
machines, all on the same physical machine, and when more phys-
ical resources are available or the demand increases, they migrate
some of the virtual machines to newly booted physical machines.


Heterogeneous systems When machines offered by the cloud
provider are not identical application can be built to take advantage
of the different resources. This need can be both in the form of
hardware (machines with specialized processors such as GPUs) and
software (different libraries or frameworks). In their article [11] the
authors propose the use of a set of rules with which to make use of
elasticity to schedule different parts of the application to different
machines in the cloud.


Cost Kingfisher [12] is a cloud scheduling system for the user
which is cost-aware. It makes use of elasticity to increase and de-
crease the number of machines according to both demand and cost.


The rest of the literature which tackles elasticity only considers
user load: Sybl [13] proposes a language with which to better con-
trol elasticity; other works try to offer ways of measuring elasticity
[14] similarly to how physical elasticity works or [15] which offer
a penalty measure for when resource need is not perfectly matched
with available resources; There are benchmarks for elasticity [16];
Cloudscale [17] tries to predict the load of a system to better en-
able elasticity; [18] provides a mechanism to model check it; even
in works which addresses hybrid cloud scenarios [19] and multi-
tier cloud applications [20].


The relation between elasticity and user load holds true even in
surveys on elasticity [21], [22] and in articles discussing program-
ming for elasticity [23]. With the few exceptions, the scientific
literature regarding cloud elasticity mainly concentrates on varying
the number of resources with user load. As to our knowledge we
are the first to propose the idea of varying the number of resource
depending strictly on the requirements of different steps of one ap-
plication.


Our solution is similar to what is known as capacity management
[24]. The main difference is that because of elasticity from the per-
spective of the user the number of machines can change at runtime.
In capacity management the resources once chosen, are fixed.


3. CASE STUDIES
In order to show how elasticity can be used in scenarios other


than the ones dependent on user load we present a number of proof
of concept applications that require a different amount of resources
(machines) in subsequent steps of their execution. These applica-
tions are chosen from different fields in order to emphasize that this
method can be applied in a large number of cases. In the next sub-
sections we go through each of the applications and we show how
we split their respective execution flow in distinct steps. A step is a
distinct part of the application which takes a set of inputs (possibly
from a different steps) and creates a set of outputs (which can be
used as inputs for other steps).


For every application, each step is run on multiple machines. In
the paper we do not present the execution times but the speedup
obtained for different number of machines. The speedup is defined
“for each number of processors k as the ratio of the elapsed time
when executing a program on a single processor (the single pro-
cessor execution time) to the execution time when k processors are
available”, according to [25]. In other words, S(k) = T (1)/T (k),
where S is speedup and T (k) is the execution time of the process on
k machines. Execution time on one machine can vary with several
orders of magnitude from one step of the same application to the
other. By using speedup, we can present the results for all steps
of an application in the same figure. Execution time is actually
irrelevant to this article as it is dependent on the application, it’s
implementation, optimizations and the hardware. The goal here is
not to achieve a minimal total execution time. This problem has
been addressed for each of the applications we present. The goal is
to determine the optimal number of machines needed for each step








of different application. For this, speedup is sufficient.
In order to test the applications, we used different environments


ranging from our compute cluster (from which we used up to 12
Nehalem machines with Intel Xeon X5657 CPUs) to cloud virtual
machines rented from Amazon and Microsoft. In all scenarios we
used distributed frameworks, such as MPI 7 and the applications
were run using multiple machines, physical in the case of our clus-
ter and virtual in the case of actual cloud systems.


3.1 Web crawler
A web crawler application represents the core of web search sys-


tems such as Google8 or Bing9. It is a type of internet bot that
browses web pages on the internet in order to extract information.
In the case of search engines this information is used to create a
searchable index. Because of the sheer number of web pages, in
the tens of billions (according to World Wide Web Size10), a web
crawler needs to use multiple machines to process even a small part
of the accessible web pages on the internet.


We built a simple web crawler, similar to the one proposed in
[26], but without some features like page ranking or lexicon. The
goal of our web crawler is to generate a list of the most common
words on the web. To achieve this, it needs to download web pages,
remove duplicate URLs and calculate word frequencies. Each of
these steps can be distributed to execute across multiple machines.
The application was built using Scrapy framework11.


Step 1 - Web page download and link extraction.
A repository consisting of a list of web links (also known as Uni-


form Resource Locator - URL) needs to be shared across all worker
machines. Each machine selects a URL from the central repository,
downloads the web page that corresponds to the URL, parses the
web page and extracts all the links as well as all the words in the
web page. The extracted links are added to the central repository,
from where they wait to be selected. The words are added to a
separate database. Figure 1 shows the architecture. In theory the
execution ends when the entire “crawlable web“ is processed. In
practice there are many limitations, such as the storage space for
the shared repository. We stopped our experiments after 100,000
web pages have been processed.


A web crawler is dependent on the initial list of URLs submitted
to the shared repository. We used as an initial seed the DMOZ
website12. The website is a human-edited directory of the Web.


Step 2 - Duplicate URL filtering.
The URL list from the central repository is copied to each worker


machine. With N worker machines each worker is responsible of
1/N of the entire list. The worker compares each of the elements it
is responsible for with all the elements in the list. When duplicates
are detected one of them is deleted. The final list is merged and
copied back to the central repository. There are of course more
efficient solutions for the problem.


Step 3 - Word frequency calculator.
Similar to the duplicate URL filtering the list with all of the


words is copied to the worker nodes. Each worker is responsible
for 1/N of the words in the data set. When duplicates are identified


7https://www.mpi-forum.org/
8http://www.google.com
9http://www.bing.com


10http://www.worldwidewebsize.com/
11http://scrapy.org
12http://www.dmoz.org
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Figure 2: Speedup - Web Crawler


the counter for that word is increased. The data from all machines
is merged in a list of words and their frequencies.


After we built the application we performed our experiments. We
measured the average execution time per item, for the 100,000 web
pages. We used the average execution time per item to calculate
the speedup for different number of machines. We performed the
experiments, for each step, with 1 to 8 machines. The results are
presented in Figure 2 and we can easily conclude that the speedup
values differ for each step of the application. In Section 4 we go
into detail on how these differences permit the use of elasticity.


3.2 Machine learning - Q-learning
Q-learning [27] is a reinforcement learning technique. Rein-


forcement learning represents a part of machine learning focused
on how agents need to take actions in order to maximize a reward.
Q-learning is used to determine an optimal action-selection policy
for Markov Decision Processes [28].


A Markov Decision Process (MDP) is composed of a set of states
S, a set of actions A, a set of probabilities Pa(s,s′) = Pr(s′|s,a)
that applying action a in state s causes a transition to state s′, a set
of rewards R(s), and a discount factor γ ∈ [0,1] which determines
the importance of long term rewards in the detriment of short term
ones.


The scope of Q-learning is to calculate the quantity Q of all state-
action combinations. This is achieved by applying equation 1. The
initial values Q0 are usually set to be random.


Qi+1(s,a) = (1−α)Qi(s,a)+ α(R(s)+ γ max
a


Qi(s
′,a)) (1)


Step 1 - Generate Q0.
Because Q can be initialized with random values we chose to
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Figure 3: Speedup - Q-learning


initialize it using a greedy approach. The algorithm goes through
all the states and records which transitions have the highest proba-
bility. These are used to generate Q0.


Step 2 - Calculate Q.
Using equation 1 we calculate Q. Because the work is split


across multiple machines different processes are responsible for
different states. This means that there are conflicts where the in-
formation of state s′ is not available. All conflicts are noted.


Step 3 - Solve conflicts.
The list with all the conflicts is split across machines. Each ma-


chine solves a set of conflicts and returns the result to the controller
which merges them in the Q matrix. The conflicts are solved by ap-
plying equation 1. Step 2 and 3 need to be applied multiple times
in order for the values of the Q matrix to converge.


We tested the algorithm on a MDP that models a temperature
control system. The MDP has 2001 states that represent tempera-
ture (from 0◦C to 20◦C) in increments of a hundredth of a degree
and 2001 actions which represent the power of the actuator (from
−100% - cooling to 100% - heating) in increments of a tenth of a
percent. The training processed involved 100 executions of steps 2
and 3.


The average execution time for each step is used to calculate the
speedup. Figure 3 presents the speedup of each of the steps given
between 1 and 15 machines. In Section 4 we go into detail on how
these differences permit the use of elasticity.


3.3 Rendering
During a rendering process multiple passes are executed that cre-


ate a final image. Each pass has a specific role such as the creation
of glossy surfaces or depth detail. A method to reduce noise is to
take the final image and blur it. In some cases, edge detection is
involved, but even then edges are blurred.


Render pass noise reduction13 (RPNR) is an algorithm that re-
duces noise only within given surfaces. It uses different passes of
the rendering process in order to obtain the desired result. It re-
quires the Combined image (final image), the Ambient Occlusion,
the Diffuse Color pass, Normal and Z (depth) passes. All steps take
as input one or more images and output one image. They can all
be easily distributed by splitting the input images and merging the
output ones.


Step 1 - Blurring combined image.
The result will be used as a delimiter along with the other passes


(except the Ambient Occlusion one). It is meant to preserve Glossy
detail when a Glossy pass is not available.


13https://github.com/lmmenge/RPNR
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Figure 4: Speedup - Render Pass Noise Reduction


Step 2 - Transform Ambient Occlusion.
The Ambient Occlusion pass is blurred, transformed to greyscale


and inverted. It is used to determine the areas with the most noise.


Step 3 - Z (depth) to grayscale.
The Z pass is converted to grayscale. It is used along with the


Normal pass to attenuate edge noise.


Step 4 - Blurring surfaces.
Here blurring is done differently than a standard blur. Instead of


weighting surrounding pixels by distance they are weighted by how
much they differ from the original image based on the delimiters.
Pixels that are too different are ignored.


Step 5 - Blurring edges.
During the previous step the edges are left untouched and contain


the original noise. Another blur is executed similarly to step 4. In
this case the difference between the original and the output image
of step 4 is used. For the pixels where the difference is 0 and are
detected to be edges by the Normal and Z pass, a 50-50% blend
between their values and the combined image ones.


Steps 1, 2 and 3 are independent on each other and can be exe-
cuted in parallel. However, their output is used by step 4 and step’s
4 output is used in step 5. The execution time was measured for
each step independently. Using the execution time we calculated
the speedup, the results are available in Figure 4. These results are
extremely dependent on the data set. Operations such as convert-
ing an image to grayscale are embarrassingly parallel. The optimal
number of machines increases with the size of the input image. This
is why graphic processors have so many cores. In Section 4 we go
into detail on how these differences permit the use of elasticity.


4. EXPERIMENTAL RESULTS
There are multiple policies that can be used to determine the op-


timal number of machines (resources) on which to run a distributed
process [29]. These policies are usually dependent on cost, energy
consumption or dead-lines. We propose a simple example policy
that uses equation 2, which can uniformly be used on all the appli-
cations we presented and it does not depend on outside factors such
as cost. Here S represents speedup and k the number of resources.
Using the equation, we can set the optimal number of resources to
be equal with the biggest number of resources as long as adding
another resource offers a large enough (bigger than ε) speedup dif-
ference. We chose ε empirically to be 0.2. Finding the optimal
number of machines in this manner is far from optimal, it serves as
an example of a policy that can be used with our method. A better
one would consider execution time, because speedup hides large
variations in execution time that can be exploited for further gains.
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Figure 5: Optimal number of machines for the case study applica-
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Figure 6: Execution times for the Q-learning application


optimal_#_o f _machines = max({k|S(k + 1)−S(k) > ε}) (2)


By using equation 2 on the speedup values from the case stud-
ies in Section 3 we calculated the optimal number of machines on
which to execute each step of the applications. We present the re-
sults in Figure 5 in which we can observe that for all applications
there are different steps that require different numbers of machines.
Using cloud elasticity and these results one can run the applications
in a way in which they would always execute on the optimal num-
ber of machines, regardless of which is the current step in the exe-
cution. This method can be easily used for many other applications.
There are many examples of applications whose execution already
take the form of a workflow.


In order to show the benefits of our method we take a closer look
at the Q-learning application. The execution times for this appli-
cation are presented in Figure 6. We use execution times from the
figure and calculate cost considering the application is run on one
machine, on the maximal optimal number of machines and using
our method. As a simplification, we consider the cost to be one for
one second of execution on one machine. The cost is calculated
using equation 3, where T is the execution time for k machines and
k differs from method to method.


We first executed all steps of the algorithm using one machine
(k=1). Then, we executed all steps on the highest number of ma-
chines that improves the speedup (which is k=11, according to Fig-
ure 5). Finally, we executed the same algorithm considering our
approach, where we varied the number of machines we used for
each separate execution step, according to the values for each step
in Figure 5. Table 1 contains the execution time for each method
along with the calculated costs.


cost = ∑
stepi


Tstepi (k)∗k (3)


It is obvious that our method manages to have an execution time


Table 1: Comparison our method and previous ones
Execution time (s) Cost


Using one machine 201 201
Using 11 machines 34 376


Our method 39 266


very close to the smallest execution time while having a low cost.


5. CONCLUSION
We proposed a novel way of utilizing elasticity in cloud comput-


ing. Our method steps away from the previous use cases in which,
almost uniformly, demand was considered to be user load. We
showed that elasticity can be used to improve execution time and
cost of applications that do not have user load, that is, their demand
of resources does not fluctuate in time depending on outside fac-
tors. We offered three examples of applications, from very different
fields, whose algorithm can be split in multiple distinct steps and
we proved that each step requires a different number of resources,
depending on a simple policy. By using elasticity, the execution
time and cost for these applications can be improved. Our method
can easily be applied to many other applications whose execution
can take the form of a workflow.


Using this method, we believe that we opened the doors for an
entire class of applications that so far were not considered “cloud
candidates” to be migrated to the cloud in order to obtain significant
improvements in both cost and execution time.


As future work we intend to extend the method and add boot
time for virtual machines as well as the cost to transfer data. We
need to identify a better function that indicates the optimal number
of machines. We need to use this method with DAG tasks and
identify a method to use our solution online.
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