
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

C++ Assignment
[image: profile]
custardo
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

c.pdf

Home>Computer Science homework help>C++ Assignment

MOD003197 OBJECT ORIENTED C++ 2016-17 SEM2

MULTIPHASED COURSEWORK

IN-CLASS EXERCISES (15%)

During the semester, weekly practical classes will include a number of short programming

exercises (typically 8) that should be demo’d to the tutor in-class (the choice and number of

exercises to be assessed is at the discretion of the tutor at the local point of delivery). Each

successful demo is worth one mark. If 8 exercises are specified for assessment but only 6 are

successfully demo’d, you will be awarded 6/8 th’s of 15% towards the final mark. NB no

work should be submitted for this component, only demo’d to the tutor during scheduled

practical class time.

MAIN COURSEWORK ASSIGNMENT (85%)

FIRE SIMULATION

Fire simulation can be modelled in software and is an important area of research in fire

safetyi, fire drill managementii, fire investigationiii, and with applications in many computer

game scenariosiv. One way to look at the world in software is to study a process as a group of smaller
pieces (or cells or sites) that are somehow related. For example the world can be viewed as a

rectangular grid of cells. Rules specify how a cell changes state over time based on the states of the

cells around it. Each piece corresponds to an area (or volume) in the world and each piece can be

associated with one of several possible states at any given time. A computer simulation involving such

a system is called a cellular automaton. This assignment requires you to design and implement a

program that models the spread of fire in a 2D forest environment.

Program requirements

Note that fire simulations are very well covered in textbooks, published journals and on the

internet. In fairness to all students to ensure equality as far as course background knowledge

is concerned your implementation must conform to the following two requirements:

1. Language must be C++
2. Application must be console based

Code Development

1. The simulation requires you to create a simple 2D console-based world composed of a
21x21 grid of cells, where all cells contain a tree except for a 1-cell thick perimeter

boundary layer of empty cells. The boundary is similar to a firebreak or an area with

no trees; proximity to such a boundary cell cannot cause an internal tree to catch

fire. This insulating boundary is called an absorbing boundary condition. Draw the

forested world using ASCII characters such as an ampersand for a tree, an x for a

burning tree and a blank space for an empty cell.

2. Once the simulation is started the fire is initiated (in the first instance) with a burning
tree at the central cell. No user-interaction is required other than to press a key to

i http://www.freefiresimulator.com/
ii http://www.flame-sim.com/
iii http://www.aeiengineers.com/application-of-fire-testing-and-modeling-in-a-forensic-investigation/
iv https://www.pcgamesn.com/firefighting-simulator/firefighting-simulator-announced-for-a-2017-release

indicate the end of one time-period and the start of the next, or to exit the simulation.

Each key press changes the state of the simulation and thus represents a time-step

(actual real units of time are irrelevant). Assume that the simulation continues until no

cell is on fire.

3. After each time step, re-draw the grid and prompt the user to press Enter to initiate the
next time step, or another option to exit the simulation (if it helps you can think of the

simulation as being a kind of turn-based game).

4. During each time step each cell can be in one of three states, which could be
represented numerically (eg 0, 1, 2)>

Empty – this represents either empty ground or the site of a burnt tree.

Tree – a tree that is not burning.

Burning – a tree that is burning.

5. During each time step the following rules should be applied to each cell to determine
it’s state in the next time step;

i. If the site is empty it remains empty.
ii. If a tree is present and none of the neighbours are burning it remains a tree.

iii. If a tree is present and at least one of the neighbours is burning it may or may not
catch fire with a probability of 50% (use a random number generator to determine

this).

iv. If the site contains a burning tree then assume it will burn down in one time step
leaving an empty site.

To simplify programming for this simulation, assume the state of a diagonal cell to the

northeast, southeast, southwest, or northwest does not have an impact on a current cell's

value at the next iteration. Therefore a cell's value at the next timestep depends on the

cell's current state and the values of its neighbours to the north, east, south, and west.

 Note that your solution must be object-oriented as far as possible. In very general
terms the coding solution should firstly set up the forest environment and then

secondly implement the time steps and forest updates via a loop structure. Some

suggestions (not exhaustive or even necessarily a requirement) are;

 Develop a class Cell class whose objects fill a 2D array called forest, with
appropriate private attributes and public methods.

 Develop a class Grid, with a static 2D char array of ascii symbols map reflecting
the current visual state of the forest used for displaying to screen. A static method

spread() could process each Cell object in turn – by passing the state of the current

cell and the states of it’s neighbours, and return the new (ie next) state.

 Another static method could be applySpread() that takes at least one argument
(the forest) and updates the forest grid and associated map. One approach is to

have an empty copy of the grid used every turn; that is, apply the update rules in

turn to each cell and then add the updated cell to the new location in the copy of

the grid not the original. When all the cells have been updated in the copy, that

copy becomes the new ‘original’ (which can be drawn to screen) and the old grid

is discarded.

 The most intuitive way to code a solution is to create a 2D array of Cell objects
along with a 2D char array for display purposes. However there may be more

efficient ways of utilising an underlying data structure. For example instead of a

2D array of objects, all trees (whether in state ‘burning’ or ‘tree’) could be stored

in a linked list where each object contains a reference to the forest. Initially the

linked list would be long, but as the trees burn down the list will shorten and

memory can be de-allocated. The position of a tree in the list is irrelevant to its

location in the forest. This is a less intuitive approach but the advantage is that

only the tree/burning cells/objects need be processed and so each turn will be

faster in execution, although it is unlikely any obvious difference would be

observed in this small example.

Enhancements – you are encouraged to explore techniques (own ideas, literature research) to

further extend the simulation in order to maximise the marks you can achieve, but you should

aim for a basic implementation in the first instance. Some possibilities to consider are weather

(specify probability of catching fire at runtime), ground moisture (initialise a single connected

section of the forest that is damper and, hence, harder to burn), wind speed and direction

(direction=N,S,E,W and speed=none, low, high), neighbour probability (a tree catches fire

from neighbouring trees with a probability proportional to the number of neighbours on fire),

new tree growth (a tree grows instantaneously in a previously empty cell according to a given

probability), use of an initial random grid (model initial density of forest cover and number of

initial burning locations).

Assessment of Fire Simulation Assignment

The work will be assessed according to:

a) program functionality

b) the extent to which the program follows good object-oriented practice including use of

appropriate user-written classes and methods

d) documentation (incorporating quality of presentation – layout and readability) to include:

i) a statement of what functionality you have been able to implement, and an evaluation

of the simulation development eg design of any classes and/or data structure, strengths

and limitations of the implementation (400 words). Include instructions for running the

program in an appendix.

ii) a class diagram (ensure your diagram matches the code implementation).

iii) a hard copy listing of the source code.

Submit a printed, adequately bound/secured report to the iCenter by the last teaching day of

the semester (for Cambridge campus this is Friday 5th May 2017)., which should contain;

1. A hard copy of the documentation as described above.
2. A complete electronic copy of your report including source and compiled code on a

CDROM or USB stick. Ensure the removable storage medium is adequately secured

within or to your report.

REASSESSMENT DETAILS

If you are unfortunate enough to require a re-assessment for this module coursework, you

should re-submit the main coursework assignment (adopting an improved approach where

necessary) and your mark out of 100% will be calculated on this new submission only; there

will be NO in-class exercise component taken into account, and no in-class exercises should

be submitted.

MOD003197 Object Oriented C++ Coursework feedback sheet 2016-17 Sem2

In-class
exercises
(not used in

reassessment)

Main Assignment

O
ve

ra
ll

0
1

0
 m

ar
k

Overall
module
result

Student /15

Fu
n

ct
io

n
al

it
y

gr
ad

e

O
b

je
ct

 o
ri

e
n

te
d

ap

p
ro

ac
h

 a
n

d

d
e

si
gn

D
o

cu
m

e
n

ta
ti

o
n

an
d

 p
re

se
n

ta
ti

o
n

Comment %

G
ra

d
e

/85 %

Grade

Weighted 0.15.

Eg if 5 exercises
are successfully
demo’d out of 9
then the mark
out of 15 is>
5/9 of 15 = 8.3

Reflects how well
the program
works. Is interface
understandable?
Is forest visible?
Does program
compile/execute
to completion via
timesteps or
generate a run-
time error? Does
fire spread
appropriately?
Enhancements?

Degree of
program
dependancy on
main. Choice and
development of
user-written
classes and their
methods.
Accuracy of class
diagram. Types of
data structure
used (2D array(s),
+/- list(s), and
their processing.

Evaluation of
achievements and
limitations. Clearly
distinguishes own
work from other
sources. Clarity of
code layout and
in-line comments.
Physical quality of
presentation.
Report layout and
structure. Any
items missing (eg
disk)?

Personalized
comments specific

to student
submission.

Each
component
is assigned
a grade (F,
D, C, B, A)
and each
maps to a
mark (0-
100) from
which the
average is
taken.

Main
assignment
grade

Weighted
0.85

Overall
weighted
mark

F (<40);
D (40-49);
C (50-59);
B (60 - 69);
A (70+)

Sid Number Mark Grade Grade Grade Comment Mark Grade Mark
Final
Mark

Final
Grade

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

