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Introduction 
This laboratory follows the exercises in the book, specifically the Performance Lawn Equipment 
Case Study homework assigned exercises Chapters 8 through and including 12, except this 
laboratory requires that you use R to complete the exercises.  That is, you should answer all 
questions in the textbook exercises and complete computations using R.  Each laboratory in 
ANLY 500 will build on the laboratories you have completed before.  So, you will want to 
continue to keep your work in the folder you set-up for Laboratory #1 so that you can refer 
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back to previous laboratories if necessary.  You will also continue to use the data files for ANLY 
500 on Moodle.   


 


Chapter 8 
In reviewing the PLE data, Elizabeth Burke noticed that defects received from suppliers have 
decreased (DefectsAfterDelivery.csv data file). Upon investigation, she learned that in 2010, PLE 
experienced some quality problems due to an increasing number of defects in materials 
received from suppliers. The company instituted an initiative in August 2011 to work with 
suppliers to reduce these defects, to more closely coordinate deliveries, and to improve 
materials quality through reengineering supplier production policies. Elizabeth noted that the 
program appeared to reverse an increasing trend in defects; she would like to predict what 
might have happened had the supplier initiative not been implemented and how the number of 
defects might further be reduced in the near future.  


In meeting with PLE’s human resources director, Elizabeth also discovered a concern about the 
high rate of turnover in its field service staff. Senior managers have suggested that the 
department look closer at its recruiting policies, particularly to try to identify the characteristics 
of individuals that lead to greater retention. However, in a recent staff meeting, HR managers 
could not agree on these characteristics. Some argued that years of education and grade point 
averages were good predictors. Others argued that hiring more mature applicants would lead 
to greater retention. To study these factors, the staff agreed to conduct a statistical study to 
determine the effect that years of education, college grade point average, and age when hired 
have on retention. A sample of 40 field service engineers hired 10 years ago was selected to 
determine the influence of these variables on how long each individual stayed with the 
company. Data are compiled in the Employee Retention worksheet.  


Finally, as part of its efforts to remain competitive, PLE tries to keep up with the latest in 
production technology. This is especially important in the highly competitive lawn-mower line, 
where competitors can gain a real advantage if they develop more cost-effective means of 
production. The lawn-mower division therefore spends a great deal of effort in testing new 
technology. When new production technology is introduced, firms often experience learning, 
resulting in a gradual decrease in the time required to produce successive units. Generally, the 
rate of improvement declines until the production time levels off. One example is the 
production of a new design for lawn-mower engines.  


To determine the time required to produce these engines, PLE produced 50 units on its 
production line; test results are given on the worksheet Engines in the database. Because PLE is 
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continually developing new technology, understanding the rate of learning can be useful in 
estimating future production costs without having to run extensive prototype trials, and 
Elizabeth would like a better handle on this. Use techniques of regression analysis to assist her 
in evaluating the data in these three worksheets and reaching useful conclusions. Summarize 
your work in a formal report with all appropriate results and analyses.   


 


Part 1: Defects after Delivery 


Step 1 
As we found before, most of the work is getting the data into the proper format to analyze.  
This will still be true, even for performing regression analyses.  So, the first thing to do to look 
at what the numbers of defects would have been if nothing had changed is to get a month 
number column along with that part of the DefectsAfterDelivery.csv data that is of interest.  It 
looks like to me that the number of defects continues to rise through October 2011.  However, 
the solutions for the textbook only go through August 2011.  You should decide what you think 
should be included in the data of interest for this question. 


To get the number of the month in a first column and the number of defects for that month in a 
second column I: 


1. combine the years 2010 and 2011 into a vector, then remove the last two values 
because I’m not including November or December 2011: 


> defects.old.rate <- c(DefectsAfterDelivery$X2010, DefectsAfterDelivery$X
2011) 
> defects.old.rate <- defects.old.rate[1:22] 


 


2. create a month number vector for the 22 months of interest:   


> month.nr <- c(1:22) 


 


3. combine the month numbers and the number of defects into a matrix with two columns 
and check the first few rows:  


> defects.old.rate <- matrix(c(month.nr, defects.old.rate), ncol = 2) 
> head(defects.old.rate) 
     [,1] [,2] 
[1,]    1  812 
[2,]    2  810 
[3,]    3  813 
[4,]    4  823 
[5,]    5  832 
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[6,]    6  848 


 


4. use the lm() function to do the regression and check the output:  


> defects.old.rate.mod <- lm (defects.old.rate[,2] ~ defects.old.rate[,1]) 
> summary(defects.old.rate.mod) 
 
Call: 
lm(formula = defects.old.rate[, 2] ~ defects.old.rate[, 1]) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-14.440  -6.678  -1.944   6.976  22.572  
 
Coefficients: 
                      Estimate Std. Error t value Pr(>|t|)     
(Intercept)           817.4156     4.0677 200.952  < 2e-16 *** 
defects.old.rate[, 1]   1.3354     0.3097   4.312 0.000339 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 9.216 on 20 degrees of freedom 
Multiple R-squared:  0.4818, Adjusted R-squared:  0.4558  
F-statistic: 18.59 on 1 and 20 DF,  p-value: 0.0003394 


 


5. plot the data in a scatter plot, add the regression line and check it:   


> plot(defects.old.rate[,1], defects.old.rate[,2], xlab = "Month", ylab = 
"Number of Defects") 
> abline(defects.old.rate.mod, pch=2, col="red") 
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Evans output in Excel is a bit different that the summary() output from R.  One of the questions 
I have about the solutions is why Evans ran an ANOVA on this data.  You should say something 
in your lab report about whether you think it was necessary to do analysis of variance in this 
case or not.   


 


Step 2 
In performing the regression analysis we always want to check and make sure that all the 
assumptions are true; linearity, normality of errors, equal variance or homoscedasticity, and 
independence.  If we plot the residuals we see we are in trouble already.  The plot of the 
residuals shown below has a pattern that to me looks cyclical.  To create this plot I wrote 
another short R script.  Note that to use the function xyplot() you will need to attach the lattice 
package again, i.e. library(lattice).  The scrip and resulting plot are: 


 
xyplot(resid(defects.old.rate.mod) ~ fitted(defects.old.rate.mod),  
   xlab="Fitted Values",  
   ylab="Residuals",  
   main="Residual Diagnostic Plot",  
   panel=function(x, y, ...) 
      { 
         panel.grid(h=-1, v=-1) 
         panel.abline(h = 0) 
         panel.xyplot(x, y, ...) 
      } 
   ) 
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I believe you should see some periodicity in mower related data, more units sold in the spring, 
less in the fall and so on.  So I think the best idea would be to use a method amenable to 
seasonal cycles.  Evans tries to use a 3rd order polynomial to fit this data.  I believe that is just 
wrong.  So, I won’t proceed with an analysis that matches the solutions now.  I will resume this 
analysis after the technique is presented in Chapter 9.   


 


Part 2: Defects after Delivery Continued 


Step 1 
If we want to look at the trend in Defects after Delivery since the change was made, as usual, 
we need to put the data of interest in the proper format.  Since we included the year 2010 and 
January through October 2011 in the first regression analysis, we’ll use November-December 
2011 and the remaining years in this analysis.   


I use the same commands and logic as before for the data and create a scatter plot.   


 


Looking at the scatterplot of the data it appears that it was several months after the change 
was made before there was a real difference in the number of defects.  This is where I see what 
looks like a “gap”.  But, we’ll leave that alone for now.  Note that this plot is considerably 
different that the plot in Evans’ solutions.  In Evans’ solutions all the months prior to and after 
the change was made are included in the plot.  So, in Evans’ plot you see the increasing 
numbers of defects prior to the change, which we already looked at.  Here is what I think the 
plot should look like: 
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Now, we can perform a linear regression for this data rather than the 3rd order polynomial used 
in the solutions as follows: 


> defects.new.rate.mod <- lm(defects.new.rate[,2] ~ defects.new.rate[,1]) 
> summary(defects.new.rate.mod) 
 
Call: 
lm(formula = defects.new.rate[, 2] ~ defects.new.rate[, 1]) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-45.357 -25.383  -0.792  19.539  57.397  
 
Coefficients: 
                      Estimate Std. Error t value Pr(>|t|)     
(Intercept)            884.432      9.621   91.93   <2e-16 *** 
defects.new.rate[, 1]  -11.538      0.430  -26.83   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 29.07 on 36 degrees of freedom 
Multiple R-squared:  0.9524, Adjusted R-squared:  0.951  
F-statistic: 719.8 on 1 and 36 DF,  p-value: < 2.2e-16 


 


The p-values for both the intercept and slope are very, very small.  So, we reject the null 
hypothesis that there is no change in the number of defects and accept the alternative 
hypothesis that the change did make a difference in the number of defects.   
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Here we see that by omitting the months prior to the change we find that a linear model 
explains just over 95% of the variance in the data.  This is a very good result.  The plot with the 
regression line is: 


 


What I have done is a “piecewise” solution based on the information in the case study.  I think 
Evans was very fortunate that the 3rd order polynomial regression fit the data so well.  I don’t 
think I would perform this analysis using that model.  You should comment in your lab report on 
what you believe is the most correct way to approach this problem.   


I used the same R script as before to plot the residuals for this analysis.  And, I see the same 
cyclical nature in the residuals as before.  In fact, if you look for it you can see the cyclical 
nature of the data in the scatter plot.  The plot of the residuals is: 
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If I were really curious I would take an engineering approach and use a Fast Fourier Transform 
to determine what the periodicity is of this apparently cyclical data, perhaps about every 12 
months...  Or, perhaps not.  For our analysis let’s complete a normal probability plot of the 
residuals to look at normality.  The R commands are: 


> defects.new.rate.stdres <- rstandard(defects.new.rate.mod) 
> qqnorm(defects.new.rate.stdres, ylab = "Standardized Residuals", xlab = "No
rmal Scores", main = "Defects after Delivery") 
> qqline(defects.new.rate.stdres, pch=2, col="red") 


 


And the normal probability plot looks like: 


 


which looks pretty good.  Evans uses the Durbin-Watson test to evaluate serial dependence.  
This test can be done in R with the dwtest() function in the lmtest package.  So, if you haven’t 
already installed and attached the lmtest package you’ll need to do that.  Output from the 
Durbin-Watson test can be interpreted using the following table: 


 


Then, perform the Durbin-Watson test as follows:  


> dwtest(defects.new.rate.mod) 
 
 Durbin-Watson test 
 
data:  defects.new.rate.mod 
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DW = 0.42875, p-value = 1.29e-10 
alternative hypothesis: true autocorrelation is greater than 0 


 


Which indicates that autocorrelation does exist. 


 


Part 3: Employee Retention 


Step 1 
This is a pretty straight forward look at the variables PLE has available with regard to employee 
retention, i.e. gender, number of years at PLE, number of years of education, college GPA, 
college graduate, employee age, and if the employee is local or not.  We can do several things 
to analyze these data.  We could look at correlations.  And we could use ANOVA to assess any 
relationships between variables.   


One thing Evans did was omit the categorical variables; gender, college graduate and local, so 
as not to have to deal with those.  Evans also tested the remaining numeric variables to 
determine if he could eliminate any of those, e.g. if they were not statistically significant.  Let’s 
take a fresh look at this and see what we find. 


We can convert categorical variables, e.g. gender, to numeric variables in order to conduct an 
analysis using them in R relatively easily as follows: 


1. convert to numeric value, i.e. female = 0, male = 1 


> dGender <- as.numeric(EmployeeRetention$Gender) -1 
> str(dGender) 
 num [1:40] 0 1 1 0 0 1 1 1 0 1 ... 


 


2. Create a plot to explore how gender is related to the number of years at PLE and view it 


> boxplot(dGender, EmployeeRetention$YearsPLE, main = "Years at PLE by Gen
der", xlab = "Gender (0=Female, 1=Male)", ylab = "Years at PLE") 
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3. look at the mean and standard deviation of the categorical variable 


> mean(dGender) 
[1] 0.675 
> sd(dGender) 
[1] 0.4743416 


 


4. create a matrix of categorical variables to look at how they might be correlated 


> cat.employee.retention.variables <- matrix(c(dGender, dCollege.Grad, dLo
cal), ncol = 3) 
> colnames(cat.employee.retention.variables) <- c("Gender", "College.Grad"
, "Local") 
> str(cat.employee.retention.variables) 
 num [1:40, 1:3] 0 1 1 0 0 1 1 1 0 1 ... 
 - attr(*, "dimnames")=List of 2 
  ..$ : NULL 
  ..$ : chr [1:3] "Gender" "College.Grad" "Local" 
 
> head(cat.employee.retention.variables) 
     Gender College.Grad Local 
[1,]      0            1     1 
[2,]      1            1     1 
[3,]      1            1     0 
[4,]      0            1     1 
[5,]      0            1     1 
[6,]      1            1     1 
 
> cor(cat.employee.retention.variables) 
                 Gender College.Grad      Local 
Gender        1.0000000   -0.1396011 -0.0566862 
College.Grad -0.1396011    1.0000000 -0.1646599 
Local        -0.0566862   -0.1646599  1.0000000 
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It is interesting.  In conducting the analysis of the categorical variables I found that there were 
as many male employees at PLE as there were college graduates.   


> length(which (dGender == 1)) 
[1] 27 
> length(which (dCollege.Grad == 1)) 
[1] 27 


 


I found this because the boxplots were identical.  Coincidence?  It does make the data analysis 
have strange results.  So, let’s look at the numeric variables. 


First, let’s put the variables we want to analyze in a matrix as follows: 


> num.employee.retention.variables <- matrix(c(EmployeeRetention$YearsPLE, Em
ployeeRetention$YrsEducation, EmployeeRetention$College.GPA, EmployeeRetentio
n$Age), ncol = 4) 
> colnames(num.employee.retention.variables) <- c("YearsPLE", "YrsEducation", 
"College.GPA", "Age") 
> str(num.employee.retention.variables) 
 num [1:40, 1:4] 10 10 10 10 9.6 8.5 8.4 8.4 8.2 7.9 ... 
 - attr(*, "dimnames")=List of 2 
  ..$ : NULL 
  ..$ : chr [1:4] "YearsPLE" "YrsEducation" "College.GPA" "Age" 


 


Then, let’s see how/if these variables are correlated as follows: 


> cor(num.employee.retention.variables) 
              YearsPLE YrsEducation College.GPA       Age 
YearsPLE     1.0000000    0.1796535   0.1774365 0.3766582 
YrsEducation 0.1796535    1.0000000   0.5866539 0.4210289 
College.GPA  0.1774365    0.5866539   1.0000000 0.2485216 
Age          0.3766582    0.4210289   0.2485216 1.0000000 


 


So, it looks like college GPA is correlated with years of education.  To a lesser extent, age is 
correlated with years of education.  The book uses 0.7 as a threshold for stating variables are 
correlated.  You should note that other references use 0.5 as a threshold.  The only time two 
variables are truly not correlated is if the correlation coefficient is in fact 0.0.  However, we are 
conducting the correlation in part to assess any multicollinearity.  Since the correlation is low 
we can state that multicollinearity is not an issue.   


We can just do a linear regression of these variables to determine each independent variable’s 
effect on the dependent variable.   


Start the linear regression as follows (remembering that the dependent variable or “y” is 
YearsPLE): 
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> EmployeeRetention.mod <- lm(EmployeeRetention$YearsPLE ~ EmployeeRetention$
YrsEducation + EmployeeRetention$College.GPA + EmployeeRetention$Age) 
> summary(EmployeeRetention.mod) 
 
Call: 
lm(formula = EmployeeRetention$YearsPLE ~ EmployeeRetention$YrsEducation +  
    EmployeeRetention$College.GPA + EmployeeRetention$Age) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-5.3299 -1.6122 -0.2433  1.8893  4.6312  
 
Coefficients: 
                               Estimate Std. Error t value Pr(>|t|)   
(Intercept)                    -2.73711    4.50415  -0.608   0.5472   
EmployeeRetention$YrsEducation -0.06705    0.35516  -0.189   0.8513   
EmployeeRetention$College.GPA   0.67998    1.18355   0.575   0.5692   
EmployeeRetention$Age           0.29154    0.13504   2.159   0.0376 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.726 on 36 degrees of freedom 
Multiple R-squared:  0.1502, Adjusted R-squared:  0.07939  
F-statistic: 2.121 on 3 and 36 DF,  p-value: 0.1146 


 


Which shows that Age is the only statistically significant variable when it comes to employee 
retention at PLE.  Note that this is essentially the same as Evans’ solutions.  We can plot and 
view the residuals to verify using the R script from before (but changing the name of the linear 
model to EmployeeRetention.mod): 
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This may be alright, but shows that the residuals do not really have an equal variance across all 
fitted values.  But moreover, based on R-squared this really isn’t a good model for the data.  If 
we eliminate the variables that are not significant and run it again we get: 


> EmployeeRetention.mod2 <- lm(EmployeeRetention$YearsPLE ~  EmployeeRetentio
n$Age) 
> summary(EmployeeRetention.mod2) 
 
Call: 
lm(formula = EmployeeRetention$YearsPLE ~ EmployeeRetention$Age) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.9927 -1.6430 -0.1952  2.0328  4.8078  
 
Coefficients: 
                      Estimate Std. Error t value Pr(>|t|)   
(Intercept)            -2.0149     3.0425  -0.662   0.5118   
EmployeeRetention$Age   0.3003     0.1198   2.506   0.0166 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 2.666 on 38 degrees of freedom 
Multiple R-squared:  0.1419, Adjusted R-squared:  0.1193  
F-statistic: 6.282 on 1 and 38 DF,  p-value: 0.01659 


 


Which still shows that Age is statistically significant but explains very little of the variation in the 
data.   


 


 


Part 4: Learning Associated with Adopting New Technology 


Step 1 
Just to clean things up a bit and make it easier to work with the variables, after I imported the 
Engines.csv data I changed the column names to just “Sample” and “Time” as follows: 


> colnames(Engines) <- c("Sample", "Time") 


 


Then, just to see what’s going on I created a scatter plot of the data as follows: 


> plot(Engines$Sample, Engines$Time) 
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This doesn’t look exactly like the plot of the data in Evans’ solutions.  But, it doesn’t look like a 
linear model will fit these data very well.  It really looks like a logarithmic decay.  Also, when I 
played around with the data a bit I found a better fit by just looking at the last 30 data points 
rather than the entire series.  See what you think below: 


> plot(Engines$Sample[20:50], log(Engines$Time[20:50])) 
 


 


which is nearly linear.  So, let’s try that and see what we get.  To transform the data we’ll use 
the exponential as follows: 


> m <- lm(log(Engines$Time[20:50]) ~ Engines$Sample[20:50]) 
> summary(m) 
 
Call: 
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lm(formula = log(Engines$Time[20:50]) ~ Engines$Sample[20:50]) 
 
Residuals: 
       Min         1Q     Median         3Q        Max  
-0.0052441 -0.0016683 -0.0004296  0.0020182  0.0052949  
 
Coefficients: 
                        Estimate Std. Error t value Pr(>|t|)     
(Intercept)            3.9837148  0.0019472 2045.84   <2e-16 *** 
Engines$Sample[20:50] -0.0033450  0.0000539  -62.05   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.002684 on 29 degrees of freedom 
Multiple R-squared:  0.9925, Adjusted R-squared:  0.9923  
F-statistic:  3851 on 1 and 29 DF,  p-value: < 2.2e-16 


 


We find that both the intercept and the slope are statistically significant.  And, from R-squared 
it looks like the model explains nearly all the variation in the data.  Then last, running the R 
script again to plot the residuals we get: 


 


 


which is not too bad.   


So, if we use a 2nd order fit as Evans did in the solutions: 


> m <- lm(Engines$Time ~ Engines$Sample + I(Engines$Sample^2)) 
> summary(m) 
 
Call: 
lm(formula = Engines$Time ~ Engines$Sample + I(Engines$Sample^2)) 
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Residuals: 
    Min      1Q  Median      3Q     Max  
-1.2814 -0.5720 -0.1081  0.6119  3.9750  
 
Coefficients: 
                      Estimate Std. Error t value Pr(>|t|)     
(Intercept)         61.8301020  0.4114946  150.26  < 2e-16 *** 
Engines$Sample      -0.7133564  0.0372222  -19.16  < 2e-16 *** 
I(Engines$Sample^2)  0.0082498  0.0007076   11.66  1.8e-15 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.9314 on 47 degrees of freedom 
Multiple R-squared:  0.9612, Adjusted R-squared:  0.9595  
F-statistic: 581.9 on 2 and 47 DF,  p-value: < 2.2e-16 


 


which looks promising.  But what about the residuals?   


> plot(m, 1) 


 


 


which really looks bad.  This is a bit different than the plot of residuals that Evans shows in the 
solutions but is just as bad.  Honestly, I’d go with the logarithmic decay model.  The residuals 
look the best.  If you do this makes the model for learning associated with adopting this new 
technology  


Production Time (min) = 3.99 – 0.0034*log(Unit) 
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Chapter 9 
An important part of planning manufacturing capacity is having a good forecast of sales. 
Elizabeth Burke is interested in forecasting sales of mowers and tractors in each marketing 
region as well as industry sales to assess future changes in market share. She also wants to 
forecast future increases in production costs. Develop forecasting models for these data and 
prepare a report of your results with appropriate charts and output from R.   


 


Part 1: Mower Sales 
Plot data for mower sales in each marketing region as well as industry sales.  Then, establish a 
method for use in predicting mower sales. 


 


Step 1 
Import and plot the mower sales.  As usual, the hardest part will be getting the data in the 
proper format.  First, I’ll get rid of the “NA” column name for North America, just to get that out 
of the way.   


> colnames(MowerUnitSales) <- c("Month", "Year", "NorthA", "SouthA", "Europe"
, "Pacific", "China", "World") 


 


Also, we need to put the month and year together into a “Date” variable.  The paste() function 
will work for that.   


> df <- data.frame(paste(MowerUnitSales$Month,MowerUnitSales$Year), MowerUnit
Sales$NorthA, MowerUnitSales$SouthA, MowerUnitSales$Europe, MowerUnitSales$Pa
cific, MowerUnitSales$China, MowerUnitSales$World) 
> str(df) 
'data.frame': 60 obs. of  7 variables: 
 $ paste.MowerUnitSales.Month..MowerUnitSales.Year.: Factor w/ 60 levels "Apr
il 2010","April 2011",..: 21 16 36 1 41 31 26 6 56 51 ... 
 $ MowerUnitSales.NorthA                           : int  6000 7950 8100 9050 
9900 10200 8730 8140 6480 5990 ... 
 $ MowerUnitSales.SouthA                           : int  200 220 250 280 310 
300 280 250 230 220 ... 
 $ MowerUnitSales.Europe                           : int  720 990 1320 1650 1
590 1620 1590 1560 1590 1320 ... 
 $ MowerUnitSales.Pacific                          : int  100 120 110 120 130 
120 140 130 130 120 ... 
 $ MowerUnitSales.China                            : int  0 0 0 0 0 0 0 0 0 0 
... 
 $ MowerUnitSales.World                            : int  7020 9280 9780 1110
0 11930 12240 10740 10080 8430 7650 ... 
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However, I got the column names a bit messed up putting the data frame together.  That is easy 
to fix… 


> colnames(df) <- c("Date", "NorthA", "SouthA", "Europe", "Pacific", "China", 
"World") 
> str(df) 
'data.frame': 60 obs. of  7 variables: 
 $ Date   : Factor w/ 60 levels "April 2010","April 2011",..: 21 16 36 1 41 3
1 26 6 56 51 ... 
 $ NorthA : int  6000 7950 8100 9050 9900 10200 8730 8140 6480 5990 ... 
 $ SouthA : int  200 220 250 280 310 300 280 250 230 220 ... 
 $ Europe : int  720 990 1320 1650 1590 1620 1590 1560 1590 1320 ... 
 $ Pacific: int  100 120 110 120 130 120 140 130 130 120 ... 
 $ China  : int  0 0 0 0 0 0 0 0 0 0 ... 
 $ World  : int  7020 9280 9780 11100 11930 12240 10740 10080 8430 7650 ... 


 


Now plot the mower sales.  The only tricky part is getting tick marks and labels on the x-axis and 
a grid if you want one.  First, I set up a data object for the number of tick marks I wanted every 
6 months, then one for the labels.   


> c = seq(1, length(Date), 6) 
> ticks=c("Jan 2010", "Jun 2010", "Jan 2011", "Jun 2011", "Jan 2012", "Jun 20
12", "Jan 2013", "Jun 2013", "Jan 2014", "Jun 2014") 


 


Then, I created the plot in separate pieces; 1) plot the data, 2) add the tick marks and labels, 3) 
add the y-axis grid, 4) add a custom grid to match my tick marks and labels for every 6 months 
of data: 


> plot(df$NorthA, type = "b", xlab = "", xaxt="n", ylab = "North America", ma
in = "Mower Sales by Region") 
> axis(1, at=c, labels=ticks, las=2) 
> grid(NA, NULL, lty = 2) 
> abline(v=seq(1, length(Date), 6), lty=2, col="lightgray") 


 


And, here’s the plot: 
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You can change the colors and everything in R.  For this lab you might want to just do the basic 
plots to get done fastest.  Each would be similar to this one.  In fact, you can use this same 
process to plot the tractor sales too.  Here is the plot for the mower sales for the Pacific region: 


 


Evans plotted the industry sales data for multiple regions on the same plot.  In fact, you could 
do that for both PLE’s sales data and the industry sales data.  There are a couple ways to do 
this.  The way we’ve used before is the par() function, i.e. par(new=TRUE), so that we can add 
to the existing plot.  A second way to do the same thing is just to use the lines() function to add 
the second “line” to the same plot.  Note that I’ve imported and cleaned up the data/column 
headings the same way as before.  Evans plotted the North America, Europe and World regions 
together because they show seasonality without any trend.  He plotted the South America and 
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Pacific regions together because they show seasonality with a trend.  However, on the scales 
Evans used it is hard to see a trend in the South America data.  It is slightly negative.   


Using the technique of inserting the command par(new=TRUE) each time you want to add 
another curve to a plot the North America, Europe and World data commands are: 


> par(oma=c(5,0,0,0)) 
> plot(IndustryMowerTotalSales$NorthA, type = "b", xlab="", xaxt="n", ylab="S
ales", main="Industry Mower Sales") 
> par(new=TRUE) 
> plot(IndustryMowerTotalSales$Europe, type = "b", col="green", xlab="", xaxt
="n", ylab="", yaxt="n") 
> par(new=TRUE) 
> plot(IndustryMowerTotalSales$World, type = "b", col="magenta", xlab="", xax
t="n", ylab="", yaxt="n") 
> axis(1, at=c, labels=ticks, las=2) 
> grid(NA, NULL, lty = 2) 
> abline(v=seq(1, length(Date), 6), lty=2, col="lightgray") 
> par(xpd=NA) 
> legend(x=0, y=1, legend = text, text.width = max(sapply(text, strwidth)), c
ol=plot_colors, lwd = 3, cex = 1, horiz = TRUE) 
 


par(oma=c(…)) sets the outer margin area.  Here I’ve set the bottom of the plot to have 5 line0s. 


par(xpd=NA) tells R to put the next thing in the outer margin area, in this case the legend.  I’ve 
used the parameter horiz=TRUE to make the legend print along the center (x=0) bottom (y=1).  
You can play with the colors, the size of the lines and font, etc.  It is all very flexible. 


And, here is the figure: 


 


As you can see the data are very different for each of these regions.  The data for the North 
America region is seasonal but does not have a trend.  The data for the Pacific region is 
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seasonal and does have a trend.  So, you’ll need to decide what method to use to analyze the 
data by region; e.g. seasonal with no trend = Holt-Winter no trend option, seasonal with trend = 
Holt-Winter’s additive model, etc.   


You should use the link: http://a-little-book-of-r-for-time-
series.readthedocs.io/en/latest/src/timeseries.html to study using R for analyzing and making 
predictions using time-series data.  It is absolutely the best reference I have found.  For this lab, 
seasonal data with no trend, I used the following: 


First I set up a data object with the mower sales data from the North America region and 
plotted it: 


> demand <- ts(MowerUnitSales[,3], start = c(2010, 1), frequency=12) 
> plot(demand) 


 


Here’s the plot: 


 


which looks like the correct data.  To use Holt Winters in R takes you just: 


> hw <- HoltWinters(demand) 


 


Then, you can use this to make the forecast using: 


> forecast <- predict(hw, n.ahead = 12, prediction.interval = T, level = 0.95
) 


 




http://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html



http://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
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where the number of months ahead is 12 and the significance level is .05.  To plot use the 
following command: 


> plot(hw, forecast) 


 


and, the plot looks like: 


 


where you have the prediction and the upper and lower bounds.  Pretty simple – right?  The 
thing to keep in mind is to use the seasonal parameter with the HoltWinters() function and set 
to additive or multiplicative as required.  The website I’ve given you talks about moving average 
and exponential smoothing.   


Also, when you look through the webpage I’ve given you the link for above you’ll see that a 
more sophisticated approach is to decompose the data into its estimated trend, its estimated 
seasonal component and its estimated irregular (noise) component then work on each of these.  
That is beyond the scope of this coursework for me to require.  However, should you be so 
inclined...  There is also extra credit available. 


 


Part 3: Production Costs 
Plot data for mower and tractor production costs.  Then, establish a method for use in 
predicting future costs.  Note that the file for this is UnitProductionCosts.csv  
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Step 1 
You should already be able to do this.  You might want to spend a few minutes to see if you can 
before reading on.  It really only requires developing a linear model for the data using the lm() 
function in R and then printing out the summary.  This gives you the intercept and slope of the 
regression line and hence the equation to use for forecasting future production costs.  Always 
remember, this is based (obviously based) on historical data and care should be taken in making 
predictions of future whatever using historical data… 


What I did was plot up the data to see what I had.  Then, I set-up a separate data object for the 
number of the months, 1 through and including 60.  Then I used lm() and summary() as follows 
for tractor production costs: 


> plot(prodCosts[,2]) 
> trctr <- lm(prodCosts$Tractor ~ monthID) 
> summary(trctr) 
 
Call: 
lm(formula = prodCosts$Tractor ~ monthID) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-39.172  -7.457   5.058  15.627  24.154  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1750.0441     5.6009  312.46   <2e-16 *** 
monthID        6.1658     0.1597   38.61   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 21.42 on 58 degrees of freedom 
Multiple R-squared:  0.9626, Adjusted R-squared:  0.9619  
F-statistic:  1491 on 1 and 58 DF,  p-value: < 2.2e-16 
 
> abline(trctr, col="red", lwd=2) 


 


And, here’s the plot: 
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As usual I don’t get exactly the same coefficients for the intercept and slope as Evans did but 
the regression line plotted on the data looks fine.   
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