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EXPERIMENT 6

——

Conservation of Momentum in Collisions

—

Equipment

® Air table apparatus

® Pair of Velcro rings

® 2 large plain paper sheets

o 2 identical clear plastic triangles
® Clear plastic protractor

e Clear plastic ruler

Figure 6.1 — Experimental Apparatus

Objectives

1. To measure, by graphical means, the changes of velocity in elastic and inelastic collisions.
2. To trace the motion of the center of mass of a two-body system.

Introduction

According to Newton’s third law, forces come in pairs of equal magnitude and opposite direction.

When a tennis racket pushes on a tennis ball, the ball pushes back on the racket with a force of
equal magnitude at every instant that they are in contact. The third law has logical consequences
that can be tested easily. Consider two masses m; and my that are colliding with each other on a
frictionless table (Fig. 6.2). Since the only forces on the masses are the forces they exert on each
other and since these forces have, at any instant, the same magnitude and opposite direction, we

have that at every instant

mld’l = —mQC—l:g (61)
or
At Aty
= 6.2
AL T T Ay (©.2)

where At is a short time interval and A%, is the change in velocity of mass m; during that interval,
Thus for any short time interval during the collision we have

m1AT, = —myAd, (6.3)

49



50 Experiment 6. Conservation of Momentum in Collisions

s’

61/ U2

my Hip

Figure 6.2 — When two masses collide, they exert forces of equal magnitude and opposite direction on
each other.

which can be written
ms (171 (t + At) == 171 (t)) = —M (?72 (t —+ At) R ’Uz (t)) (64)

or, rearranging terms,
ml'D'i T mz'f)”z = m1271 = m2172 (65)

where the primed velocities (& and ) are a short time later than the unprimed velocities (7, and
Ta).
The momentum of a mass m is the product of mass m and velocity ¥

—

F=mi. (6.6)

In terms of momenta, Eq. (6.5) can be written

PL+Py=p1+Ps. 6.7)

This says that the sum of the momenta of two masses at time ¢ is equal to the sum at time ¢ + At
Up to now we have assumed that At is very small. But if the sum of the momenta at ¢ is equal to the‘
sum of the momenta at ¢ + A¢, then the sum of the momenta at t = ¢+ At is equal to the sum of th
momenta at ¢ + 2A¢, so the sum of the momenta at ¢ is equal to the sum of the momenta at ¢ + 9 Ate
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ecqoulltlntlgltl}llge g:ll;l :tgumem’ the. sum of tpe momenta does not change; at any one time the sum is

law, is callod any othe'r time. This important result, which is a deduction from Newton’s third
> onservation of momentum,

is noTz ;tezf{?;;iu th; vector sum of all external forces on a system of masses add up to zero (i.e. there

collisi orce), the toFal momentum of the system of masses does not change. Through
Sions, the momenta of the individual masses of the system may change, but always in such a

other, or moving while coupled together.
;I‘he air table apparatus has been described previously (in Experiments 3 and 4). Just a reminder:
don’t touch the apparatus while the spark timer remote is pressed down, or you may receive

a nasty shock.

Investigation 1

Elastic Collision

1. Your air table will have a sheet of black, carbonized paper on top, which conducts electricity
very well. Put a large sheet of plain white paper over the carbonized paper, then place the

pucks on top of the white paper face.

How does this apparatus work? Take a look at the bottom of the pucks. Note the sharp points of the
central electrodes, next to the air holes. The points are connected to thin conducting chains inside
the air hoses that carry electricity from the spark generator to the pucks. When the spark generator
is activated, high voltage sparks periodically close a circuit from the pucks through the air gap and
the white paper to the conducting carbon paper. The sparks sputter carbon marks onto the underside

of the white paper, producing traces of the puck motion.

2. Turn the air on, so that the pucks ride on air cushions, and level the air table. The spark time
should be turned off and the Velcro rings around the pucks should be removed. Measure the
masses m; and m; of the two pucks and record the values in your spreadsheet.

3. With the two pucks in adjacent corners of the air table, practice launching them so that they
collide near the middle of the table and travel toward the other two corners. This will take

some time. A good launch will result in traces that are easy to analyze.

Q Do not touch the pucks or the air table when the remote button is pressed.
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Figure 6.3 — (a) Tracks of two colliding pucks. The velocities of the two pucks before and after the
collision are also shown. (b) Same picture as (a) except the vector addition of the velocities of the pucks
before and after the collision is included. For a perfectly elastic collision, v, -+ v2 should be the same

as v] + vj in both magnitude and direction.

4. For your data run, turn the spark timer on and set it to 30 m.s or 30 Hz (there is a difference!),
depending on the model. Press the remote button immediately after launching the pucks and
release it just before the pucks reach the opposite corners.

5. Remove the white paper and lay it on the lab bench — the side which shows the sparked dots
most clearly should face up. Identify the tracks of the motion of the pucks before and after
the collision, as shown in Fig. 6.3a (it may help to label these tracks as 1,2, 1" and 2', where
the prime indicates the motion after the collision). Label the individual sparks along the four
tracks, starting with 0 at the beginning of each track. For efficiency, label every fourth spark

only (0, 4, 8,... etc.).

6. On track 1, use a ruler to draw the velocity vector between, say, points 4 and 12. Similarly,
draw vectors o, 7 and ¥, on the remaining three tracks. You must draw each velocity vector
across the same number of sparks, that is, over the same length of time. Measure and record

7. The masses of the two pucks are equal, so Eq. (6.5) becomes
N+ =0 +a,. (6.8)

Find ¢, 4+ #, and U] + 7, by graphically addin ities di
: . g the velocities directly on the trackin
(Fig. 6.3b). Among your equipment should be two plastic triangles, Their purpose is t%) P::(I;:

lines in parallel from one place to another U
on the paper. Use the triangl 0 construct the
R . 2 es
Vector sums shown in the figure. Estimate the errors in these vectors : e
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8. According to Eq. (6.8), the two sums should be equal and the difference vector (¥ + U) —
(0 + ¥2) should be zero. Because of friction, the force exerted by the rubber hoses and the
fact that no collision can be made perfectly elastic, the measured difference vector will not
be zero, but it will be small. Find the magnitude and direction of the difference vector graphi-
cally. Divide the magnitude of the difference vector by the magnitude of the initial vector sum
U1 + ¥y. For example, if 7, -+ 7 is a vector 12.3 cm long and (¥ + @) — (#; + ¥,) is a vector
0.8 cm long, the ratio 0.8/12.3 = 0.065 tells us that the experiment found a 6.5% difference
between the initial and final momentum. This is called the percent change in momentum.

In a perfectly elastic collision, the sum of the kinetic energies 1 mv? + 3 M2 is the same before
and after the collision. Therefore, both energy and momentum are conserved. Although collisions
of solid objects are not perfectly elastic, collisions of hard objects are approximately elastic.

9. Calculate the sum of the kinetic energies before the collision, K, and calculate its error.
Calculate the sum of the kinetic energies after the collision, K”, and calculate its error. Is
kinetic energy conserved within your uncertainty?

10. Calculate the percent change in kinetic energy,

!

% change = —K—I%E x 100 .

Investigation 2

Inelastic Collision

In an inelastic collision, some of the energy is used up by friction, deformation of colliding objects,
etc. Energy is not conserved in inelastic collisions! However, and this is very important, momen-

tum is still conserved.

1. Be sure the air table is level.

2. Place the white paper back on the air table, with your first run face up. Your second run will be

recorded on the other side. Wrap Velcro strips around the two pucks and repeat the procedure
of Investigation 1. (Be sure to take a couple of practice runs before taking a data run.) In
this case, because of the Velcro, the two pucks stick together after they collide. Collisions
in which the two masses stick together are called completely inelastic. These collisions have

the greatest loss of kinetic energy.

. Analyze your data as you did in Investigation 1, finding the percent changes in total momen-

tum and total kinetic energy in this collision. Is the kinetic energy conserved within your
uncertainty? How much energy is dissipated during the collision?
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Investigation 3

Motion of the Center of Mass
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Figure 6.4 — The position z., of the center of mass of two masses m; and mq at points x; and x5 on
the z-axis. If the two masses are equal, the point x.r, will be halfway between 1 and z5.

The center of mass of two masses m; and my at points z; and x5 on the z-axis (Fig. 6.4) is a
mathematical point z.,, given by
e m1xy + Moo 6.9)
cm M
where M = m; + my. The two masses m; and m; are not necessarily equal. (In this experiment,

of course, they are.) By differentiating this expression with respect to time, one finds that the point
Zcem moves with velocity v.n, given by

L mivy + mMovy (6 10)

cm

or

M’Ucm = M1vV1 + Mavy (611)
where v; and v, are the velocities of my and m; respectively.

For masses moving in a 2D plane,
this last expression becomes the vector relation

MUer = Mm% + moty = Py + P (6.12)

which says that the total momentum of the two masses is equal to the momentum of the total mass
M moving with the velocity of the center of mass.

This is just a mathematical rewriting of the definitions of velocity and momentum. However,

it ha§ important applications — in situations where there are no external forces, the total momen-
M is conserved and @, is a constant. Thi

undisturbed by interactions between the pu
the system, not external. U
demonstrate this point.

cks. The forces between the pucks are forces internal to
sing the two pucks as

the masses, you will do a simple experiment to
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2. There should be a complex pattern of dots on the underside of the white paper, because
each puck is moving in a sliding circle. However, because there is no external force on the
System, the center of mass should move in a straight line at constant speed. For equal masses

(my =my) Eq. (6.9) shows that
N Sealr. (6.13)

cm 2

that is, the center of mass is midway between the two masses.

3. Number the sparks made by each puck as you did earlier, starting with O for the first spark
made on each track. Connect the initial 0 points of each track with a straight line and mark
the midpoint of this line. The midpoint is the location of the center of mass of the pucks at

this time. Do this for every fourth point (4, 8, 12,... etc.).

Note: The speed at which Your pucks were moving across the paper will influence the numbers of
points made by the spark timer: If you get less than 7 center of mass points, you may want to mark

and connect every third pair of sparks, instead of every fourth.

4. Draw a best-fit straight line through the center of mass points obtained in step 3. Measure
and record the angle that each line connecting corresponding sparks makes with the center
of mass line. (Note: the angle measurements should either increase or decrease steadily with
time. If this is not evident in your data, check that you are consistently measuring the same
angle each time!) Plot these angles against time, putting the first line at ¢ = 0. Add a best-fit

line and find the slope.

5. Describe and discuss the results of this investigation. What is the physical meaning of the
slope of your plot? What quantitative information does the slope give about the rotation of
the two puck system? What did you find about the motion of the center of mass?

Questions

1. Compare the energy loss in the completely inelastic case (Investigation 2) to the approxi-
mately elastic case (Investigation 1)? Which collision demonstrated a greater energy loss?

Do your results agree with theory?

2. Do the centers of mass in Investigation 3 lie on a straight line? Explain why they do or do
not. Are the distances between adjacent points constant? Explain!

3. Do the points on your plot of angle vs. time in Investigation 3 lie along a straight line?
Explain.

4. If there were no external forces acting on the two pucks, their complex motion could be
described as the combination of the uniform linear motion of the center of mass and a uni-
form circular motion of the pucks about the center of mass. Describe how well your results
agree with this expectation, and explain any deviations that you observe from the predicted
behavior.

5. In Investigation 3, are the momenta of each puck conserved? Explain.
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Additional Questions for Honors Sections

1. Imagine that the Acela Train moving with velocity v = 100 mph collides with a stationary

basketball of mass m = 600 g. Calculate how much energy (in Joules) will be converted into
heat if the collision is completely inelastic. What is the velocity of the ball after the impact if

the collision is fully elastic?

Suppose that in your 1st Investigation the puck moving with v; hits a stationary puck v, = 0
off-center. Calculate the angle between velocity vectors v/ and 5. (Hints: i) the angle is
always the same; ii) consider momentum conservation together with energy conservation

laws and apply the Pythagoras Theorem.)

Imagine that in your 2nd Investigation the Velcro bands are removed and the pucks are instead
connected with an elastic thread. Will the collision remain inelastic? Would such replacement

change the results of your 3rd Investigation?

An object (a star or a fireworks petard) explodes with a tremendous energy that exceeds its
kinetic energy and breaks into many pieces. Is it possible that, after the explosion, all pieces
will be flying away from the observer? Imagine that the same object breaks into just two
pieces and one is much lighter than the other. Which of the two will have a much higher
velocity? Which one will have a much higher kinetic energy?



