
    [image: SweetStudy (HomeworkMarket.com)]   .cls-1{isolation:isolate;}.cls-2{fill:#001847;}                 





	[image: homework question]



[image: chat] 
     
         
            .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}
        
    
     
         
             
             
             
             
             
        
         
             
             
             
        
    



0


Home.Literature.Help.	Contact Us
	FAQ



Log in / Sign up[image: ]   .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}    


[image: ]  


	[image: ]    


Log in / Sign up

	Post a question
	Home.
	Literature.

Help.




GearAssignment/Mechanical
[image: profile]
strength
[image: ] 
     
         
            .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}
        
    
     
         
         
         
         
         
         
         
         
         
    



shigleymechanicalengineeringdesignch13-15.pdf

Home>Engineering homework help>Mechanical Engineering homework help>GearAssignment/Mechanical


        
            

            
  Chapter Outline



             13–1 Types of Gears 666



             13–2 Nomenclature 667



             13–3 Conjugate Action 669



             13–4 Involute Properties 670



             13–5 Fundamentals 670



             13–6 Contact Ratio 676



             13–7 Interference 677



             13–8 The Forming of Gear Teeth 679



             13–9 Straight Bevel Gears 682



             13–10 Parallel Helical Gears 683



             13–11 Worm Gears 687



             13–12 Tooth Systems 688



             13–13 Gear Trains 690



             13–14 Force Analysis—Spur Gearing 697



             13–15 Force Analysis—Bevel Gearing 701



             13–16 Force Analysis—Helical Gearing 704



             13–17 Force Analysis—Worm Gearing 706



            Gears—General13



            665



            bud98209_ch13_665-724.indd Page 665  10/30/13  9:32 PM f-494 bud98209_ch13_665-724.indd Page 665  10/30/13  9:32 PM f-494 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
666    Mechanical Engineering Design



            This chapter addresses gear geometry, the kinematic relations, and the forces transmit-
ted by the four principal types of gears: spur, helical, bevel, and worm gears. The 
forces transmitted between meshing gears supply torsional moments to shafts for 
motion and power transmission and create forces and moments that affect the shaft 
and its bearings. The next two chapters will address stress, strength, safety, and reli-
ability of the four types of gears.



             13–1 Types of Gears
Spur gears, illustrated in Fig. 13–1, have teeth parallel to the axis of rotation and are 
used to transmit motion from one shaft to another, parallel, shaft. Of all types, the 
spur gear is the simplest and, for this reason, will be used to develop the primary 
kinematic relationships of the tooth form.
 Helical gears, shown in Fig. 13–2, have teeth inclined to the axis of rotation. Helical 
gears can be used for the same applications as spur gears and, when so used, are not as 
noisy, because of the more gradual engagement of the teeth during meshing. The inclined 
tooth also develops thrust loads and bending couples, which are not present with spur 
gearing. Sometimes helical gears are used to transmit motion between nonparallel shafts.
 Bevel gears, shown in Fig. 13–3, have teeth formed on conical surfaces and are 
used mostly for transmitting motion between intersecting shafts. The figure actually 
illustrates straight-tooth bevel gears. Spiral bevel gears are cut so the tooth is no 
longer straight, but forms a circular arc. Hypoid gears are quite similar to spiral bevel 
gears except that the shafts are offset and nonintersecting.



            Figure 13–1
Spur gears are used to 
transmit rotary motion 
between parallel shafts.



            Figure 13–2
Helical gears are used to 
transmit motion between 
parallel or nonparallel shafts.
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             Worms and worm gears, shown in Fig. 13–4, represent the fourth basic gear type. 
As shown, the worm resembles a screw. The direction of rotation of the worm gear, also 
called the worm wheel, depends upon the direction of rotation of the worm and upon 
whether the worm teeth are cut right-hand or left-hand. Worm gearsets are also made 
so that the teeth of one or both wrap partly around the other. Such sets are called single-
enveloping and double-enveloping worm gearsets. Worm gearsets are mostly used when 
the speed ratios of the two shafts are quite high, say, 3 or more.



             13–2 Nomenclature
The terminology of spur-gear teeth is illustrated in Fig. 13–5. The pitch circle is a 
theoretical circle upon which all calculations are usually based; its diameter is the 
pitch diameter. The pitch circles of a pair of mating gears are tangent to each other. 
A pinion is the smaller of two mating gears. The larger is often called the gear.
 The circular pitch p is the distance, measured on the pitch circle, from a point 
on one tooth to a corresponding point on an adjacent tooth. Thus the circular pitch is 
equal to the sum of the tooth thickness and the width of space.



            Figure 13–3
Bevel gears are used to 
transmit rotary motion 
between intersecting shafts.



            Figure 13–4
Worm gearsets are used 
to transmit rotary motion 
between nonparallel and 
nonintersecting shafts.
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             The module m is the ratio of the pitch diameter to the number of teeth. The custom-
ary unit of length used is the millimeter. The module is the index of tooth size in SI.
 The diametral pitch P is the ratio of the number of teeth on the gear to the pitch 
diameter. Thus, it is the reciprocal of the module. Since diametral pitch is used only 
with U.S. units, it is expressed as teeth per inch.
 The addendum a is the radial distance between the top land and the pitch circle. 
The dedendum b is the radial distance from the bottom land to the pitch circle. The 
whole depth ht is the sum of the addendum and the dedendum.
 The clearance circle is a circle that is tangent to the addendum circle of the mat-
ing gear. The clearance c is the amount by which the dedendum in a given gear exceeds 
the addendum of its mating gear. The backlash is the amount by which the width of 
a tooth space exceeds the thickness of the engaging tooth measured on the pitch circles.
 You should prove for yourself the validity of the following useful relations:



              P 5
N
d



             (13–1)



              m 5
d
N



             (13–2)



              p 5
pd
N



            5 pm (13–3)



              pP 5 p  (13–4)



            where P 5 diametral pitch, teeth per inch



             N 5 number of teeth



             d 5 pitch diameter, in or mm



             m 5 module, mm



             p 5 circular pitch, in or mm



            Figure 13–5
Nomenclature of spur-gear 
teeth.



            Addendum



            Dedendum



            Clearance



            Bott
om



             la
nd



            Fillet
radius



            Dedendum
circle



            Clearance
circle



            Tooth
thickness



            Fac
e w



            idt
h



            Width of
space



            Face



            Top land



            Addendum
circle



            Pitch circle



            Flank
Circular
pitch



            bud98209_ch13_665-724.indd Page 668  10/30/13  9:32 PM f-494 bud98209_ch13_665-724.indd Page 668  10/30/13  9:32 PM f-494 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
Gears—General    669



             13–3 Conjugate Action
The following discussion assumes the teeth to be perfectly formed, perfectly smooth, 
and absolutely rigid. Such an assumption is, of course, unrealistic, because the appli-
cation of forces will cause deflections.
 Mating gear teeth acting against each other to produce rotary motion are similar 
to cams. When the tooth profiles, or cams, are designed so as to produce a constant 
angular-velocity ratio during meshing, these are said to have conjugate action. In 
theory, at least, it is possible arbitrarily to select any profile for one tooth and then 
to find a profile for the meshing tooth that will give conjugate action. One of these 
solutions is the involute profile, which, with few exceptions, is in universal use for 
gear teeth and is the only one with which we will be concerned.
 When one curved surface pushes against another (Fig. 13–6), the point of contact 
occurs where the two surfaces are tangent to each other (point c), and the forces at 
any instant are directed along the common normal ab to the two curves. The line ab, 
representing the direction of action of the forces, is called the line of action. The line 
of action will intersect the line of centers O-O at some point P. The angular-velocity 
ratio between the two arms is inversely proportional to their radii to the point P. 
Circles drawn through point P from each center are called pitch circles, and the radius 
of each circle is called the pitch radius. Point P is called the pitch point.
 Figure 13–6 is useful in making another observation. A pair of gears is really a 
pair of cams that act through a small arc and, before running off the involute contour, 
are replaced by another identical pair of cams. The cams can run in either direction 
and are configured to transmit a constant angular-velocity ratio. If involute curves are 
used, the gears tolerate changes in center-to-center distance with no variation in con-
stant angular-velocity ratio. Furthermore, the rack profiles are straight-flanked, making 
primary tooling simpler.
 To transmit motion at a constant angular-velocity ratio, the pitch point must remain 
fixed; that is, all the lines of action for every instantaneous point of contact must pass 
through the same point P. In the case of the involute profile, it will be shown that 
all points of contact occur on the same straight line ab, that all normals to the tooth 
profiles at the point of contact coincide with the line ab, and, thus, that these profiles 
transmit uniform rotary motion.
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            Figure 13–6
Cam A and follower B in 
contact. When the contacting 
surfaces are involute profiles, 
the ensuing conjugate 
action produces a constant 
angular-velocity ratio.
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             13–4 Involute Properties
An involute curve may be generated as shown in Fig. 13–7a. A partial flange B is 
attached to the cylinder A, around which is wrapped a cord def, which is held tight. 
Point b on the cord represents the tracing point, and as the cord is wrapped and 
unwrapped about the cylinder, point b will trace out the involute curve ac. The radius 
of the curvature of the involute varies continuously, being zero at point a and a 
maximum at point c. At point b the radius is equal to the distance be, since point b is 
instantaneously rotating about point e. Thus the generating line de is normal to the invo-
lute at all points of intersection and, at the same time, is always tangent to the cylinder 
A. The circle on which the involute is generated is called the base circle.
 Let us now examine the involute profile to see how it satisfies the requirement 
for the transmission of uniform motion. In Fig. 13–7b, two gear blanks with fixed 
centers at O1 and O2 are shown having base circles whose respective radii are O1a 
and O2b. We now imagine that a cord is wound clockwise around the base circle of 
gear 1, pulled tight between points a and b, and wound counterclockwise around the 
base circle of gear 2. If, now, the base circles are rotated in different directions so as 
to keep the cord tight, a point g on the cord will trace out the involutes cd on gear 1 
and ef on gear 2. The involutes are thus generated simultaneously by the tracing point. 
The tracing point, therefore, represents the point of contact, while the portion of the 
cord ab is the generating line. The point of contact moves along the generating line; 
the generating line does not change position, because it is always tangent to the base 
circles; and since the generating line is always normal to the involutes at the point of 
contact, the requirement for uniform motion is satisfied.



             13–5 Fundamentals
Among other things, it is necessary that you actually be able to draw the teeth on a 
pair of meshing gears. You should understand, however, that you are not doing this 
for manufacturing or shop purposes. Rather, we make drawings of gear teeth to obtain 
an understanding of the problems involved in the meshing of the mating teeth.



            Figure 13–7
(a) Generation of an involute;
(b) involute action.
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             First, it is necessary to learn how to construct an involute curve. As shown in 
Fig. 13–8, divide the base circle into a number of equal parts, and construct radial 
lines OA0, OA1, OA2, etc. Beginning at A1, construct perpendiculars A1B1, A2B2, A3B3, 
etc. Then along A1B1 lay off the distance A1A0, along A2B2 lay off twice the distance 
A1A0, etc., producing points through which the involute curve can be constructed.
 To investigate the fundamentals of tooth action, let us proceed step by step 
through the process of constructing the teeth on a pair of gears.
 When two gears are in mesh, their pitch circles roll on one another without slip-
ping. Designate the pitch radii as r1 and r2 and the angular velocities as v1 and v2, 
respectively. Then the pitch-line velocity is



            V 5 0 r1v1 0 5 0 r2v2 0
Thus the relation between the radii on the angular velocities is



             ` v1



            v2
` 5 r2



            r1
 (13–5)



            Suppose now we wish to design a speed reducer such that the input speed is 1800 rev/min 
and the output speed is 1200 rev/min. This is a ratio of 3:2; the gear pitch diameters 
would be in the same ratio, for example, a 4-in pinion driving a 6-in gear. The various 
dimensions found in gearing are always based on the pitch circles.
 Suppose we specify that an 18-tooth pinion is to mesh with a 30-tooth gear and 
that the diametral pitch of the gearset is to be 2 teeth per inch. Then, from Eq. (13–1), 
the pitch diameters of the pinion and gear are, respectively,



            d1 5
N1



            P
5



            18
2



            5 9 in  d2 5
N2



            P
5



            30
2



            5 15 in



            The first step in drawing teeth on a pair of mating gears is shown in Fig. 13–9. The 
center distance is the sum of the pitch radii, in this case 12 in. So locate the pinion 
and gear centers O1 and O2, 12 in apart. Then construct the pitch circles of radii r1 
and r2. These are tangent at P, the pitch point. Next draw line ab, the common tangent, 
through the pitch point. We now designate gear 1 as the driver, and since it is rotating 
counterclockwise, we draw a line cd through point P at an angle f to the common 
tangent ab. The line cd has three names, all of which are in general use. It is called 
the pressure line, the generating line, and the line of action. It represents the direction 
in which the resultant force acts between the gears. The angle f is called the pressure 
angle, and it usually has values of 20 or 25°, though 141



            2
° was once used.



            Figure 13–8
Construction of an involute 
curve.
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             Next, on each gear draw a circle tangent to the pressure line. These circles are the 
base circles. Since they are tangent to the pressure line, the pressure angle determines 
their size. As shown in Fig. 13–10, the radius of the base circle is



             rb 5 r cos f (13–6)



            where r is the pitch radius.
 Now generate an involute on each base circle as previously described and as shown 
in Fig. 13–9. This involute is to be used for one side of a gear tooth. It is not necessary 
to draw another curve in the reverse direction for the other side of the tooth, because 
we are going to use a template which can be turned over to obtain the other side.
 The addendum and dedendum distances for standard interchangeable teeth are, 
as we shall learn later, 1yP and 1.25yP, respectively. Therefore, for the pair of gears 
we are constructing,



             a 5
1
P



            5
1
2



            5 0.500 in  b 5
1.25



            P
5



            1.25
2



            5 0.625 in



            Using these distances, draw the addendum and dedendum circles on the pinion and 
on the gear as shown in Fig. 13–9.
 Next, using heavy drawing paper, or preferably, a sheet of 0.015- to 0.020-in clear 
plastic, cut a template for each involute, being careful to locate the gear centers prop-
erly with respect to each involute. Figure 13–11 is a reproduction of the template used 
to create some of the illustrations for this book. Note that only one side of the tooth 
profile is formed on the template. To get the other side, turn the template over. For 
some problems you might wish to construct a template for the entire tooth.



            Figure 13–9
Circles of a gear layout.
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            Figure 13–10
Base circle radius can be 
related to the pressure angle f 
and the pitch circle radius by 
rb 5 r cos f.
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             To draw a tooth, we must know the tooth thickness. From Eq. (13–4), the circular 
pitch is



            p 5
p



            P
5
p



            2
5 1.57 in



            Therefore, the tooth thickness is



            t 5
p



            2
5



            1.57
2



            5 0.785 in



            measured on the pitch circle. Using this distance for the tooth thickness as well as 
the tooth space, draw as many teeth as desired, using the template, after the points 
have been marked on the pitch circle. In Fig. 13–12 only one tooth has been drawn 
on each gear. You may run into trouble in drawing these teeth if one of the base 
circles happens to be larger than the dedendum circle. The reason for this is that the 
involute begins at the base circle and is undefined below this circle. So, in drawing 
gear teeth, we usually draw a radial line for the profile below the base circle. The 
actual shape, however, will depend upon the kind of machine tool used to form the 
teeth in manufacture, that is, how the profile is generated.
 The portion of the tooth between the clearance circle and the dedendum circle 
includes the fillet. In this instance the clearance is



            c 5 b 2 a 5 0.625 2 0.500 5 0.125 in



            The construction is finished when these fillets have been drawn.



            Figure 13–11
A template for drawing gear 
teeth.
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            Figure 13–12
Tooth action.
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             Referring again to Fig. 13–12, the pinion with center at O1 is the driver and turns 
counterclockwise. The pressure, or generating, line is the same as the cord used in 
Fig. 13–7a to generate the involute, and contact occurs along this line. The initial 
contact will take place when the flank of the driver comes into contact with the tip 
of the driven tooth. This occurs at point a in Fig. 13–12, where the addendum circle 
of the driven gear crosses the pressure line. If we now construct tooth profiles through 
point a and draw radial lines from the intersections of these profiles with the pitch 
circles to the gear centers, we obtain the angle of approach for each gear.
 As the teeth go into mesh, the point of contact will slide up the side of the driving 
tooth so that the tip of the driver will be in contact just before contact ends. The final 
point of contact will therefore be where the addendum circle of the driver crosses the 
pressure line. This is point b in Fig. 13–12. By drawing another set of tooth profiles 
through b, we obtain the angle of recess for each gear in a manner similar to that of 
finding the angles of approach. The sum of the angle of approach and the angle of recess 
for either gear is called the angle of action. The line ab is called the line of action.
 We may imagine a rack as a spur gear having an infinitely large pitch diameter. 
Therefore, the rack has an infinite number of teeth and a base circle which is an 
infinite distance from the pitch point. The sides of involute teeth on a rack are straight 
lines making an angle to the line of centers equal to the pressure angle. Figure 13–13 
shows an involute rack in mesh with a pinion. Corresponding sides on involute teeth 
are parallel curves; the base pitch is the constant and fundamental distance between 
them along a common normal as shown in Fig. 13–13. The base pitch is related to the 
circular pitch by the equation



             pb 5 pc cos f (13–7)



            where pb is the base pitch.
 Figure 13–14 shows a pinion in mesh with an internal, or ring, gear. Note that 
both of the gears now have their centers of rotation on the same side of the pitch 
point. Thus the positions of the addendum and dedendum circles with respect to the 
pitch circle are reversed; the addendum circle of the internal gear lies inside the pitch 
circle. Note, too, from Fig. 13–14, that the base circle of the internal gear lies inside 
the pitch circle near the addendum circle.
 Another interesting observation concerns the fact that the operating diameters of 
the pitch circles of a pair of meshing gears need not be the same as the respective 
design pitch diameters of the gears, though this is the way they have been constructed 
in Fig. 13–12. If we increase the center distance, we create two new operating pitch 
circles having larger diameters because they must be tangent to each other at the pitch 



            Figure 13–13
Involute-toothed pinion 
and rack.
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            point. Thus the pitch circles of gears really do not come into existence until a pair of 
gears are brought into mesh.
 Changing the center distance has no effect on the base circles, because these were 
used to generate the tooth profiles. Thus the base circle is basic to a gear. Increasing 
the center distance increases the pressure angle and decreases the length of the line 
of action, but the teeth are still conjugate, the requirement for uniform motion trans-
mission is still satisfied, and the angular-velocity ratio has not changed.



            Figure 13–14
Internal gear and pinion.
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             EXAMPLE 13–1 A gearset consists of a 16-tooth pinion driving a 40-tooth gear. The diametral pitch 
is 2, and the addendum and dedendum are 1yP and 1.25yP, respectively. The gears 
are cut using a pressure angle of 20°.
(a) Compute the circular pitch, the center distance, and the radii of the base circles.
(b) In mounting these gears, the center distance was incorrectly made 1



            4 in larger. 
Compute the new values of the pressure angle and the pitch-circle diameters.



             Solution



             Answer (a) p 5
p



            P
5
p



            2
5 1.571 in



            The pitch diameters of the pinion and gear are, respectively,



             dP 5
NP



            P
5



            16
2



            5 8 in  dG 5
NG



            P
5



            40
2



            5 20 in



            Therefore the center distance is



             Answer 
dP 1 dG



            2
5



            8 1 20
2



            5 14 in



            Since the teeth were cut on the 20° pressure angle, the base-circle radii are found to be, 
using rb 5 r cos f,



             Answer rb(pinion) 5
8
2



             cos 20° 5 3.759 in



             Answer rb(gear) 5
20
2



             cos 20° 5 9.397 in
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            (b) Designating d9P and d9G as the new pitch-circle diameters, the 1
4-in increase in the 



            center distance requires that



             
d¿P 1 d¿G



            2
5 14.250 (1)



            Also, the velocity ratio does not change, and hence



             
d¿P
d¿G



            5
16
40



             (2)



            Solving Eqs. (1) and (2) simultaneously yields



             Answer  d¿P 5 8.143 in  d¿G 5 20.357 in



            Since rb 5 r cos f, using either the pinion or gear, the new pressure angle is



             Answer f¿ 5 cos21 
rb(pinion)



            d¿Py2
5 cos21 



            3.759
8.143y2



            5 22.59°



             13–6 Contact Ratio
The zone of action of meshing gear teeth is shown in Fig. 13–15. We recall that tooth 
contact begins and ends at the intersections of the two addendum circles with the 
pressure line. In Fig. 13–15 initial contact occurs at a and final contact at b. Tooth 
profiles drawn through these points intersect the pitch circle at A and B, respectively. 
As shown, the distance AP is called the arc of approach qa, and the distance PB, the 
arc of recess qr. The sum of these is the arc of action qt.
 Now, consider a situation in which the arc of action is exactly equal to the cir-
cular pitch, that is, qt 5 p. This means that one tooth and its space will occupy the 
entire arc AB. In other words, when a tooth is just beginning contact at a, the previ-
ous tooth is simultaneously ending its contact at b. Therefore, during the tooth action 
from a to b, there will be exactly one pair of teeth in contact.
 Next, consider a situation in which the arc of action is greater than the circular pitch, 
but not very much greater, say, qt < 1.2p. This means that when one pair of teeth is just 
entering contact at a, another pair, already in contact, will not yet have reached b. Thus, 



            Figure 13–15
Definition of contact ratio.
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            for a short period of time, there will be two teeth in contact, one in the vicinity of A and 
another near B. As the meshing proceeds, the pair near B must cease contact, leaving 
only a single pair of contacting teeth, until the procedure repeats itself.
 Because of the nature of this tooth action, either one or two pairs of teeth in 
contact, it is convenient to define the term contact ratio mc as



             mc 5
qt



            p
 (13–8)



            a number that indicates the average number of pairs of teeth in contact. Note that this 
ratio is also equal to the length of the path of contact divided by the base pitch. Gears 
should not generally be designed having contact ratios less than about 1.20, because 
inaccuracies in mounting might reduce the contact ratio even more, increasing the 
possibility of impact between the teeth as well as an increase in the noise level.
 An easier way to obtain the contact ratio is to measure the line of action ab 
instead of the arc distance AB. Since ab in Fig. 13–15 is tangent to the base circle 
when extended, the base pitch pb must be used to calculate mc instead of the circular 
pitch as in Eq. (13–8). If the length of the line of action is Lab, the contact ratio is



             mc 5
Lab



            p cos f
 (13–9)



            in which Eq. (13–7) was used for the base pitch.



             13–7 Interference
The contact of portions of tooth profiles that are not conjugate is called interference. 
Consider Fig. 13–16. Illustrated are two 16-tooth gears that have been cut to the now 
obsolete 141



            2
° pressure angle. The driver, gear 2, turns clockwise. The initial and final 



            points of contact are designated A and B, respectively, and are located on the pressure 
line. Now notice that the points of tangency of the pressure line with the base circles 
C and D are located inside of points A and B. Interference is present.
 The interference is explained as follows. Contact begins when the tip of the driven 
tooth contacts the flank of the driving tooth. In this case the flank of the driving tooth 
first makes contact with the driven tooth at point A, and this occurs before the involute 
portion of the driving tooth comes within range. In other words, contact is occurring 
below the base circle of gear 2 on the noninvolute portion of the flank. The actual 
effect is that the involute tip or face of the driven gear tends to dig out the noninvo-
lute flank of the driver.
 In this example the same effect occurs again as the teeth leave contact. Contact 
should end at point D or before. Since it does not end until point B, the effect is for 
the tip of the driving tooth to dig out, or interfere with, the flank of the driven tooth.
 When gear teeth are produced by a generation process, interference is automati-
cally eliminated because the cutting tool removes the interfering portion of the flank. 
This effect is called undercutting; if undercutting is at all pronounced, the undercut 
tooth is considerably weakened. Thus the effect of eliminating interference by a gen-
eration process is merely to substitute another problem for the original one.
 The smallest number of teeth on a spur pinion and gear,1 one-to-one gear ratio, 
which can exist without interference is NP. This number of teeth for spur gears is 



            1Robert Lipp, “Avoiding Tooth Interference in Gears,” Machine Design, Vol. 54, No. 1, 1982, pp. 122–124.
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            given by



             NP 5
2k



            3 sin2 f
 (1 1 21 1 3 sin2 f)  (13–10)



            where k 5 1 for full-depth teeth, 0.8 for stub teeth and f 5 pressure angle.
 For a 20° pressure angle, with k 5 1,



            NP 5
2(1)



            3 sin2 20°
 (1 1 21 1 3 sin2 20°) 5 12.3 5 13 teeth



            Thus 13 teeth on pinion and gear are interference-free. Realize that 12.3 teeth is pos-
sible in meshing arcs, but for fully rotating gears, 13 teeth represents the least number. 
For a 141



            2
° pressure angle, NP 5 23 teeth, so one can appreciate why few 141



            2
°-tooth 



            systems are used, as the higher pressure angles can produce a smaller pinion with 
accompanying smaller center-to-center distances.
 If the mating gear has more teeth than the pinion, that is, mG 5 NGyNP 5 m is 
more than one, then the smallest number of teeth on the pinion without interference 
is given by



             NP 5
2k



            (1 1 2m) sin2 f
(m 1 2m2 1 (1 1 2m) sin2 f) (13–11)



            Figure 13–16
Interference in the action 
of gear teeth.



            Driving gear 2



            Driven gear 3



            Base circle



            Base circle



            O2



            O3



            !2



            !3



            Interference is on flank
of driver during approach



            This portion of profile
is not an involute



            This portion of profile
is not an involute



            Addendum
circlesPressure line



            A



            C



            D
B



            bud98209_ch13_665-724.indd Page 678  10/30/13  9:32 PM f-494 bud98209_ch13_665-724.indd Page 678  10/30/13  9:32 PM f-494 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
Gears—General    679



            For example, if m 5 4, f 5 20°,



            NP 5
2(1)



            [1 1 2(4)] sin2 20°
 [4 1 242 1 [1 1 2(4)] sin2 20°] 5 15.4 5 16 teeth



            Thus a 16-tooth pinion will mesh with a 64-tooth gear without interference.
 The largest gear with a specified pinion that is interference-free is



             NG 5
N2



            P sin2 f 2 4k2



            4k 2 2NP sin2 f
 (13–12)



            For example, for a 13-tooth pinion with a pressure angle f of 20°,



            NG 5
132 sin2 20° 2 4(1)2



            4(1) 2 2(13) sin2 20°
5 16.45 5 16 teeth



            For a 13-tooth spur pinion, the maximum number of gear teeth possible without 
interference is 16.
 The smallest spur pinion that will operate with a rack without interference is



             NP 5
2(k)



            sin2 f
 (13–13)



            For a 20° pressure angle full-depth tooth the smallest number of pinion teeth to mesh 
with a rack is



            NP 5
2(1)



            sin2 20°
5 17.1 5 18 teeth



             Since gear-shaping tools amount to contact with a rack, and the gear-hobbing 
process is similar, the minimum number of teeth to prevent interference to prevent 
undercutting by the hobbing process is equal to the value of NP when NG is infinite.
 The importance of the problem of teeth that have been weakened by undercutting 
cannot be overemphasized. Of course, interference can be eliminated by using more 
teeth on the pinion. However, if the pinion is to transmit a given amount of power, 
more teeth can be used only by increasing the pitch diameter.
 Interference can also be reduced by using a larger pressure angle. This results in a 
smaller base circle, so that more of the tooth profile becomes involute. The demand for 
smaller pinions with fewer teeth thus favors the use of a 25° pressure angle even though 
the frictional forces and bearing loads are increased and the contact ratio decreased.



             13–8 The Forming of Gear Teeth
There are a large number of ways of forming the teeth of gears, such as sand casting, 
shell molding, investment casting, permanent-mold casting, die casting, and centrifu-
gal casting. Teeth can also be formed by using the powder-metallurgy process; or, by 
using extrusion, a single bar of aluminum may be formed and then sliced into gears. 
Gears that carry large loads in comparison with their size are usually made of steel 
and are cut with either form cutters or generating cutters. In form cutting, the tooth 
space takes the exact form of the cutter. In generating, a tool having a shape different 
from the tooth profile is moved relative to the gear blank so as to obtain the proper 
tooth shape. One of the newest and most promising of the methods of forming teeth 
is called cold forming, or cold rolling, in which dies are rolled against steel blanks to 
form the teeth. The mechanical properties of the metal are greatly improved by the 
rolling process, and a high-quality generated profile is obtained at the same time.
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             Gear teeth may be machined by milling, shaping, or hobbing. They may be fin-
ished by shaving, burnishing, grinding, or lapping.
 Gears made of thermoplastics such as nylon, polycarbonate, acetal are quite pop-
ular and are easily manufactured by injection molding. These gears are of low to 
moderate precision, low in cost for high production quantities, and capable of light 
loads, and can run without lubrication.



            Milling
Gear teeth may be cut with a form milling cutter shaped to conform to the tooth space. 
With this method it is theoretically necessary to use a different cutter for each gear, 
because a gear having 25 teeth, for example, will have a different-shaped tooth space from 
one having, say, 24 teeth. Actually, the change in space is not too great, and it has been 
found that eight cutters may be used to cut with reasonable accuracy any gear in the range 
of 12 teeth to a rack. A separate set of cutters is, of course, required for each pitch.



            Shaping
Teeth may be generated with either a pinion cutter or a rack cutter. The pinion cutter 
(Fig. 13–17) reciprocates along the vertical axis and is slowly fed into the gear blank 
to the required depth. When the pitch circles are tangent, both the cutter and the blank 
rotate slightly after each cutting stroke. Since each tooth of the cutter is a cutting tool, 
the teeth are all cut after the blank has completed one rotation. The sides of an invo-
lute rack tooth are straight. For this reason, a rack-generating tool provides an accurate 
method of cutting gear teeth. This is also a shaping operation and is illustrated by the 
drawing of Fig. 13–18. In operation, the cutter reciprocates and is first fed into the gear 
blank until the pitch circles are tangent. Then, after each cutting stroke, the gear blank 



            Figure 13–17
Generating a spur gear with a 
pinion cutter. (Courtesy of 
Boston Gear Works, Inc.)
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            and cutter roll slightly on their pitch circles. When the blank and cutter have rolled 
a distance equal to the circular pitch, the cutter is returned to the starting point, and 
the process is continued until all the teeth have been cut.



            Hobbing
The hobbing process is illustrated in Fig. 13–19. The hob is simply a cutting tool that 
is shaped like a worm. The teeth have straight sides, as in a rack, but the hob axis must 
be turned through the lead angle in order to cut spur-gear teeth. For this reason, the 
teeth generated by a hob have a slightly different shape from those generated by a rack 
cutter. Both the hob and the blank must be rotated at the proper angular-velocity ratio. 
The hob is then fed slowly across the face of the blank until all the teeth have been cut.



            Figure 13–18
Shaping teeth with a rack. 
(This is a drawing-board figure 
that J. E. Shigley executed 
over 35 years ago in response 
to a question from a student at 
the University of Michigan.)



            Gear blank rotates
in this direction



            Rack cutter reciprocates in a direction
perpendicular to this page



            Figure 13–19
Hobbing a worm gear. 
(Courtesy of Boston Gear 
Works, Inc.)
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            Finishing
Gears that run at high speeds and transmit large forces may be subjected to additional 
dynamic forces if there are errors in tooth profiles. Errors may be diminished somewhat 
by finishing the tooth profiles. The teeth may be finished, after cutting, by either shav-
ing or burnishing. Several shaving machines are available that cut off a minute amount 
of metal, bringing the accuracy of the tooth profile within the limits of 250 min.
 Burnishing, like shaving, is used with gears that have been cut but not heat-treated. 
In burnishing, hardened gears with slightly oversize teeth are run in mesh with the gear 
until the surfaces become smooth.
 Grinding and lapping are used for hardened gear teeth after heat treatment. The 
grinding operation employs the generating principle and produces very accurate teeth. 
In lapping, the teeth of the gear and lap slide axially so that the whole surface of the 
teeth is abraded equally.



             13–9 Straight Bevel Gears
When gears are used to transmit motion between intersecting shafts, some form of bevel 
gear is required. A bevel gearset is shown in Fig. 13–20. Although bevel gears are usu-
ally made for a shaft angle of 90°, they may be produced for almost any angle. The teeth 
may be cast, milled, or generated. Only the generated teeth may be classed as accurate.
 The terminology of bevel gears is illustrated in Fig. 13–20. The pitch of bevel 
gears is measured at the large end of the tooth, and both the circular pitch and the 
pitch diameter are calculated in the same manner as for spur gears. It should be noted 
that the clearance is uniform. The pitch angles are defined by the pitch cones meeting 
at the apex, as shown in the figure. They are related to the tooth numbers as follows:



             tan g 5
NP



            NG
  tan G 5



            NG



            NP
 (13–14)



            Figure 13–20
Terminology of bevel gears.
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            where the subscripts P and G refer to the pinion and gear, respectively, and where g 
and G are, respectively, the pitch angles of the pinion and gear.
 Figure 13–20 shows that the shape of the teeth, when projected on the back cone, 
is the same as in a spur gear having a radius equal to the back-cone distance rb. This 
is called Tredgold’s approximation. The number of teeth in this imaginary gear is



             N¿ 5
2prb



            p
 (13–15)



            where N9 is the virtual number of teeth and p is the circular pitch measured at the 
large end of the teeth. Standard straight-tooth bevel gears are cut by using a 20° pres-
sure angle, unequal addenda and dedenda, and full-depth teeth. This increases the 
contact ratio, avoids undercut, and increases the strength of the pinion.



             13–10 Parallel Helical Gears
Helical gears, used to transmit motion between parallel shafts, are shown in Fig. 13–2. 
The helix angle is the same on each gear, but one gear must have a right-hand helix and 
the other a left-hand helix. The shape of the tooth is an involute helicoid and is illustrated 
in Fig. 13–21. If a piece of paper cut in the shape of a parallelogram is wrapped around 
a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each 
point on the angular edge generates an involute curve. This surface obtained when every 
point on the edge generates an involute is called an involute helicoid.
 The initial contact of spur-gear teeth is a line extending all the way across the 
face of the tooth. The initial contact of helical-gear teeth is a point that extends into 
a line as the teeth come into more engagement. In spur gears the line of contact is 
parallel to the axis of rotation; in helical gears the line is diagonal across the face of 
the tooth. It is this gradual engagement of the teeth and the smooth transfer of load 
from one tooth to another that gives helical gears the ability to transmit heavy loads 
at high speeds. Because of the nature of contact between helical gears, the contact 
ratio is of only minor importance, and it is the contact area, which is proportional to 
the face width of the gear, that becomes significant.
 Helical gears subject the shaft bearings to both radial and thrust loads. When the 
thrust loads become high or are objectionable for other reasons, it may be desirable 
to use double helical gears. A double helical gear (herringbone) is equivalent to two 
helical gears of opposite hand, mounted side by side on the same shaft. They develop 
opposite thrust reactions and thus cancel out the thrust load.
 When two or more single helical gears are mounted on the same shaft, the hand 
of the gears should be selected so as to produce the minimum thrust load.



            Figure 13–21
An involute helicoid.
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             Figure 13–22 represents a portion of the top view of a helical rack. Lines ab and 
cd are the centerlines of two adjacent helical teeth taken on the same pitch plane. The 
angle c is the helix angle. The distance ac is the transverse circular pitch pt in the 
plane of rotation (usually called the circular pitch). The distance ae is the normal 
circular pitch pn and is related to the transverse circular pitch as follows:



             pn 5 pt cos c (13–16)



            The distance ad is called the axial pitch px and is related by the expression



             px 5
pt



            tan c
 (13–17)



            Since pn Pn 5 p, the normal diametral pitch is



             Pn 5
Pt



            cos c
 (13–18)



            The pressure angle fn in the normal direction is different from the pressure angle ft 
in the direction of rotation, because of the angularity of the teeth. These angles are 
related by the equation



             cos c 5
tan fn



            tan ft
 (13–19)



             Figure 13–23 illustrates a cylinder cut by an oblique plane ab at an angle c to a 
right section. The oblique plane cuts out an arc having a radius of curvature of R. For 
the condition that c 5 0, the radius of curvature is R 5 Dy2. If we imagine the angle c 
to be slowly increased from zero to 90°, we see that R begins at a value of Dy2 and 
increases until, when c 5 90°, R 5 q. The radius R is the apparent pitch radius of 



            Figure 13–22
Nomenclature of helical gears.
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            a helical-gear tooth when viewed in the direction of the tooth elements. A gear of the 
same pitch and with the radius R will have a greater number of teeth, because of the 
increased radius. In helical-gear terminology this is called the virtual number of teeth. 
It can be shown by analytical geometry that the virtual number of teeth is related to 
the actual number by the equation



             N¿ 5
N



            cos3 c
 (13–20)



            where N9 is the virtual number of teeth and N is the actual number of teeth. It is 
necessary to know the virtual number of teeth in design for strength and also, some-
times, in cutting helical teeth. This apparently larger radius of curvature means that 
few teeth may be used on helical gears, because there will be less undercutting.



            Figure 13–23
A cylinder cut by an oblique 
plane.
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             EXAMPLE 13–2 A stock helical gear has a normal pressure angle of 20°, a helix angle of 25°, and a 
transverse diametral pitch of 6 teeth/in, and has 18 teeth. Find:
(a) The pitch diameter
(b) The transverse, the normal, and the axial pitches
(c) The normal diametral pitch
(d ) The transverse pressure angle



             Solution 



             Answer (a) d 5
N
Pt



            5
18
6



            5 3 in



             Answer (b) pt 5
p



            Pt
5
p



            6
5 0.5236 in
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             Answer pn 5 pt cos c 5 0.5236 cos 25° 5 0.4745 in



             Answer px 5
pt



            tan c
5



            0.5236
tan 45°



            5 1.123 in



             Answer (c) Pn 5
Pt



            cos c
5



            6
cos 25°



            5 6.620 teeth/in



             Answer (d ) ft 5 tan21 atan fn



            cos c
b 5 tan21 a tan 20°



            cos 25°
b 5 21.88°



             Just like teeth on spur gears, helical-gear teeth can interfere. Equation (13–19) 
can be solved for the pressure angle ft in the tangential (rotation) direction to give



            ft 5 tan21 atan fn



            cos c
b



            The smallest tooth number NP of a helical-spur pinion that will run without interfer-
ence2 with a gear with the same number of teeth is



             NP 5
2k cos c



            3 sin2 ft
 (1 1 21 1 3 sin2 ft )  (13–21)



            For example, if the normal pressure angle fn is 20°, the helix angle c is 30°, then ft is



            ft 5 tan21 a tan 20°
cos 30°



            b 5 22.80°



             NP 5
2(1) cos 30°



            3 sin2 22.80°
 (1 1 21 1 3 sin2 22.80°) 5 8.48 5 9 teeth



             For a given gear ratio mG 5 NG yNP 5 m, the smallest pinion tooth count is



             NP 5
2k cos c



            (1 1 2m) sin2 ft
 [m 1 2m2 1 (1 1 2m) sin2 ft ] (13–22)



             The largest gear with a specified pinion is given by



             NG 5
N2



            P sin2 ft 2 4k2 cos2 c



            4k cos c 2 2NP sin2 ft
 (13–23)



            For example, for a nine-tooth pinion with a pressure angle fn of 20°, a helix angle c 
of 30°, and recalling that the tangential pressure angle ft is 22.80°,



             NG 5
92 sin2 22.80° 2 4(1)2 cos2 30°



            4(1) cos 30° 2 2(9) sin2 22.80°
5 12.02 5 12



            The smallest pinion that can be run with a rack is



             NP 5
2k cos c



            sin2 ft
 (13–24)



            2Op. cit., Robert Lipp, Machine Design, pp. 122–124.
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            For a normal pressure angle fn of 20° and a helix angle c of 30°, and ft 5 22.80°,



            NP 5
2(1) cos 30°



            sin2 22.80°
5 11.5 5 12 teeth



             For helical-gear teeth the number of teeth in mesh across the width of the gear 
will be greater than unity and a term called face-contact ratio is used to describe it. 
This increase of contact ratio, and the gradual sliding engagement of each tooth, 
results in quieter gears.



             13–11 Worm Gears
The nomenclature of a worm gearset is shown in Fig. 13–24. The worm and worm 
gear of a set have the same hand of helix as for crossed helical gears, but the helix 
angles are usually quite different. The helix angle on the worm is generally quite 
large, and that on the gear very small. Because of this, it is usual to specify the lead 
angle l on the worm and helix angle cG on the gear; the two angles are equal for a 
90° shaft angle. The worm lead angle is the complement of the worm helix angle, as 
shown in Fig. 13–24.
 In specifying the pitch of worm gearsets, it is customary to state the axial pitch 
px of the worm and the transverse circular pitch pt, often simply called the circular 
pitch, of the mating gear. These are equal if the shaft angle is 90°. The pitch diam-
eter of the gear is the diameter measured on a plane containing the worm axis, as 
shown in Fig. 13–24; it is the same as for spur gears and is



             dG 5
NG pt



            p
 (13–25)



            Figure 13–24
Nomenclature of a single-
enveloping worm gearset.
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             Since it is not related to the number of teeth, the worm may have any pitch diam-
eter; this diameter should, however, be the same as the pitch diameter of the hob used 
to cut the worm-gear teeth. Generally, the pitch diameter of the worm should be selected 
so as to fall into the range



             
C0.875



            3.0
# dW #



            C0.875



            1.7
 (13–26)



            where C is the center distance. These proportions appear to result in optimum horse-
power capacity of the gearset.
 The lead L and the lead angle l of the worm have the following relations:



              L 5 px NW (13–27)



              tan l 5
L
pdW



             (13–28)



             13–12 Tooth Systems3



            A tooth system is a standard that specifies the relationships involving addendum, 
dedendum, working depth, tooth thickness, and pressure angle. The standards were 
originally planned to attain interchangeability of gears of all tooth numbers, but of 
the same pressure angle and pitch.
 Table 13–1 contains the standards most used for spur gears. A 141



            2
° pressure angle 



            was once used for these but is now obsolete; the resulting gears had to be compara-
tively larger to avoid interference problems.
 Table 13–2 is particularly useful in selecting the pitch or module of a gear. Cutters 
are generally available for the sizes shown in this table.
 Table 13–3 lists the standard tooth proportions for straight bevel gears. These 
sizes apply to the large end of the teeth. The nomenclature is defined in Fig. 13–20.
 Standard tooth proportions for helical gears are listed in Table 13–4. Tooth pro-
portions are based on the normal pressure angle; these angles are standardized the 



            3Standardized by the American Gear Manufacturers Association (AGMA). Write AGMA for a complete 
list of standards, because changes are made from time to time. The address is: 1001 N. Fairfax Street, 
Suite 500, Alexandria, VA 22314-1587; or, www.agma.org.



            Tooth System Pressure Angle !, deg Addendum a Dedendum b



            Full depth 20 1yP or m 1.25yP or 1.25m



               1.35yP or 1.35m



             221
2 1yP or m 1.25yP or 1.25m



               1.35yP or 1.35m



             25 1yP or m 1.25yP or 1.25m



               1.35yP or 1.35m



            Stub 20 0.8yP or 0.8m 1yP    or m



            Table 13–1



            Standard and Commonly 
Used Tooth Systems for 
Spur Gears
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            Diametral Pitch P (teeth/in)



            Coarse 2, 21
4, 21



            2, 3, 4, 6, 8, 10, 12, 16



            Fine 20, 24, 32, 40, 48, 64, 80, 96, 120, 150, 200



            Module m (mm/tooth)



            Preferred 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50



            Next Choice 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18,
 22, 28, 36, 45



            Table 13–2



            Tooth Sizes in General 
Uses



            Table 13–3



            Tooth Proportions for 
20° Straight Bevel-Gear 
Teeth



            Item Formula



            Working depth hk 5 2.0yP



            Clearance c 5 (0.188yP) 1 0.002 in



            Addendum of gear aG 5
0.54



            P
1



            0.460



            P(m90)2



            Gear ratio mG 5 NGyNP



            Equivalent 90° ratio m90 5 mG when G 5 90°



             m90 5 BmG 
cos g



            cos G
 when G fi 90°



            Face width F 5 0.3A0 or F 5
10
P



            , whichever is smaller



            Minimum number of teeth Pinion  16  15  14  13



             Gear    16  17  20  30



            Table 13–4



            Standard Tooth 
Proportions for Helical 
Gears



            Quantity* Formula Quantity* Formula



            Addendum 
1.00
Pn



             External gears:



            Dedendum 
1.25
Pn



              Standard center distance 
D 1 d



            2



            Pinion pitch diameter 
NP



            Pn cos c
  Gear outside diameter D 1 2a



            Gear pitch diameter 
NG



            Pn cos c
  Pinion outside diameter d 1 2a



            Normal arc tooth thickness†  
p



            Pn
2



            Bn



            2
  Gear root diameter D 2 2b



            Pinion base diameter d cos ft  Pinion root diameter  d 2 2b



              Internal gears:



            Gear base diameter D cos ft  Center distance 
D 2 d



            2



            Base helix angle tan21 (tan c cos ft)  Inside diameter D 2 2a



               Root diameter D 1 2b



            *All dimensions are in inches, and angles are in degrees.
†Bn is the normal backlash.
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            same as for spur gears. Though there will be exceptions, the face width of helical 
gears should be at least 2 times the axial pitch to obtain good helical-gear action.
 Tooth forms for worm gearing have not been highly standardized, perhaps because 
there has been less need for it. The pressure angles used depend upon the lead angles 
and must be large enough to avoid undercutting of the worm-gear tooth on the side 
at which contact ends. A satisfactory tooth depth, which remains in about the right 
proportion to the lead angle, may be obtained by making the depth a proportion of 
the axial circular pitch. Table 13–5 summarizes what may be regarded as good prac-
tice for pressure angle and tooth depth.
 The face width FG of the worm gear should be made equal to the length of a 
tangent to the worm pitch circle between its points of intersection with the addendum 
circle, as shown in Fig. 13–25.



             13–13 Gear Trains
Consider a pinion 2 driving a gear 3. The speed of the driven gear is



             n3 5 ` N2



              N3
 n2 ` 5 ` d2



            d3
 n2 `  (13–29)



            where n 5 revolutions or rev/min



             N 5 number of teeth



             d 5 pitch diameter



            Equation (13–29) applies to any gearset no matter whether the gears are spur, helical, 
bevel, or worm. The absolute-value signs are used to permit complete freedom in 
choosing positive and negative directions. In the case of spur and parallel helical gears, 
the directions in the viewing plane ordinarily correspond to the right-hand rule—positive 
for counterclockwise rotation and negative for clockwise rotation.
 Rotational directions are somewhat more difficult to deduce for worm and crossed 
helical gearsets. Figure 13–26 will be of help in these situations.
 The gear train shown in Fig. 13–27 is made up of five gears. Considering gear 2 to 
be the primary driving gear, the speed of gear 6 is



             n6 5 2
N2



            N3
 
N3



            N4
 
N5



            N6
 n2 (a)



            Hence we notice that gear 3 is an idler, that its tooth numbers cancel in Eq. (a), and 
hence that it affects only the direction of rotation of gear 6. We notice, furthermore, 



            Table 13–5



            Recommended Pressure 
Angles and Tooth 
Depths for Worm 
Gearing



             Lead Angle !, Pressure Angle Addendum Dedendum
 deg Fn, deg a bG



              0–15 141
2 0.3683px 0.3683px



             15–30 20 0.3683px 0.3683px



             30–35 25 0.2865px 0.3314px



             35–40 25 0.2546px 0.2947px



             40–45 30 0.2228px 0.2578px



            Figure 13–25
A graphical depiction of the 
face width of the worm of a 
worm gearset.



            FG
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            that gears 2, 3, and 5 are drivers, while 3, 4, and 6 are driven members. We define 
the train value e as



             e 5
product of driving tooth numbers
product of driven tooth numbers



             (13–30)



            Note that pitch diameters can be used in Eq. (13–30) as well. When Eq. (13–30) is 
used for spur gears, e is positive if the last gear rotates in the same sense as the first, 
and negative if the last rotates in the opposite sense.
 Now we can write



             nL 5 enF (13–31)



            where nL is the speed of the last gear in the train and nF is the speed of the first.
 As a rough guideline, a train value of up to 10 to 1 can be obtained with one 
pair of gears. Greater ratios can be obtained in less space and with fewer dynamic 
problems by compounding additional pairs of gears. A two-stage compound gear train, 
such as shown in Fig. 13–28, can obtain a train value of up to 100 to 1.
 The design of gear trains to accomplish a specific train value is straightfor-
ward. Since numbers of teeth on gears must be integers, it is better to determine 



            Figure 13–26
Thrust, rotation, and hand 
relations for crossed helical 
gears. Note that each pair of 
drawings refers to a single 
gearset. These relations also 
apply to worm gearsets. 
(Reproduced by permission, 
Boston Gear Division, Colfax 
Corp.)



            Driver



            (a) (b)



            Thrust
bearing



            Right hand



            (c) (d)
Left hand



            Thrust
bearing



            Driver



            Driver Driver



            Figure 13–27
A gear train.



            + + + +



            n2



            N2



            N4 N5
N6



            n6



            N3



            2 3 4
5



            6



            bud98209_ch13_665-724.indd Page 691  10/30/13  9:32 PM f-494 bud98209_ch13_665-724.indd Page 691  10/30/13  9:32 PM f-494 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
692    Mechanical Engineering Design



            them first, and then obtain pitch diameters second. Determine the number of 
stages necessary to obtain the overall ratio, then divide the overall ratio into 
 portions to be accomplished in each stage. To minimize package size, keep the 
portions as evenly divided between the stages as possible. In cases where the 
overall train value need only be approximated, each stage can be identical. For 
example, in a two-stage compound gear train, assign the square root of the overall 
train value to each stage. If an exact train value is needed, attempt to factor the 
overall train value into integer components for each stage. Then assign the small-
est gear(s) to the minimum number of teeth allowed for the specific ratio of each 
stage, in order to avoid interference (see Sec. 13–7). Finally, applying the ratio for 
each stage, determine the necessary number of teeth for the mating gears. Round 
to the nearest integer and check that the resulting overall ratio is within acceptable 
tolerance.



            Figure 13–28
A two-stage compound gear 
train.



             EXAMPLE 13–3 A gearbox is needed to provide a 30:1 (61 percent) increase in speed, while minimiz-
ing the overall gearbox size. Specify appropriate tooth numbers.



             Solution Since the ratio is greater than 10:1, but less than 100:1, a two-stage compound gear 
train, such as in Figure 13–28, is needed. The portion to be accomplished in each 
stage is 130 5 5.4772. For this ratio, assuming a typical 20° pressure angle, the 
minimum number of teeth to avoid interference is 16, according to Eq. (13–11). The 
number of teeth necessary for the mating gears is



             Answer 16130 5 87.64 < 88



            From Eq. (13–30), the overall train value is



            e 5 (88y16)(88y16) 5 30.25



            This is within the 1 percent tolerance. If a closer tolerance is desired, then increase 
the pinion size to the next integer and try again.
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             It is sometimes desirable for the input shaft and the output shaft of a two-stage 
compound gear train to be in-line, as shown in Fig. 13–29. This configuration is called 
a compound reverted gear train. This requires the distances between the shafts to be 
the same for both stages of the train, which adds to the complexity of the design task. 
The distance constraint is



            d2y2 1 d3y2 5 d4y2 1 d5y2



            Figure 13–29
A compound reverted gear 
train. 5



            2 2



            3



            4



            5



            4



            3



             EXAMPLE 13–4 A gearbox is needed to provide an exact 30:1 increase in speed, while minimizing 
the overall gearbox size. Specify appropriate teeth numbers.



             Solution The previous example demonstrated the difficulty with finding integer numbers of teeth 
to provide an exact ratio. In order to obtain integers, factor the overall ratio into two 
integer stages.



             e 5 30 5 (6)(5)



             N2yN3 5 6  and  N4yN5 5 5



             With two equations and four unknown numbers of teeth, two free choices are 
available. Choose N3 and N5 to be as small as possible without interference. Assuming 
a 20° pressure angle, Eq. (13–11) gives the minimum as 16.
 Then



             N2 5 6N3 5 6(16) 5 96



             N4 5 5N5 5 5(16) 5 80



             The overall train value is then exact.



            e 5 (96y16)(80y16) 5 (6)(5) 5 30
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            The diametral pitch relates the diameters and the numbers of teeth, P 5 Nyd. Replacing 
all the diameters gives



            N2y(2P) 1 N3y(2P) 5 N4y(2P) 1 N5y(2P)



            Assuming a constant diametral pitch in both stages, we have the geometry condition 
stated in terms of numbers of teeth:



            N2 1 N3 5 N4 1 N5



            This condition must be exactly satisfied, in addition to the previous ratio equations, 
to provide for the in-line condition on the input and output shafts.



             EXAMPLE 13–5 A gearbox is needed to provide an exact 30:1 increase in speed, while minimizing 
the overall gearbox size. The input and output shafts should be in-line. Specify appro-
priate teeth numbers.



             Solution The governing equations are



             N2yN3 5 6



             N4yN5 5 5



             N2 1 N3 5 N4 1 N5



             With three equations and four unknown numbers of teeth, only one free choice 
is available. Of the two smaller gears, N3 and N5, the free choice should be used to 
minimize N3 since a greater gear ratio is to be achieved in this stage. To avoid inter-
ference, the minimum for N3 is 16.
 Applying the governing equations yields



             N2 5 6N3 5 6(16) 5 96



             N2 1 N3 5 96 1 16 5 112 5 N4 1 N5



             Substituting N4 5 5N5 gives



             112 5 5N5 1 N5 5 6N5



             N5 5 112y6 5 18.67



            If the train value need only be approximated, then this can be rounded to the nearest 
integer. But for an exact solution, it is necessary to choose the initial free choice for 
N3 such that solution of the rest of the teeth numbers results exactly in integers. This 
can be done by trial and error, letting N3 5 17, then 18, etc., until it works. Or, the 
problem can be normalized to quickly determine the minimum free choice. Beginning 
again, let the free choice be N3 5 1. Applying the governing equations gives



             N2 5 6N3 5 6(1) 5 6



             N2 1 N3 5 6 1 1 5 7 5 N4 1 N5
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Substituting N4 5 5N5, we find



             7 5 5N5 1 N5 5 6N5



             N5 5 7y6



            This fraction could be eliminated if it were multiplied by a multiple of 6. The free 
choice for the smallest gear N3 should be selected as a multiple of 6 that is greater 
than the minimum allowed to avoid interference. This would indicate that N3 5 18. 
Repeating the application of the governing equations for the final time yields



             N2 5 6N3 5 6(18) 5 108



             N2 1 N3 5 108 1 18 5 126 5 N4 1 N5



             126 5 5N5 1 N5 5 6N5



             N5 5 126y6 5 21



             N4 5 5N5 5 5(21) 5 105



            Thus,



             Answer  N2 5 108



             N3 5 18



             N4 5 105



             N5 5 21



            Checking, we calculate e 5 (108y18)(105y21) 5 (6)(5) 5 30.
 And checking the geometry constraint for the in-line requirement, we calculate



             N2 1 N3 5 N4 1 N5



             108 1 18 5 105 1 21



             126 5 126



             Unusual effects can be obtained in a gear train by permitting some of the gear 
axes to rotate about others. Such trains are called planetary, or epicyclic, gear trains. 
Planetary trains always include a sun gear, a planet carrier or arm, and one or more 
planet gears, as shown in Fig. 13–30. Planetary gear trains are unusual mechanisms 
because they have two degrees of freedom; that is, for constrained motion, a planetary 
train must have two inputs. For example, in Fig. 13–30 these two inputs could be the 
motion of any two of the elements of the train. We might, say, specify that the sun 
gear rotates at 100 rev/min clockwise and that the ring gear rotates at 50 rev/min 
counterclockwise; these are the inputs. The output would be the motion of the arm. 
In most planetary trains one of the elements is attached to the frame and has no 
motion. Figure 13–31 shows a planetary train composed of a sun gear 2, an arm or 
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            carrier 3, and planet gears 4 and 5. The angular velocity of gear 2 relative to the arm 
in rev/min is



             n23 5 n2 2 n3 (b)



            Also, the velocity of gear 5 relative to the arm is



             n53 5 n5 2 n3 (c)



            Dividing Eq. (c) by Eq. (b) gives



             
n53



            n23
5



            n5 2 n3



            n2 2 n3
 (d )



            Equation (d) expresses the ratio of gear 5 to that of gear 2, and both velocities are 
taken relative to the arm. Now this ratio is the same and is proportional to the tooth 
numbers, whether the arm is rotating or not. It is the train value. Therefore, we may 
write



             e 5
n5 2 n3



            n2 2 n3
 (e)



            This equation can be used to solve for the output motion of any planetary train. It is 
more conveniently written in the form



             e 5
nL 2 nA



            nF 2 nA
 (13–32)



            Figure 13–30
A planetary gear train.



            Sun gear Arm



            2 4



            5



            30T



            80T



            20T
Planet gear



            Ring gear



            3



            Figure 13–31
A gear train on the arm of a 
planetary gear train.
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            3



            4



            5



            Arm
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            where nF 5 rev/min of first gear in planetary train



             nL 5 rev/min of last gear in planetary train



             nA 5 rev/min of arm



             EXAMPLE 13–6 In Fig. 13–30 the sun gear is the input, and it is driven clockwise at 100 rev/min. The 
ring gear is held stationary by being fastened to the frame. Find the rev/min and 
direction of rotation of the arm and gear 4.



             Solution Let nF 5 n2 5 2100 rev/min, and nL 5 n5 5 0. For e, unlock gear 5 and fix the 
arm. Then, planet gear 4 and ring gear 5 rotate in the same direction, opposite of sun 
gear 2. Thus, e is negative and



             e 5 2aN2



            N4
b



             
aN4



            N5
b 5 2a20



            30
b a30



            80
b 5 20.25



            Substituting this value in Eq. (13–32) gives



             20.25 5
0 2 nA



            (2100) 2 nA



            or



             Answer nA 5 220 rev/min 5 20 rev/min clockwise



             To obtain the speed of gear 4, we follow the procedure outlined by Eqs. (b), (c), 
and (d). Thus



             n43 5 n4 2 n3   n23 5 n2 2 n3



            and so



             
n43



            n23
5



            n4 2 n3



            n2 2 n3
 (1)



            But



             
n43



            n23
5 2



            20
30



            5 2
2
3



             (2)



            Substituting the known values in Eq. (1) gives



             2
2
3



            5
n4 2 (220)



            (2100) 2 (220)



            Solving gives



             Answer n4 5 133 
1
3 rev/min 5 33 13 rev/min counter-clockwise



             13–14 Force Analysis—Spur Gearing
Before beginning the force analysis of gear trains, let us agree on the notation to be used. 
Beginning with the numeral 1 for the frame of the machine, we shall designate the 
input gear as gear 2, and then number the gears successively 3, 4, etc., until we arrive 
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            at the last gear in the train. Next, there may be several shafts involved, and usually 
one or two gears are mounted on each shaft as well as other elements. We shall des-
ignate the shafts, using lowercase letters of the alphabet, a, b, c, etc.
 With this notation we can now speak of the force exerted by gear 2 against gear 
3 as F23. The force of gear 2 against shaft a is F2a. We can also write Fa2 to mean 
the force of shaft a against gear 2. Unfortunately, it is also necessary to use super-
scripts to indicate directions. The coordinate directions will usually be indicated by 
the x, y, and z coordinates, and the radial and tangential directions by superscripts r 
and t. With this notation, Ft



            43 is the tangential component of the force of gear 4 acting 
against gear 3.
 Figure 13–32a shows a pinion mounted on shaft a rotating clockwise at n2 rev/min 
and driving a gear on shaft b at n3 rev/min. The reactions between the mating teeth 
occur along the pressure line. In Fig. 13–32b the pinion has been separated from the 
gear and the shaft, and their effects have been replaced by forces. Fa2 and Ta2 are the 
force and torque, respectively, exerted by shaft a against pinion 2. F32 is the force exerted 
by gear 3 against the pinion. Using a similar approach, we obtain the free-body diagram 
of the gear shown in Fig. 13–32c.
 In Fig. 13–33, the free-body diagram of the pinion has been redrawn and the 
forces have been resolved into tangential and radial components. We now define



             Wt 5 Ft
32 (a)



            as the transmitted load. This tangential load is really the useful component, because 
the radial component Fr



            32 serves no useful purpose. It does not transmit power. The 
applied torque and the transmitted load are seen to be related by the equation



             T 5
d
2



             Wt (b)



            where we have used T 5 Ta2 and d 5 d2 to obtain a general relation.
 The power H transmitted through a rotating gear can be obtained from the stan-
dard relationship of the product of torque T and angular velocity v.



             H 5 Tv 5 (Wt dy2)v (13–33)



            Figure 13–32
Free-body diagrams of the 
forces and moments acting 
upon two gears of a simple 
gear train.
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             While any units can be used in this equation, the units of the resulting power will 
obviously be dependent on the units of the other parameters. It will often be desirable 
to work with the power in either horsepower or kilowatts, and appropriate conversion 
factors should be used.
 Since meshed gears are reasonably efficient, with losses of less than 2 percent, 
the power is generally treated as constant through the mesh. Consequently, with a pair 
of meshed gears, Eq. (13–33) will give the same power regardless of which gear is 
used for d and v.
 Gear data is often tabulated using pitch-line velocity, which is the linear velocity 
of a point on the gear at the radius of the pitch circle; thus V 5 (dy2)v. Converting 
this to customary units gives
 V 5 pdny12 (13–34)



            where V 5 pitch-line velocity, ft/min



             d 5 gear diameter, in



             n 5 gear speed, rev/min



             Many gear design problems will specify the power and speed, so it is convenient 
to solve Eq. (13–33) for Wt. With the pitch-line velocity and appropriate conversion 
factors incorporated, Eq. (13–33) can be rearranged and expressed in U.S. customary 
units as



             Wt 5 33 000 



            H
V



             (13–35)



            where Wt 5 transmitted load, lbf



             H 5 power, hp



             V 5 pitch-line velocity, ft/min



             The corresponding equation in SI units is



             Wt 5
60 000H
pdn



             (13–36)



            where Wt 5 transmitted load, kN



             H 5 power, kW



             d 5 gear diameter, mm



             n 5 speed, rev/min



            Figure 13–33
Resolution of gear forces.
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             EXAMPLE 13–7 Pinion 2 in Fig. 13–34a runs at 1750 rev/min and transmits 2.5 kW to idler gear 3. 
The teeth are cut on the 20° full-depth system and have a module of m 5 2.5 mm. 
Draw a free-body diagram of gear 3 and show all the forces that act upon it.



             Solution The pitch diameters of gears 2 and 3 are



              d2 5 N2m 5 20(2.5) 5 50 mm



              d3 5 N3m 5 50(2.5) 5 125 mm



            From Eq. (13–36) we find the transmitted load to be



             Wt 5
60 000H
pd2n



            5
60 000(2.5)
p(50)(1750)



            5 0.546 kN



            Thus, the tangential force of gear 2 on gear 3 is F t
23 5 0.546 kN, as shown in Fig. 13–34b. 



            Therefore



             Fr
23 5 Ft



            23 tan 20° 5 (0.546) tan 20° 5 0.199 kN



            and so



             F23 5
Ft



            23



            cos 20°
5



            0.546
cos 20°



            5 0.581 kN



             Since gear 3 is an idler, it transmits no power (torque) to its shaft, and so the 
tangential reaction of gear 4 on gear 3 is also equal to Wt. Therefore



             F t
43 5 0.546 kN  Fr



            43 5 0.199 kN  F43 5 0.581 kN



            and the directions are shown in Fig. 13–34b.
 The shaft reactions in the x and y directions are



              Fx
b3 5 2(Ft



            23 1 Fr
43) 5 2(20.546 1 0.199) 5 0.347 kN



              Fy
b3 5 2(Fr



            23 1 Ft
43) 5 2(0.199 2 0.546) 5 0.347 kN



            Figure 13–34
A gear train containing an 
idler gear. (a) The gear train. 
(b) Free-body of the idler gear.



            c
b



            a



            y



            x



            2



            4



            3



            50T



            20T30T



            3



            x
b



            F t
23



            F23



            F r
23



            Fb3



            F y
b3



            F x
b3



            F r
43



            F t
43F43



            y



            20°



            20°



            (a) (b)



            bud98209_ch13_665-724.indd Page 700  10/30/13  9:32 PM f-494 bud98209_ch13_665-724.indd Page 700  10/30/13  9:32 PM f-494 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
 13–15 Force Analysis—Bevel Gearing
In determining shaft and bearing loads for bevel-gear applications, the usual practice 
is to use the tangential or transmitted load that would occur if all the forces were con-
centrated at the midpoint of the tooth. While the actual resultant occurs somewhere 
between the midpoint and the large end of the tooth, there is only a small error in 
making this assumption. For the transmitted load, this gives



             Wt 5
T
rav



             (13–37)



            where T is the torque and rav is the pitch radius at the midpoint of the tooth for the 
gear under consideration.
 The forces acting at the center of the tooth are shown in Fig. 13–35. The resultant 
force W has three components: a tangential force Wt, a radial force Wr, and an axial 
force Wa. From the trigonometry of the figure,



             Wr 5 Wt tan f cos g



              Wa 5 Wt tan f sin g  
(13–38)



            The resultant shaft reaction is



             Fb3 5 2(0.347)2 1 (0.347)2 5 0.491 kN



            These are shown on the figure.
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            Figure 13–35
Bevel-gear tooth forces.
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The three forces Wt, Wr, and Wa are at right angles to each other and can be used to 
determine the bearing loads by using the methods of statics.
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             EXAMPLE 13–8 The bevel pinion in Fig. 13–36a rotates at 600 rev/min in the direction shown and 
transmits 5 hp to the gear. The mounting distances, the location of all bearings, and the 
average pitch radii of the pinion and gear are shown in the figure. For simplicity, the 
teeth have been replaced by pitch cones. Bearings A and C should take the thrust loads. 
Find the bearing forces on the gearshaft.
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            Figure 13–36
(a) Bevel gearset of Ex. 13–8.
(b) Free-body diagram of shaft 
CD. Dimensions in inches.
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 Solution The pitch angles are



             g 5 tan21 a3
9
b 5 18.4°  G 5 tan21 a9



            3
b 5 71.6°



            The pitch-line velocity corresponding to the average pitch radius is



             V 5
2prPn



            12
5



            2p(1.293)(600)
12



            5 406 ft /min



            Therefore the transmitted load is



             Wt 5
33 000H



            V
5



            (33 000)(5)
406



            5 406 lbf



            and from Eq. (13–38), with G replacing g, we have



              Wr 5 Wt tan f cos G 5 406 tan 20° cos 71.6° 5 46.6 lbf



              Wa 5 Wt tan f sin G 5 406 tan 20° sin 71.6° 5 140 lbf



            where Wt acts in the positive z direction, Wr in the 2x direction, and Wa in the 2y 
direction, as illustrated in the isometric sketch of Fig. 13–36b.
 In preparing to take a sum of the moments about bearing D, define the position 
vector from D to G as



             RG 5 3.88i 2 (2.5 1 1.293)j 5 3.88i 2 3.793j



            We shall also require a vector from D to C:



             RC 5 2(2.5 1 3.625)j 5 26.125j



            Then, summing moments about D gives



             RG 3 W 1 RC 3 FC 1 T 5 0 (1)



            When we place the details in Eq. (1), we get



             (3.88i 2 3.793j) 3 (246.6i 2 140j 1 406k)



                1 (26.125j) 3 (Fx
C i 1 Fy



            C j 1 F z
Ck) 1 T j 5 0 



            (2)



            After the two cross products are taken, the equation becomes



             (21540i 2 1575j 2 720k) 1 (26.125F z
C i 1 6.125F x



            Ck) 1 T j 5 0



            from which



             T 5 1575j lbf ? in  Fx
C 5 118 lbf  Fz



            C 5 2251 lbf (3)



             Now sum the forces to zero. Thus



             FD 1 FC 1 W 5 0 (4)



            When the details are inserted, Eq. (4) becomes



             (Fx
D i 1 Fz



            D k) 1 (118i 1 Fy
C j 2 251k) 1 (246.6 i 2 140j 1 406k) 5 0 (5)
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 13–16 Force Analysis—Helical Gearing
Figure 13–37 is a three-dimensional view of the forces acting against a helical-gear 
tooth. The point of application of the forces is in the pitch plane and in the center of 
the gear face. From the geometry of the figure, the three components of the total 
(normal) tooth force W are



             Wr 5 W sin fn



              Wt 5 W cos fn cos c (13–39)



             Wa 5 W cos fn sin c



            where W 5 total force



             Wr 5 radial component



             Wt 5 tangential component, also called the transmitted load



             Wa 5 axial component, also called the thrust load



            First we see that Fy
C 5 140 lbf, and so



             Answer FC 5 118i 1 140j 2 251k lbf



            Then, from Eq. (5),



             Answer FD 5 271.4i 2 155k lbf



            These are all shown in Fig. 13–36b in the proper directions. The analysis for the pinion 
shaft is quite similar.
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            Figure 13–37
Tooth forces acting on a 
right-hand helical gear.
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            Usually Wt is given and the other forces are desired. In this case, it is not difficult to 
discover that



             Wr 5 Wt tan ft



             Wa 5 Wt tan c



              W 5
Wt



            cos fn cos c
 



            (13–40)



             EXAMPLE 13–9 In Fig. 13–38 an electric motor transmits 1-hp at 1800 rev/min in the clockwise direc-
tion, as viewed from the positive x axis. Keyed to the motor shaft is an 18-tooth heli-
cal pinion having a normal pressure angle of 20°, a helix angle of 30°, and a normal 
diametral pitch of 12 teeth/in. The hand of the helix is shown in the figure. Make a 
three-dimensional sketch of the motor shaft and pinion, and show the forces acting on 
the pinion and the bearing reactions at A and B. The thrust should be taken out at A.



             Solution From Eq. (13–19) we find



              ft 5 tan21
  



            tan fn



            cos c
5 tan21



              



            tan 20°
cos 30°



            5 22.8°



            Also, Pt 5 Pn cos c 5 12 cos 30° 510.39 teeth/in. Therefore the pitch diameter of 
the pinion is dp 5 18y10.39 5 1.732 in. The pitch-line velocity is



             V 5
pdn
12



            5
p(1.732)(1800)



            12
5 816 ft /min



            The transmitted load is



             Wt 5
33 000H



            V
5



            (33 000)(1)
816



            5 40.4 lbf



            From Eq. (13–40) we find



              Wr 5 Wt tan ft 5 (40.4) tan 22.8° 5 17.0 lbf



              Wa 5 Wt tan c 5 (40.4) tan 30° 5 23.3 lbf



              W 5
Wt



            cos fn cos c
5



            40.4
cos 20° cos 30°



            5 49.6 lbf



            10 in 3 in
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            Figure 13–38
The motor and gear train of 
Ex. 13–9.
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 13–17 Force Analysis—Worm Gearing
If friction is neglected, then the only force exerted by the gear will be the force W, 
shown in Fig. 13–40, having the three orthogonal components Wx, Wy, and Wz. From 
the geometry of the figure, we see that



            These three forces, Wr 5 17.0 lbf in the 2y direction, Wa 5 23.3 lbf in the 2x direc-
tion, and Wt 5 40.4 lbf in the 1z direction, are shown acting at point C in Fig. 13–39. 
We assume bearing reactions at A and B as shown. Then Fx



            A 5 Wa 5 23.3 lbf. Taking 
moments about the z axis,



             2(17.0)(13) 1 (23.3)(0.866) 1 10Fy
B 5 0



            or Fy
B 5 20.1 lbf. Summing forces in the y direction then gives Fy



            A 5 3.1 lbf. Taking 
moments about the y axis, next



             10Fz
B 2 (40.4)(13) 5 0



            or Fz
B 5 52.5 lbf. Summing forces in the z direction and solving gives Fz



            A 5 12.1 lbf. 
Also, the torque is T 5 Wtdpy2 5 (40.4)(1.732y2) 5 35 lbf ? in.
 For comparison, solve the problem again using vectors. The force at C is



             W 5 223.3i 2 17.0j 1 40.4k lbf



            Position vectors to B and C from origin A are



             RB 5 10i  RC 5 13i 1 0.866j



            Taking moments about A, we have



             RB 3 FB 1 T 1 RC 3 W 5 0



            Using the directions assumed in Fig. 13–39 and substituting values gives



             10i 3 (Fy
B j 2 Fz



            Bk) 2 T i 1 (13i 1 0.866j) 3 (223.3i 2 17.0j 1 40.4k) 5 0



            When the cross products are evaluated we get



             (10Fy
Bk 1 10Fz



            B j) 2 T i 1 (35i 2 525j 2 201k) 5 0



            obtaining T 5 35 lbf ? in, Fy
B 5 20.1 lbf, and Fz



            B 5 52.5 lbf.
 Next,



             FA 5 2FB 2 W, and so FA 5 23.3i 2 3.1j 1 12.1k lbf.
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            Figure 13–39
Free-body diagram of motor 
shaft of Ex. 13–9. Forces in lbf.
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             W x 5 W cos fn sin l



              W y 5 W sin fn  (13–41)



             W z 5 W cos fn cos l



            We now use the subscripts W and G to indicate forces acting against the worm and 
gear, respectively. We note that W y is the separating, or radial, force for both the worm 
and the gear. The tangential force on the worm is W x and is W z on the gear, assum-
ing a 90° shaft angle. The axial force on the worm is W z, and on the gear, Wx. Since 
the gear forces are opposite to the worm forces, we can summarize these relations 
by writing



             WWt 5 2WGa 5 Wx



              WWr 5 2WGr 5 W y (13–42)



             WWa 5 2WGt 5 Wz



            It is helpful in using Eq. (13–41) and also Eq. (13–42) to observe that the gear axis 
is parallel to the x direction and the worm axis is parallel to the z direction and that 
we are employing a right-handed coordinate system.
 In our study of spur-gear teeth we have learned that the motion of one tooth 
relative to the mating tooth is primarily a rolling motion; in fact, when contact occurs 
at the pitch point, the motion is pure rolling. In contrast, the relative motion between 
worm and worm-gear teeth is pure sliding, and so we must expect that friction plays 
an important role in the performance of worm gearing. By introducing a coefficient 
of friction f, we can develop another set of relations similar to those of Eq. (13–41). 
In Fig. 13–40 we see that the force W acting normal to the worm-tooth profile pro-
duces a frictional force Wf 5 f W, having a component f W cos l in the negative x direc-
tion and another component f W sin l in the positive z direction. Equation (13–41) 
therefore becomes



             W x 5 W(cos fn sin l 1 f cos l)



              W y 5 W sin fn  (13–43)



             W z 5 W(cos fn cos l 2 f sin l)



            Figure 13–40
Drawing of the pitch cylinder 
of a worm, showing the forces 
exerted upon it by the worm 
gear.
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            Equation (13–42), of course, still applies.
 Inserting 2WGt from Eq. (13–42) for Wz in Eq. (13–43) and multiplying both 
sides by f, we find the frictional force Wf to be



             Wf 5 f W 5
f WGt



            f sin l 2 cos fn cos l
 (13–44)



             A useful relation between the two tangential forces, WWt and WGt, can be obtained 
by equating the first and third parts of Eqs. (13–42) and (13–43) and eliminating W. 
The result is



             WWt 5 WGt 



            cos fn sin l 1 f cos l
f sin l 2 cos fn cos l



             (13–45)



             Efficiency h can be defined by using the equation



             h 5
WWt (without friction)



            WWt (with friction)
 (a)



            Substitute Eq. (13–45) with f 5 0 in the numerator of Eq. (a) and the same equation 
in the denominator. After some rearranging, you will find the efficiency to be



             h 5
cos fn 2 f tan l
cos fn 1 f cot l



             (13–46)



            Selecting a typical value of the coefficient of friction, say f 5 0.05, and the pressure 
angles shown in Table 13–5, we can use Eq. (13–46) to get some useful design infor-
mation. Solving this equation for lead angles from 1 to 30° gives the interesting results 
shown in Table 13–6.
 Many experiments have shown that the coefficient of friction is dependent on the 
relative or sliding velocity. In Fig. 13–41, VG is the pitch-line velocity of the gear and 
VW the pitch-line velocity of the worm. Vectorially, VW 5 VG 1 VS; consequently, the 
sliding velocity is



             VS 5
VW



            cos l
 (13–47)



            Lead Angle L, Efficiency H,
deg %



            1.0 25.2



            2.5 45.7



            5.0 62.6



            7.5 71.3



            10.0 76.6



            15.0 82.7



            20.0 85.6



            30.0 88.7



            Table 13–6



            Efficiency of Worm 
Gearsets for f 5 0.05
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            Published values of the coefficient of friction vary as much as 20 percent, undoubtedly 
because of the differences in surface finish, materials, and lubrication. The values on 
the chart of Fig. 13–42 are representative and indicate the general trend.
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            Figure 13–41
Velocity components in worm 
gearing.
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            Figure 13–42
Representative values of the 
coefficient of friction for worm 
gearing. These values are based 
on good lubrication. Use curve 
B for high-quality materials, 
such as a case-hardened steel 
worm mating with a phosphor-
bronze gear. Use curve A when 
more friction is expected, as 
with a cast-iron worm mating 
with a cast-iron worm gear.



             EXAMPLE 13–10 A 2-tooth right-hand worm transmits 1 hp at 1200 rev/min to a 30-tooth worm gear. 
The gear has a transverse diametral pitch of 6 teeth/in and a face width of 1 in. The 
worm has a pitch diameter of 2 in and a face width of 21



            2 in. The normal pressure 
angle is 141



            2
°. The materials and quality of the gearing to be used are such that curve 



            B of Fig. 13–42 should be used to obtain the coefficient of friction.
(a) Find the axial pitch, the center distance, the lead, and the lead angle.
(b) Figure 13–43 is a drawing of the worm gear oriented with respect to the coordinate 
system described earlier in this section; the gear is supported by bearings A and B. 
Find the forces exerted by the bearings against the worm-gear shaft, and the output 
torque.
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             Solution (a) The axial pitch is the same as the transverse circular pitch of the gear, which is



             Answer px 5 pt 5
p



            P
5
p



            6
5 0.5236 in



            The pitch diameter of the gear is dG 5 NGyP 5 30y6 5 5 in. Therefore, the center 
distance is



             Answer C 5
dW 1 dG



            2
5



            2 1 5
2



            5 3.5 in



            From Eq. (13–27), the lead is



             L 5 px NW 5 (0.5236)(2) 5 1.0472 in



             Answer Also using Eq. (13–28), we find



             Answer l 5 tan21
 



            L
pdW



            5 tan21
 



            1.0472
p(2)



            5 9.46°



            (b) Using the right-hand rule for the rotation of the worm, you will see that your 
thumb points in the positive z direction. Now use the bolt-and-nut analogy (the worm 
is right-handed, as is the screw thread of a bolt), and turn the bolt clockwise with the 
right hand while preventing nut rotation with the left. The nut will move axially along 
the bolt toward your right hand. Therefore the surface of the gear (Fig. 13–43) in 
contact with the worm will move in the negative z direction. Thus, viewing the gear 
in the negative x direction, the gear rotates clockwise about the x axis
 The pitch-line velocity of the worm is



             VW 5
pdWnW



            12
5
p(2)(1200)



            12
5 628 ft/min



            Figure 13–43
The pitch cylinders of 
the worm gear train of 
Ex. 13–10.



            1 in2
1



            2 in2
1



            y



            A



            z



            1200 rev/min



            Gear pitch
cylinder



            Worm pitch
cylinder



            B



            x



            bud98209_ch13_665-724.indd Page 710  11/2/13  9:45 AM f-494 bud98209_ch13_665-724.indd Page 710  11/2/13  9:45 AM f-494 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
Gears—General    711



            The speed of the gear is nG 5 ( 2
30) (1200) 5 80 rev/min. Therefore the pitch-line 



            velocity of the gear is



             VG 5
pdGnG



            12
5
p(5)(80)



            12
5 105 ft/min



            Then, from Eq. (13–47), the sliding velocity VS is found to be



             VS 5
VW



            cos l
5



            628
cos 9.46°



            5 637 ft /min



             Getting to the forces now, we begin with the horsepower formula



             WWt 5
33 000H



            VW
5



            (33 000)(1)
628



            5 52.5 lbf



            This force acts in the negative x direction, the same as in Fig. 13–40. Using Fig. 13–42, 
we find f 5 0.03. Then, the first equation of Eq. (13–43) gives



              W 5
W x



            cos fn sin l 1 f cos l



              5
52.5



            cos 14.5° sin 9.46° 1 0.03 cos 9.46°
5 278 lbf



            Also, from Eq. (13–43),



              W y 5 W sin fn 5 278 sin 14.5° 5 69.6 lbf



              W z 5 W(cos fn cos l 2 f sin l)



              5 278(cos 14.5° cos 9.46° 2 0.03 sin 9.46°) 5 264 lbf



            We now identify the components acting on the gear as



              WG a 5 2Wx 5 52.5 lbf



              WGr 5 2W y 5 269.6 lbf



              WGt 5 2Wz 5 2264 lbf



            A free-body diagram showing the forces and torsion acting on the gearshaft is shown 
in Fig. 13–44.
 We shall make B a thrust bearing in order to place the gearshaft in compression. 
Thus, summing forces in the x direction gives



             Answer Fx
B 5 252.5 lbf



            Taking moments about the z axis, we have



             Answer 2(52.5)(2.5) 2 (69.6)(1.5) 1 4Fy
B 5 0  Fy



            B 5 58.9 lbf



            Taking moments about the y axis,



             Answer (264)(1.5) 2 4Fz
B 5 0  Fz



            B 5 99 lbf
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Summing forces in the y direction,



             Answer 269.6 1 58.9 1 Fy
A 5 0  Fy



            A 5 10.7 lbf



            Similarly, summing forces in the z direction,



             Answer 2264 1 99 1 Fz
A 5 0  Fz



            A 5 165 lbf



            We still have one more equation to write. Summing moments about x,



             Answer 2(264)(2.5) 1 T 5 0  T 5 660 lbf ? in



            It is because of the frictional loss that this output torque is less than the product of 
the gear ratio and the input torque.
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            Figure 13–44
Free-body diagram for 
Ex. 13–10. Forces are given 
in lbf.
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            PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized 
in Table 1–2 of Sec. 1–17, p. 34.



             13–1 A 17-tooth spur pinion has a diametral pitch of 8 teeth/in, runs at 1120 rev/min, and drives a 
gear at a speed of 544 rev/min. Find the number of teeth on the gear and the theoretical center-
to-center distance.



             13–2 A 15-tooth spur pinion has a module of 3 mm and runs at a speed of 1600 rev/min. The driven 
gear has 60 teeth. Find the speed of the driven gear, the circular pitch, and the theoretical 
center-to-center distance.
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             13–3 A spur gearset has a module of 6 mm and a velocity ratio of 4. The pinion has 16 teeth. Find the 
number of teeth on the driven gear, the pitch diameters, and the theoretical center-to-center distance.



             13–4 A 21-tooth spur pinion mates with a 28-tooth gear. The diametral pitch is 3 teeth/in and the 
pressure angle is 20°. Make a drawing of the gears showing one tooth on each gear. Find and 
tabulate the following results: the addendum, dedendum, clearance, circular pitch, tooth thick-
ness, and base-circle diameters; the lengths of the arc of approach, recess, and action; and the 
base pitch and contact ratio.



             13–5 A 20° straight-tooth bevel pinion having 14 teeth and a diametral pitch of 6 teeth/in drives a 
32-tooth gear. The two shafts are at right angles and in the same plane. Find:
(a) The cone distance
(b) The pitch angles
(c) The pitch diameters
(d) The face width



             13–6 A parallel helical gearset uses a 20-tooth pinion driving a 36-tooth gear. The pinion has a right-hand 
helix angle of 30°, a normal pressure angle of 25°, and a normal diametral pitch of 4 teeth/in. Find:
(a) The normal, transverse, and axial circular pitches
(b) The normal base circular pitch
(c) The transverse diametral pitch and the transverse pressure angle
(d) The addendum, dedendum, and pitch diameter of each gear



             13–7 A parallel helical gearset consists of a 19-tooth pinion driving a 57-tooth gear. The pinion has 
a left-hand helix angle of 30°, a normal pressure angle of 20°, and a normal module of 2.5 mm. 
Find:
(a) The normal, transverse, and axial circular pitches
(b) The transverse diametral pitch and the transverse pressure angle
(c) The addendum, dedendum, and pitch diameter of each gear



             13–8 To avoid the problem of interference in a pair of spur gears using a 20° pressure angle, specify 
the minimum number of teeth allowed on the pinion for each of the following gear ratios.
(a) 2 to 1
(b) 3 to 1
(c) 4 to 1
(d) 5 to 1



             13–9 Repeat Prob. 13–8 with a 25° pressure angle.



             13–10 For a spur gearset with f 5 20°, while avoiding interference, find:
(a) The smallest pinion tooth count that will run with itself
(b) The smallest pinion tooth count at a ratio mG 5 2.5, and the largest gear tooth count pos-



            sible with this pinion
(c) The smallest pinion that will run with a rack



             13–11 Repeat problem 13–10 for a helical gearset with fn 5 20° and c 5 30°.



             13–12 The decision has been made to use fn 5 20°, Pt 5 6 teeth/in, and c 5 30° for a 2:1 reduction. 
Choose the smallest acceptable full-depth pinion and gear tooth count to avoid interference.



             13–13 Repeat Problem 13–12 with c 5 45°.



             13–14 By employing a pressure angle larger than standard, it is possible to use fewer pinion teeth, and 
hence obtain smaller gears without undercutting during machining. If the gears are full-depth 
spur gears, what is the smallest possible pressure angle f that can be obtained without under-
cutting for a 9-tooth pinion to mesh with a rack?
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             13–15 A parallel-shaft gearset consists of an 18-tooth helical pinion driving a 32-tooth gear. The 
pinion has a left-hand helix angle of 25°, a normal pressure angle of 20°, and a normal module 
of 3 mm. Find:
(a) The normal, transverse, and axial circular pitches
(b) The transverse module and the transverse pressure angle
(c) The pitch diameters of the two gears



             13–16 The double-reduction helical gearset shown in the figure is driven through shaft a at a speed 
of 700 rev/min. Gears 2 and 3 have a normal diametral pitch of 12 teeth/in, a 30° helix angle, 
and a normal pressure angle of 20°. The second pair of gears in the train, gears 4 and 5, have 
a normal diametral pitch of 8 teeth/in, a 25° helix angle, and a normal pressure angle of 20°. 
The tooth numbers are: N2 5 12, N3 5 48, N4 5 16, N5 5 36. Find:
(a) The directions of the thrust force exerted by each gear upon its shaft
(b) The speed and direction of shaft c
(c) The center distance between shafts



            Problem 13–16
Dimensions in inches.
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             13–17 Shaft a in the figure rotates at 600 rev/min in the direction shown. Find the speed and direction 
of rotation of shaft d.



            Problem 13–17
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             13–18 The mechanism train shown consists of an assortment of gears and pulleys to drive gear 9. 
Pulley 2 rotates at 1200 rev/min in the direction shown. Determine the speed and direction of 
rotation of gear 9.
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             13–19 The figure shows a gear train consisting of a pair of helical gears and a pair of miter gears. 
The helical gears have a 171



            2
° normal pressure angle and a helix angle as shown. Find:



            (a) The speed of shaft c
(b) The distance between shafts a and b
(c) The pitch diameter of the miter gears
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            Problem 13–18



             13–20 A compound reverted gear train is to be designed as a speed increaser to provide a total increase 
of speed of exactly 45 to 1. With a 20° pressure angle, specify appropriate numbers of teeth 
to minimize the gearbox size while avoiding the interference problem in the teeth. Assume all 
gears will have the same diametral pitch.



             13–21 Repeat Prob. 13–20 with a 25° pressure angle.



             13–22 Repeat Prob. 13–20 for a gear ratio of exactly 30 to 1.



             13–23 Repeat Prob. 13–20 for a gear ratio of approximately 45 to 1.



             13–24 A gearbox is to be designed with a compound reverted gear train that transmits 25 horsepower 
with an input speed of 2500 rev/min. The output should deliver the power at a rotational speed 
in the range of 280 to 300 rev/min. Spur gears with 20° pressure angle are to be used. Determine 
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            Problem 13–19
Dimensions in inches.
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            suitable numbers of teeth for each gear, to minimize the gearbox size while providing an out-
put speed within the specified range. Be sure to avoid an interference problem in the teeth.



             13–25 The tooth numbers for the automotive differential shown in the figure are N2 5 16, N3 5 48, 
N4 5 14, N5 5 N6 5 20. The drive shaft turns at 900 rev/min.
(a) What are the wheel speeds if the car is traveling in a straight line on a good road surface?
(b) Suppose the right wheel is jacked up and the left wheel resting on a good road surface. 



            What is the speed of the right wheel?
(c) Suppose, with a rear-wheel drive vehicle, the auto is parked with the right wheel resting 



            on a wet icy surface. Does the answer to part (b) give you any hint as to what would hap-
pen if you started the car and attempted to drive on?



             13–26 The figure illustrates an all-wheel drive concept using three differentials, one for the front axle, 
another for the rear, and the third connected to the drive shaft.
(a) Explain why this concept may allow greater acceleration.
(b) Suppose either the center or the rear differential, or both, can be locked for certain road 



            conditions. Would either or both of these actions provide greater traction? Why?
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            Problem 13–26
The Audi “Quattro concept,” 



            showing the three differentials that 
provide permanent all-wheel drive. 



            (Reprinted by permission of 
Audi of America, Inc.)
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             13–27 In the reverted planetary train illustrated, find the speed and direction of rotation of the arm if 
gear 2 is unable to rotate and gear 6 is driven at 12 rev/min in the clockwise direction as viewed 
from the bottom of the figure.



             13–28 In the gear train of Prob. 13–27, let gear 6 be driven at 85 rev/min counterclockwise (as viewed 
from the bottom of the figure) while gear 2 is held stationary. What is the speed and direction 
of rotation of the arm?



             13–29 Tooth numbers for the gear train shown in the figure are N2 5 12, N3 5 16, and N4 5 12. How 
many teeth must internal gear 5 have? Suppose gear 5 is fixed. What is the speed of the arm if 
shaft a rotates at 320 rev/min counterclockwise as viewed from the left side of the figure?
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             13–30 The tooth numbers for the gear train illustrated are N2 5 20, N3 5 16, N4 5 30, N6 5 36, and 
N7 5 46. Gear 7 is fixed. If shaft a is turned through 10 revolutions, how many turns will shaft 
b make?
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             13–31 Shaft a in the figure has a power input of 75 kW at a speed of 1000 rev/min in the counterclock-
wise direction. The gears have a module of 5 mm and a 20° pressure angle. Gear 3 is an idler.
(a) Find the force F3b that gear 3 exerts against shaft b.
(b) Find the torque T4c that gear 4 exerts on shaft c.



             13–32 The 24T 6-pitch 20° pinion 2 shown in the figure rotates clockwise at 1000 rev/min and is 
driven at a power of 25 hp. Gears 4, 5, and 6 have 24, 36, and 144 teeth, respectively. What 
torque can arm 3 deliver to its output shaft? Draw free-body diagrams of the arm and of each 
gear and show all forces that act upon them.



             13–33 The gears shown in the figure have a module of 12 mm and a 20° pressure angle. The pinion 
rotates at 1800 rev/min clockwise and transmits 150 kW through the idler pair to gear 5 on 
shaft c. What forces do gears 3 and 4 transmit to the idler shaft?
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             13–34 The figure shows a pair of shaft-mounted spur gears having a diametral pitch of 5 teeth/in with an 
18-tooth 20° pinion driving a 45-tooth gear. The power input is 32-hp at 1800 rev/min. Find the 
direction and magnitude of the forces acting on bearings A, B, C, and D.
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            Problem 13–35
NEMA No. 364 frame; dimensions 



            in inches. The z axis is directed out 
of the paper.



             13–35 The figure shows the electric-motor frame dimensions for a 30-hp 900 rev/min motor. The 
frame is bolted to its support using four 3



            4-in bolts spaced 111
4 in apart in the view shown and 



            14 in apart when viewed from the end of the motor. A 4 diametral pitch 20° spur pinion hav-
ing 20 teeth and a face width of 2 in is keyed to and flush with the end of the motor shaft. 
This pinion drives another gear whose axis is in the same xz plane and directly behind the 
motor shaft. Determine the maximum shear and tensile forces on the mounting bolts based on 
200 percent overload torque. Does the direction of rotation matter?
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             13–36 Continue Prob. 13–24 by finding the following information, assuming a diametral pitch of 
6 teeth/in.
(a) Determine pitch diameters for each of the gears.
(b) Determine the pitch line velocities (in ft/min) for each set of gears.
(c) Determine the magnitudes of the tangential, radial, and total forces transmitted between 



            each set of gears.
(d) Determine the input torque.
(e) Determine the output torque, neglecting frictional losses.



             13–37 A speed-reducer gearbox containing a compound reverted gear train transmits 35 horsepower 
with an input speed of 1200 rev/min. Spur gears with 20° pressure angle are used, with 16 teeth 
on each of the small gears and 48 teeth on each of the larger gears. A diametral pitch of 10 teeth/in 
is proposed.
(a) Determine the speeds of the intermediate and output shafts.
(b) Determine the pitch line velocities (in ft/min) for each set of gears.
(c) Determine the magnitudes of the tangential, radial, and total forces transmitted between 



            each set of gears.
(d) Determine the input torque.
(e) Determine the output torque, neglecting frictional losses.



             13–38* For the countershaft in Prob. 3–72, p. 152, assume the gear ratio from gear B to its mating gear 
is 2 to 1.
(a) Determine the minimum number of teeth that can be used on gear B without an interference 



            problem in the teeth.
(b) Using the number of teeth from part (a), what diametral pitch is required to also achieve 



            the given 8-in pitch diameter?
(c) Suppose the 20° pressure angle gears are exchanged for gears with 25° pressure angle, while 



            maintaining the same pitch diameters and diametral pitch. Determine the new forces FA 
and FB if the same power is to be transmitted.



             13–39* For the countershaft in Prob. 3–73, p. 152, assume the gear ratio from gear B to its mating gear 
is 5 to 1.
(a) Determine the minimum number of teeth that can be used on gear B without an interference 



            problem in the teeth.
(b) Using the number of teeth from part (a), what module is required to also achieve the given 



            300-mm pitch diameter?
(c) Suppose the 20° pressure angle for gear A is exchanged for a gear with 25° pressure angle, 



            while maintaining the same pitch diameters and module. Determine the new forces FA 
and FB if the same power is to be transmitted.



             13–40* For the gear and sprocket assembly analyzed in Prob. 3–77, p. 153, information for the gear 
sizes and the forces transmitted through the gears was provided in the problem statement. In 
this problem, we will perform the preceding design steps necessary to acquire the information 
for the analysis. A motor providing 2 kW is to operate at 191 rev/min. A gear unit is needed 
to reduce the motor speed by half to drive a chain sprocket.
(a) Specify appropriate numbers of teeth on gears F and C to minimize the size while avoiding 



            the interference problem in the teeth.
(b) Assuming an initial guess of 125-mm pitch diameter for gear F, what is the module that 



            should be used for the stress analysis of the gear teeth?
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            (c) Calculate the input torque applied to shaft EFG.
(d) Calculate the magnitudes of the radial, tangential, and total forces transmitted between 



            gears F and C.



             13–41* For the gear and sprocket assembly analyzed in Prob. 3–79, p. 153, information for the gear 
sizes and the forces transmitted through the gears was provided in the problem statement. In 
this problem, we will perform the preceding design steps necessary to acquire the information 
for the analysis. A motor providing 1 hp is to operate at 70 rev/min. A gear unit is needed to 
double the motor speed to drive a chain sprocket.
(a) Specify appropriate numbers of teeth on gears F and C to minimize the size while avoiding 



            the interference problem in the teeth.
(b) Assuming an initial guess of 10-in pitch diameter for gear F, what is the diametral pitch 



            that should be used for the stress analysis of the gear teeth?
(c) Calculate the input torque applied to shaft EFG.
(d) Calculate the magnitudes of the radial, tangential, and total forces transmitted between 



            gears F and C.



             13–42* For the bevel gearset in Probs. 3–74 and 3–76, pp. 152 and 153 respectively, shaft AB is rotating 
at 600 rev/min and transmits 10 hp. The gears have a 20° pressure angle.
(a) Determine the bevel angle g for the gear on shaft AB.
(b) Determine the pitch-line velocity.
(c) Determine the tangential, radial, and axial forces acting on the pinion. Were the forces 



            given in Prob. 3–74 correct?



             13–43 The figure shows a 16T 20° straight bevel pinion driving a 32T gear, and the location of the 
bearing centerlines. Pinion shaft a receives 2.5 hp at 240 rev/min. Determine the bearing reac-
tions at A and B if A is to take both radial and thrust loads.
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            Problem 13–43
Dimensions in inches.



             13–44 The figure shows a 10 diametral pitch 18-tooth 20° straight bevel pinion driving a 30-tooth 
gear. The transmitted load is 25 lbf. Find the bearing reactions at C and D on the output shaft 
if D is to take both radial and thrust loads.
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             13–45 The gears shown in the figure have a normal diametral pitch of 5 teeth/in, a normal pressure 
angle of 20°, and a 30° helix angle. The transmitted load is 800 lbf. The pinion rotates coun-
terclockwise about the y axis, as viewed from the positive y axis. Find the force exerted by 
each gear on its shaft.
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            Problem 13–44
Dimensions in inches.



            2 3
y



            x



            a b
18T, LH 32T, RH



            Problem 13−45



             13–46 The gears shown in the figure have a normal diametral pitch of 5 teeth/in, a normal pressure 
angle of 20°, and a 30° helix angle. The transmitted load is 800 lbf. Gear 2 rotates clockwise 
about the y axis, as viewed from the positive y axis. Gear 3 is an idler. Find the forces exerted 
by gears 2 and 3 on their shafts.
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             13–47 A gear train is composed of four helical gears with the three shaft axes in a single plane, as 
shown in the figure. The gears have a normal pressure angle of 20° and a 30° helix angle. Gear 2 
is the driver, and is rotating counterclockwise as viewed from the top. Shaft b is an idler and 
the transmitted load from gear 2 to gear 3 is 500 lbf. The gears on shaft b both have a normal 
diametral pitch of 7 teeth/in and have 54 and 14 teeth, respectively. Find the forces exerted by 
gears 3 and 4 on shaft b.
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             13–48 In the figure for Prob. 13–34, pinion 2 is to be a right-hand helical gear having a helix angle 
of 30°, a normal pressure angle of 20°, 16 teeth, and a normal diametral pitch of 6 teeth/in. A 
motor delivers 25-hp to shaft a at a speed of 1720 rev/min clockwise about the x axis. Gear 3 
has 42 teeth. Find the reaction exerted by bearings C and D on shaft b. One of these bearings 
is to take both radial and thrust loads. This bearing should be selected so as to place the shaft 
in compression.



             13–49 Gear 2, in the figure, has 16 teeth, a 20° transverse pressure angle, a 15° helix angle, and a 
module of 4 mm. Gear 2 drives the idler on shaft b, which has 36 teeth. The driven gear on 
shaft c has 28 teeth. If the driver rotates at 1600 rev/min and transmits 6 kW, find the radial 
and thrust load on each shaft.



             13–50 The figure shows a double-reduction helical gearset. Pinion 2 is the driver, and it receives a 
torque of 1200 lbf ? in from its shaft in the direction shown. Pinion 2 has a normal diametral 
pitch of 8 teeth/in, 14 teeth, and a normal pressure angle of 20° and is cut right-handed with 
a helix angle of 30°. The mating gear 3 on shaft b has 36 teeth. Gear 4, which is the driver 
for the second pair of gears in the train, has a normal diametral pitch of 5 teeth/in, 15 teeth, 
and a normal pressure angle of 20° and is cut left-handed with a helix angle of 15°. Mating 
gear 5 has 45 teeth. Find the magnitude and direction of the force exerted by the bearings C 
and D on shaft b if bearing C can take only a radial load while bearing D is mounted to take 
both radial and thrust loads.
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Dimensions in inches.
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             13–51 A right-hand single-tooth hardened-steel (hardness not specified) worm has a catalog rating of 
2000 W at 600 rev/min when meshed with a 48-tooth cast-iron gear. The axial pitch of the 
worm is 25 mm, the normal pressure angle is 141



            2
°, the pitch diameter of the worm is 100 mm, 



            and the face widths of the worm and gear are, respectively, 100 mm and 50 mm. Bearings are 
centered at locations A and B on the worm shaft. Determine which should be the thrust bearing 
(so that the axial load in the shaft is in compression), and find the magnitudes and directions 
of the forces exerted by both bearings.



             13–52 The hub diameter and projection for the gear of Prob. 13–51 are 100 and 37.5 mm, respectively. 
The face width of the gear is 50 mm. Locate bearings C and D on opposite sides, spacing C 
10 mm from the gear on the hidden face (see figure) and D 10 mm from the hub face. Choose 
one as the thrust bearing, so that the axial load in the shaft is in compression. Find the output 
torque and the magnitudes and directions of the forces exerted by the bearings on the gearshaft.



             13–53 A 2-tooth left-hand worm transmits 3
4 hp at 600 rev/min to a 36-tooth gear having a transverse 



            diametral pitch of 8 teeth/in. The worm has a normal pressure angle of 20°, a pitch diameter of 
11



            2 in, and a face width of 11
2 in. Use a coefficient of friction of 0.05 and find the force exerted 



            by the gear on the worm and the torque input. For the same geometry as shown for Prob. 13–51, 
the worm velocity is clockwise as viewed from the positive z axis.



             13–54 Write a computer program that will analyze a spur gear or helical-mesh gear, accepting fn, c, 
Pt, NP, and NG; compute mG, dP, dG, pt, pn, px, and ft; and give advice as to the smallest tooth 
count that will allow a pinion to run with itself without interference, run with its gear, and run 
with a rack. Also have it give the largest tooth count possible with the intended pinion.



            z



            A



            y
B



            50



            50
100



            x



            Worm pitch cylinder



            Gear pitch cylinder



            Problem 13–51
Dimensions in millimeters.
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            This chapter is devoted primarily to analysis and design of spur and helical gears to 
resist bending failure of the teeth as well as pitting failure of tooth surfaces. Failure by 
bending will occur when the significant tooth stress equals or exceeds either the yield 
strength or the bending endurance strength. A surface failure occurs when the significant 
contact stress equals or exceeds the surface endurance strength. The first two sections 
present a little of the history of the analyses from which current methodology developed.
 The American Gear Manufacturers Association1 (AGMA) has for many years 
been the responsible authority for the dissemination of knowledge pertaining to the 
design and analysis of gearing. The methods this organization presents are in general 
use in the United States when strength and wear are primary considerations. In view 
of this fact it is important that the AGMA approach to the subject be presented here.
 The general AGMA approach requires a great many charts and graphs—too many 
for a single chapter in this book. We have omitted many of these here by choosing a 
single pressure angle and by using only full-depth teeth. This simplification reduces 
the complexity but does not prevent the development of a basic understanding of the 
approach. Furthermore, the simplification makes possible a better development of the 
fundamentals and hence should constitute an ideal introduction to the use of the general 
AGMA method.2 Sections 14–1 and 14–2 are elementary and serve as an examination 
of the foundations of the AGMA method. Table 14–1 is largely AGMA nomenclature.



             14–1 The Lewis Bending Equation
Wilfred Lewis introduced an equation for estimating the bending stress in gear teeth in 
which the tooth form entered into the formulation. The equation, announced in 1892, 
still remains the basis for most gear design today.
 To derive the basic Lewis equation, refer to Fig. 14–1a, which shows a rectangular 
cantilever beam of cross-sectional dimensions F and t, having a length l and a load 
Wt, uniformly distributed across the face width F. The section modulus Iyc is Ft 2y6, 
and therefore the bending stress is



             s 5
M



            Iyc
5



            6W tl



            Ft2  (a)



            Gear designers denote the components of gear-tooth forces as Wt, Wr, Wa or W t, Wr, 
W a interchangeably. The latter notation leaves room for post-subscripts essential to 
free-body diagrams. For instance, for gears 2 and 3 in mesh, Wt



            23 is the transmitted 



            11001 N. Fairfax Street, Suite 500, Alexandria, VA 22314-1587.
2The standards ANSI/AGMA 2001-D04 (revised AGMA 2001-C95) and ANSI/AGMA 2101-D04 (metric 
edition of ANSI/AGMA 2001-D04), Fundamental Rating Factors and Calculation Methods for Involute 
Spur and Helical Gear Teeth, are used in this chapter. The use of American National Standards is 
completely voluntary; their existence does not in any respect preclude people, whether they have 
approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, 
or procedures not conforming to the standards.
 The American National Standards Institute does not develop standards and will in no circumstances 
give an interpretation of any American National Standard. Requests for interpretation of these standards 
should be addressed to the American Gear Manufacturers Association. [Tables or other self-supporting 
sections may be quoted or extracted in their entirety. Credit line should read: “Extracted from ANSI/AGMA 
Standard 2001-D04 or 2101-D04 Fundamental Rating Factors and Calculation Methods for Involute Spur 
and Helical Gear Teeth” with the permission of the publisher, American Gear Manufacturers Association, 
1001 N. Fairfax Street, Suite 500, Alexandria, Virginia 22314-1587.] The foregoing is adapted in part from 
the ANSI foreword to these standards.
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             Symbol* Name Where Found



             Ce Mesh alignment correction factor Eq. (14–35)



             Cf (ZR) Surface condition factor Eq. (14–16)



             CH (ZW) Hardness-ratio factor Eq. (14–18)



             Cma Mesh alignment factor Eq. (14–34)



             Cmc Load correction factor Eq. (14–31)



             Cmf Face load-distribution factor Eq. (14–30)



             Cp (ZE) Elastic coefficient Eq. (14–13)



             Cpf Pinion proportion factor Eq. (14–32)



             Cpm Pinion proportion modifier Eq. (14–33)



             d Pitch diameter Ex. (14–1)



             dP Pitch diameter, pinion Eq. (14–22)



             dG Pitch diameter, gear Eq. (14–22)



             F (b) Net face width of narrowest member Eq. (14–15)



             fP  Pinion surface finish Fig. 14–13



             H Power Fig. 14–17



             HB Brinell hardness Ex. 14–3



             HBG Brinell hardness of gear Sec. 14–12



             HBP Brinell hardness of pinion Sec. 14–12



             hp Horsepower Ex. 14–1



             ht Gear-tooth whole depth Sec. 14–16



             I (ZI) Geometry factor of pitting resistance Eq. (14–16)



             J (YJ) Geometry factor for bending strength Eq. (14–15)



             KB Rim-thickness factor Eq. (14–40)



             Kf Fatigue stress-concentration factor Eq. (14–9)



             Km (KH) Load-distribution factor Eq. (14–30)



             Ko Overload factor Eq. (14–15)



             KR (YZ) Reliability factor Eq. (14–17)



             Ks Size factor Sec. 14–10



             KT (Yu) Temperature factor Eq. (14–17)



             Kv Dynamic factor Eq. (14–27)



             m Module Eq. (14–15)



             mB Backup ratio Eq. (14–39)



             mF Face-contact ratio Eq. (14–19)



             mG Gear ratio (never less than 1) Eq. (14–22)



             mN Load-sharing ratio Eq. (14–21)



             mt Transverse module Eq. (14–15)



             N Number of stress cycles Fig. 14–14



             NG Number of teeth on gear Eq. (14–22)



             NP Number of teeth on pinion Eq. (14–22)



             n Speed, in rev/min Eq. (13–34)



            Table 14–1



            Symbols, Their Names, 
and Locations



            (Continued)
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            Symbol* Name Where Found



             nP Pinion speed, in rev/min Ex. 14–4



             P Diametral pitch Eq. (14–2)



             Pd Transverse diametral pitch Eq. (14–15)



             pN Normal base pitch Eq. (14–24)



             pn Normal circular pitch Eq. (14–24)



             px Axial pitch Eq. (14–19)



             Qv Quality number Eq. (14–29)



             R Reliability Eq. (14–38)



             Ra Root-mean-squared roughness Fig. 14–13



             rf Tooth fillet radius Fig. 14–1



             rG Pitch-circle radius, gear In standard



             rP Pitch-circle radius, pinion In standard



             rbP Pinion base-circle radius Eq. (14–25)



             rbG Gear base-circle radius Eq. (14–25)



             SC Buckingham surface endurance strength Ex. 14–3



             Sc AGMA surface endurance strength Eq. (14–18)



             St AGMA bending strength Eq. (14–17)



             S Bearing span Fig. 14–10



             S1 Pinion offset from center span Fig. 14–10



             SF Safety factor—bending Eq. (14–41)



             SH Safety factor—pitting Eq. (14–42)



             W t or Wt Transmitted load Fig. 14–1



             YN Stress-cycle factor for bending strength Fig. 14–14



             ZN Stress-cycle factor for pitting resistance Fig. 14–15



             b Exponent Eq. (14–44)



             s Bending stress, AGMA Eq. (14–15)



             sC Contact stress from Hertzian relationships Eq. (14–14)



             sc Contact stress from AGMA relationships Eq. (14–16)



             sall Allowable bending stress, AGMA Eq. (14–17)



             sc,all Allowable contact stress, AGMA Eq. (14–18)



             f Pressure angle Eq. (14–12)



             fn Normal pressure angle Eq. (14–24)



             ft Transverse pressure angle Eq. (14–23)



             c Helix angle Ex. 14–5



            *Where applicable, the alternate symbol for the metric standard is shown in parenthesis.



            Table 14–1



            Symbols, Their Names, 
and Locations
(Continued)



            force of body 2 on body 3, and W t
32 is the transmitted force of body 3 on body 2. 



            When working with double- or triple-reduction speed reducers, this notation is compact 
and essential to clear thinking. Since gear-force components rarely take exponents, 
this causes no complication. Pythagorean combinations, if necessary, can be treated 
with parentheses or avoided by expressing the relations trigonometrically.
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             Referring now to Fig. 14–1b, we assume that the maximum stress in a gear tooth 
occurs at point a. By similar triangles, you can write



             
ty2
x



            5
l



            ty2
  or  x 5



            t2



            4l
  or  l 5



            t2



            4x
 (b)



            By rearranging Eq. (a),



             s 5
6W tl



            Ft2 5
W t



            F
 



            1



            t2y6l
5



            W t



            F
 



            1



            t2y4l
 
1
4
6



             (c)



            If we now substitute the value of l from Eq. (b) in Eq. (c) and multiply the numera-
tor and denominator by the circular pitch p, we find



             s 5
W tp



            F(2
3) xp



             (d )



            Letting y 5 2xy(3p), we have



             s 5
W t



            F p y
 (14–1)



            This completes the development of the original Lewis equation. The factor y is called 
the Lewis form factor, and it may be obtained by a graphical layout of the gear tooth 
or by digital computation.
 In using this equation, most engineers prefer to employ the diametral pitch in 
determining the stresses. This is done by substituting p 5 pyP and y 5 pY in 
Eq. (14–1). This gives



             s 5
W tP
F Y



             (14–2)



            where



             Y 5
2x P



            3
 (14–3)



            The use of this equation for Y means that only the bending of the tooth is considered 
and that the compression due to the radial component of the force is neglected. Values 
of Y obtained from this equation are tabulated in Table 14–2.



            Figure 14–1
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             The use of Eq. (14–3) also implies that the teeth do not share the load and that 
the greatest force is exerted at the tip of the tooth. But we have already learned that 
the contact ratio should be somewhat greater than unity, say about 1.5, to achieve a 
quality gearset. If, in fact, the gears are cut with sufficient accuracy, the tip-load 
condition is not the worst, because another pair of teeth will be in contact when this 
condition occurs. Examination of run-in teeth will show that the heaviest loads occur 
near the middle of the tooth. Therefore the maximum stress probably occurs while a 
single pair of teeth is carrying the full load, at a point where another pair of teeth is 
just on the verge of coming into contact.



            Dynamic Effects
When a pair of gears is driven at moderate or high speed and noise is generated, it 
is certain that dynamic effects are present. One of the earliest efforts to account for 
an increase in the load due to velocity employed a number of gears of the same size, 
material, and strength. Several of these gears were tested to destruction by meshing 
and loading them at zero velocity. The remaining gears were tested to destruction at 
various pitch-line velocities. For example, if a pair of gears failed at 500 lbf tangen-
tial load at zero velocity and at 250 lbf at velocity V1, then a velocity factor, designated 
Kv, of 2 was specified for the gears at velocity V1. Then another, identical, pair of 
gears running at a pitch-line velocity V1 could be assumed to have a load equal to 
twice the tangential or transmitted load.
 Note that the definition of dynamic factor Kv has been altered. AGMA standards 
ANSI/AGMA 2001-D04 and 2101-D04 contain this caution:



            Dynamic factor Kv has been redefi ned as the reciprocal of that used in previous 
AGMA standards. It is now greater than 1.0. In earlier AGMA standards it was less 
than 1.0.



            Care must be taken in referring to work done prior to this change in the standards.



            Table 14–2



            Values of the Lewis 
Form Factor Y (These 
Values Are for a Normal 
Pressure Angle of 20°, 
Full-Depth Teeth, and a 
Diametral Pitch of Unity 
in the Plane of Rotation)



             Number of   Number of
 Teeth Y Teeth Y



             12 0.245 28 0.353



             13 0.261 30 0.359



             14 0.277 34 0.371



             15 0.290 38 0.384



             16 0.296 43 0.397



             17 0.303 50 0.409



             18 0.309 60 0.422



             19 0.314 75 0.435



             20 0.322 100 0.447



             21 0.328 150 0.460



             22 0.331 300 0.472



             24 0.337 400 0.480



             26 0.346 Rack 0.485
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             In the nineteenth century, Carl G. Barth first expressed the velocity factor, and 
in terms of the current AGMA standards, they are represented as



             Kv 5
600 1 V



            600
  (cast iron, cast profile)  (14–4a)



             Kv 5
1200 1 V



            1200
  (cut or milled profile) (14–4b)



            where V is the pitch-line velocity in feet per minute. It is also quite probable, because 
of the date that the tests were made, that the tests were conducted on teeth having a 
cycloidal profile instead of an involute profile. Cycloidal teeth were in general use in the 
nineteenth century because they were easier to cast than involute teeth. Equation (14–4a) 
is called the Barth equation. The Barth equation is often modified into Eq. (14–4b), for 
cut or milled teeth. Later, AGMA added



              Kv 5
50 1 1V



            50
  (hobbed or shaped profile)  (14–5a)



              Kv 5 B78 1 1V
78



              (shaved or ground profile) (14–5b)



            In SI units, Eqs. (14–4a) through (14–5b) become



              Kv 5
3.05 1 V



            3.05
  (cast iron, cast profile)  (14–6a)



              Kv 5
6.1 1 V



            6.1
  (cut or milled profile)  (14–6b)



              Kv 5
3.56 1 1V



            3.56
  (hobbed or shaped profile)  (14–6c)



              Kv 5 B5.56 1 1V
5.56



              (shaved or ground profile) (14–6d)



            where V is in meters per second (m/s).
 Introducing the velocity factor into Eq. (14–2) gives



             s 5
KvW tP



            FY
 (14–7)



            The metric version of this equation is



             s 5
KvW t



            FmY
 (14–8)



            where the face width F and the module m are both in millimeters (mm). Expressing 
the tangential component of load Wt in newtons (N) then results in stress units of 
megapascals (MPa).
 As a general rule, spur gears should have a face width F from 3 to 5 times the 
circular pitch p.
 Equations (14–7) and (14–8) are important because they form the basis for the 
AGMA approach to the bending strength of gear teeth. They are in general use for 
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            estimating the capacity of gear drives when life and reliability are not important con-
siderations. The equations can be useful in obtaining a preliminary estimate of gear 
sizes needed for various applications.



             EXAMPLE 14–1 A stock spur gear is available having a diametral pitch of 8 teeth/in, a 11
2-in face, 16 teeth, 



            and a pressure angle of 20° with full-depth teeth. The material is AISI 1020 steel in 
as-rolled condition. Use a design factor of nd 5 3 to rate the horsepower output of 
the gear corresponding to a speed of 1200 rev/m and moderate applications.



             Solution The term moderate applications seems to imply that the gear can be rated by using the 
yield strength as a criterion of failure. From Table A–20, we find Sut 5 55 kpsi and
Sy 5 30 kpsi. A design factor of 3 means that the allowable bending stress is 30y3 5 
10 kpsi. The pitch diameter is d 5 NyP 5 16y8 5 2 in, so the pitch-line velocity is



             V 5
pdn
12



            5
p(2)1200



            12
5 628 ft/min



            The velocity factor from Eq. (14–4b) is found to be



             Kv 5
1200 1 V



            1200
5



            1200 1 628
1200



            5 1.52



            Table 14–2 gives the form factor as Y 5 0.296 for 16 teeth. We now arrange and 
substitute in Eq. (14–7) as follows:



             W t 5
FYsall



            Kv P
5



            1.5(0.296)10 000
1.52(8)



            5 365 lbf



            The horsepower that can be transmitted is



             Answer hp 5
WtV



            33 000
5



            365(628)
33 000



            5 6.95 hp



             It is important to emphasize that this is a rough estimate, and that this approach 
must not be used for important applications. The example is intended to help you 
understand some of the fundamentals that will be involved in the AGMA approach.



             EXAMPLE 14–2 Estimate the horsepower rating of the gear in the previous example based on obtain-
ing an infinite life in bending.



             Solution The rotating-beam endurance limit is estimated from Eq. (6–8), p. 290,



             S¿e 5 0.5Sut 5 0.5(55) 5 27.5 kpsi



            To obtain the surface finish Marin factor ka we refer to Table 6–3, p. 298, for machined 
surface, finding a 5 2.70 and b 5 20.265. Then Eq. (6–19), p. 295, gives the surface 
finish Marin factor ka as



             ka 5 aSb
ut 5 2.70(55)20.265 5 0.934



            bud98209_ch14_725-776.indd Page 732  11/11/13  4:30 PM f-496 bud98209_ch14_725-776.indd Page 732  11/11/13  4:30 PM f-496 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
The next step is to estimate the size factor kb. From Table 13–1, p. 688, the sum of 
the addendum and dedendum is



             l 5
1
P



            1
1.25



            P
5



            1
8



            1
1.25



            8
5 0.281 in



            The tooth thickness t in Fig. 14–1b is given in Sec. 14–1 [Eq. (b)] as t 5 (4lx)1y2 
when x 5 3Yy(2P) from Eq. (14–3). Therefore, since from Ex. 14–1 Y 5 0.296 and 
P 5 8,



             x 5
3Y
2P



            5
3(0.296)



            2(8)
5 0.0555 in



            then



             t 5 (4lx)1y2 5 [4(0.281)0.0555]1y2 5 0.250 in



            We have recognized the tooth as a cantilever beam of rectangular cross section, so 
the equivalent rotating-beam diameter must be obtained from Eq. (6–25), p. 297:



             de 5 0.808(hb)1y2 5 0.808(Ft)1y2 5 0.808[1.5(0.250)]1y2 5 0.495 in



            Then, Eq. (6–20), p. 296, gives kb as



             kb 5 a de



            0.30
b20.107



            5 a0.495
0.30



            b20.107



            5 0.948



            The load factor kc from Eq. (6–26), p. 298, is unity. With no information given con-
cerning temperature and reliability we will set kd 5 ke 5 1.
 In general, a gear tooth is subjected only to one-way bending. Exceptions include 
idler gears and gears used in reversing mechanisms. We will account for one-way 
bending by establishing a miscellaneous-effects Marin factor kf.
 For one-way bending the steady and alternating stress components are sa 5 sm 5 
sy2 where s is the largest repeatedly applied bending stress as given in Eq. (14–7). 
If a material exhibited a Goodman failure locus,



             
Sa



            S¿e
1



            Sm



            Sut
5 1



            Since Sa and Sm are equal for one-way bending, we substitute Sa for Sm and solve the 
preceding equation for Sa, giving



             Sa 5
S¿eSut



            S¿e 1 Sut



            Now replace Sa with sy2, and in the denominator replace S9e with 0.5Sut to obtain



             s 5
2S¿eSut



            0.5Sut 1 Sut
5



            2S¿e
0.5 1 1



            5 1.33S¿e



            Now kf 5 syS9e 5 1.33S9eyS9e 5 1.33. However, a Gerber fatigue locus gives mean 
values of



             
Sa



            S¿e
1 aSm



            Sut
b2



            5 1
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Setting Sa 5 Sm and solving the quadratic in Sa gives



             Sa 5
S2



            ut



            2S¿e
 a21 1 B1 1



            4S¿2
e



            S2
ut
b



            Setting Sa 5 sy2, Sut 5 S9ey0.5 gives



             s 5
S¿e



            0.52 [21 1 21 1 4(0.5)2] 5 1.66S¿e



            and kf 5 syS9e 5 1.66. Since a Gerber locus runs in and among fatigue data and 
Goodman does not, we will use kf 5 1.66. The Marin equation for the fully corrected 
endurance strength is



              Se 5 kakbkckdkekf S¿e
  5 0.934(0.948)(1)(1)(1)1.66(27.5) 5 40.4 kpsi



            For stress, we will first determine the fatigue stress-concentration factor Kf. For a 20° 
full-depth tooth the radius of the root fillet is denoted rf, where



             rf 5
0.300



            P
5



            0.300
8



            5 0.0375 in



            From Fig. A–15–6



             
r
d



            5
rf



            t
5



            0.0375
0.250



            5 0.15



            Since Dyd 5 q, we approximate with Dyd 5 3, giving Kt 5 1.68. From Fig. 6–20, 
p. 303, q 5 0.62. From Eq. (6–32), p. 303,



             Kf 5 1 1 (0.62)(1.68 2 1) 5 1.42



            For a design factor of nd 5 3, as used in Ex. 14–1, applied to the load or strength, 
the maximum bending stress is



              smax 5 Kf sall 5
Se



            nd



              sall 5
Se



            Kf nd
5



            40.4
1.42(3)



            5 9.5 kpsi



            The transmitted load W t is



             W t 5
FYsall



            Kv P
5



            1.5(0.296)9 500
1.52(8)



            5 347 lbf



            and the power is, with V 5 628 ft/min from Ex. 14–1,



             hp 5
W tV



            33 000
5



            347(628)
33 000



            5 6.6 hp



            Again, it should be emphasized that these results should be accepted only as pre-
liminary estimates to alert you to the nature of bending in gear teeth.
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             In Ex. 14–2 our resources (Fig. A–15–6) did not directly address stress concentra-
tion in gear teeth. A photoelastic investigation by Dolan and Broghamer reported in 
1942 constitutes a primary source of information on stress concentration.3 Mitchiner 
and Mabie4 interpret the results in term of fatigue stress-concentration factor Kf as



             Kf 5 H 1 a t
r
bL at



            l
bM



             (14–9)



            where  H 5 0.34 2 0.458 366 2f



              L 5 0.316 2 0.458 366 2f



              M 5 0.290 1 0.458 366 2f



              r 5
(b 2 rf)



            2



            (dy2) 1 b 2 rf



            In these equations l and t are from the layout in Fig. 14–1, f is the pressure angle, rf 
is the fillet radius, b is the dedendum, and d is the pitch diameter. It is left as an 
exercise for the reader to compare Kf from Eq. (14–9) with the results of using the 
approximation of Fig. A–15–6 in Ex. 14–2.



             14–2 Surface Durability
In this section we are interested in the failure of the surfaces of gear teeth, which is 
generally called wear. Pitting, as explained in Sec. 6–16, is a surface fatigue failure 
due to many repetitions of high contact stresses. Other surface failures are scoring, 
which is a lubrication failure, and abrasion, which is wear due to the presence of 
foreign material.
 To obtain an expression for the surface-contact stress, we shall employ the Hertz 
theory. In Eq. (3–74), p. 138, it was shown that the contact stress between two cylinders 
may be computed from the equation



             pmax 5
2F
pbl



             (a)



            where pmax 5 largest surface pressure



             F 5 force pressing the two cylinders together



             l 5 length of cylinders



            and half-width b is obtained from Eq. (3–73), p. 138, given by



             b 5 c 2F
pl



             
(1 2 n2



            1)yE1 1 (1 2 n2
2)yE2



            1yd1 1 1yd2
d 1y2



             (14–10)



            where n1, n2, E1, and E2 are the elastic constants and d1 and d2 are the diameters, 
respectively, of the two contacting cylinders.
 To adapt these relations to the notation used in gearing, we replace F by W tycos f, 
d by 2r, and l by the face width F. With these changes, we can substitute the value 



            3T. J. Dolan and E. I. Broghamer, A Photoelastic Study of the Stresses in Gear Tooth Fillets, Bulletin 335, 
Univ. Ill. Exp. Sta., March 1942, See also W. D. Pilkey and D. F. Pilkey, Peterson’s Stress-Concentration 
Factors, 3rd ed., John Wiley & Sons, Hoboken, NJ, 2008, pp. 407–409, 434–437.
4R. G. Mitchiner and H. H. Mabie, “Determination of the Lewis Form Factor and the AGMA Geometry 
Factor J of External Spur Gear Teeth,” J. Mech. Des., Vol. 104, No. 1, Jan. 1982, pp. 148–158.
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            of b as given by Eq. (14–10) in Eq. (a). Replacing pmax by sC, the surface compres-
sive stress (Hertzian stress) is found from the equation



             s2
C 5



            Wt



            pF cos f
 



            1yr1 1 1yr2



            (1 2 n2
1)yE1 1 (1 2 n2



            2)yE2
 (14–11)



            where r1 and r2 are the instantaneous values of the radii of curvature on the pinion- 
and gear-tooth profiles, respectively, at the point of contact. By accounting for load 
sharing in the value of W t used, Eq. (14–11) can be solved for the Hertzian stress for 
any or all points from the beginning to the end of tooth contact. Of course, pure roll-
ing exists only at the pitch point. Elsewhere the motion is a mixture of rolling and 
sliding. Equation (14–11) does not account for any sliding action in the evaluation of 
stress. We note that AGMA uses m for Poisson’s ratio instead of n as is used here.
 We have already noted that the first evidence of wear occurs near the pitch line. 
The radii of curvature of the tooth profiles at the pitch point are



             r1 5
dP sin f



            2
  r2 5



            dG sin f
2



             (14–12)



            where f is the pressure angle and dP and dG are the pitch diameters of the pinion and 
gear, respectively.
 Note, in Eq. (14–11), that the denominator of the second group of terms contains 
four elastic constants, two for the pinion and two for the gear. As a simple means of 
combining and tabulating the results for various combinations of pinion and gear 
materials, AGMA defines an elastic coefficient Cp by the equation



             Cp 5 ≥ 1



            p a1 2 n2
P



            EP
1



            1 2 n2
G



            EG
b ¥



            1y2



             (14–13)



            With this simplification, and the addition of a velocity factor Kv, Eq. (14–11) can be 
written as



             sC 5 2Cp c KvW
t



            F cos f
 a 1



            r1
1



            1
r2
b d 1y2



             (14–14)



            where the sign is negative because sC is a compressive stress.



             EXAMPLE 14–3 The pinion of Examples 14–1 and 14–2 is to be mated with a 50-tooth gear manu-
factured of ASTM No. 50 cast iron. Using the tangential load of 382 lbf, estimate the 
factor of safety of the drive based on the possibility of a surface fatigue failure. The 
surface endurance strength of cast iron can be estimated from Sc 5 0.32 HB kpsi for 
108 cycles.



             Solution From Table A–5 we find the elastic constants to be EP 5 30 Mpsi, nP 5 0.292, EG 5 
14.5 Mpsi, nG 5 0.211. We substitute these in Eq. (14–13) to get the elastic coefficient as



             Cp 5 ep c 1 2 (0.292)2



            30(106)
1



            1 2 (0.211)2



            14.5(106)
d f2(1y2)



            5 1817 (psi)1y2
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 In addition to the dynamic factor Kv already introduced, there are transmitted load 
excursions, nonuniform distribution of the transmitted load over the tooth contact, and 
the influence of rim thickness on bending stress. Tabulated strength values can be 
means, ASTM minimums, or of unknown heritage. In surface fatigue there are no 
endurance limits. Endurance strengths have to be qualified as to corresponding cycle 
count, and the slope of the S-N curve needs to be known. In bending fatigue there is 
a definite change in slope of the S-N curve near 106 cycles, but some evidence indi-
cates that an endurance limit does not exist. Gearing experience leads to cycle counts 
of 1011 or more. Evidence of diminishing endurance strengths in bending have been 
included in AGMA methodology.



             14–3 AGMA Stress Equations
Two fundamental stress equations are used in the AGMA methodology, one for bend-
ing stress and another for pitting resistance (contact stress). In AGMA terminology, 
these are called stress numbers, as contrasted with actual applied stresses, and are 



            From Example 14–1, the pinion pitch diameter is dP 5 2 in. The value for the gear 
is dG 5 50y8 5 6.25 in. Then Eq. (14–12) is used to obtain the radii of curvature at 
the pitch points. Thus



             r1 5
2 sin 20°



            2
5 0.342 in  r2 5



            6.25 sin 20°
2



            5 1.069 in



            The face width is given as F 5 1.5 in. Use Kv 5 1.52 from Example 14–1. Substituting 
all these values in Eq. (14–14) with f 5 20° gives the contact stress as



             sC 5 21817 c 1.52(380)
1.5 cos 20°



             a 1
0.342



            1
1



            1.069
b d 1y2



            5 272 400 psi



            Table A–24 gives HB 5 262 for ASTM No. 50 cast iron. Therefore SC 5 0.32(262) 5 
83.8 kpsi. Contact stress is not linear with respect to the transmitted load [see
Eq. (14–14)]. If the factor of safety is defined as the loss-of-function load divided 
by the imposed load, then the ratio of loads is the ratio of stresses squared. In other 
words,



             n 5
loss-of-function load



            imposed load
5



            S2
C



            s2
C



            5 a83.8
72.4
b2



            5 1.34



            One is free to define factor of safety as SCysC. Awkwardness comes when one com-
pares the factor of safety in bending fatigue with the factor of safety in surface fatigue 
for a particular gear. Suppose the factor of safety of this gear in bending fatigue is 
1.20 and the factor of safety in surface fatigue is 1.34 as above. The threat, since 1.34 
is greater than 1.20, is in bending fatigue since both numbers are based on load ratios. 
If the factor of safety in surface fatigue is based on SCysC 5 11.34 5 1.16, then 
1.20 is greater than 1.16, but the threat is not from surface fatigue. The surface fatigue 
factor of safety can be defined either way. One way has the burden of requiring a 
squared number before numbers that instinctively seem comparable can be compared.
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            designated by a lowercase letter s instead of the Greek lower case s we have used in 
this book (and shall continue to use). The fundamental equations are



             s 5 µW tKoKvKs 



            Pd



            F
 
KmKB



            J
  (U.S. customary units)



            WtKoKvKs 



            1
bmt



             
KHKB



            YJ
  (SI units)



             (14–15)



            where for U.S. customary units (SI units),



            W t is the tangential transmitted load, lbf (N)
Ko is the overload factor
Kv is the dynamic factor
Ks is the size factor
Pd is the transverse diametral pitch
F (b) is the face width of the narrower member, in (mm)
Km (KH) is the load-distribution factor
KB is the rim-thickness factor
J (YJ) is the geometry factor for bending strength (which includes root fillet 
stress-concentration factor Kf)
(mt) is the transverse metric module



            Before you try to digest the meaning of all these terms in Eq. (14–15), view them as 
advice concerning items the designer should consider whether he or she follows the 
voluntary standard or not. These items include issues such as



            • Transmitted load magnitude



            • Overload



            • Dynamic augmentation of transmitted load



            • Size



            • Geometry: pitch and face width



            • Distribution of load across the teeth



            • Rim support of the tooth



            • Lewis form factor and root fillet stress concentration



            The fundamental equation for pitting resistance (contact stress) is



             sc 5 µ CpBWtKoKvKs 



            Km



            dPF
 
Cf



            I
            (U.S. customary units)



            ZEBW tKoKvKs 



            KH



            dw1b
 
ZR



            ZI
       (SI units)



             (14–16)



            where W t, Ko, Kv, Ks, Km, F, and b are the same terms as defined for Eq. (14–15). 
For U.S. customary units (SI units), the additional terms are



            Cp (ZE) is an elastic coefficient, 2lbf/in2 (2N/mm2)
Cf (ZR) is the surface condition factor
dP (dw1) is the pitch diameter of the pinion, in (mm)
I (ZI) is the geometry factor for pitting resistance



            The evaluation of all these factors is explained in the sections that follow. The devel-
opment of Eq. (14–16) is clarified in the second part of Sec. 14–5.
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             14–4 AGMA Strength Equations
Instead of using the term strength, AGMA uses data termed allowable stress numbers 
and designates these by the symbols sat and sac. It will be less confusing here if we 
continue the practice in this book of using the uppercase letter S to designate strength 
and the lowercase Greek letters s and t for stress. To make it perfectly clear we shall 
use the term gear strength as a replacement for the phrase allowable stress numbers 
as used by AGMA.
 Following this convention, values for gear bending strength, designated here as St, 
are to be found in Figs. 14–2, 14–3, and 14–4, and in Tables 14–3 and 14–4. Since 
gear strengths are not identified with other strengths such as Sut, Se, or Sy as used 
elsewhere in this book, their use should be restricted to gear problems.
 In this approach the strengths are modified by various factors that produce limit-
ing values of the bending stress and the contact stress.



            Figure 14–2
Allowable bending stress 
number for through-hardened 
steels, St. The SI equations are:
St 5 0.533HB 1 88.3 MPa, 
grade 1, and St 5 0.703HB 1 



            113 MPa, grade 2. 
(Source: ANSI/AGMA 
2001-D04 and 2101-D04.)



            Metallurgical and quality
control procedure required
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St = 77.3 HB + 12 800 psi



            Grade 2
St = 102 HB + 16 400 psi



            Figure 14–3
Allowable bending stress 
number for nitrided through-
hardened steel gears (i.e., 
AISI 4140, 4340), St. The SI 
equations are: St 5 0.568HB 1 
83.8 MPa, grade 1, and St 5 
0.749HB 1 110 MPa, grade 2. 
(Source: ANSI/AGMA 
2001-D04 and 2101-D04.)
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            Metallurgical and quality control procedures required



            Grade 1 − Nitralloy
St = 86.2HB + 12 730 psi



            Grade 1 − 2.5% Chrome
St = 105.2HB + 9280 psi



            Grade 2 − Nitralloy
St = 113.8HB + 16 650 psi



            Grade 2 − 2.5% Chrome
St = 105.2HB + 22 280 psi



            Grade 3 − 2.5% Chrome
St = 105.2HB + 29 280 psi



            Figure 14–4
Allowable bending stress 
numbers for nitriding steel 
gears, St. The SI equations are: 
St 5 0.594HB 1 87.76 MPa 
Nitralloy grade 1 
St 5 0.784HB 1 114.81 MPa 
Nitralloy grade 2 
St 5 0.7255HB 1 63.89 MPa 
2.5% chrome, grade 1 
St 5 0.7255HB 1 153.63 MPa 
2.5% chrome, grade 2 
St 5 0.7255HB 1 201.91 MPa 
2.5% chrome, grade 3 
(Source: ANSI/AGMA 
2001-D04, 2101-D04.)



              Minimum Allowable Bending Stress Number St,
2



            Material Heat Surface  psi
Designation Treatment Hardness1 Grade 1 Grade 2 Grade 3



            Steel3 Through-hardened See Fig. 14–2 See Fig. 14–2 See Fig. 14–2 —
 Flame4 or induction See Table 8* 45 000 55 000 —
 hardened4 with type
 A pattern5



             Flame4 or induction See Table 8* 22 000 22 000 —
 hardened4 with type
 B pattern5



             Carburized and See Table 9* 55 000 65 000 or 75 000
 hardened    70 0006



             Nitrided4,7 (through- 83.5 HR15N See Fig. 14–3 See Fig. 14–3 —
 hardened steels)



            Nitralloy 135M, Nitrided4,7 87.5 HR15N See Fig. 14–4 See Fig. 14–4 See Fig. 14–4
Nitralloy N, and 2.5%
chrome (no aluminum)



            Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–7.
1Hardness to be equivalent to that at the root diameter in the center of the tooth space and face width.
2See tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3The steel selected must be compatible with the heat treatment process selected and hardness required.
4The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
5See figure 12 for type A and type B hardness patterns.
6If bainite and microcracks are limited to grade 3 levels, 70 000 psi may be used.
7The overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be investigated 
before proceeding with the design. [7]



            *Tables 8 and 9 of ANSI/AGMA 2001-D04 are comprehensive tabulations of the major metallurgical factors affecting St and Sc of flame-hardened 
and induction-hardened (Table 8) and carburized and  hardened (Table 9) steel gears.



            Table 14–3



            Repeatedly Applied Bending Strength St at 107 Cycles and 0.99 Reliability for Steel Gears
Source: ANSI/AGMA 2001-D04.
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            The equation for the allowable bending stress is



             sall 5 µ St



            SF
 



            YN



            KTKR
  (U.S. customary units)



            St



            SF
 



            YN



            YuYZ
  (SI units)



             (14–17)



            where for U.S. customary units (SI units),



            St is the allowable bending stress, lbf/in2 (N/mm2)
YN is the stress-cycle factor for bending stress
KT (Yu) are the temperature factors
KR (YZ) are the reliability factors
SF is the AGMA factor of safety, a stress ratio



            Table 14–4



            Repeatedly Applied Bending Strength St for Iron and Bronze Gears at 107 Cycles and 0.99 Reliability
Source: ANSI/AGMA 2001-D04.



             Allowable Bending
 Material Heat Typical Minimum Stress Number, St,3
Material Designation1 Treatment Surface Hardness2 psi



            ASTM A48 gray Class 20 As cast — 5000
cast iron Class 30 As cast 174 HB 8500



             Class 40 As cast 201 HB 13 000



            ASTM A536 ductile Grade 60–40–18 Annealed 140 HB 22 000–33 000
(nodular) Iron Grade 80–55–06 Quenched and 179 HB 22 000–33 000
  tempered



             Grade 100–70–03 Quenched and 229 HB 27 000–40 000
  tempered



             Grade 120–90–02 Quenched and 269 HB 31 000–44 000
  tempered



            Bronze  Sand cast Minimum tensile strength 5700
   40 000 psi



             ASTM B–148 Heat treated Minimum tensile strength 23 600
 Alloy 954  90 000 psi



            Notes:
1See ANSI/AGMA 2004-B89, Gear Materials and Heat Treatment Manual.
2Measured hardness to be equivalent to that which would be measured at the root diameter in the center of the tooth space and face width.
3The lower values should be used for general design purposes. The upper values may be used when:
 High quality material is used.
 Section size and design allow maximum response to heat treatment.
 Proper quality control is effected by adequate inspection.
 Operating experience justifies their use.
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            The equation for the allowable contact stress sc,all is



             sc,all 5 µ Sc



            SH
 
ZNCH



            KTKR
  (U.S. customary units)



            Sc



            SH
 
ZNZW



            YuYZ
  (SI units)



             (14–18)



            where the upper equation is in U.S. customary units and the lower equation is in SI 
units, Also,



            Sc is the allowable contact stress, lbf/in2 (N/mm2)
ZN is the stress-cycle factor
CH (ZW) are the hardness ratio factors for pitting resistance
KT (Yu) are the temperature factors
KR (YZ) are the reliability factors
SH is the AGMA factor of safety, a stress ratio



            The values for the allowable contact stress, designated here as Sc, are to be found in 
Fig. 14–5 and Tables 14–5, 14–6, and 14–7.
 AGMA allowable stress numbers (strengths) for bending and contact stress are for



            • Unidirectional loading



            • 10 million stress cycles



            • 99 percent reliability
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            n2Figure 14–5
Contact-fatigue strength Sc at 
107 cycles and 0.99 reliability 
for through-hardened steel 
gears. The SI equations are:
Sc 5 2.22HB 1 200 MPa, 
grade 1, and 
Sc 5 2.41HB 1 237 MPa, 
grade 2. (Source: ANSI/AGMA 
2001-D04 and 2101-D04.)



               Hardness,
 Temperature Nitriding, Rockwell C Scale
Steel Before Nitriding, °F °F  Case Core



            Nitralloy 135* 1150 975 62–65 30–35



            Nitralloy 135M 1150 975 62–65 32–36



            Nitralloy N 1000 975 62–65 40–44



            AISI 4340 1100 975 48–53 27–35



            AISI 4140 1100 975 49–54 27–35



            31 Cr Mo V 9 1100 975 58–62 27–33



            *Nitralloy is a trademark of the Nitralloy Corp., New York.



            Table 14–5



            Nominal Temperature 
Used in Nitriding and 
Hardnesses Obtained
Source: Darle W. Dudley, 
Handbook of Practical Gear 
Design, rev. ed., McGraw-Hill, 
New York, 1984.
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            The factors in this section, too, will be evaluated in subsequent sections.
 When two-way (reversed) loading occurs, as with idler gears, AGMA recom-
mends using 70 percent of St values. This is equivalent to 1y0.70 5 1.43 as a value 
of ke in Ex. 14–2. The recommendation falls between the value of ke 5 1.33 for a 
Goodman failure locus and ke 5 1.66 for a Gerber failure locus.



             14–5 Geometry Factors I and J (ZI and YJ)
We have seen how the factor Y is used in the Lewis equation to introduce the effect 
of tooth form into the stress equation. The AGMA factors5 I and J are intended to 
accomplish the same purpose in a more involved manner.
 The determination of I and J depends upon the face-contact ratio mF. This is 
defined as



             mF 5
F
px



             (14–19)



            where px is the axial pitch and F is the face width. For spur gears, mF 5 0.



            5A useful reference is AGMA 908-B89, Geometry Factors for Determining Pitting Resistance and Bending 
Strength of Spur, Helical and Herringbone Gear Teeth.



            Table 14–6



            Repeatedly Applied Contact Strength Sc at 107 Cycles and 0.99 Reliability for Steel Gears
Source: ANSI/AGMA 2001-D04.



              Minimum
Material Heat Surface Allowable Contact Stress Number,2 Sc, psi
Designation Treatment Hardness1 Grade 1 Grade 2 Grade 3



            Steel3 Through hardened4 See Fig. 14–5 See Fig. 14–5 See Fig. 14–5 —



             Flame5 or induction 50 HRC 170 000 190 000 —



             hardened5 
 54 HRC 175 000 195 000 —



             Carburized and See Table 9* 180 000 225 000 275 000
 hardened5



             Nitrided5 (through 83.5 HR15N 150 000 163 000 175 000



             hardened steels) 84.5 HR15N 155 000 168 000 180 000



            2.5% chrome Nitrided5 87.5 HR15N 155 000 172 000 189 000
(no aluminum)



            Nitralloy 135M Nitrided5 90.0 HR15N 170 000 183 000 195 000



            Nitralloy N Nitrided5 90.0 HR15N 172 000 188 000 205 000



            2.5% chrome Nitrided5 90.0 HR15N 176 000 196 000 216 000
(no aluminum)



            Notes: See ANSI/AGMA 2001-D04 for references cited in notes 1–5.
1Hardness to be equivalent to that at the start of active profile in the center of the face width.
2See Tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3The steel selected must be compatible with the heat treatment process selected and hardness required.
4These materials must be annealed or normalized as a minimum.
5The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.



            *Table 9 of ANSI/AGMA 2001-D04 is a comprehensive tabulation of the major metallurgical factors affecting St and Sc of carburized and 
hardened steel gears.
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             Low-contact-ratio (LCR) helical gears having a small helix angle or a thin face 
width, or both, have face-contact ratios less than unity (mF # 1), and will not be 
considered here. Such gears have a noise level not too different from that for spur 
gears. Consequently we shall consider here only spur gears with mF 5 0 and conven-
tional helical gears with mF . 1.



            Bending-Strength Geometry Factor J (YJ)
The AGMA factor J employs a modified value of the Lewis form factor, also denoted 
by Y; a fatigue stress-concentration factor Kf; and a tooth load-sharing ratio mN. The 
resulting equation for J for spur and helical gears is



             J 5
Y



            Kf mN
 (14–20)



            It is important to note that the form factor Y in Eq. (14–20) is not the Lewis factor 
at all. The value of Y here is obtained from calculations within AGMA 908-B89, and 
is often based on the highest point of single-tooth contact.



                Allowable Contact
 Material Heat Typical Minimum Stress Number,3 Sc,
Material Designation1 Treatment Surface Hardness2 psi



            ASTM A48 gray Class 20 As cast — 50 000–60 000
cast iron Class 30 As cast 174 HB 65 000–75 000
 Class 40 As cast 201 HB 75 000–85 000



            ASTM A536 ductile Grade 60–40–18 Annealed 140 HB 77 000–92 000
(nodular) iron Grade 80–55–06 Quenched and  179 HB 77 000–92 000
  tempered



             Grade 100–70–03 Quenched and  229 HB 92 000–112 000
  tempered



             Grade 120–90–02 Quenched and  269 HB 103 000–126 000
  tempered



            Bronze — Sand cast Minimum tensile  30 000
   strength 40 000 psi



             ASTM B-148  Heat treated Minimum tensile 65 000
 Alloy 954  strength 90 000 psi



            Notes:
1See ANSI/AGMA 2004-B89, Gear Materials and Heat Treatment Manual.
2Hardness to be equivalent to that at the start of active profile in the center of the face width.
3The lower values should be used for general design purposes. The upper values may be used when:
 High-quality material is used.
 Section size and design allow maximum response to heat treatment.
 Proper quality control is effected by adequate inspection.
 Operating experience justifies their use.



            Table 14–7



            Repeatedly Applied Contact Strength Sc 107 Cycles and 0.99 Reliability for Iron and Bronze Gears
Source: ANSI/AGMA 2001-D04.
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             The factor Kf in Eq. (14–20) is called a stress-correction factor by AGMA. It is 
based on a formula deduced from a photoelastic investigation of stress concentration 
in gear teeth over 50 years ago.
 The load-sharing ratio mN is equal to the face width divided by the minimum 
total length of the lines of contact. This factor depends on the transverse contact ratio 
mp, the face-contact ratio mF, the effects of any profile modifications, and the tooth 
deflection. For spur gears, mN 5 1.0. For helical gears having a face-contact ratio 
mF . 2.0, a conservative approximation is given by the equation



             mN 5
pN



            0.95Z
 (14–21)



            where pN is the normal base pitch and Z is the length of the line of action in the 
transverse plane (distance Lab in Fig. 13–15, p. 676).
 Use Fig. 14–6 to obtain the geometry factor J for spur gears having a 20° pres-
sure angle and full-depth teeth. Use Figs. 14–7 and 14–8 for helical gears having a 
20° normal pressure angle and face-contact ratios of mF 5 2 or greater. For other 
gears, consult the AGMA standard.



            Figure 14–6
Spur-gear geometry factors J. Source: The graph is from AGMA 218.01, which is consistent with tabular data from the current 
AGMA 908-B89. The graph is convenient for design purposes.
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            Surface-Strength Geometry Factor I (ZI)
The factor I is also called the pitting-resistance geometry factor by AGMA. We will 
develop an expression for I by noting that the sum of the reciprocals of Eq. (14–14), 
from Eq. (14–12), can be expressed as



             
1
r1



            1
1
r2



            5
2



            sin ft
 a 1



            dP
1



            1
dG
b (a)



            where we have replaced f by ft, the transverse pressure angle, so that the relation will 
apply to helical gears too. Now define speed ratio mG as



             mG 5
NG



            NP
5



            dG



            dP
 (14–22)



            Figure 14–7
Helical-gear geometry factors J9. Source: The graph is from AGMA 218.01, which is consistent with tabular data from 
the current AGMA 908-B89. The graph is convenient for design purposes.
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            Equation (a) can now be written



             
1
r1



            1
1
r2



            5
2



            dP sin ft
 
mG 1 1



            mG
 (b)



            Now substitute Eq. (b) for the sum of the reciprocals in Eq. (14–14). The result is 
found to be



             sc 5 0sC 0 5 Cp ≥ Kv 
W t



            dP F
 



            1
cos ft sin ft



            2
 



            mG



            mG 1 1



            ¥ 1y2



             (c)



            The geometry factor I for external spur and helical gears is the denominator of the 
second term in the brackets in Eq. (c). By adding the load-sharing ratio mN, we obtain 
a factor valid for both spur and helical gears. The equation is then written as



             I 5 µ cos ft sin ft



            2mN
 



            mG



            mG 1 1
  external gears



            cos ft sin ft



            2mN
 



            mG



            mG 2 1
  internal gears



             (14–23)



            where mN 5 1 for spur gears. In solving Eq. (14–21) for mN, note that



             pN 5 pn cos fn (14–24)



            where pn is the normal circular pitch. The quantity Z, for use in Eq. (14–21), can be 
obtained from the equation



            Z 5 [(rP 1 a)2 2 r 2
b P]1y2 1 [(rG 1 a)2 2 r 2



            b G]1y2 2 (rP 1 rG) sin ft (14–25)



            where rP and rG are the pitch radii and rbP and rbG the base-circle radii of the pinion 
and gear, respectively.6 Recall from Eq. (13–6), the radius of the base circle is



             rb 5 r cos ft (14–26)



            Figure 14–8
J9-factor multipliers for use 
with Fig. 14–7 to find J. 
Source: The graph is from 
AGMA 218.01, which is 
consistent with tabular data 
from the current AGMA 
908-B89. The graph is 
convenient for design purposes.
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            6For a development, see Joseph E. Shigley and John J. Uicker Jr., Theory of Machines and Mechanisms, 
McGraw-Hill, New York, 1980, p. 262.
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            Certain precautions must be taken in using Eq. (14–25). The tooth profiles are not 
conjugate below the base circle, and consequently, if either one or the other of the 
first two terms in brackets is larger than the third term, then it should be replaced by 
the third term. In addition, the effective outside radius is sometimes less than r 1 a, 
owing to removal of burrs or rounding of the tips of the teeth. When this is the case, 
always use the effective outside radius instead of r 1 a.



             14–6 The Elastic Coefficient Cp (ZE)
Values of Cp may be computed directly from Eq. (14–13) or obtained from Table 14–8.



             14–7 Dynamic Factor KY
As noted earlier, dynamic factors are used to account for inaccuracies in the manu-
facture and meshing of gear teeth in action. Transmission error is defined as the 
departure from uniform angular velocity of the gear pair. Some of the effects that 
produce transmission error are:



            • Inaccuracies produced in the generation of the tooth profile; these include errors in 
tooth spacing, profile lead, and runout



            • Vibration of the tooth during meshing due to the tooth stiffness



            • Magnitude of the pitch-line velocity



            • Dynamic unbalance of the rotating members



            • Wear and permanent deformation of contacting portions of the teeth



            • Gearshaft misalignment and the linear and angular deflection of the shaft



            • Tooth friction



             In an attempt to account for these effects, AGMA has defined a set of quality 
numbers, Qv.



            7 These numbers define the tolerances for gears of various sizes manu-
factured to a specified accuracy. Quality numbers 3 to 7 will include most commercial-
quality gears. Quality numbers 8 to 12 are of precision quality. The following equations 
for the dynamic factor are based on these Qv numbers:



             Kv 5 µ aA 1 1V
A



            bB 



                V in ft/min



            aA 1 1200V
A



            bB



              V in m/s
 (14–27)



            where



              A 5 50 1 56(1 2 B)



              B 5 0.25(12 2 Qv)2y3 
(14–28)



            7AGMA 2000-A88. ANSI/AGMA 2001-D04, adopted in 2004, replaced the quality number Qv with the 
transmission accuracy level number Av and incorporated ANSI/AGMA 2015-1-A01. Av ranges from 6 to 
12, with lower numbers representing greater accuracy. The Qv approach was maintained as an alternate 
approach, and resulting Kv values are comparable.
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             Gear Material and Modulus 
 of Elasticity EG, lbf/in2 (MPa)*
   Malleable Nodular Cast Aluminum Tin
 Pinion Modulus of Steel Iron Iron Iron Bronze Bronze
Pinion Elasticity Ep 30 3 106 25 3 106 24 3 106 22 3 106 17.5 3 106 16 3 106



            Material psi (MPa)* (2 3 105) (1.7 3 105) (1.7 3 105) (1.5 3 105) (1.2 3 105) (1.1 3 105)



            Steel 30 3 106 2300 2180 2160 2100 1950 1900
 (2 3 105) (191) (181) (179) (174) (162) (158)



            Malleable iron 25 3 106 2180 2090 2070 2020 1900 1850
 (1.7 3 105) (181) (174) (172) (168) (158) (154)



            Nodular iron 24 3 106 2160 2070 2050 2000 1880 1830
 (1.7 3 105) (179) (172) (170) (166) (156) (152)



            Cast iron 22 3 106 2100 2020 2000 1960 1850 1800
 (1.5 3 105) (174) (168) (166) (163) (154) (149)



            Aluminum bronze 17.5 3 106 1950 1900 1880 1850 1750 1700
 (1.2 3 105) (162) (158) (156) (154) (145) (141)



            Tin bronze 16 3 106 1900 1850 1830 1800 1700 1650
 (1.1 3 105) (158) (154) (152) (149) (141) (137)



            Poisson’s ratio 5 0.30.



            *When more exact values for modulus of elasticity are obtained from roller contact tests, they may be used.



            Table 14–8



            Elastic Coefficient Cp (ZE), 1psi (1MPa) Source: AGMA 218.01
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            Figure 14–9 graphically represents Eq. (14–27). The maximum recommended pitch-line 
velocity for a given quality number is represented by the end point of each Qv curve, and 
is given by



             (Vt)max 5 • [A 1 (Qv 2 3)]2  ft/min



            [A 1 (Qv 2 3)]2



            200
  m/s



             (14–29)



             14–8 Overload Factor Ko



            The overload factor Ko is intended to make allowance for all externally applied loads 
in excess of the nominal tangential load W t in a particular application (see Figs. 14–17 
and 14–18 for tables). Examples include variations in torque from the mean value 
due to firing of cylinders in an internal combustion engine or reaction to torque 
variations in a piston pump drive. There are other similar factors such as application 
factor or service factor. These factors are established after considerable field experi-
ence in a particular application.8



             14–9 Surface Condition Factor Cf (ZR)
The surface condition factor Cf or ZR is used only in the pitting resistance equation, 
Eq. (14–16). It depends on



            • Surface finish as affected by, but not limited to, cutting, shaving, lapping, grinding, 
shotpeening



            • Residual stress



            • Plastic effects (work hardening)



            Standard surface conditions for gear teeth have not yet been established. When a det-
rimental surface finish effect is known to exist, AGMA specifies a value of Cf greater 
than unity.



            Figure 14–9
Dynamic factor Kv. The 
equations to these curves are 
given by Eq. (14–27) and the 
end points by Eq. (14–29). 
(ANSI/AGMA 2001-D04, 
Annex A)
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            8An extensive list of service factors appears in Howard B. Schwerdlin, “Couplings,” Chap. 16 in Joseph E. 
Shigley, Charles R. Mischke, and Thomas H. Brown, Jr. (eds.), Standard Handbook of Machine Design, 
3rd ed., McGraw-Hill, New York, 2004.
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             14–10 Size Factor Ks



            The size factor reflects nonuniformity of material properties due to size. It depends 
upon



            • Tooth size



            • Diameter of part



            • Ratio of tooth size to diameter of part



            • Face width



            • Area of stress pattern



            • Ratio of case depth to tooth size



            • Hardenability and heat treatment



            Standard size factors for gear teeth have not yet been established for cases where there 
is a detrimental size effect. In such cases AGMA recommends a size factor greater 
than unity. If there is no detrimental size effect, use unity.
 AGMA has identified and provided a symbol for size factor. Also, AGMA sug-
gests Ks 5 1, which makes Ks a placeholder in Eqs. (14–15) and (14–16) until more 
information is gathered. Following the standard in this manner is a failure to apply all 
of your knowledge. From Table 13–1, p. 688, l 5 a 1 b 5 2.25yP. The tooth thick-
ness t in Fig. 14–6 is given in Sec. 14–1, Eq. (b), as t 5 14lx where x 5 3Yy(2P) from 
Eq. (14–3). From Eq. (6–25), p. 297, the equivalent diameter de of a rectangular section 
in bending is de 5 0.8081Ft. From Eq. (6–20), p. 296, kb 5 (dey0.3)20.107. Noting 
that Ks is the reciprocal of kb, we find the result of all the algebraic substitution is



             Ks 5
1
kb



            5 1.192 aF1Y
P
b0.0535



             (a)



            Ks can be viewed as Lewis’s geometry incorporated into the Marin size factor in 
fatigue. You may set Ks 5 1, or you may elect to use the preceding Eq. (a). This is 
a point to discuss with your instructor. We will use Eq. (a) to remind you that you have 
a choice. If Ks in Eq. (a) is less than 1, use Ks 5 1.



             14–11 Load-Distribution Factor Km (KH)
The load-distribution factor modified the stress equations to reflect nonuniform dis-
tribution of load across the line of contact. The ideal is to locate the gear “midspan” 
between two bearings at the zero slope place when the load is applied. However, this 
is not always possible. The following procedure is applicable to



            • Net face width to pinion pitch diameter ratio FydP # 2



            • Gear elements mounted between the bearings



            • Face widths up to 40 in



            • Contact, when loaded, across the full width of the narrowest member



            The load-distribution factor under these conditions is currently given by the face load 
distribution factor, Cmf, where



             Km 5 Cmf 5 1 1 Cmc(Cp f Cpm 1 Cma Ce)  (14–30)
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            where



             Cmc 5 e1   for uncrowned teeth
0.8  for crowned teeth



             (14–31)



             Cpf 5 f F
10dP



            2 0.025                 F # 1 in



            F
10dP



            2 0.0375 1 0.0125F          1 , F # 17 in



            F
10dP



            2 0.1109 1 0.0207F 2 0.000 228F2  17 , F # 40 in



             (14–32)



            Note that for values of Fy(10dP) , 0.05, Fy(10dP) 5 0.05 is used.



              Cpm 5 e1 for straddle-mounted pinion with S1yS , 0.175
1.1  for straddle-mounted pinion with S1yS $ 0.175



             (14–33)



              Cma 5 A 1 BF 1 CF2  (see Table 14–9 for values of A, B, and C) (14–34)



              Ce 5 •0.8 for gearing adjusted at assembly, or compatibility
is improved by lapping, or both



             1 for all other conditions
 (14–35)



            See Fig. 14–10 for definitions of S and S1 for use with Eq. (14–33), and see Fig. 14–11 
for graph of Cma.



            Condition A B C



            Open gearing 0.247 0.0167 20.765(1024)



            Commercial, enclosed units 0.127 0.0158 20.930(1024)



            Precision, enclosed units 0.0675 0.0128 20.926(1024)



            Extraprecision enclosed gear units 0.00360 0.0102 20.822(1024)



            *See ANSI/AGMA 2101-D04, pp. 20–22, for SI formulation.



            Table 14–9



            Empirical Constants A, B, 
and C for Eq. (14–34), 
Face Width F in Inches*
Source: ANSI/AGMA
2001-D04.
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            Figure 14–10
Definition of distances S and 
S1 used in evaluating Cpm,
Eq. (14–33). (ANSI/AGMA
2001-D04.)
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             14–12 Hardness-Ratio Factor CH (ZW)
The pinion generally has a smaller number of teeth than the gear and consequently is 
subjected to more cycles of contact stress. If both the pinion and the gear are through-
hardened, then a uniform surface strength can be obtained by making the pinion harder 
than the gear. A similar effect can be obtained when a surface-hardened pinion is mated 
with a through-hardened gear. The hardness-ratio factor CH is used only for the gear. 
Its purpose is to adjust the surface strengths for this effect. For the pinion, CH 5 1.  
For the gear, CH is obtained from the equation



             CH 5 1.0 1 A¿ (mG 2 1.0) (14–36)



            where



            A¿ 5 8.98(1023) aHBP



            HBG
b 2 8.29(1023)  1.2 #



            HBP



            HBG
# 1.7



            The terms HBP and HBG are the Brinell hardness (10-mm ball at 3000-kg load) of the 
pinion and gear, respectively. The term mG is the speed ratio and is given by Eq. (14–22). 
See Fig. 14–12 for a graph of Eq. (14–36). For



             
HBP



            HBG
, 1.2,  A¿ 5 0



             
HBP



            HBG
. 1.7,  A¿ 5 0.006 98



             When surface-hardened pinions with hardnesses of 48 Rockwell C scale (Rockwell 
C48) or harder are run with through-hardened gears (180–400 Brinell), a work hard-
ening occurs. The CH factor is a function of pinion surface finish fP and the mating 
gear hardness. Figure 14–13 displays the relationships:



             CH 5 1 1 B¿ (450 2 HBG) (14–37)
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            Figure 14–11
Mesh alignment factor Cma. Curve-fit equations in Table 14–9. (ANSI/AGMA 2001-D04.)
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            where B9 5 0.000 75 exp[20.0112 fP] and fP is the surface finish of the pinion 
expressed as root-mean-square roughness Ra in m in.



             14–13 Stress-Cycle Factors YN and ZN



            The AGMA strengths as given in Figs. 14–2 through 14–4, in Tables 14–3 and 14–4 
for bending fatigue, and in Fig. 14–5 and Tables 14–5 and 14–6 for contact-stress 
fatigue are based on 107 load cycles applied. The purpose of the stress-cycle factors YN 
and ZN is to modify the gear strength for lives other than 107 cycles. Values for these 
factors are given in Figs. 14–14 and 14–15. Note that for 107 cycles YN 5 ZN 5 1 on 
each graph. Note also that the equations for YN and ZN change on either side of 107 cycles. 
For life goals slightly higher than 107 cycles, the mating gear may be experiencing 
fewer than 107 cycles and the equations for (YN)P and (YN)G can be different. The same 
comment applies to (ZN)P and (ZN)G.



            Figure 14–12
Hardness-ratio factor CH 
(through-hardened steel). 
(ANSI/AGMA 2001-D04.)
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            Figure 14–13
Hardness-ratio factor CH 
(surface-hardened steel pinion). 
(ANSI/AGMA 2001-D04.)
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             14–14 Reliability Factor KR (YZ)
The reliability factor accounts for the effect of the statistical distributions of material 
fatigue failures. Load variation is not addressed here. The gear strengths St and Sc are 
based on a reliability of 99 percent. Table 14–10 is based on data developed by the 
U.S. Navy for bending and contact-stress fatigue failures.
 The functional relationship between KR and reliability is highly nonlinear. When 
interpolation is required, linear interpolation is too crude. A log transformation to each 
quantity produces a linear string. A least-squares regression fit is



             KR 5 e0.658 2 0.0759 ln(1 2 R)  0.5 , R , 0.99
0.50 2 0.109 ln(1 2 R) 0.99 # R # 0.9999



             (14–38)



            For cardinal values of R, take KR from the table. Otherwise use the logarithmic inter-
polation afforded by Eqs. (14–38).



            Figure 14–14
Repeatedly applied bending 
strength stress-cycle factor YN. 
(ANSI/AGMA 2001-D04.)
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Figure 14–15
Pitting resistance stress-cycle 
factor ZN. (ANSI/AGMA 
2001-D04.)
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             14–15 Temperature Factor KT (YU)
For oil or gear-blank temperatures up to 250°F (120°C), use KT 5 Yu 5 1.0. For 
higher temperatures, the factor should be greater than unity. Heat exchangers may be 
used to ensure that operating temperatures are considerably below this value, as is 
desirable for the lubricant.



             14–16 Rim-Thickness Factor KB



            When the rim thickness is not sufficient to provide full support for the tooth root, the 
location of bending fatigue failure may be through the gear rim rather than at the 
tooth fillet. In such cases, the use of a stress-modifying factor KB is recommended. 
This factor, the rim-thickness factor KB, adjusts the estimated bending stress for the 
thin-rimmed gear. It is a function of the backup ratio mB,



             mB 5
tR



            ht
 (14–39)



            where tR 5 rim thickness below the tooth, and ht 5 the tooth height. The geometry 
is depicted in Fig. 14–16. The rim-thickness factor KB is given by



             KB 5 µ 1.6 ln 



            2.242
mB
  mB , 1.2



            1   mB $ 1.2
 (14–40)



            Reliability KR (YZ)



            0.9999 1.50



            0.999 1.25



            0.99 1.00



            0.90 0.85



            0.50 0.70



            Table 14–10



            Reliability Factors KR (YZ)
Source: ANSI/AGMA
2001-D04.



            Figure 14–16
Rim-thickness factor KB. 
(ANSI/AGMA 2001-D04.)
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            Figure 14–16 also gives the value of KB graphically. The rim-thickness factor KB is 
applied in addition to the 0.70 reverse-loading factor when applicable.



             14–17 Safety Factors SF and SH



            The ANSI/AGMA standards 2001-D04 and 2101-D04 contain a safety factor SF 
guarding against bending fatigue failure and safety factor SH guarding against pitting 
failure.
 The definition of SF, from Eq. (14–17), for U.S. customary units, is



             SF 5
StYNy(KTKR)



            s
5



            fully corrected bending strength
bending stress



             (14–41)



            where s is estimated from Eq. (14–15), for U.S. customary units. It is a strength-over-
stress definition in a case where the stress is linear with the transmitted load.
 The definition of SH, from Eq. (14–18), is



             SH 5
ScZNCHy(KTKR)



            sc
5



            fully corrected contact strength
contact stress



             (14–42)



            when sc is estimated from Eq. (14–16). This, too, is a strength-over-stress definition 
but in a case where the stress is not linear with the transmitted load Wt.
 While the definition of SH does not interfere with its intended function, a caution 
is required when comparing SF with SH in an analysis in order to ascertain the nature 
and severity of the threat to loss of function. To render SH linear with the transmitted 
load, Wt it could have been defined as



             SH 5 afully corrected contact strength
contact stress imposed



            b2



             (14–43)



            with the exponent 2 for linear or helical contact, or an exponent of 3 for crowned 
teeth (spherical contact). With the definition, Eq. (14–42), compare SF with S2



            H 
(or S3



            H for crowned teeth) when trying to identify the threat to loss of function with 
confidence.
 The role of the overload factor Ko is to include predictable excursions of load 
beyond Wt based on experience. A safety factor is intended to account for unquantifi-
able elements in addition to Ko. When designing a gear mesh, the quantity SF becomes 
a design factor (SF)d within the meanings used in this book. The quantity SF evaluated 
as part of a design assessment is a factor of safety. This applies equally well to the 
quantity SH.



             14–18 Analysis
Description of the procedure based on the AGMA standard is highly detailed. The 
best review is a “road map” for bending fatigue and contact-stress fatigue. Figure 14–17 
identifies the bending stress equation, the endurance strength in bending equation, and 
the factor of safety SF. Figure 14–18 displays the contact-stress equation, the contact 
fatigue endurance strength equation, and the factor of safety SH. The equations in these 
figures are in terms of U.S. customary units. Similar roadmaps can readily be gener-
ated in terms of SI units.
 The following example of a gear mesh analysis is intended to make all the details 
presented concerning the AGMA method more familiar.



            bud98209_ch14_725-776.indd Page 757  11/11/13  4:31 PM f-496 bud98209_ch14_725-776.indd Page 757  11/11/13  4:31 PM f-496 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
758    Mechanical Engineering Design



            SPUR GEAR BENDING
Based on ANSI!AGMA 2001-D04 (U.S. customary units)



            dP =
NP
Pd



            V = πdn
12



            W t = 33 000 Η
V



            Gear
bending
stress
equation
Eq. (14–15)



            Gear
bending
endurance
strength
equation
Eq. (14–17)



            Bending
factor of
safety
Eq. (14–41)



            SF =



            Pd
F



            KmKB
J



            1 [or Eq. (a), Sec. 14–10]; p. 751



            Eq. (14–30); p. 751



            Eq. (14–40); p. 756



            Eq. (14–27); p. 748



            Table below



            St
SF



            YN
KT KR



            St YN /(KT KR)
"



             = W tKoKvKs"



            all ="



            0.99(St)107 Tables 14–3, 14–4; pp. 740, 741



            Fig. 14–14; p. 755



            Table 14–10, Eq. (14–38); pp. 756, 755



            1 if T < 250°F



            Remember to compare SF with S2
H when deciding whether bending



            or wear is the threat to function. For crowned gears compare SF with S 3
H .



            Fig. 14–6; p. 745



            Table of Overload Factors, Ko



            Driven Machine



            Power source



            Uniform
Light shock
Medium shock



            Uniform



            1.00
1.25
1.50



            Moderate shock



            1.25
1.50
1.75



            Heavy shock



            1.75
2.00
2.25



            Figure 14–17
Roadmap of gear bending equations based on AGMA standards. (ANSI/AGMA 2001-D04.)
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            SPUR GEAR WEAR
Based on ANSI!AGMA 2001-D04 (U.S. customary units)



            dP =
NP
Pd



            V = πdn
12



            W t = 33 000 Η
V



            Gear
contact
stress
equation
Eq. (14–16)



            Gear
contact
endurance
strength
Eq. (14–18)



            Wear
factor of
safety
Eq. (14–42)



            !c = Cp   W
tKoKvKs



            !c,all =



            SH =



            Km



            dP F
Cf



            I( )



            Eq. (14–13), Table 14–8; pp. 736, 749



            1 [or Eq. (a), Sec. 14–10]; p. 751
Eq. (14–30); p. 751



            1



            1/2



            Eq. (14–27); p. 748



            Eq. (14–23); p. 747



            Table below



            Sc ZN CH
SH KT KR



            Sc ZN CH /(KT KR)
!c



            Fig. 14–15; p. 755



            Gear only



            Section 14–12, gear only; pp. 753, 754



            Table 14–10, Eq. (14–38); pp. 756, 755
1 if T < 250°F



            Remember to compare SF with S2
H when deciding whether bending



            or wear is the threat to function. For crowned gears compare SF with S 3
H .



            Table of Overload Factors, Ko



            Driven Machine



            Power source



            Uniform
Light shock
Medium shock



            Uniform



            1.00
1.25
1.50



            Moderate shock



            1.25
1.50
1.75



            Heavy shock



            1.75
2.00
2.25



            0.99(Sc )107 Tables 14–6, 14–7; pp. 743, 744



            Figure 14–18
Roadmap of gear wear equations based on AGMA standards. (ANSI/AGMA 2001-D04.)
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             EXAMPLE 14–4 A 17-tooth 20° pressure angle spur pinion rotates at 1800 rev/min and transmits 4 hp 
to a 52-tooth disk gear. The diametral pitch is 10 teeth/in, the face width 1.5 in, and 
the quality standard is No. 6. The gears are straddle-mounted with bearings immediately 
adjacent. The pinion is a grade 1 steel with a hardness of 240 Brinell tooth surface and 
through-hardened core. The gear is steel, through-hardened also, grade 1 material, with 
a Brinell hardness of 200, tooth surface and core. Poisson’s ratio is 0.30, JP 5 0.30, 
JG 5 0.40, and Young’s modulus is 30(106) psi. The loading is smooth because of 
motor and load. Assume a pinion life of 108 cycles and a reliability of 0.90, and use 
YN 5 1.3558N20.0178, ZN 5 1.4488N20.023. The tooth profile is uncrowned. This is a 
commercial enclosed gear unit.
(a) Find the factor of safety of the gears in bending.
(b) Find the factor of safety of the gears in wear.
(c) By examining the factors of safety, identify the threat to each gear and to the 
mesh.



             Solution There will be many terms to obtain so use Figs. 14–17 and 14–18 as guides to what 
is needed.



             dP 5 NPyPd 5 17y10 5 1.7 in  dG 5 52y10 5 5.2 in



             V 5
pdPnP



            12
5
p(1.7)1800



            12
5 801.1 ft/min



             Wt 5
33 000 H



            V
5



            33 000(4)
801.1



            5 164.8 lbf



            Assuming uniform loading, Ko 5 1. To evaluate Kv, from Eq. (14–28) with a quality 
number Qv 5 6,



             B 5 0.25(12 2 6)2y3 5 0.8255



             A 5 50 1 56(1 2 0.8255) 5 59.77



            Then from Eq. (14–27) the dynamic factor is



            Kv 5 a59.77 1 1801.1
59.77



            b0.8255



            5 1.377



            To determine the size factor, Ks, the Lewis form factor is needed. From Table 14–2, 
with NP 5 17 teeth, YP 5 0.303. Interpolation for the gear with NG 5 52 teeth yields 
YG 5 0.412. Thus from Eq. (a) of Sec. 14–10, with F 5 1.5 in,



             (Ks)P 5 1.192 a1.510.303
10



            b0.0535



            5 1.043



             (Ks)G 5 1.192 a1.510.412
10



            b0.0535



            5 1.052
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            The load distribution factor Km is determined from Eq. (14–30), where five terms are 
needed. They are, where F 5 1.5 in when needed:



            Uncrowned, Eq. (14–30): Cmc 5 1,
Eq. (14–32): Cpf 5 1.5y[10(1.7)] 2 0.0375 1 0.0125(1.5) 5 0.0695
Bearings immediately adjacent, Eq. (14–33): Cpm 5 1
Commercial enclosed gear units (Fig. 14–11): Cma 5 0.15
Eq. (14–35): Ce 5 1



            Thus,



             Km 5 1 1 Cmc(Cpf Cpm 1 CmaCe) 5 1 1 (1)[0.0695(1) 1 0.15(1)] 5 1.22



            Assuming constant thickness gears, the rim-thickness factor KB 5 1. The speed ratio 
is mG 5 NGyNP 5 52y17 5 3.059. The load cycle factors given in the problem state-
ment, with N(pinion) 5 108 cycles and N(gear) 5 108ymG 5 108y3.059 cycles, are



             (YN)P 5 1.3558(108)20.0178 5 0.977



             (YN)G 5 1.3558(108y3.059)20.0178 5 0.996



            From Table 14.10, with a reliability of 0.9, KR 5 0.85. From Fig. 14–18, the tem-
perature and surface condition factors are KT 5 1 and Cf 5 1. From Eq. (14–23), 
with mN 5 1 for spur gears,



            I 5
cos 20° sin 20°



            2
 



            3.059
3.059 1 1



            5 0.121



            From Table 14–8, Cp 5 23001psi.
 Next, we need the terms for the gear endurance strength equations. From Table 14–3, 
for grade 1 steel with HBP 5 240 and HBG 5 200, we use Fig. 14–2, which gives



             (St)P 5 77.3(240) 1 12 800 5 31 350 psi



             (St)G 5 77.3(200) 1 12 800 5 28 260 psi



            Similarly, from Table 14–6, we use Fig. 14–5, which gives



             (Sc)P 5 322(240) 1 29 100 5 106 400 psi



             (Sc)G 5 322(200) 1 29 100 5 93 500 psi



            From Fig. 14–15,



             (ZN)P 5 1.4488(108)20.023 5 0.948



             (ZN)G 5 1.4488(108y3.059)20.023 5 0.973



            For the hardness ratio factor CH, the hardness ratio is HBPyHBG 5 240y200 5 1.2. Then, 
from Sec. 14–12,



             A¿ 5 8.98(1023) (HBPyHBG) 2 8.29(1023)



             5 8.98(1023) (1.2) 2 8.29(1023) 5 0.002 49



            Thus, from Eq. (14–36),



             CH 5 1 1 0.002 49(3.059 2 1) 5 1.005
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            (a) Pinion tooth bending. Substituting the appropriate terms for the pinion into 
Eq. (14–15) gives



              (s)P 5 aWtKo 
Kv 



            Ks 
Pd



            F
 
Km 



            KB



            J
b



            P
5 164.8(1)1.377(1.043) 



            10
1.5



             
1.22(1)



            0.30



              5 6417 psi



            Substituting the appropriate terms for the pinion into Eq. (14–41) gives



             Answer (SF)P 5 aSt 
YNy(KT 



            KR)
s



            b
P



            5
31 350(0.977)y[1(0.85)]



            6417
5 5.62



            Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15) 
gives



             (s)G 5 164.8(1)1.377(1.052)
10
1.5



             
1.22(1)



            0.40
5 4854 psi



            Substituting the appropriate terms for the gear into Eq. (14–41) gives



             Answer (SF)G 5
28 260(0.996)y[1(0.85)]



            4854
5 6.82



            (b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16) 
gives



              (sc)P 5 CP aW t Ko 
Kv 



            Ks  



            Km



            dP F
 
Cf



            I
b1y2



            P



              5 2300 c164.8(1)1.377(1.043) 



            1.22
1.7(1.5)



             
1



            0.121
d 1y2



            5 70 360 psi



            Substituting the appropriate terms for the pinion into Eq. (14–42) gives



             Answer (SH)P 5 c Sc 
ZNy(KT 



            KR)
sc



            d
P



            5
106 400(0.948)y[1(0.85)]



            70 360
5 1.69



            Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is Ks. Thus,



             (sc)G 5 c (Ks)G



            (Ks)P
d 1y2



            (sc)P 5 a1.052
1.043



            b1y2



            70 360 5 70 660 psi



            Substituting the appropriate terms for the gear into Eq. (14–42) with CH 5 1.005 gives



             Answer (SH)G 5
93 500(0.973)1.005y[1(0.85)]



            70 660
5 1.52



            (c) For the pinion, we compare (SF)P with (SH)2
P, or 5.73 with 1.692 5 2.86, so the 



            threat in the pinion is from wear. For the gear, we compare (SF)G with (SH)2
G, or 6.96 



            with 1.522 5 2.31, so the threat in the gear is also from wear.



             There are perspectives to be gained from Ex. 14–4. First, the pinion is overly 
strong in bending compared to wear. The performance in wear can be improved by 
surface-hardening techniques, such as flame or induction hardening, nitriding, or car-
burizing and case hardening, as well as shot peening. This in turn permits the gearset 
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            to be made smaller. Second, in bending, the gear is stronger than the pinion, indicating 
that both the gear core hardness and tooth size could be reduced; that is, we may 
increase P and reduce the diameters of the gears, or perhaps allow a cheaper material. 
Third, in wear, surface strength equations have the ratio (ZN)yKR. The values of (ZN)P 
and (ZN)G are affected by gear ratio mG. The designer can control strength by specify-
ing surface hardness. This point will be elaborated later.
 Having followed a spur-gear analysis in detail in Ex. 14–4, it is timely to analyze 
a helical gearset under similar circumstances to observe similarities and differences.



             EXAMPLE 14–5 A 17-tooth 20° normal pitch-angle helical pinion with a right-hand helix angle of 30° 
rotates at 1800 rev/min when transmitting 4 hp to a 52-tooth helical gear. The normal 
diametral pitch is 10 teeth/in, the face width is 1.5 in, and the set has a quality num-
ber of 6. The gears are straddle-mounted with bearings immediately adjacent. The 
pinion and gear are made from a through-hardened steel with surface and core hard-
nesses of 240 Brinell on the pinion and surface and core hardnesses of 200 Brinell 
on the gear. The transmission is smooth, connecting an electric motor and a centrifu-
gal pump. Assume a pinion life of 108 cycles and a reliability of 0.9 and use the upper 
curves in Figs. 14–14 and 14–15.
(a) Find the factors of safety of the gears in bending.
(b) Find the factors of safety of the gears in wear.
(c) By examining the factors of safety identify the threat to each gear and to the mesh.



             Solution All of the parameters in this example are the same as in Ex. 14–4 with the exception 
that we are using helical gears. Thus, several terms will be the same as Ex. 14–4. The 
reader should verify that the following terms remain unchanged: Ko 5 1, YP 5 0.303, 
YG 5 0.412, mG 5 3.059, (Ks)P 5 1.043, (Ks)G 5 1.052, (YN)P 5 0.977, (YN)G 5 0.996, 
KR 5 0.85, KT 5 1, Cf 5 1, Cp 5 23001psi, (St)P 5 31 350 psi, (St)G 5 28 260 psi, 
(Sc)P 5 106 380 psi, (Sc)G 5 93 500 psi, (ZN)P 5 0.948, (ZN)G 5 0.973, and CH 5 1.005.
 For helical gears, the transverse diametral pitch, given by Eq. (13–18), p. 684, is



             Pt 5 Pn cos c 5 10 cos 30° 5 8.660 teeth/in



            Thus, the pitch diameters are dP 5 NPyPt 5 17y8.660 5 1.963 in and dG 5 52y8.660 5 
6.005 in. The pitch-line velocity and transmitted force are



              V 5
pdPnP



            12
5
p(1.963)1800



            12
5 925 ft /min



              W t 5
33 000H



            V
5



            33 000(4)
925



            5 142.7 lbf



            As in Ex. 14–4, for the dynamic factor, B 5 0.8255 and A 5 59.77. Thus, Eq. (14–27) 
gives



             Kv 5 a59.77 1 1925
59.77



            b0.8255



            5 1.404



            The geometry factor I for helical gears requires a little work. First, the transverse 
pressure angle is given by Eq. (13–19) p. 684,



             ft 5 tan21 atan fn



            cos c
b 5 tan21 a tan 20°



            cos 30°
b 5 22.80°
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            The radii of the pinion and gear are rP 5 1.963y2 5 0.9815 in and rG 5 6.004y2 5 
3.002 in, respectively. The addendum is a 5 1yPn 5 1y10 5 0.1, and the base-circle 
radii of the pinion and gear are given by Eq. (13–6), p. 672, with f 5 ft:



              (rb)P 5 rP cos ft 5 0.9815 cos 22.80° 5 0.9048 in



              (rb)G 5 3.002 cos 22.80° 5 2.767 in



            From Eq. (14–25), the surface strength geometry factor



              Z 5 2(0.9815 1 0.1)2 2 0.90482 1 2(3.004 1 0.1)2 2 2.7692



             2(0.9815 1 3.004) sin 22.80°



              5 0.5924 1 1.4027 2 1.544 4 5 0.4507 in



            Since the first two terms are less than 1.544 4, the equation for Z stands. From 
Eq. (14–24) the normal circular pitch pN is



             pN 5 pn cos fn 5
p



            Pn
 cos 20° 5



            p



            10
 cos 20° 5 0.2952 in



            From Eq. (14–21), the load sharing ratio



             mN 5
pN



            0.95Z
5



            0.2952
0.95(0.4507)



            5 0.6895



            Substituting in Eq. (14–23), the geometry factor I is



             I 5
sin 22.80° cos 22.80°



            2(0.6895)
 



            3.06
3.06 1 1



            5 0.195



            From Fig. 14–7, geometry factors J9P 5 0.45 and J9G 5 0.54. Also from Fig. 14–8 the 
J-factor multipliers are 0.94 and 0.98, correcting J9P and J9G to



              JP 5 0.45(0.94) 5 0.423



              JG 5 0.54(0.98) 5 0.529



            The load-distribution factor Km is estimated from Eq. (14–32):



             Cp f 5
1.5



            10(1.963)
2 0.0375 1 0.0125(1.5) 5 0.0577



            with Cmc 5 1, Cpm 5 1, Cma 5 0.15 from Fig. 14–11, and Ce 5 1. Therefore, from 
Eq. (14–30),



             Km 5 1 1 (1)[0.0577(1) 1 0.15(1)] 5 1.208



            (a) Pinion tooth bending. Substituting the appropriate terms into Eq. (14–15) using 
Pt gives



              (s)P 5 aW tKoKvKs 



            Pt



            F
 
KmKB



            J
b



            P
5 142.7(1)1.404(1.043) 



            8.66
1.5



             
1.208(1)



            0.423



              5 3445 psi
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            Substituting the appropriate terms for the pinion into Eq. (14–41) gives



             Answer (SF)P 5 aStYNy(KTKR)
s



            b
P



            5
31 350(0.977)y[1(0.85)]



            3445
5 10.5



            Gear tooth bending. Substituting the appropriate terms for the gear into Eq. (14–15) gives



             (s)G 5 142.7(1)1.404(1.052) 



            8.66
1.5



             
1.208(1)



            0.529
5 2779 psi



            Substituting the appropriate terms for the gear into Eq. (14–41) gives



             Answer (SF)G 5
28 260(0.996)y[1(0.85)]



            2779
5 11.9



            (b) Pinion tooth wear. Substituting the appropriate terms for the pinion into Eq. (14–16) 
gives



              (sc)P 5 Cp aWtKoKvKs 



            Km



            dPF
 
Cf



            I
b1y2



            P



              5 2300 c142.7(1)1.404(1.043) 



            1.208
1.963(1.5)



             
1



            0.195
d 1y2



            5 48 230 psi



            Substituting the appropriate terms for the pinion into Eq. (14–42) gives



             Answer (SH)P 5 aScZNy(KTKR)
sc



            b
P



            5
106 400(0.948)y[1(0.85)]



            48 230
5 2.46



            Gear tooth wear. The only term in Eq. (14–16) that changes for the gear is Ks. Thus,



             (sc)G 5 c (Ks)G



            (Ks)P
d 1y2



            (sc)P 5 a1.052
1.043



            b1y2



            48 230 5 48 440 psi



            Substituting the appropriate terms for the gear into Eq. (14–42) with CH 5 1.005 gives



             Answer (SH)G 5
93 500(0.973)1.005y[1(0.85)]



            48 440
5 2.22



            (c) For the pinion we compare SF with S2
H, or 10.5 with 2.462 5 6.05, so the threat in 



            the pinion is from wear. For the gear we compare SF with S2
H, or 11.9 with 2.222 5 4.93, 



            so the threat is also from wear in the gear. For the meshing gearset wear controls.



             It is worthwhile to compare Ex. 14–4 with Ex. 14–5. The spur and helical gear-
sets were placed in nearly identical circumstances. The helical gear teeth are of greater 
length because of the helix and identical face widths. The pitch diameters of the helical 
gears are larger. The J factors and the I factor are larger, thereby reducing stresses. 
The result is larger factors of safety. In the design phase the gearsets in Ex. 14–4 and 
Ex. 14–5 can be made smaller with control of materials and relative hardnesses.
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             Now that examples have given the AGMA parameters substance, it is time to 
examine some desirable (and necessary) relationships between material properties of 
spur gears in mesh. In bending, the AGMA equations are displayed side by side:



            sP 5 aW tKoKvKs 



            Pd



            F
 
KmKB



            J
b



            P
  sG 5 aW tKoKvKs 



            Pd



            F
 
KmKB



            J
b



            G



            (SF)P 5 aStYNy(KTKR)
s



            b
P
  (SF)G 5 aStYNy(KTKR)



            s
b



            G



            Equating the factors of safety, substituting for stress and strength, canceling identical 
terms (Ks virtually equal or exactly equal), and solving for (St)G gives



             (St)G 5 (St)P 



            (YN)P



            (YN)G
 
JP



            JG
 (a)



            The stress-cycle factor YN comes from Fig. 14–14, where for a particular hardness, 
YN 5 aNb. For the pinion, (YN)P 5 aNbP, and for the gear, (YN)G 5 a(NPymG)b. 
Substituting these into Eq. (a) and simplifying gives



             (St)G 5 (St)PmbG 



            JP



            JG
 (14–44)



            Normally, mG . 1 and JG . JP, so Eq. (14–44) shows that the gear can be less strong 
(lower Brinell hardness) than the pinion for the same safety factor.



             EXAMPLE 14–6 In a set of spur gears, a 300-Brinell 18-tooth 16-pitch 20° full-depth pinion meshes 
with a 64-tooth gear. Both gear and pinion are of grade 1 through-hardened steel. 
Using b 5 20.023, what hardness can the gear have for the same factor of safety?



             Solution For through-hardened grade 1 steel the pinion strength (St)P is given in Fig. 14–2:



             (St)P 5 77.3(300) 1 12 800 5 35 990 psi



            From Fig. 14–6 the form factors are JP 5 0.32 and JG 5 0.41. Equation (14–44) gives



             (St)G 5 35 990 a64
18
b20.023



             
0.32
0.41



            5 27 280 psi



            Use the equation in Fig. 14–2 again.



             Answer (HB)G 5
27 280 2 12 800



            77.3
5 187 Brinell



             The AGMA contact-stress equations also are displayed side by side:



             (sc)P 5 Cp aWt KoKvKs 



            Km



            dPF
 
Cf



            I
b1y2



            P
  (sc)G 5 Cp aW t KoKvKs 



            Km



            dPF
 
Cf



            I
b1y2



            G



             (SH)P 5 aScZNy(KTKR)
sc



            b
P
  (SH)G 5 aScZNCHy(KTKR)



            sc
b



            G
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            Equating the factors of safety, substituting the stress relations, and canceling identical 
terms including Ks gives, after solving for (Sc)G,



            (Sc)G 5 (Sc)P 



            (ZN)P



            (ZN)G
 a 1



            CH
b



            G
5 (SC)PmbG a 1



            CH
b



            G



            where, as in the development of Eq. (14–44), (ZN)Py(ZN)G 5 mbG and the value of b 
for wear comes from Fig. 14–15. Since CH is so close to unity, it is usually neglected; 
therefore



             (Sc)G 5 (Sc)PmbG (14–45)



             EXAMPLE 14–7 For b 5 20.056 for a through-hardened steel, grade 1, continue Ex. 14–6 for wear.



             Solution From Fig. 14–5,



             (Sc)P 5 322(300) 1 29 100 5 125 700 psi



            From Eq. (14–45),



             (Sc)G 5 (Sc)P a64
18
b20.056



            5 125 700 a64
18
b20.056



            5 117 100 psi



             Answer (HB)G 5
117 100 2 29 200



            322
5 273 Brinell



            which is slightly less than the pinion hardness of 300 Brinell.



             Equations (14–44) and (14–45) apply as well to helical gears.



             14–19 Design of a Gear Mesh
A useful decision set for spur and helical gears includes



            • Function: load, speed, reliability, life, Ko



            • Unquantifiable risk: design factor nd



            • Tooth system: f, c, addendum, dedendum, root fillet radius



            • Gear ratio mG, Np, NG



            • Quality number Qv



            • Diametral pitch Pd



            • Face width F



            • Pinion material, core hardness, case hardness



            • Gear material, core hardness, case hardness



            The first item to notice is the dimensionality of the decision set. There are four design 
decision categories, eight different decisions if you count them separately. This is a 
larger number than we have encountered before. It is important to use a design strategy 
that is convenient in either longhand execution or computer implementation. The design 



            t a priori decisions



            t design decisions
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            decisions have been placed in order of importance (impact on the amount of work to 
be redone in iterations). The steps, after the a priori decisions have been made are



            • Choose a diametral pitch.



            • Examine implications on face width, pitch diameters, and material properties. If not 
satisfactory, return to pitch decision for change.



            • Choose a pinion material and examine core and case hardness requirements. If not 
satisfactory, return to pitch decision and iterate until no decisions are changed.



            • Choose a gear material and examine core and case hardness requirements. If not 
satisfactory, return to pitch decision and iterate until no decisions are changed.



            With these plan steps in mind, we can consider them in more detail.
 First select a trial diametral pitch.



            Pinion bending:



            • Select a median face width for this pitch, 4pyP



            • Find the range of necessary ultimate strengths



            • Choose a material and a core hardness



            • Find face width to meet factor of safety in bending



            • Choose face width



            • Check factor of safety in bending



            Gear bending:



            • Find necessary companion core hardness



            • Choose a material and core hardness



            • Check factor of safety in bending



            Pinion wear:



            • Find necessary Sc and attendant case hardness



            • Choose a case hardness



            • Check factor of safety in wear



            Gear wear:



            • Find companion case hardness



            • Choose a case hardness



            • Check factor of safety in wear



             Completing this set of steps will yield a satisfactory design. Additional designs 
with diametral pitches adjacent to the first satisfactory design will produce several 
among which to choose. A figure of merit is necessary in order to choose the best. 
Unfortunately, a figure of merit in gear design is complex in an academic environment 
because material and processing costs vary. The possibility of using a process depends 
on the manufacturing facility if gears are made in house.
 After examining Ex. 14–4 and Ex. 14–5 and seeing the wide range of factors 
of safety, one might entertain the notion of setting all factors of safety equal.9 In 



            9In designing gears it makes sense to define the factor of safety in wear as (S)2
H for uncrowned teeth, so that 



            there is no mix-up. ANSI, in the preface to ANSI/AGMA 2001-D04 and 2101-D04, states “the use is com-
pletely voluntary . . . does not preclude anyone from using . . . procedures . . . not conforming to the standards.”
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            steel gears, wear is usually controlling and (SH)P and (SH)G can be brought close 
to equality. The use of softer cores can bring down (SF)P and (SF)G, but there is 
value in keeping them higher. A tooth broken by bending fatigue not only can 
destroy the gear set, but can bend shafts, damage bearings, and produce inertial 
stresses up- and downstream in the power train, causing damage elsewhere if the 
gear box locks.



             EXAMPLE 14–8 Design a 4:1 spur-gear reduction for a 100-hp, three-phase squirrel-cage induction 
motor running at 1120 rev/min. The load is smooth, providing a reliability of 0.95 at 
109 revolutions of the pinion. Gearing space is meager. Use Nitralloy 135M, grade 1 
material to keep the gear size small. The gears are heat-treated first then nitrided.



             Solution Make the a priori decisions:



            • Function: 100 hp, 1120 rev/min, R 5 0.95, N 5 109 cycles, Ko 5 1



            • Design factor for unquantifiable exingencies: nd 5 2



            • Tooth system: fn 5 20°



            • Tooth count: NP 5 18 teeth, NG 5 72 teeth (no interference, Sec. 13–7, p. 677)



            • Quality number: Qv 5 6, use grade 1 material



            • Assume mB $ 1.2 in Eq. (14–40), KB 5 1



            Pitch: Select a trial diametral pitch of Pd 5 4 teeth/in. Thus, dP 5 18y4 5 4.5 in and 
dG 5 72y4 5 18 in. From Table 14–2, YP 5 0.309, YG 5 0.4324 (interpolated). From 
Fig. 14–6, JP 5 0.32, JG 5 0.415.



              V 5
pdP 



            nP



            12
5
p(4.5)1120



            12
5 1319 ft/min



              Wt 5
33 000H



            V
5



            33 000(100)
1319



            5 2502 lbf



            From Eqs. (14–28) and (14–27),



              B 5 0.25(12 2 Qv)2y3 5 0.25(12 2 6)2y3 5 0.8255



              A 5 50 1 56(1 2 0.8255) 5 59.77



              Kv 5 a59.77 1 11319
59.77



            b0.8255



            5 1.480



            From Eq. (14–38), KR 5 0.658 2 0.0759 ln (1 2 0.95) 5 0.885. From Fig. 14–14,



              (YN)P 5 1.3558(109)20.0178 5 0.938



              (YN)G 5 1.3558(109y4)20.0178 5 0.961



            From Fig. 14–15,



              (ZN)P 5 1.4488(109)20.023 5 0.900



              (ZN)G 5 1.4488(109y4)20.023 5 0.929



            bud98209_ch14_725-776.indd Page 769  11/11/13  4:31 PM f-496 bud98209_ch14_725-776.indd Page 769  11/11/13  4:31 PM f-496 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
770    Mechanical Engineering Design



            From the recommendation after Eq. (14–8), 3p # F # 5p. Try F 5 4p 5 4pyP 5 
4py4 5 3.14 in. From Eq. (a), Sec. 14–10,



             Ks 5 1.192 aF1Y
P
b0.0535



            5 1.192 a3.1410.309
4



            b0.0535



            5 1.140



            From Eqs. (14–31), (14–33) and (14–35), Cmc 5 Cpm 5 Ce 5 1. From Fig. 14–11, 
Cma 5 0.175 for commercial enclosed gear units. From Eq. (14–32), Fy(10dP) 53.14y
[10(4.5)] 5 0.0698. Thus,



             Cpf 5 0.0698 2 0.0375 1 0.0125(3.14) 5 0.0715



            From Eq. (14–30),



             Km 5 1 1 (1)[0.0715(1) 1 0.175(1)] 5 1.247



            From Table 14–8, for steel gears, Cp 5 23001psi. From Eq. (14–23), with mG 5 4 and 
mN 5 1,



             I 5
cos 20° sin 20°



            2
 



            4
4 1 1



            5 0.1286



            Pinion tooth bending. With the above estimates of Ks and Km from the trial diametral 
pitch, we check to see if the mesh width F is controlled by bending or wear considera-
tions. Equating Eqs. (14–15) and (14–17), substituting ndW t for W t, and solving for 
the face width (F)bend necessary to resist bending fatigue, we obtain



             (F)bend 5 ndWtKo 
Kv  



            Ks 
Pd 



            KmKB



            JP
 
KTKR



            StYN
 (1)



            Equating Eqs. (14–16) and (14–18), substituting ndW t for W t, and solving for the face 
width (F)wear necessary to resist wear fatigue, we obtain



             (F)wear 5 aCpKT 
KR



            ScZN
b2



            nd W
t  Ko 



            Kv  
Ks 



            KmCf



            dP I
 (2)



            From Table 14–5 the hardness range of Nitralloy 135M is Rockwell C32–36 (302–335 
Brinell). Choosing a midrange hardness as attainable, using 320 Brinell. From 
Fig. 14–4,



             St 5 86.2(320) 1 12 730 5 40 310 psi



            Inserting the numerical value of St in Eq. (1) to estimate the face width gives



             (F)bend 5 2(2502)(1)1.48(1.14)4 
1.247(1)(1)0.885
0.32(40 310)0.938



            5 3.08 in



            From Table 14–6 for Nitralloy 135M, Sc 5 170 000 psi. Inserting this in Eq. (2), we 
find



             (F)wear 5 a2300(1)(0.885)
170 000(0.900)



            b2 



            2(2502)1(1.48)1.14 



            1.247(1)
4.5(0.1286)



            5 3.22 in
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             Decision Make face width 3.50 in. Correct Ks and Km:



              Ks 5 1.192 a3.5010.309
4



            b0.0535



            5 1.147



              
F



            10dP
5



            3.50
10(4.5)



            5 0.0778



              Cp f 5 0.0778 2 0.0375 1 0.0125(3.50) 5 0.0841



              Km 5 1 1 (1)[0.0841(1) 1 0.175(1)] 5 1.259



            The bending stress induced by W t in bending, from Eq. (14–15), is



             (s)P 5 2502(1)1.48(1.147) 



            4
3.50



             
1.259(1)



            0.32
5 19 100 psi



            The AGMA factor of safety in bending of the pinion, from Eq. (14–41), is



             (SF)P 5
40 310(0.938)y[1(0.885)]



            19 100
5 2.24



             Decision Gear tooth bending. Use cast gear blank because of the 18-in pitch diameter. Use 
the same material, heat treatment, and nitriding. The load-induced bending stress is 
in the ratio of JPyJG. Then



             (s)G 5 19 100 



            0.32
0.415



            5 14 730 psi



            The factor of safety of the gear in bending is



             (SF)G 5
40 310(0.961)y[1(0.885)]



            14 730
5 2.97



            Pinion tooth wear. The contact stress, given by Eq. (14–16), is



             (sc)P 5 2300 c2502(1)1.48(1.147)
1.259



            4.5(3.5)
 



            1
0.129



            d 1y2



            5 118 000 psi



            The factor of safety from Eq. (14–42), is



             (SH)P 5
170 000(0.900)y[1(0.885)]



            118 000
5 1.465



            By our definition of factor of safety, pinion bending is (SF)P 5 2.24, and wear is 
(SH)2



            P 5 (1.465)2 5 2.15.



            Gear tooth wear. The hardness of the gear and pinion are the same. Thus, from 
Fig. 14–12, CH 5 1, the contact stress on the gear is the same as the pinion, (sc)G 5 
118 000 psi. The wear strength is also the same, Sc 5 170 000 psi. The factor of 
safety of the gear in wear is



             (SH)G 5
170 000(0.929)y[1(0.885)]



            118 000
5 1.51



            So, for the gear in bending, (SF)G 5 2.97, and wear (SH)2
G 5 (1.51)2 5 2.29.
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            Rim. Keep mB $ 1.2. The whole depth is ht 5 addendum 1 dedendum 5 1yPd 1 
1.25yPd 5 2.25yPd 5 2.25y4 5 0.5625 in. The rim thickness tR is



             tR $ mB  
ht 5 1.2(0.5625) 5 0.675 in



             In the design of the gear blank, be sure the rim thickness exceeds 0.675 in; if it 
does not, review and modify this mesh design.



             This design example showed a satisfactory design for a four-pitch spur-gear mesh. 
Material could be changed, as could pitch. There are a number of other satisfactory 
designs, thus a figure of merit is needed to identify the best.
 One can appreciate that gear design was one of the early applications of the 
digital computer to mechanical engineering. A design program should be interactive, 
presenting results of calculations, pausing for a decision by the designer, and showing 
the consequences of the decision, with a loop back to change a decision for the better. 
The program can be structured in totem-pole fashion, with the most influential 
decision at the top, then tumbling down, decision after decision, ending with the abil-
ity to change the current decision or to begin again. Such a program would make a 
fine class project. Troubleshooting the coding will reinforce your knowledge, adding 
flexibility as well as bells and whistles in subsequent terms.
 Standard gears may not be the most economical design that meets the functional 
requirements, because no application is standard in all respects.10 Methods of design-
ing custom gears are well understood and frequently used in mobile equipment to 
provide good weight-to-performance index. The required calculations including opti-
mizations are within the capability of a personal computer.



            10See H. W. Van Gerpen, C. K. Reece, and J. K. Jensen, Computer Aided Design of Custom Gears, 
Van Gerpen–Reece Engineering, Cedar Falls, Iowa, 1996.



            PROBLEMS
Problems marked with an asterisk (*) are linked to problems in other chapters, as summarized 
in Table 1–2 of Sec. 1–17, p. 34.
 Because the results will vary depending on the method used, the problems are presented 
by section.



            Section 14–1



             14–1 A steel spur pinion has a pitch of 6 teeth/in, 22 full-depth teeth, and a 20° pressure angle. The 
pinion runs at a speed of 1200 rev/min and transmits 15 hp to a 60-tooth gear. If the face width 
is 2 in, estimate the bending stress.



             14–2 A steel spur pinion has a diametral pitch of 10 teeth/in, 18 teeth cut full-depth with a 20° 
pressure angle, and a face width of 1 in. This pinion is expected to transmit 2 hp at a speed 
of 600 rev/min. Determine the bending stress.



             14–3 A steel spur pinion has a module of 1.25 mm, 18 teeth cut on the 20° full-depth system, and 
a face width of 12 mm. At a speed of 1800 rev/min, this pinion is expected to carry a steady 
load of 0.5 kW. Determine the bending stress.
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             14–4 A steel spur pinion has 16 teeth cut on the 20° full-depth system with a module of 8 mm and 
a face width of 90 mm. The pinion rotates at 150 rev/min and transmits 6 kW to the mating 
steel gear. What is the bending stress?



             14–5 A steel spur pinion has a module of 1 mm and 16 teeth cut on the 20° full-depth system and 
is to carry 0.15 kW at 400 rev/min. Determine a suitable face width based on an allowable 
bending stress of 150 MPa.



             14–6 A 20° full-depth steel spur pinion has 20 teeth and a module of 2 mm and is to transmit 
0.5 kW at a speed of 200 rev/min. Find an appropriate face width if the bending stress is not 
to exceed 75 MPa.



             14–7 A 20° full-depth steel spur pinion has a diametral pitch of 5 teeth/in and 24 teeth and transmits 
6 hp at a speed of 50 rev/min. Find an appropriate face width if the allowable bending stress 
is 20 kpsi.



             14–8 A steel spur pinion is to transmit 20 hp at a speed of 400 rev/min. The pinion is cut on the 
20° full-depth system and has a diametral pitch of 4 teeth/in and 16 teeth. Find a suitable face 
width based on an allowable stress of 12 kpsi.



             14–9 A 20° full-depth steel spur pinion with 18 teeth is to transmit 2.5 hp at a speed of 600 rev/min. 
Determine appropriate values for the face width and diametral pitch based on an allowable 
bending stress of 10 kpsi.



             14–10 A 20° full-depth steel spur pinion is to transmit 1.5 kW hp at a speed of 900 rev/min. If the 
pinion has 18 teeth, determine suitable values for the module and face width. The bending 
stress should not exceed 75 MPa.



            Section 14–2



             14–11 A speed reducer has 20° full-depth teeth and consists of a 20-tooth steel spur pinion driving a 
50-tooth cast-iron gear. The horsepower transmitted is 12 at a pinion speed of 1200 rev/min. 
For a diametral pitch of 8 teeth/in and a face width of 1.5 in, find the contact stress.



             14–12 A gear drive consists of a 16-tooth 20° steel spur pinion and a 48-tooth cast-iron gear having 
a pitch of 12 teeth/in. For a power input of 1.5 hp at a pinion speed of 700 rev/min, select a 
face width based on an allowable contact stress of 100 kpsi.



             14–13 A gearset has a module of 5 mm, a 20° pressure angle, and a 24-tooth cast-iron spur pinion 
driving a 48-tooth cast-iron gear. The pinion is to rotate at 50 rev/min. What horsepower input 
can be used with this gearset if the contact stress is limited to 690 MPa and F 5 60 mm?



             14–14 A 20° 20-tooth cast-iron spur pinion having a module of 4 mm drives a 32-tooth cast-iron gear. 
Find the contact stress if the pinion speed is 1000 rev/min, the face width is 50 mm, and 10 kW 
of power is transmitted.



             14–15 A steel spur pinion and gear have a diametral pitch of 12 teeth/in, milled teeth, 17 and 30 teeth, 
respectively, a 20° pressure angle, a face width of 7



            8 in, and a pinion speed of 525 rev/min. The 
tooth properties are Sut 5 76 kpsi, Sy 5 42 kpsi and the Brinell hardness is 149. Use the Gerber 
criteria to compensate for one-way bending. For a design factor of 2.25, what is the power 
rating of the gearset?



             14–16 A milled-teeth steel pinion and gear pair have Sut 5 113 kpsi, Sy 5 86 kpsi and a hardness at 
the involute surface of 262 Brinell. The diametral pitch is 3 teeth/in, the face width is 2.5 in, 
and the pinion speed is 870 rev/min. The tooth counts are 20 and 100. Use the Gerber criteria 
to compensate for one-way bending. For a design factor of 1.5, rate the gearset for power 
considering both bending and wear.
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             14–17 A 20° full-depth steel spur pinion rotates at 1145 rev/min. It has a module of 6 mm, a face 
width of 75 mm, and 16 milled teeth. The ultimate tensile strength at the involute is 900 MPa 
exhibiting a Brinell hardness of 260. The gear is steel with 30 teeth and has identical material 
strengths. Use the Gerber criteria to compensate for one-way bending. For a design factor of 
1.3 find the power rating of the gearset based on the pinion and the gear resisting bending and 
wear fatigue.



             14–18 A steel spur pinion has a pitch of 6 teeth/in, 17 full-depth milled teeth, and a pressure angle 
of 20°. The pinion has an ultimate tensile strength at the involute surface of 116 kpsi, a Brinell 
hardness of 232, and a yield strength of 90 kpsi. Its shaft speed is 1120 rev/min, its face width 
is 2 in, and its mating gear has 51 teeth. Use a design factor of 2.
(a) Pinion bending fatigue imposes what power limitation? Use the Gerber criteria to compen-



            sate for one-way bending.
(b) Pinion surface fatigue imposes what power limitation? The gear has identical strengths to 



            the pinion with regard to material properties.
(c) Determine power limitations due to gear bending and wear.
(d ) Specify the power rating for the gearset.



            Section 14–3 to 14–19



             14–19 A commercial enclosed gear drive consists of a 20° spur pinion having 16 teeth driving a 
48-tooth gear. The pinion speed is 300 rev/min, the face width 2 in, and the diametral pitch 
6 teeth/in. The gears are grade 1 steel, through-hardened at 200 Brinell, made to No. 6 quality 
standards, uncrowned, and are to be accurately and rigidly mounted. Assume a pinion life of 
108 cycles and a reliability of 0.90. Determine the AGMA bending and contact stresses and the 
corresponding factors of safety if 5 hp is to be transmitted.



             14–20 A 20° spur pinion with 20 teeth and a module of 2.5 mm transmits 120 W to a 36-tooth gear. 
The pinion speed is 100 rev/min, and the gears are grade 1, 18-mm face width, through-
hardened steel at 200 Brinell, uncrowned, manufactured to a No. 6 quality standard, and 
considered to be of open gearing quality installation. Find the AGMA bending and contact 
stresses and the corresponding factors of safety for a pinion life of 108 cycles and a reli-
ability of 0.95.



             14–21 Repeat Prob. 14–19 using helical gears each with a 20° normal pitch angle and a helix angle 
of 30° and a normal diametral pitch of 6 teeth/in.



             14–22 A spur gearset has 17 teeth on the pinion and 51 teeth on the gear. The pressure angle is 20° 
and the overload factor Ko 5 1. The diametral pitch is 6 teeth/in and the face width is 2 in. 
The pinion speed is 1120 rev/min and its cycle life is to be 108 revolutions at a reliability 
R 5 0.99. The quality number is 5. The material is a through-hardened steel, grade 1, with 
Brinell hardnesses of 232 core and case of both gears. For a design factor of 2, rate the gearset 
for these conditions using the AGMA method.



             14–23 In Sec. 14–10, Eq. (a) is given for Ks based on the procedure in Ex. 14–2. Derive this equation.



             14–24 A speed-reducer has 20° full-depth teeth, and the single-reduction spur-gear gearset has 22 and 
60 teeth. The diametral pitch is 4 teeth/in and the face width is 31



            4 in. The pinion shaft speed 
is 1145 rev/min. The life goal of 5-year 24-hour-per-day service is about 3(109) pinion revolu-
tions. The absolute value of the pitch variation is such that the quality number is 6. The mate-
rials are 4340 through-hardened grade 1 steels, heat-treated to 250 Brinell, core and case, both 
gears. The load is moderate shock and the power is smooth. For a reliability of 0.99, rate the 
speed reducer for power.
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             14–25 The speed reducer of Prob. 14–24 is to be used for an application requiring 40 hp at 1145 rev/min. 
For the gear and the pinion, estimate the AGMA factors of safety for bending and wear, that 
is, (SF)P, (SF)G, (SH)P, and (SH)G. By examining the factors of safety, identify the threat to each 
gear and to the mesh.



             14–26 The gearset of Prob. 14–24 needs improvement of wear capacity. Toward this end the gears are 
nitrided so that the grade 1 materials have hardnesses as follows: The pinion core is 250 and 
the pinion case hardness is 390 Brinell, and the gear core hardness is 250 core and 390 case. 
Estimate the power rating for the new gearset.



             14–27 The gearset of Prob. 14–24 has had its gear specification changed to 9310 for carburizing and 
surface hardening with the result that the pinion Brinell hardnesses are 285 core and 580–600 
case, and the gear hardnesses are 285 core and 580–600 case. Estimate the power rating for 
the new gearset.



             14–28 The gearset of Prob. 14–27 is going to be upgraded in material to a quality of grade 2 (9310) 
steel. Estimate the power rating for the new gearset.



             14–29 Matters of scale always improve insight and perspective. Reduce the physical size of the 
gearset in Prob. 14–24 by one-half and note the result on the estimates of transmitted load W  



            t 
and power.



             14–30 AGMA procedures with cast-iron gear pairs differ from those with steels because life pre-
dictions are difficult; consequently (YN)P, (YN)G, (ZN)P, and (ZN)G are set to unity. The 
 consequence of this is that the fatigue strengths of the pinion and gear materials are the 
same. The reliability is 0.99 and the life is 107 revolution of the pinion (KR 5 1). For lon-
ger lives the reducer is derated in power. For the pinion and gear set of Prob. 14–24, use 
grade 40 cast iron for both gears (HB 5 201 Brinell). Rate the reducer for power with SF 
and SH equal to unity.



             14–31 Spur-gear teeth have rolling and slipping contact (often about 8 percent slip). Spur gears tested 
to wear failure are reported at 108 cycles as Buckingham’s surface fatigue load-stress factor K. 
This factor is related to Hertzian contact strength SC by



              SC 5 A 1.4K
(1yE1 1 1yE2) sin f



              where f is the normal pressure angle. Cast iron grade 20 gears with f 5 14 
1
2
° and 20° pressure 



            angle exhibit a minimum K of 81 and 112 psi, respectively. How does this compare with 
SC 5 0.32HB kpsi?



             14–32 You’ve probably noticed that although the AGMA method is based on two equations, the details 
of assembling all the factors is computationally intensive. To reduce error and omissions, a 
computer program would be useful. Write a program to perform a power rating of an existing 
gearset, then use Prob. 14–24, 14–26, 14–27, 14–28, and 14–29 to test your program by com-
paring the results to your longhand solutions.



             14–33 In Ex. 14–5 use nitrided grade 1 steel (4140) which produces Brinell hardnesses of 250 core 
and 500 at the surface (case). Use the upper fatigue curves on Figs. 14–14 and 14–15. Estimate 
the power capacity of the mesh with factors of safety of SF 5 SH 5 1.



             14–34 In Ex. 14–5 use carburized and case-hardened gears of grade 1. Carburizing and case-hardening 
can produce a 550 Brinell case. The core hardnesses are 200 Brinell. Estimate the power 
capacity of the mesh with factors of safety of SF 5 SH 5 1, using the lower fatigue curves in 
Figs. 14–14 and 14–15.
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             14–35 In Ex. 14–5, use carburized and case-hardened gears of grade 2 steel. The core hardnesses are 
200, and surface hardnesses are 600 Brinell. Use the lower fatigue curves of Figs. 14–14 and 
14–15. Estimate the power capacity of the mesh using SF 5 SH 5 1. Compare the power capacity 
with the results of Prob. 14–34.



             14–36* The countershaft in Prob. 3–72, p. 152, is part of a speed reducing compound gear train using 
20° spur gears. A gear on the input shaft drives gear A. Gear B drives a gear on the output 
shaft. The input shaft runs at 2400 rev/min. Each gear reduces the speed (and thus increases 
the torque) by a 2 to 1 ratio. All gears are to be of the same material. Since gear B is the 
smallest gear, transmitting the largest load, it will likely be critical, so a preliminary analysis 
is to be performed on it. Use a diametral pitch of 2 teeth/in, a face-width of 4 times the circu-
lar pitch, a Grade 2 steel through-hardened to a Brinell hardness of 300, and a desired life of 
15 kh with a 95 percent reliability. Determine factors of safety for bending and wear.



             14–37* The countershaft in Prob. 3–73, p. 152, is part of a speed reducing compound gear train using 
20° spur gears. A gear on the input shaft drives gear A with a 2 to 1 speed reduction. Gear B 
drives a gear on the output shaft with a 5 to 1 speed reduction. The input shaft runs at 
1800 rev/min. All gears are to be of the same material. Since gear B is the smallest gear, 
transmitting the largest load, it will likely be critical, so a preliminary analysis is to be per-
formed on it. Use a module of 18.75 mm/tooth, a face-width of 4 times the circular pitch, a 
Grade 2 steel through-hardened to a Brinell hardness of 300, and a desired life of 12 kh with 
a 98 percent reliability. Determine factors of safety for bending and wear.



             14–38* Build on the results of Prob. 13–40, p. 720, to find factors of safety for bending and wear for 
gear F. Both gears are made from Grade 2 carburized and hardened steel. Use a face-width of 
4 times the circular pitch. The desired life is 12 kh with a 95 percent reliability.



             14–39* Build on the results of Prob. 13–41, p. 721, to find factors of safety for bending and wear for 
gear C. Both gears are made from Grade 2 carburized and hardened steel. Use a face-width of 
4 times the circular pitch. The desired life is 14 kh with a 98 percent reliability.
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            The American Gear Manufacturers Association (AGMA) has established standards for 
the analysis and design of the various kinds of bevel and worm gears. Chapter 14 was 
an introduction to the AGMA methods for spur and helical gears and contains many 
of the definitions of terms used in this chapter. AGMA has established similar methods 
for other types of gearing, which all follow the same general approach.



             15–1 Bevel Gearing—General
Bevel gears may be classified as follows:



            • Straight bevel gears



            • Spiral bevel gears



            • Zerol bevel gears



            • Hypoid gears



            • Spiroid gears



             A straight bevel gear was illustrated in Fig. 13–35, p. 701. These gears are usu-
ally used for pitch-line velocities up to 1000 ft/min (5 m/s) when the noise level is 
not an important consideration. They are available in many stock sizes and are less 
expensive to produce than other bevel gears, especially in small quantities.
 A spiral bevel gear is shown in Fig. 15–1; the definition of the spiral angle is 
illustrated in Fig. 15–2. These gears are recommended for higher speeds and where 
the noise level is an important consideration. Spiral bevel gears are the bevel coun-
terpart of the helical gear; it can be seen in Fig. 15–1 that the pitch surfaces and the 
nature of contact are the same as for straight bevel gears except for the differences 
brought about by the spiral-shaped teeth.
 The Zerol bevel gear is a patented gear having curved teeth but with a zero spiral 
angle. The axial thrust loads permissible for Zerol bevel gears are not as large as those 
for the spiral bevel gear, and so they are often used instead of straight bevel gears. The 
Zerol bevel gear is generated by the same tool used for regular spiral bevel gears. For 
design purposes, use the same procedure as for straight bevel gears and then simply 
substitute a Zerol bevel gear.



            Figure 15–1
Spiral bevel gears. (Courtesy of 
Gleason Works, Rochester, N.Y.)
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             It is frequently desirable, as in the case of automotive differential applications, 
to have gearing similar to bevel gears but with the shafts offset. Such gears are called 
hypoid gears, because their pitch surfaces are hyperboloids of revolution. The tooth 
action between such gears is a combination of rolling and sliding along a straight line 
and has much in common with that of worm gears. Figure 15–3 shows a pair of 
hypoid gears in mesh.
 Figure 15–4 is included to assist in the classification of spiral bevel gearing. It 
is seen that the hypoid gear has a relatively small shaft offset. For larger offsets, the 
pinion begins to resemble a tapered worm and the set is then called spiroid gearing.



            Figure 15–2
Cutting spiral-gear teeth on 
the basic crown rack.



            Basic crown rack



            Cutter radius



            Spiral
angle



            Mean radius
of crown rack



            Circular pitch



            Face advance



            !



            Figure 15–3
Hypoid gears. (Courtesy of 
Gleason Works, Rochester, N.Y.)
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             15–2 Bevel-Gear Stresses and Strengths
In a typical bevel-gear mounting, Fig. 13–36, p. 702, for example, one of the gears is 
often mounted outboard of the bearings. This means that the shaft deflections can be 
more pronounced and can have a greater effect on the nature of the tooth contact. 
Another difficulty that occurs in predicting the stress in bevel-gear teeth is the fact that 
the teeth are tapered. Thus, to achieve perfect line contact passing through the cone cen-
ter, the teeth should bend more at the large end than at the small end. To obtain this 
condition requires that the load be proportionately greater at the large end. Because of this 
varying load across the face of the tooth, it is desirable to have a fairly short face width.
 Because of the complexity of bevel, spiral bevel, Zerol bevel, hypoid, and spiroid 
gears, as well as the limitations of space, only a portion of the applicable standards 
that refer to straight-bevel gears is presented here.1 Table 15–1 gives the symbols used 
in ANSI/AGMA 2003-B97.



            Fundamental Contact Stress Equation



              sc 5 sc 5 Cp a Wt



            F dP 
I
 Ko  



            Kv  
Km  



            Cs  
Cxcb1y2



             
 



            (U.S. customary units)



              sH 5 ZE a1000Wt



            bd Z1
 KA Kv KHb Zx Zxcb1y2



                (SI units)  



            (15–1)



            The first term in each equation is the AGMA symbol, whereas sc, our normal notation, 
is directly equivalent.



            Figure 15–4
Comparison of intersecting- 
and offset-shaft bevel-type 
gearings. (From Gear 
Handbook by Darle W. Dudley, 
1962, pp. 2–24.)



            Worm



            Spiroid



            Hypoid



            Spiral bevel



            Ring gear



            1Figures 15–5 to 15–13 and Tables 15–1 to 15–7 have been extracted from ANSI/AGMA 2003-B97, 
Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral 
Bevel Gear Teeth with the permission of the publisher, the American Gear Manufacturers Association, 
1001 N. Fairfax Street, Suite 500, Alexandria, VA, 22314-1587.
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            AGMA  ISO
Symbol Symbol Description Units



            Am Rm Mean cone distance in (mm)
A0 Re Outer cone distance in (mm)
CH ZW Hardness ratio factor for pitting resistance
Ci Zi Inertia factor for pitting resistance
CL ZNT Stress cycle factor for pitting resistance
Cp ZE Elastic coefficient [lbf/in2]0.5 



               ([N/mm2]0.5)
CR ZZ Reliability factor for pitting
CSF  Service factor for pitting resistance
CS Zx Size factor for pitting resistance
Cxc Zxc Crowning factor for pitting resistance
D, d de2, de1 Outer pitch diameters of gear and pinion, respectively in (mm)
EG, EP E2, E1 Young’s modulus of elasticity for materials of gear and pinion, respectively lbf/in2 



               (N/mm2)
e e Base of natural (Napierian) logarithms
F b Net face width in (mm)



            FeG, FeP b92, b91 Effective face widths of gear and pinion, respectively in (mm)
fP Ra1 Pinion surface roughness min (mm)
HBG HB2 Minimum Brinell hardness number for gear material HB
HBP HB1 Minimum Brinell hardness number for pinion material HB
hc Eht min Minimum total case depth at tooth middepth in (mm)
he h9c Minimum effective case depth in (mm)
he lim h9c lim Suggested maximum effective case depth limit at tooth middepth in (mm)
I ZI Geometry factor for pitting resistance
J YJ Geometry factor for bending strength
JG, JP YJ2, YJ1 Geometry factor for bending strength for gear and pinion, respectively
KF YF Stress correction and concentration factor
Ki Yi Inertia factor for bending strength
KL YNT Stress cycle factor for bending strength
Km KHb Load distribution factor
Ko KA Overload factor
KR Yz Reliability factor for bending strength
KS YX Size factor for bending strength
KSF  Service factor for bending strength
KT Ku Temperature factor
Kv Kv Dynamic factor
Kx Yb Lengthwise curvature factor for bending strength
 met Outer transverse module (mm)
 mmt Mean transverse module (mm)
 mmn Mean normal module (mm)
mNI eNI Load sharing ratio, pitting
mNJ eNJ Load sharing ratio, bending
N z2 Number of gear teeth
NL nL Number of load cycles
n z1 Number of pinion teeth
nP n1 Pinion speed rev/min



            Table 15–1



            Symbols Used in Bevel Gear Rating Equations, ANSI/AGMA 2003-B97 Standard Source: ANSI/AGMA 2003-B97.



            (Continued )
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            P P Design power through gear pair hp (kW)
Pa Pa Allowable transmitted power hp (kW)
Pac Paz Allowable transmitted power for pitting resistance hp (kW)
Pacu Pazu Allowable transmitted power for pitting resistance at unity service factor hp (kW)
Pat Pay Allowable transmitted power for bending strength hp (kW)
Patu Payu Allowable transmitted power for bending strength at unity service factor hp (kW)
Pd  Outer transverse diametral pitch teeth/in
Pm  Mean transverse diametral pitch teeth/in
Pmn  Mean normal diametral pitch teeth/in
Qv Qv Transmission accuracy number
q q Exponent used in formula for lengthwise curvature factor
R, r rmpt2, rmpt1 Mean transverse pitch radii for gear and pinion, respectively in (mm)
Rt, rt rmyo2, rmyo1 Mean transverse radii to point of load application for gear  in (mm)
  and pinion, respectively
rc rc 0 Cutter radius used for producing Zerol bevel and spiral bevel gears in (mm)
s gc Length of the instantaneous line of contact between mating tooth surfaces in (mm)
sac sH lim Allowable contact stress number lbf/in2 



               (N/mm2)
sat sF lim Bending stress number (allowable) lbf/in2 
   (N/mm2)
sc sH Calculated contact stress number lbf/in2 
   (N/mm2)
sF sF Bending safety factor
sH sH Contact safety factor
st sF Calculated bending stress number lbf/in2 
   (N/mm2)
swc sHP Permissible contact stress number lbf/in2 
   (N/mm2)
swt sFP Permissible bending stress number lbf/in2 
   (N/mm2)
TP T1 Operating pinion torque lbf in (Nm)
TT uT Operating gear blank temperature °F(°C)
t0 sai Normal tooth top land thickness at narrowest point in (mm)
Uc Uc Core hardness coefficient for nitrided gear lbf/in2 
   (N/mm2)
UH UH Hardening process factor for steel lbf/in2 
   (N/mm2)
vt vet Pitch-line velocity at outer pitch circle ft/min (m/s)
YKG, YKP YK2, YK1 Tooth form factors including stress-concentration factor for gear 
  and pinion, respectively
mG, mp n2, n1 Poisson’s ratio for materials of gear and pinion, respectively
r0 ryo Relative radius of profile curvature at point of maximum contact stress  in (mm)
  between mating tooth surfaces
f an Normal pressure angle at pitch surface
ft awt Transverse pressure angle at pitch point
c bm Mean spiral angle at pitch surface
cb bmb Mean base spiral angle



            Table 15–1



            Symbols Used in Bevel Gear Rating Equations, ANSI/AGMA 2003-B97 Standard (Continued )



            AGMA  ISO
Symbol Symbol Description Units
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            Permissible Contact Stress Number (Strength) Equation



              swc 5 (sc)all 5
sacCLCH



            SHKTCR
  (U.S. customary units)



              sHP 5
sH lim ZNT ZW



            SHKuZZ
     (SI units)  



            (15–2)



            Bending Stress



              st 5
Wt



            F
Pd KoKv



            Ks Km



            Kx J
      (U.S. customary units)



              sF 5
1000Wt



            b
 
KAKv



            met
 
Yx KHb



            YbYJ
  (SI units)  



            (15–3)



            Permissible Bending Stress Equation



              swt 5
satKL



            SF KT KR
   (U.S. customary units)



              sFP 5
sF lim YNT



            SF Ku Yz
  (SI units)  



            (15–4)



             15–3 AGMA Equation Factors
Overload Factor Ko (KA)
The overload factor makes allowance for any externally applied loads in excess of the 
nominal transmitted load. Table 15–2, from Appendix A of 2003-B97, is included for 
your guidance.



            Safety Factors SH and SF



            The factors of safety SH and SF as defined in 2003-B97 are adjustments to strength, 
not load, and consequently cannot be used as is to assess (by comparison) whether 
the threat is from wear fatigue or bending fatigue. Since W t is the same for the pinion 
and gear, the comparison of 1SH to SF allows direct comparison.



            Dynamic Factor Kv



            In 2003-C87 AGMA changed the definition of Kv to its reciprocal but used the same 
symbol. Other standards have yet to follow this move. The dynamic factor Kv makes 



            Character of Character of Load on Driven Machine
Prime Mover Uniform Light Shock Medium Shock Heavy Shock



            Uniform 1.00 1.25 1.50 1.75 or higher



            Light shock 1.10 1.35 1.60 1.85 or higher



            Medium shock 1.25 1.50 1.75 2.00 or higher



            Heavy shock 1.50 1.75 2.00 2.25 or higher



            Note: This table is for speed-decreasing drives. For speed-increasing drives, add 0.01(N/n)2 or 0.01(z2/z1)
2 



            to the above factors.



            Table 15–2



            Overload Factors Ko (KA)
Source: ANSI/AGMA
2003-B97.
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            allowance for the effect of gear-tooth quality related to speed and load, and the 
increase in stress that follows. AGMA uses a transmission accuracy number Qv to 
describe the precision with which tooth profiles are spaced along the pitch circle. 
Figure 15–5 shows graphically how pitch-line velocity and transmission accuracy 
number are related to the dynamic factor Kv. Curve fits are



              Kv 5 aA 1 1vt



            A
bB



                  (U.S. customary units)



              Kv 5 aA 1 1200vet



            A
bB



               (SI units)  



            (15–5)



            where



              A 5 50 1 56(1 2 B)



              B 5 0.25(12 2 Qv)2y3 
(15–6)



            and vt (vet) is the pitch-line velocity at outside pitch diameter, expressed in ft/min (m/s):



              vt 5 p
 
dP 



            nPy12     (U.S. customary units)



              vet 5 5.236(1025)d1 
n1  (SI units)  



            (15–7)



            The maximum recommended pitch-line velocity is associated with the abscissa of the 
terminal points of the curve in Fig. 15–5:



              vt max 5 [A 1 (Qv 2 3)]2    (U.S. customary units)



              vet max 5
[A 1 (Qv 2 3)]2



            200
   (SI units)  



            (15–8)



            where vt max and vet max are in ft/min and m/s, respectively.



            Figure 15–5
Dynamic factor Kv.
(Source: ANSI/AGMA 
2003-B97.)
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            Size Factor for Pitting Resistance Cs (Zx)



             Cs 5 •0.5    F , 0.5 in
0.125F 1 0.4375   0.5 # F # 4.5 in
1    F . 4.5 in



                 (U.S. customary units)



             Zx 5 •0.5   b , 12.7 mm
0.004 92b 1 0.4375  12.7 # b # 114.3 mm
1   b . 114.3 mm



              (SI units) 



            (15–9)



            Size Factor for Bending Ks (Yx)



            KS 5 e0.4867 1 0.2132yPd



            0.5
   



            0.5 # Pd # 16 teeth/in
Pd . 16 teeth/in



             (U.S. customary units)



            Yx 5 e0.5
0.4867 1 0.008 339met



              
met , 1.6 mm
1.6 # met # 50 mm



                (SI units) 



            (15–10)



            Load-Distribution Factor Km (KHB)



             Km 5 Kmb 1 0.0036 F2   (U.S. customary units)



             KHb 5 Kmb 1 5.6(1026)b2  (SI units) 
(15–11)



            where 



            Kmb 5 •1.00  both members straddle-mounted
1.10  one member straddle-mounted
1.25  neither member straddle-mounted



            Crowning Factor for Pitting Cxc (Zxc)
The teeth of most bevel gears are crowned in the lengthwise direction during manu-
facture to accommodate the deflection of the mountings.



             Cxc 5 Zxc 5 e1.5  properly crowned teeth
2.0  or larger uncrowned teeth



             (15–12)



            Lengthwise Curvature Factor for Bending Strength Kx (YB)
For straight-bevel gears,



             Kx 5 Yb 5 1 (15–13)



            Pitting Resistance Geometry Factor I (ZI)
Figure 15–6 shows the geometry factor I (ZI) for straight-bevel gears with a 20° pres-
sure angle and 90° shaft angle. Enter the figure ordinate with the number of pinion 
teeth, move to the number of gear-teeth contour, and read from the abscissa.



            Bending Strength Geometry Factor J (YJ)
Figure 15–7 shows the geometry factor J for straight-bevel gears with a 20° pressure 
angle and 90° shaft angle.
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            Figure 15–6
Contact geometry factor I (ZI) 
for coniflex straight-bevel gears 
with a 20° normal pressure 
angle and a 90° shaft angle.
(Source: ANSI/AGMA 
2003-B97.)
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            Figure 15–7
Bending factor J (YJ) for 
coniflex straight-bevel gears 
with a 20° normal pressure 
angle and 90° shaft angle.
(Source: ANSI/AGMA 
2003-B97.)
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            Stress-Cycle Factor for Pitting Resistance CL (ZNT)



             CL 5 e2   103 # NL , 104



            3.4822N20.0602
L   104 # NL # 1010



             ZNT 5 e2   103 # nL , 104



            3.4822n20.0602
L   104 # nL # 1010 



            (15–14)



            See Fig. 15–8 for a graphical presentation of Eqs. (15–14).



            Stress-Cycle Factor for Bending Strength KL (YNT)



            KL 5 µ 2.7   102 # NL , 103



            6.1514N20.1192
L   103 # NL , 3(106)



            1.683N20.0323
L   3(106) # NL # 1010           critical



            1.3558N20.0178
L   3(106) # NL # 1010           general



             



            (15–15)



            YNT 5 µ 2.7   102 # nL , 103



            6.1514n20.1192
L   103 # nL , 3(106)



            1.683n20.0323
L   3(106) # nL # 1010           critical



            1.3558n20.0178
L   3(106) # nL # 1010           general



            See Fig. 15–9 for a plot of Eqs. (15–15).



            Figure 15–8
Contact stress-cycle factor for pitting resistance CL (ZNT) for carburized case-hardened steel bevel gears.
(Source: ANSI/AGMA 2003-B97.)
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            Hardness-Ratio Factor CH (ZW)



             CH 5 1 1 B1(Nyn 2 1)    B1 5 0.008 98(HBPyHBG) 2 0.008 29



             ZW 5 1 1 B1(z2yz1 2 1)   B1 5 0.008 98(HB1yHB2) 2 0.008 29 
(15–16)



            The preceding equations are valid when 1.2 # HBPyHBG # 1.7 (1.2 # HB1yHB2 # 1.7). 
Figure 15–10 graphically displays Eqs. (15–16). When a surface-hardened pinion 
(48 HRC or harder) is run with a through-hardened gear (180 # HB # 400), a work-
hardening effect occurs. The CH (ZW) factor varies with pinion surface roughness fP (Ra1) 
and the mating-gear hardness:



             CH 5 1 1 B2(450 2 HBG)   B2 5 0.000 75 exp(20.0122 fP)



              ZW 5 1 1 B2(450 2 HB2)    B2 5 0.000 75 exp(20.52 Ra1)  
(15–17)



            where fP (Ra1) 5 pinion surface hardness min (mm)



             HBG (HB2) 5 minimum Brinell hardness of the gear



            See Fig. 15–11 for carburized steel gear pairs of approximately equal hardness CH 5 
ZW 5 1.



            Temperature Factor KT (KU)



             KT 5 e1 32°F # t # 250°F
(460 1 t)y710 t . 250°F



              Ku 5 e1 0°C # u # 120°C
(273 1 u)y393 u . 120°C



             



            (15–18)
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            Figure 15–9
Stress-cycle factor for bending strength KL (YNT) for carburized case-hardened steel bevel gears.
(Source: ANSI/AGMA 2003-B97.)
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            Reliability Factors CR (ZZ) and KR (YZ)
Table 15–3 displays the reliability factors. Note that CR 5 1KR and ZZ 5 1YZ. 
Logarithmic interpolation equations are



             YZ 5 KR 5 e0.50 2 0.25 log(1 2 R)  0.99 # R # 0.999
0.70 2 0.15 log(1 2 R)  0.90 # R , 0.99



             
(15–19)
(15–20)



            The reliability of the stress (fatigue) numbers allowable in Tables 15–4, 15–5, 15–6, 
and 15–7 is 0.99.



            Figure 15–10
Hardness-ratio factor CH (ZW) 
for through-hardened pinion 
and gear.
(Source: ANSI/AGMA
2003-B97.)



            H
ar



            dn
es



            s-
ra



            tio
 fa



            ct
or



            , C
H



             (
Z



            W
)



            Reduction gear ratio, N/n (z2/z1)
0 2 4 6 8 10 12 14 16 18 20



            1.00



            1.02



            1.04



            1.06



            1.08



            1.10



            1.12



            1.14



            1.7



            1.6



            1.5



            1.4



            1.3



            1.2



            C
al



            cu
la



            te
d 



            ha
rd



            ne
ss



             ra
tio



            ,
H



            B
G



            H
B



            P



            H
B



            2



            H
B



            1



            < 1.2



            When



            use CH (ZW) = 1



            HBG



            HBP



            HB2



            HB1



            Figure 15–11
Hardness-ratio factor CH (ZW) 
for surface-hardened pinions. 
(Source: ANSI/AGMA
2003-B97.)
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            Elastic Coefficient for Pitting Resistance Cp (ZE)



             Cp 5 B 1



            p[(1 2 n2
P)yEP 1 (1 2 n2



            G)yEG]



              ZE 5 B 1



            p[(1 2 n2
1)yE1 1 (1 2 n2



            2)yE2]
 



            (15–21)



             Reliability
 Factors for Steel*
Requirements of Application CR (ZZ) KR (YZ)†



            Fewer than one failure in 10 000 1.22 1.50



            Fewer than one failure in 1000 1.12 1.25



            Fewer than one failure in 100 1.00 1.00



            Fewer than one failure in 10 0.92 0.85‡



            Fewer than one failure in 2 0.84 0.70§



            *At the present time there are insufficient data concerning the reliability of bevel 
gears made from other materials.
†Tooth breakage is sometimes considered a greater hazard than pitting. In such cases 
a greater value of KR (YZ) is selected for bending.
‡At this value plastic flow might occur rather than  pitting.
§From test data extrapolation.



            Table 15–3



            Reliability Factors
Source: ANSI/AGMA
2003-B97.



            Table 15–4



            Allowable Contact Stress Number for Steel Gears, sac (sH  lim) Source: ANSI/AGMA 2003-B97.



              Minimum Allowable Contact Stress Number,
Material Heat Surface* sac



             (SH lim) lbf/in2 (N/mm2)
Designation Treatment Hardness Grade 1 † Grade 2† Grade 3†



            Steel Through-hardened‡ Fig. 15–12  Fig. 15–12 Fig. 15–12



             Flame or induction 50 HRC 175 000 190 000
 hardened§  (1210) (1310)



             Carburized and  2003-B97 200 000 225 000 250 000
 case hardened§ Table 8 (1380) (1550) (1720)



            AISI 4140 Nitrided§ 84.5 HR15N  145 000
    (1000)



            Nitralloy    160 000
135M Nitrided§ 90.0 HR15N  (1100)



            *Hardness to be equivalent to that at the tooth middepth in the center of the face width.
†See ANSI/AGMA 2003-B97, Tables 8 through 11, for metallurgical factors for each stress grade of steel gears.
‡These materials must be annealed or normalized as a minumum.
§The allowable stress numbers indicated may be used with the case depths prescribed in 21.1, ANSI/AGMA 2003-B97.
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            where Cp 5 elastic coefficient, 2290 1psi for steel



             ZE 5 elastic coefficient, 190 2N/mm2 for steel



             EP and EG 5 Young’s moduli for pinion and gear respectively, psi



             E1 and E2 5 Young’s moduli for pinion and gear respectively, N/mm2



            Allowable Contact Stress
Tables 15–4 and 15–5 provide values of sac (sH) for steel gears and for iron gears, 
respectively. Figure 15–12 graphically displays allowable stress for grade 1 and 2 
materials.



             
Material Designation



               Typical Minimum Allowable Contact
   Heat Surface Stress Number, sac



             



            Material ASTM ISO Treatment Hardness (SH lim) lbf/in2 (N/mm2)



            Cast iron ASTM A48 ISO/DR 185
 Class 30 Grade 200 As cast 175 HB  50 000 (345)
 Class 40 Grade 300 As cast 200 HB  65 000 (450)



            Ductile ASTM A536 ISO/DIS 1083
(nodular) Grade 80-55-06 Grade 600-370-03 Quenched 180 HB  94 000 (650)
iron Grade 120-90-02 Grade 800-480-02 and tempered 300 HB 135 000 (930)



            Table 15–5



            Allowable Contact Stress Number for Iron Gears, sac (sH lim) Source: ANSI/AGMA 2003-B97.



              Minimum Bending Stress Number (Allowable),  
Material Heat Surface sat (SF lim) lbf/in2 (N/mm2)
Designation Treatment Hardness Grade 1* Grade 2* Grade 3*



            Steel Through-hardened Fig. 15–13 Fig. 15–13 Fig. 15–13



             Flame or induction hardened
   Unhardened roots 50 HRC 15 000 (85) 13 500 (95)
   Hardened roots  22 500 (154)



             Carburized and case 2003-B97
   hardened† Table 8 30 000 (205) 35 000 (240) 40 000 (275)



            AISI 4140 Nitrided†,‡ 84.5 HR15N  22 000 (150)



            Nitralloy 135M Nitrided†,‡ 90.0 HR15N  24 000 (165)



            *See ANSI/AGMA 2003-B97, Tables 8–11, for metallurgical factors for each stress grade of steel gears.
†The allowable stress numbers indicated may be used with the case depths prescribed in 21.1, ANSI/AGMA 2003-B97.
‡The overload capacity of nitrided gears is low. Since the shape of the effective S-N curve is flat, the sensitivity to shock should be 
investigated before proceeding with the design.



            Table 15–6



            Allowable Bending Stress Numbers for Steel Gears, sat (sF  lim) Source: ANSI/AGMA 2003-B97.
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             The equations are



             



            sac 5 341HB 1 23 620 psi grade 1
sH lim 5 2.35HB 1 162.89 MPa  grade 1
sac 5 363.6HB 1 29 560 psi grade 2
sH lim 5 2.51HB 1 203.86 MPa grade 2



             (15–22)



            Allowable Bending Stress Numbers
Tables 15–6 and 15–7 provide sat (sF lim) for steel gears and for iron gears, respec-
tively. Figure 15–13 shows graphically allowable bending stress sat (sH lim) for through-
hardened steels. The equations are



             



            sat 5 44HB 1 2100 psi grade 1
sF lim 5 0.30HB 1 14.48 MPa  grade 1
sat 5 48HB 1 5980 psi grade 2
sH lim 5 0.33HB 1 41.24 MPa grade 2



             (15–23)



            Reversed Loading
AGMA recommends use of 70 percent of allowable strength in cases where tooth load 
is completely reversed, as in idler gears and reversing mechanisms.



            Summary
Figure 15–14 is a “road map” for straight-bevel gear wear relations using 2003-B97. 
Figure 15–15 is a similar guide for straight-bevel gear bending using 2003-B97.



             
Material Designation



               Typical Minimum Bending Stress Number
   Heat Surface (Allowable), sat



             



            Material ASTM ISO Treatment Hardness (SF lim) lbf/in2 (N/mm2)



            Cast iron ASTM A48 ISO/DR 185
 Class 30 Grade 200 As cast 175 HB 4500 (30)
 Class 40 Grade 300 As cast 200 HB 6500 (45)



            Ductile ASTM A536 ISO/DIS 1083
(nodular) Grade 80-55-06 Grade 600-370-03 Quenched 180 HB 10 000 (70)
iron Grade 120-90-02 Grade 800-480-02 and tempered 300 HB 13 500 (95)



            Table 15–7



            Allowable Bending Stress Number for Iron Gears, sat (sF lim) Source: ANSI/AGMA 2003-B97.
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            Figure 15–12
Allowable contact stress 
number for through-hardened 
steel gears, sac (sH lim).
(Source: ANSI/AGMA
2003-B97.)
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            Figure 15–13
Allowable bending stress 
number for through-hardened 
steel gears, sat (sF lim).
(Source: ANSI/AGMA
2003-B97.)
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            Figure 15–14
“Road map” summary of 
principal straight-bevel gear 
wear equations and their 
parameters.



            STRAIGHT-BEVEL GEAR WEAR
BASED ON ANSI /AGMA 2003-B97 (U.S. customary units)
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            Swc = (!c)all =
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            At large end of tooth
Table 15-2, p. 783



            Eqs. (15-5) to (15-8), p. 784
Eq. (15-11), p. 785



            Tables 15-4, 15-5, Fig. 15-12, Eq. (15-22), pp. 790–792
Fig. 15-8, Eq. (15-14), p. 787
Eqs. (15-16), (15-17), gear only, p. 788



            Eq. (15-12), p. 785



            Eq. (15-9), p. 785



            Eqs. (15-19), (15-20), Table 15-3, pp. 789, 790
Eq. (15-18), p. 788
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Eq. (15-21), p. 790
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            (!c)all
!c( )2
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             The standard does not mention specific steel but mentions the hardness attainable 
by heat treatments such as through-hardening, carburizing and case-hardening, flame-
hardening, and nitriding. Through-hardening results depend on size (diametral pitch). 
Through-hardened materials and the corresponding Rockwell C-scale hardness at the 
90 percent martensite shown in parentheses following include 1045 (50), 1060 (54), 
1335 (46), 2340 (49), 3140 (49), 4047 (52), 4130 (44), 4140 (49), 4340 (49), 5145 (51), 
E52100 (60), 6150 (53), 8640 (50), and 9840 (49). For carburized case-hard materials 
the approximate core hardnesses are 1015 (22), 1025 (37), 1118 (33), 1320 (35), 2317 
(30), 4320 (35), 4620 (35), 4820 (35), 6120 (35), 8620 (35), and E9310 (30). The 
conversion from HRC to HB (300-kg load, 10-mm ball) is



            HRC 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10



            HB     388 375 352 331 321 301 285 269 259 248 235 223 217 207 199 192 187



            Figure 15–15
“Road map” summary of 
principal straight-bevel gear 
bending equations and their 
parameters.



            STRAIGHT-BEVEL GEAR BENDING
BASED ON ANSI /AGMA 2003-B97 (U.S. customary units)



            Gear
bending
stress



            Gear
bending
strength



            Bending
factor
of safety



            Geometry Force Analysis Strength Analysis



            dP =
NP
Pd



            dav = dP − F cos !



            ! =
NP
NG



            tan−1



            ! =
NG
NP



            tan−1



            W t =



            W r = W t tan" cos!



            W a = W t tan" sin!



            2T
dav



            W t =



            W r = W t tan" cos!



            W a = W t tan" sin!



            2T
dP



            Swt = #all =
sat KL



            SF KT KR



            At large end of tooth



            Table 15-2, p. 783
Eqs. (15-5) to (15-8), p. 784



            Eq. (15-11), p. 785
Eq. (15-10), p. 785



            Table 15-6 or 15-7, pp. 791, 792
Fig. 15-9, Eq. (15-15), pp. 788, 787



            Fig. 15-7, p. 786



            Eq. (15-13), p. 785



            Eqs. (15-19), (15-20), Table 15-3, pp. 789, 790
Eq. (15-18), p. 788



            SF =       , based on strength
#all
#



            nB =       , based on W t , same as SF
#all
#



            St = # = Pd Ko Kv
W t



            F
Ks Km
Kx J
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             Most bevel-gear sets are made from carburized case-hardened steel, and the factors 
incorporated in 2003-B97 largely address these high-performance gears. For through-
hardened gears, 2003-B97 is silent on KL and CL, and Figs. 15–8 and 15–9 should 
prudently be considered as approximate.



             15–4 Straight-Bevel Gear Analysis



             EXAMPLE 15–1 A pair of identical straight-tooth miter gears listed in a catalog has a diametral pitch of 
5 at the large end, 25 teeth, a 1.10-in face width, and a 20° normal pressure angle; the 
gears are grade 1 steel through-hardened with a core and case hardness of 180 Brinell. 
The gears are uncrowned and intended for general industrial use. They have a quality 
number of Qv 5 7. It is likely that the application intended will require outboard 
mounting of the gears. Use a safety factor of 1, a 107 cycle life, and a 0.99 reliability.
(a) For a speed of 600 rev/min find the power rating of this gearset based on AGMA 
bending strength.
(b) For the same conditions as in part (a) find the power rating of this gearset based 
on AGMA wear strength.
(c) For a reliability of 0.995, a gear life of 109 revolutions, and a safety factor of 
SF 5 SH 5 1.5, find the power rating for this gearset using AGMA strengths.



             Solution From Figs. 15–14 and 15–15,



             dP 5 NPyPd 5 25y5 5 5.000 in



             vt 5 pdPnPy12 5 p(5) 600y12 5 785.4 ft /min



            Overload factor: uniform-uniform loading, Table 15–2, Ko 5 1.00.
Safety factor: SF 5 1, SH 5 1.
Dynamic factor Kv: from Eq. (15–6),



              B 5 0.25(12 2 7)2y3 5 0.731



              A 5 50 1 56(1 2 0.731) 5 65.06



              Kv 5 a65.06 1 2785.4
65.06



            b0.731



            5 1.299



            From Eq. (15–8),



             vt max 5 [65.06 1 (7 2 3)]2 5 4769 ft/min



            vt , vt max, that is, 785.4 , 4769 ft/min, therefore Kv is valid. From Eq. (15–10),



             Ks 5 0.4867 1 0.2132y5 5 0.529



            From Eq. (15–11),



             Kmb 5 1.25  and  Km 5 1.25 1 0.0036(1.10)2 5 1.254



            From Eq. (15–13), Kx 5 1. From Fig. 15–6, I 5 0.065; from Fig. 15–7, JP 5 0.216, 
JG 5 0.216. From Eq. (15–15),



             KL 5 1.683(107)20.0323 5 0.999 96 < 1
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From Eq. (15–14),



             CL 5 3.4822(107)20.0602 5 1.32



            Since HBPyHBG 5 1, then from Fig. 15–10, CH 5 1. From Eqs. (15–13) and (15–18), 
Kx 5 1 and KT 5 1, respectively. From Eq. (15–20),



             KR 5 0.70 2 0.15 log(1 2 0.99) 5 1,  CR 5 1KR 5 11 5 1



            (a) Bending: From Eq. (15–23),



             sat 5 44(180) 1 2100 5 10 020 psi



            From Eq. (15–3),



              st 5 s 5
W t



            F
 Pd KoKv 



            KsKm



            KxJ
5



            Wt



            1.10
 (5)(1)1.299 



            0.529(1.254)
(1)0.216



              5 18.13 W t



            From Eq. (15–4),



             swt 5
satKL



            SFKTKR
5



            10 020(1)
(1)(1)(1)



            5 10 020 psi



            Equating st and swt,



             18.13W t 5 10 020  W t 5 552.6 lbf



             Answer H 5
W tvt



            33 000
5



            552.6(785.4)
33 000



            5 13.2 hp



            (b) Wear: From Fig. 15–12,



            sac 5 341(180) 1 23 620 5 85 000 psi



            From Eq. (15–2),



             sc, all 5
sacCLCH



            SHKTCR
5



            85 000(1.32)(1)
(1)(1)(1)



            5 112 200 psi



            Now Cp 5 22901psi from definitions following Eq. (15–21). From Eq. (15–9),



             Cs 5 0.125(1.1) 1 0.4375 5 0.575



            From Eq. (15–12), Cxc 5 2. Substituting in Eq. (15–1) gives



              sc 5 Cp a W t



            FdPI
 KoKvKmCsCxcb1y2



              5 2290 c W t



            1.10(5)0.065
 (1)1.299(1.254)0.575(2) d 1y2



            5 52422Wt



            Equating sc and sc, all gives



             52422W t 5 112 200,  W t 5 458.1 lbf



             H 5
458.1(785.4)



            33 000
5 10.9 hp



            796    Mechanical Engineering Design



            bud98209_ch15_777-816.indd Page 796  11/14/13  7:07 PM f-496 bud98209_ch15_777-816.indd Page 796  11/14/13  7:07 PM f-496 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
Bevel and Worm Gears    797



            Rated power for the gearset is



             Answer H 5 min(12.9, 10.9) 5 10.9 hp



            (c) Life goal 109 cycles, R 5 0.995, SF 5 SH 5 1.5, and from Eq. (15–15),



             KL 5 1.683(109)20.0323 5 0.8618



            From Eq. (15–19),



            KR 5 0.50 2 0.25 log(1 2 0.995) 5 1.075,  CR 5 1KR 5 11.075 5 1.037



            From Eq. (15–14),



             CL 5 3.4822(109)20.0602 5 1



            Bending: From Eq. (15–23) and part (a), sat 5 10 020 psi. From Eq. (15–3),



             st 5 s 5
Wt



            1.10
 5(1)1.299 



            0.529(1.254)
(1)0.216



            5 18.13Wt



            From Eq. (15–4),



             swt 5
satKL



            SFKTKR
5



            10 020(0.8618)
1.5(1)1.075



            5 5355 psi



            Equating st to swt gives



             18.13W t 5 5355  W t 5 295.4 lbf



              H 5
295.4(785.4)



            33 000
5 7.0 hp



            Wear: From Eq. (15–22), and part (b), sac 5 85 000 psi.
 Substituting into Eq. (15–2) gives



             sc,all 5
sacCLCH



            SHKTCR
5



            85 000(1)(1)
1.5(1)1.037



            5 54 640 psi



            Substituting into Eq. (15–1) gives, from part (b), sc 5 52422W t.
 Equating sc to sc, all gives



             sc 5 sc,all 5 54 640 5 52422W t  W t 5 108.6 lbf



            The wear power is



             H 5
108.6(785.4)



            33 000
5 2.58 hp



             Answer The mesh rated power is H 5 min (7.0, 2.58) 5 2.6 hp.
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             15–5 Design of a Straight-Bevel Gear Mesh
A useful decision set for straight-bevel gear design is



            • Function: power, speed, mG, R



            • Design factor: nd



            • Tooth system



            • Tooth count: NP, NG



            • Pitch and face width: Pd, F



            • Quality number: Qv



            • Gear material, core and case hardness



            • Pinion material, core and case hardness



            In bevel gears the quality number is linked to the wear strength. The J factor for the 
gear can be smaller than for the pinion. Bending strength is not linear with face width, 
because added material is placed at the small end of the teeth. Consequently, face 
width is roughly prescribed as



             F 5 min(0.3A0, 10yPd) (15–24)



            where A0 is the cone distance (see Fig. 13–20, p. 682), given by



             A0 5
dP



            2 sin g
5



            dG



            2 sin G
 (15–25)



            t A priori decisions



            t Design decisions



             EXAMPLE 15–2 Design a straight-bevel gear mesh for shaft centerlines that intersect perpendicularly, 
to deliver 6.85 hp at 900 rev/min with a gear ratio of 3:1, temperature of 300°F, 
normal pressure angle of 20°, using a design factor of 2. The load is uniform-uniform. 
Use a pinion of 20 teeth. The material is to be AGMA grade 1 and the teeth are to 
be crowned. The reliability goal is 0.995 with a pinion life of 109 revolutions.



             Solution First we list the a priori decisions and their immediate consequences.



            Function: 6.85 hp at 900 rev/min, gear ratio mG 5 3, 300°F environment, neither 
gear straddle-mounted, Kmb 5 1.25 [Eq. (15–11)], R 5 0.995 at 109 revolutions of 
the pinion,



            Eq. (15–14):  (CL)G 5 3.4822(109y3)20.0602 5 1.068



              (CL)P 5 3.4822(109)20.0602 5 1



            Eq. (15–15):  (KL)G 5 1.683(109y3)20.0323 5 0.8929



              (KL)P 5 1.683(109)20.0323 5 0.8618



            Eq. (15–19):  KR 5 0.50 2 0.25 log(1 2 0.995) 5 1.075



              CR 5 1KR 5 11.075 5 1.037



            Eq. (15–18):  KT 5 CT 5 (460 1 300)y710 5 1.070
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            Design factor: nd 5 2, SF 5 2, SH 5 12 5 1.414.



            Tooth system: crowned, straight-bevel gears, normal pressure angle 20°,



            Eq. (15–13):  Kx 5 1



            Eq. (15–12):  Cxc 5 1.5.



            With NP 5 20 teeth, NG 5 (3)20 5 60 teeth and from Fig. 15–14,



            g 5 tan21(NPyNG) 5 tan21(20y60) 5 18.43°  G 5 tan21(60y20) 5 71.57°



            From Figs. 15–6 and 15–7, I 5 0.0825, JP 5 0.248, and JG 5 0.202. Note that
JP . JG.



            Decision 1: Trial diametral pitch, Pd 5 8 teeth/in.



            Eq. (15–10):  Ks 5 0.4867 1 0.2132y8 5 0.5134



              dP 5 NPyPd 5 20y8 5 2.5 in



              dG 5 2.5(3) 5 7.5 in



              vt 5 pdPnPy12 5 p(2.5)900y12 5 589.0 ft/min



              W t 5 33 000 hp/vt 5 33 000(6.85)y589.0 5 383.8 lbf



            Eq. (15–25):  A0 5 dPy(2 sin g) 5 2.5y(2 sin 18.43°) 5 3.954 in



            Eq. (15–24):



            F 5 min(0.3A0, 10yPd) 5 min[0.3(3.954), 10y8] 5 min(1.186, 1.25) 5 1.186 in



            Decision 2: Let F 5 1.25 in. Then,



            Eq. (15–9):  Cs 5 0.125(1.25) 1 0.4375 5 0.5937



            Eq. (15–11):  Km 5 1.25 1 0.0036(1.25)2 5 1.256



            Decision 3: Let the transmission accuracy number be 6. Then, from Eq. (15–6),



              B 5 0.25(12 2 6)2y3 5 0.8255



              A 5 50 1 56(1 2 0.8255) 5 59.77



            Eq. (15–5):  Kv 5 a59.77 1 2589.0
59.77



            b0.8255



            5 1.325



            Decision 4: Pinion and gear material and treatment. Carburize and case-harden grade 
ASTM 1320 to



             Core 21 HRC (HB is 229 Brinell)
 Case 55-64 HRC (HB is 515 Brinell)



            From Table 15–4, sac 5 200 000 psi and from Table 15–6, sat 5 30 000 psi.



            Gear bending: From Eq. (15–3), the bending stress is



              (st)G 5
Wt



            F
 PdKoKv 



            KsKm



            KxJG
5



            383.8
1.25



             8(1)1.325 



            0.5134(1.256)
(1)0.202



              5 10 390 psi
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The bending strength, from Eq. (15–4), is given by



             (swt)G 5 a satKL



            SFKTKR
b



            G
5



            30 000(0.8929)
2(1.070)1.075



            5 11 640 psi



            The strength exceeds the stress by a factor of 11640y10390 5 1.12, giving an actual 
factor of safety of (SF)G 5 2(1.12) 5 2.24.



            Pinion bending: The bending stress can be found from



             (st)P 5 (st)G 



            JG



            JP
5 10 390 



            0.202
0.248



            5 8463 psi



            The bending strength, again from Eq. (15–4), is given by



             (swt)P 5 a satKL



            SFKTKR
b



            P
5



            30 000(0.8618)
2(1.070)1.075



            5 11 240 psi



            The strength exceeds the stress by a factor of 11 240y8463 5 1.33, giving an actual 
factor of safety of (SF)P 5 2(1.33) 5 2.66.



            Gear wear: The load-induced contact stress for the pinion and gear, from Eq. (15–1), is



              sc 5 Cp a W t



            FdPI
 KoKvKmCsCxcb1y2



              5 2290 c 383.8
1.25(2.5)0.0825



            (1)1.325(1.256)0.5937(1.5) d 1y2



              5 107 560 psi



            From Eq. (15–2) the contact strength of the gear is



             (swc)G 5 asacCLCH



            SHKTCR
b



            G
5



            200 000(1.068)(1)22(1.070)1.037
5 136 120 psi



            The strength exceeds the stress by a factor of 136 120y107 560 5 1.266, giving an 
actual factor of safety of (SH)2



            G 5 1.2662(2) 5 3.21.



            Pinion wear: From Eq. (15–2) the contact strength of the pinion is



             (swc)P 5 a sacCLCH



            SH KT CR
b



            P
5



            200 000(1)(1)22(1.070)1.037
5 127 450 psi



            The strength exceeds the stress by a factor of 127 450y107 560 5 1.185, giving an 
actual factor of safety of (SH)2



            P 5 1.1852(2) 5 2.81.
 The actual factors of safety are 2.24, 2.66, 3.21, and 2.81. Making a direct com-
parison of the factors, we note that the primary threat is from gear bending. We also 
note that the other three factors of safety are considerably higher than the target design 
factor. If optimization is desired, our goal would be to make changes in the design 
decisions that drive the factors closer to 2.
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             15–6 Worm Gearing—AGMA Equation
Sections 13–11 and 13–17 introduced wormgearing and its force analysis and efficiency.  
Here, we will present a condensed version of the AGMA recommendations for cylin-
drical (single-enveloping) wormgearing2. For brevity, the equations will be shown for 
U.S. customary units only. Similar equations for SI units are available in the AGMA 
standards.
 Since they are essentially nonenveloping worm gears, the crossed helical gears, 
shown in Fig. 15–16, can be considered with other worm gearing. Crossed helical gears, 
and worm gears too, usually have a 90° shaft angle, though this need not be so. The 
relation between the shaft and helix angles is



             ^ 5 cP 6 cG (15–26)



            where ^  is the shaft angle. The plus sign is used when both helix angles are of the 
same hand, and the minus sign when they are of opposite hand. The subscript P in 
Eq. (15–26) refers to the pinion (worm); the subscript W is used for this same purpose. 
The subscript G refers to the gear, also called gear wheel, worm wheel, or simply the 
wheel. Table 15–8 gives cylindrical worm dimensions common to worm and gear.



            Figure 15–16
View of the pitch cylinders of 
a pair of crossed helical gears.



            Pitch cylinder
of B



            Pitch cylinder
of A



            Axis of B



            Axis of A



               Fn
  14.5° 20° 25°



            Quantity Symbol NW # 2 NW # 2 NW . 2



            Addendum a 0.3183px 0.3183px 0.286px



            Dedendum b 0.3683px 0.3683px 0.349px



            Whole depth ht 0.6866px 0.6866px 0.635px



            *The table entries are for a tangential diametral pitch of the gear of Pt 5 1.



            Table 15–8



            Cylindrical Worm 
Dimensions Common to 
Both Worm and Gear*



            2ANSI/AGMA 6034-B92, February 1992, Practice for Enclosed Cylindrical Wormgear Speed-Reducers 
and Gear Motors; and ANSI/AGMA 6022-C93, Dec. 1993, Design Manual for Cylindrical Wormgearing. 
Note: Equations (15–32) to (15–38) are contained in Annex C of 6034-B92 for informational purposes 
only. To comply with ANSI/AGMA 6034-B92, use the tabulations of these rating factors provided in the 
standard.
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             Good proportions indicate the worm pitch diameter d falls in the range



             
C 0.875



            3
# d #



            C0.875



            1.6
 (15–27)



            where C is the center-to-center distance. AGMA relates the allowable tangential force 
on the worm-gear tooth (W t)all to other parameters by



             (W t )all 5 CsD0.8
m FeCmCv (15–28)



            where Cs 5 materials factor



             Dm 5 mean gear diameter, in



             Fe 5 effective face width of the gear (actual face width, but not to exceed
 0.67dm, the mean worm diameter), in



             Cm 5 ratio correction factor



             Cv 5 velocity factor



            The friction force Wf is given by



             Wf 5
f W t



            cos l cos fn
 (15–29)



            where f 5 coefficient of friction



             l 5 lead angle at mean worm diameter



             fn 5 normal pressure angle



            The sliding velocity Vs at the mean worm diameter, in feet per minute, is



             Vs 5
pnW dm



            12 cos l
 (15–30)



            where nW 5 rotative speed of the worm and dm 5 mean worm diameter. The torque 
at the worm gear is



             TG 5
WtDm



            2
 (15–31)



            where Dm is the mean gear diameter.
 The parameters in Eq. (15–28) are, quantitatively,



             Cs 5 720 1 10.37C3  C # 3 in (15–32)



            For sand-cast gears,



             Cs 5 e1000   C . 3      Dm # 2.5 in
1190 2 477 log Dm  C . 3      Dm . 2.5 in



             (15–33)



            For chilled-cast gears,



             Cs 5 e1000   C . 3     Dm # 8 in
1412 2 456 log Dm  C . 3     Dm . 8 in



             (15–34)
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            For centrifugally cast gears,



             Cs 5 e1000   C . 3     Dm # 25 in
1251 2 180 log Dm  C . 3     Dm . 25 in



             (15–35)



            The ratio correction factor Cm for gear ratio mG is given by



             Cm 5 µ 0.0222m2
G 1 40mG 2 76 1 0.46  3 , mG # 20



            0.010722m2
G 1 56mG 1 5145   20 , mG # 76



            1.1483 2 0.006 58mG   mG . 76



             (15–36)



            The velocity factor Cv is given by



             Cv 5 •0.659 exp (20.0011Vs) Vs , 700 ft  /min
13.31 V 



            20.571
s 700 # Vs , 3000 ft  /min



            65.52 V 
20.774
s Vs . 3000 ft  /min



             (15–37)



            AGMA reports the coefficient of friction f as



             f 5 •0.15 Vs 5 0
0.124 exp (20.074V  



            0.645
s ) 0 , Vs # 10 ft  /min



            0.103 exp (20.110V  



            0.450
s ) 1 0.012 Vs . 10 ft   /min



             (15–38)



            Now we examine some worm-gear mesh geometry. The addendum a and dedendum b 
are



              a 5
px



            p
5 0.3183px  (15–39)



              b 5
1.157px



            p
5 0.3683px (15–40)



            The full depth ht is



             ht 5 µ 2.157px



            p
5 0.6866px px $ 0.16 in



            2.200px



            p
1 0.002 5 0.7003px 1 0.002 px , 0.16 in



             (15–41)



            The worm outside diameter do is



             do 5 d 1 2a (15–42)



            The worm root diameter dr is



             dr 5 d 2 2b (15–43)



            The worm-gear throat diameter Dt is



             Dt 5 D 1 2a (15–44)
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            where D is the worm-gear pitch diameter. The worm-gear root diameter Dr is



             Dr 5 D 2 2b (15–45)



            The clearance c is



             c 5 b 2 a (15–46)



            The worm face width (maximum) (FW)max is



             (FW)
 max 5 2 BaDt



            2
b2



            2 aD
2



            2 ab2



            5 222 Da (15–47)



            which was simplified using Eq. (15–44). The worm-gear face width FG is



             FG 5 e2 dmy3 px . 0.16 in
1.1252(do 1 2c)2 2 (do 2 4a)2 px # 0.16 in



             (15–48)



            The heat loss rate Hloss from the worm-gear case in ft ? lbf/min is



             Hloss 5 33 000(1 2 e)Hin (15–49)



            where e is efficiency, given by Eq. (13–46), p. 708, and Hin is the input horsepower 
from the worm. The overall coefficient h# CR for combined convective and radiative 
heat transfer from the worm-gear case in ft ? lbf/(min ? in2 ? °F) is



             h# CR 5 µ nW



            6494
1 0.13 no fan on worm shaft



            nW



            3939
1 0.13 fan on worm shaft



             (15–50)



            The temperature of the oil sump ts is given by



             ts 5 ta 1
Hloss



            h# CRA
5



            33 000(1 2 e)(H )in



            h# CRA
1 ta (15–51)



            where A is the case lateral area in in2, and ta is the ambient temperature in °F. 
Bypassing Eqs. (15–49), (15–50), and (15–51) one can apply the AGMA recommen-
dation for minimum lateral area Amin in in2 using



             Amin 5 43.20C1.7 (15–52)



             Because worm teeth are inherently much stronger than worm-gear teeth, they are 
not considered. The teeth in worm gears are short and thick on the edges of the face; 
midplane they are thinner as well as curved. Buckingham3 adapted the Lewis equation 
for this case:



             sa 5
W t



            G



            pnFey
 (15–53)



            where pn 5 px cos l and y is the Lewis form factor related to circular pitch. For fn 5 
14.5°, y 5 0.100; fn 5 20°, y 5 0.125; fn 5 25°, y 5 0.150; fn 5 30°, y 5 0.175.



            3Earle Buckingham, Analytical Mechanics of Gears, McGraw-Hill, New York, 1949, p. 495.
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             15–7 Worm-Gear Analysis
Compared to other gearing systems worm-gear meshes have a much lower mechani-
cal efficiency. Cooling, for the benefit of the lubricant, becomes a design constraint 
sometimes resulting in what appears to be an oversize gear case in light of its contents. 
If the heat can be dissipated by natural cooling, or simply with a fan on the wormshaft, 
simplicity persists. Water coils within the gear case or lubricant outpumping to an 
external cooler is the next level of complexity. For this reason, gear-case area is a 
design decision.
 To reduce cooling load, use multiple-thread worms. Also keep the worm pitch 
diameter as small as possible.
 Multiple-thread worms can remove the self-locking feature of many worm-gear 
drives. When the worm drives the gearset, the mechanical efficiency eW is given by



             eW 5
cos fn 2 f  tan l
cos fn 1 f  cot l



             (15–54)



            With the gear driving the gearset, the mechanical efficiency eG is given by



             eG 5
cos fn 2 f  cot l
cos fn 1 f  tan l



             (15–55)



            To ensure that the worm gear will drive the worm,



             f stat , cos fn tan l (15–56)



            where values of fstat can be found in ANSI/AGMA 6034-B92. To prevent the worm 
gear from driving the worm, refer to clause 9 of 6034-B92 for a discussion of self-
locking in the static condition.
 It is important to have a way to relate the tangential component of the gear force 
WG



            t to the tangential component of the worm force WW
t , which includes the role of 



            friction and the angularities of fn and l. Refer to Eq. (13–45), p. 708, solved for WW
t :



             W t
W 5 W t



            G 
cos fn sin l 1 f  cos l
cos fn cos l 2 f  sin l



             (15–57)



            In the absence of friction



            W t
W 5 W t



            G 
 
tan l



             The mechanical efficiency of most gearing is very high, which allows power in 
and power out to be used almost interchangeably. Worm gearsets have such poor 
efficiencies that we work with, and speak of, output power. The magnitude of the gear 
transmitted force WG



            t can be related to the output horsepower H0, the application fac-
tor Ka, the efficiency e, and design factor nd by



             W t
G 5



            33 000nd H0 Ka



            VGe
 (15–58)



            We use Eq. (15–57) to obtain the corresponding worm force WW
t . It follows that the 



            worm and gear transmitted powers in hp are



              HW 5
W t



            W VW



            33 000
5
pdW nW W



            t
W



            12(33 000)
 (15–59)



              HG 5
W t



            G VG



            33 000
5
pdG nG W



            t
G



            12(33 000)
 (15–60)
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            From Eq. (13–44), p. 708,



             Wf 5
f W t



            G



            f sin l 2 cos fn cos l
 (15–61)



            The sliding velocity of the worm at the pitch cylinder Vs is



             Vs 5
pdnW



            12 cos l
 (15–62)



            and the friction power Hf is given by



             Hf 5
ZWf ZVs



            33 000
 hp (15–63)



             Table 15–9 gives the largest lead angle lmax associated with normal pressure angle fn.



              Maximum Lead
 Fn Angle Lmax



             14.5° 16°



             20° 25°



             25° 35°



             30° 45°



            Table 15–9



            Largest Lead Angle 
Associated with a 
Normal Pressure Angle 
fn for Worm Gearing



             EXAMPLE 15–3 A single-thread steel worm rotates at 1800 rev/min, meshing with a 24-tooth worm 
gear transmitting 3 hp to the output shaft. The worm pitch diameter is 3 in and the 
tangential diametral pitch of the gear is 4 teeth/in. The normal pressure angle is 14.5°. 
The ambient temperature is 70°F. The application factor is 1.25 and the design factor 
is 1; gear face width is 2 in, lateral case area 600 in2, and the gear is chill-cast bronze.
(a) Find the gear geometry.
(b) Find the transmitted gear forces and the mesh efficiency.
(c) Is the mesh sufficient to handle the loading?
(d) Estimate the lubricant sump temperature.



             Solution (a) mG 5 NGyNW 5 24y1 5 24, gear: D 5 NGyPt 5 24y4 5 6.000 in, worm: 
d 5 3.000 in. The axial circular pitch px is px 5 pyPt 5 py4 5 0.7854 in. C 5 
(3 1 6)y2 5 4.5 in.



            Eq. (15–39):  a 5 pxyp 5 0.7854yp 5 0.250 in



            Eq. (15–40):  b 5 0.3683px 5 0.3683(0.7854) 5 0.289 in



            Eq. (15–41):  ht 5 0.6866px 5 0.6866(0.7854) 5 0.539 in



            Eq. (15–42):  do 5 3 1 2(0.250) 5 3.500 in



            Eq. (15–43):  dr 5 3 2 2(0.289) 5 2.422 in



            Eq. (15–44):  Dt 5 6 1 2(0.250) 5 6.500 in



            Eq. (15–45):  Dr 5 6 2 2(0.289) 5 5.422 in



            Eq. (15–46):  c 5 0.289 2 0.250 5 0.039 in



            Eq. (15–47):  (FW)max 5 212(6)0.250 5 3.464 in



            bud98209_ch15_777-816.indd Page 806  12/10/13  2:05 PM f-496 bud98209_ch15_777-816.indd Page 806  12/10/13  2:05 PM f-496 ~/Desktop/TempWork/Don't-Delete-Jobs/MH01996:Budynas:204~/Desktop/TempWork/Don't-Delete-Jobs/MH01996:Budynas:204


            

        



        
            

            
Bevel and Worm Gears    807



            The tangential speeds of the worm, VW, and gear, VG, are, respectively,



             VW 5 p(3)1800y12 5 1414 ft/min  VG 5
p(6)1800y24



            12
5 117.8 ft/min



            The lead of the worm, from Eq. (13–27), p. 688, is L 5 px NW 5 0.7854(1) 5 0.7854 in. 
The lead angle l, from Eq. (13–28), p. 688, is



            l 5 tan21 
L
pd



            5 tan21 
0.7854
p(3)



            5 4.764°



            The normal diametral pitch for a worm gear is the same as for a helical gear, which 
from Eq. (13–18), p. 684, with c 5 l is



              Pn 5
Pt



            cos l
5



            4
cos 4.764°



            5 4.014



              pn 5
p



            Pn
5
p



            4.014
5 0.7827 in



            The sliding velocity, from Eq. (15–62), is



             Vs 5
pdnW



            12 cos l
5
p(3)1800



            12 cos 4.764°
5 1419 ft/min



            (b) The coefficient of friction, from Eq. (15–38), is



             f 5 0.103 exp[20.110(1419)0.450] 1 0.012 5 0.0178



            The efficiency e, from Eq. (13–46), p. 708, is



             Answer e 5
cos fn 2 f  tan l
cos fn 1 f  cot l



            5
cos 14.5° 2 0.0178 tan 4.764°
cos 14.5° 1 0.0178 cot 4.764°



            5 0.818



            The designer used nd 5 1, Ka 5 1.25 and an output horsepower of H0 5 3 hp. The 
gear tangential force component W t



            G, from Eq. (15–58), is



             Answer W t
G 5



            33 000nd H0 Ka



            VGe
5



            33 000(1)3(1.25)
117.8(0.818)



            5 1284 lbf



             Answer The tangential force on the worm is given by Eq. (15–57):



              W t
W 5 W t



            G 
cos fn sin l 1 f  cos l
cos fn cos l 2 f  sin l



              5 1284 
cos 14.5° sin 4.764° 1 0.0178 cos 4.764°
cos 14.5° cos 4.764° 2 0.0178 sin 4.764°



            5 131 lbf



            (c)



            Eq. (15–34):  Cs 5 1000



            Eq. (15–36):  Cm 5 0.010722242 1 56(24) 1 5145 5 0.823



            Eq. (15–37):   Cv 5 13.31(1419)20.571 5 0.211



            Eq. (15–28):  (W t)all 5 Cs D
0.8(Fe)G Cm Cv



              5 1000(6)0.8(2)0.823(0.211) 5 1456 lbf
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            Since W tG , (W t)all, the mesh will survive at least 25 000 h. The friction force Wf is 
given by Eq. (15–61):



              Wf 5
f W t



            G



            f  sin l 2 cos fn cos l
5



            0.0178(1284)
0.0178 sin 4.764° 2 cos 14.5° cos 4.764°



              5 223.7 lbf



            The power dissipated in frictional work Hf is given by Eq. (15–63):



             Hf 5
ZWf ZVs



            33 000
5



            Z223.7Z1419



            33 000
5 1.02 hp



            The worm and gear transmitted powers, HW and HG, are given by



             HW 5
W t



            W VW



            33 000
5



            131(1414)
33 000



            5 5.61 hp  HG 5
W t



            G VG



            33 000
5



            1284(117.8)
33 000



            5 4.58 hp



             Answer Gear power is satisfactory. Now,



              Pn 5 Ptycos l 5 4ycos 4.764° 5 4.014



              pn 5 pyPn 5 py4.014 5 0.7827 in



            The bending stress in a gear tooth is given by Buckingham’s adaptation of the Lewis 
equation, Eq. (15–53), as



             (s)G 5
W t



            G



            pn FG y
5



            1284
0.7827(2)(0.1)



            5 8200 psi



             Answer Stress in gear is satisfactory.
(d )



            Eq. (15–52): Amin 5 43.2C1.7 5 43.2(4.5)1.7 5 557 in2



            The gear case has a lateral area of 600 in2.



            Eq. (15–49):  Hloss 5 33 000(1 2 e)Hin 5 33 000(1 2 0.818)5.61



              5 33 690 ft ? lbf/min



            Eq. (15–50):      h# CR 5
nW



            3939
1 0.13 5



            1800
3939



            1 0.13 5 0.587 ft ? lbf/(min ? in2 ? °F)



             Answer Eq. (15–51): ts 5 ta 1
Hloss



            h# CR A
5 70 1



            33 690
0.587(600)



            5 166°F
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             15–8 Designing a Worm-Gear Mesh
A usable decision set for a worm-gear mesh includes



            • Function: power, speed, mG, Ka



            • Design factor: nd



            • Tooth system



            • Materials and processes



            • Number of threads on the worm: NW



            • Axial pitch of worm: px



            • Pitch diameter of the worm: dW



            • Face width of gear: FG



            • Lateral area of case: A



            Reliability information for worm gearing is not well developed at this time. The use 
of Eq. (15–28) together with the factors Cs, Cm, and Cv, with an alloy steel case-
hardened worm together with customary nonferrous worm-wheel materials, will result 
in lives in excess of 25 000 h. The worm-gear materials in the experience base are 
principally bronzes:



            • Tin- and nickel-bronzes (chilled-casting produces hardest surfaces)



            • Lead-bronze (high-speed applications)



            • Aluminum- and silicon-bronze (heavy load, slow-speed application)



            The factor Cs for bronze in the spectrum sand-cast, chilled-cast, and centrifugally cast 
increases in the same order.
 Standardization of tooth systems is not as far along as it is in other types of 
gearing. For the designer this represents freedom of action, but acquisition of tooling 
for tooth-forming is more of a problem for in-house manufacturing. When using a 
subcontractor the designer must be aware of what the supplier is capable of providing 
with on-hand tooling.
 Axial pitches for the worm are usually integers, and quotients of integers are 
common. Typical pitches are 1



            4, 
5



            16, 
3
8, 



            1
2, 



            3
4, 1, 54, 



            6
4, 



            7
4, and 2, but others are possible. 



            Table 15–8 shows dimensions common to both worm gear and cylindrical worm 
for proportions often used. Teeth frequently are stubbed when lead angles are 30° 
or larger.
 Worm-gear design is constrained by available tooling, space restrictions, shaft 
center-to-center distances, gear ratios needed, and the designer’s experience. 
ANSI/AGMA 6022-C93, Design Manual for Cylindrical Wormgearing offers the 
following guidance. Normal pressure angles are chosen from 14.5°, 17.5°, 20°, 
22.5°, 25°, 27.5°, and 30°. The recommended minimum number of gear teeth is 
given in Table 15–10. The normal range of the number of threads on the worm is 
1 through 10. Mean worm pitch diameter is usually chosen in the range given by 
Eq. (15–27).
 A design decision is the axial pitch of the worm. Since acceptable proportions 
are couched in terms of the center-to-center distance, which is not yet known, one 
chooses a trial axial pitch px. Having NW and a trial worm diameter d,



            NG 5 mG NW  Pt 5
p



            px
  D 5



            NG



            Pt



            t A priori decisions



            t Design decisions
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            Then



            (d)lo 5 C0.875y3  (d)hi 5 C0.875y1.6



            Examine (d)lo # d # (d)hi, and refine the selection of mean worm-pitch diameter to d1 
if necessary. Recompute the center-to-center distance as C 5 (d1 1 D)y2. There is even 
an opportunity to make C a round number. Choose C and set



            d2 5 2C 2 D



            Equations (15–39) through (15–48) apply to one usual set of proportions.



             Fn (NG)min



            14.5 40



            17.5 27



            20 21



            22.5 17



            25 14



            27.5 12



            30 10



            Table 15–10



            Minimum Number of 
Gear Teeth for Normal 
Pressure Angle fn



             EXAMPLE 15–4 Design a 10-hp 11:1 worm-gear speed-reducer mesh for a lumber mill planer feed 
drive for 3- to 10-h daily use. A 1720-rev/min squirrel-cage induction motor drives 
the planer feed (Ka 5 1.25), and the ambient temperature is 70°F.



             Solution Function: H0 5 10 hp, mG 5 11, nW 5 1720 rev/min.
Design factor: nd 5 1.2.
Materials and processes: case-hardened alloy steel worm, sand-cast bronze gear.
Worm threads: double, NW 5 2, NG 5 mG NW 5 11(2) 5 22 gear teeth acceptable for 
fn 5 20°, according to Table 15–10.
Decision 1: Choose an axial pitch of worm px 5 1.5 in. Then,



              Pt 5 pypx 5 py1.5 5 2.0944



              D 5 NGyPt 5 22y2.0944 5 10.504 in



            Eq. (15–39):  a 5 0.3183px 5 0.3183(1.5) 5 0.4775 in (addendum)



            Eq. (15–40):  b 5 0.3683(1.5) 5 0.5525 in (dedendum)



            Eq. (15–41):  ht 5 0.6866(1.5) 5 1.030 in



            Decision 2: Choose a mean worm diameter d 5 2.000 in. Then



              C 5 (d 1 D)y2 5 (2.000 1 10.504)y2 5 6.252 in



              (d)lo 5 6.2520.875y3 5 1.657 in



              (d)hi 5 6.2520.875y1.6 5 3.107 in



            The range, given by Eq. (15–27), is 1.657 # d # 3.107 in, which is satisfactory. Try 
d 5 2.500 in. Recompute C:



             C 5 (2.5 1 10.504)y2 5 6.502 in
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            The range is now 1.715 # d # 3.216 in, which is still satisfactory. Decision: d 5 
2.500 in. Then



            Eq. (13–27): L 5 px NW 5 1.5(2) 5 3.000 in



            Eq. (13–28):



            l 5 tan21[Ly(pd)] 5 tan21[3y(p2.5)] 5 20.905° (from Table 15–9 lead angle OK)



            Eq. (15–62):  Vs 5
p d nW



            12 cos l
5
p(2.5)1720



            12 cos 20.905°
5 1205.1 ft/min



              VW 5
p d nW



            12
5
p(2.5)1720



            12
5 1125.7 ft/min



              VG 5
p D nG



            12
5
p(10.504)1720y11



            12
5 430.0 ft/min



            Eq. (15–33):  Cs 5 1190 2 477 log 10.504 5 702.8



            Eq. (15–36):  Cm 5 0.0222112 1 40(11) 2 76 1 0.46 5 0.772



            Eq. (15–37):  Cv 5 13.31(1205.1)20.571 5 0.232



            Eq. (15–38):  f 5 0.103 exp[20.11(1205.1)0.45] 1 0.012 5 0.0191



            Eq. (15–54):  eW 5
cos 20° 2 0.0191 tan 20.905°
cos 20° 1 0.0191 cot 20.905°



            5 0.942



            (If the worm gear drives, eG 5 0.939.) To ensure nominal 10-hp output, with adjust-
ments for Ka, nd, and e,



            Eq. (15–57):  W t
W 5 1222 



            cos 20° sin 20.905° 1 0.0191 cos 20.905°
cos 20° cos 20.905° 2 0.0191 sin 20.905°



            5 495.4 lbf



            Eq. (15–58):  W t
G 5



            33 000(1.2)10(1.25)
430(0.942)



            5 1222 lbf



            Eq. (15–59):  HW 5
p(2.5)1720(495.4)



            12(33 000)
5 16.9 hp



            Eq. (15–60):  HG 5
p(10.504)1720y11(1222)



            12(33 000)
5 15.92 hp



            Eq. (15–61):  Wf 5
0.0191(1222)



            0.0191 sin 20.905° 2  cos  20° cos 20.905°
5 226.8 lbf



            Eq. (15–63):  Hf 5
Z226.8 Z1205.1



            33 000
5 0.979 hp



            From Eq. (15–28), with Cs 5 702.8, Cm 5 0.772, and Cv 5 0.232,



             (Fe)req 5
W t



            G



            Cs D
0.8Cm 



            Cv
5



            1222



            702.8(10.504)0.80.772(0.232)
5 1.479 in
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            Decision 3: The available range of (Fe)G is 1.479 # (Fe)G # 2dy3 or 1.479 # (Fe)G # 
1.667 in. Set (Fe)G 5 1.5 in.



            Eq. (15–28): W t
all 5 702.8(10.504)0.81.5(0.772)0.232 5 1239 lbf



            This is greater than 1222 lbf. There is a little excess capacity. The force analysis stands.



            Decision 4:



            Eq. (15–50):  h# CR 5
nW



            6494
1 0.13 5



            1720
6494



            1 0.13 5 0.395 ft ? lbf/(min ? in2 ? °F)



            Eq. (15–49): Hloss 5 33 000(1 2 e)HW 5 33 000(1 2 0.942)16.9 5 32 347 ft ? lbf/min



            The AGMA area, from Eq. (15–52), is Amin 5 43.2C1.7 5 43.2(6.502)1.7 5 1041.5 in2. 
A rough estimate of the lateral area for 6-in clearances:



            Vertical: d 1 D 1 6 5 2.5 1 10.5 1 6 5 19 in



            Width: D 1 6 5 10.5 1 6 5 16.5 in



            Thickness: d 1 6 5 2.5 1 6 5 8.5 in



            Area: 2(19)16.5 1 2(8.5)19 1 16.5(8.5) < 1090 in2



            Expect an area of 1100 in2. Choose: Air-cooled, no fan on worm, with an ambient 
temperature of 70°F.



             ts 5 ta 1
Hloss



            h# CR A
5 70 1



            32 350
0.395(1100)



            5 70 1 74.5 5 144.5°F



            Lubricant is safe with some margin for smaller area.



            Eq. (13–18):  Pn 5
Pt



            cos l
5



            2.094
cos 20.905°



            5 2.242



              pn 5
p



            Pn
5
p



            2.242
5 1.401 in



            Gear bending stress, for reference, is



            Eq. (15–53): s 5
W t



            G



            pn Fe y
5



            1222
1.401(1.5)0.125



            5 4652 psi



            The risk is from wear, which is addressed by the AGMA method that provides (W tG)all.



             15–9 Buckingham Wear Load
A precursor to the AGMA method was the method of Buckingham, which identified 
an allowable wear load in worm gearing. Buckingham showed that the allowable 
gear-tooth loading for wear can be estimated from



             (W t
G)all 5 Kw  



            dG Fe (15–64)



            where Kw 5 worm-gear load factor



             dG 5 gear-pitch diameter



             Fe 5 worm-gear effective face width
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            Table 15–11 gives values for Kw for worm gearsets as a function of the material pair-
ing and the normal pressure angle.



             Material Thread Angle Fn



            Worm Gear 14 
1
2
° 20° 25° 30°



            Hardened steel* Chilled bronze 90 125 150 180



            Hardened steel* Bronze 60 80 100 120



            Steel, 250 BHN (min.) Bronze 36 50 60 72



            High-test cast iron Bronze 80 115 140 165



            Gray iron†  Aluminum 10 12 15 18



            High-test cast iron Gray iron 90 125 150 180



            High-test cast iron Cast steel 22 31 37 45



            High-test cast iron High-test cast iron 135 185 225 270



            Steel 250 BHN (min.) Laminated phenolic 47 64 80 95



            Gray iron Laminated phenolic 70 96 120 140



            *Over 500 BHN surface.
†For steel worms, multiply given values by 0.6.



            Table 15–11



            Wear Factor Kw for 
Worm Gearing
Source: Earle Buckingham, 
Design of Worm and Spiral 
Gears, Industrial Press, 
New York, 1981.



             For material combinations not addressed by AGMA, Buckingham’s method 
allows quantitative treatment.



            PROBLEMS
 15–1 An uncrowned straight-bevel pinion has 20 teeth, a diametral pitch of 6 teeth/in, and a transmis-



            sion accuracy number of 6. Both the pinion and gear are made of through-hardened steel with 
a Brinell hardness of 300. The driven gear has 60 teeth. The gearset has a life goal of 109 
revolutions of the pinion with a reliability of 0.999. The shaft angle is 90°, and the pinion speed 
is 900 rev/min. The face width is 1.25 in, and the normal pressure angle is 20°. The pinion is 
mounted outboard of its bearings, and the gear is straddle-mounted. Based on the AGMA bend-
ing strength, what is the power rating of the gearset? Use K0 5 1 and SF 5 SH 5 1.



             EXAMPLE 15–5 Estimate the allowable gear wear load (W tG)all for the gearset of Ex. 15–4 using 
Buckingham’s wear equation.



             Solution From Table 15–11 for a hardened steel worm and a bronze bear, Kw is given as 80 
for fn 5 20°. Equation (15–64) gives



             (Wt
G)all 5 80(10.504)1.5 5 1260 lbf



            which is larger than the 1239 lbf of the AGMA method. The method of Buckingham 
does not have refinements of the AGMA method. [Is (W tG)all linear with gear diameter?]
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             15–2 For the gearset and conditions of Prob. 15–1, find the power rating based on the AGMA surface 
durability.



             15–3 An uncrowned straight-bevel pinion has 30 teeth, a diametral pitch of 6, and a transmission 
accuracy number of 6. The driven gear has 60 teeth. Both are made of No. 30 cast iron. The 
shaft angle is 90°. The face width is 1.25 in, the pinion speed is 900 rev/min, and the normal 
pressure angle is 20°. The pinion is mounted outboard of its bearings and the bearings of the 
gear straddle it. What is the power rating based on AGMA bending strength? Note: For cast 
iron gearsets reliability information has not yet been developed. We say that if the life is greater 
than 107 revolutions, then set KL 5 1, CL 5 1, CR 5 1, KR 5 1, and apply a factor of safety. 
Use SF 5 2 and SH 5 12.



             15–4 For the gearset and conditions of Prob. 15–3, find the power rating based on AGMA surface 
durability.



             15–5 An uncrowned straight-bevel pinion has 22 teeth, a module of 4 mm, and a transmission 
accuracy number of 5. The pinion and the gear are made of through-hardened steel, both 
having core and case hardnesses of 180 Brinell. The pinion drives the 24-tooth bevel gear. 
The shaft angle is 90°, the pinion speed is 1800 rev/min, the face width is 25 mm, and the 
normal pressure angle is 20°. Both gears have an outboard mounting. Find the power rating 
based on AGMA pitting resistance if the life goal is 109 revolutions of the pinion at 0.999 
reliability.



             15–6 For the gearset and conditions of Prob. 15–5, find the power rating for AGMA bending strength.



             15–7 In straight-bevel gearing, there are some analogs to Eqs. (14–44) and (14–45) pp. 766 and 767, 
respectively. If we have a pinion core with a hardness of (HB)11 and we try equal power ratings, 
the transmitted load W t can be made equal in all four cases. It is possible to find these relations:



            (a)  For carburized case-hardened gear steel with core AGMA bending strength (sat)G and pin-
ion core strength (sat)P, show that the relationship is



               (sat)G 5 (sat) 
P 



            Jp



            JG
 m20.0323



            G



              This allows (HB)21 to be related to (HB)11.



            (b)  Show that the AGMA contact strength of the gear case (sac)G can be related to the AGMA 
core bending strength of the pinion core (sat)P by



              (sac)G 5
Cp



            (CL)G CH
 BS2



            H



            SF
 
(sat)P(KL)P Kx JP KT Cs Cxc



            NP I Ks



              If factors of safety are applied to the transmitted load Wt, then SH 5 1SF and SH
2ySF is unity. 



            The result allows (HB)22 to be related to (HB)11.



            (c)  Show that the AGMA contact strength of the gear (sac)G is related to the contact strength 
of the pinion (sac)P by



              (sac)P 5 (sac)G m0.0602
G CH



             Core Case



            Pinion (HB)11 (HB)12



            Gear (HB)21 (HB)22



            bud98209_ch15_777-816.indd Page 814  11/14/13  7:08 PM f-496 bud98209_ch15_777-816.indd Page 814  11/14/13  7:08 PM f-496 /204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles/204/MH01996/bud98209_disk1of1/0073398209/bud98209_pagefiles


            

        



        
            

            
Bevel and Worm Gears    815



              which can be established by the relations in Prob. 15–7, and see if the result matches transmitted 
loads W t in all four cases.



             15–10 A catalog of stock bevel gears lists a power rating of 5.2 hp at 1200 rev/min pinion speed for 
a straight-bevel gearset consisting of a 20-tooth pinion driving a 40-tooth gear. This gear pair 
has a 20° normal pressure angle, a face width of 0.71 in, a diametral pitch of 10 teeth/in, and 
is through-hardened to 300 BHN. Assume the gears are for general industrial use, are generated 
to a transmission accuracy number of 5, and are uncrowned. Also assume the gears are rated 
for a life of 3 3 106 revolutions with a 99 percent reliability. Given these data, what do you 
think about the stated catalog power rating?



             15–11 Apply the relations of Prob. 15–7 to Ex. 15–1 and find the Brinell case hardness of the gears 
for equal allowable load Wt in bending and wear. Check your work by reworking Ex. 15–1 to 
see if you are correct. How would you go about the heat treatment of the gears?



             15–12 Your experience with Ex. 15–1 and problems based on it will enable you to write an interactive 
computer program for power rating of through-hardened steel gears. Test your understanding 
of bevel-gear analysis by noting the ease with which the coding develops. The hardness proto-
col developed in Prob. 15–7 can be incorporated at the end of your code, first to display it, 
then as an option to loop back and see the consequences of it.



             15–13 Use your experience with Prob. 15–11 and Ex. 15–2 to design an interactive computer-aided 
design program for straight-steel bevel gears, implementing the ANSI/AGMA 2003-B97 stan-
dard. It will be helpful to follow the decision set in Sec. 15–5, allowing the return to earlier 
decisions for revision as the consequences of earlier decisions develop.



             15–14 A single-threaded steel worm rotates at 1725 rev/min, meshing with a 56-tooth worm gear 
transmitting 1 hp to the output shaft. The pitch diameter of the worm is 1.50. The tangential 
diametral pitch of the gear is 8 teeth per inch and the normal pressure angle is 20°. The ambi-
ent temperature is 70°F, the application factor is 1.25, the design factor is 1, the gear face is 
0.5 in, the lateral case area is 850 in2, and the gear is sand-cast bronze.
(a) Determine and evaluate the geometric properties of the gears.
(b) Determine the transmitted gear forces and the mesh efficiency.
(c) Is the mesh sufficient to handle the loading?
(d ) Estimate the lubricant sump temperature, assuming fan-stirred air.



              As in Ex. 15–4, design a cylindrical worm-gear mesh to connect a squirrel-cage induction motor to 
a liquid agitator. The motor speed is 1125 rev/min, and the velocity ratio is to be 10:1. The output 
power requirement is 25 hp. The shaft axes are 90° to each other. An overload factor Ko (see 
Table 15–2) makes allowance for external dynamic excursions of load from the nominal or average 
load W t. For this service Ko 5 1.25 is appropriate. Additionally, a design factor nd of 1.1 is to be 
included to address other unquantifiable risks. For Probs. 15–15 to 15–17 use the AGMA method 
for (W tG)all whereas for Probs. 15–18 to 15–22, use the Buckingham method. See Table 15–12.



             15–15 to
15–22



             15–8 Refer to your solution to Probs. 15–1 and 15–2. If the pinion core hardness is 300 Brinell, use 
the relations from Prob. 15–7 to determine the required hardness of the gear core and the case 
hardnesses of both gears to ensure equal power ratings.



             15–9 Repeat Probs. 15–1 and 15–2 with the hardness protocol



             Core Case



            Pinion 300 373



            Gear 339 345
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             Problem     Materials
 No. Method Worm Gear



             15–15 AGMA Steel, HRC 58 Sand-cast bronze



             15–16 AGMA Steel, HRC 58 Chilled-cast bronze



             15–17 AGMA Steel, HRC 58 Centrifugal-cast bronze



             15–18 Buckingham Steel, 500 Bhn Chilled-cast bronze



             15–19 Buckingham Steel, 500 Bhn Cast bronze



             15–20 Buckingham Steel, 250 Bhn Cast bronze



             15–21 Buckingham High-test cast iron Cast bronze



             15–22 Buckingham High-test cast iron High-test cast iron



            Table 15–12



            Table Supporting 
Problems 15–15 to 15–22
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