
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

Image Processing – Pointers, Class & Dynamic Data
[image: profile]
ahlamnam
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

561847_2_project3su13_2.pdf

Home>Computer Science homework help>Image Processing – Pointers, Class & Dynamic Data

1

MCS 2514
Programming Assignment 3

Image Processing – Pointers, Class & Dynamic Data

Please only submit MCS2514Pgm3.cpp
This project is called “Image Processing” which w ill shrink an input image, convert a color image to gray
image , add random noise to an image, add the RGB va lues of an image , or (as bonus) to denoise the
image.

But before we rush into this programming challenge, it is important to be intentiona l about some basic
design cons iderations and a few techniques for managing and manipulating digital images. In solving this
problem we will be using classes, pointers, and structured data in order to organize an efficient solution.
The images you will manipulate are two dimensional images with a width and a height in units of pixe ls.
Think of an image as a 2D array, indexed by rows (horizonta l “scan lines”), which go across the image,
and columns (vertical stripes through the image). Any pixel in an image is located by its (row, col)
coordinates, or in C++ array terms, myImage [row][col]. Stored at each position in this two dimens ional
structure are the details of an individua l pixel, represented as a point in a 24-bit RGB color space (8 bits
for red, 8 bits for green, and 8 bits for blue). This is a common way to store image data, and is
straightforward to understand. In this case, each and every pixe l in the image consists of three values that
are each 8 bits in length. This 8 bit s ize is no accident (we can store 8 bits in one uns igned char variable).
These three values represent the red, green, and blue components of a single pixe l. Since the value has 8
bits , it can hold any va lue between 0 and 255. A pixel w ith red, green, and blue all zero w ill appear black;
a pixe l with R, G, and B all equa l to 255 w ill appear white. Or put another way, a low value is “dark” and
a high value is “bright”. Just like an array, the origin (pixe l at 0, 0) is normally viewed by convention as
the upper left pixel, with rows horizonta l and columns vertical. So first, make sure you understand the
structure of an image: a 2D array (with a width, he ight); scanlines as rows; a coordinate frame that has the
origin in the upper left, with pos itive x along the horizonta l from left to right, and pos itive y along the
vertical from top to bottom; and at each location a compos ite pixel object which contains values for
R,G,B – and each of those will require 8 bits. The structure/layout has a very natural visual interpretation.

In this project, we will work on how to find the average color in a larger block of pixels can be thought of
as a very simple re-sampling of the bigger image. This technique is often used to generate smaller
versions of big images. (think of a thumbnail of the original image). In this assignment we will be writing
a program that can:
1.) Allow simple loading and saving of images.
2.) Break a loaded image up into blocks of a given width and height and find the average color in that
block.
3.) Create a new image from the process in (2) that will consist of 1 pixel per every block analyzed in the
first image.
4.) Apply a red, green, or blue tint to an image by increasing the appropriate RGB values to every pixel in
the image.
5.) Randomly add noise pixels into an image.
6.) As bonus function, to denoise the image with noise.

Provided in the code base for this assignment, you will see the following files in addition to the usual:
globals .h

2

Per usual, you can turn on a console to output debugging information to by modifying the
SHOW_DEBUG_CONSOLE variable. You should also note in the file that the type “unsigned char” has
a typedef to the easier to write, “uchar”. These types are interchangeable throughout the program.

pixe l.h
This file contains the “pixel” class that is used to store the red, green, and blue values for a pixel of data.
Note: that the pixel class consists of 3 public uchars to store this data. The implementation of this class
with it's data members public is an example of a POD (Plain Old Data) Class. In almost all cases, you
want to keep your data members private and provide getters and setters to access them. However, in some
cases (such as this) we require no functions whatsoever (no constructors or any member functions) and
just want to aggregate several pieces of data into one object. In these cases, it is considered acceptable to
just have the data members public ly accessible, as it allows for a smaller memory footprint and easier
notation when referencing the data.

image .h / image .cpp
This class is provided to do the grunt work of loading and saving the images. It also provides a way for
the windows GUI to display the images represented in our RGB pixel data. The functions you should be
concerned with are:
bool loadImage (string file name)
This function w ill load an image from the specified file and return true if it loaded successfully, fa lse if it
did not.
void s aveImage(string file name)
This function will attempt to save the picture stored in it's pixel data to disk at the specified file location.
void cre ate NewImage(int width, int he ight)
This function w ill c lear all current data in the image object and create a new blank image of the specified
width and height. You should call this or loadImage BEFORE you try to access the pixels of an image.
int ge tWidth()
This function returns the number of pixels wide that the image is.
int ge tHeight()
This function returns the number of pixels tall that the image is.
pixe l** getPixels()
A multidimens ional array of pixel objects makes up any of our images. However, because we don't know
the size of the image beforehand, this multidimens ional array is created dynamically at run time. Feel free
to look at the image.cpp code to see how this is done.

This function will return that multidimensiona l array. Note the return type of pixe l**. Remember that an
array is essentially a pointer to the first value of the array block in memory. So pixe l[] is equivalent to
pixel*. After understanding this , it is a logical jump that a 2 dimensiona l array is actually a pointer to a
pointer. Therefore, when calling this function, you should write something like:

 pixe l** myPixels = myImage .getPixels();

You can then reference the elements of the array normally. Ex:

myPixe ls [0][0].red = 255;

This would set the red value of the first pixe l in the image to its max value. You should utilize these
objects as you see fit to implement the specifications for this program. Supplied for you is a GUI interface
written in Visual C++.

3

You s hould only need to modify the file : MCS2514Pgm3.cpp. You mus t imple me nt the following
functions in MCS2514Pgm3.cpp :

bool loadImage FromFile(string file name)

INPUTS: a string containing a path to a file to open. This value is returned from the user's
selection in the open file dialog.
OUTPUTS: a boolean indicating whether or not the image could be opened correctly.

void s aveImageToFile(string file name)

INPUTS: a string containing a path to save the current image out to.
OUTPUTS: NONE

image * dis playImage()

INPUTS: NONE
OUTPUTS: This function should return a pointer to the image object that is currently being
viewed on the screen. If a user has loaded an image correctly, you should return a pointer to an
image object containing the base image. If a user has used the shrink button (aka averageRegions
function) or performed any of the red/green/blue filters, or invert function you should of course
return a pointer to an image object that reflects all these changes.

void ave rageRegions(int blockWidth, int blockHeight)

INPUTS: Integers indicating the width and height of the “blocks” to be averaged
OUTPUTS: NONE
When this function is called, you should create a new image that will consist of 1 pixel for every
block of size blockWidth by blockHeight pixels in the origina l image, w ith each pixel be ing the
average color of the pixels in that region in the origina l image. So for example if we took the
image:

(which is 64 x 64 pixels) and called this function w ith blockWidth = 16 and blockHeight = 16,
then the new image resulting from the function should be a 4 x 4 pixel image consisting of:
white, red, green, blue
black, black, black, black
gray, gray, gray, gray
white, red, green, blue

Obvious ly it is simple to take the average color of the blocks in question because they are each a
solid color, but this should suffice for an example. If the image does not divide evenly into the
number of blocks specified, just throw away the remaining pixe ls off of the right and bottom of
the image. (So if the above example was 70 x 70, we would just analyze the first 64 bits (4 blocks)
of the pixel data and ignore the last 6 on the top and bottom).

Please note that it may be easier if you split this into 2 functions and call your he lper function

from within this one. The helper function could then just calculate the average value of a block of
pixels given to it, and return that to the averageRegions function to be used. However, this
implementation is up to you! Complete it as you see fit.

4

void incre as eRedValue s(int value)

INPUTS: An integer indicating the amount to increase the red component of each pixel.
OUTPUTS: NONE
When this function is called, you should take the current image and increase the red component
of each pixel in the image by the amount specified. Please note that an RGB value has a
maximum of 255 and a minimum of 0.

void incre as eGreenValues(int value)

INPUTS: An integer indicating the amount to increase the green component of each pixel.
OUTPUTS: NONE
When this function is called, you should take the current image and increase the green component
of each pixel in the image by the amount specified. Please note that an RGB value has a
maximum of 255 and a minimum of 0.

void incre as eBlueValue s(int value)

INPUTS: An integer indicating the amount to increase the blue component of each pixel.
OUTPUTS: NONE
When this function is called, you should take the current image and increase the blue component
of each pixel in the image by the amount specified. Please note that an RGB value has a
maximum of 255 and a minimum of 0.

void grayImage ()

INPUTS: NONE
OUTPUTS: NONE
When this function is called you should convert the current image to gray image. For each pixe l,
you calculate the average of aver = (R+G+B)/3, then replace the pixe l va lue us ing (aver,aver,aver)
for R, G, B values.

void addNois e()

INPUTS: NONE
OUTPUTS: NONE
When this function is called you should randomly replace 10% of the pixe ls with noises in the
current image. To create the noise, you should also randomly generate the R,G,B values for the
noise pixel.

Bonuse function (30 points)

void de Noise()
INPUTS: NONE
OUTPUTS: NONE
When this function is called you should denoise the image to remove the noise.
In order to remove the noise, you need to trave l every single pixe l. For every pixel, you calculate
the average pixel from its neighbor (you can use a n*n block for its neighbor, n can be changed).
Then replace the pixel by average neighbor pixel.

You also need to declare some global variables (s imilar to previous proje cts) that can be
us e d for the above functions.

5

A couple sample images have been inc luded for your convenience. Feel free to test your program w ith
these or any other images. Please note however, that these images can be in jpg, tif, png, bmp, etc format,
but MUST be saved as a 24 bpp (aka 8 bits per RGB va lue) image. We are limiting our work to this color
space. There are many other colorspaces that images can be saved in (Grayscale, Palette, CMYK, etc) but
these are beyond the scope of this assignment. If an image can not be loaded for this reason or one similar,
a message will be printed out to the console (if it is turned on) and fa lse will be returned from the load
function.

When submitting your program you should submit the following files:

1. MCS2514pgm3.cpp

Example Screens from the program:

Open an new image:

Shirnk it by block width 3, block height 3

6

After adding noise

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

