
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

computer programming
[image: profile]
d7dcq9
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

cpp_5th_edi.pdf

Home>Computer Science homework help>computer programming

C++ PROGRAMMING:
PROGRAM DESIGN INCLUDING DATA STRUCTURES

FIFTH EDITION

D.S. MALIK

Australia � Brazil � Japan � Korea � Mexico � Singapore � Spain � United Kingdom � United States

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

www.cengage.com/highered

C++ Programming: Program Design
Including Data Structures, Fifth Edition
D.S. Malik

Executive Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Editorial Assistant: Zina Kresin

Content Project Manager: Matthew
Hutchinson

Art Director: Faith Brosnan

Print Buyer: Julio Esperas

Proofreader: GreenPen QA

Indexer: Elizabeth Cunningham

Cover Designer: Roycroft Design/
www.roycroftdesign.com

Cover Photo: Contemporary Building
ª Steve Hix/Somos Images/Corbis

Compositor: Integra

ª 2011 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work
covered by the copyright herein may be
reproduced, transmitted, stored or used in any
form or by any means graphic, electronic, or
mechanical, including but not limited to
photocopying, recording, scanning, digitizing,
taping, Web distribution, information
networks, or information storage and retrieval
systems, except as permitted under Section
107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of
the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product, submit

all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to

Library of Congress Control Number: 2010921540

ISBN-13: 978-0-538-79809-2

ISBN-10: 0-538-79809-2

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Some of the product names and company names used in this
book have been used for identification purposes only and may
be trademarks or registered trademarks of their respective
manufacturers and sellers.

Any fictional data related to persons or companies or URLs used
throughout this book is intended for instructional purposes only.
At the time this book was printed, any such data was fictional
and not belonging to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the
right to revise this publication and make changes from time to
time in its content without notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed
for any particular intent beyond educational purposes. The
author and the publisher do not offer any warranties or
representations, nor do they accept any liabilities with respect
to the programs.

Cengage Learning is a leading provider of customized
learning solutions with office locations around the globe,
including Singapore, the United Kingdom, Australia, Mexico,
Brazil and Japan. Locate your local office at:
www.cengage.com/global

Cengage Learning products are represented in Canada
by Nelson Education, Ltd.

To learn more about Course Technology, visit
www.cengage.com/coursetechnology

Purchase any of our products at your local college store or at
our preferred online store www.CengageBrain.com

TO

My Parents

Printed in the United States of America
1 2 3 4 5 6 7 16 15 14 13 12 11 10

www.cengage.com/permissions

www.roycroftdesign.com

www.cengage.com/global

www.cengage.com/coursetechnology

www.CengageBrain.com

PREFACE xxv

1. An Overview of Computers and Programming Languages 1

2. Basic Elements of C++ 27

3. Input/Output 117

4. Control Structures I (Selection) 175

5. Control Structures II (Repetition) 247

6. User-Defined Functions I 319

7. User-Defined Functions II 361

8. User-Defined Simple Data Types, Namespaces,

and the string Type 433

9. Arrays and Strings 485

10. Records (structs) 563

11. Classes and Data Abstraction 601

12. Inheritance and Composition 675

13. Pointers, Classes, Virtual Functions, Abstract Classes, and Lists 745

14. Overloading and Templates 827

15. Exception Handling 919

16. Recursion 959

17. Linked Lists 991

18. Stacks and Queues 1083

BRIEF CONTENTS

19. Searching and Sorting Algorithms 1183

20. Binary Trees 1265

21. Graphs 1321

22. Standard Template Library (STL) 1361

APPENDIX A Reserved Words 1477

APPENDIX B Operator Precedence 1479

APPENDIX C Character Sets 1481

APPENDIX D Operator Overloading 1485

APPENDIX E Additional C++ Topics 1487

APPENDIX F Header Files 1509

APPENDIX G Memory Size on a System and Random

Number Generator 1519

APPENDIX H References 1521

APPENDIX I Answers to Odd-Numbered Exercises 1523

INDEX 1555

iv | C++ Programming: Program Design Including Data Structures, Fifth Edition

TABLE OF CONTENTS

Preface xxv

AN OVERVIEW OF COMPUTERS AND PROGRAMMING

LANGUAGES 1

Introduction 2

A Brief Overview of the History of Computers 2

Elements of a Computer System 3

Hardware 4

Central Processing Unit and Main Memory 4

Input /Output Devices 5

Software 6

The Language of a Computer 6

The Evolution of Programming Languages 8

Processing a C++ Program 10

Programming with the Problem Analysis–Coding–Execution Cycle 12

Programming Methodologies 20

Structured Programming 20

Object-Oriented Programming 20

ANSI/ISO Standard C++ 22

Quick Review 22

Exercises 23

BASIC ELEMENTS OF C++ 27

A C++ Program 28

The Basics of a C++ Program 31

Comments 32

Special Symbols 32

1

2

Reserved Words (Keywords) 33

Identifiers 33

Whitespaces 34

Data Types 35

Simple Data Types 35

Floating-Point Data Types 38

Arithmetic Operators and Operator Precedence 39

Order of Precedence 43

Expressions 44

Mixed Expressions 45

Type Conversion (Casting) 47

string Type 49

Input 50

Allocating Memory with Constants and Variables 50

Putting Data into Variables 53

Assignment Statement 53

Saving and Using the Value of an Expression 56

Declaring and Initializing Variables 57

Input (Read) Statement 58

Variable Initialization 61

Increment and Decrement Operators 65

Output 67

Preprocessor Directives 75

namespace and Using cin and cout in a Program 76

Using the string Data Type in a Program 76

Creating a C++ Program 77

Debugging: Understanding and Fixing Syntax Errors 80

Program Style and Form 84

Syntax 84

Use of Blanks 85

Use of Semicolons, Brackets, and Commas 85

Semantics 85

Naming Identifiers 85

Prompt Lines 86

Documentation 87

Form and Style 87

More on Assignment Statements 89

Programming Example: Convert Length 91

vi | C++ Programming: Program Design Including Data Structures, Fifth Edition

Programming Example: Make Change 94

Quick Review 98

Exercises 100

Programming Exercises 109

INPUT/OUTPUT 117

I/O Streams and Standard I/O Devices 118

cin and the Extraction Operator >> 119

Using Predefined Functions in a Program 124

cin and the get Function 127

cin and the ignore Function 128

The putback and peek Functions 130

The Dot Notation between I/O Stream Variables

and I/O Functions: A Precaution 132

Input Failure 133

The clear Function 135

Output and Formatting Output 137

setprecision Manipulator 137

fixed Manipulator 138

showpoint Manipulator 139

setw 142

Additional Output Formatting Tools 144

setfill Manipulator 144

left and right Manipulators 146

Input/Output and the string Type 148

Debugging: Understanding Logic Errors

and Debugging with cout Statements 149

File Input/Output 152

Programming Example: Movie Tickets Sale and Donation to Charity 156

Programming Example: Student Grade 162

Quick Review 165

Exercises 166

Programming Exercises 170

CONTROL STRUCTURES I (SELECTION) 175

Control Structures 176

Relational Operators 177

Relational Operators and Simple Data Types 178

3

4

Table of Contents | vii

Comparing Characters 179

Relational Operators and the string Type 180

Logical (Boolean) Operators and Logical Expressions 182

Order of Precedence 184

int Data Type and Logical (Boolean) Expressions 187

bool Data Type and Logical (Boolean) Expressions 188

Selection: if and if...else 188

One-Way Selection 189

Two-Way Selection 191

Compound (Block of) Statements 195

Multiple Selections: Nested if 195

Comparing if...else Statements with a Series of if Statements 198

Short-Circuit Evaluation 199

Comparing Floating-Point Numbers for Equality: A Precaution 200

Associativity of Relational Operators: A Precaution 201

Avoiding Bugs by Avoiding Partially Understood

Concepts and Techniques 203

Input Failure and the if Statement 206

Confusion between the Equality Operator (==) and

the Assignment Operator (=) 209

Conditional Operator (?:) 211

Program Style and Form (Revisited): Indentation 211

Using Pseudocode to Develop, Test, and Debug a Program 212

switch Structures 215

Avoiding Bugs by Avoiding Partially Understood Concepts

and Techniques (Revisited) 221

Terminating a Program with the assert Function 223

Programming Example: Cable Company Billing 225

Quick Review 231

Exercises 232

Programming Exercises 241

CONTROL STRUCTURES II (REPETITION) 247

Why Is Repetition Needed? 248

while Looping (Repetition) Structure 249

Designing while Loops 251

Case 1: Counter-Controlled while Loops 252

Case 2: Sentinel-Controlled while Loops 255

5

viii | C++ Programming: Program Design Including Data Structures, Fifth Edition

Case 3: Flag-Controlled while Loops 259

Case 4: EOF-Controlled while Loops 263

eof Function 263

More on Expressions in while Statements 268

Programming Example: Fibonacci Number 269

for Looping (Repetition) Structure 273

Programming Example: Classifying Numbers 281

do...while Looping (Repetition) Structure 284

Choosing the Right Looping Structure 289

break and continue Statements 289

Nested Control Structures 291

Avoiding Bugs by Avoiding Patches 296

Debugging Loops 299

Quick Review 300

Exercises 301

Programming Exercises 313

USER-DEFINED FUNCTIONS I 319

Predefined Functions 320

User-Defined Functions 324

Value-Returning Functions 324

Syntax: Value-Returning Functions 326

Syntax: Formal Parameter List 326

Function Call 326

Syntax: Actual Parameter List 327

return Statement 327

Syntax: return Statement 327

Function Prototype 331

Syntax: Function Prototype 332

Value-Returning Functions: Some Peculiarity 333

More Examples of Value-Returning Functions 335

Flow of Execution 340

Programming Example: Largest Number 341

Programming Example: Cable Company 343

Quick Review 349

Exercises 350

Programming Exercises 356

6

Table of Contents | ix

USER-DEFINED FUNCTIONS II 361

Void Functions 362

Value Parameters 367

Reference Variables as Parameters 368

Calculate Grade 369

Value and Reference Parameters and Memory Allocation 372

Reference Parameters and Value-Returning Functions 382

Scope of an Identifier 382

Global Variables, Named Constants, and Side Effects 386

Static and Automatic Variables 391

Debugging: Using Drivers and Stubs 392

Function Overloading: An Introduction 395

Functions with Default Parameters 396

Programming Example: Classify Numbers 399

Programming Example: Data Comparison 404

Quick Review 414

Exercises 416

Programming Exercises 424

USER-DEFINED SIMPLE DATA TYPES, NAMESPACES,

AND THE string TYPE 433

Enumeration Type 434

Declaring Variables 436

Assignment 436

Operations on Enumeration Types 437

Relational Operators 437

Input /Output of Enumeration Types 438

Functions and Enumeration Types 440

Declaring Variables When Defining the Enumeration Type 442

Anonymous Data Types 442

typedef Statement 443

Programming Example: The Game of Rock, Paper, and Scissors 444

Namespaces 452

string Type 458

Additional string Operations 461

Programming Example: Pig Latin Strings 471

7

8

x | C++ Programming: Program Design Including Data Structures, Fifth Edition

Quick Review 475

Exercises 477

Programming Exercises 481

ARRAYS AND STRINGS 485

Arrays 487

Accessing Array Components 488

Processing One-Dimensional Arrays 491

Array Index Out of Bounds 494

Array Initialization During Declaration 495

Partial Initialization of Arrays During Declaration 496

Some Restrictions on Array Processing 496

Arrays as Parameters to Functions 497

Constant Arrays as Formal Parameters 498

Base Address of an Array and Array in Computer Memory 501

Functions Cannot Return a Value of the Type Array 503

Integral Data Type and Array Indices 506

Other Ways to Declare Arrays 507

Searching an Array for a Specific Item 507

C-Strings (Character Arrays) 510

String Comparison 512

Reading and Writing Strings 514

String Input 514

String Output 515

Specifying Input/Output Files at Execution Time 516

string Type and Input/Output Files 516

Parallel Arrays 517

Two- and Multidimensional Arrays 518

Accessing Array Components 520

Two-Dimensional Array Initialization During Declaration 521

Two-Dimensional Arrays and Enumeration Types 521

Initialization 524

Print 525

Input 525

Sum by Row 525

Sum by Column 526

Largest Element in Each Row and Each Column 526

Passing Two-Dimensional Arrays as Parameters to Functions 527

9

Table of Contents | xi

Arrays of Strings 530

Arrays of Strings and the string Type 530

Arrays of Strings and C-Strings (Character Arrays) 530

Another Way to Declare a Two-Dimensional Array 531

Multidimensional Arrays 532

Programming Example: Code Detection 534

Programming Example: Text Processing 540

Quick Review 547

Exercises 548

Programming Exercises 558

RECORDS (structS) 563

Records (structs) 564

Accessing struct Members 566

Assignment 568

Comparison (Relational Operators) 569

Input /Output 570

struct Variables and Functions 570

Arrays versus structs 571

Arrays in structs 572

structs in Arrays 574

structs within a struct 576

Programming Example: Sales Data Analysis 580

Quick Review 594

Exercises 594

Programming Exercises 597

CLASSES AND DATA ABSTRACTION 601

Classes 602

Unified Modeling Language Class Diagrams 606

Variable (Object) Declaration 606

Accessing Class Members 607

Built-in Operations on Classes 608

Assignment Operator and Classes 609

Class Scope 609

Functions and Classes 610

Reference Parameters and Class Objects (Variables) 610

10

11

xii | C++ Programming: Program Design Including Data Structures, Fifth Edition

Implementation of Member Functions 611

Accessor and Mutator Functions 616

Order of public and private Members of a Class 619

Constructors 621

Invoking a Constructor 623

Invoking the Default Constructor 623

Invoking a Constructor with Parameters 623

Constructors and Default Parameters 626

Classes and Constructors: A Precaution 626

Arrays of Class Objects (Variables) and Constructors 627

Destructors 629

Data Abstraction, Classes, and Abstract Data Types 630

A struct Versus a class 632

Information Hiding 633

Executable Code 637

Static Members of a Class 643

Programming Example: Candy Machine 649

Quick Review 663

Exercises 665

Programming Exercises 670

INHERITANCE AND COMPOSITION 675

Inheritance 676

Redefining (Overriding) Member Functions

of the Base Class 679

Constructors of Derived and Base Classes 686

Destructors in a Derived Class 694

Multiple Inclusions of a Header File 695

C++ Stream Classes 696

Protected Members of a Class 698

Inheritance as public, protected, or private 698

Composition (Aggregation) 702

Object-Oriented Design (OOD) and Object-Oriented Programming (OOP) 707

Identifying Classes, Objects, and Operations 709

Programming Example: Grade Report 710

Quick Review 731

Exercises 732

Programming Exercises 739

12

Table of Contents | xiii

POINTERS, CLASSES, VIRTUAL FUNCTIONS,

ABSTRACT CLASSES, AND LISTS 745

Pointer Data Type and Pointer Variables 746

Declaring Pointer Variables 746

Address of Operator (&) 747

Dereferencing Operator (*) 748

Classes, Structs, and Pointer Variables 752

Initializing Pointer Variables 755

Dynamic Variables 755

Operator new 756

Operator delete 757

Operations on Pointer Variables 759

Dynamic Arrays 761

Functions and Pointers 764

Pointers and Function Return Values 764

Dynamic Two-Dimensional Arrays 765

Shallow versus Deep Copy and Pointers 768

Classes and Pointers: Some Peculiarities 770

Destructor 770

Assignment Operator 772

Copy Constructor 773

Inheritance, Pointers, and Virtual Functions 780

Classes and Virtual Destructors 787

Abstract Classes and Pure Virtual Functions 787

Array Based Lists 796

Unordered Lists 803

Ordered Lists 807

Address of Operator and Classes 809

Quick Review 812

Exercises 815

Programming Exercises 822

OVERLOADING AND TEMPLATES 827

Why Operator Overloading Is Needed 828

Operator Overloading 829

Syntax for Operator Functions 830

13

14

xiv | C++ Programming: Program Design Including Data Structures, Fifth Edition

Overloading an Operator: Some Restrictions 830

Pointer this 831

Friend Functions of Classes 836

Operator Functions as Member Functions and

Nonmember Functions 839

Overloading Binary Operators 842

Overloading the Stream Insertion (<<) and

Extraction (>>) Operators 848

Overloading the Assignment Operator (=) 853

Overloading Unary Operators 861

Operator Overloading: Member versus Nonmember 867

Classes and Pointer Member Variables (Revisited) 868

Operator Overloading: One Final Word 868

Programming Example: Clock Type 868

Programming Example: Complex Numbers 877

Overloading the Array Index (Subscript) Operator ([]) 882

Programming Example: newString 884

Function Overloading 890

Templates 891

Function Templates 891

Class Templates 893

Array-Based Lists (Revisited) 896

Quick Review 902

Exercises 905

Programming Exercises 910

EXCEPTION HANDLING 919

Handling Exceptions within a Program 920

C++ Mechanisms of Exception Handling 924

try/catch Block 924

Using C++ Exception Classes 931

Creating Your Own Exception Classes 935

Rethrowing and Throwing an Exception 941

Exception-Handling Techniques 946

Terminate the Program 946

Fix the Error and Continue 946

Log the Error and Continue 948

15

Table of Contents | xv

Stack Unwinding 948

Quick Review 952

Exercises 954

Programming Exercises 957

RECURSION 959

Recursive Definitions 960

Direct and Indirect Recursion 963

Infinite Recursion 963

Problem Solving Using Recursion 964

Tower of Hanoi: Analysis 973

Recursion or Iteration? 974

Programming Example: Converting a Number from

Binary to Decimal 975

Programming Example: Converting a Number from

Decimal to Binary 979

Quick Review 982

Exercises 983

Programming Exercises 986

LINKED LISTS 991

Linked Lists 992

Linked Lists: Some Properties 993

Deletion 999

Building a Linked List 1000

Linked List as an ADT 1005

Structure of Linked List Nodes 1006

Member Variables of the class linkedListType 1006

Linked List Iterators 1007

Print the List 1013

Length of a List 1013

Retrieve the Data of the First Node 1014

Retrieve the Data of the Last Node 1014

Begin and End 1014

Copy the List 1015

Destructor 1016

Copy Constructor 1016

Overloading the Assignment Operator 1017

16

17

xvi | C++ Programming: Program Design Including Data Structures, Fifth Edition

Unordered Linked Lists 1017

Search the List 1018

Insert the First Node 1019

Insert the Last Node 1020

Header File of the Unordered Linked List 1025

Ordered Linked Lists 1026

Search the List 1027

Insert a Node 1028

Insert First and Insert Last 1032

Delete a Node 1033

Header File of the Ordered Linked List 1034

Print a Linked List in Reverse Order

(Recursion Revisited) 1037

printListReverse 1039

Doubly Linked Lists 1040

Default Constructor 1043

isEmptyList 1043

Destroy the List 1043

Initialize the List 1044

Length of the List 1044

Print the List 1044

Reverse Print the List 1044

Search the List 1045

First and Last Elements 1045

Circular Linked Lists 1051

Programming Example: Video Store 1052

Quick Review 1072

Exercises 1072

Programming Exercises 1077

STACKS AND QUEUES 1083

Stacks 1084

Stack Operations 1086

Implementation of Stacks as Arrays 1088

Initialize Stack 1091

Empty Stack 1092

Full Stack 1092

18

Table of Contents | xvii

Push 1092

Return the Top Element 1094

Pop 1094

Copy Stack 1096

Constructor and Destructor 1096

Copy Constructor 1097

Overloading the Assignment Operator (=) 1097

Stack Header File 1098

Programming Example: Highest GPA 1102

Linked Implementation of Stacks 1106

Default Constructor 1109

Empty Stack and Full Stack 1109

Initialize Stack 1110

Push 1110

Return the Top Element 1112

Pop 1112

Copy Stack 1114

Constructors and Destructors 1115

Overloading the Assignment Operator (=) 1115

Stack as Derived from the class

unorderedLinkedList 1118

Application of Stacks: Postfix Expressions Calculator 1119

Main Algorithm 1122

Function evaluateExpression 1122

Function evaluateOpr 1124

Function discardExp 1126

Function printResult 1126

Removing Recursion: Nonrecursive Algorithm to

Print a Linked List Backward 1129

Queues 1133

Queue Operations 1134

Implementation of Queues as Arrays 1136

Linked Implementation of Queues 1145

Queue Derived from the class

unorderedLinkedListType 1150

Application of Queues: Simulation 1151

Designing a Queuing System 1152

Customer 1153

Server 1156

xviii | C++ Programming: Program Design Including Data Structures, Fifth Edition

Server List 1159

Waiting Customers Queue 1164

Main Program 1166

Quick Review 1171

Exercises 1172

Programming Exercises 1178

SEARCHING AND SORTING ALGORITHMS 1183

Searching and Sorting Algorithms 1184

Search Algorithms 1184

Sequential Search 1185

Binary Search 1187

Performance of Binary Search 1192

Binary Search Algorithm and the class orderedArrayListType 1193

Asymptotic Notation: Big-O Notation 1194

Lower Bound on Comparison-Based Search Algorithms 1202

Sorting Algorithms 1202

Sorting a List: Bubble Sort 1202

Analysis: Bubble Sort 1206

Bubble Sort Algorithm and the class unorderedArrayListType 1207

Selection Sort: Array-Based Lists 1208

Analysis: Selection Sort 1211

Insertion Sort: Array-Based Lists 1212

Analysis: Insertion Sort 1216

Lower Bound on Comparison-Based Sort Algorithms 1216

Quick Sort: Array-Based Lists 1218

Analysis: Quick Sort 1224

Merge Sort: Linked List-Based Lists 1225

Divide 1227

Merge 1229

Analysis: Merge Sort 1232

Programming Example: Election Results 1235

Quick Review 1256

Exercises 1257

Programming Exercises 1260

19

Table of Contents | xix

BINARY TREES 1265

Binary Trees 1266

Copy Tree 1271

Binary Tree Traversal 1272

Implementing Binary Trees 1276

Binary Search Trees 1285

Binary Search Tree: Analysis 1296

Nonrecursive Binary Tree Traversal Algorithms 1297

Nonrecursive Inorder Traversal 1297

Nonrecursive Preorder Traversal 1299

Nonrecursive Postorder Traversal 1300

Binary Tree Traversal and Functions as Parameters 1301

Programming Example: Video Store (Revisited) 1305

Quick Review 1314

Exercises 1316

Programming Exercises 1318

GRAPHS 1321

Introduction 1322

Graph Definitions and Notations 1323

Graph Representation 1326

Adjacency Matrix 1326

Adjacency Lists 1327

Operations on Graphs 1328

Graphs as ADTs 1329

Graph Traversals 1333

Depth First Traversal 1333

Breadth First Traversal 1335

Shortest Path Algorithm 1337

Shortest Path 1339

Minimal Spanning Tree 1345

Quick Review 1355

Exercises 1357

Programming Exercises 1360

20

21

xx | C++ Programming: Program Design Including Data Structures, Fifth Edition

STANDARD TEMPLATE LIBRARY (STL) 1361

Components of the STL 1362

Container Types 1363

Sequence Containers 1363

Sequence Container: vector 1363

Member Functions Common to All Containers 1372

Member Functions Common to Sequence Containers 1374

The copy Algorithm 1375

Sequence Container: deque 1379

Sequence Container: list 1383

Iterators 1390

Types of Iterators 1390

Stream Iterators 1396

Associative Containers 1396

Associative Containers: set and multiset 1397

Declaring set or multiset Associative Containers 1397

Item Insertion and Deletion from set/multiset 1399

Container Adapters 1403

Stack 1403

Queue 1405

Containers, Associated Header Files, and Iterator Support 1406

Algorithms 1407

STL Algorithm Classification 1408

Function Objects 1410

Insert Iterator 1416

STL Algorithms 1418

The Functions fill and fill_n 1418

The Functions generate and generate_n 1420

The Functions find, find_if, find_end, and

find_first_of 1422

The Functions remove, remove_if,

remove_copy, and remove_copy_if 1427

The Functions replace, replace_if,

replace_copy, and replace_copy_if 1430

The Functions swap, iter_swap, and swap_ranges 1434

The Functions search, search_n, sort, and binary_search 1437

The Functions adjacent_find, merge, and

inplace_merge 1441

22

Table of Contents | xxi

The Functions reverse, reverse_copy,

rotate, and rotate_copy 1445

The Functions count, count_if, max, max_element,

min, min_element, and random_shuffle 1448

The Functions for_each and transform 1452

The Functions includes, set_intersection, set_union,

set_difference, and set_symmetric_difference 1455

The Functions accumulate, adjacent_difference,

inner_product, and partial_sum 1463

Quick Review 1468

Exercises 1472

Programming Exercises 1475

APPENDIX A: RESERVED WORDS 1477

APPENDIX B: OPERATOR PRECEDENCE 1479

APPENDIX C: CHARACTER SETS 1481

ASCII (American Standard Code for Information Interchange) 1481

EBCDIC (Extended Binary Coded Decimal Interchange Code) 1482

APPENDIX D: OPERATOR OVERLOADING 1485

APPENDIX E: ADDITIONAL C++ TOPICS 1487

Binary (Base 2) Representation of a Nonnegative Integer 1487

Converting a Base 10 Number to a Binary Number

(Base 2) 1487

Converting a Binary Number (Base 2) to Base 10 1489

Converting a Binary Number (Base 2) to Octal (Base 8)

and Hexadecimal (Base 16) 1490

More on File Input/Output 1492

Binary Files 1492

Random File Access 1498

Naming Conventions of Header Files in ANSI/ISO

Standard C++ and Standard C++ 1506

xxii | C++ Programming: Program Design Including Data Structures, Fifth Edition

APPENDIX F: HEADER FILES 1509

Header File cassert (assert.h) 1509

Header File cctype (ctype.h) 1510

Header File cfloat (float.h) 1511

Header File climits (limits.h) 1512

Header File cmath (math.h) 1514

Header File cstddef (stddef.h) 1515

Header File cstring (string.h) 1515

APPENDIX G: MEMORY SIZE ON A SYSTEM

AND RANDOM NUMBER GENERATOR 1519

Random Number Generator 1520

APPENDIX H: REFERENCES 1521

APPENDIX I: ANSWERS TO ODD-NUMBERED

EXERCISES 1523

Chapter 1 1523

Chapter 2 1526

Chapter 3 1528

Chapter 4 1529

Chapter 5 1531

Chapter 6 1533

Chapter 7 1534

Chapter 8 1535

Chapter 9 1536

Chapter 10 1538

Chapter 11 1539

Chapter 12 1541

Chapter 13 1543

Chapter 14 1544

Chapter 15 1545

Table of Contents | xxiii

Chapter 16 1546

Chapter 17 1547

Chapter 18 1548

Chapter 19 1550

Chapter 20 1551

Chapter 21 1553

Chapter 22 1554

INDEX 1555

xxiv | C++ Programming: Program Design Including Data Structures, Fifth Edition

WELCOME TO THE FIFTH EDITION OF C++ Programming: Program Design Including Data

Structures. Designed for a two semester (CS1 and CS2) C++ course, this text will provide

a breath of fresh air to you and your students. The CS1 and CS2 courses serve as the cornerstone

of the Computer Science curriculum. My primary goal is to motivate and excite all

introductory programming students, regardless of their level. Motivation breeds excite-

ment for learning. Motivation and excitement are critical factors that lead to the success

of the programming student. This text is a culmination and development of my classroom

notes throughout more than fifty semesters of teaching successful programming to

Computer Science students.

C++ Programming: Program Design Including Data Structures started as a collection of brief

examples, exercises, and lengthy programming examples to supplement the books that were

in use at our university. It soon turned into a collection large enough to develop into a text.

The approach taken in this book is, in fact, driven by the students’ demand for clarity and readability.

The material was written and rewritten until the students felt comfortable with it. Most of the

examples in this book resulted from student interaction in the classroom.

As with any profession, practice is essential. Cooking students practice their recipes. Budding

violinists practice their scales. New programmers must practice solving problems and writing

code. This is not a C++ cookbook. We do not simply list the C++ syntax followed by an

example; we dissect the ‘‘why’’ behind all the concepts. The crucial question of ‘‘why?’’ is

answered for every topic when first introduced. This technique offers a bridge to learning

C++. Students must understand the ‘‘why?’’ in order to be motivated to learn.

Traditionally, a C++ programming neophyte needed a working knowledge of another

programming language. This book assumes no prior programming experience. However,

some adequate mathematics background such as college algebra is required.

PREFACE

Warning: This text can be expected to create a serious reduction in the demand for program-

ming help during your office hours. Other side effects include significantly diminished student

dependency on others while learning to program.

Changes in the Fifth Edition
The fifth edition contains more than 50 new programming exercises and more than 150 new

exercises. Chapters 2 through 7 include a programming exercise which contains a solution to

a problem; however, the statements are in the incorrect order. So the student is asked to

rewrite the program with statements in the correct order. This will allow students to learn

how to read and debug programs written by someone else. Another major change in this

edition is the inclusion of debugging sections in Chapters 2 through 7. In these sections, a

program with errors is included. The program is compiled, and syntax errors, if any, are

shown. We then show how to interpret the syntax errors and correct them. Some sections

also show how to find and correct logical errors. This edition also includes various new

examples, such as Examples 5-8, 7-8, 12-6, and 12-8. Various sections in Chapters 4, 5, 6, and

7 have been rewritten. Chapter 8 includes additional string functions, and the virtual func-

tions section in Chapter 14 has been rewritten with new examples.

Approach
The programming language C++, which evolved from C, is no longer considered an

industry-only language. Numerous colleges and universities use C++ for their first program-

ming language course. C++ is a combination of structured programming and object-oriented

programming, and this book addresses both types.

This book is intended for a two-semester course, CS1 and CS2, in Computer Science. The

first 11 or 12 chapters can be covered in the first course and the remaining in the second

course.

In July 1998, ANSI/ISO Standard C++ was officially approved. This book focuses on ANSI/

ISO Standard C++. Even though the syntax of Standard C++ and ANSI/ISO Standard C++

is very similar, Chapter 8 discusses some of the features of ANSI/ISO Standard C++ that are

not available in Standard C++.

Chapter 1 briefly reviews the history of computers and programming languages. The reader can

quickly skim through this chapter and become familiar with some of the hardware components

and the software parts of the computer. This chapter contains a section on processing a C++

program. This chapter also describes structured and object-oriented programming.

Chapter 2 discusses the basic elements of C++. After completing this chapter, students

become familiar with the basics of C++ and are ready to write programs that are complicated

enough to do some computations. Input/output is fundamental to any programming lan-

guage. It is introduced early, in Chapter 3, and is covered in detail.

Chapters 4 and 5 introduce control structures to alter the sequential flow of execution.

Chapters 6 and 7 study user-defined functions. It is recommended that readers with no prior

programming background spend extra time on Chapters 6 and 7. Several examples are

provided to help readers understand the concepts of parameter passing and the scope of an

identifier.

xxvi | C++ Programming: Program Design Including Data Structures, Fifth Edition

Chapter 8 discusses the user-defined simple data type (enumeration type), the namespace
mechanism of ANSI/ISO Standard C++, and the string type. The earlier versions of C did

not include the enumeration type. Enumeration types have very limited use; their main

purpose is to make the program readable. This book is organized such that readers can skip

the section on enumeration types during the first reading without experiencing any discon-

tinuity, and then later go through this section.

Chapter 9 discusses arrays in detail. Chapter 10 introduces records (structs). The introduc-
tion of structs in this book is similar to C structs. This chapter is optional; it is not a
prerequisite for any of the remaining chapters.

Chapter 11 begins the study of object-oriented programming (OOP) and introduces classes.

The first half of this chapter shows how classes are defined and used in a program. The second

half of the chapter introduces abstract data types (ADTs). This chapter shows how classes in

C++ are a natural way to implement ADTs. Chapter 12 continues with the fundamentals of

object-oriented design (OOD) and OOP, and discusses inheritance and composition. It

explains how classes in C++ provide a natural mechanism for OOD and how C++ supports

OOP. Chapter 12 also discusses how to find the objects in a given problem.

Chapter 13 studies pointers in detail. After introducing pointers and how to use them in a

program, this chapter highlights the peculiarities of classes with pointer data members and

how to avoid them. Moreover, this chapter also discusses how to create and work with

dynamic two-dimensional arrays. Chapter 13 also discusses abstract classes and a type of

polymorphism accomplished via virtual functions.

Chapter 14 continues the study of OOD and OOP. In particular, it studies polymorphism

in C++. Chapter 14 specifically discusses two types of polymorphism—overloading and

templates.

Chapter 15 discusses exception handling in detail. Chapter 16 introduces and discusses

recursion. This is a stand-alone chapter, so it can be studied anytime after Chapter 10.

Chapters 17 and 18 are devoted to the study of data structures. Discussed in detail are linked

lists in Chapter 17 and stacks and queues in Chapter 18. The programming code developed in

these chapters is generic. These chapters effectively use the fundamentals of OOD.

Chapter 19 discusses various searching and sorting algorithms. In addition to showing how

these algorithms work, it also provides relevant analysis and results concerning the perfor-

mance of the algorithms. The algorithm analysis allows the user to decide which algorithm to

use in a particular application. This chapter also includes several sorting algorithms. The

instructor can decide which algorithms to cover.

Chapter 20 provides an introduction to binary trees. Various traversal algorithms, as well as the

basic properties of binary trees, are discussed and illustrated. Special binary trees, called binary

search trees, are introduced. Searching, as well as item insertion and deletion from a binary search

tree, are described and illustrated. Chapter 20 also discusses nonrecursive binary tree traversal

algorithms. Furthermore, to enhance the flexibility of traversal algorithms, it shows how to

construct and pass functions as parameters to other functions. This chapter also discusses AVL

Preface | xxvii

(height balanced) trees in detail. Due to text length considerations, discussion on AVL trees is

provided as a separate section and is available on the Web site accompanying this book.

Graph algorithms are discussed in Chapter 21. After introducing the basic graph theory

terminology, the representation of graphs in computer memory is discussed. This chapter

also discusses graph traversal algorithms, the shortest path algorithm, and the minimal span-

ning tree algorithm. Topological sort is also discussed in this chapter and is available on the

Web site accompanying this book.

C++ is equipped with a powerful library—the Standard Template Library (STL)—of data

structures and algorithms that can be used effectively in a wide variety of applications. Chapter

22 describes the STL in detail. After introducing the three basic components of the STL, it

shows how sequence containers are used in a program. Special containers, such as stack and

queue, are also discussed. The latter half of this chapter shows how various STL algorithms

can be used in a program. This chapter is fairly long; depending on the availability of time, the

instructor can at least cover the sequence containers, iterators, the classes stack and queue,

and certain algorithms.

Appendix A lists the reserved words in C++. Appendix B shows the precedence and

associativity of the C++ operators. Appendix C lists the ASCII (American Standard Code

for Information Interchange) and EBCDIC (Extended Binary Coded Decimal Interchange

Code) character sets. Appendix D lists the C++ operators that can be overloaded.

Appendix E has three objectives. First, we discuss how to convert a number from decimal to

binary and binary to decimal. We then discuss binary and random access files in detail. Finally,

we describe the naming conventions of the header files in both ANSI/ISO Standard C++ and

Standard C++. Appendix F discusses some of the most widely used library routines, and

includes the names of the standard C++ header files. The programs in Appendix G show

how to print the memory size for the built-in data types on your system as well as how to use a

random number generator. Appendix H gives selected references for further study. Appendix I

provides the answers to odd-numbered exercises in the book.

xxviii | C++ Programming: Program Design Including Data Structures, Fifth Edition

How to Use the Book
This book can be used in various ways. Figure 1 shows the dependency of the chapters.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8 Chapter 9*

Chapter 19

Chapter 10 Chapter 11

Chapter 12 Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 20* Chapter 21

Chapter 22

FIGURE 1 Chapter dependency diagram

Preface | xxix

In Figure 1, dotted lines mean that the preceding chapter is used in one of the sections of the

chapter and is not necessarily a prerequisite for the next chapter. For example, Chapter 9

covers arrays in detail. In Chapters 10 and 11, we show the relationship between arrays and

structs and arrays and classes, respectively. However, if Chapter 11 is studied before
Chapter 9, then the section dealing with arrays in Chapter 11 can be skipped without any

discontinuation. This particular section can be studied after studying Chapter 9.

It is recommended that the first seven chapters be covered sequentially. After covering the

first seven chapters, if the reader is interested in learning OOD and OOP early, then Chapter

11 can be studied right after Chapter 7. Chapter 8 can be studied anytime after Chapter 7.

After studying the first seven chapters in sequence, some of the approaches are:

1. Study chapters in the sequence: 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22.

2. Study chapters in the sequence: 9, 11, 13, 14, 12, 16, 17, 18, 15, 19, 20, 21, 22.

3. Study chapters in the sequence: 11, 9, 13, 14, 12, 16, 17, 18, 15, 19, 20, 21, 22.

As the chapter dependency diagram shows, Chapters 18 and 19 can be covered in any sequence.

However, typically, Chapters 18 and 19 are studied in sequence. Ideally, one should study

Chapters 17, 18, 19, and 20 in sequence. Chapters 21 and 22 can be studied in any sequence.

xxx | C++ Programming: Program Design Including Data Structures, Fifth Edition

FEATURES OF THE BOOK

Four-color interior

design shows

accurate C++

code and related

comments.

More than 400

visual

diagrams, both

extensive and

exhaustive,

illustrate difficult

concepts.

Numbered Examples

illustrate the key

concepts with their

relevant code. The

programming code in

these examples is

followed by a Sample

Run. An explanation

then follows that

describes what each

line in the code does.

Exercises further

reinforce learning

and ensure that

students have, in

fact, mastered the

material.

Programming Examples are

programs featured at the

end of each chapter.

Programming Examples are

where everything in the

chapter comes together.

They are highlighted with

an icon in the margin like

the one shown here. These

examples teach problem

solving skills and include

the concrete stages of

input, output, problem

analysis and algorithm

design, class design, and a

program listing All

programs are designed to

be methodical, consistent,

and user-friendly. Each

Programming Example

starts with a problem

analysis that is followed by

the algorithm design and/or

class design. Every step of

the algorithm is coded in

C++. In addition to helping

students learn problem

solving techniques, these

detailed programs show the

student how to implement

concepts in an actual C++

program. We strongly

recommend that students

study the Programming

Examples carefully in order to learn C++ effectively. Students typically learn much from completely worked-out

programs. Further, programming examples reduce considerably the students’ need for help outside the classroom and

bolster the students’ self-confidence.

Programming

Exercises challenge

students to write

C++ programs with

a specified

outcome.

The following supplemental materials are available when this book is used in a classroom

setting. All instructor materials as outlined below are available at the Companion Site for the

text at www.cengage.com.

Electronic Instructor’s Manual
The Instructor’s Manual that accompanies this textbook includes:

• Additional instructional material to assist in class preparation, including suggestions
for lecture topics.

• Solutions to all the end-of-chapter materials, including the Programming Exercises.

ExamView�

This textbook is accompanied by ExamView, a powerful testing software package that allows

instructors to create and administer printed, computer (LAN-based), and Internet exams.

ExamView includes hundreds of questions that correspond to the topics covered in this text,

enabling students to generate detailed study guides that include page references for further

review. These computer-based and Internet testing components allow students to take exams

at their computers, and save the instructor time because each exam is graded automatically.

PowerPoint Presentations
This book comes with Microsoft PowerPoint slides for each chapter. These are included as a

teaching aid for classroom presentations, either to make available to students on the network

for chapter review, or to be printed for classroom distribution. Instructors can add their own

slides for additional topics that they introduce to the class. The PowerPoint slides for the book

are also available on the Instructor Resources CD.

Distance Learning
Cengage Learning is proud to present online courses in WebCT and Blackboard to provide

the most complete and dynamic learning experience possible. For more information on how

SUPPLEMENTAL
RESOURCES

www.cengage.com

to bring distance learning to your course, contact your local Cengage Learning sales

representative.

Source Code
The source code, in ANSI/ISO Standard C++, is available at the Companion Site for the text

at www.cengage.com/coursetechnology, and is also available on the Instructor Resources

CD-ROM. The input files needed to run some of the programs are also included with the

source code.

Solution Files
The solution files for all programming exercises, in ANSI/ISO C++, are available at the

Companion Site for the text at www.cengage.com/coursetechnology and are also available on

the Instructor Resources CD-ROM. The input files needed to run some of the programming

exercises are also included with the solution files.

xxxviii | C++ Programming: Program Design Including Data Structures, Fifth Edition

www.cengage.com/coursetechnology

www.cengage.com/coursetechnology

There are many people that I must thank who, one way or another, contributed to the success

of this book. First, I would like to thank all the students who, during the preparation, were

spontaneous in telling me if certain portions needed to be reworded for better understanding

and clearer reading. Next, I would like to thank those who e-mailed numerous comments

to improve upon the third edition. I am thankful to Professors S.C. Cheng, Randall Crist, and

Vasant Raval for constantly supporting this project. I am also very grateful to the reviewers

who reviewed earlier versions of this book and offered many critical suggestions on how to

improve it.

I owe a great deal to the following reviewers who patiently read each page of every chapter of

the current version and made critical comments to improve the book: Stefano Basagni,

Northeastern University; Jeff Ringenberg, University of Michigan; Colleen van Lent, Uni-

versity of Michigan; Tuan Vo, Mt. San Antonio College; Kerstin Voigt, California State

University, San Bernardino; Lan Yang, Cal Poly Pomona. The reviewers will recognize that

their criticisms have not been overlooked and, in fact, made this a better book.

Next, I express thanks to Amy Jollymore, Acquisitions Editor, for recognizing the importance

and uniqueness of this project. All this would not have been possible without the careful

planning of Senior Product Manager Alyssa Pratt. I extend my sincere thanks to Alyssa, as well

as to Content Project Manager Matthew Hutchinson. I also thank Tintu Thomas of Integra

Software Services for assisting us in keeping the project on schedule. I would like to thank

Chris Scriver and Serge Palladino of Course Technology for patiently and carefully testing the

code and discovering typos and errors.

This book is dedicated to my parents, who I thank for their blessings.

Finally, I am thankful for the support of my wife Sadhana and especially my daughter Shelly.

They cheered me up whenever I was overwhelmed during the writing of this book. I welcome

any comments concerning the text. Comments may be forwarded to the following e-mail

address: .

D. S. Malik

ACKNOWLEDGEMENTS

This page intentionally left blank

AN OVERVIEW OF
COMPUTERS AND
PROGRAMMING
LANGUAGES

IN THIS CHAPTER , YOU WILL :

. Learn about different types of computers

. Explore the hardware and software components of a computer system

. Learn about the language of a computer

. Learn about the evolution of programming languages

. Examine high-level programming languages

. Discover what a compiler is and what it does

. Examine a C++ program

. Explore how a C++ program is processed

. Learn what an algorithm is and explore problem-solving techniques

. Become aware of structured design and object-oriented design programming methodologies

. Become aware of Standard C++ and ANSI/ISO Standard C++

1C H A P T E R

Introduction
Terms such as ‘‘the Internet,’’ which were unfamiliar just 20 years ago are now common.
Students in elementary school regularly ‘‘surf ’’ the Internet and use computers to design their
classroom projects. Many people use the Internet to look for information and to commu-
nicate with others. This is all made possible by the availability of different software, also
known as computer programs. Without software, a computer is useless. Software is devel-
oped by using programming languages. The programming language C++ is especially well
suited for developing software to accomplish specific tasks. Our main objective is to help you
learn how to write programs in the C++ programming language. Before you begin
programming, it is useful to understand some of the basic terminology and different
components of a computer. We begin with an overview of the history of computers.

A Brief Overview of the History of Computers
The first device known to carry out calculations was the abacus. The abacus was invented in
Asia but was used in ancient Babylon, China, and throughout Europe until the late middle
ages. The abacus uses a system of sliding beads in a rack for addition and subtraction. In 1642,
the French philosopher and mathematician Blaise Pascal invented the calculating device
called the Pascaline. It had eight movable dials on wheels and could calculate sums up to
eight figures long. Both the abacus and Pascaline could perform only addition and subtrac-
tion operations. Later in the 17th century, Gottfried von Leibniz invented a device that was
able to add, subtract, multiply, and divide. In 1819, Joseph Jacquard, a French weaver,
discovered that the weaving instructions for his looms could be stored on cards with holes
punched in them. While the cards moved through the loom in sequence, needles passed
through the holes and picked up threads of the correct color and texture. A weaver could
rearrange the cards and change the pattern being woven. In essence, the cards programmed a
loom to produce patterns in cloth. The weaving industry may seem to have little in common
with the computer industry. However, the idea of storing information by punching holes on
a card proved to be of great importance in the later development of computers.

In the early and mid-1800s, Charles Babbage, an English mathematician and physical
scientist, designed two calculating machines—the difference engine and the analytical
engine. The difference engine could perform complex operations such as squaring
numbers automatically. Babbage built a prototype of the difference engine, but the actual
device was never produced. The analytical engine’s design included input device, data
storage, a control unit that allowed processing instructions in any sequence, and output
devices. However, the designs remained in blueprint stage. Most of Babbage’s work is
known through the writings of his colleague Ada Augusta, Countess of Lovelace. Augusta
is considered the first computer programmer.

At the end of the 19th century, U.S. Census officials needed help in accurately tabulating
the census data. Herman Hollerith invented a calculating machine that ran on electricity
and used punched cards to store data. Hollerith’s machine was immensely successful.
Hollerith founded the Tabulating Machine Company, which later became the computer
and technology corporation known as IBM.

2 | Chapter 1: An Overview of Computers and Programming Languages

1
The first computer-like machine was the Mark I. It was built, in 1944, jointly by IBM and
Harvard University under the leadership of Howard Aiken. Punched cards were used to feed
data into the machine. The Mark I was 52 feet long, weighed 50 tons, and had 750,000 parts.
In 1946, the ENIAC (Electronic Numerical Integrator and Calculator) was built at the
University of Pennsylvania. It contained 18,000 vacuum tubes and weighed some 30 tons.

The computers that we know today use the design rules given by John von Neumann in
the late 1940s. His design included components such as an arithmetic logic unit, a control
unit, memory, and input/output devices. These components are described in the next
section. Von Neumann’s computer design makes it possible to store the programming
instructions and the data in the same memory space. In 1951, the UNIVAC (Universal
Automatic Computer) was built and sold to the U.S. Census Bureau.

In 1956, the invention of transistors resulted in smaller, faster, more reliable, and more
energy-efficient computers. This era also saw the emergence of the software development
industry, with the introduction of FORTRAN and COBOL, two early programming
languages. In the next major technological advancement, transistors were replaced by tiny
integrated circuits, or ‘‘chips.’’ Chips are smaller and cheaper than transistors and can contain
thousands of circuits on a single chip. They give computers tremendous processing speed.

In 1970, the microprocessor, an entire CPU on a single chip, was invented. In 1977,
Stephen Wozniak and Steven Jobs designed and built the first Apple computer in their
garage. In 1981, IBM introduced its personal computer (PC). In the 1980s, clones of the
IBM PC made the personal computer even more affordable. By the mid-1990s, people
from many walks of life were able to afford them. Computers continue to become faster
and less expensive as technology advances.

Modern-day computers are powerful, reliable, and easy to use. They can accept spoken-word
instructions and imitate human reasoning through artificial intelligence. Expert systems assist
doctors in making diagnoses. Mobile computing applications are growing significantly. Using
handheld devices, delivery drivers can access global positioning satellites (GPS) to verify
customer locations for pickups and deliveries. Cell phones permit you to check your e-mail,
make airline reservations, see how stocks are performing, and access your bank accounts.

Although there are several categories of computers, such as mainframe, midsize, and
micro, all computers share some basic elements, described in the next section.

Elements of a Computer System
A computer is an electronic device capable of performing commands. The basic commands
that a computer performs are input (get data), output (display result), storage, and perfor-
mance of arithmetic and logical operations.

In today’s market, personal computers are sold with descriptions such as a Pentium 4
Processor 2.80 GHz, 1 GB RAM, 250 GB HD, VX750 19" Silver Flat CRT Color
Monitor, preloaded with software such as an operating system, games, encyclopedias, and
application software such as word processors or money management programs. These
descriptions represent two categories: hardware and software. Items such as ‘‘Pentium 4

Elements of a Computer System | 3

Processor 2.80 GHz, 1GB RAM, 250 GB HD, VX750 19" Silver Flat CRT Color Monitor’’
fall into the hardware category; items such as ‘‘operating system, games, encyclopedias, and
application software’’ fall into the software category. Let’s consider the hardware first.

Hardware
Major hardware components include the central processing unit (CPU); main memory
(MM), also called random access memory (RAM); input/output devices; and secondary
storage. Some examples of input devices are the keyboard, mouse, and secondary storage.
Examples of output devices are the screen, printer, and secondary storage. Let’s look at
each of these components in greater detail.

Central Processing Unit and Main Memory
The central processing unit is the ‘‘brain’’ of the computer and the single most expensive
piece of hardware in a computer. The more powerful the CPU, the faster the computer.
Arithmetic and logical operations are carried out inside the CPU. Figure 1-1(a) shows some
hardware components.

Main memory, or random access memory, is connected directly to the CPU. All
programs must be loaded into main memory before they can be executed. Similarly, all
data must be brought into main memory before a program can manipulate it. When the
computer is turned off, everything in main memory is lost.

Main memory is an ordered sequence of cells, called memory cells. Each cell has a unique
location in main memory, called the address of the cell. These addresses help you access
the information stored in the cell. Figure 1-1(b) shows main memory with some data.

Central
Processing
Unit (CPU)

Main Memory

Secondary Storage

Input
Device

Output
Device

(b)(a)

2001
2000

1001
1000 54

A
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Main Memory

FIGURE 1-1 Hardware components of a computer and main memory

4 | Chapter 1: An Overview of Computers and Programming Languages

Today’s computers come with main memory consisting of millions to billions of cells.
Although Figure 1-1(b) shows data stored in cells, the content of a cell can be either a
programming instruction or data. Moreover, this figure shows the data as numbers and
letters. However, as explained later in this chapter, main memory stores everything as
sequences of 0s and 1s. The memory addresses are also expressed as sequences of 0s and 1s.

SECONDARY STORAGE

Because programs and data must be stored in main memory before processing and
because everything in main memory is lost when the computer is turned off, information
stored in main memory must be transferred to some other device for permanent storage.
The device that stores information permanently (unless the device becomes unusable or
you change the information by rewriting it) is called secondary storage. To be able to
transfer information from main memory to secondary storage, these components must
be directly connected to each other. Examples of secondary storage are hard disks, flash
drives, floppy disks, ZIP disks, CD-ROMs, and tapes.

Input /Output Devices
For a computer to perform a useful task, it must be able to take in data and programs and
display the results of calculations. The devices that feed data and programs into computers
are called input devices. The keyboard, mouse, and secondary storage are examples of
input devices. The devices that the computer uses to display results are called output
devices. A monitor, printer, and secondary storage are examples of output devices.
Figure 1-2 shows some input and output devices.

1

Input devices Output devices

FIGURE 1-2 Some input and output devices

Elements of a Computer System | 5

Software
Software are programs written to perform specific tasks. For example, word processors
are programs that you use to write letters, papers, and even books. All software is written
in programming languages. There are two types of programs: system programs and
application programs.

System programs control the computer. The system program that loads first when you
turn on your PC is called the operating system. Without an operating system, the
computer is useless. The operating system monitors the overall activity of the computer
and provides services. Some of these services include memory management, input/output
activities, and storage management. The operating system has a special program that
organizes secondary storage so that you can conveniently access information.

Application programs perform a specific task. Word processors, spreadsheets, and
games are examples of application programs. The operating system is the program that
runs application programs.

The Language of a Computer
When you press A on your keyboard, the computer displays A on the screen. But what is
actually stored inside the computer’s main memory? What is the language of the
computer? How does it store whatever you type on the keyboard?

Remember that a computer is an electronic device. Electrical signals are used inside the
computer to process information. There are two types of electrical signals: analog and
digital. Analog signals are continuous wave forms used to represent such things as
sound. Audio tapes, for example, store data in analog signals. Digital signals represent
information with a sequence of 0s and 1s. A 0 represents a low voltage, and a 1
represents a high voltage. Digital signals are more reliable carriers of information than
analog signals and can be copied from one device to another with exact precision. You
might have noticed that when you make a copy of an audio tape, the sound quality of
the copy is not as good as the original tape. On the other hand, when you copy a CD,
the copy is as good as the original. Computers use digital signals.

Because digital signals are processed inside a computer, the language of a computer, called
machine language, is a sequence of 0s and 1s. The digit 0 or 1 is called a binary digit,
or bit. Sometimes a sequence of 0s and 1s is referred to as a binary code or a binary
number.

Bit: A binary digit 0 or 1.

A sequence of eight bits is called a byte. Moreover, 210 bytes = 1024 bytes is called
a kilobyte (KB). Table 1-1 summarizes the terms used to describe various numbers
of bytes.

6 | Chapter 1: An Overview of Computers and Programming Languages

Every letter, number, or special symbol (such as * or {) on your keyboard is encoded as a
sequence of bits, each having a unique representation. The most commonly used
encoding scheme on personal computers is the seven-bit American Standard Code
for Information Interchange (ASCII). The ASCII data set consists of 128 characters
numbered 0 through 127. That is, in the ASCII data set, the position of the first character
is 0, the position of the second character is 1, and so on. In this scheme, A is encoded as
the binary number 1000001. In fact, A is the 66th character in the ASCII character code,
but its position is 65 because the position of the first character is 0. Furthermore, the
binary number 1000001 is the binary representation of 65. The character 3 is encoded as
0110011. Note that in the ASCII character set, the position of the character 3 is 51, so
the character 3 is the 52nd character in the ASCII set. It also follows that 0110011 is the
binary representation of 51. For a complete list of the printable ASCII character set, refer
to Appendix C.

The number system that we use in our daily life is called the decimal system, or base 10.

Because everything inside a computer is represented as a sequence of 0s and 1s, that is,

binary numbers, the number system that a computer uses is called binary, or base 2. We

indicated in the preceding paragraph that the number 1000001 is the binary representation

of 65. Appendix E describes how to convert a number from base 10 to base 2 and vice versa.

1
TABLE 1-1 Binary Units

Unit Symbol Bits/Bytes

Byte 8 bits

Kilobyte KB 210 bytes ¼ 1024 bytes

Megabyte MB 1024 KB ¼ 210 KB ¼ 220 bytes ¼ 1,048,576 bytes

Gigabyte GB 1024 MB¼ 210 MB¼ 230 bytes¼ 1,073,741,824 bytes

Terabyte TB 1024 GB ¼ 2
10 GB ¼ 240 bytes ¼

1,099,511,627,776 bytes

Petabyte PB 1024 TB ¼ 2
10 TB ¼ 250 bytes ¼

1,125,899,906,842,624 bytes

Exabyte EB 1024 PB ¼ 2
10 PB ¼ 260 bytes ¼

1,152,921,504,606,846,976 bytes

Zettabyte ZB 1024 EB ¼ 2
10 EB ¼ 270 bytes ¼

1,180,591,620,717,411,303,424 bytes

The Language of a Computer | 7

Inside the computer, every character is represented as a sequence of eight bits, that is, as
a byte. Now the eight-bit binary representation of 65 is 01000001. Note that we added 0
to the left of the seven-bit representation of 65 to convert it to an eight-bit representa-
tion. Similarly, the eight-bit binary representation of 51 is 00110011.

ASCII is a seven-bit code. Therefore, to represent each ASCII character inside the
computer, you must convert the seven-bit binary representation of an ASCII character
to an eight-bit binary representation. This is accomplished by adding 0 to the left of the
seven-bit ASCII encoding of a character. Hence, inside the computer, the character
A is represented as 01000001, and the character 3 is represented as 00110011.

There are other encoding schemes, such as EBCDIC (used by IBM) and Unicode,
which is a more recent development. EBCDIC consists of 256 characters; Unicode
consists of 65,536 characters. To store a character belonging to Unicode, you need
two bytes.

The Evolution of Programming Languages
The most basic language of a computer, the machine language, provides program
instructions in bits. Even though most computers perform the same kinds of operations,
the designers of the computer may have chosen different sets of binary codes to perform
the operations. Therefore, the machine language of one machine is not necessarily the
same as the machine language of another machine. The only consistency among com-
puters is that in any modern computer, all data is stored and manipulated as binary codes.

Early computers were programmed in machine language. To see how instructions are
written in machine language, suppose you want to use the equation:

wages = rate � hours
to calculate weekly wages. Further, suppose that the binary code 100100 stands for load,
100110 stands for multiplication, and 100010 stands for store. In machine language, you
might need the following sequence of instructions to calculate weekly wages:

100100 010001
100110 010010
100010 010011

To represent the weekly wages equation in machine language, the programmer had to
remember the machine language codes for various operations. Also, to manipulate
data, the programmer had to remember the locations of the data in the main memory.
This need to remember specific codes made programming not only very difficult, but also
error-prone.

Assembly languages were developed to make the programmer’s job easier. In assembly
language, an instruction is an easy-to-remember form called a mnemonic. Table 1-2
shows some examples of instructions in assembly language and their corresponding
machine language code.

8 | Chapter 1: An Overview of Computers and Programming Languages

1

Using assembly language instructions, you can write the equation to calculate the weekly
wages as follows:

LOAD rate
MULT hours
STOR wages

As you can see, it is much easier to write instructions in assembly language. However,
a computer cannot execute assembly language instructions directly. The instructions first
have to be translated into machine language. A program called an assembler translates
the assembly language instructions into machine language.

Assembler: A program that translates a program written in assembly language into an

equivalent program in machine language.

Moving from machine language to assembly language made programming easier, but
a programmer was still forced to think in terms of individual machine instructions. The
next step toward making programming easier was to devise high-level languages that
were closer to natural languages, such as English, French, German, and Spanish. Basic,
FORTRAN, COBOL, Pascal, C, C++, C#, and Java are all high-level languages. You
will learn the high-level language C++ in this book.

In C++, you write the weekly wages equation as follows:

wages = rate * hours;

The instruction written in C++ is much easier to understand and is self-explanatory
to a novice user who is familiar with basic arithmetic. As in the case of assembly language,
however, the computer cannot directly execute instructions written in a high-level
language. To run on a computer, these C++ instructions first need to be translated into
machine language. A program called a compiler translates instructions written in high-
level languages into machine code.

Compiler: A program that translates instructions written in a high-level language into the

equivalent machine language.

TABLE 1-2 Examples of Instructions in Assembly Language and Machine Language

Assembly Language Machine Language

LOAD 100100

STOR 100010

MULT 100110

ADD 100101

SUB 100011

The Evolution of Programming Languages | 9

Processing a C++ Program
In the previous sections, we discussed machine language and high-level languages and
showed a C++ program. Because a computer can understand only machine language,
you are ready to review the steps required to process a program written in C++.

Consider the following C++ program:

#include <iostream>

using namespace std;

int main()
{

cout << "My first C++ program." << endl;

return 0;
}

At this point, you need not be too concerned with the details of this program. However,
if you run (execute) this program, it will display the following line on the screen:

My first C++ program.

Recall that a computer can understand only machine language. Therefore, in order to run
this program successfully, the code must first be translated into machine language. In this
section, we review the steps required to execute programs written in C++.

The following steps, as shown in Figure 1-3, are necessary to process a C++ program.

1. You use a text editor to create a C++ program following the rules, or

syntax, of the high-level language. This program is called the source

code, or source program. The program must be saved in a text file

that has the extension .cpp. For example, if you saved the preceding
program in the file named FirstCPPProgram, then its complete name

is FirstCPPProgram.cpp.

Source program: A program written in a high-level language.

2. The C++ program given in the preceding section contains the statement

#include <iostream>. In a C++ program, statements that begin with
the symbol # are called preprocessor directives. These statements are pro-

cessed by a program called preprocessor.

3. After processing preprocessor directives, the next step is to verify that the

program obeys the rules of the programming language—that is, the program

is syntactically correct—and translate the program into the equivalent

machine language. The compiler checks the source program for syntax errors

and, if no error is found, translates the program into the equivalent machine

language. The equivalent machine language program is called an object

program.

10 | Chapter 1: An Overview of Computers and Programming Languages

Object program: The machine language version of the high-level language

program.

4. The programs that you write in a high-level language are developed using

an integrated development environment (IDE). The IDE contains many

programs that are useful in creating your program. For example, it contains

the necessary code (program) to display the results of the program and

several mathematical functions to make the programmer’s job somewhat

easier. Therefore, if certain code is already available, you can use this code

rather than writing your own code. Once the program is developed and

successfully compiled, you must still bring the code for the resources used

from the IDE into your program to produce a final program that the

computer can execute. This prewritten code (program) resides in a place

called the library. A program called a linker combines the object program

with the programs from libraries.

Linker: A program that combines the object program with other programs

in the library and is used in the program to create the executable code.

5. You must next load the executable program into main memory for execu-

tion. A program called a loader accomplishes this task.

Loader: A program that loads an executable program into main memory.

6. The final step is to execute the program.

Figure 1-3 shows how a typical C++ program is processed.

As a programmer, you need to be concerned only with Step 1. That is, you must learn,
understand, and master the rules of the programming language to create source programs.

1

Editor

Preprocessor

Compiler

Linker

Loader

Execution

Library

C++ Program

Syntax
Error

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

FIGURE 1-3 Processing a C++ program

Processing a C++ Program | 11

As noted earlier, programs are developed using an IDE. Well-known IDEs used to create
programs in the high-level language C++ include Visual C++ 2008 Express and Visual
Studio .NET (from Microsoft), C++ Builder (from Borland), and CodeWarrior (from
Metrowerks). These IDEs contain a text editor to create the source program, a compiler to
check the source program for syntax errors, a program to link the object code with the IDE
resources, and a program to execute the program.

These IDEs are quite user friendly. When you compile your program, the compiler not
only identifies the syntax errors, but also typically suggests how to correct them. More-
over, with just a simple command, the object code is linked with the resources used from
the IDE. For example, the command that does the linking on Visual C++ 2008 Express
and Visual Studio .Net is Build or Rebuild. (For further clarification regarding the use of
these commands, check the documentation of these IDEs.) If the program is not yet
compiled, each of these commands first compiles the program and then links and produces
the executable code.

The Web site http://msdn.microsoft.com/en-us/beginner/bb964629.aspx contains a video that
explains how to use Visual C++ 2008 Express to write C++ programs.

Programming with the Problem
Analysis–Coding–Execution Cycle
Programming is a process of problem solving. Different people use different techniques to
solve problems. Some techniques are nicely outlined and easy to follow. They not
only solve the problem, but also give insight into how the solution was reached.
These problem-solving techniques can be easily modified if the domain of the
problem changes.

To be a good problem solver and a good programmer, you must follow good problem-
solving techniques. One common problem-solving technique includes analyzing a pro-
blem, outlining the problem requirements, and designing steps, called an algorithm, to
solve the problem.

Algorithm: A step-by-step problem-solving process in which a solution is arrived at in a

finite amount of time.

In a programming environment, the problem-solving process requires the following three steps:

1. Analyze the problem, outline the problem and its solution requirements,

and design an algorithm to solve the problem.

2. Implement the algorithm in a programming language, such as C++, and

verify that the algorithm works.

3. Maintain the program by using and modifying it if the problem domain changes.

Figure 1-4 summarizes this three-step programming process.

12 | Chapter 1: An Overview of Computers and Programming Languages

http://msdn.microsoft.com/en-us/beginner/bb964629.aspx

To develop a program to solve a problem, you start by analyzing the problem. You then
design the algorithm; write the program instructions in a high-level language, or code the
program; and enter the program into a computer system.

Analyzing the problem is the first and most important step. This step requires you to do
the following:

1. Thoroughly understand the problem.

2. Understand the problem requirements. Requirements can include whether

the program requires interaction with the user, whether it manipulates data,

1

Results

Problem

Analysis

Algorithm
Design

Coding

Linker

Library

Loader

Compiler

No Error

Error

ErrorExecution

No Error

Preprocessor

FIGURE 1-4 Problem analysis–coding–execution cycle

Programming with the Problem Analysis–Coding–Execution Cycle | 13

whether it produces output, and what the output looks like. If the program

manipulates data, the programmer must know what the data is and how it is

represented. That is, you need to look at sample data. If the program produces

output, you should know how the results should be generated and formatted.

3. If the problem is complex, divide the problem into subproblems and repeat

Steps 1 and 2. That is, for complex problems, you need to analyze each

subproblem and understand each subproblem’s requirements.

After you carefully analyze the problem, the next step is to design an algorithm to solve the
problem. If you broke the problem into subproblems, you need to design an algorithm for
each subproblem. Once you design an algorithm, you need to check it for correctness. You
can sometimes test an algorithm’s correctness by using sample data. At other times, you
might need to perform some mathematical analysis to test the algorithm’s correctness.

Once you have designed the algorithm and verified its correctness, the next step is to
convert it into an equivalent programming code. You then use a text editor to enter the
programming code or the program into a computer. Next, you must make sure that the
program follows the language’s syntax. To verify the correctness of the syntax, you run
the code through a compiler. If the compiler generates error messages, you must identify
the errors in the code, remove them, and then run the code through the compiler again.
When all the syntax errors are removed, the compiler generates the equivalent machine
code, the linker links the machine code with the system’s resources, and the loader places
the program into main memory so that it can be executed.

The final step is to execute the program. The compiler guarantees only that the program
follows the language’s syntax. It does not guarantee that the program will run correctly.
During execution, the program might terminate abnormally due to logical errors, such as
division by zero. Even if the program terminates normally, it may still generate erroneous
results. Under these circumstances, you may have to reexamine the code, the algorithm,
or even the problem analysis.

Your overall programming experience will be successful if you spend enough time to
complete the problem analysis before attempting to write the programming instructions.
Usually, you do this work on paper using a pen or pencil. Taking this careful approach to
programming has a number of advantages. It is much easier to discover errors in a program
that is well analyzed and well designed. Furthermore, a carefully analyzed and designed
program is much easier to follow and modify. Even the most experienced programmers
spend a considerable amount of time analyzing a problem and designing an algorithm.

Throughout this book, you will not only learn the rules of writing programs in C++, but you
will also learn problem-solving techniques. Each chapter provides several programming exam-
ples that discuss programming problems. These programming examples teach techniques of
how to analyze and solve problems, design algorithms, code the algorithms into C++, and also
help you understand the concepts discussed in the chapter. To gain the full benefit of this book,
we recommend that you work through the programming examples at the end of each chapter.

Next, we provide examples of various problem-analysis and algorithm-design techniques.

14 | Chapter 1: An Overview of Computers and Programming Languages

EXAMPLE 1-1

In this example, we design an algorithm to find the perimeter and area of a rectangle.

To find the perimeter and area of a rectangle, you need to know the rectangle’s length and

width.

The perimeter and area of the rectangle are then given by the following formulas:

perimeter = 2 � (length + width)
area = length � width
The algorithm to find the perimeter and area of the rectangle is:

1. Get the length of the rectangle.

2. Get the width of the rectangle.

3. Find the perimeter using the following equation:

perimeter = 2 � (length + width)
4. Find the area using the following equation:

area = length � width

EXAMPLE 1-2

In this example, we design an algorithm that calculates the sales tax and the price of an item

sold in a particular state.

The sales tax is calculated as follows: The state’s portion of the sales tax is 4%, and the city’s

portion of the sales tax is 1.5%. If the item is a luxury item, such as a car more than $50,000,

then there is a 10% luxury tax.

To calculate the price of the item, we need to calculate the state’s portion of the sales

tax, the city’s portion of the sales tax, and, if it is a luxury item, the luxury tax.

Suppose salePrice denotes the selling price of the item, stateSalesTax denotes
the state’s sales tax, citySalesTax denotes the city’s sales tax, luxuryTax denotes

the luxury tax, salesTax denotes the total sales tax, and amountDue denotes the final price

of the item.

To calculate the sales tax, we must know the selling price of the item and whether the item is

a luxury item.

The stateSalesTax and citySalesTax can be calculated using the following formulas:

stateSalesTax = salePrice � 0.04
citySalesTax = salePrice � 0.015

1

Programming with the Problem Analysis–Coding–Execution Cycle | 15

Next, you can determine luxuryTax as follows:

if (item is a luxury item)
luxuryTax = salePrice � 0.1

otherwise
luxuryTax = 0

Next, you can determine salesTax as follows:

salesTax = stateSalesTax + citySalesTax + luxuryTax

Finally, you can calculate amountDue as follows:

amountDue = salePrice + salesTax

The algorithm to determine salesTax and amountDue is, therefore:

1. Get the selling price of the item.

2. Determine whether the item is a luxury item.

3. Find the state’s portion of the sales tax using the formula:

stateSalesTax = salePrice � 0.04
4. Find the city’s portion of the sales tax using the formula:

citySalesTax = salePrice � 0.015
5. Find the luxury tax using the following formula:

if (item is a luxury item)
luxuryTax = salePrice � 0.1

otherwise
luxuryTax = 0

6. Find salesTax using the formula:

salesTax = stateSalesTax + citySalesTax + luxuryTax

7. Find amountDue using the formula:

amountDue = salePrice + salesTax

EXAMPLE 1-3

In this example, we design an algorithm that calculates the monthly paycheck of a salesperson

at a local department store.

Every salesperson has a base salary. The salesperson also receives a bonus at the end of each

month, based on the following criteria: If the salesperson has been with the store for five years

or less, the bonus is $10 for each year that he or she has worked there. If the salesperson has

been with the store for more than five years, the bonus is $20 for each year that he or she has

worked there. The salesperson can earn an additional bonus as follows: If the total sales made

16 | Chapter 1: An Overview of Computers and Programming Languages

1
by the salesperson for the month are at least $5,000 but less than $10,000, he or she receives a

3% commission on the sale. If the total sales made by the salesperson for the month are at least

$10,000, he or she receives a 6% commission on the sale.

To calculate a salesperson’s monthly paycheck, you need to know the base salary, the number of

years that the salesperson has been with the company, and the total sales made by the sales-

person for that month. Suppose baseSalary denotes the base salary, noOfServiceYears

denotes the number of years that the salesperson has been with the store, bonus denotes
the bonus, totalSales denotes the total sales made by the salesperson for the month, and

additionalBonus denotes the additional bonus.

You can determine the bonus as follows:

if (noOfServiceYears is less than or equal to five)
bonus = 10 � noOfServiceYears

otherwise
bonus = 20 � noOfServiceYears

Next, you can determine the additional bonus of the salesperson as follows:

if (totalSales is less than 5000)
additionalBonus = 0

otherwise
if (totalSales is greater than or equal to 5000 and

totalSales is less than 10000)
additionalBonus = totalSales � (0.03)

otherwise
additionalBonus = totalSales � (0.06)

Following the above discussion, you can now design the algorithm to calculate a salesperson’s

monthly paycheck:

1. Get baseSalary.

2. Get noOfServiceYears.

3. Calculate bonus using the following formula:

if (noOfServiceYears is less than or equal to five)
bonus = 10 � noOfServiceYears

otherwise

bonus = 20 � noOfServiceYears
4. Get totalSales.

5. Calculate additionalBonus using the following formula:

if (totalSales is less than 5000)
additionalBonus = 0

otherwise
if (totalSales is greater than or equal to 5000 and

totalSales is less than 10000)
additionalBonus = totalSales � (0.03)

otherwise
additionalBonus = totalSales � (0.06)

Programming with the Problem Analysis–Coding–Execution Cycle | 17

6. Calculate payCheck using the equation:

payCheck = baseSalary + bonus + additionalBonus

EXAMPLE 1-4

In this example, we design an algorithm to play a number-guessing game.

The objective is to randomly generate an integer greater than or equal to 0 and less than 100.
Then prompt the player (user) to guess the number. If the player guesses the number

correctly, output an appropriate message. Otherwise, check whether the guessed number is

less than the random number. If the guessed number is less than the random number

generated, output the message, ‘‘Your guess is lower than the number. Guess again!’’;

otherwise, output the message, ‘‘Your guess is higher than the number. Guess again!’’. Then

prompt the player to enter another number. The player is prompted to guess the random

number until the player enters the correct number.

The first step is to generate a random number, as described above. C++ provides the means to

do so, which is discussed in Chapter 5. Suppose num stands for the random number and
guess stands for the number guessed by the player.

After the player enters the guess, you can compare the guess with the random number as follows:

if (guess is equal to num)
Print "You guessed the correct number."

otherwise
if guess is less than num

Print "Your guess is lower than the number. Guess again!"
otherwise

Print "Your guess is higher than the number. Guess again!"

You can now design an algorithm as follows:

1. Generate a random number and call it num.

2. Repeat the following steps until the player has guessed the correct number:

a. Prompt the player to enter guess.

b.

if (guess is equal to num)
Print "You guessed the correct number."

otherwise
if guess is less than num

Print "Your guess is lower than the number. Guess again!"
otherwise

Print "Your guess is higher than the number. Guess again!"

In Chapter 5, we use this algorithm to write a C++ program to play the guessing the number

game.

18 | Chapter 1: An Overview of Computers and Programming Languages

EXAMPLE 1-5

There are 10 students in a class. Each student has taken five tests, and each test is worth 100

points. We want to design an algorithm to calculate the grade for each student, as well as the

class average. The grade is assigned as follows: If the average test score is greater than or equal

to 90, the grade is A; if the average test score is greater than or equal to 80 and less than 90,
the grade is B; if the average test score is greater than or equal to 70 and less than 80, the grade

is C; if the average test score is greater than or equal to 60 and less than 70, the grade is D;

otherwise, the grade is F. Note that the data consists of students’ names and their test scores.

This is a problem that can be divided into subproblems as follows: There are five tests, so you

design an algorithm to find the average test score. Next, you design an algorithm to determine

the grade. The two subproblems are to determine the average test score and to determine the

grade.

Let us first design an algorithm to determine the average test score. To find the average test

score, add the five test scores and then divide the sum by 5. Therefore, the algorithm is:

1. Get the five test scores.

2. Add the five test scores. Suppose sum stands for the sum of the test scores.

3. Suppose average stands for the average test score. Then:

average = sum / 5;

Next, you design an algorithm to determine the grade. Suppose grade stands for the grade
assigned to a student. The following algorithm determines the grade:

if average is greater than or equal to 90
grade = A

otherwise
if average is greater than or equal to 80 and less than 90

grade = B
otherwise

if average is greater than or equal to 70 and less than 80
grade = C

otherwise
if average is greater than or equal to 60 and less than 70

grade = D
otherwise

grade = F

You can use the solutions to these subproblems to design the main algorithm as follows:
(Suppose totalAverage stands for the sum of the averages of each student’s test average.)

1. totalAverage = 0;

2. Repeat the following steps for each student in the class:

a. Get student’s name.

b. Use the algorithm as discussed above to find the average test score.

1

Programming with the Problem Analysis–Coding–Execution Cycle | 19

c. Use the algorithm as discussed above to find the grade.

d. Update totalAverage by adding the current student’s average test
score.

3. Determine the class average as follows:

classAverage = totalAverage / 10

A programming exercise in Chapter 7 asks you to write a C++ program to determine the

average test score and grade for each student in a class.

Programming Methodologies
Two popular approaches to programming design are the structured approach and the
object-oriented approach, which are outlined below.

Structured Programming
Dividing a problem into smaller subproblems is called structured design. Each subproblem
is then analyzed, and a solution is obtained to solve the subproblem. The solutions to all of
the subproblems are then combined to solve the overall problem. This process of imple-
menting a structured design is called structured programming. The structured-design
approach is also known as top-down design, bottom-up design, stepwise refinement,
and modular programming.

Object-Oriented Programming
Object-oriented design (OOD) is a widely used programming methodology. In OOD, the
first step in the problem-solving process is to identify the components called objects, which
form the basis of the solution, and to determine how these objects interact with one another.
For example, suppose you want to write a program that automates the video rental process for
a local video store. The two main objects in this problem are the video and the customer.

After identifying the objects, the next step is to specify for each object the relevant data
and possible operations to be performed on that data. For example, for a video object, the
data might include:

• movie name

• starring actors

• producer

• production company

• number of copies in stock

Some of the operations on a video object might include:

• checking the name of the movie

• reducing the number of copies in stock by one after a copy is rented

• incrementing the number of copies in stock by one after a customer returns a
particular video

20 | Chapter 1: An Overview of Computers and Programming Languages

This illustrates that each object consists of data and operations on that data. An object
combines data and operations on the data into a single unit. In OOD, the final program is
a collection of interacting objects. A programming language that implements OOD is
called an object-oriented programming (OOP) language. You will learn about the
many advantages of OOD in later chapters.

Because an object consists of data and operations on that data, before you can design and
use objects, you need to learn how to represent data in computer memory, how to
manipulate data, and how to implement operations. In Chapter 2, you will learn the basic
data types of C++ and discover how to represent and manipulate data in computer
memory. Chapter 3 discusses how to input data into a C++ program and output the
results generated by a C++ program.

To create operations, you write algorithms and implement them in a programming
language. Because a data element in a complex program usually has many operations,
to separate operations from each other and to use them effectively and in a convenient
manner, you use functions to implement algorithms. After a brief introduction in
Chapters 2 and 3, you will learn the details of functions in Chapters 6 and 7. Certain
algorithms require that a program make decisions, a process called selection. Other
algorithms might require certain statements to be repeated until certain conditions are
met, a process called repetition. Still other algorithms might require both selection and
repetition. You will learn about selection and repetition mechanisms, called control
structures, in Chapters 4 and 5. Also, in Chapter 9, using a mechanism called an array,
you will learn how to manipulate data when data items are of the same type, such as items
in a list of sales figures.

Finally, to work with objects, you need to know how to combine data and operations on
the data into a single unit. In C++, the mechanism that allows you to combine data and
operations on the data into a single unit is called a class. You will learn how classes work,
how to work with classes, and how to create classes in the chapter Classes and Data
Abstraction (later in this book).

As you can see, you need to learn quite a few things before working with the OOD
methodology. To make this learning easier and more effective, this book purposely
divides control structures into two chapters (4 and 5) and user-defined functions into
two chapters (6 and 7).

For some problems, the structured approach to program design will be very effective.
Other problems will be better addressed by OOD. For example, if a problem requires
manipulating sets of numbers with mathematical functions, you might use the struc-
tured design approach and outline the steps required to obtain the solution. The C++
library supplies a wealth of functions that you can use effectively to manipulate
numbers. On the other hand, if you want to write a program that would make a
candy machine operational, the OOD approach is more effective. C++ was designed
especially to implement OOD. Furthermore, OOD works well and is used in conjunction
with structured design.

1

Programming Methodologies | 21

Both the structured design and OOD approaches require that you master the basic compo-
nents of a programming language to be an effective programmer. In Chapters 2 to 9, you will
learn the basic components of C++, such as data types, input/output, control structures,
user-defined functions, and arrays, required by either type of programming. We illustrate
how these concepts work using the structured programming approach. Starting with the
chapter Classes and Data Abstraction, we use the OOD approach.

ANSI/ISO Standard C++
The programming language C++ evolved from C and was designed by Bjarne
Stroustrup at Bell Laboratories in the early 1980s. From the early 1980s through the
early 1990s, several C++ compilers were available. Even though the fundamental
features of C++ in all compilers were mostly the same, the C++ language, referred
to in this book as Standard C++, was evolving in slightly different ways in different
compilers. As a consequence, C++ programs were not always portable from one
compiler to another.

To address this problem, in the early 1990s, a joint committee of the American National
Standard Institution (ANSI) and International Standard Organization (ISO) was estab-
lished to standardize the syntax of C++. In mid-1998, ANSI/ISO C++ language
standards were approved. Most of today’s compilers comply with these new standards.

This book focuses on the syntax of C++ as approved by ANSI/ISO, referred to as ANSI/
ISO Standard C++.

QUICK REVIEW

1. A computer is an electronic device capable of performing arithmetic and
logical operations.

2. A computer system has two components: hardware and software.

3. The central processing unit (CPU) and the main memory are examples of
hardware components.

4. All programs must be brought into main memory before they can be executed.

5. When the power is switched off, everything in main memory is lost.

6. Secondary storage provides permanent storage for information. Hard disks,
flash drives, floppy disks, ZIP disks, CD-ROMs, and tapes are examples of

secondary storage.

7. Input to the computer is done via an input device. Two common input devices
are the keyboard and the mouse.

8. The computer sends its output to an output device, such as the computer screen.

9. Software are programs run by the computer.

10. The operating system monitors the overall activity of the computer and
provides services.

22 | Chapter 1: An Overview of Computers and Programming Languages

1
11. The most basic language of a computer is a sequence of 0s and 1s called machine

language. Every computer directly understands its own machine language.

12. A bit is a binary digit, 0 or 1.

13. A byte is a sequence of eight bits.

14. A sequence of 0s and 1s is referred to as a binary code or a binary number.

15. One kilobyte (KB) is 210 ¼ 1024 bytes; one megabyte (MB) is 220 ¼ 1,048,576
bytes; one gigabyte (GB) is 230 ¼ 1,073,741,824 bytes; one terabyte (TB) is
240¼ 1,099,511,627,776 bytes; one petabyte (PB) is 250¼ 1,125,899,906,842,624
bytes; one exabyte (EB) is 260 ¼ 1,152,921,504,606,846,976 bytes; and one
zettabyte (ZB) is 270 ¼ 1,180,591,620,717,411,303,424 bytes.

16. Assembly language uses easy-to-remember instructions called mnemonics.

17. Assemblers are programs that translate a program written in assembly language
into machine language.

18. Compilers are programs that translate a program written in a high-level
language into machine code, called object code.

19. A linker links the object code with other programs provided by the integrated
development environment (IDE) and used in the program to produce execu-

table code.

20. Typically, six steps are needed to execute a C++ program: edit, preprocess,
compile, link, load, and execute.

21. A loader transfers executable code into main memory.

22. An algorithm is a step-by-step problem-solving process in which a solution is
arrived at in a finite amount of time.

23. The problem-solving process has three steps: analyze the problem and design
an algorithm, implement the algorithm in a programming language, and

maintain the program.

24. Programs written using the structured design approach are easier to understand,
easier to test and debug, and easier to modify.

25. In structured design, a problem is divided into smaller subproblems. Each
subproblem is solved, and the solutions to all of the subproblems are then

combined to solve the problem.

26. In object-oriented design (OOD), a program is a collection of interacting objects.

27. An object consists of data and operations on that data.

28. The ANSI/ISO Standard C++ syntax was approved in mid-1998.

EXERCISES

1. Mark the following statements as true or false.

a. The first device known to carry out calculations was the Pascaline.

b. Modern-day computers can accept spoken-word instructions but cannot

imitate human reasoning.

Exercises | 23

c. In ASCII coding, every character is coded as a sequence of 8 bits.

d. A compiler translates a high-level program into assembly language.

e. The arithmetic operations are performed inside CPU, and if an error is

found, it outputs the logical errors.

f. A sequence of 0s and 1s is called a decimal code.

g. A linker links and loads the object code from main memory into the CPU

for execution.

h. Development of a C++ program includes six steps.

i. A program written in a high-level programming language is called a source

program.

j. ZB stands for zero byte.

k. The first step in the problem-solving process is to analyze the problem.

l. In object-oriented design, a program is a collection of interacting functions.

2. Name two input devices.

3. Name two output devices.

4. Why is secondary storage needed?

5. What is the function of an operating system?

6. What are the two types of programs?

7. What are the differences between machine languages and high-level languages?

8. What is a source program?

9. Why do you need a compiler?

10. What kind of errors are reported by a compiler?

11. Why do you need to translate a program written in a high-level language into machine

language?

12. Why would you prefer to write a program in a high-level language rather than a

machine language?

13. What is linking?

14. What are the advantages of problem analysis and algorithm design over directly writing a

program in a high-level language?

15. Design an algorithm to find the weighted average of four test scores. The four

test scores and their respective weights are given in the following format:

testscore1 weight1
...

For example, sample data is as follows:

75 0.20
95 0.35
85 0.15
65 0.30

24 | Chapter 1: An Overview of Computers and Programming Languages

1
16. Design an algorithm to convert the change given in quarters, dimes, nickels,

and pennies into pennies.

17. Given the radius, in inches, and price of a pizza, design an algorithm to find the

price of the pizza per square inch.

18. A salesperson leaves his home every Monday and returns every Friday. He

travels by company car. Each day on the road, the salesperson records the

amount of gasoline put in the car. Given the starting odometer reading (that is,

the odometer reading before he leaves on Monday) and the ending odometer

reading (the odometer reading after he returns home on Friday), design an

algorithm to find the average miles per gallon. Sample data is as follows:

68723 71289 15.75 16.30 10.95 20.65 30.00

19. To make a profit, the prices of the items sold in a furniture store are marked up

by 60%. Design an algorithm to find the selling price of an item sold at the

furniture store. What information do you need to find the selling price?

20. Suppose a, b, and c denote the lengths of the sides of a triangle. Then the area of

the triangle can be calculated using the formula:

ffi
sðs� aÞðs� bÞðs� cÞ

p
;

where s = (1/2)(a + b + c). Design an algorithm that uses this formula to find

the area of a triangle. What information do you need to find the area?

21. Suppose that the cost of sending an international fax is calculated as follows:

Service charges $3.00; $.20 per page for the first 10 pages; and $0.10 for each

additional page. Design an algorithm that asks the user to enter the number of

pages to be faxed. The algorithm then uses the number of pages to be faxed to

calculate the amount due.

22. An ATM allows a customer to withdraw a maximum of $500 per day. If a

customer withdraws more than $300, the service charge is 4% of the amount

over $300. If the customer does not have sufficient money in the account, the

ATM informs the customer about the insufficient fund and gives the option to

withdraw the money for a service charge of $25.00. If there is no money in the

account or if the account balance is negative, the ATM does not allow the

customer to withdraw any money. If the amount to be withdrawn is greater

than $500, the ATM informs the customer about the maximum amount that

can be withdrawn. Write an algorithm that allows the customer to enter the

amount to be withdrawn. The algorithm then checks the total amount in

the account, dispenses the money to the customer, and debits the account

by the amount withdrawn and the service charges, if any.

23. You are given a list of students’ names and their test scores. Design an algorithm

that does the following:

a. Calculates the average test scores.

b. Determines and prints the names of all the students whose test scores are

below the average test score.

Exercises | 25

c. Determines the highest test score.

d. Prints the names of all the students whose test scores are the same as the

highest test score.

(You must divide this problem into subproblems as follows: The first subproblem
determines the average test score. The second subproblem determines and prints the
names of all the students whose test scores are below the average test score. The third
subproblem determines the highest test score. The fourth subproblem prints the names
of all the students whose test scores are the same as the highest test score. The main
algorithm combines the solutions of the subproblems.)

26 | Chapter 1: An Overview of Computers and Programming Languages

BASIC ELEMENTS OF C++
IN THIS CHAPTER , YOU WILL :

. Become familiar with the basic components of a C++ program, including functions, special
symbols, and identifiers

. Explore simple data types

. Discover how to use arithmetic operators

. Examine how a program evaluates arithmetic expressions

. Learn what an assignment statement is and what it does

. Become familiar with the string data type

. Discover how to input data into memory using input statements

. Become familiar with the use of increment and decrement operators

. Examine ways to output results using output statements

. Learn how to use preprocessor directives and why they are necessary

. Learn how to debug syntax errors

. Explore how to properly structure a program, including using comments to document a program

. Learn how to write a C++ program

2C H A P T E R

In this chapter, you will learn the basics of C++. As your objective is to learn the C++
programming language, two questions naturally arise. First, what is a computer program?
Second, what is programming? A computer program, or a program, is a sequence of
statements whose objective is to accomplish a task. Programming is a process of
planning and creating a program. These two definitions tell the truth, but not the whole
truth, about programming. It may very well take an entire book to give a good and
satisfactory definition of programming. You might gain a better grasp of the nature of
programming from an analogy, so let us turn to a topic about which almost everyone has
some knowledge—cooking. A recipe is also a program, and everyone with some cooking
experience can agree on the following:

1. It is usually easier to follow a recipe than to create one.

2. There are good recipes and there are bad recipes.

3. Some recipes are easy to follow and some are not easy to follow.

4. Some recipes produce reliable results and some do not.

5. You must have some knowledge of how to use cooking tools to follow
a recipe to completion.

6. To create good new recipes, you must have much knowledge and
understanding of cooking.

These same six points are also true about programming. Let us take the cooking analogy
one step further. Suppose you need to teach someone how to become a chef. How would
you go about it? Would you first introduce the person to good food, hoping that a taste for
good food develops? Would you have the person follow recipe after recipe in the hope that
some of it rubs off? Or would you first teach the use of tools and the nature of ingredients,
the foods and spices, and explain how they fit together? Just as there is disagreement about
how to teach cooking, there is disagreement about how to teach programming.

Learning a programming language is like learning to become a chef or learning to play a
musical instrument. All three require direct interaction with the tools. You cannot become
a good chef or even a poor chef just by reading recipes. Similarly, you cannot become a
player by reading books about musical instruments. The same is true of programming. You
must have a fundamental knowledge of the language, and you must test your programs on
the computer to make sure that each program does what it is supposed to do.

A C++ Program
In this chapter, you will learn the basic elements and concepts of the C++ programming
language to create C++ programs. In addition to giving examples to illustrate various
concepts, we will also show C++ programs to clarify them. In this section, we provide an
example of a C++ program. At this point, you need not be too concerned with the
details of this program. You only need to know the effect of an output statement, which is
introduced in this program.

28 | Chapter 2: Basic Elements of C++

2

Consider the C++ program in Example 2-1.

EXAMPLE 2-1

//**
// This is a simple C++ program. It displays four lines
// of text, including the sum of two numbers.
//**

#include <iostream>

using namespace std;

int main()
{

int num;

num = 6;

cout << "My first C++ program." << endl;
cout << "The sum of 2 and 3 = " << 5 << endl;
cout << "7 + 8 = " << 7 + 8 << endl;
cout << "Num = " << num << endl;

return 0;
}

Sample Run: (When you compile and execute this program, the following four lines are
displayed on the screen.)

My first C++ program.
The sum of 2 and 3 = 5
7 + 8 = 15
Num = 6

These lines are displayed by the execution of the following three statements.

cout << "My first C++ program." << endl;
cout << "The sum of 2 and 3 = " << 5 << endl;
cout << "7 + 8 = " << 7 + 8 << endl;
cout << "Num = " << num << endl;

Next, we explain how this happens. Let us first consider the following statement:

cout << "My first C++ program." << endl;

This is an example of a C++ output statement. It causes the computer to evaluate the
expression after the pair of symbols << and display the result on the screen.

Usually, a C++ program contains various types of expressions such as arithmetic
and strings. For example, 7 + 8 is an arithmetic expression. Anything in double quotes is
a string. For example, "My first C++ program." and "7 + 8 = " are strings. Typically, a
string evaluates to itself. Arithmetic expressions are evaluated according to rules of
arithmetic operations, which you typically learn in an algebra course. Later in this chapter,
we explain how arithmetic expressions and strings are formed and evaluated.

A C++ Program | 29

Also note that in an output statement, endl causes the insertion point to move to the beginning
of the next line. (On the screen, the insertion point is where the cursor is.) Therefore, the
preceding statement causes the system to display the following line on the screen.

My first C++ program.

Let us now consider the following statement.

cout << "The sum of 2 and 3 = " << 5 << endl;

This output statement consists of two expressions. The first expression (after the first <<)
is "The sum of 2 and 3 = " and the second expression (after the second <<) consists of the
number 5. The expression "The sum of 2 and 3 = " is a string and evaluates to itself.
(Notice the space after =.) The second expression, which consists of the number 5
evaluates to 5. Thus, the output of the preceding statement is:

The sum of 2 and 3 = 5

Let us now consider the following statement.

cout << "7 + 8 = " << 7 + 8 << endl;

In this output statement, the expression "7 + 8 = ", which is a string, evaluates to itself.
Let us consider the second expression, 7 + 8. This expression consists of the numbers 7
and 8 and the C++ arithmetic operator +. Therefore, the result of the expression 7 + 8 is
the sum of 7 and 8, which is 15. Thus, the output of the preceding statement is:

7 + 8 = 15

Finally, consider the statement:

cout << "Num = " << num << endl;

This statement consists of the string "Num = ", which evaluates to itself, and the word num.
The statement num = 6; assigns the value 6 to num. Therefore, the expression num, after
the second <<, evaluates to 6. It now follows that the output of the previous statement is:

Num = 6

The last statement, that is,

return 0;

returns the value 0 to the operating system when the program terminates. We will
elaborate on this statement later in this chapter.

In the next chapter, until we explain how to properly construct a C++ program, we will
be using output statements such as the preceding ones to explain various concepts. After
finishing Chapter 2, you should be able to write C++ programs well enough to do some
computations and show results.

Before leaving this section, let us note the following about the previous C++ program. A
C++ program is a collection of functions, one of which is the function main. Roughly

30 | Chapter 2: Basic Elements of C++

2

speaking, a function is a collection of statements, and when it is executed, it accom-
plishes something. The preceding program consists of the function main.

The first line of the program, that is,

#include <iostream>

allows us to use the (predefined object) cout to generate output and the (manipulator)
endl. The second line, which is

using namespace std;

allows you to use cout and endl without the prefix std::. It means that if you do not
include this statement, then cout should be used as std::cout and endl should be used
as std::endl. We will elaborate on this later in this chapter.

The seventh line consists of the following:

int main()

This is the heading of the function main. The eighth line consists of a left brace. This marks
the beginning of the (body) of the function main. The right brace (at the last line of the
program) matches this left brace and marks the end of the body of the function main. We
will explain the meaning of the other terms, such as those shown in blue, later in this book.
Note that in C++, << is an operator, called the stream insertion operator.

The Basics of a C++ Program
A C++ program is a collection of one or more subprograms, called functions. Some
functions, called predefined or standard functions, are already written and are provided
as part of the system. But to accomplish most tasks, programmers must learn to write their
own functions.

Every C++ program has a function called main. Thus, if a C++ program has only one
function, it must be the function main. Until Chapter 6, other than using some of the
predefined functions, you will mainly deal with the function main. By the end of this
chapter, you will have learned how to write the function main.

If you have never seen a program written in a programming language, the C++ program in
Example 2-1 may look like a foreign language. To make meaningful sentences in a foreign
language, you must learn its alphabet, words, and grammar. The same is true of a program-
ming language. To write meaningful programs, you must learn the programming language’s
special symbols, words, and syntax rules. The syntax rules tell you which statements
(instructions) are legal, or accepted by the programming language, and which are not.
You must also learn semantic rules, which determine the meaning of the instructions.
The programming language’s rules, symbols, and special words enable you to write programs
to solve problems. The syntax rules determine which instructions are valid.

Programming language: A set of rules, symbols, and special words.

The Basics of a C++ Program | 31

In the remainder of this section, you will learn about some of the special symbols of a
C++ program. Additional special symbols are introduced as other concepts are encoun-
tered in later chapters. Similarly, syntax and semantic rules are introduced and discussed
throughout the book.

Comments
The program that you write should be clear not only to you, but also to the reader of
your program. Part of good programming is the inclusion of comments in the program.
Typically, comments can be used to identify the authors of the program, give the date
when the program is written or modified, give a brief explanation of the program, and
explain the meaning of key statements in a program. In the programming examples, for
the programs that we write, we will not include the date when the program is written,
consistent with the standard convention for writing such books.

Comments are for the reader, not for the compiler. So when a compiler compiles a
program to check for the syntax errors, it completely ignores comments. Throughout this
book, comments are shown in green.

The program in Example 2-1 contains the following comments:

// This is a C++ program. It prints the sentence:
// Welcome to C++ Programming.

There are two common types of comments in a C++ program—single-line comments
and multiple-line comments.

Single-line comments begin with // and can be placed anywhere in the line. Everything
encountered in that line after // is ignored by the compiler. For example, consider the
following statement:

cout << "7 + 8 = " << 7 + 8 << endl;

You can put comments at the end of this line as follows:

cout << "7 + 8 = " << 7 + 8 << endl; //prints: 7 + 8 = 15

This comment could be meaningful for a beginning programmer.

Multiple-line comments are enclosed between /* and */. The compiler ignores anything
that appears between /* and */. For example, the following is an example of a multiple-line
comment:

/*
You can include comments that can
occupy several lines.

*/

Special Symbols
The smallest individual unit of a program written in any language is called a token.
C++’s tokens are divided into special symbols, word symbols, and identifiers.

32 | Chapter 2: Basic Elements of C++

Following are some of the special symbols:

+ - * /
. ; ? ,
<= != == >=

The first row includes mathematical symbols for addition, subtraction, multiplication, and
division. The second row consists of punctuation marks taken from English grammar.
Note that the comma is also a special symbol. In C++, commas are used to separate items
in a list. Semicolons are used to end a C++ statement. Note that a blank, which is not
shown above, is also a special symbol. You create a blank symbol by pressing the space bar
(only once) on the keyboard. The third row consists of tokens made up of two characters
that are regarded as a single symbol. No character can come between the two characters
in the token, not even a blank.

Reserved Words (Keywords)
A second category of tokens is word symbols. Some of the word symbols include the following:

int, float, double, char, const, void, return

Reserved words are also called keywords. The letters that make up a reserved word are
always lowercase. Like the special symbols, each is considered to be a single symbol.
Furthermore, word symbols cannot be redefined within any program; that is, they cannot
be used for anything other than their intended use. For a complete list of reserved words,
see Appendix A.

Throughout this book, reserved words are shown in blue.

Identifiers
A third category of tokens is identifiers. Identifiers are names of things that appear in
programs, such as variables, constants, and functions. All identifiers must obey C++’s
rules for identifiers.

Identifier: A C++ identifier consists of letters, digits, and the underscore character (_)
and must begin with a letter or underscore.

Some identifiers are predefined; others are defined by the user. In the C++ program in
Example 2-1, cout is a predefined identifier and num is a user-defined identifier. Two
predefined identifiers that you will encounter frequently are cout and cin. You have
already seen the effect of cout. Later in this chapter, you will learn how cin, which is
used to input data, works. Unlike reserved words, predefined identifiers can be redefined,
but it would not be wise to do so.

2

The Basics of a C++ Program | 33

Identifiers can be made of only letters, digits, and the underscore character; no other
symbols are permitted to form an identifier.

C++ is case sensitive—uppercase and lowercase letters are considered different. Thus,

the identifier NUMBER is not the same as the identifier number. Similarly, the identifiers
X and x are different.

In C++, identifiers can be of any length.

EXAMPLE 2-2

The following are legal identifiers in C++:

first
conversion
payRate
counter1

Table 2-1 shows some illegal identifiers and explains why they are illegal.

Compiler vendors usually begin certain identifiers with an underscore (_).
When the linker links the object program with the system resources provided by

the integrated development environment (IDE), certain errors could occur. Therefore, it

is advisable that you should not begin identifiers in your program with an underscore (_).

Whitespaces
Every C++ program contains whitespaces. Whitespaces include blanks, tabs, and newline
characters. In a C++ program, whitespaces are used to separate special symbols, reserved
words, and identifiers. Whitespaces are nonprintable in the sense that when they are
printed on a white sheet of paper, the space between special symbols, reserved words, and
identifiers is white. Proper utilization of whitespaces in a program is important. They can
be used to make the program readable.

TABLE 2-1 Examples of Illegal Identifiers

Illegal Identifier Description

employee Salary There can be no space between employee and Salary.

Hello! The exclamation mark cannot be used in an identifier.

one+two The symbol + cannot be used in an identifier.

2nd An identifier cannot begin with a digit.

34 | Chapter 2: Basic Elements of C++

2

Data Types
The objective of a C++ program is to manipulate data. Different programs manipulate
different data. A program designed to calculate an employee’s paycheck will add, subtract,
multiply, and divide numbers, and some of the numbers might represent hours worked and
pay rate. Similarly, a program designed to alphabetize a class list will manipulate names. You
wouldn’t expect a cherry pie recipe to help you bake cookies. Similarly, you wouldn’t use a
program designed to perform arithmetic calculations to manipulate alphabetic characters.
Furthermore, you wouldn’t multiply or subtract names. Reflecting these kinds of underlying
differences, C++ categorizes data into different types, and only certain operations can be
performed on particular types of data. Although at first it may seem confusing, by being so
type conscious, C++ has built-in checks to guard against errors.

Data type: A set of values together with a set of operations.

C++ data types fall into the following three categories and are illustrated in Figure 2-1:

1. Simple data type

2. Structured data type

3. Pointers

For the next few chapters, you will be concerned only with simple data types.

Simple Data Types
The simple data type is the fundamental data type in C++ because it becomes a building
block for the structured data type, which you start learning about in Chapter 9. There are
three categories of simple data:

1. Integral, which is a data type that deals with integers, or numbers
without a decimal part

2. Floating-point, which is a data type that deals with decimal numbers

3. Enumeration, which is a user-defined data type

The enumeration type is C++'s method for allowing programmers to create their own

simple data types. This data type will be discussed in Chapter 8.

C++’s Data Types

Structured PointersSimple

FIGURE 2-1 C++ data types

Data Types | 35

Integral data types are further classified into the following nine categories: char, short,
int, long, bool, unsigned char, unsigned short, unsigned int, and
unsigned long.

Why are there so many categories of the same data type? Every data type has a different set
of values associated with it. For example, the char data type is used to represent integers
between –128 and 127. The int data type is used to represent integers between
–2147483648 and 2147483647, and the data type short is used to represent integers
between –32768 and 32767.

Note that the identifier num in Example 2-1 can be assigned any value belonging to the
int data type.

Which data type you use depends on how big a number your program needs to deal with.
In the early days of programming, computers and main memory were very expensive.
Only a small amount of memory was available to execute programs and manipulate the
data. As a result, programmers had to optimize the use of memory. Because writing a
program and making it work is already a complicated process, not having to worry about
the size of the memory makes for one less thing to think about. Thus, to effectively use
memory, a programmer can look at the type of data used in a program and figure out which
data type to use.

Newer programming languages have only five categories of simple data types: integer,
real, char, bool, and the enumeration type. The integral data types that are used in this
book are int, bool, and char.

Table 2-2 gives the range of possible values associated with these three data types and the
size of memory allocated to manipulate these values.

Use this table only as a guide. Different compilers may allow different ranges of

values. Check your compiler’s documentation. To find the exact size of the

integral data types on a particular system, you can run a program given in

Appendix G (Memory Size of a System). Furthermore, to find the maximum and

minimum values of these data types, you can run another program given in

Appendix F (Header File climits).

TABLE 2-2 Values and Memory Allocation for Three Simple Data Types

Data Type Values Storage (in bytes)

int -2147483648 to 2147483647 4

bool true and false 1

char -128 to 127 1

36 | Chapter 2: Basic Elements of C++

int DATA TYPE

This section describes the int data type. This discussion also applies to other integral data
types.

Integers in C++, as in mathematics, are numbers such as the following:

-6728, -67, 0, 78, 36782, +763

Note the following two rules from these examples:

1. Positive integers do not need a + sign in front of them.

2. No commas are used within an integer. Recall that in C++, commas
are used to separate items in a list. So 36,782 would be interpreted as
two integers: 36 and 782.

bool DATA TYPE

The data type bool has only two values: true and false. Also, true and false are called
the logical (Boolean) values. The central purpose of this data type is to manipulate logical
(Boolean) expressions. Logical (Boolean) expressions will be formally defined and discussed
in detail in Chapter 4. In C++, bool, true, and false are reserved words.

char DATA TYPE

The data type char is the smallest integral data type. It is mainly used to represent
characters—that is, letters, digits, and special symbols. Thus, the char data type can
represent every key on your keyboard. When using the char data type, you enclose each
character represented within single quotation marks. Examples of values belonging to the
char data type include the following:

'A', 'a', '0', '*', '+', '$', '&', ' '

Note that a blank space is a character and is written as ' ', with a space between the single
quotation marks.

The data type char allows only one symbol to be placed between the single quotation
marks. Thus, the value 'abc' is not of the type char. Furthermore, even though '!='and
similar special symbols are considered to be one symbol, they are not regarded as possible
values of the data type char. All the individual symbols located on the keyboard that are
printable may be considered as possible values of the char data type.

Several different character data sets are currently in use. The most common are the
American Standard Code for Information Interchange (ASCII) and Extended Binary-
Coded Decimal Interchange Code (EBCDIC). The ASCII character set has 128 values.
The EBCDIC character set has 256 values and was created by IBM. Both character sets
are described in Appendix C.

Each of the 128 values of the ASCII character set represents a different character. For
example, the value 65 represents 'A', and the value 43 represents '+'. Thus, each

2

Data Types | 37

character has a predefined ordering, which is called a collating sequence, in the set. The
collating sequence is used when you compare characters. For example, the value repre-
senting 'B' is 66, so 'A' is smaller than 'B'. Similarly, '+' is smaller than 'A' because
43 is smaller than 65.

The 14th character in the ASCII character set is called the newline character and is
represented as '\n'. (Note that the position of the newline character in the ASCII
character set is 13 because the position of the first character is 0.) Even though the
newline character is a combination of two characters, it is treated as one character.
Similarly, the horizontal tab character is represented in C++ as '\t' and the null
character is represented as '\0' (backslash followed by zero). Furthermore, the first 32
characters in the ASCII character set are nonprintable. (See Appendix C for a description
of these characters.)

Floating-Point Data Types
To deal with decimal numbers, C++ provides the floating-point data type, which we
discuss in this section. To facilitate the discussion, let us review a concept from a high
school or college algebra course.

You may be familiar with scientific notation. For example:

43872918 = 4.3872918 * 107 {10 to the power of seven}
.0000265 = 2.65 * 10-5 {10 to the power of minus five}
47.9832 = 4.79832 * 101 {10 to the power of one}

To represent real numbers, C++ uses a form of scientific notation called floating-point
notation. Table 2-3 shows how C++ might print a set of real numbers using one
machine’s interpretation of floating-point notation. In the C++ floating-point notation,
the letter E stands for the exponent.

C++ provides three data types to manipulate decimal numbers: float, double, and
long double. As in the case of integral data types, the data types float, double, and
long double differ in the set of values.

TABLE 2-3 Examples of Real Numbers Printed in C++ Floating-Point Notation

Real Number C++ Floating-Point Notation

75.924 7.592400E1

0.18 1.800000E-1

0.0000453 4.530000E-5

-1.482 -1.482000E0

7800.0 7.800000E3

38 | Chapter 2: Basic Elements of C++

2

On most newer compilers, the data types double and long double are the same.
Therefore, only the data types float and double are described here.

float: The data type float is used in C++ to represent any real number between
-3.4E+38 and 3.4E+38. The memory allocated for a value of the float data type is
four bytes.

double: The data type double is used in C++ to represent any real number between
-1.7E+308 and 1.7E+308. The memory allocated for a value of the double data type is
eight bytes.

The maximum and minimum values of the data types float and double are system
dependent. To find these values on a particular system, you can check your compiler’s
documentation or, alternatively, you can run a program given in Appendix F (Header
File cfloat).

Other than the set of values, there is one more difference between the data types float
and double. The maximum number of significant digits—that is, the number of decimal
places—in float values is six or seven. The maximum number of significant digits in
values belonging to the double type is 15.

For values of the double type, for better precision, some compilers might give more
than 15 significant digits. Check your compiler’s documentation.

The maximum number of significant digits is called the precision. Sometimes float values
are called single precision, and values of type double are called double precision. If you
are dealing with decimal numbers, for the most part you need only the float type; if you
need accuracy to more than six or seven decimal places, you can use the double type.

In C++, by default, floating-point numbers are considered of type double.
Therefore, if you use the data type float to manipulate floating-point numbers in a
program, certain compilers might give you a warning message, such as ‘‘truncation

from double to float.’’ To avoid such warning messages, you should use the double
data type. For illustration purposes and to avoid such warning messages in program-

ming examples, this book mostly uses the data type double to manipulate floating-
point numbers.

Arithmetic Operators and Operator Precedence
One of the most important uses of a computer is its ability to calculate. You can use the
standard arithmetic operators to manipulate integral and floating-point data types. There
are five arithmetic operators.

Arithmetic Operators and Operator Precedence | 39

Arithmetic Operators: + (addition), - (subtraction or negation), * (multiplication), /
(division), % (mod, (modulus or remainder)).

You can use the operators +, -, *, and / with both integral and floating-point data types.
You use % with only the integral data type to find the remainder in ordinary division.
When you use / with the integral data type, it gives the quotient in ordinary division.
That is, integral division truncates any fractional part; there is no rounding.

Since high school, you have been accustomed to working with arithmetic expressions
such as the following:

i. -5

ii. 8 - 7

iii. 3 + 4

iv. 2 + 3 *5

v. 5.6 + 6.2 *3

vi. x + 2 *5 + 6 / y

(Note that in expression (vi), x and y are unknown numbers.) Formally, an arithmetic
expression is constructed by using arithmetic operators and numbers. The numbers
appearing in the expression are called operands. The numbers that are used to evaluate
an operator are called the operands for that operator. In expression (i), the symbol –
specifies that the number 5 is negative. In this expression, – has only one operand.
Operators that have only one operand are called unary operators.

In expression (ii), the symbol – is used to subtract 7 from 8. In this expression, – has two
operands, 8 and 7. Operators that have two operands are called binary operators.

Unary operator: An operator that has only one operand.

Binary operator: An operator that has two operands.

In expression (iii), that is, 3 + 4, 3 and 4 are the operands for the operator +. In this
expression, the operator + has two operands and is a binary operator. Now consider the
following expression:

+27

In this expression, the operator + indicates that the number 27 is positive. Here, + has
only one operand and so acts as a unary operator.

From the preceding discussion, it follows that - and + are both unary and binary
arithmetic operators. However, as arithmetic operators, *, /, and % are binary and so
must have two operands.

The following examples show how arithmetic operators—especially / and %—work with
integral data types. As you can see from these examples, the operator / represents the
quotient in ordinary division when used with integral data types.

40 | Chapter 2: Basic Elements of C++

2

EXAMPLE 2-3

Arithmetic Expression Result Description

2 + 5 7
13 + 89 102
34 – 20 14
45 – 90 -45
2 * 7 14

5 / 2 2 In the division 5 / 2, the quotient is 2 and the
remainder is 1. Therefore, 5 / 2 with the integral
operands evaluates to the quotient, which is 2.

14 / 7 2

34 % 5 4 In the division 34 / 5, the quotient is 6 and the
remainder is 4. Therefore, 34 % 5 evaluates to the
remainder, which is 4.

4 % 6 4 In the division 4 / 6, the quotient is 0 and the
remainder is 4. Therefore, 4 % 6 evaluates to the
remainder, which is 4.

The following C++ program evaluates the preceding expressions:

// This program illustrates how integral expressions are
// evaluated.

#include <iostream>

using namespace std;

int main()
{

cout << "2 + 5 = " << 2 + 5 << endl;
cout << "13 + 89 = " << 13 + 89 << endl;
cout << "34 - 20 = " << 34 - 20 << endl;
cout << "45 - 90 = " << 45 - 90 << endl;
cout << "2 * 7 = " << 2 * 7 << endl;
cout << "5 / 2 = " << 5 / 2 << endl;
cout << "14 / 7 = " << 14 / 7 << endl;
cout << "34 % 5 = " << 34 % 5 << endl;
cout << "4 % 6 = " << 4 % 6 << endl;

return 0;
}

Sample Run:

2 + 5 = 7
13 + 89 = 102
34 - 20 = 14
45 - 90 = -45
2 * 7 = 14

Arithmetic Operators and Operator Precedence | 41

5 / 2 = 2
14 / 7 = 2
34 % 5 = 4
4 % 6 = 4

You should be careful when evaluating the mod operator with negative integer

operands. You might not get the answer you expect. For example, -34 % 5 = -4,

because in the division –34 / 5, the quotient is –6 and the remainder is -4.
Similarly, 34 % -5 = 4, because in the division –34 / 5, the quotient is –6 and

the remainder is 4. Also, -34 % -5 = -4, because in the division –34 / –5,

the quotient is 6 and the remainder is –4.

The following example shows how arithmetic operators work with floating-point numbers.

EXAMPLE 2-4

The following C++ program evaluates various floating-point expressions. (The details of
how the expressions are evaluated are left as an exercise for you.)

// This program illustrates how floating-point expressions
// are evaluated.

#include <iostream>

using namespace std;

int main()
{

cout << "5.0 + 3.5 = " << 5.0 + 3.5 << endl;
cout << "3.0 + 9.4 = " << 3.0 + 9.4 << endl;
cout << "16.3 - 5.2 = " << 16.3 - 5.2 << endl;
cout << "4.2 * 2.5 = " << 4.2 * 2.5 << endl;
cout << "5.0 / 2.0 = " << 5.0 / 2.0 << endl;
cout << "34.5 / 6.0 = " << 34.5 / 6.0 << endl;
cout << "34.5 / 6.5 = " << 34.5 / 6.5 << endl;

return 0;
}

Sample Run:

5.0 + 3.5 = 8.5
3.0 + 9.4 = 12.4
16.3 - 5.2 = 11.1
4.2 * 2.5 = 10.5
5.0 / 2.0 = 2.5
34.5 / 6.0 = 5.75
34.5 / 6.5 = 5.30769

42 | Chapter 2: Basic Elements of C++

Order of Precedence
When more than one arithmetic operator is used in an expression, C++ uses the operator
precedence rules to evaluate the expression. According to the order of precedence rules
for arithmetic operators,

*, /, %

are at a higher level of precedence than:

+, -

Note that the operators *, /, and % have the same level of precedence. Similarly, the
operators + and - have the same level of precedence.

When operators have the same level of precedence, the operations are performed from
left to right. To avoid confusion, you can use parentheses to group arithmetic expressions.
For example, using the order of precedence rules,

3 * 7 - 6 + 2 * 5 / 4 + 6

means the following:

(((3 * 7) – 6) + ((2 * 5) / 4)) + 6
= ((21 – 6) + (10 / 4)) + 6 (Evaluate *)
= ((21 – 6) + 2) + 6 (Evaluate /. Note that this is an integer division.)
= (15 + 2) + 6 (Evaluate –)
= 17 + 6 (Evaluate first +)
= 23 (Evaluate +)

Note that the use of parentheses in the second example clarifies the order of prece-
dence. You can also use parentheses to override the order of precedence rules (see
Example 2-5).

EXAMPLE 2-5

In the expression:

3 + 4 * 5

* is evaluated before +. Therefore, the result of this expression is 23. On the other hand,
in the expression:

(3 + 4) * 5

+ is evaluated before * and the result of this expression is 35.

Because arithmetic operators are evaluated from left to right, unless parentheses are
present, the associativity of the arithmetic operators is said to be from left to right.

2

Arithmetic Operators and Operator Precedence | 43

(Character Arithmetic) Because the char data type is also an integral data type, C++
allows you to perform arithmetic operations on char data. However, you should use this
ability carefully. There is a difference between the character '8' and the integer 8. The

integer value of 8 is 8. The integer value of '8' is 56, which is the ASCII collating
sequence of the character '8'.

When evaluating arithmetic expressions, 8 + 7 = 15; '8' + '7' = 56 + 55, which yields

111; and '8' + 7 = 56 + 7, which yields 63. Furthermore, because '8' *'7' = 56 *
55 = 3080 and the ASCII character set has only 128 values, '8' *'7' is undefined in

the ASCII character data set.

These examples illustrate that many things can go wrong when you are performing

character arithmetic. If you must employ them, use arithmetic operations on the char
data type with caution.

Expressions
To this point, we have discussed only arithmetic operators. In this section, we now discuss
arithmetic expressions in detail. Arithmetic expressions were introduced in the last section.

If all operands (that is, numbers) in an expression are integers, the expression is called an
integral expression. If all operands in an expression are floating-point numbers, the
expression is called a floating-point or decimal expression. An integral expression
yields an integral result; a floating-point expression yields a floating-point result.
Looking at some examples will help clarify these definitions.

EXAMPLE 2-6

Consider the following C++ integral expressions:

2 + 3 * 5
3 + x - y / 7
x + 2 * (y - z) + 18

In these expressions, x, y, and z represent variables of the integer type; that is, they can
hold integer values. Variables are discussed later in this chapter.

EXAMPLE 2-7

Consider the following C++ floating-point expressions:

12.8 * 17.5 - 34.50
x * 10.5 + y - 16.2

Here, x and y represent variables of the floating-point type; that is, they can hold
floating-point values. Variables are discussed later in this chapter.

44 | Chapter 2: Basic Elements of C++

2

Evaluating an integral or a floating-point expression is straightforward. As before, when
operators have the same precedence, the expression is evaluated from left to right. You
can always use parentheses to group operands and operators to avoid confusion.

Mixed Expressions
An expression that has operands of different data types is called a mixed expression. A
mixed expression contains both integers and floating-point numbers. The following
expressions are examples of mixed expressions:

2 + 3.5
6 / 4 + 3.9
5.4 * 2 - 13.6 + 18 / 2

In the first expression, the operand + has one integer operand and one floating-point
operand. In the second expression, both operands for the operator / are integers, the first
operand of + is the result of 6 / 4, and the second operand of + is a floating-point
number. The third example is an even more complicated mix of integers and floating-
point numbers. The obvious question is: How does C++ evaluate mixed expressions?

Two rules apply when evaluating a mixed expression:

1. When evaluating an operator in a mixed expression:

a. If the operator has the same types of operands (that is, either both
integers or both floating-point numbers), the operator is evaluated
according to the type of the operands. Integer operands thus yield
an integer result; floating-point numbers yield a floating-point
number.

b. If the operator has both types of operands (that is, one is an integer
and the other is a floating-point number), then during calculation,
the integer is changed to a floating-point number with the decimal
part of zero and the operator is evaluated. The result is a floating-
point number.

2. The entire expression is evaluated according to the precedence rules;
the multiplication, division, and modulus operators are evaluated
before the addition and subtraction operators. Operators having the
same level of precedence are evaluated from left to right. Grouping is
allowed for clarity.

From these rules, it follows that when evaluating a mixed expression, you concentrate on
one operator at a time, using the rules of precedence. If the operator to be evaluated has
operands of the same data type, evaluate the operator using Rule 1(a). That is, an operator
with integer operands will yield an integer result, and an operator with floating-point
operands will yield a floating-point result. If the operator to be evaluated has one integer
operand and one floating-point operand, before evaluating this operator, convert the
integer operand to a floating-point number with the decimal part of 0. The following
examples show how to evaluate mixed expressions.

Expressions | 45

EXAMPLE 2-8

Mixed Expression Evaluation Rule Applied

3/2+5.5 =1+5.5
=6.5

3/2=1 (integer division; Rule 1(a))
(1+5.5
=1.0+5.5 (Rule 1(b))
=6.5)

15.6/2+5 =7.8+5

=12.8

15.6/2
= 15.6/2.0 (Rule 1(b))
=7.8
7.8+5
=7.8+5.0 (Rule1(b))
=12.8

4+5/2.0 =4+2.5

=6.5

5/2.0=5.0/2.0 (Rule1(b))
=2.5
4+2.5=4.0+2.5 (Rule1(b))
=6.5

4*3+7/5–25.5 =12+7/5–25.5
=12+1–25.5
=13–25.5
=-12.5

4*3=12; (Rule 1(a))
7/5=1 (integer division; Rule 1(a))
12+1=13; (Rule 1(a))
13–25.5=13.0–25.5 (Rule 1(b))
=-12.5

The following C++ program evaluates the preceding expressions:

// This program illustrates how mixed expressions are evaluated.

#include <iostream>

using namespace std;

int main()
{

cout << "3 / 2 + 5.5 = " << 3 / 2 + 5.5 << endl;
cout << "15.6 / 2 + 5 = " << 15.6 / 2 + 5 << endl;
cout << "4 + 5 / 2.0 = " << 4 + 5 / 2.0 << endl;
cout << "4 * 3 + 7 / 5 - 25.5 = "

<< 4 * 3 + 7 / 5 - 25.5
<< endl;

return 0;
}

Sample Run:

3 / 2 + 5.5 = 6.5
15.6 / 2 + 5 = 12.8
4 + 5 / 2.0 = 6.5
4 * 3 + 7 / 5 - 25.5 = -12.5

These examples illustrate that an integer is not converted to a floating-point number
unless the operator to be evaluated has one integer and one floating-point operand.

46 | Chapter 2: Basic Elements of C++

Type Conversion (Casting)
In the previous section, you learned that when evaluating an arithmetic expression, if the
operator has mixed operands, the integer value is changed to a floating-point value with
the zero decimal part. When a value of one data type is automatically changed to another
data type, an implicit type coercion is said to have occurred. As the examples in the
preceding section illustrate, if you are not careful about data types, implicit type coercion
can generate unexpected results.

To avoid implicit type coercion, C++ provides for explicit type conversion through the
use of a cast operator. The cast operator, also called type conversion or type casting,
takes the following form:

static_cast<dataTypeName>(expression)

First, the expression is evaluated. Its value is then converted to a value of the type
specified by dataTypeName. In C++, static_cast is a reserved word.

When converting a floating-point (decimal) number to an integer using the cast operator,
you simply drop the decimal part of the floating-point number. That is, the floating-point
number is truncated. Example 2-9 shows how cast operators work. Be sure you under-
stand why the last two expressions evaluate as they do.

EXAMPLE 2-9

Expression Evaluates to

static_cast<int>(7.9) 7
static_cast<int>(3.3) 3
static_cast<double>(25) 25.0
static_cast<double>(5+3) =static_cast<double>(8)=8.0
static_cast<double>(15)/2 =15.0/2

(because static_cast<double> (15)=15.0)
=15.0/2.0=7.5

static_cast<double>(15/2) = static_cast<double>(7) (because 15/2=7)
= 7.0

static_cast<int>(7.8 +
static_cast<double>(15)/2) = static_cast<int>(7.8+7.5)

= static_cast<int>(15.3)
= 15

static_cast<int>(7.8 +
static_cast<double>(15/2)) = static_cast<int>(7.8 + 7.0)

= static_cast<int>(14.8)
= 14

2

Type Conversion (Casting) | 47

The following C++ program evaluates the preceding expressions:

// This program illustrates how explicit type conversion works.

#include <iostream>

using namespace std;

int main()
{

cout << "static_cast<int>(7.9) = "
<< static_cast<int>(7.9)
<< endl;

cout << "static_cast<int>(3.3) = "
<< static_cast<int>(3.3)
<< endl;

cout << "static_cast<double>(25) = "
<< static_cast<double>(25)
<< endl;

cout << "static_cast<double>(5 + 3) = "
<< static_cast<double>(5 + 3)
<< endl;

cout << "static_cast<double>(15) / 2 = "
<< static_cast<double>(15) / 2
<< endl;

cout << "static_cast<double>(15 / 2) = "
<< static_cast<double>(15 / 2)
<< endl;

cout << "static_cast<int>(7.8 + static_cast<double>(15) / 2) = "
<< static_cast<int>(7.8 + static_cast<double>(15) / 2)
<< endl;

cout << "static_cast<int>(7.8 + static_cast<double>(15 / 2)) = "
<< static_cast<int>(7.8 + static_cast<double>(15 / 2))
<< endl;

return 0;
}

Sample Run:

static_cast<int>(7.9) = 7
static_cast<int>(3.3) = 3
static_cast<double>(25) = 25
static_cast<double>(5 + 3) = 8
static_cast<double>(15) / 2 = 7.5
static_cast<double>(15 / 2) = 7
static_cast<int>(7.8 + static_cast<double>(15) / 2) = 15
static_cast<int>(7.8 + static_cast<double>(15 / 2)) = 14

Note that the value of the expression static_cast<double>(25) is 25.0. However, it
is output as 25 rather than 25.0. This is because we have not yet discussed how to output
decimal numbers with 0 decimal parts to show the decimal point and the trailing zeros.
Chapter 3 explains how to output decimal numbers in a desired format. Similarly, the
output of other decimal numbers with zero decimal parts is without the decimal point
and the 0 decimal part.

48 | Chapter 2: Basic Elements of C++

2

In C++, the cast operator can also take the form dataType(expression). This form

is called C-like casting. For example, double(5) = 5.0 and int(17.6) = 17.
However, static_cast is more stable than C-like casting.

You can also use cast operators to explicitly convert char data values into int data values
and int data values into char data values. To convert char data values into int data
values, you use a collating sequence. For example, in the ASCII character
set, static_cast<int>('A') is 65 and static_cast<int>('8') is 56.
Similarly, static_cast<char>(65) is 'A' and static_cast<char>(56) is '8'.

Earlier in this chapter, you learned how arithmetic expressions are formed and evaluated
in C++. If you want to use the value of one expression in another expression, first you
must save the value of the expression. There are many reasons to save the value of an
expression. Some expressions are complex and may require a considerable amount of
computer time to evaluate. By calculating the values once and saving them for further
use, you not only save computer time and create a program that executes more quickly,
you also avoid possible typographical errors. In C++, expressions are evaluated, and if
the value is not saved, it is lost. That is, unless it is saved, the value of an expression
cannot be used in later calculations. In the next section, you will learn how to save the
value of an expression and use it in subsequent calculations.

Before leaving the discussion of data types, let us discuss one more data type—string.

string Type
The data type string is a programmer-defined data type. It is not directly available for
use in a program like the simple data types discussed earlier. To use this data type, you
need to access program components from the library, which will be discussed later in this
chapter. The data type string is a feature of ANSI/ISO Standard C++.

Prior to the ANSI/ISO C++ language standard, the standard C++ library did not provide a

string data type. Compiler vendors often supplied their own programmer-defined

string type, and the syntax and semantics of string operations often varied from vendor

to vendor.

A string is a sequence of zero or more characters. Strings in C++ are enclosed in double
quotation marks. A string containing no characters is called a null or empty string. The
following are examples of strings. Note that "" is the empty string.

"William Jacob"
"Mickey"
""

Every character in a string has a relative position in the string. The position of the first
character is 0, the position of the second character is 1, and so on. The length of a string is
the number of characters in it.

string Type | 49

EXAMPLE 2-10

String Position of a Character in the String Length of the String

"William Jacob" Position of 'W' is 0.
Position of the first 'i' is 1.
Position of ' ' (the space) is 7.
Position of 'J' is 8.
Position of 'b' is 12.

13

"Mickey" Position of 'M' is 0.
Position of 'i' is 1.
Position of 'c' is 2.
Position of 'k' is 3.
Position of 'e' is 4.
Position of 'y' is 5.

6

When determining the length of a string, you must also count any spaces in the string.
For example, the length of the following string is 22.

"It is a beautiful day."

The string type is very powerful and more complex than simple data types. It provides
many operations to manipulate strings. For example, it provides operations to find the
length of a string, extract part of a string, and compare strings. You will learn about this
data over the next few chapters.

Input
As noted earlier, the main objective of a C++ program is to perform calculations and
manipulate data. Recall that data must be loaded into main memory before it can be
manipulated. In this section, you will learn how to put data into the computer’s memory.
Storing data in the computer’s memory is a two-step process:

1. Instruct the computer to allocate memory.

2. Include statements in the program to put data into the allocated memory.

Allocating Memory with Constants and Variables
When you instruct the computer to allocate memory, you tell it not only what names to
use for each memory location, but also what type of data to store in those memory
locations. Knowing the location of data is essential, because data stored in one memory
location might be needed at several places in the program. As you saw earlier, knowing
what data type you have is crucial for performing accurate calculations. It is also critical to
know whether your data needs to remain fixed throughout program execution or
whether it should change.

Some data must stay the same throughout a program. For example, the pay rate is usually
the same for all part-time employees. A conversion formula that converts inches into

50 | Chapter 2: Basic Elements of C++

2

centimeters is fixed, because 1 inch is always equal to 2.54 centimeters. When stored
in memory, this type of data needs to be protected from accidental changes during
program execution. In C++, you can use a named constant to instruct a program to
mark those memory locations in which data is fixed throughout program execution.

Named constant: A memory location whose content is not allowed to change during
program execution.

To allocate memory, we use C++’s declaration statements. The syntax to declare a
named constant is:

const dataType identifier = value;

In C++, const is a reserved word.

EXAMPLE 2-11

Consider the following C++ statements:

const double CONVERSION = 2.54;
const int NO_OF_STUDENTS = 20;
const char BLANK = ' ';

The first statement tells the compiler to allocate memory (eight bytes) to store a value
of type double, call this memory space CONVERSION, and store the value 2.54 in it.
Throughout a program that uses this statement, whenever the conversion formula is
needed, the memory space CONVERSION can be accessed. The meaning of the other
statements is similar.

Note that the identifier for a named constant is in uppercase letters. Even though
there are no written rules, C++ programmers typically prefer to use uppercase letters
to name a named constant. Moreover, if the name of a named constant is a combina-
tion of more than one word, called a run-together word, then the words are separated
using an underscore. For example, in the preceding example, NO_OF_STUDENTS is a
run-together word.

As noted earlier, the default type of floating-point numbers is double. Therefore, if
you declare a named constant of type float, then you must specify that the value is
of type float as follows:

const float CONVERSION = 2.54f;

Otherwise, the compiler will generate a warning message. Notice that 2.54f says that it is

a float value. Recall that the memory size for float values is four bytes; for double
values, eight bytes. Because memory size is of little concern these days, as indicated earlier,

we will mostly use the type double to work with floating-point values.

Input | 51

Using a named constant to store fixed data, rather than using the data value itself, has
one major advantage. If the fixed data changes, you do not need to edit the entire
program and change the old value to the new value wherever the old value is used.
Instead, you can make the change at just one place, recompile the program, and
execute it using the new value throughout. In addition, by storing a value and
referring to that memory location whenever the value is needed, you avoid typing
the same value again and again and prevent accidental typos. If you misspell the name
of the constant value’s location, the computer will warn you through an error
message, but it will not warn you if the value is mistyped.

In some programs, data needs to be modified during program execution. For example, after
each test, the average test score and the number of tests taken changes. Similarly, after each
pay increase, the employee’s salary changes. This type of data must be stored in those memory
cells whose contents can be modified during program execution. In C++, memory cells
whose contents can be modified during program execution are called variables.

Variable: A memory location whose content may change during program execution.

The syntax for declaring one variable or multiple variables is:

dataType identifier, identifier, . . .;

EXAMPLE 2-12

Consider the following statements:

double amountDue;
int counter;
char ch;
int x, y;
string name;

The first statement tells the compiler to allocate enough memory to store a value of
the type double and call it amountDue. The second and third statements have similar
conventions. The fourth statement tells the compiler to allocate two different mem-
ory spaces, each large enough to store a value of the type int; name the first memory
space x; and name the second memory space y. The fifth statement tells the compiler
to allocate memory space to store a string and call it name.

As in the case of naming named constants, there are no written rules for naming variables.
However, C++ programmers typically use lowercase letters to declare variables. If a
variable name is a combination of more than one word, then the first letter of each word,
except the first word, is uppercase. (For example, see the variable amountDue in the
preceding example.)

From now on, when we say ‘‘variable,’’ we mean a variable memory location.

52 | Chapter 2: Basic Elements of C++

2

In C++, you must declare all identifiers before you can use them. If you refer to an

identifier without declaring it, the compiler will generate an error message (syntax error),

indicating that the identifier is not declared. Therefore, to use either a named constant or

a variable, you must first declare it.

Now that data types, variables, and constants have been defined and discussed, it is
possible to offer a formal definition of simple data types. A data type is called simple if
the variable or named constant of that type can store only one value at a time. For
example, if x is an int variable, at a given time, only one value can be stored in x.

Putting Data into Variables
Now that you know how to declare variables, the next question is: How do you put data
into those variables? In C++, you can place data into a variable in two ways:

1. Use C++’s assignment statement.

2. Use input (read) statements.

Assignment Statement
The assignment statement takes the following form:

variable = expression;

In an assignment statement, the value of the expression should match the data type of
the variable. The expression on the right side is evaluated, and its value is assigned to
the variable (and thus to a memory location) on the left side.

A variable is said to be initialized the first time a value is placed in the variable.

In C++, = is called the assignment operator.

EXAMPLE 2-13

Suppose you have the following variable declarations:

int num1, num2;
double sale;
char first;
string str;

Now consider the following assignment statements:

num1 = 4;
num2 = 4 * 5 - 11;
sale = 0.02 * 1000;
first = 'D';
str = "It is a sunny day.";

Input | 53

For each of these statements, the computer first evaluates the expression on the right
and then stores that value in a memory location named by the identifier on the left.
The first statement stores the value 4 in num1, the second statement stores 9 in num2,
the third statement stores 20.00 in sale, and the fourth statement stores the
character D in first. The fifth statement stores the string "It is a sunny day."
in the variable str.

The following C++ program shows the effect of the preceding statements:

// This program illustrates how data in the variables are
// manipulated.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int num1, num2;
double sale;
char first;
string str;

num1 = 4;
cout << "num1 = " << num1 << endl;

num2 = 4 * 5 - 11;
cout << "num2 = " << num2 << endl;

sale = 0.02 * 1000;
cout << "sale = " << sale << endl;

first = 'D';
cout << "first = " << first << endl;

str = "It is a sunny day.";
cout << "str = " << str << endl;

return 0;
}

Sample Run:

num1 = 4
num2 = 9
sale = 20
first = D
str = It is a sunny day.

54 | Chapter 2: Basic Elements of C++

For the most part, the preceding program is straightforward. Let us take a look at the
output statement:

cout << " num1 = " << num1 << endl;

This output statement consists of the string " num1 = ", the operator <<, and the variable
num1. Here, first the value of the string " num1 = " is output, and then the value of the
variable num1 is output. The meaning of the other output statements is similar.

A C++ statement such as:

num ¼ num + 2;

means ‘‘evaluate whatever is in num, add 2 to it, and assign the new value to the memory
location num.’’ The expression on the right side must be evaluated first; that value is then
assigned to the memory location specified by the variable on the left side. Thus, the
sequence of C++ statements:

num = 6;
num = num + 2;

and the statement:

num = 8;

both assign 8 to num. Note that if num has not been initialized, the statement num = num + 2
might give unexpected results and/or the complier might generate a warning message
indicating that the variable has not been initialized.

The statement num = 5; is read as ‘‘num becomes 5’’ or ‘‘num gets 5’’ or ‘‘num is assigned the
value 5.’’ Reading the statement as ‘‘num equals 5’’ is incorrect, especially for statements such
as num = num + 2;. Each time a new value is assigned to num, the old value is overwritten.

EXAMPLE 2-14

Suppose that num1, num2, and num3 are int variables and the following statements are
executed in sequence.

1. num1 = 18;

2. num1 = num1 + 27;

3. num2 = num1;

4. num3 = num2 / 5;

5. num3 = num3 / 4;

The following table shows the values of the variables after the execution of each
statement. (A ? indicates that the value is unknown. The orange color in a box shows
that the value of that variable is changed.)

2

Input | 55

Values of the Variables Explanation

Before Statement 1 ?
num1 num3num2

? ?

After Statement 1

num3num2num1
18 ? ?

After Statement 2

num3num2num1
45 ? ? num1 + 27 = 18 + 27 = 45.This value is assigned to num1, which

replaces the old value of num1.

After Statement 3

num3num2num1
45 45 ? Copy the value of num1 into num2.

After Statement 4

num3num2num1
45 45 9

num2 / 5 = 45 / 5 = 9. This
value is assigned to num3. So num3
= 9.

After Statement 5

num3num2num1
45 45 2

num3 / 4 = 9 / 4 = 2. This
value is assigned to num3, which
replaces the old value of num3.

Thus, after the execution of the statement in Line 5, num1 = 45, num2 = 45, and num3 = 2.

Tracing values through a sequence, called a walk-through, is a valuable tool to learn and
practice. Try it in the sequence above. You will learn more about how to walk through a
sequence of C++ statements later in this chapter.

Suppose that x, y, and z are int variables. The following is a legal statement in C++:

x = y = z;

In this statement, first the value of z is assigned to y, and then the new value of y is

assigned to x. Because the assignment operator, =, is evaluated from right to left, the
associativity of the assignment operator is said to be from right to left.

Saving and Using the Value of an Expression
Now that you know how to declare variables and put data into them, you can learn
how to save the value of an expression. You can then use this value in a later
expression without using the expression itself, thereby answering the question raised
earlier in this chapter. To save the value of an expression and use it in a later
expression, do the following:

1. Declare a variable of the appropriate data type. For example, if the
result of the expression is an integer, declare an int variable.

56 | Chapter 2: Basic Elements of C++

2. Assign the value of the expression to the variable that was declared,
using the assignment statement. This action saves the value of the
expression into the variable.

3. Wherever the value of the expression is needed, use the variable holding
the value. The following example further illustrates this concept.

EXAMPLE 2-15

Suppose that you have the following declaration:

int a, b, c, d;
int x, y;

Further suppose that you want to evaluate the expressions –b + (b2 – 4ac) and
–b –(b2 – 4ac) and assign the values of these expressions to x and y, respectively.
Because the expression b2 – 4ac appears in both expressions, you can first calculate
the value of this expression and save its value in d. You can then use the value of d
to evaluate the expressions, as shown by the following statements:

d = b * b - 4 * a * c;
x = -b + d;
y = -b - d;

Earlier, you learned that if a variable is used in an expression, the expression would
yield a meaningful value only if the variable has first been initialized. You also learned
that after declaring a variable, you can use an assignment statement to initialize it. It is
possible to initialize and declare variables at the same time. Before we discuss how to
use an input (read) statement, we address this important issue.

Declaring and Initializing Variables
When a variable is declared, C++ may not automatically put a meaningful value in it. In
other words, C++ may not automatically initialize variables. For example, the int and
double variables may not be initialized to 0, as happens in some programming languages.
This does not mean, however, that there is no value in a variable after its declaration.
When a variable is declared, memory is allocated for it.

Recall from Chapter 1 that main memory is an ordered sequence of cells, and each cell is
capable of storing a value. Also, recall that the machine language is a sequence of 0s and
1s, or bits. Therefore, data in a memory cell is a sequence of bits. These bits are nothing
but electrical signals, so when the computer is turned on, some of the bits are 1 and some
are 0. The state of these bits depends on how the system functions. However, when you
instruct the computer to store a particular value in a memory cell, the bits are set
according to the data being stored.

2

Input | 57

During data manipulation, the computer takes the value stored in particular cells and
performs a calculation. If you declare a variable and do not store a value in it, the memory
cell still has a value—usually the value of the setting of the bits from their last use—and
you have no way to know what this value is.

If you only declare a variable and do not instruct the computer to put data into the variable,
the value of that variable is garbage. However, the computer does not warn us, regards
whatever values are in memory as legitimate, and performs calculations using those values
in memory. Using a variable in an expression without initializing it produces erroneous
results. To avoid these pitfalls, C++ allows you to initialize variables while they are being
declared. For example, consider the following C++ statements in which variables are first
declared and then initialized:

int first, second;
char ch;
double x;

first = 13;
second = 10;
ch = ' ';
x = 12.6;

You can declare and initialize these variables at the same time using the following C++
statements:

int first = 13, second = 10;
char ch = ' ';
double x = 12.6;

The first C++ statement declares two int variables, first and second, and stores 13 in
first and 10 in second. The meaning of the other statements is similar.

In reality, not all variables are initialized during declaration. It is the nature of the
program or the programmer’s choice that dictates which variables should be initi-
alized during declaration. The key point is that all variables must be initialized before
they are used.

Input (Read) Statement
Previously, you learned how to put data into variables using the assignment statement. In
this section, you will learn how to put data into variables from the standard input device,
using C++’s input (or read) statements.

In most cases, the standard input device is the keyboard.

When the computer gets the data from the keyboard, the user is said to be acting interactively.

58 | Chapter 2: Basic Elements of C++

2

Putting data into variables from the standard input device is accomplished via the use of
cin and the operator >>. The syntax of cin together with >> is:

cin >> variable >> variable ...;

This is called an input (read) statement. In C++, >> is called the stream extraction
operator.

In a syntax, the shading indicates the part of the definition that is optional. Furthermore,

throughout this book, the syntax is enclosed in yellow boxes.

EXAMPLE 2-16

Suppose that miles is a variable of type double. Further suppose that the input is
73.65. Consider the following statements:

cin >> miles;

This statement causes the computer to get the input, which is 73.65, from the standard
input device and stores it in the variable miles. That is, after this statement executes, the
value of the variable miles is 73.65.

Example 2-17 further explains how to input numeric data into a program.

EXAMPLE 2-17

Suppose we have the following statements:

int feet;
int inches;

Suppose the input is:

23 7

Next, consider the following statement:

cin >> feet >> inches;

This statement first stores the number 23 into the variable feet and then the number 7
into the variable inches. Notice that when these numbers are entered via the keyboard,
they are separated with a blank. In fact, they can be separated with one or more blanks or
lines or even the tab character.

Input | 59

The following C++ program shows the effect of the preceding input statements:

// This program illustrates how input statements work.

#include <iostream>

using namespace std;

int main()
{

int feet;
int inches;

cout << "Enter two integers separated by spaces: ";
cin >> feet >> inches;
cout << endl;

cout << "Feet = " << feet << endl;
cout << "Inches = " << inches << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter two integers separated by spaces: 23 7

Feet = 23
Inches = 7

The C++ program in Example 2-18 illustrates how to read strings and numeric data.

EXAMPLE 2-18

// This program illustrates how to read strings and numeric data.

#include <iostream>
#include <string>

using namespace std;

int main()
{

string firstName; //Line 1
string lastName; //Line 2
int age; //Line 3
double weight; //Line 4

cout << "Enter first name, last name, age, "
<< "and weight, separated by spaces."
<< endl; //Line 5

60 | Chapter 2: Basic Elements of C++

2

cin >> firstName >> lastName; //Line 6
cin >> age >> weight; //Line 7

cout << "Name: " << firstName << " "
<< lastName << endl; //Line 8

cout << "Age: " << age << endl; //Line 9
cout << "Weight: " << weight << endl; //Line 10

return 0; //Line 11
}

Sample Run: In this sample run, the user input is shaded.

Enter first name, last name, age, and weight, separated by spaces.
Sheila Mann 23 120.5
Name: Sheila Mann
Age: 23
Weight: 120.5

The preceding program works as follows: The statements in Lines 1 to 4 declare the
variables firstName and lastName of type string, age of type int, and weight of
type double. The statement in Line 5 is an output statement and tells the user what to
do. (Such output statements are called prompt lines.) As shown in the sample run, the
input to the program is:

Sheila Mann 23 120.5

The statement in Line 6 first reads and stores the string Sheila into the variable
firstName and then skips the space after Sheila and reads and stores the string Mann
into the variable lastName. Next, the statement in Line 7 first skips the blank after
Mann and reads and stores 23 into the variable age and then skips the blank after 23
and reads and stores 120.5 into the variable weight.

The statements in Lines 8, 9, and 10 produce the third, fourth, and fifth lines of the
sample run.

During programming execution, if more than one value is entered in a line, these values must

be separated by at least one blank or tab. Alternately, one value per line can be entered.

Variable Initialization
Remember, there are two ways to initialize a variable: by using the assignment statement
and by using a read statement. Consider the following declaration:

int feet;
int inches;

Input | 61

Consider the following two sets of code:

(a) feet = 35; (b) cout << "Enter feet: ";
inches = 6; cin >> feet;
cout << "Total inches = " cout << endl;

<< 12 * feet + inches; cout << "Enter inches: ";
cin >> inches;
cout << endl;
cout << "Total inches = "

<< 12 * feet + inches;

In (a), feet and inches are initialized using assignment statements, and in (b), these
variables are initialized using input statements. However, each time the code in (a)
executes, feet and inches are initialized to the same value unless you edit the source
code, change the value, recompile, and run. On the other hand, in (b), each time the
program runs, you are prompted to enter values for feet and inches. Therefore, a read
statement is much more versatile than an assignment statement.

Sometimes it is necessary to initialize a variable by using an assignment statement. This is
especially true if the variable is used only for internal calculation and not for reading and
storing data.

Recall that C++ does not automatically initialize variables when they are declared. Some
variables can be initialized when they are declared, whereas others must be initialized
using either an assignment statement or a read statement.

When the program is compiled, some of the newer IDEs might give warning messages

if the program uses the value of a variable without first properly initializing that variable.

In this case, if you ignore the warning and execute the program, the program might

terminate abnormally with an error message.

Suppose you want to store a character into a char variable using an input statement.
During program execution, when you enter the character, you do not include the single

quotes. For example, suppose that ch is a char variable. Consider the following input
statement:

cin >> ch;

If you want to store K into ch using this statement, during program execution, you

only enter K. Similarly, if you want to store a string into a string variable using an

input statement, during program execution, you enter only the string without the

double quotes.

62 | Chapter 2: Basic Elements of C++

2

EXAMPLE 2-19

This example further illustrates how assignment statements and input statements manip-
ulate variables. Consider the following declarations:

int firstNum, secondNum;
double z;
char ch;
string name;

Also, suppose that the following statements execute in the order given:

1. firstNum = 4;

2. secondNum = 2 *firstNum + 6;

3. z = (firstNum + 1) / 2.0;

4. ch = 'A';

5. cin >> secondNum;

6. cin >> z;

7. firstNum = 2 *secondNum + static_cast<int>(z);
8. cin >> name;

9. secondNum = secondNum + 1;

10. cin >> ch;

11. firstNum = firstNum + static_cast<int>(ch);
12. z = firstNum - z;

In addition, suppose the input is:

8 16.3 Jenny D

This line has four values, 8, 16.3, Jenny, and D, and each value is separated from the
others by a blank.

Let’s now determine the values of the declared variables after the last statement
executes. To explicitly show how a particular statement changes the value of a
variable, the values of the variables after each statement executes are shown. (In
the following figures, a question mark [?] in a box indicates that the value in the box
is unknown.)

Before statement 1 executes, all variables are uninitialized, as shown in Figure 2-2.

?
firstNum

?
secondNum

?
z

?
ch

?
name

FIGURE 2-2 Variables before statement 1 executes

Input | 63

Next, we show the values of the variables after the execution of each statement.

After

St.
Values of the Variables Explanation

1 4
firstNum

?
secondNum

?
z

?
ch

?
name

Store 4 into firstNum.

2 4
firstNum

14
secondNum

?
z

?
ch

?
name

2 * firstNum + 6 = 2 * 4
+ 6 = 14.
Store 14 into secondNum.

3 4
firstNum

14
secondNum

2.5
z

?
ch

?
name

(firstNum + 1) / 2.0
= (4 + 1) / 2.0 = 5 / 2.0
= 2.5. Store 2.5 into z.

4 4
firstNum

14
secondNum

2.5
z

A
ch

?
name

Store 'A' into ch.

5 4
firstNum

8
secondNum

2.5
z

A
ch

?
name

Read a number from the
keyboard (which is 8) and store it
into secondNum. This statement
replaces the old value of
secondNum with this new
value.

6 4
firstNum

8
secondNum

16.3
z

A
ch

?
name

Read a number from the
keyboard (which is 16.3)
and store this number into z.
This statement replaces the old
value of z with this new value.

7 32
firstNum

8
secondNum

16.3
z

A
ch

?
name

2 * secondNum +
static_cast<int>(z) =
2 * 8 þ
static_cast<int> (16.3)
=16 þ 16 = 32. Store 32 into
firstNum. This statement
replaces the old value of
firstNum with this new value.

8 32
firstNum

8
secondNum

16.3
z

A
ch

Jenny
name

Read the next input, Jenny,
from the keyboard and store it
into name.

9 32
firstNum

9
secondNum

16.3
z

A
ch

Jenny
name

secondNum + 1 = 8 + 1 = 9.
Store 9 into secondNum.

10 32
firstNum

9
secondNum

16.3
z

D
ch

Jenny
name

Read the next input from the
keyboard (which is D) and store it
into ch. This statement replaces
the old value of ch with the new
value.

64 | Chapter 2: Basic Elements of C++

2

After
St.

Values of the Variables Explanation

11 100
firstNum

9
secondNum

16.3
z

D
ch

Jenny
name

firstNum +
static_cast<int>(ch) =
32 + static_cast<int>
('D') = 32 + 68 = 100.
Store 100 into firstNum.

12 100
firstNum

9
secondNum

83.7
z

D
ch

Jenny
name

firstNum – z = 100 – 16.3 =
100.0 – 16.3 = 83.7. Store
83.7 into z.

When something goes wrong in a program and the results it generates are not

what you expected, you should do a walk-through of the statements that assign

values to your variables. Example 2-19 illustrates how to do a walk-through

of your program. This is a very effective debugging technique. The Web site

accompanying this book contains a C++ program that shows the effect of the

12 statements listed at the beginning of Example 2-19. The program is named

Example 2_19.cpp.

If you assign the value of an expression that evaluates to a floating-point value—without

using the cast operator—to a variable of type int, the fractional part is dropped. In this
case, the compiler most likely will issue a warning message about the implicit

type conversion.

Increment and Decrement Operators
Now that you know how to declare a variable and enter data into a variable, in this
section, you will learn about two more operators: the increment and decrement
operators. These operators are used frequently by C++ programmers and are useful
programming tools.

Suppose count is an int variable. The statement:

count = count + 1;

increments the value of count by 1. To execute this assignment statement, the computer
first evaluates the expression on the right, which is count + 1. It then assigns this value to
the variable on the left, which is count.

As you will see in later chapters, such statements are frequently used to keep track of how
many times certain things have happened. To expedite the execution of such statements,
C++ provides the increment operator, ++, which increases the value of a variable by
1, and the decrement operator, ––, which decreases the value of a variable by 1.

Increment and Decrement Operators | 65

Increment and decrement operators each have two forms, pre and post. The syntax of the
increment operator is:

Pre-increment: ++variable

Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: ––variable

Post-decrement: variable––

Let’s look at some examples. The statement:

++count;

or:

count++;

increments the value of count by 1. Similarly, the statement:

––count;

or:

count––;

decrements the value of count by 1.

Because both the increment and decrement operators are built into C++, the value of the
variable is quickly incremented or decremented without having to use the form of an
assignment statement.

Now, both the pre- and post-increment operators increment the value of the variable by 1.
Similarly, the pre- and post-decrement operators decrement the value of the variable by 1.
What is the difference between the pre and post forms of these operators? The difference
becomes apparent when the variable using these operators is employed in an expression.

Suppose that x is an int variable. If ++x is used in an expression, first the value of x is
incremented by 1, and then the new value of x is used to evaluate the expression. On the
other hand, if x++ is used in an expression, first the current value of x is used in the
expression, and then the value of x is incremented by 1. The following example clarifies
the difference between the pre- and post-increment operators.

Suppose that x and y are int variables. Consider the following statements:

x = 5;
y = ++x;

The first statement assigns the value 5 to x. To evaluate the second statement, which uses
the pre-increment operator, first the value of x is incremented to 6, and then this value,
6, is assigned to y. After the second statement executes, both x and y have the value 6.

66 | Chapter 2: Basic Elements of C++

2

Now, consider the following statements:

x = 5;
y = x++;

As before, the first statement assigns 5 to x. In the second statement, the post-increment
operator is applied to x. To execute the second statement, first the value of x, which is 5,
is used to evaluate the expression, and then the value of x is incremented to 6. Finally, the
value of the expression, which is 5, is stored in y. After the second statement executes,
the value of x is 6, and the value of y is 5.

The following example further illustrates how the pre and post forms of the increment
operator work.

EXAMPLE 2-20

Suppose a and b are int variables and:

a = 5;
b = 2 + (++a);

The first statement assigns 5 to a. To execute the second statement, first the expression
2 +(++a) is evaluated. Because the pre-increment operator is applied to a, first the value
of a is incremented to 6. Then 2 is added to 6 to get 8, which is then assigned to b.
Therefore, after the second statement executes, a is 6 and b is 8.

On the other hand, after the execution of the following statements:

a = 5;
b = 2 + (a++);

the value of a is 6 while the value of b is 7.

This book will most often use the increment and decrement operators with a variable in a
stand-alone statement. That is, the variable using the increment or decrement operator
will not be part of any expression.

Output
In the preceding sections, you have seen how to put data into the computer’s memory
and how to manipulate that data. We also used certain output statements to show the
results on the standard output device. This section explains in some detail how to further use
output statements to generate the desired results.

The standard output device is usually the screen.

Output | 67

In C++, output on the standard output device is accomplished via the use of cout and
the operator <<. The general syntax of cout together with << is:

cout << expression or manipulator << expression or manipulator...;

This is called an output statement. In C++, << is called the stream insertion
operator. Generating output with cout follows two rules:

1. The expression is evaluated, and its value is printed at the current
insertion point on the output device.

2. A manipulator is used to format the output. The simplest manipulator
is endl (the last character is the letter el), which causes the insertion
point to move to the beginning of the next line.

On the screen, the insertion point is where the cursor is.

The next example illustrates how an output statement works. In an output statement, a
string or an expression involving only one variable or a single value evaluates to itself.

When an output statement outputs char values, it outputs only the character without the
single quotes (unless the single quotes are part of the output statement).

For example, suppose ch is a char variable and ch = 'A';. The statement:

cout << ch;

or:

cout << 'A';

outputs:

A

Similarly, when an output statement outputs the value of a string, it outputs only the

string without the double quotes (unless you include double quotes as part of the output).

EXAMPLE 2-21

Consider the following statements. The output is shown to the right of each statement.

Statement Output

1 cout << 29 / 4 << endl; 7
2 cout << "Hello there." << endl; Hello there.
3 cout << 12 << endl; 12
4 cout << "4 + 7" << endl; 4 + 7

68 | Chapter 2: Basic Elements of C++

2

5 cout << 4 + 7 << endl; 11
6 cout << 'A' << endl; A
7 cout << "4 + 7 = " << 4 + 7 << endl; 4 + 7 = 11
8 cout << 2 + 3 * 5 << endl; 17
9 cout << "Hello \nthere." << endl; Hello

there.

Look at the output of statement 9. Recall that in C++, the newline character is '\n'; it
causes the insertion point to move to the beginning of the next line before printing there.
Therefore, when \n appears in a string in an output statement, it causes the insertion
point to move to the beginning of the next line on the output device. This fact explains
why Hello and there. are printed on separate lines.

In C++, \ is called the escape character and \n is called newline escape sequence.

Recall that all variables must be properly initialized; otherwise, the value stored in them
may not make much sense. Also recall that C++ does not automatically initialize variables.

If num is an int variable, then the output of the C++ statement:

cout << num << endl;

is meaningful provided that num has been given a value. For example, the sequence of
C++ statements:

num = 45;
cout << num << endl;

will produce the output 45.

EXAMPLE 2-22

Consider the following C++ program.

// This program illustrates how output statements work.

#include <iostream>

using namespace std;

int main()
{

int a, b;

a = 65; //Line 1
b = 78; //Line 2

Output | 69

cout << 29 / 4 << endl; //Line 3
cout << 3.0 / 2 << endl; //Line 4
cout << "Hello there.\n"; //Line 5
cout << 7 << endl; //Line 6
cout << 3 + 5 << endl; //Line 7
cout << "3 + 5"; //Line 8
cout << endl; //Line 9
cout << a << endl; //Line 10
cout << "a" << endl; //Line 11
cout << (a + 5) * 6 << endl; //Line 12
cout << 2 * b << endl; //Line 13

return 0;
}

In the following output, the column marked ‘‘Output of Statement at’’ and the line
numbers are not part of the output. The line numbers are shown in this column to make
it easy to see which output corresponds to which statement.

Output of Statement at

7 Line 3
1.5 Line 4
Hello there. Line 5
7 Line 6
8 Line 7
3 + 5 Line 8
65 Line 10
a Line 11
420 Line 12
156 Line 13

For the most part, the output is straightforward. Look at the output of the statements in
Lines 7, 8, 9, and 10. The statement in Line 7 outputs the result of 3 + 5, which is 8, and
moves the insertion point to the beginning of the next line. The statement in Line 8
outputs the string 3 + 5. Note that the statement in Line 8 consists only of the string 3 + 5.
Therefore, after printing 3 + 5, the insertion point stays positioned after 5; it does not
move to the beginning of the next line.

The output statement in Line 9 contains only the manipulator endl, which moves
the insertion point to the beginning of the next line. Therefore, when the statement
in Line 10 executes, the output starts at the beginning of the line. Note that in
this output, the column ‘‘Output of Statement at’’ does not contain Line 9. This is due
to the fact that the statement in Line 9 does not produce any printable output. It simply
moves the insertion point to the beginning of the next line. Next, the statement in Line
10 outputs the value of a, which is 65. The manipulator endl then moves the insertion
point to the beginning of the next line.

70 | Chapter 2: Basic Elements of C++

2

Outputting or accessing the value of a variable in an expression does not destroy or modify

the contents of the variable.

Let us now take a close look at the newline character, '\n'. Consider the following C++
statements:

cout << "Hello there.";
cout << "My name is James.";

If these statements are executed in sequence, the output is:

Hello there.My name is James.

Now consider the following C++ statements:

cout << "Hello there.\n";
cout << "My name is James.";

The output of these C++ statements is:

Hello there.
My name is James.

When \n is encountered in the string, the insertion point is positioned at the beginning
of the next line. Note also that \n may appear anywhere in the string. For example, the
output of the statement:

cout << "Hello \nthere. \nMy name is James.";

is:

Hello
there.
My name is James.

Also, note that the output of the statement:

cout << '\n';

is the same as the output of the statement:

cout << "\n";

which is equivalent to the output of the statement:

cout << endl;

Thus, the output of the sequence of statements:

cout << "Hello there.\n";
cout << "My name is James.";

is equivalent to the output of the sequence of statements:

cout << "Hello there." << endl;
cout << "My name is James.";

Output | 71

EXAMPLE 2-23

Consider the following C++ statements:

cout << "Hello there.\nMy name is James.";

or:

cout << "Hello there.";
cout << "\nMy name is James.";

or:

cout << "Hello there.";
cout << endl << "My name is James.";

In each case, the output of the statements is:

Hello there.
My name is James.

EXAMPLE 2-24

The output of the C++ statements:

cout << "Count...\n....1\n.....2\n......3";

or:

cout << "Count..." << endl << "....1" << endl
<< ".....2" << endl << "......3";

is:

Count...
....1
.....2
......3

EXAMPLE 2-25

Suppose that you want to output the following sentence in one line as part of a message:

It is sunny, warm, and not a windy day. We can go golfing.

Obviously, you will use an output statement to produce this output. However, in the
programming code, this statement may not fit in one line as part of the output statement.
Of course, you can use multiple output statements as follows:

cout << "It is sunny, warm, and not a windy day. ";
cout << "We can go golfing." << endl;

72 | Chapter 2: Basic Elements of C++

Note the semicolon at the end of the first statement and the identifier cout at the
beginning of the second statement. Also, note that there is no manipulator endl at
the end of the first statement. Here, two output statements are used to output the
sentence in one line. Equivalently, you can use the following output statement to
output this sentence:

cout << "It is sunny, warm, and not a windy day. "
<< "We can go golfing." << endl;

In this statement, note that there is no semicolon at the end of the first line, and the
identifier cout does not appear at the beginning of the second line. Because there is
no semicolon at the end of the first line, this output statement continues at the second
line. Also, note the double quotation marks at the beginning and end of the sentences
on each line. The string is broken into two strings, but both strings are part of the
same output statement.

If a string appearing in an output statement is long and you want to output the string in
one line, you can break the string by using either of the previous two methods. However,
the following statement would be incorrect:

cout << "It is sunny, warm, and not a windy day.
We can go golfing." << endl; //illegal

In other words, the return (or Enter) key on your keyboard cannot be part of the string.
That is, in programming code, a string cannot be broken into more than one line by using
the return (Enter) key on your keyboard.

Recall that the newline character is \n, which causes the insertion point to move to the
beginning of the next line. There are many escape sequences in C++, which allow you
to control the output. Table 2-4 lists some of the commonly used escape sequences.

2

TABLE 2-4 Commonly Used Escape Sequences

Escape
Sequence

Description

\n Newline Cursor moves to the beginning of the next line

\t Tab Cursor moves to the next tab stop

\b Backspace Cursor moves one space to the left

\r Return
Cursor moves to the beginning of the current line (not
the next line)

\\ Backslash Backslash is printed

\' Single quotation Single quotation mark is printed

\" Double quotation Double quotation mark is printed

Output | 73

The following example shows the effect of some of these escape sequences.

EXAMPLE 2-26

The output of the statement:

cout << "The newline escape sequence is \\n" << endl;

is:

The newline escape sequence is \n

The output of the statement:

cout << "The tab character is represented as \'\\t\'" << endl;

is:

The tab character is represented as '\t'

Note that the single quote can also be printed without using the escape sequence.
Therefore, the preceding statement is equivalent to the following output statement:

cout << "The tab character is represented as '\\t'" << endl;

The output of the statement:

cout << "The string \"Sunny\" contains five characters." << endl;

is:

The string "Sunny" contains five characters.

The Web site accompanying this text contains the C++ program that shows

the effect of the statements in Example 2-26. The program is named

Example2_26.cpp.

To use cin and cout in a program, you must include a certain header file. The next
section explains what this header file is, how to include a header file in a program, and
why you need header files in a program. Chapter 3 will provide a full explanation of cin
and cout.

74 | Chapter 2: Basic Elements of C++

Preprocessor Directives
Only a small number of operations, such as arithmetic and assignment operations, are
explicitly defined in C++. Many of the functions and symbols needed to run a C++
program are provided as a collection of libraries. Every library has a name and is
referred to by a header file. For example, the descriptions of the functions needed to
perform input/output (I/O) are contained in the header file iostream. Similarly, the
descriptions of some very useful mathematical functions, such as power, absolute, and
sine, are contained in the header file cmath. If you want to use I/O or math
functions, you need to tell the computer where to find the necessary code. You
use preprocessor directives and the names of header files to tell the computer the
locations of the code provided in libraries. Preprocessor directives are processed by a
program called a preprocessor.

Preprocessor directives are commands supplied to the preprocessor that cause the pre-
processor to modify the text of a C++ program before it is compiled. All preprocessor
commands begin with #. There are no semicolons at the end of preprocessor commands
because they are not C++ statements. To use a header file in a C++ program, use the
preprocessor directive include.

The general syntax to include a header file (provided by the IDE) in a C++ program is:

#include <headerFileName>

For example, the following statement includes the header file iostream in a C++ program:

#include <iostream>

Preprocessor directives to include header files are placed as the first line of a program so
that the identifiers declared in those header files can be used throughout the program.
(Recall that in C++, identifiers must be declared before they can be used.)

Certain header files are required to be provided as part of C++. Appendix F describes
some of the commonly used header files. Individual programmers can also create their
own header files, which is discussed in the chapter Classes and Data Abstraction, later in
this book.

Note that the preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

From Figure 1-3 (Chapter 1), we can conclude that a C++ system has three basic
components: the program development environment, the C++ language, and the C++
library. All three components are integral parts of the C++ system. The program
development environment consists of the six steps shown in Figure 1-3. As you learn
the C++ language throughout the book, we will discuss components of the C++ library
as we need them.

2

Preprocessor Directives | 75

namespace and Using cin and cout in a Program
Earlier, you learned that both cin and cout are predefined identifiers. In ANSI/ISO
Standard C++, these identifiers are declared in the header file iostream, but within
a namespace. The name of this namespace is std. (The namespace mechanism will
be formally defined and discussed in detail in Chapter 8. For now, you need to know
only how to use cin and cout and, in fact, any other identifier from the header file
iostream.)

There are several ways you can use an identifier declared in the namespace std. One way to use
cin and cout is to refer to them as std::cin and std::cout throughout the program.

Another option is to include the following statement in your program:

using namespace std;

This statement appears after the statement #include <iostream>. You can then refer
to cin and cout without using the prefix std::. To simplify the use of cin and cout,
this book uses the second form. That is, to use cin and cout in a program, the programs
will contain the following two statements:

#include <iostream>

using namespace std;

In C++, namespace and using are reserved words.

The namespace mechanism is a feature of ANSI/ISO Standard C++. As you learn more
C++ programming, you will become aware of other header files. For example, the
header file cmath contains the specifications of many useful mathematical functions.
Similarly, the header file iomanip contains the specifications of many useful functions
and manipulators that help you format your output in a specific manner. However, just
like the identifiers in the header file iostream, the identifiers in ANSI/ISO Standard
C++ header files are declared within a namespace.

The name of the namespace in each of these header files is std. Therefore, whenever
certain features of a header file in ANSI/ISO Standard C++ are discussed, this book will
refer to the identifiers without the prefix std::. Moreover, to simplify the accessing of
identifiers in programs, the statement using namespace std; will be included. Also, if
a program uses multiple header files, only one using statement is needed. This using
statement typically appears after all the header files.

Using the string Data Type in a Program
Recall that the string data type is a programmer-defined data type and is not directly
available for use in a program. To use the string data type, you need to access its
definition from the header file string. Therefore, to use the string data type in a
program, you must include the following preprocessor directive:

#include <string>

76 | Chapter 2: Basic Elements of C++

2

Creating a C++ Program
In previous sections, you learned enough C++ concepts to write meaningful programs.
You are now ready to create a complete C++ program.

A C++ program is a collection of functions, one of which is the function main.
Therefore, if a C++ program consists of only one function, then it must be the function
main. Moreover, a function is a set of instructions designed to accomplish a specific task.
Until Chapter 6, you will deal mainly with the function main.

The statements to declare variables, the statements to manipulate data (such as assignments),
and the statements to input and output data are placed within the function main. The
statements to declare named constants are usually placed outside of the function main.

The syntax of the function main used throughout this book has the following form:

int main()
{

statement_1
.
.
.

statement_n

return 0;
}

In the syntax of the function main, each statement (statement_1, . . . , statement_n) is
usually either a declarative statement or an executable statement. The statement return 0;
must be included in the function main and must be the last statement. If the statement
return 0; is misplaced in the body of the function main, the results generated by the
program may not be to your liking. The meaning of the statement return 0; will be
discussed in Chapter 6. In C++, return is a reserved word.

A C++ program might use the resources provided by the IDE, such as the necessary code
to input the data, which would require your program to include certain header files. You
can, therefore, divide a C++ program into two parts: preprocessor directives and the
program. The preprocessor directives tell the compiler which header files to include in
the program. The program contains statements that accomplish meaningful results. Taken
together, the preprocessor directives and the program statements constitute the C++
source code. Recall that to be useful, source code must be saved in a file with the file
extension .cpp. For example, if the source code is saved in the file firstProgram, then
the complete name of this file is firstProgram.cpp. The file containing the source
code is called the source code file or source file.

When the program is compiled, the compiler generates the object code, which is saved in
a file with the file extension .obj. When the object code is linked with the system
resources, the executable code is produced and saved in a file with the file extension
.exe. Typically, the name of the file containing the object code and the name of the file
containing the executable code are the same as the name of the file containing the source

Creating a C++ Program | 77

code. For example, if the source code is located in a file named firstProg.cpp, the
name of the file containing the object code is firstProg.obj, and the name of the file
containing the executable code is firstProg.exe.

The extensions as given in the preceding paragraph—that is, .cpp, .obj, and .exe—are
system dependent. Moreover, some IDEs maintain programs in the form of projects. The
name of the project and the name of the source file need not be the same. It is possible
that the name of the executable file is the name of the project, with the extension .exe.
To be certain, check your system or IDE documentation.

Because the programming instructions are placed in the function main, let us elaborate on
this function.

The basic parts of the function main are the heading and the body. The first line of the
function main, that is:

int main()

is called the heading of the function main.

The statements enclosed between the curly braces ({and }) form the body of the
function main. The body of the function main contains two types of statements:

• Declaration statements

• Executable statements

Declaration statements are used to declare things, such as variables.

In C++, variables or identifiers can be declared anywhere in the program, but they must
be declared before they can be used.

EXAMPLE 2-27

The following statements are examples of variable declarations:

int a, b, c;
double x, y;

Executable statements perform calculations, manipulate data, create output, accept
input, and so on.

Some executable statements that you have encountered so far are the assignment, input,
and output statements.

EXAMPLE 2-28

The following statements are examples of executable statements:

a = 4; //assignment statement
cin >> b; //input statement
cout << a << " " << b << endl; //output statement

78 | Chapter 2: Basic Elements of C++

2

In skeleton form, a C++ program looks like the following:

//comments, if needed

preprocessor directives to include header files

using statement

named constants, if necessary

int main()
{

statement_1
.
.
.

statement_n

return 0;
}

The C++ program in Example 2-29 shows where include statements, declaration state-
ments, executable statements, and so on typically appear in the program.

EXAMPLE 2-29

//***
// Author: D.S. Malik
//
// This program shows where the include statements, using
// statement, named constants, variable declarations, assignment
// statements, and input and output statements typically appear.
//***

#include <iostream> //Line 1

using namespace std; //Line 2

const int NUMBER = 12; //Line 3

int main() //Line 4
{ //Line 5

int firstNum; //Line 6
int secondNum; //Line 7

firstNum = 18; //Line 8
cout << "Line 9: firstNum = " << firstNum

<< endl; //Line 9

cout << "Line 10: Enter an integer: "; //Line 10
cin >> secondNum; //Line 11
cout << endl; //Line 12

Creating a C++ Program | 79

cout << "Line 13: secondNum = " << secondNum
<< endl; //Line 13

firstNum = firstNum + NUMBER + 2 * secondNum; //Line 14

cout << "Line 15: The new value of "
<< "firstNum = " << firstNum << endl; //Line 15

return 0; //Line 16
} //Line 17

Sample Run: In this sample run, the user input is shaded.

Line 9: firstNum = 18
Line 10: Enter an integer: 15

Line 13: secondNum = 15
Line 15: The new value of firstNum = 60

The preceding program works as follows: The statement in Line 1 includes the
header file iostream so that program can perform input/output. The statement in
Line 2 uses the using namespace statement so that identifiers declared in the
header file iostream, such as cin, cout, and endl, can be used without using
the prefix std::. The statement in Line 3 declares the named constant NUMBER and
sets its value to 12. The statement in Line 4 contains the heading of the function
main, and the left brace in Line 5 marks the beginning of the function main. The
statements in Lines 6 and 7 declare the variables firstNum and secondNum.

The statement in Line 8 sets the value of firstNum to 18, and the statement in Line 9
outputs the value of firstNum. Next, the statement in Line 10 prompts the user to
enter an integer. The statement in Line 11 reads and stores the integer into the variable
secondNum, which is 15 in the sample run. The statement in Line 12 positions the
cursor on the screen at the beginning of the next line. The statement in Line 13
outputs the value of secondNum. The statement in Line 14 evaluates the expression:

firstNum + NUMBER + 2 * secondNum

and assigns the value of this expression to the variable firstNum, which is 60 in the
sample run. The statement in Line 15 outputs the new value of firstNum. The statement
in Line 16 contains the return statement. The right brace in Line 17 marks the end of
the function main.

Debugging: Understanding and Fixing Syntax
Errors
The previous sections of this chapter described the basic components of a C++ program.
When you type a program, typos and unintentional syntax errors are likely to occur.
Therefore, when you compile a program, the compiler will identify the syntax error. In
this section, we show how to identify and fix syntax errors.

80 | Chapter 2: Basic Elements of C++

2

Consider the following C++ program:

1. #include <iostream>
2.

3. using namespace std;
4.

5. int main()
6. {

7. int num
8.

9. num = 18;

10.

11. tempNum = 2 * num;

12.

13. cout << "Num = " << num << ", tempNum = " < tempNum << endl;

14.

15. return ;
16. }

(Note that the numbers 1 to 16 on the left side are not part of the program. We have
numbered the statements for easy references.) This program contains syntax errors. When
you compile this program, the compiler produces the following errors: (This program is
compiled using Visual C++ Express 2008.)

Example2_Syntax_Errors.cpp

c:\chapter 2 source code\example2_syntax_errors.cpp(9) : error C2146: syntax error :

missing ';' before identifier 'num'

c:\chapter 2 source code\example2_syntax_errors.cpp(11) : error C2065: 'tempNum' :

undeclared identifier

c:\chapter 2 source code\example2_syntax_errors.cpp(13) : error C2065: 'tempNum' :

undeclared identifier

c:\chapter 2 source code\example2_syntax_errors.cpp(13) : error C2563: mismatch in formal

parameter list

c:\chapter 2 source code\example2_syntax_errors.cpp(13) : error C2568: '<<' : unable to

resolve function overload

c:\program files\microsoft visual studio 9.0\vc\include\ostream(974): could be

'std::basic_ostream<_Elem,_Traits> &std::endl(std::basic_ostream<_Elem,_Traits> &)'

with

[

_Elem=wchar_t,

_Traits=std::char_traits<wchar_t>

]

c:\program files\microsoft visual studio 9.0\vc\include\ostream(966): or

'std::basic_ostream<_Elem,_Traits> &std::endl(std::basic_ostream<_Elem,_Traits> &)'

with

[

_Elem=char,

_Traits=std::char_traits<char>

]

Debugging: Understanding and Fixing Syntax Errors | 81

c:\program files\microsoft visual studio 9.0\vc\include\ostream(940): or

'std::basic_ostream<_Elem,_Traits> &std::endl(std::basic_ostream<_Elem,_Traits> &)'

c:\chapter 2 source code\example2_syntax_errors.cpp(15) : error C2561: 'main' : function

must return a value

f:\cs1 c++ fifth edition\chapter 2\chapter 2 source code and prog ex\chapter 2

source code\example2_syntax_errors.cpp(5) : see declaration of 'main'

Build log was saved at "file://c:\Documents and Settings\DM\My

Documents\Proj1\Proj1\Debug\BuildLog.htm"

Proj1 - 6 error(s), 0 warning(s)

========== Rebuild All: 0 succeeded, 1 failed, 0 skipped ==========

First, consider the following error:

c:\chapter 2 source code\example2_syntax_errors.cpp(9) : error C2146:

syntax error : missing ';' before identifier 'num'

The expression example2_syntax_errors.cpp(9) indicates that there is an error in
Line 9. The remaining part of this error specifies that there is a missing ; before the
identifier num. If we look at Line 7, we find that there is a missing semicolon at the end of
the statement int num. Therefore, we must insert ; at the end of the statement in Line 7.

Next, consider the second error:

c:\chapter 2 source code\example2_syntax_errors.cpp(11) : error C2065: 'tempNum' :
undeclared identifier

This error occurs in Line 11, and it specifies that the identifier tempNum is undeclared.
When we look at the code, we find that this identifier has not been declared. So we must
declare tempNum as an int variable.

The error:

c:\chapter 2 source code\example2_syntax_errors.cpp(13) : error C2065: 'tempNum' :
undeclared identifier

occurs in Line 13, and it specifies that the identifier tempNum is undeclared. As in the
previous error, we must declare tempNum. Note that once we declare tempNum and
recompile, this and the previous error will disappear.

The next error is:

c:\chapter 2 source code\example2_syntax_errors.cpp(13) : error C2563: mismatch

in formal parameter list

This error occurs in Line 13, and it indicates that some formal parameter list is mis-
matched. For a beginner, this error is somewhat hard to understand. (In Chapter 15, we
will explain the formal parameter list of the operator <<.) However, as you practice, you
will learn how to interpret and correct syntax errors. This error becomes clear if you look
at the next error, the part of which is:

c:\chapter 2 source code\example2_syntax_errors.cpp(13) : error C2568: '<<' :
unable to resolve function overload

82 | Chapter 2: Basic Elements of C++

2

It tells us that this error has something to do with the operator <<. When we carefully
look at the statement in Line 13, which is:

cout << "Num = " << num << ", tempNum = " < tempNum << endl;

we find that in the expression < tempNum, we have unintentionally used < in place of <<.
So we must correct this error.

Let us look at the last error, which is:

c:\chapter 2 source code\example2_syntax_errors.cpp(15) : error C2561: 'main' :

function must return a value

c:\chapter 2 source code\example2_syntax_errors.cpp(5) : see declaration

of 'main'

This error occurs in Line 15. However, at this point, the explanation given,
especially for a beginner, is somewhat unclear. However, if you look at the statement
return ; in Line 15 and remember the syntax of the function main as well as all the
programs given in this book, we find that the number 0 is missing, that is, this statement
must be return 0;

From the errors reported by the compiler, we see that the compiler not only identifies the
errors, but it also specifies the line numbers where the errors occur and the types of the
errors. We can effectively use this information to fix syntax error.

After correcting all of the syntax errors, a correct program is:

#include <iostream>

using namespace std;

int main()
{

int num;
int tempNum;

num = 18;

tempNum = 2 * num;

cout << "Num = " << num << ", tempNum = " << tempNum << endl;

return 0;
}

The output is:

Num = 18, tempNum = 36

As you learn C++ and practice writing and executing programs, you will learn how to
spot and fix syntax errors. It is possible that the list of errors reported by the compiler is
longer than the program itself. This is because a syntax error in one line can cause syntax
errors in subsequent lines. In situations like this, correct the syntax errors in the order they

Debugging: Understanding and Fixing Syntax Errors | 83

are listed and compile your program, if necessary, after each correction. You will see how
quickly the syntax errors list shrinks. The important thing is not to panic.

In the next section, we describe some simple rules that you can follow so that your
program is properly structured.

Program Style and Form
In previous sections, you learned enough C++ concepts to write meaningful programs.
Before beginning to write programs, however, you need to learn their proper structure,
among other things. Using the proper structure for a C++ program makes it easier to
understand and subsequently modify the program. There is nothing more frustrating
than trying to follow and perhaps modify a program that is syntactically correct but has no
structure.

In addition, every C++ program must satisfy certain rules of the language. A C++
program must contain the function main. It must also follow the syntax rules, which, like
grammar rules, tell what is right and what is wrong and what is legal and what is illegal in
the language. Other rules serve the purpose of giving precise meaning to the language;
that is, they support the language’s semantics.

The following sections are designed to help you learn how to use the C++ programming
elements you have learned so far to create a functioning program. These sections cover the
syntax; the use of blanks; the use of semicolons, brackets, and commas; semantics; naming
identifiers; prompt lines; documentation, including comments; and form and style.

Syntax
The syntax rules of a language tell what is legal and what is not legal. Errors in syntax are
detected during compilation. For example, consider the following C++ statements:

int x; //Line 1
int y //Line 2
double z; //Line 3

y = w + x; //Line 4

When these statements are compiled, a compilation error will occur at Line 2 because the
semicolon is missing after the declaration of the variable y. A second compilation error
will occur at Line 4 because the identifier w is used but has not been declared.

As discussed in Chapter 1, you enter a program into the computer by using a text editor.
When the program is typed, errors are almost unavoidable. Therefore, when the program is
compiled, you are most likely to see syntax errors. It is quite possible that a syntax error at a
particular place might lead to syntax errors in several subsequent statements. It is very
common for the omission of a single character to cause four or five error messages.
However, when the first syntax error is removed and the program is recompiled, sub-
sequent syntax errors caused by this syntax error may disappear. Therefore, you should
correct syntax errors in the order in which the compiler lists them. As you become more

84 | Chapter 2: Basic Elements of C++

2

familiar and experienced with C++, you will learn how to quickly spot and fix syntax
errors. Also, compilers not only discover syntax errors, but also hint and sometimes tell the
user where the syntax errors are and how to fix them.

Use of Blanks
In C++, you use one or more blanks to separate numbers when data is input. Blanks are
also used to separate reserved words and identifiers from each other and from other
symbols. Blanks must never appear within a reserved word or identifier.

Use of Semicolons, Brackets, and Commas
All C++ statements must end with a semicolon. The semicolon is also called a statement
terminator.

Note that curly braces, { and }, are not C++ statements in and of themselves, even
though they often appear on a line with no other code. You might regard brackets as
delimiters, because they enclose the body of a function and set it off from other parts of
the program. Brackets have other uses, which will be explained later.

Recall that commas are used to separate items in a list. For example, you use commas
when you declare more than one variable following a data type.

Semantics
The set of rules that gives meaning to a language is called semantics. For example, the
order-of-precedence rules for arithmetic operators are semantic rules.

If a program contains syntax errors, the compiler will warn you. What happens when a
program contains semantic errors? It is quite possible to eradicate all syntax errors in a
program and still not have it run. And if it runs, it may not do what you meant it to do.
For example, the following two lines of code are both syntactically correct expressions,
but they have different meanings:

2 + 3 * 5

and:

(2 + 3) * 5

If you substitute one of these lines of code for the other in a program, you will not get the
same results—even though the numbers are the same, the semantics are different. You
will learn about semantics throughout this book.

Naming Identifiers
Consider the following two sets of statements:

const double A = 2.54; //conversion constant
double x; //variable to hold centimeters
double y; //variable to hold inches

x = y * a;

Program Style and Form | 85

and:

const double CENTIMETERS_PER_INCH = 2.54;
double centimeters;
double inches;

centimeters = inches * CENTIMETERS_PER_INCH;

The identifiers in the second set of statements, such as CENTIMETERS_PER_INCH, are
usually called self-documenting identifiers. As you can see, self-documenting identifiers
can make comments less necessary.

Consider the self-documenting identifier annualsale. This identifier is called a run-
together word. In using self-documenting identifiers, you may inadvertently include
run-together words, which may lessen the clarity of your documentation. You can make
run-together words easier to understand by either capitalizing the beginning of each new
word or by inserting an underscore just before a new word. For example, you could use
either annualSale or annual_sale to create an identifier that is more clear.

Recall that earlier in this chapter, we specified the general rules for naming named
constants and variables. For example, an identifier used to name a named constant is
all uppercase. If this identifier is a run-together word, then the words are separated
with the underscore character.

Prompt Lines
Part of good documentation is the use of clearly written prompts so that users will
know what to do when they interact with a program. There is nothing more
frustrating than sitting in front of a running program and not having the foggiest
notion of whether to enter something or what to enter. Prompt lines are executable
statements that inform the user what to do. For example, consider the following
C++ statements, in which num is an int variable:

cout << "Please enter a number between 1 and 10 and "
<< "press the return key" << endl;

cin >> num;

When these two statements execute in the order given, first the output statement causes
the following line of text to appear on the screen:

Please enter a number between 1 and 10 and press the return key

After seeing this line, users know that they must enter a number and press the return key.
If the program contained only the second statement, users would have no idea that they
must enter a number, and the computer would wait forever for the input. The preceding
output statement is an example of a prompt line.

In a program, whenever input is needed from users, you must include the necessary
prompt lines. Furthermore, these prompt lines should include as much information as
possible about what input is acceptable. For example, the preceding prompt line not

86 | Chapter 2: Basic Elements of C++

only tells the user to input a number, but also informs the user that the number
should be between 1 and 10.

Documentation
The programs that you write should be clear not only to you, but also to anyone
else. Therefore, you must properly document your programs. A well-documented
program is easier to understand and modify, even a long time after you originally
wrote it. You use comments to document programs. Comments should appear in a
program to explain the purpose of the program, identify who wrote it, and explain
the purpose of particular statements.

Form and Style
You might be thinking that C++ has too many rules. However, in practice, the rules give
C++ a great degree of freedom. For example, consider the following two ways of
declaring variables:

int feet, inch;
double x, y;

and:

int feet,inches;double x,y;

The computer would have no difficulty understanding either of these formats, but the
first form is easier to read and follow. Of course, the omission of a single comma or
semicolon in either format may lead to all sorts of strange error messages.

What about blank spaces? Where are they significant and where are they meaningless?
Consider the following two statements:

int a,b,c;

and:

int a, b, c;

Both of these declarations mean the same thing. Here, the blanks between the identifiers
in the second statement are meaningless. On the other hand, consider the following
statement:

inta,b,c;

This statement contains a syntax error. The lack of a blank between int and the
identifier a changes the reserved word int and the identifier a into a new identifier,
inta.

The clarity of the rules of syntax and semantics frees you to adopt formats that are pleasing
to you and easier to understand.

2

Program Style and Form | 87

The following example further elaborates on this.

EXAMPLE 2-30

Consider the following C++ program:

//An improperly formatted C++ program.

#include <iostream>
#include <string>
using namespace std;

int main()
{
int num; double height;
string name;
cout << "Enter an integer: "; cin >> num; cout << endl;

cout<<"num: "<<num<<endl;
cout<<"Enter the first name: "; cin>>name;

cout<<endl; cout <<"Enter the height: ";
cin>>height; cout<<endl;

cout<<"Name: "<<name<<endl;cout<<"Height: "
<<height; cout <<endl;return 0;
}

This program is syntactically correct; the C++ compiler would have no difficulty reading
and compiling this program. However, this program is very hard to read. The program
that you write should be properly indented and formatted. Note the difference when the
program is reformatted:

//A properly formatted C++ program.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int num;
double height;
string name;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

88 | Chapter 2: Basic Elements of C++

cout << "num: " << num << endl;

cout << "Enter the first name: ";
cin >> name;
cout << endl;
cout << "Enter the height: ";
cin >> height;
cout << endl;

cout << "Name: " << name << endl;
cout << "Height: " << height << endl;

return 0;
}

As you can see, this program is easier to read. Your programs should be properly
indented and formatted. To document the variables, programmers typically declare
one variable per line. Also, always put a space before and after an operator. When
you type your program using an IDE, typically, your program is automatically
indented.

More on Assignment Statements
The assignment statements you have seen so far are called simple assignment
statements. In certain cases, you can use special assignment statements called
compound assignment statements to write simple assignment statements in a
more concise notation.

Corresponding to the five arithmetic operators +, -, *, /, and %, C++ provides five
compound operators: +=, -=, *=, /=, and %=, respectively. Consider the following simple
assignment statement, in which x and y are int variables:

x = x * y;

Using the compound operator *=, this statement can be written as:

x *= y;

In general, using the compound operator *=, you can rewrite the simple assignment
statement:

variable = variable * (expression);

as:

variable *= expression;

2

More on Assignment Statements | 89

The other arithmetic compound operators have similar conventions. For example, using
the compound operator +=, you can rewrite the simple assignment statement:

variable = variable + (expression);

as:

variable += expression;

The compound assignment statement allows you to write simple assignment statements
in a concise fashion by combining an arithmetic operator with the assignment operator.

EXAMPLE 2-31

This example shows several compound assignment statements that are equivalent to
simple assignment statements.

Simple Assignment Statement Compound Assignment Statement

i = i + 5; i += 5;
counter = counter + 1; counter += 1;
sum = sum + number; sum += number;
amount = amount * (interest + 1); amount *= interest + 1;
x = x / (y + 5); x /= y + 5;

Any compound assignment statement can be converted into a simple assignment statement.

However, a simple assignment statement may not be (easily) converted to a compound

assignment statement. For example, consider the following simple assignment statement:

x = x * y + z – 5;

To write this statement as a compound assignment statement, the variable x must be a

common factor in the right side, which is not the case. Therefore, you cannot immediately

convert this statement into a compound assignment statement. In fact, the equivalent

compound assignment statement is:

x *= y + (z – 5)/x;

which is more complicated than the simple assignment statement. Furthermore, in the

preceding compound statement, x cannot be 0. We recommend avoiding such compound

expressions.

In programming code, this book typically uses only the compound operator +=. So

statements such as a = a + b; are written as a += b;.

90 | Chapter 2: Basic Elements of C++

2
PROGRAMMING EXAMPLE: Convert Length

Write a program that takes as input given lengths expressed in feet and inches. The
program should then convert and output the lengths in centimeters. Assume that the
given lengths in feet and inches are integers.

Input Length in feet and inches.

Output Equivalent length in centimeters.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

The lengths are given in feet and inches, and you need to find the equivalent length
in centimeters. One inch is equal to 2.54 centimeters. The first thing the program
needs to do is convert the length given in feet and inches to all inches. Then, you can
use the conversion formula, 1 inch = 2.54 centimeters, to find the equivalent length
in centimeters. To convert the length from feet and inches to inches, you multiply
the number of feet by 12, as 1 foot is equal to 12 inches, and add the given inches.

For example, suppose the input is 5 feet and 7 inches. You then find the total inches
as follows:

totalInches = (12 * feet) + inches
= 12 * 5 + 7
= 67

You can then apply the conversion formula, 1 inch = 2.54 centimeters, to find the
length in centimeters.

centimeters = totalInches * 2.54
= 67 * 2.54
= 170.18

Based on this analysis of the problem, you can design an algorithm as follows:

1. Get the length in feet and inches.

2. Convert the length into total inches.

3. Convert total inches into centimeters.

4. Output centimeters.

Variables The input for the program is two numbers: one for feet and one for inches. Thus,
you need two variables: one to store feet and the other to store inches. Because the
program will first convert the given length into inches, you need another variable to
store the total inches. You also need a variable to store the equivalent length in
centimeters. In summary, you need the following variables:

int feet; //variable to hold given feet
int inches; //variable to hold given inches
int totalInches; //variable to hold total inches
double centimeters; //variable to hold length in centimeters

Programming Example: Convert Length | 91

Named

Constants

To calculate the equivalent length in centimeters, you need to multiply the total
inches by 2.54. Instead of using the value 2.54 directly in the program, you will
declare this value as a named constant. Similarly, to find the total inches, you need to
multiply the feet by 12 and add the inches. Instead of using 12 directly in the
program, you will also declare this value as a named constant. Using a named
constant makes it easier to modify the program later.

const double CENTIMETERS_PER_INCH = 2.54;
const int INCHES_PER_FOOT = 12;

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to do
the calculations. We also determined the necessary variables and named constants. We
can now expand the algorithm given in the section Problem Analysis and Algorithm
Design to solve the problem given at the beginning of this programming example.

1. Prompt the user for the input. (Without a prompt line, the user
will be staring at a blank screen and will not know what to do.)

2. Get the data.

3. Echo the input—that is, output what the program read as input.
(Without this step, after the program has executed, you will not
know what the input was.)

4. Find the length in inches.

5. Output the length in inches.

6. Convert the length to centimeters.

7. Output the length in centimeters.

Putting It

Together

Now that the problem has been analyzed and the algorithm has been designed, the
next step is to translate the algorithm into C++ code. Because this is the first
complete C++ program you are writing, let’s review the necessary steps in sequence.

The program will begin with comments that document its purpose and functionality.
As there is both input to this program (the length in feet and inches) and output (the
equivalent length in centimeters), you will be using system resources for input/output.
In other words, the program will use input statements to get data into the program and
output statements to print the results. Because the data will be entered from the
keyboard and the output will be displayed on the screen, the program must include the
header file iostream. Thus, the first statement of the program, after the comments as
described above, will be the preprocessor directive to include this header file.

This program requires two types of memory locations for data manipulation: named
constants and variables. Typically, named constants hold special data, such as
CENTIMETERS_PER_INCH. Depending on the nature of a named constant, it can be
placed before the function main or within the function main. If a named constant is to be

92 | Chapter 2: Basic Elements of C++

2

used throughout the program, then it is typically placed before the function main. We will
comment further on where to put named constants within a program in Chapter 7, when
we discuss user-defined functions in general. Until then, usually, we will place named
constants before the function main so that they can be used throughout the program.

This program has only one function, the function main, which will contain all of the
programming instructions in its body. In addition, the program needs variables to
manipulate data, and these variables will be declared in the body of the function
main. The reasons for declaring variables in the body of the function main are
explained in Chapter 7. The body of the function main will also contain the C++
statements that implement the algorithm. Therefore, the body of the function main
has the following form:

int main()
{

declare variables

statements

return 0;
}

To write the complete length conversion program, follow these steps:

1. Begin the program with comments for documentation.

2. Include header files, if any are used in the program.

3. Declare named constants, if any.

4. Write the definition of the function main.

COMPLETE PROGRAM LISTING

//**
// Author: D. S. Malik
//
// Program Convert Measurements: This program converts
// measurements in feet and inches into centimeters using
// the formula that 1 inch is equal to 2.54 centimeters.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const double CENTIMETERS_PER_INCH = 2.54;
const int INCHES_PER_FOOT = 12;

Programming Example: Convert Length | 93

int main ()
{

//Declare variables
int feet, inches;
int totalInches;
double centimeter;

//Statements: Step 1 - Step 7
cout << "Enter two integers, one for feet and "

<< "one for inches: "; //Step 1
cin >> feet >> inches; //Step 2
cout << endl;
cout << "The numbers you entered are " << feet

<< " for feet and " << inches
<< " for inches. " << endl; //Step 3

totalInches = INCHES_PER_FOOT * feet + inches; //Step 4

cout << "The total number of inches = "
<< totalInches << endl; //Step 5

centimeter = CENTIMETERS_PER_INCH * totalInches; //Step 6

cout << "The number of centimeters = "
<< centimeter << endl; //Step 7

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter two integers, one for feet, one for inches: 15 7

The numbers you entered are 15 for feet and 7 for inches.
The total number of inches = 187
The number of centimeters = 474.98

PROGRAMMING EXAMPLE: Make Change
Write a program that takes as input any change expressed in cents. It should then
compute the number of half-dollars, quarters, dimes, nickels, and pennies to be
returned, returning as many half-dollars as possible, then quarters, dimes, nickels,
and pennies, in that order. For example, 483 cents should be returned as 9 half-
dollars, 1 quarter, 1 nickel, and 3 pennies.

Input Change in cents.

Output Equivalent change in half-dollars, quarters, dimes, nickels, and pennies.

94 | Chapter 2: Basic Elements of C++

2

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Suppose the given change is 646 cents. To find the number of half-dollars, you
divide 646 by 50, the value of a half-dollar, and find the quotient, which is 12, and
the remainder, which is 46. The quotient, 12, is the number of half-dollars, and the
remainder, 46, is the remaining change.

Next, divide the remaining change by 25 to find the number of quarters. Since the
remaining change is 46, division by 25 gives the quotient 1, which is the number of
quarters, and a remainder of 21, which is the remaining change. This process
continues for dimes and nickels. To calculate the remainder in an integer division,
you use the mod operator, %.

Applying this discussion to 646 cents yields the following calculations:

1. Change = 646

2. Number of half-dollars = 646 / 50 = 12

3. Remaining change = 646 % 50 = 46

4. Number of quarters = 46 / 25 = 1

5. Remaining change = 46 % 25 = 21

6. Number of dimes = 21 / 10 = 2

7. Remaining change = 21 % 10 = 1

8. Number of nickels = 1 / 5 = 0

9. Number of pennies = remaining change = 1 % 5 = 1

This discussion translates into the following algorithm:

1. Get the change in cents.

2. Find the number of half-dollars.

3. Calculate the remaining change.

4. Find the number of quarters.

5. Calculate the remaining change.

6. Find the number of dimes.

7. Calculate the remaining change.

8. Find the number of nickels.

9. Calculate the remaining change, which is the number of pennies.

Variables From the previous discussion and algorithm, it appears that the program will need
variables to hold the number of half-dollars, quarters, and so on. However, the numbers
of half-dollars, quarters, and so on are not used in later calculations, so the program can
simply output these values without saving each of them in a variable. The only thing that
keeps changing is the change, so the program actually needs only one variable:

int change;

Programming Example: Make Change | 95

Named

Constants

To calculate the equivalent change, the program performs calculations using the
values of a half-dollar, which is 50; a quarter, which is 25; a dime, which is 10; and a
nickel, which is 5. Because these data are special and the program uses these values
more than once, it makes sense to declare them as named constants. Using named
constants also simplifies later modification of the program:

const int HALF_DOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

MAIN

ALGORITHM

1. Prompt the user for input.

2. Get input.

3. Echo the input by displaying the entered change on the screen.

4. Compute and print the number of half-dollars.

5. Calculate the remaining change.

6. Compute and print the number of quarters.

7. Calculate the remaining change.

8. Compute and print the number of dimes.

9. Calculate the remaining change.

10. Compute and print the number of nickels.

11. Calculate the remaining change.

12. Print the remaining change.

COMPLETE PROGRAM LISTING

//**
// Author: D. S. Malik
//
// Program Make Change: Given any amount of change expressed
// in cents, this program computes the number of half-dollars,
// quarters, dimes, nickels, and pennies to be returned,
// returning as many half-dollars as possible, then quarters,
// dimes, nickels, and pennies in that order.
//**

//Header file
#include <iostream>

using namespace std;

//Named constants
const int HALF_DOLLAR = 50;
const int QUARTER = 25;
const int DIME = 10;
const int NICKEL = 5;

96 | Chapter 2: Basic Elements of C++

2

int main()
{

//Declare variable
int change;

//Statements: Step 1 – Step 12
cout << "Enter change in cents: "; //Step 1
cin >> change; //Step 2
cout << endl;

cout << "The change you entered is " << change
<< endl; //Step 3

cout << "The number of half-dollars to be returned "
<< "is " << change / HALF_DOLLAR
<< endl; //Step 4

change = change % HALF_DOLLAR; //Step 5

cout << "The number of quarters to be returned is "
<< change / QUARTER << endl; //Step 6

change = change % QUARTER; //Step 7

cout << "The number of dimes to be returned is "
<< change / DIME << endl; //Step 8

change = change % DIME; //Step 9

cout << "The number of nickels to be returned is "
<< change / NICKEL << endl; //Step 10

change = change % NICKEL; //Step 11

cout << "The number of pennies to be returned is "
<< change << endl; //Step 12

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter change in cents: 583

The change you entered is 583
The number of half-dollars to be returned is 11
The number of quarters to be returned is 1
The number of dimes to be returned is 0
The number of nickels to be returned is 1
The number of pennies to be returned is 3

Programming Example: Make Change | 97

QUICK REVIEW

1. A C++ program is a collection of functions.

2. Every C++ program has a function called main.

3. A single-line comment starts with the pair of symbols //anywhere in the
line.

4. Multiline comments are enclosed between /* and */.

5. The compiler skips comments.

6. Reserved words cannot be used as identifiers in a program.

7. All reserved words in C++ consist of lowercase letters (see Appendix A).

8. In C++, identifiers are names of things.

9. A C++ identifier consists of letters, digits, and underscores and must begin
with a letter or underscore.

10. Whitespaces include blanks, tabs, and newline characters.

11. A data type is a set of values together with a set of operations.

12. C++ data types fall into the following three categories: simple, structured,
and pointers.

13. There are three categories of simple data: integral, floating-point, and
enumeration.

14. Integral data types are classified into nine categories: char, short, int,
long, bool, unsigned char, unsigned short, unsigned int, and
unsigned long.

15. The values belonging to int data type are �2147483648 (¼ �231) to
2147483647 (¼ 231 � 1).

16. The data type bool has only two values: true and false.

17. The most common character sets are ASCII, which has 128 values, and
EBCDIC, which has 256 values.

18. The collating sequence of a character is its preset number in the character
data set.

19. C++ provides three data types to manipulate decimal numbers: float,
double, and long double.

20. The data type float is used in C++ to represent any real number between
�3.4E + 38 and 3.4E + 38. The memory allocated for a value of the
float data type is four bytes.

21. The data type double is used in C++ to represent any real number
between �1.7E + 308 and 1.7E + 308. The memory allocated for a value
of the double data type is eight bytes.

22. The arithmetic operators in C++ are addition (+), subtraction (-), multi-
plication (*), division (/), and modulus (%).

98 | Chapter 2: Basic Elements of C++

23. The modulus operator, %, takes only integer operands.

24. Arithmetic expressions are evaluated using the precedence rules and the
associativity of the arithmetic operators.

25. All operands in an integral expression, or integer expression, are integers,
and all operands in a floating-point expression are decimal numbers.

26. A mixed expression is an expression that consists of both integers and
decimal numbers.

27. When evaluating an operator in an expression, an integer is converted to a
floating-point number, with a decimal part of 0, only if the operator has
mixed operands.

28. You can use the cast operator to explicitly convert values from one data
type to another.

29. A string is a sequence of zero or more characters.

30. Strings in C++ are enclosed in double quotation marks.

31. A string containing no characters is called a null or empty string.

32. Every character in a string has a relative position in the string. The position of
the first character is 0, the position of the second character is 1, and so on.

33. The length of a string is the number of characters in it.

34. During program execution, the contents of a named constant cannot be
changed.

35. A named constant is declared by using the reserved word const.

36. A named constant is initialized when it is declared.

37. All variables must be declared before they can be used.

38. C++ does not automatically initialize variables.

39. Every variable has a name, a value, a data type, and a size.

40. When a new value is assigned to a variable, the old value is lost.

41. Only an assignment statement or an input (read) statement can change the
value of a variable.

42. In C++, >> is called the stream extraction operator.

43. Input from the standard input device is accomplished by using cin and the
stream extraction operator >>.

44. When data is input in a program, the data items, such as numbers, are
usually separated by blanks, lines, or tabs.

45. In C++, << is called the stream insertion operator.

46. Output of the program to the standard output device is accomplished by
using cout and the stream insertion operator <<.

47. The manipulator endl positions the insertion point at the beginning of the
next line on an output device.

2

Quick Review | 99

48. Outputting or accessing the value of a variable in an expression does not
destroy or modify the contents of the variable.

49. The character \ is called the escape character.

50. The sequence \n is called the newline escape sequence.

51. All preprocessor commands start with the symbol #.

52. The preprocessor commands are processed by the preprocessor before the
program goes through the compiler.

53. The preprocessor command #include <iostream> instructs the prepro-
cessor to include the header file iostream in the program.

54. To use cin and cout, the program must include the header file iostream
and either include the statement using namespace std; or refer to these
identifiers as std::cin and std::cout.

55. All C++ statements end with a semicolon. The semicolon in C++ is called
the statement terminator.

56. A C++ system has three components: environment, language, and the
standard libraries.

57. Standard libraries are not part of the C++ language. They contain functions
to perform operations, such as mathematical operations.

58. A file containing a C++ program usually ends with the extension .cpp.

59. Prompt lines are executable statements that tell the user what to do.

60. Corresponding to the five arithmetic operators +, -, *, /, and %,
C++ provides five compound operators: +=, -=, *=, /=, and %=, respectively.

EXERCISES

1. Mark the following statements as true or false.

a. An identifier can be any sequence of digits and letters.

b. In C++, there is no difference between a reserved word and a pre-
defined identifier.

c. A C++ identifier can start with a digit.

d. The operands of the modulus operator must be integers.

e. If a = 4; and b = 3;, then after the statement a = b; the value of b is still 3.

f. In the statement cin >> y;, y can only be an int or a double variable.

g. In an output statement, the newline character may be a part of the string.

h. The following is a legal C++ program:

int main()
{

return 0;
}

100 | Chapter 2: Basic Elements of C++

i. In a mixed expression, all the operands are converted to floating-point
numbers.

j. Suppose x = 5. After the statement y = x++; executes, y is 5 and
x is 6.

k. Suppose a = 5. After the statement ++a; executes, the value of a is still
5 because the value of the expression is not saved in another variable.

2. Which of the following are valid C++ identifiers?

a. myFirstProgram b. MIX-UP c. C++Program2 d. quiz7
e. ProgrammingLecture2 f. 1footEquals12Inches

g. Mike'sFirstAttempt h. Update Grade i. 4th

j. New_Student

3. Which of the following is a reserved word in C++?

a. Const b. include c. Char d. void e. int f. Return

4. What is the difference between a keyword and a user-defined identifier?

5. Are the identifiers firstName and FirstName the same?

6. Evaluate the following expressions.

a. 25 / 3 b. 20 - 12 / 4 * 2 c. 32 % 7 d. 3 - 5 % 7
e. 18.0 / 4 f. 28 - 5 / 2.0 g. 17 + 5 % 2 - 3

h. 15.0 + 3.0 * 2.0 / 5.0

7. If x = 5, y = 6, z = 4, and w = 3.5, evaluate each of the following statements,
if possible. If it is not possible, state the reason.

a. (x + z) % y b. (x + y) % w c. (y + w) % x d. (x + y) *w

e. (x % y) % z f. (y % z) % x g. (x *z) % y h. ((x *y) *w) *z

8. Given:

int num1, num2, newNum;
double x, y;

Which of the following assignments are valid? If an assignment is not valid, state the
reason.

When not given, assume that each variable is declared.

a. num1 = 35;

b. newNum = num1 – num2;

c. num1 = 5; num2 = 2 + num1; num1 = num2 / 3;

d. num1 * num2 = newNum;

e. x = 12 * num1 - 15.3;

f. num1 * 2 = newNum + num2;

g. x / y = x * y;

2

Exercises | 101

h. num2 = num1 % 2.0;

i. newNum = static_cast<int> (x) % 5;

j. x = x + y - 5;

k. newNum = num1 + static_cast<int> (4.6 / 2);

9. Do a walk-through to find the value assigned to e. Assume that all variables
are properly declared.

a = 3;
b = 4;
c = (a % b) * 6;
d = c / b;
e = (a + b + c + d) / 4;

10. Which of the following variable declarations are correct? If a variable
declaration is not correct, give the reason(s) and provide the correct
variable declaration.

n = 12; //Line 1
char letter = ; //Line 2
int one = 5, two; //Line 3
double x, y, z; //Line 4

11. Which of the following are valid C++ assignment statements? Assume that
i, x, and percent are double variables.

a. i = i + 5; b. x + 2 = x; c. x = 2.5 *x; d. percent = 10%;

12. Write C++ statement(s) that accomplish the following.

a. Declare int variables x and y. Initialize x to 25 and y to 18.

b. Declare and initialize an int variable temp to 10 and a char variable
ch to 'A'.

c. Update the value of an int variable x by adding 5 to it.

d. Declare and initialize a double variable payRate to 12.50.

e. Copy the value of an int variable firstNum into an int variable
tempNum.

f. Swap the contents of the int variables x and y. (Declare additional
variables, if necessary.)

g. Suppose x and y are double variables. Output the contents of x, y,
and the expression x + 12 / y - 18.

h. Declare a char variable grade and set the value of grade to 'A'.

i. Declare int variables to store four integers.

j. Copy the value of a double variable z to the nearest integer into an
int variable x.

102 | Chapter 2: Basic Elements of C++

13. Write each of the following as a C++ expression.

a. 32 times a plus b

b. The character that represents 8

c. The string that represents the name Julie Nelson.

d. (b2 - 4ac) / 2a

e. (a + b)/c(ef)-gh

f. (-b + (b2 - 4ac)) / 2a

14. Suppose x, y, z, and w are int variables. What value is assigned to each of
these variables after the last statement executes?

x = 5; z = 3;
y = x - z;
z = 2 * y + 3;
w = x - 2 * y + z;
z = w - x;
w++;

15. Suppose x, y, and z are int variables and w and t are double variables.
What value is assigned to each of these variables after the last statement
executes?

x = 17;
y = 15;
x = x + y / 4;
z = x % 3 + 4;
w = 17 / 3 + 6.5;
t = x / 4.0 + 15 % 4 - 3.5;

16. Suppose x, y, and z are int variables and x = 2, y = 5, and z = 6. What is
the output of each of the following statements?

a. cout << "x = " << x << ", y = " << y << ", z = " << z << endl;

b. cout << "x + y = " << x + y << endl;

c. cout << "Sum of " << x << " and " << z << " is " << x + z << endl;

d. cout << "z / x = " << z / x << endl;

e. cout << "2 times " << x << " = " << 2 *x << endl;

17. What is the output of the following statements? Suppose a and b are int
variables, c is a double variable, and a = 13, b = 5, and c = 17.5.

a. cout << a + b – c << endl;

b. cout << 15 / 2 + c << endl;

c. cout << a / static_cast<double>(b) + 2 * c
<< endl;

d. cout << 14 % 3 + 6.3 + b / a << endl;

e. cout << static_cast<int>(c) % 5 + a – b
<< endl;

f. cout << 13.5 / 2 + 4.0 * 3.5 + 18 << endl;

2

Exercises | 103

18. Write C++ statements that accomplish the following.

a. Output the newline character.

b. Output the tab character.

c. Output double quotation mark.

19. Which of the following are correct C++ statements?

a. cout << "Hello There!" << endl;

b. cout << "Hello";

<< " There!" << endl;

c. cout << "Hello"
<< " There!" << endl;

d. cout << 'Hello There!' << endl;

20. Give meaningful identifiers for the following variables.

a. A variable to store the first name of a student.

b. A variable to store the discounted price of an item.

c. A variable to store the number of juice bottles.

d. A variable to store the number of miles traveled.

e. A variable to store the highest test score.

21. Write C++ statements to do the following.

a. Declare int variable num1 and num2.

b. Prompt the user to input two numbers.

c. Input the first number in num1 and the second number in num2.

d. Output num1, num2, and 2 times num1 minus num2. Your output must
identify each number and the expression.

22. The following program has syntax mistakes. Correct them. On each suc-
cessive line, assume that any preceding error has been corrected.

#include <iostream>

const int SECRET_NUM = 11,213;
const PAY_RATE = 18.35

main()
{

int one, two;
double first, second;
one = 18;
two = 11;

first = 25;
second = first * three;

104 | Chapter 2: Basic Elements of C++

2

second = 2 * SECRET_NUM;
SECRET_NUM = SECRET_NUM + 3;
cout << first << " " << second << SECRET_NUM << endl;

paycheck = hoursWorked * PAY_RATE

cout << "Wages = " << paycheck << endl;
return 0;

}

23. The following program has syntax mistakes. Correct them. On each
successive line, assume that any preceding error has been corrected.

const char = STAR = '*'
const int PRIME = 71;

int main
{

int count, sum;
double x;

count = 1;
sum = count + PRIME;
x := 25.67;
newNum = count * ONE + 2;
sum + count = sum;
x = x + sum * COUNT;
cout << " count = " << count << ", sum = " << sum

<< ", PRIME = " << Prime << endl;
}

24. The following program has syntax errors. Correct them. On each successive
line, assume that any preceding error has been corrected.

#include <iostream>

using namespace std;

int main()
{

int temp;
string first;

cout << "Enter first name: ;
cin >> first
cout << endl;

cout << "Enter last name: ;
cin >> last;
cout << endl;

cout << "Enter today's temperature: ";
cin >> temperature;
cout << endl;

Exercises | 105

cout << first << " " << last << today's temperature is: ";
<< temperature << endl;

return 0;
}

25. What action must be taken before a variable can be used in a program?

26. Preprocessor directives begin with which of the following symbols:
a. * b. # c. $ d. ! e. None of these.

27. Write equivalent compound statements if possible.

a. x = 2 *x b. x = x + y - 2; c. sum = sum + num;

d. z = z *x + 2 *z; e. y = y / (x + 5);

28. Write the following compound statements as equivalent simple statements.

a. x += 5 - z; b. y *= 2 *x + 5 - z; c. w += 2 *z + 4;
d. x -= z + y - t; e. sum += num;

29. Suppose a, b, and c are int variables and a = 5 and b = 6. What value is
assigned to each variable after each statement executes? If a variable is
undefined at a particular statement, report UND (undefined).

a b c
a = (b++) + 3; __ __ __
c = 2 * a + (++b); __ __ __
b = 2 * (++c) - (a++); __ __ __

30. Suppose a, b, and sum are int variables and c is a double variable. What
value is assigned to each variable after each statement executes? Suppose a = 3,
b = 5, and c = 14.1.

a b c sum
sum = a + b + c; ___ ___ ___ ___
c /= a; ___ ___ ___ ___
b += c - a; ___ ___ ___ ___
a *= 2 * b + c; ___ ___ ___ ___

31. What is printed by the following program? Suppose the input is:

20 15

#include <iostream>

using namespace std;

const int NUM = 10;
const double X = 20.5;

int main()
{

int a, b;
double z;

106 | Chapter 2: Basic Elements of C++

2

char grade;

a = 25;

cout << "a = " << a << endl;

cout << "Enter two integers: ";
cin >> a >> b;
cout << endl;

cout << "The numbers you entered are "
<< a << " and " << b << endl;

z = X + 2 * a - b;
cout << "z = " << z << endl;

grade = 'A';
cout << "Your grade is " << grade << endl;

a = 2 * NUM + z;
cout << "The value of a = " << a << endl;

return 0;
}

32. What is printed by the following program? Suppose the input is:

Miller
34
340

#include <iostream>
#include <string>

using namespace std;

const int PRIME_NUM = 11;

int main()
{

const int SECRET = 17;

string name;
int id;
int num;
int mysteryNum;

cout << "Enter last name: ";
cin >> name;
cout << endl;

cout << "Enter a two digit number: ";
cin >> num;
cout << endl;

Exercises | 107

id = 100 * num + SECRET;

cout << "Enter a positive integer less than 1000: ";
cin >> num;
cout << endl;

mysteryNum = num * PRIME_NUM - 3 * SECRET;

cout << "Name: " << name << endl;
cout << "Id: " << id << endl;
cout << "Mystery number: " << mysteryNum << endl;

return 0;
}

33. Rewrite the following program so that it is properly formatted.

#include <iostream>
#include <string>
using namespace std;
const double X = 13.45; const int Y=34;
const char BLANK= ' ';
int main()
{string firstName,lastName;int num;
double salary;
cout<<"Enter first name: "; cin>> firstName; cout<<endl;
cout<<"Enter last name: "; cin
>>lastName;cout<<endl;

cout<<"Enter a positive integer less than 70:";
cin>>num;cout<<endl; salary=num*X;
cout<<"Name: "<<firstName<<BLANK<<lastName<<endl;cout

<<"Wages: $"<<salary<<endl; cout<<"X = "<<X<<endl;
cout<<"X+Y = " << X+Y << endl; return 0;
}

34. What type of input does the following program require, and in what order
does the input need to be provided?

#include <iostream>

using namespace std;

int main()
{

int age;
double weight;
string firstName, lastName;

cin >> firstName >> lastName;
cin >> age >> weight;

return 0;
}

108 | Chapter 2: Basic Elements of C++

2

PROGRAMMING EXERCISES

1. Write a program that produces the following output:

* Programming Assignment 1 *
* Computer Programming I *
* Author: ??? *
* Due Date: Thursday, Jan. 24 *

In your program, substitute ??? with your own name. If necessary, adjust the
positions and the number of the stars to produce a rectangle.

2. Write a program that produces the following output:

CCCCCCCCC ++ ++
CC ++ ++
CC ++++++++++++++ +++++++++++++++
CC ++++++++++++++ +++++++++++++++
CC ++ ++
CCCCCCCCC ++ ++

3. Consider the following program segment

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

a. Write C++ statements that include the header files iostream.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare the following variables: num1, num2,
num3, and average of type int.

d. Write C++ statements that store 125 into num1, 28 into num2, and
-25 into num3.

e. Write a C++ statement that stores the average of num1, num2, and
num3, into average.

f. Write C++ statements that output the values of num1, num2, num3,
and average.

g. Compile and run your program.

Programming Exercises | 109

4. Repeat Exercise 3 by declaring num1, num2, and num3, and average of type
double. Store 75.35 into num1, -35.56 into num2, and 15.76 into num3.

5. Consider the following C++ program in which the statements are in the
incorrect order. Rearrange the statements so that it prompts the user to input
the length and width of a rectangle and output the area and perimeter of the
rectangle.

#include <iostream>
{

int main()

cout << "Enter the length: ";
cin >> length;
cout << endl;

int length;

area = length * width;

return 0;

int width;

cin>> width;
cout << "Enter the width: "
cout << endl;

cout << "Area = " << area << endl;
cout << "Perimeter = " << perimeter << endl;

int area;
using namespace std;
int perimeter;

}

6. Consider the following program segment:

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

110 | Chapter 2: Basic Elements of C++

a. Write C++ statements that include the header files iostream and
string.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare the following variables: name of type
string and studyHours of type double.

d. Write C++ statements that prompt and input a string into name and a
double value into studyHours.

e. Write a C++ statement that outputs the values of name and studyHours
with the appropriate text. For example, if the value of name is "Donald"
and the value of studyHours is 4.5, the output is:

Hello, Donald! on Saturday, you need to study 4.5 hours for the exam.

f. Compile and run your program.

7. Write a program that prompts the user to input a decimal number and
outputs the number rounded to the nearest integer.

8. Consider the following program segment:

//include statement(s)
//using namespace statement

int main()
{

//variable declaration

//executable statements

//return statement
}

a. Write C++ statements that include the header files iostream and
string.

b. Write a C++ statement that allows you to use cin, cout, and endl
without the prefix std::.

c. Write C++ statements that declare and initialize the following named
constants: SECRET of type int initialized to 11 and RATE of type
double initialized to 12.50.

d. Write C++ statements that declare the following variables: num1, num2,
and newNum of type int; name of type string; and hoursWorked and
wages of type double.

e. Write C++ statements that prompt the user to input two integers and
store the first number in num1 and the second number in num2.

2

Programming Exercises | 111

f. Write a C++ statement(s) that outputs the values of num1 and num2,
indicating which is num1 and which is num2. For example, if num1 is 8
and num2 is 5, then the output is:

The value of num1 = 8 and the value of num2 = 5.

g. Write a C++ statement that multiplies the value of num1 by 2, adds the
value of num2 to it, and then stores the result in newNum. Then, write a
C++ statement that outputs the value of newNum.

h. Write a C++ statement that updates the value of newNum by adding
the value of the named constant SECRET. Then, write a C++
statement that outputs the value of newNum with an appropriate
message.

i. Write C++ statements that prompt the user to enter a person’s last name
and then store the last name into the variable name.

j. Write C++ statements that prompt the user to enter a decimal number
between 0 and 70 and then store the number entered into hoursWorked.

k. Write a C++ statement that multiplies the value of the named constant
RATE with the value of hoursWorked and then stores the result into the
variable wages.

l. Write C++ statements that produce the following output:

Name: //output the value of the variable name
Pay Rate: $ //output the value of the variable rate
Hours Worked: //output the value of the variable

//hoursWorked
Salary: $ //output the value of the variable wages

For example, if the value of name is "Rainbow" and hoursWorked is
45.50, then the output is:

Name: Rainbow
Pay Rate: $12.50
Hours Worked: 45.50
Salary: $568.75

m. Write a C++ program that tests each of the C++ statements that you
wrote in parts a through l. Place the statements at the appropriate place
in the previous C++ program segment. Test run your program (twice)
on the following input data:

a. num1 = 13, num2 = 28; name = "Jacobson"; hoursWorked =

48.30.

b. num1 = 32, num2 = 15; name = "Crawford"; hoursWorked =

58.45.

9. Write a program that prompts the user to enter five test scores and then prints
the average test score. (Assume that the test scores are decimal numbers.)

112 | Chapter 2: Basic Elements of C++

10. Write a program that prompts the user to input five decimal numbers. The
program should then add the five decimal numbers, convert the sum to the
nearest integer, and print the result.

11. Write a program that does the following:

a. Prompts the user to input five decimal numbers.

b. Prints the five decimal numbers.

c. Converts each decimal number to the nearest integer.

d. Adds the five integers.

e. Prints the sum and average of the five integers.

12. Write a program that prompts the capacity, in gallons, of an automobile fuel
tank and the miles per gallons the automobile can be driven. The program
outputs the number of miles the automobile can be driven without refueling.

13. Write a C++ program that prompts the user to input the elapsed time for
an event in seconds. The program then outputs the elapsed time in hours,
minutes, and seconds. (For example, if the elapsed time is 9630 seconds,
then the output is 2:40:30.)

14. Write a C++ program that prompts the user to input the elapsed time for
an event in hours, minutes, and seconds. The program then outputs the
elapsed time in seconds.

15. To make a profit, a local store marks up the prices of its items by a certain
percentage. Write a C++ program that reads the original price of the item sold,
the percentage of the marked-up price, and the sales tax rate. The program then
outputs the original price of the item, the percentage of the mark-up, the store’s
selling price of the item, the sales tax rate, the sales tax, and the final price of the
item. (The final price of the item is the selling price plus the sales tax.)

16. Write a program that prompts the user to input a length expressed in cen-
timeters. The program should then convert the length to inches (to the nearest
inch) and output the length expressed in yards, feet, and inches, in that order.
For example, suppose the input for centimeters is 312. To the nearest inch,
312 centimeters is equal to 123 inches. 123 inches would thus be output as:

3 yard(s), 1 feet (foot), and 3 inch(es).

17. Write a program to implement and test the algorithm that you designed for
Exercise 15 of Chapter 1. (You may assume that the value of p = 3.141593.
In your program, declare a named constant PI to store this value.)

18. A milk carton can hold 3.78 liters of milk. Each morning, a dairy farm ships
cartons of milk to a local grocery store. The cost of producing one liter of
milk is $0.38, and the profit of each carton of milk is $0.27. Write a
program that does the following:

2

Programming Exercises | 113

a. Prompts the user to enter the total amount of milk produced in the
morning.

b. Outputs the number of milk cartons needed to hold milk. (Round your
answer to the nearest integer.)

c. Outputs the cost of producing milk.

d. Outputs the profit for producing milk.

19. Redo Programming Exercise 18 so that the user can also input the cost of
producing one liter of milk and the profit on each carton of milk.

20. You found an exciting summer job for five weeks. It pays, say, $15.50
per hour. Suppose that the total tax you pay on your summer job
income is 14%. After paying the taxes, you spend 10% of your net
income to buy new clothes and other accessories for the next school
year and 1% to buy school supplies. After buying clothes and school
supplies, you use 25% of the remaining money to buy savings bonds.
For each dollar you spend to buy savings bonds, your parents spend
$0.50 to buy additional savings bonds for you. Write a program that
prompts the user to enter the pay rate for an hour and the number
of hours you worked each week. The program then outputs the
following:

a. Your income before and after taxes from your summer job.

b. The money you spend on clothes and other accessories.

c. The money you spend on school supplies.

d. The money you spend to buy savings bonds.

e. The money your parents spend to buy additional savings bonds for
you.

21. A permutation of three objects, a, b, and c, is any arrangement of these
objects in a row. For example, some of the permutations of these objects
are abc, bca, and cab. The number of permutations of three objects is six.
Suppose that these three objects are strings. Write a program that prompts
the user to enter three strings. The program then outputs the six permu-
tations of those strings.

22. Write a program that prompts the user to input a number of quarters,
dimes, and nickels. The program then outputs the total value of the coins in
pennies.

23. Newton’s law states that the force, F, between two bodies of masses M1 and
M2 is given by:

F ¼ k M1M2
d2

� �
;

in which k is the gravitational constant and d is the distance between the
bodies. The value of k is approximately 6.67�10-8 dyn. cm2/g2. Write a

114 | Chapter 2: Basic Elements of C++

program that prompts the user to input the masses of the bodies and the
distance between the bodies. The program then outputs the force between
the bodies.

24. One metric ton is approximately 2205 pounds. Write a program that
prompts the user to input the amount of rice, in pounds, in a bag. The
program outputs the number of bags needed to store one metric ton of rice.

25. Cindy uses the services of a brokerage firm to buy and sell stocks. The firm
charges 1.5% service charges on the total amount for each transaction, buy
or sell. When Cindy sells stocks, she would like to know if she gained or
lost on a particular investment. Write a program that allows Cindy to input
the number of shares sold, the purchase price of each share, and the selling
price of each share. The program outputs the amount invested, the total
service charges, amount gained or lost, and the amount received after selling
the stock.

2

Programming Exercises | 115

This page intentionally left blank

INPUT/OUTPUT
IN THIS CHAPTER , YOU WILL :

. Learn what a stream is and examine input and output streams

. Explore how to read data from the standard input device

. Learn how to use predefined functions in a program

. Explore how to use the input stream functions get, ignore, putback, and peek

. Become familiar with input failure

. Learn how to write data to the standard output device

. Discover how to use manipulators in a program to format output

. Learn how to perform input and output operations with the string data type

. Learn how to debug logic errors

. Become familiar with file input and output

3C H A P T E R

In Chapter 2, you were introduced to some of C++’s input/output (I/O) instructions,
which get data into a program and print the results on the screen. You used cin and
the extraction operator >> to get data from the keyboard, and cout and the insertion
operator << to send output to the screen. Because I/O operations are fundamental to
any programming language, in this chapter, you will learn about C++’s I/O operations
in more detail. First, you will learn about statements that extract input from the
standard input device and send output to the standard output device. You will then
learn how to format output using manipulators. In addition, you will learn about the
limitations of the I/O operations associated with the standard input/output devices and
learn how to extend these operations to other devices.

I/O Streams and Standard I/O Devices
A program performs three basic operations: it gets data, it manipulates the data, and it
outputs the results. In Chapter 2, you learned how to manipulate numeric data using
arithmetic operations. In later chapters, you will learn how to manipulate nonnumeric
data. Because writing programs for I/O is quite complex, C++ offers extensive support
for I/O operations by providing substantial prewritten I/O operations, some of which
you encountered in Chapter 2. In this chapter, you will learn about various I/O
operations that can greatly enhance the flexibility of your programs.

In C++, I/O is a sequence of bytes, called a stream, from the source to the
destination. The bytes are usually characters, unless the program requires other
types of information, such as a graphic image or digital speech. Therefore, a
stream is a sequence of characters from the source to the destination. There are
two types of streams:

Input stream: A sequence of characters from an input device to the computer.

Output stream: A sequence of characters from the computer to an output device.

Recall that the standard input device is usually the keyboard, and the standard
output device is usually the screen. To receive data from the keyboard and send
output to the screen, every C++ program must use the header file iostream. This
header file contains, among other things, the definitions of two data types,
istream (input stream) and ostream (output stream). The header file also contains
two variable declarations, one for cin (pronounced ‘‘see-in’’), which stands for
common input, and one for cout (pronounced ‘‘see-out’’), which stands for
common output.

These variable declarations are similar to the following C++ statements:

istream cin;
ostream cout;

To use cin and cout, every C++ program must use the preprocessor directive:

#include <iostream>

118 | Chapter 3: Input/Output

3

From Chapter 2, recall that you have been using the statement using namespace std;
in addition to including the header file iostream to use cin and cout. Without the

statement using namespace std;, you refer to these identifiers as std::cin and
std::cout. In Chapter 8, you will learn about the meaning of the statement using
namespace std; in detail.

Variables of type istream are called input stream variables; variables of type ostream
are called output stream variables. A stream variable is either an input stream
variable or an output stream variable.

Because cin and cout are already defined and have specific meanings, to avoid confu-
sion, you should never redefine them in programs.

The variable cin has access to operators and functions that can be used to extract data
from the standard input device. You have briefly used the extraction operator >> to input
data from the standard input device. The next section describes in detail how the
extraction operator >> works. In the following sections, you will learn how to use the
functions get, ignore, peek, and putback to input data in a specific manner.

cin and the Extraction Operator >>
In Chapter 2, you saw how to input data from the standard input device by using cin and
the extraction operator >>. Suppose payRate is a double variable. Consider the follow-
ing C++ statement:

cin >> payRate;

When the computer executes this statement, it inputs the next number typed on
the keyboard and stores this number in payRate. Therefore, if the user types 15.50, the
value stored in payRate is 15.50.

The extraction operator >> is binary and thus takes two operands. The left-side operand
must be an input stream variable, such as cin. Because the purpose of an input statement
is to read and store values in a memory location and because only variables refer to
memory locations, the right-side operand is a variable.

The extraction operator >> is defined only for putting data into variables of simple

data types. Therefore, the right-side operand of the extraction operator >> is a variable
of the simple data type. However, C++ allows the programmer to extend the definition

of the extraction operator >> so that data can also be put into other types of variables

by using an input statement. You will learn this mechanism in the chapter entitled

Overloading and Templates, later in this book.

The syntax of an input statement using cin and the extraction operator >> is:

cin >> variable >> variable...;

I/O Streams and Standard I/O Devices | 119

As you can see in the preceding syntax, a single input statement can read more than one
data item by using the operator >> several times. Every occurrence of >> extracts the
next data item from the input stream. For example, you can read both payRate and
hoursWorked via a single input statement by using the following code:

cin >> payRate >> hoursWorked;

There is no difference between the preceding input statement and the following two
input statements. Which form you use is a matter of convenience and style.

cin >> payRate;
cin >> hoursWorked;

How does the extraction operator >> work? When scanning for the next input, >> skips
all whitespace characters. Recall that whitespace characters consist of blanks and certain
nonprintable characters, such as tabs and the newline character. Thus, whether you
separate the input data by lines or blanks, the extraction operator >> simply finds the
next input data in the input stream. For example, suppose that payRate and
hoursWorked are double variables. Consider the following input statement:

cin >> payRate >> hoursWorked;

Whether the input is:

15.50 48.30

or:

15.50 48.30

or:

15.50
48.30

the preceding input statement would store 15.50 in payRate and 48.30 in
hoursWorked. Note that the first input is separated by a blank, the second input is
separated by a tab, and the third input is separated by a line.

Now suppose that the input is 2. How does the extraction operator >> distinguish
between the character 2 and the number 2? The right-side operand of the extraction
operator >> makes this distinction. If the right-side operand is a variable of the data type
char, the input 2 is treated as the character 2 and, in this case, the ASCII value of 2 is
stored. If the right-side operand is a variable of the data type int or double, the input 2
is treated as the number 2.

Next, consider the input 25 and the statement:

cin >> a;

where a is a variable of some simple data type. If a is of the data type char, only the single
character 2 is stored in a. If a is of the data type int, 25 is stored in a. If a is of the data type

120 | Chapter 3: Input/Output

double, the input 25 is converted to the decimal number 25.0. Table 3-1 summarizes this
discussion by showing the valid input for a variable of the simple data type.

When reading data into a char variable, after skipping any leading whitespace characters,
the extraction operator >> finds and stores only the next character; reading stops after a
single character. To read data into an int or double variable, after skipping all leading
whitespace characters and reading the plus or minus sign (if any), the extraction operator
>> reads the digits of the number, including the decimal point for floating-point variables,
and stops when it finds a whitespace character or a character other than a digit.

EXAMPLE 3-1

Suppose you have the following variable declarations:

int a, b;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 cin >> ch; A ch = 'A'

2 cin >> ch; AB ch = 'A', 'B' is held for
later input

3 cin >> a; 48 a = 48

4 cin >> a; 46.35 a = 46, .35 is held for
later input

5 cin >> z; 74.35 z = 74.35

6 cin >> z; 39 z = 39.0

7 cin >> z >> a; 65.78 38 z = 65.78, a = 38

3

TABLE 3-1 Valid Input for a Variable of the Simple Data Type

Data Type of a Valid Input for a

char One printable character except the blank

int An integer, possibly preceded by a + or - sign

double
A decimal number, possibly preceded by a + or - sign. If the actual
data input is an integer, the input is converted to a decimal number
with the zero decimal part.

I/O Streams and Standard I/O Devices | 121

Statement Input Value Stored in Memory

8 cin >> a >> b; 4 60 a = 4, b = 60

9 cin >> a >> z; 46 32.4 68 a = 46, z = 32.4, 68 is
held for later input

EXAMPLE 3-2

Suppose you have the following variable declarations:

int a;
double z;
char ch;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 cin >> a >> ch >> z; 57 A 26.9 a = 57, ch = 'A',
z = 26.9

2 cin >> a >> ch >> z; 57 A
26.9

a = 57, ch = 'A',
z = 26.9

3 cin >> a >> ch >> z; 57
A
26.9

a = 57, ch = 'A',
z = 26.9

4 cin >> a >> ch >> z; 57A26.9 a = 57, ch = 'A',
z = 26.9

Note that for statements 1 through 4, the input statement is the same; however, the data
is entered differently. For statement 1, data is entered on the same line separated by
blanks. For statement 2, data is entered on two lines; the first two input values are
separated by two blank spaces, and the third input is on the next line. For statement 3, all
three input values are separated by lines, and for statement 4, all three input values are on
the same line, but there is no space between them. Note that the second input is a non-
numeric character. These statements work as follows.

Statements 1, 2, and 3 are easy to follow. Let us look at statement 4.

In statement 4, first the extraction operator >> extracts 57 from the input stream and
stores it in a. Then, the extraction operator >> extracts the character 'A' from the input
stream and stores it in ch. Next, 26.9 is extracted and stored in z.

Note that statements 1, 2, and 3 illustrate that regardless of whether the input is
separated by blanks or by lines, the extraction operator >> always finds the next
input.

122 | Chapter 3: Input/Output

EXAMPLE 3-3

Suppose you have the following variable declarations:

int a, b;
double z;
char ch, ch1, ch2;

The following statements show how the extraction operator >> works.

Statement Input Value Stored in Memory

1 cin >> z >> ch >> a; 36.78B34 z = 36.78, ch = 'B',
a = 34

2 cin >> z >> ch >> a; 36.78
B34

z = 36.78, ch = 'B',
a = 34

3
cin >> a >> b >> z; 11 34 a = 11, b = 34,

computer waits for the next
number

4 cin >> a >> z; 78.49 a = 78, z = 0.49

5 cin >> ch >> a; 256 ch = '2', a = 56

6 cin >> a >> ch; 256 a = 256, computer waits for
the input value for ch

7 cin >> ch1 >> ch2; A B ch1 = 'A', ch2 = 'B'

In statement 1, because the first right-side operand of >> is z, which is a double
variable, 36.78 is extracted from the input stream, and the value 36.78 is stored in z.
Next, 'B' is extracted and stored in ch. Finally, 34 is extracted and stored in a.
Statement 2 works similarly.

In statement 3, 11 is stored in a, and 34 is stored in b, but the input stream does not have
enough input data to fill each variable. In this case, the computer waits (and waits, and
waits . . .) for the next input to be entered. The computer does not continue to execute
until the next value is entered.

In statement 4, the first right-side operand of the extraction operator >> is a variable of
the type int, and the input is 78.49. Now for int variables, after inputting the digits of
the number, the reading stops at the first whitespace character or a character other than a
digit. Therefore, the operator >> stores 78 into a. The next right-side operand of >> is
the variable z, which is of the type double. Therefore, the operator >> stores the value
.49 as 0.49 into z.

In statement 5, the first right-side operand of the extraction operator >> is a char
variable, so the first nonwhitespace character, '2', is extracted from the input stream.
The character '2' is stored in the variable ch. The next right-side operand of the
extraction operator >> is an int variable, so the next input value, 56, is extracted and
stored in a.

3

I/O Streams and Standard I/O Devices | 123

In statement 6, the first right-side operator of the extraction operator >> is an int
variable, so the first data item, 256, is extracted from the input stream and stored in a.
Now the computer waits for the next data item for the variable ch.

In statement 7, 'A' is stored into ch1. The extraction operator >> then skips the blank,
and 'B' is stored in ch2.

Recall that during program execution, when entering character data such as letters, you

do not enter the single quotes around the character.

What happens if the input stream has more data items than required by the program?
After the program terminates, any values left in the input stream are discarded. When you
enter data for processing, the data values should correspond to the data types of the
variables in the input statement. Recall that when entering a number for a double
variable, it is not necessary for the input number to have a decimal part. If the input
number is an integer and has no decimal part, it is converted to a decimal value. The
computer, however, does not tolerate any other kind of mismatch. For example, entering
a char value into an int or double variable causes serious errors, called input failure.
Input failure is discussed later in this chapter.

The extraction operator, when scanning for the next input in the input stream, skips
whitespace such as blanks and the newline character. However, there are situations when
these characters must also be stored and processed. For example, if you are processing
text in a line-by-line fashion, you must know where in the input stream the newline
character is located. Without identifying the position of the newline character, the
program would not know where one line ends and another begins. The next few sections
teach you how to input data into a program using the input functions, such as get,
ignore, putback, and peek. These functions are associated with the data type istream
and are called istream member functions. I/O functions, such as get, are typically
called stream member functions or stream functions.

Before you can learn about the input functions get, ignore, putback, peek, and other
I/O functions that are used in this chapter, you need to first understand what a function is
and how it works. You will study functions in detail and learn how to write your own
in Chapters 6 and 7.

Using Predefined Functions in a Program
As noted in Chapter 2, a function, also called a subprogram, is a set of instructions. When
a function executes, it accomplishes something. The function main, as you saw in
Chapter 2, executes automatically when you run a program. Other functions execute

124 | Chapter 3: Input/Output

3

only when they are activated—that is, called. C++ comes with a wealth of functions,
called predefined functions, that are already written. In this section, you will learn how
to use some predefined functions that are provided as part of the C++ system. Later in this
chapter, you will learn how to use stream functions to perform a specific I/O operation.

Recall from Chapter 2 that predefined functions are organized as a collection of libraries,
called header files. A particular header file may contain several functions. Therefore, to
use a particular function, you need to know the name of the function and a few other
things, which are described shortly.

A very useful function, pow, called the power function, can be used to calculate xy in a
program. That is, pow(x, y) = xy. For example, pow(2.0, 3.0) = 2.03.0 = 8.0 and
pow(4.0, 0.5) = 4.00.5 =

ffiffiffiffiffiffiffiffi
4:0
p

= 2.0. The numbers x and y that you use in the
function pow are called the arguments or parameters of the function pow. For
example, in pow(2.0, 3.0), the parameters are 2.0 and 3.0.

An expression such as pow(2.0, 3.0) is called a function call, which causes the code
attached to the predefined function pow to execute and, in this case, computes 2.03.0.
The header file cmath contains the specification of the function pow.

To use a predefined function in a program, you need to know the name of the header
file containing the specification of the function and include that header file in the
program. In addition, you need to know the name of the function, the number of
parameters the function takes, and the type of each parameter. You must also be aware
of what the function is going to do. For example, to use the function pow, you must
include the header file cmath. The function pow has two parameters, which are decimal
numbers. The function calculates the first parameter to the power of the second
parameter. (Appendix F describes some commonly used header files and predefined
functions.)

The program in the following example illustrates how to use predefined functions in a
program. More specifically, we use some math functions, from the header file cmath, and
the string function length, from the header file string. Note that the function
length determines the length of a string.

EXAMPLE 3-4

// How to use predefined functions.
#include <iostream>
#include <cmath>
#include <string>

using namespace std;

int main()
{

double u, v;
string str;

Using Predefined Functions in a Program | 125

cout << "Line 1: 2 to the power of 6 = "
<< static_cast<int>(pow(2.0, 6.0))
<< endl; //Line 1

u = 12.5; //Line 2
v = 3.0; //Line 3
cout << "Line 4: " << u << " to the power of "

<< v << " = " << pow(u, v) << endl; //Line 4

cout << "Line 5: Square root of 24 = "
<< sqrt(24.0) << endl; //Line 5

u = pow(8.0, 2.5); //Line 6
cout << "Line 7: u = " << u << endl; //Line 7

str = "Programming with C++"; //Line 8

cout << "Line 9: Length of str = "
<< str.length() << endl; //Line 9

return 0;
}

Sample Run:

Line 1: 2 to the power of 6 = 64
Line 4: 12.5 to the power of 3 = 1953.13
Line 5: Square root of 24 = 4.89898
Line 7: u = 181.019
Line 9: Length of str = 20

The preceding program works as follows. The statement in Line 1 uses the function pow
to determine and output 26. The statement in Line 2 sets u to 12.5, and the statement in
Line 3 sets v to 3.0. The statement in Line 4 determines and outputs uv. The statement
in Line 5 uses the function sqrt, of the header file cmath, to determine and output
the square root of 24.0. The statement in Line 6 determines and assigns 8.02.5 to u.
The statement in Line 7 outputs the value of u.

The statement in Line 8 stores the string "Programming with C++" in str. The
statement in Line 9 uses the string function length to determine and output the
length of str. Note how the function length is used. Later in this chapter, we
explain the meaning of expressions such as str.length().

Because I/O is fundamental to any programming language and because writing instructions
to perform a specific I/O operation is not a job for everyone, every programming language
provides a set of useful functions to perform specific I/O operations. In the remainder of this
chapter, you will learn how to use some of these functions in a program. As a programmer,
you must pay close attention to how these functions are used so that you can get the most
out of them. The first function you will learn about here is the function get.

126 | Chapter 3: Input/Output

cin and the get Function
As you have seen, the extraction operator skips all leading whitespace characters when
scanning for the next input value. Consider the variable declarations:

char ch1, ch2;
int num;

and the input:

A 25

Now consider the following statement:

cin >> ch1 >> ch2 >> num;

When the computer executes this statement, 'A' is stored in ch1, the blank is skipped by
the extraction operator >>, the character '2' is stored in ch2, and 5 is stored in num.
However, what if you intended to store 'A' in ch1, the blank in ch2, and 25 in num? It is
clear that you cannot use the extraction operator >> to input this data.

As stated earlier, sometimes you need to process the entire input, including white-
space characters, such as blanks and the newline character. For example, suppose
you want to process the entered data on a line-by-line basis. Because the extrac-
tion operator >> skips the newline character and unless the program captures the newline
character, the computer does not know where one line ends and the next begins.

The variable cin can access the stream function get, which is used to read character
data. The get function inputs the very next character, including whitespace characters,
from the input stream and stores it in the memory location indicated by its argument.
The function get comes in many forms. Next, we discuss the one that is used to read a
character.

The syntax of cin, together with the get function to read a character, follows:

cin.get(varChar);

In the cin.get statement, varChar is a char variable. varChar, which appears in
parentheses following the function name, is called the argument or parameter of the
function. The effect of the preceding statement would be to store the next input character
in the variable varChar.

Now consider the following input again:

A 25

To store 'A' in ch1, the blank in ch2, and 25 in num, you can effectively use the get
function as follows:

cin.get(ch1);
cin.get(ch2);
cin >> num;

3

Using Predefined Functions in a Program | 127

Because this form of the get function has only one argument and reads only one
character and you need to read two characters from the input stream, you need to call
this function twice. Notice that you cannot use the get function to read data into the
variable num because num is an int variable. The preceding form of the get function
reads values of only the char data type.

The preceding set of cin.get statements is equivalent to the following
statements:

cin >> ch1;
cin.get(ch2);
cin >> num;

The function get has other forms, one of which you will study in Chapter 9.

For the next few chapters, you need only the form of the function get introduced

here.

cin and the ignore Function
When you want to process only partial data (say, within a line), you can use the stream
function ignore to discard a portion of the input. The syntax to use the function ignore
is:

cin.ignore(intExp, chExp);

Here, intExp is an integer expression yielding an integer value, and chExp is a char
expression yielding a char value. In fact, the value of the expression intExp specifies the
maximum number of characters to be ignored in a line.

Suppose intExp yields a value of, say 100. This statement says to ignore the next 100
characters or ignore the input until it encounters the character specified by chExp,
whichever comes first. To be specific, consider the following statement:

cin.ignore(100, '\n');

When this statement executes, it ignores either the next 100 characters or all
characters until the newline character is found, whichever comes first. For example,
if the next 120 characters do not contain the newline character, then only the first
100 characters are discarded and the next input data is the character 101. However, if
the 75th character is the newline character, then the first 75 characters are discarded
and the next input data is the 76th character. Similarly, the execution of the
statement:

cin.ignore(100, 'A');

results in ignoring the first 100 characters or all characters until the character 'A' is
found, whichever comes first.

128 | Chapter 3: Input/Output

EXAMPLE 3-5

Consider the declaration:

int a, b;

and the input:

25 67 89 43 72
12 78 34

Now consider the following statements:

cin >> a;
cin.ignore(100, '\n');
cin >> b;

The first statement, cin >> a;, stores 25 in a. The second statement,
cin.ignore(100, '\n');, discards all of the remaining numbers in the first line. The
third statement, cin >> b;, stores 12 (from the next line) in b.

EXAMPLE 3-6

Consider the declaration:

char ch1, ch2;

and the input:

Hello there. My name is Mickey.

a. Consider the following statements:

cin >> ch1;
cin.ignore(100, '.');
cin >> ch2;

The first statement, cin >> ch1;, stores 'H' in ch1. The second statement,
cin.ignore(100, '.');, results in discarding all characters until . (period).
The third statement, cin >> ch2;, stores the character 'M' (from the same line)
in ch2. (Remember that the extraction operator >> skips all leading whitespace
characters. Thus, the extraction operator skips the space after . [period] and
stores 'M' in ch2.)

b. Suppose that we have the following statement:

cin >> ch1;
cin.ignore(5, '.');
cin >> ch2;

3

Using Predefined Functions in a Program | 129

The first statement, cin >> ch1;, stores 'H' in ch1. The second statement,
cin.ignore(5, '.');, results in discarding the next five characters, that is, until t.
The third statement, cin >> ch2;, stores the character 't' (from the same line) in ch2.

When the function ignore is used without any arguments, then it only skips the very
next character. For example, the following statement will skip the very next character:

cin.ignore();

This statement is typically used to skip the newline character.

The putback and peek Functions
Suppose you are processing data that is a mixture of numbers and characters. Moreover, the
numbers must be read and processed as numbers. You have also looked at many sets of
sample data and cannot determine whether the next input is a character or a number. You
could read the entire data set character by character and check whether a certain character is
a digit. If a digit is found, you could then read the remaining digits of the number and
somehow convert these characters into numbers. This programming code would be
somewhat complex. Fortunately, C++ provides two very useful stream functions that
can be used effectively in these types of situations.

The stream function putback lets you put the last character extracted from the input
stream by the get function back into the input stream. The stream function peek looks
into the input stream and tells you what the next character is without removing it from
the input stream. By using these functions, after determining that the next input is a
number, you can read it as a number. You do not have to read the digits of the number as
characters and then convert these characters to that number.

The syntax to use the function putback is:

istreamVar.putback(ch);

Here, istreamVar is an input stream variable, such as cin, and ch is a char variable.

The peek function returns the next character from the input stream but does not remove the
character from that stream. In other words, the function peek looks into the input stream
and checks the identity of the next input character. Moreover, after checking the next input
character in the input stream, it can store this character in a designated memory location
without removing it from the input stream. That is, when you use the peek function, the
next input character stays the same, even though you now know what it is.

The syntax to use the function peek is:

ch = istreamVar.peek();

Here, istreamVar is an input stream variable, such as cin, and ch is a char variable.

130 | Chapter 3: Input/Output

Notice how the function peek is used. First, the function peek is used in an assignment
statement. It is not a stand-alone statement like get, ignore, and putback. Second, the
function peek has empty parentheses. Until you become comfortable with using a function
and learn how to write one, pay close attention to how to use a predefined function.

The following example illustrates how to use the peek and putback functions.

EXAMPLE 3-7

//Functions peek and putback

#include <iostream>

using namespace std;

int main()
{

char ch;

cout << "Line 1: Enter a string: "; //Line 1
cin.get(ch); //Line 2
cout << endl; //Line 3
cout << "Line 4: After first cin.get(ch); "

<< "ch = " << ch << endl; //Line 4

cin.get(ch); //Line 5
cout << "Line 6: After second cin.get(ch); "

<< "ch = " << ch << endl; //Line 6

cin.putback(ch); //Line 7
cin.get(ch); //Line 8
cout << "Line 9: After putback and then "

<< "cin.get(ch); ch = " << ch << endl; //Line 9

ch = cin.peek(); //Line 10
cout << "Line 11: After cin.peek(); ch = "

<< ch << endl; //Line 11

cin.get(ch); //Line 12
cout << "Line 13: After cin.get(ch); ch = "

<< ch << endl; //Line 13

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter a string: abcd

Line 4: After first cin.get(ch); ch = a
Line 6: After second cin.get(ch); ch = b

3

Using Predefined Functions in a Program | 131

Line 9: After putback and then cin.get(ch); ch = b
Line 11: After cin.peek(); ch = c
Line 13: After cin.get(ch); ch = c

The user input, abcd, allows you to see the effect of the functions get, putback, and
peek in the preceding program. The statement in Line 1 prompts the user to enter a string.
In Line 2, the statement cin.get(ch); extracts the first character from the input stream
and stores it in the variable ch. So after Line 2 executes, the value of ch is 'a'.

The cout statement in Line 4 outputs the value of ch. The statement cin.get(ch); in
Line 5 extracts the next character from the input stream, which is 'b', and stores it in ch.
At this point, the value of ch is 'b'.

The cout statement in Line 6 outputs the value of ch. The cin.putback(ch); statement
in Line 7 puts the previous character extracted by the get function, which is 'b', back into
the input stream. Therefore, the next character to be extracted from the input stream is 'b'.

The cin.get(ch); statement in Line 8 extracts the next character from the input
stream, which is still 'b', and stores it in ch. Now the value of ch is 'b'. The cout
statement in Line 9 outputs the value of ch as 'b'.

In Line 10, the statement ch = cin.peek(); checks the next character in the input stream,
which is 'c', and stores it in ch. The value of ch is now 'c'. The cout statement in Line
11 outputs the value of ch. The cin.get(ch); statement in Line 12 extracts the next
character from the input stream and stores it in ch. The cout statement in Line 13 outputs
the value of ch, which is still 'c'.

Note that the statement ch = cin.peek(); in Line 10 did not remove the character 'c'
from the input stream; it only peeked into the input stream. The output of Lines 11 and
13 demonstrates this functionality.

The Dot Notation between I/O Stream Variables and I/O Functions:
A Precaution
In the preceding sections, you learned how to manipulate an input stream to get data
into a program. You also learned how to use the functions get, ignore, peek, and
putback. It is important that you use these functions exactly as shown. For example, to
use the get function, you used statements such as the following:

cin.get(ch);

Omitting the dot—that is, the period between the variable cin and the function name
get—results in a syntax error. For example, in the statement:

cin.get(ch);

cin and get are two separate identifiers separated by a dot. In the statement:

cinget(ch);

132 | Chapter 3: Input/Output

cinget becomes a new identifier. If you used cinget(ch); in a program, the compiler
would try to resolve an undeclared identifier, which would generate an error. Similarly,
missing parentheses, as in cin.getch;, result in a syntax error. Also, remember that you
must use the input functions together with an input stream variable. If you try to use any
of the input functions alone—that is, without the input stream variable—the compiler
might generate an error message such as ‘‘undeclared identifier.’’ For example, the
statement get(ch); could result in a syntax error.

As you can see, several functions are associated with an istream variable, each doing a
specific job. Recall that the functions get, ignore, and so on are members of the data type
istream. Called the dot notation, the dot separates the input stream variable name
from the member, or function, name. In fact, in C++, the dot is an operator called the
member access operator.

C++ has a special name for the data types istream and ostream. The data types
istream and ostream are called classes. The variables cin and cout also have special

names, called objects. Therefore, cin is called an istream object, and cout is called an

ostream object. In fact, stream variables are called stream objects. You will learn these
concepts in the chapter entitled Inheritance and Composition later in this book.

Input Failure
Many things can go wrong during program execution. A program that is syntactically
correct might produce incorrect results. For example, suppose that a part-time employee’s
paycheck is calculated by using the following formula:

wages = payRate * hoursWorked;

If you accidentally type + in place of *, the calculated wages would be incorrect, even
though the statement containing a + is syntactically correct.

What about an attempt to read invalid data? For example, what would happen if you tried
to input a letter into an int variable? If the input data did not match the corresponding
variables, the program would run into problems. For example, trying to read a letter into
an int or double variable would result in an input failure. Consider the following
statements:

int a, b, c;
double x;

If the input is:

W 54

then the statement:

cin >> a >> b;

3

Input Failure | 133

would result in an input failure, because you are trying to input the character 'W' into
the int variable a. If the input were:

35 67.93 48

then the input statement:

cin >> a >> x > >b;

would result in storing 35 in a, 67.93 in x, and 48 in b.

Now consider the following read statement with the previous input (the input with three
values):

cin >> a >> b >> c;

This statement stores 35 in a and 67 in b. The reading stops at . (the decimal point).
Because the next variable c is of the data type int, the computer tries to read . into c,
which is an error. The input stream then enters a state called the fail state.

What actually happens when the input stream enters the fail state? Once an input stream
enters the fail state, all further I/O statements using that stream are ignored. Unfortu-
nately, the program quietly continues to execute with whatever values are stored in
variables and produces incorrect results. The program in Example 3-8 illustrates an input
failure. This program on your system may produce different results.

EXAMPLE 3-8

//Input Failure program

#include <iostream>

using namespace std;

int main()
{

int a = 10; //Line 1
int b = 20; //Line 2
int c = 30; //Line 3
int d = 40; //Line 4

cout << "Line 5: Enter four integers: "; //Line 5
cin >> a >> b >> c >> d; //Line 6
cout << endl; //Line 7
cout << "Line 8: The numbers you entered are:"

<< endl; //Line 8
cout << "Line 9: a = " << a << ", b = " << b

<< ", c = " << c << ", d = " << d << endl; //Line 9

return 0;
}

134 | Chapter 3: Input/Output

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1

Line 5: Enter four integers: 34 K 67 28

Line 8: The numbers you entered are:
Line 9: a = 34, b = 20, c = 30, d = 40

The statements in Lines 1, 2, 3, and 4 declare and initialize the variables a, b, c, and
d to 10, 20, 30, and 40, respectively. The statement in Line 5 prompts the user to
enter four integers; the statement in Line 6 inputs these four integers into variables a,
b, c, and d.

In this sample run, the second input value is the character 'K'. The cin statement tries to
input this character into the variable b. However, because b is an int variable, the input
stream enters the fail state. Note that the values of b, c, and d are unchanged, as shown by
the output of the statement in Line 9.

Sample Run 2

Line 5: Enter four integers: 37 653.89 23 76

Line 8: The numbers you entered are:
Line 9: a = 37, b = 653, c = 30, d = 40

In this sample run, the cin statement in Line 6 inputs 37 into a and 653 into b and
then tries to input the decimal point into c. Because c is an int variable, the decimal
point is regarded as a character, so the input stream enters the fail state. In this sample
run, the values of c and d are unchanged, as shown by the output of the statement
in Line 9.

The clear Function
When an input stream enters the fail state, the system ignores all further I/O using
that stream. You can use the stream function clear to restore the input stream to a
working state.

The syntax to use the function clear is:

istreamVar.clear();

Here, istreamVar is an input stream variable, such as cin.

After using the function clear to return the input stream to a working state, you still
need to clear the rest of the garbage from the input stream. This can be accomplished by
using the function ignore. Example 3-9 illustrates this situation.

3

Input Failure | 135

EXAMPLE 3-9

//Input failure and the clear function

#include <iostream>

using namespace std;

int main()
{

int a = 23; //Line 1
int b = 34; //Line 2

cout << "Line 3: Enter a number followed"
<< " by a character: "; //Line 3

cin >> a >> b; //Line 4
cout << endl << "Line 5: a = " << a

<< ", b = " << b << endl; //Line 5

cin.clear(); //Restore input stream; Line 6

cin.ignore(200,'\n'); //Clear the buffer; Line 7

cout << "Line 8: Enter two numbers: "; //Line 8
cin >> a >> b; //Line 9
cout << endl << "Line 10: a = " << a

<< ", b = " << b << endl; //Line 10

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 3: Enter a number followed by a character: 78 d

Line 5: a = 78, b = 34
Line 8: Enter two numbers: 65 88

Line 10: a = 65, b = 88

The statements in Lines 1 and 2 declare and initialize the variables a and b to 23 and 34,
respectively. The statement in Line 3 prompts the user to enter a number followed by a
character; the statement in Line 4 inputs this number into the variable a and then tries to
input the character into the variable b. Because b is an int variable, an attempt to input a
character into b causes the input stream to enter the fail state. The value of b is
unchanged, as shown by the output of the statement in Line 5.

The statement in Line 6 restores the input stream by using the function clear, and the
statement in Line 7 ignores the rest of the input. The statement in Line 8 again prompts
the user to input two numbers; the statement in Line 9 stores these two numbers into a
and b. Next, the statement in Line 10 outputs the values of a and b.

136 | Chapter 3: Input/Output

Output and Formatting Output
Other than writing efficient programs, generating the desired output is one of a pro-
grammer’s highest priorities. Chapter 2 briefly introduced the process involved in
generating output on the standard output device. More precisely, you learned how to
use the insertion operator << and the manipulator endl to display results on the standard
output device.

However, there is a lot more to output than just displaying results. Sometimes, floating-
point numbers must be output in a specific way. For example, a paycheck must be
printed to two decimal places, whereas the results of a scientific experiment might
require the output of floating-point numbers to six, seven, or perhaps even ten decimal
places. Also, you might like to align the numbers in specific columns or fill the empty
space between strings and numbers with a character other than the blank. For example,
in preparing the table of contents, the space between the section heading and the page
number might need to be filled with dots or dashes. In this section, you will learn about
various output functions and manipulators that allow you to format your output in a
desired way.

Recall that the syntax of cout when used together with the insertion operator
<< is:

cout << expression or manipulator << expression or manipulator...;

Here, expression is evaluated, its value is printed, and manipulator is used to format
the output. The simplest manipulator that you have used so far is endl, which is used to
move the insertion point to the beginning of the next line.

Other output manipulators that are of interest include setprecision, fixed, showpoint,
and setw. The next few sections describe these manipulators.

setprecision Manipulator
You use the manipulator setprecision to control the output of floating-point num-
bers. Usually, the default output of floating-point numbers is scientific notation. Some
integrated development environments (IDEs) might use a maximum of six decimal
places for the default output of floating-point numbers. However, when an employee’s
paycheck is printed, the desired output is a maximum of two decimal places. To print
floating-point output to two decimal places, you use the setprecision manipulator to
set the precision to 2.

The general syntax of the setprecision manipulator is:

setprecision(n)

where n is the number of decimal places.

3

Output and Formatting Output | 137

You use the setprecision manipulator with cout and the insertion operator. For
example, the statement:

cout << setprecision(2);

formats the output of decimal numbers to two decimal places until a similar subsequent
statement changes the precision. Notice that the number of decimal places, or the
precision value, is passed as an argument to setprecision.

To use the manipulator setprecision, the program must include the header file
iomanip. Thus, the following include statement is required:

#include <iomanip>

fixed Manipulator
To further control the output of floating-point numbers, you can use other manipulators.
To output floating-point numbers in a fixed decimal format, you use the manipulator
fixed. The following statement sets the output of floating-point numbers in a fixed
decimal format on the standard output device:

cout << fixed;

After the preceding statement executes, all floating-point numbers are displayed in the fixed
decimal format until the manipulator fixed is disabled. You can disable the manipulator
fixed by using the stream member function unsetf. For example, to disable the mani-
pulator fixed on the standard output device, you use the following statement:

cout.unsetf(ios::fixed);

After the manipulator fixed is disabled, the output of the floating-point numbers returns
to their default settings. The manipulator scientific is used to output floating-point
numbers in scientific format.

On some compliers, the statements cin >> fixed; and cin >> scientific; might not

work. In this case, you can use cin.setf(ios::fixed); in place of cin >> fixed;

and cin.setf(ios::scientific); in place of cin >> scientific;.

The following example shows how the manipulators scientific and fixed work
without using the manipulator setprecision.

EXAMPLE 3-10

//Example: scientific and fixed

#include <iostream>

using namespace std;

138 | Chapter 3: Input/Output

int main()
{

double hours = 35.45;
double rate = 15.00;
double tolerance = 0.01000;

cout << "hours = " << hours << ", rate = " << rate
<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

cout << scientific;
cout << "Scientific notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate

<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

cout << fixed;
cout << "Fixed decimal notation: " << endl;
cout << "hours = " << hours << ", rate = " << rate

<< ", pay = " << hours * rate
<< ", tolerance = " << tolerance << endl << endl;

return 0;
}

Sample Run:

hours = 35.45, rate = 15, pay = 531.75, tolerance = 0.01

Scientific notation:
hours = 3.545000e+001, rate = 1.500000e+001, pay = 5.317500e+002, tolerance = 1
.000000e-002

Fixed decimal notation:
hours = 35.450000, rate = 15.000000, pay = 531.750000, tolerance = 0.010000

The sample run shows that when the value of rate and tolerance are printed without
setting the scientific or fixed manipulators, the trailing zeros are not shown and, in the
case of rate, the decimal point is also not shown. After setting the manipulators, the values
are printed to six decimal places. In the next section, we describe the manipulator
showpoint to force the system to show the decimal point and trailing zeros. We will then
give an example to show how to use the manipulators setprecision, fixed, and
showpoint to get the desired output.

showpoint Manipulator
Suppose that the decimal part of a decimal number is zero. In this case, when you instruct the
computer to output the decimal number in a fixed decimal format, the output may not show
the decimal point and the decimal part. To force the output to show the decimal point and

3

Output and Formatting Output | 139

trailing zeros, you use the manipulator showpoint. The following statement sets the output
of decimal numbers with a decimal point and trailing zeros on the standard input device:

cout << showpoint;

Of course, the following statement sets the output of a floating-point number in a fixed
decimal format with the decimal point and trailing zeros on the standard output device:

cout << fixed << showpoint;

The program in Example 3-11 illustrates how to use the manipulators setprecision,
fixed, and showpoint.

EXAMPLE 3-11

//Example: setprecision, fixed, showpoint

#include <iostream> //Line 1
#include <iomanip> //Line 2

using namespace std; //Line 3

const double PI = 3.14159265; //Line 4

int main() //Line 5
{ //Line 6

double radius = 12.67; //Line 7
double height = 12.00; //Line 8

cout << fixed << showpoint; //Line 9

cout << setprecision(2)
<< "Line 10: setprecision(2)" << endl; //Line 10

cout << "Line 11: radius = " << radius << endl; //Line 11
cout << "Line 12: height = " << height << endl; //Line 12
cout << "Line 13: volume = "

<< PI * radius * radius * height << endl; //Line 13
cout << "Line 14: PI = " << PI << endl << endl; //Line 14

cout << setprecision(3)
<< "Line 15: setprecision(3)" << endl; //Line 15

cout << "Line 16: radius = " << radius << endl; //Line 16
cout << "Line 17: height = " << height << endl; //Line 17
cout << "Line 18: volume = "

<< PI * radius * radius * height << endl; //Line 18
cout << "Line 19: PI = " << PI << endl << endl; //Line 19

cout << setprecision(4)
<< "Line 20: setprecision(4)" << endl; //Line 20

cout << "Line 21: radius = " << radius << endl; //Line 21
cout << "Line 22: height = " << height << endl; //Line 22

140 | Chapter 3: Input/Output

cout << "Line 23: volume = "
<< PI * radius * radius * height << endl; //Line 23

cout << "Line 24: PI = " << PI << endl << endl; //Line 24

cout << "Line 25: "
<< setprecision(3) << radius << ", "
<< setprecision(2) << height << ", "
<< setprecision(5) << PI << endl; //Line 25

return 0; //Line 26
} //Line 27

Sample Run:

Line 10: setprecision(2)
Line 11: radius = 12.67
Line 12: height = 12.00
Line 13: volume = 6051.80
Line 14: PI = 3.14

Line 15: setprecision(3)
Line 16: radius = 12.670
Line 17: height = 12.000
Line 18: volume = 6051.797
Line 19: PI = 3.142

Line 20: setprecision(4)
Line 21: radius = 12.6700
Line 22: height = 12.0000
Line 23: volume = 6051.7969
Line 24: PI = 3.1416

Line 25: 12.670, 12.00, 3.14159

In this program, the statement in Line 2 includes the header file iomanip, and the
statement in Line 4 declares the named constant PI and sets the value to eight decimal
places. The statements in Lines 7 and 8 declare and initialize the variables radius and
height to store the radius of the base and the height of a cylinder. The statement in Line
10 sets the output of floating-point numbers in a fixed decimal format with a decimal
point and trailing zeros.

The statements in Lines 11, 12, 13, and 14 output the values of radius, height, the
volume, and PI to two decimal places.

The statements in Lines 16, 17, 18, and 19 output the values of radius, height,
the volume, and PI to three decimal places.

The statements in Lines 21, 22, 23, and 24 output the values of radius, height, the
volume, and PI to four decimal places.

The statement in Line 25 outputs the value of radius to three decimal places, the value
of height to two decimal places, and the value of PI to five decimal places.

3

Output and Formatting Output | 141

Notice how the values of radius are printed in Lines 11, 16, and 21. The value of
radius printed in Line 16 contains a trailing 0. This is because the stored value of
radius has only two decimal places; a 0 is printed at the third decimal place. In a similar
manner, the value of height is printed in Lines 12, 17, and 22.

Also, notice how the statements in Lines 13, 18, and 23 calculate and output the volume
to two, three, and four decimal places.

Note that the value of PI printed in Line 24 is rounded.

The statement in Line 25 first sets the output of floating-point numbers to three decimal
places and then outputs the value of radius to three decimal places. After printing the
value of radius, the statement in Line 25 sets the output of floating-point numbers to
two decimal places and then outputs the value of height to two decimal places. Next, it
sets the output of floating-point numbers to five decimal places and then outputs the
value of PI to four decimal places.

If you omit the statement in Line 9 and recompile and run the program, you will see the
default output of the decimal numbers. More specifically, the value of the expression that
calculates the volume might be printed in the scientific notation.

setw
The manipulator setw is used to output the value of an expression in a specific number of
columns. The value of the expression can be either a string or a number. The expression
setw(n) outputs the value of the next expression in n columns. The output is right-
justified. Thus, if you specify the number of columns to be 8, for example, and the output
requires only four columns, the first four columns are left blank. Furthermore, if the
number of columns specified is less than the number of columns required by the output,
the output automatically expands to the required number of columns; the output is not
truncated. For example, if x is an int variable, the following statement outputs the value
of x in five columns on the standard output device:

cout << setw(5) << x << endl;

To use the manipulator setw, the program must include the header file iomanip. Thus,
the following include statement is required:

#include <iomanip>

Unlike setprecision, which controls the output of all floating-point numbers until it is
reset, setw controls the output of only the next expression.

EXAMPLE 3-12

//Example: setw

#include <iostream>
#include <iomanip>

142 | Chapter 3: Input/Output

using namespace std;

int main()
{

int x = 19; //Line 1
int a = 345; //Line 2
double y = 76.384; //Line 3

cout << fixed << showpoint; //Line 4

cout << "12345678901234567890" << endl; //Line 5

cout << setw(5) << x << endl; //Line 6
cout << setw(5) << a << setw(5) << "Hi"

<< setw(5) << x << endl << endl; //Line 7

cout << setprecision(2); //Line 8
cout << setw(6) << a << setw(6) << y

<< setw(6) << x << endl; //Line 9
cout << setw(6) << x << setw(6) << a

<< setw(6) << y << endl << endl; //Line 10

cout << setw(5) << a << x << endl; //Line 11
cout << setw(2) << a << setw(4) << x << endl; //Line 12

return 0;
}

Sample Run:

12345678901234567890
19

345 Hi 19

345 76.38 19
19 345 76.38

34519
345 19

The statements in Lines 1, 2, and 3 declare the variables x, a, and y and initialize these
variables to 19, 345, and 76.384, respectively. The statement in Line 4 sets the output of
floating-point numbers in a fixed decimal format with a decimal point and trailing zeros.
The output of the statement in Line 5 shows the column positions when the specific
values are printed; it is the first line of output.

The statement in Line 6 outputs the value of x in five columns. Because x has only two
digits, only two columns are needed to output its value. Therefore, the first three columns
are left blank in the second line of output. The statement in Line 7 outputs the value of a in
the first five columns, the string "Hi" in the next five columns, and then the value of x in the
following five columns. Because the string "Hi" contains only two characters and five
columns are set to output these two characters, the first three columns are left blank. See

3

Output and Formatting Output | 143

the third line of output. The fourth line of output is blank because the manipulator endl
appears twice in the statement in Line 7.

The statement in Line 8 sets the output of floating-point numbers to two decimal places.
The statement in Line 9 outputs the values of a in the first six columns, y in the next six
columns, and x in the following six columns, creating the fifth line of output. The output
of the statement in Line 10 (which is the sixth line of output) is similar to the output of
the statement in Line 9. Notice how the numbers are nicely aligned in the outputs of the
statements in Lines 9 and 10. The seventh line of output is blank because the manipulator
endl appears twice in the statement in Line 10.

The statement in Line 11 outputs first the value of a in five columns and then the value of
x. Note that the manipulator setw in the statement in Line 11 controls only the output of
a. Thus, after the value of a is printed, the value of x is printed at the current cursor
position (see the eighth line of output).

In the cout statement in Line 12, only two columns are assigned to output the value of a.
However, the value of a has three digits, so the output is expanded to three columns. The
value of x is then printed in four columns. Because the value of x contains only two digits,
only two columns are required to output the value of x. Therefore, because four columns
are allocated to output the value of x, the first two columns are left blank (see the ninth line
of output).

Additional Output Formatting Tools
In the previous section, you learned how to use the manipulators setprecision, fixed, and
showpoint to control the output of floating-point numbers and how to use the manipulator
setw to display the output in specific columns. Even though these manipulators are adequate
to produce an elegant report, in some situations, you may want to do more. In this section, you
will learn additional formatting tools that give you more control over your output.

setfill Manipulator
Recall that in the manipulator setw, if the number of columns specified exceeds the number
of columns required by the expression, the output of the expression is right-justified and the
unused columns to the left are filled with spaces. The output stream variables can use the
manipulator setfill to fill the unused columns with a character other than a space.

The syntax to use the manipulator setfill is:

ostreamVar << setfill(ch);

where ostreamVar is an output stream variable and ch is a character. For example, the
statement:

cout << setfill('#');

144 | Chapter 3: Input/Output

3

sets the fill character to '#' on the standard output device.

To use the manipulator setfill, the program must include the header file iomanip.

The program in Example 3-13 illustrates the effect of using setfill in a program.

EXAMPLE 3-13

//Example: setfill

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int x = 15; //Line 1
int y = 7634; //Line 2

cout << "12345678901234567890" << endl; //Line 3
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 4

cout << setfill('*'); //Line 5
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 6

cout << setw(5) << x << setw(7) << setfill('#')
<< y << setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << setfill('@') << x
<< setw(7) << setfill('#') << y
<< setw(8) << setfill('^') << "Warm"
<< endl; //Line 8

cout << setfill(' '); //Line 9
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 10

return 0;
}

Sample Run:

12345678901234567890
15 7634 Warm

157634****Warm
***15###7634####Warm
@@@15###7634^^^^Warm

15 7634 Warm

The statements in Lines 1 and 2 declare and initialize the variables x and y to 15 and 7634,
respectively. The output of the statement in Line 3—the first line of output—shows the

Additional Output Formatting Tools | 145

column position when the subsequent statements output the values of the variables. The
statement in Line 4 outputs the value of x in five columns, the value of y in seven columns,
and the string "Warm" in eight columns. In this statement, the filling character is the blank
character, as shown in the second line of output.

The statement in Line 5 sets the filling character to *. The statement in Line 6 outputs
the value of x in five columns, the value of y in seven columns, and the string "Warm"
in eight columns. Because x is a two-digit number and five columns are assigned to
output its value, the first three columns are unused by x and are, therefore, filled by the
filling character *. To print the value of y, seven columns are assigned; y is a four-digit
number, however, so the filling character fills the first three columns. Similarly, to print
the value of the string "Warm", eight columns are assigned; the string "Warm" has only
four characters, so the filling character fills the first four columns. See the third line
of output.

The output of the statement in Line 7—the fourth line of output—is similar to the output
of the statement in Line 6, except that the filling character for y and the string "Warm" is
#. In the output of the statement in Line 8 (the fifth line of output), the filling character
for x is @, the filling character for y is #, and the filling character for the string "Warm" is
^. The manipulator setfill sets these filling characters.

The statement in Line 9 sets the filling character to blank. The statement in Line 10
outputs the values of x, y, and the string "Warm" using the filling character blank, as
shown in the sixth line of output.

left and right Manipulators
Recall that if the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the default output is right-justified.
Sometimes, you might want the output to be left-justified. To left-justify the output, you
use the manipulator left.

The syntax to set the manipulator left is:

ostreamVar << left;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be left-justified on the standard output device:

cout << left;

You can disable the manipulator left by using the stream function unsetf. The syntax
to disable the manipulator left is:

ostreamVar.unsetf(ios::left);

146 | Chapter 3: Input/Output

3

where ostreamVar is an output stream variable. Disabling the manipulator left returns
the output to the settings of the default output format. For example, the following
statement disables the manipulator left on the standard output device:

cout.unsetf(ios::left);

The syntax to set the manipulator right is:

ostreamVar << right;

where ostreamVar is an output stream variable. For example, the following statement
sets the output to be right-justified on the standard output device:

cout << right;

On some compliers, the statements cin >> left; and cin >> right; might not work.

In this case, you can use cin.setf(ios::left); in place of cin >> left; and
cin.setf(ios::right); in place of cin >> right;.

The program in Example 3-14 illustrates the effect of the manipulators left and right.

EXAMPLE 3-14

//Example: left justification

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

int x = 15; //Line 1
int y = 7634; //Line 2

cout << left; //Line 3

cout << "12345678901234567890" << endl; //Line 4
cout << setw(5) << x << setw(7) << y

<< setw(8) << "Warm" << endl; //Line 5

cout << setfill('*'); //Line 6

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 7

cout << setw(5) << x << setw(7) << setfill('#')
<< y << setw(8) << "Warm" << endl; //Line 8

cout << setw(5) << setfill('@') << x
<< setw(7) << setfill('#') << y

Additional Output Formatting Tools | 147

<< setw(8) << setfill('^') << "Warm"
<< endl; //Line 9

cout << right; //Line 10
cout << setfill(' '); //Line 11

cout << setw(5) << x << setw(7) << y
<< setw(8) << "Warm" << endl; //Line 12

return 0;
}

Sample Run:

12345678901234567890
15 7634 Warm
15***7634***Warm****
15***7634###Warm####
15@@@7634###Warm^^^^

15 7634 Warm

The output of this program is the same as the output of Example 3-11. The only
difference here is that for the statements in Lines 4 through 9, the output is left-justified.
You are encouraged to do a walk-through of this program.

This chapter discusses several stream functions and stream manipulators. To use stream

functions such as get, ignore, fill, and clear in a program, the program must

include the header file iostream.

There are two types of manipulators: those with parameters and those without parameters.

Manipulators with parameters are called parameterized stream manipulators. For example,

manipulators such as setprecision, setw, and setfill are parameterized. On the

other hand, manipulators such as endl, fixed, scientific, showpoint, and
left do not have parameters.

To use a parameterized stream manipulator in a program, you must include the header file

iomanip. Manipulators without parameters are part of the iostream header file and,
therefore, do not require inclusion of the header file iomanip.

Input/Output and the string Type
You can use an input stream variable, such as cin, and the extraction operator >> to
read a string into a variable of the data type string. For example, if the input
is the string "Shelly", the following code stores this input into the string
variable name:

string name; //variable declaration
cin >> name; //input statement

148 | Chapter 3: Input/Output

3

Recall that the extraction operator skips any leading whitespace characters and that
reading stops at a whitespace character. As a consequence, you cannot use the extraction
operator to read strings that contain blanks. For example, suppose that the variable name
is defined as noted above. If the input is:

Alice Wonderland

then after the statement:

cin >> name;

executes, the value of the variable name is "Alice".

To read a string containing blanks, you can use the function getline.

The syntax to use the function getline is:

getline(istreamVar, strVar);

where istreamVar is an input stream variable and strVar is a string variable. The
reading is delimited by the newline character '\n'.

The function getline reads until it reaches the end of the current line. The newline
character is also read but not stored in the string variable.

Consider the following statement:

string myString;

If the input is 29 characters:

bbbbHello there. How are you?

where b represents a blank, after the statement:

getline(cin, myString);

the value of myString is:

myString = " Hello there. How are you?"

All 29 characters, including the first four blanks, are stored into myString.

Similarly, you can use an output stream variable, such as cout, and the insertion operator
<< to output the contents of a variable of the data type string.

Debugging: Understanding Logic Errors
and Debugging with cout Statements
In the debugging section of Chapter 2, we illustrated how to understand and correct syntax
errors. As we have seen, syntax errors are reported by the compiler, and the compiler not
only reports syntax errors, but also gives some explanation about the errors. On the other
hand, logic errors are typically not caught by the compiler except for the trivial ones such as
using a variable without properly initializing it. In this section, we illustrate how to spot and

Debugging: Understanding Logic Errors and Debugging with cout Statements | 149

correct logic errors using cout statements. Suppose that we want to write a program that
takes as input the temperature in Fahrenheit and outputs the equivalent temperature in
Celsius. The formula to convert the temperature is: Celsius ¼ 5 / 9 * (Fahrenheit – 32). So
consider the following program:

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int fahrenheit; //Line 5
int celsius; //Line 6

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = 5 / 9 * (fahrenheit - 32); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run 1: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 32

32 degree F = 0 degree C.

Sample Run 2: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 0 degree C.

The result shown in the first calculation looks correct. However, the result in the second
calculation is clearly not correct even though the same formula is used, because 110 degree
F ¼ 43 degree C. It means the value of celsius calculated in Line 10 is incorrect. Now,
the value of celsius is given by the expression 5 / 9 * (fahrenheit - 32). So we should
look at this expression closely. To see the effect of this expression, we can separately print
the values of the two expression 5 / 9 and fahrenheit - 32. This can be accomplished by
temporarily inserting an output statement as shown in the following program:

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int fahrenheit; //Line 5
int celsius; //Line 6

150 | Chapter 3: Input/Output

3

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

cout << "5 / 9 = " << 5 / 9
<< "; fahrenheit - 32 = "
<< fahrenheit - 32 << endl; //Line 9a

celsius = 5 / 9 * (fahrenheit - 32); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

5 / 9 = 0; fahrenheit - 32 = 78
110 degree F = 0 degree C.

Let us look at the sample run. We see that the value of 5 / 9 = 0 and the value of
fahrenheit - 32 = 78. Because fahrenheit = 110, the value of the expression
fahrenheit - 32 is correct. Now let us look at the expression 5 / 9. The value of
this expression is 0. Because both of the operands, 5 and 9, of the operator / are integers,
using integer division, the value of the expression is 0. That is, the value of the expression
5 / 9 = 0 is also calculated correctly. So by the precedence of the operators, the value of the
expression 5 / 9 * (fahrenheit - 32) will always be 0 regardless of the value of
fahrenheit. So the problem is in the integer division. We can replace the expression
5 / 9 with 5.0 / 9. In this case, the value of the expression 5.0 / 9 * (fahrenheit - 32)
will be a decimal number. Because fahrenheit and celsius are int variables, we can use
the cast operators to convert this value to an integer, that is, we use the following expression:

celsius = static_cast<int> (5.0 / 9 * (fahrenheit - 32) + 0.5);

(Note that in the preceding expression, we added 0.5 to round the number to the nearest
integer.)

The revised program is:

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

int fahrenheit; //Line 5
int celsius; //Line 6

Debugging: Understanding Logic Errors and Debugging with cout Statements | 151

cout << "Enter temperature in Fahrenheit: "; //Line 7
cin >> fahrenheit; //Line 8
cout << endl; //Line 9

celsius = static_cast<int>
(5.0 / 9 * (fahrenheit - 32) + 0.5); //Line 10

cout << fahrenheit << " degree F = "
<< celsius << " degree C. " << endl; //Line 11

return 0; //Line 12
} //Line 13

Sample Run: In this sample run, the user input is shaded.

Enter temperature in Fahrenheit: 110

110 degree F = 43 degree C.

As we can see, using temporary cout statements, we were able to find the problem. After
correcting the problem, the temporary cout statements are removed.

The temperature conversion program contained logic errors, not syntax errors. Using
cout statements to print the values of expressions and/or variables to see the results of a
calculation is an effective way to find and correct logic errors.

File Input/Output
The previous sections discussed in some detail how to get input from the keyboard (standard
input device) and send output to the screen (standard output device). However, getting input
from the keyboard and sending output to the screen have several limitations. Inputting data in a
program from the keyboard is comfortable as long as the amount of input is very small. Sending
output to the screen works well if the amount of data is small (no larger than the size of the
screen) and you do not want to distribute the output in a printed format to others.

If the amount of input data is large, however, it is inefficient to type it at the keyboard
each time you run a program. In addition to the inconvenience of typing large amounts
of data, typing can generate errors, and unintentional typos cause erroneous results. You
must have some way to get data into the program from other sources. By using alternative
sources of data, you can prepare the data before running a program, and the program can
access the data each time it runs.

Suppose you want to present the output of a program in a meeting. Distributing printed
copies of the program output is a better approach than showing the output on a screen.
For example, you might give a printed report to each member of a committee before an
important meeting. Furthermore, output must sometimes be saved so that the output
produced by one program can be used as an input to other programs.

This section discusses how to obtain data from other input devices, such as a disk (that is,
secondary storage), and how to save the output to a disk. C++ allows a program to get

152 | Chapter 3: Input/Output

3

data directly from and save output directly to secondary storage. A program can use the file
I/O and read data from or write data to a file. Formally, a file is defined as follows:

File: An area in secondary storage used to hold information.

The standard I/O header file, iostream, contains data types and variables that are used
only for input from the standard input device and output to the standard output device.
In addition, C++ provides a header file called fstream, which is used for file I/O.
Among other things, the fstream header file contains the definitions of two data types:
ifstream, which means input file stream and is similar to istream, and ofstream,
which means output file stream and is similar to ostream.

The variables cin and cout are already defined and associated with the standard input/
output devices. In addition, >>, get, ignore, putback, peek, and so on can be used with
cin, whereas <<, setfill, and so on can be used with cout. These same operators and
functions are also available for file I/O, but the header file fstream does not declare variables
to use them. You must declare variables called file stream variables, which include
ifstream variables for input and ofstream variables for output. You then use these
variables together with >>, <<, or other functions for I/O. Remember that C++ does not
automatically initialize user-defined variables. Once you declare the fstream variables, you
must associate these file variables with the input/output sources.

File I/O is a five-step process:

1. Include the header file fstream in the program.

2. Declare file stream variables.

3. Associate the file stream variables with the input/output sources.

4. Use the file stream variables with >>, <<, or other input/output functions.

5. Close the files.

We will now describe these five steps in detail. A skeleton program then shows how the
steps might appear in a program.

Step 1 requires that the header file fstream be included in the program. The following
statement accomplishes this task:

#include <fstream>

Step 2 requires you to declare file stream variables. Consider the following statements:

ifstream inData;
ofstream outData;

The first statement declares inData to be an input file stream variable. The second
statement declares outData to be an output file stream variable.

Step 3 requires you to associate file stream variables with the input/output sources. This
step is called opening the files. The stream member function open is used to open files.
The syntax for opening a file is:

fileStreamVariable.open(sourceName);

File Input/Output | 153

Here, fileStreamVariable is a file stream variable, and sourceName is the name of the
input/output file.

Suppose you include the declaration from Step 2 in a program. Further suppose that the input
data is stored in a file called prog.dat. The following statements associate inData with
prog.dat and outData with prog.out. That is, the file prog.dat is opened for inputting
data, and the file prog.out is opened for outputting data.

inData.open("prog.dat"); //open the input file; Line 1
outData.open("prog.out"); //open the output file; Line 2

IDEs such as Visual Studio .Net manage programs in the form of projects. That is, first you

create a project, and then you add source files to the project. The statement in Line 1 assumes

that the file prog.dat is in the same directory (subdirectory) as your project. However, if this

is in a different directory (subdirectory), then you must specify the path where the file is

located, along with the name of the file. For example, suppose that the file prog.dat is on a
flash memory in drive H. Then the statement in Line 1 should be modified as follows:

inData.open("h:\\prog.dat");

Note that there are two \ after h:. Recall from Chapter 2 that in C++, \ is the escape

character. Therefore, to produce a \within a string, you need \\. (To be absolutely sure

about specifying the source where the input file is stored, such as the drive h:\\, check
your system’s documentation.)

Similar conventions for the statement in Line 2.

Suppose that a program reads data from a file. Because different computers have drives

labeled differently, for simplicity, throughout the book, we assume that the file containing

the data and the program reading data from the file are in the same directory (subdirectory).

We typically use .dat, .out, or .txt as an extension for the input and output files

and use Notepad, Wordpad, or TextPad to create and open these files. You can also use

your IDE’s editor, if any, to create .txt (text) files. (To be absolutely sure about it, check

you IDE’s documentation.)

Step 4 typically works as follows. You use the file stream variables with >>, <<, or other
input/output functions. The syntax for using >> or << with file stream variables is exactly
the same as the syntax for using cin and cout. Instead of using cin and cout, however,
you use the file stream variable names that were declared. For example, the statement:

inData >> payRate;

reads the data from the file prog.dat and stores it in the variable payRate. The statement:

outData << "The paycheck is: $" << pay << endl;

154 | Chapter 3: Input/Output

3

stores the output—The paycheck is: $565.78—in the file prog.out. This statement
assumes that the pay was calculated as 565.78.

Once the I/O is complete, Step 5 requires closing the files. Closing a file means that
the file stream variables are disassociated from the storage area and are freed. Once
these variables are freed, they can be reused for other file I/O. Moreover, closing an
output file ensures that the entire output is sent to the file; that is, the buffer is
emptied. You close files by using the stream function close. For example, assuming
the program includes the declarations listed in Steps 2 and 3, the statements for
closing the files are:

inData.close();
outData.close();

On some systems, it is not necessary to close the files. When the program terminates,

the files are closed automatically. Nevertheless, it is a good practice to close the files

yourself. Also, if you want to use the same file stream variable to open another file,

you must close the first file opened with that file stream variable.

In skeleton form, a program that uses file I/O usually takes the following form:

#include <fstream>

//Add additional header files you use

using namespace std;

int main()
{

//Declare file stream variables such as the following
ifstream inData;
ofstream outData;
.
.
.

//Open the files
inData.open("prog.dat"); //open the input file
outData.open("prog.out"); //open the output file

//Code for data manipulation

//Close files
inData.close();
outData.close();

return 0;
}

File Input/Output | 155

Recall that Step 3 requires the file to be opened for file I/O. Opening a file associates a
file stream variable declared in the program with a physical file at the source, such as a
disk. In the case of an input file, the file must exist before the open statement executes.
If the file does not exist, the open statement fails and the input stream enters the fail
state. An output file does not have to exist before it is opened; if the output file does not
exist, the computer prepares an empty file for output. If the designated output file
already exists, by default, the old contents are erased when the file is opened.

To add the output at the end of an existing file, you can use the option ios::app as follows.
Suppose that outData is declared as before and you want to add the output at the end

of the existing file, say, firstProg.out. The statement to open this file is:

outData.open("firstProg.out", ios::app);

If the file firstProg.out does not exist, then the system creates an empty file.

Appendix E discusses binary and random access files.

PROGRAMMING EXAMPLE:

Movie Tickets Sale and Donation to Charity
A movie in a local theater is in great demand. To help a local charity, the theater
owner has decided to donate to the charity a portion of the gross amount generated
from the movie. This example designs and implements a program that prompts the
user to input the movie name, adult ticket price, child ticket price, number of adult
tickets sold, number of child tickets sold, and percentage of the gross amount to be
donated to the charity. The output of the program is as follows.

-*
Movie Name: Journey to Mars
Number of Tickets Sold: 2650
Gross Amount: $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated: $ 915.00
Net Sale: $ 8235.00

Note that the strings, such as "Movie Name:" , in the first column are left-justified,
the numbers in the right column are right-justified, and the decimal numbers are
output with two decimal places.

156 | Chapter 3: Input/Output

3

Input The input to the program consists of the movie name, adult ticket price, child

ticket price, number of adult tickets sold, number of child tickets sold, and

percentage of the gross amount to be donated to the charity.

Output The output is as shown above.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To calculate the amount donated to the local charity and the net sale, you first need to
determine the gross amount. To calculate the gross amount, you multiply the number
of adult tickets sold by the price of an adult ticket, multiply the number of child tickets
sold by the price of a child ticket, and then add these two numbers. That is:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

Next, you determine the percentage of the amount donated to the charity and then
calculate the net sale amount by subtracting the amount donated from the gross
amount. The formulas to calculate the amount donated and the net sale amount are
given below. This analysis leads to the following algorithm:

1. Get the movie name.

2. Get the price of an adult ticket.

3. Get the price of a child ticket.

4. Get the number of adult tickets sold.

5. Get the number of child tickets sold.

6. Get the percentage of the gross amount donated to the charity.

7. Calculate the gross amount using the following formula:

grossAmount = adultTicketPrice * noOfAdultTicketsSold
+ childTicketPrice * noOfChildTicketsSold;

8. Calculate the amount donated to the charity using the following formula:

amountDonated = grossAmount * percentDonation / 100;

9. Calculate the net sale amount using the following formula:

netSaleAmount = grossAmount – amountDonated;

Variables From the preceding discussion, it follows that you need variables to store the
movie name, adult ticket price, child ticket price, number of adult tickets sold,
number of child tickets sold, percentage of the gross amount donated to the
charity, gross amount, amount donated, and net sale amount. Therefore, the
following variables are needed:

string movieName;
double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;

Programming Example: Movie Tickets Sale and Donation to Charity | 157

double percentDonation;
double grossAmount;
double amountDonated;
double netSaleAmount;

Because movieName is declared as a string variable, you need to include the header
file string. Therefore, the program needs, among others, the following include
statement:

#include <string>

Formatting

Output

In the output, the first column is left-justified and the numbers in the second
column are right-justified. Therefore, when printing a value in the first column,
the manipulator left is used; before printing a value in the second column, the
manipulator right is used. The empty space between the first and second
columns is filled with dots; the program uses the manipulator setfill to
accomplish this goal. In the lines showing the gross amount, amount donated,
and net sale amount, the space between the $ sign and the number is filled with
blank spaces. Therefore, before printing the dollar sign, the program uses the
manipulator setfill to set the filling character to blank. The following state-
ments accomplish the desired output:

cout << "-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< "-*-*-*-*-*-*-*-*-*-*-*-*-*" << endl;

cout << setfill('.') << left << setw(35) << "Movie Name: "
<< right << " " << movieName << endl;

cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill(' ') << right << setw(10)
<< noOfAdultTicketsSold + noOfChildTicketsSold
<< endl;

cout << setfill('.') << left << setw(35) << "Gross Amount: "
<< setfill(' ') << right << " $"
<< setw(8) << grossAmount << endl;

cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated: "
<< setfill(' ') << right
<< setw(9) << percentDonation << '%' << endl;

cout << setfill('.') << left << setw(35) << "Amount Donated: "
<< setfill(' ') << right << " $"
<< setw(8) << amountDonated << endl;

cout << setfill('.') << left << setw(35) << "Net Sale: "
<< setfill(' ') << right << " $"
<< setw(8) << netSaleAmount << endl;

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to
do the calculations. We also determined the necessary variables and named constants.
We can now expand the previous algorithm to solve the problem given at the
beginning of this programming example.

158 | Chapter 3: Input/Output

3

1. Declare the variables.

2. Set the output of the floating-point numbers to two decimal places
in a fixed decimal format with a decimal point and trailing zeros.
Include the header file iomanip.

3. Prompt the user to enter a movie name.

4. Input (read) the movie name. Because the name of a movie might
contain more than one word (and, therefore, might contain blanks),
the program uses the function getline to input the movie name.

5. Prompt the user to enter the price of an adult ticket.

6. Input (read) the price of an adult ticket.

7. Prompt the user to enter the price of a child ticket.

8. Input (read) the price of a child ticket.

9. Prompt the user to enter the number of adult tickets sold.

10. Input (read) the number of adult tickets sold.

11. Prompt the user to enter the number of child tickets sold.

12. Input (read) the number of child tickets sold.

13. Prompt the user to enter the percentage of the gross amount donated.

14. Input (read) the percentage of the gross amount donated.

15. Calculate the gross amount.

16. Calculate the amount donated.

17. Calculate the net sale amount.

18. Output the results.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Movie Tickets Sale
// This program determines the money to be donated to a
// charity. It prompts the user to input the movie name, adult
// ticket price, child ticket price, number of adult tickets
// sold, number of child tickets sold, and percentage of the
// gross amount to be donated to the charity.
//**

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

Programming Example: Movie Tickets Sale and Donation to Charity | 159

int main()
{

//Step 1
string movieName;
double adultTicketPrice;
double childTicketPrice;
int noOfAdultTicketsSold;
int noOfChildTicketsSold;
double percentDonation;
double grossAmount;
double amountDonated;
double netSaleAmount;

cout << fixed << showpoint << setprecision(2); //Step 2

cout << "Enter the movie name: "; //Step 3
getline(cin, movieName); //Step 4
cout << endl;

cout << "Enter the price of an adult ticket: "; //Step 5
cin >> adultTicketPrice; //Step 6
cout << endl;

cout << "Enter the price of a child ticket: "; //Step 7
cin >> childTicketPrice; //Step 8
cout << endl;
cout << "Enter the number of adult tickets "

<< "sold: "; //Step 9
cin >> noOfAdultTicketsSold; //Step 10
cout << endl;

cout << "Enter the number of child tickets "
<< "sold: "; //Step 11

cin >> noOfChildTicketsSold; //Step 12
cout << endl;

cout << "Enter the percentage of donation: "; //Step 13
cin >> percentDonation; //Step 14
cout << endl << endl;

//Step 15
grossAmount = adultTicketPrice * noOfAdultTicketsSold +

childTicketPrice * noOfChildTicketsSold;

//Step 16
amountDonated = grossAmount * percentDonation / 100;

netSaleAmount = grossAmount - amountDonated; //Step 17

//Step 18: Output results
cout << "-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"

<< "-*-*-*-*-*-*-*-*-*-*-*-*-*" << endl;

160 | Chapter 3: Input/Output

3

cout << setfill('.') << left << setw(35) << "Movie Name: "
<< right << " " << movieName << endl;

cout << left << setw(35) << "Number of Tickets Sold: "
<< setfill(' ') << right << setw(10)
<< noOfAdultTicketsSold + noOfChildTicketsSold
<< endl;

cout << setfill('.') << left << setw(35)
<< "Gross Amount: "
<< setfill(' ') << right << " $"
<< setw(8) << grossAmount << endl;

cout << setfill('.') << left << setw(35)
<< "Percentage of Gross Amount Donated: "
<< setfill(' ') << right
<< setw(9) << percentDonation << '%' << endl;

cout << setfill('.') << left << setw(35)
<< "Amount Donated: "
<< setfill(' ') << right << " $"
<< setw(8) << amountDonated << endl;

cout << setfill('.') << left << setw(35) << "Net Sale: "
<< setfill(' ') << right << " $"
<< setw(8) << netSaleAmount << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter movie name: Journey to Mars

Enter the price of an adult ticket: 4.50

Enter the price of a child ticket: 3.00

Enter number of adult tickets sold: 800

Enter number of child tickets sold: 1850

Enter the percentage of donation: 10

-*
Movie Name: Journey to Mars
Number of Tickets Sold: 2650
Gross Amount: $ 9150.00
Percentage of Gross Amount Donated: 10.00%
Amount Donated: $ 915.00
Net Sale: $ 8235.00

Note that the first six lines of output get the necessary data to generate the last six
lines of the output as required.

Programming Example: Movie Tickets Sale and Donation to Charity | 161

PROGRAMMING EXAMPLE: Student Grade
Write a program that reads a student name followed by five test scores. The program
should output the student name, the five test scores, and the average test score.
Output the average test score with two decimal places.

The data to be read is stored in a file called test.txt. The output should be stored
in a file called testavg.out.

Input A file containing the student name and the five test scores. A sample input is:

Andrew Miller 87.50 89 65.75 37 98.50

Output The student name, the five test scores, and the average of the five test

scores, saved to a file.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To find the average of the five test scores, you add the five test scores and divide the
sum by 5. The input data is in the following form: the student name followed by the
five test scores. Therefore, you must read the student name first and then read the five
test scores. This problem analysis translates into the following algorithm:

1. Read the student name and the five test scores.

2. Output the student name and the five test scores.

3. Calculate the average.

4. Output the average.

You output the average test score in the fixed decimal format with two decimal places.

Variables The program needs to read a student’s first and last name and five test scores. Therefore, you
need two variables to store the student name and five variables to store the five test scores.

To find the average, you must add the five test scores and then divide the sum by 5.
Thus, you need a variable to store the average test score. Furthermore, because the
input data is in a file, you need an ifstream variable to open the input file. Because
the program output will be stored in a file, you need an ofstream variable to open
the output file. The program, therefore, needs at least the following variables:

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double test1, test2, test3, test4, test5; //variables to
//read the five test scores

double average; //variable to store the average test score
string firstName; //variable to store the first name
string lastName; //variable to store the last name

MAIN

ALGORITHM

In the preceding sections, we analyzed the problem and determined the formulas to
perform the calculations. We also determined the necessary variables and named

162 | Chapter 3: Input/Output

3

constants. We can now expand the previous algorithm to solve the problem given at
the beginning of this programming example:

1. Declare the variables.

2. Open the input file.

3. Open the output file.

4. To output the floating-point numbers in a fixed decimal format
with a decimal point and trailing zeros, set the manipulators fixed
and showpoint. Also, to output the floating-point numbers with
two decimal places, set the precision to two decimal places.

5. Read the student name.

6. Output the student name.

7. Read the five test scores.

8. Output the five test scores.

9. Find the average test score.

10. Output the average test score.

11. Close the input and output files.

Because this program reads data from a file and outputs data to a file, it must include
the header file fstream. Because the program outputs the average test score to two decimal
places, you need to set the precision to two decimal places. Therefore, the program uses the
manipulator setprecision, which requires you to include the header file iomanip.
Because firstName and lastName are string variables, we must include the header file
string. The program also includes the header file iostream to print a message on the
screen so that you will not stare at a blank screen while the program executes.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program to calculate the average test score.
// Given a student's name and five test scores, this program
// calculates the average test score. The student's name, the
// five test scores, and the average test score are stored in
// the file testavg.out. The data is input from the file
// test.txt.
//**

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

Programming Example: Student Grade | 163

int main()
{

//Declare variables; Step 1
ifstream inFile;
ofstream outFile;

double test1, test2, test3, test4, test5;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //Step 2
outFile.open("testavg.out"); //Step 3

outFile << fixed << showpoint; //Step 4
outFile << setprecision(2); //Step 4

cout << "Processing data" << endl;

inFile >> firstName >> lastName; //Step 5
outFile << "Student name: " << firstName

<< " " << lastName << endl; //Step 6

inFile >> test1 >> test2 >> test3
>> test4 >> test5; //Step 7

outFile << "Test scores: " << setw(6) << test1
<< setw(6) << test2 << setw(6) << test3
<< setw(6) << test4 << setw(6) << test5
<< endl; //Step 8

average = (test1 + test2 + test3 + test4
+ test5) / 5.0; //Step 9

outFile << "Average test score: " << setw(6)
<< average << endl; //Step 10

inFile.close(); //Step 11
outFile.close(); //Step 11

return 0;
}

Sample Run:

Input File (contents of the file test.txt):

Andrew Miller 87.50 89 65.75 37 98.50

Output File (contents of the file testavg.out):

Student name: Andrew Miller
Test scores: 87.50 89.00 65.75 37.00 98.50
Average test score: 75.55

164 | Chapter 3: Input/Output

3

QUICK REVIEW

1. A stream in C++ is an infinite sequence of characters from a source to a
destination.

2. An input stream is a stream from a source to a computer.

3. An output stream is a stream from a computer to a destination.

4. cin, which stands for common input, is an input stream object, typically
initialized to the standard input device, which is the keyboard.

5. cout, which stands for common output, is an output stream object,
typically initialized to the standard output device, which is the screen.

6. When the binary operator >> is used with an input stream object, such ascin, it
is called the stream extraction operator. The left-side operand of >> must be an
input stream variable, such as cin; the right-side operand must be a variable.

7. When the binary operator << is used with an output stream object, such as
cout, it is called the stream insertion operator. The left-side operand of <<
must be an output stream variable, such as cout; the right-side operand of
<< must be an expression or a manipulator.

8. When inputting data into a variable, the operator >> skips all leading
whitespace characters.

9. To use cin and cout, the program must include the header file iostream.

10. The function get is used to read data on a character-by-character basis and
does not skip any whitespace characters.

11. The function ignore is used to skip data in a line.

12. The function putback puts the last character retrieved by the function get
back into the input stream.

13. The function peek returns the next character from the input stream but
does not remove the character from the input stream.

14. Attempting to read invalid data into a variable causes the input stream to
enter the fail state.

15. Once an input failure has occurred, you use the function clear to restore
the input stream to a working state.

The preceding program uses five variables—test1, test2, test3, test4,

and test5—to read the five test scores and then find the average test score.

The Web site accompanying this book contains a modified version of this program

that uses only one variable, testScore, to read the test scores and another

variable, sum, to find the sum of the test scores. The program is named

Ch3_AverageTestScoreVersion2.cpp.

Quick Review | 165

16. The manipulator setprecision formats the output of floating-point
numbers to a specified number of decimal places.

17. The manipulator fixed outputs floating-point numbers in the fixed
decimal format.

18. The manipulator showpoint outputs floating-point numbers with a
decimal point and trailing zeros.

19. The manipulator setw formats the output of an expression in a specific
number of columns; the default output is right-justified.

20. If the number of columns specified in the argument of setw is less than the
number of columns needed to print the value of the expression, the output
is not truncated and the output of the expression expands to the required
number of columns.

21. The manipulator setfill is used to fill the unused columns on an output
device with a character other than a space.

22. If the number of columns specified in the setw manipulator exceeds the
number of columns required by the next expression, the output is right-
justified. To left-justify the output, you use the manipulator left.

23. To use the stream functions get, ignore, putback, peek, clear, and unsetf
for standard I/O, the program must include the header file iostream.

24. To use the manipulators setprecision, setw, and setfill, the program
must include the header file iomanip.

25. The header file fstream contains the definitions of ifstream and ofstream.

26. For file I/O, you must use the statement #include <fstream> to include the
header file fstream in the program. You must also do the following: declare
variables of type ifstream for file input and of type ofstream for file output
and use open statements to open input and output files. You can use <<, >>,
get, ignore, peek, putback, or clear with file stream variables.

27. To close a file as indicated by the ifstream variable inFile, you use the
statement inFile.close();. To close a file as indicated by the ofstream
variable outFile, you use the statement outFile.close();.

EXERCISES

1. Mark the following statements as true or false.

a. The extraction operator >> skips all leading whitespace characters when
searching for the next data in the input stream.

b. In the statement cin >> x;, x must be a variable.

c. The statement cin >> x >> y; requires the input values for x and y to
appear on the same line.

d. The statement cin >> num; is equivalent to the statement num >> cin;.

166 | Chapter 3: Input/Output

e. You generate the newline character by pressing the Enter (return) key
on the keyboard.

f. The function ignore is used to skip certain input in a line.

2. Suppose x and y are int variables and ch is a char variable. Consider the
following input:

5 28 36

What value (if any) is assigned to x, y, and ch after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y >> ch;

b. cin >> ch >> x >> y;

c. cin >> x >> ch >> y;

d. cin >> x >> y;
cin.get(ch);

3. Suppose x and y are int variables and z is a double variable. Assume the
following input data:

37 86.56 32

What value (if any) is assigned to x, y, and z after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y >> z;

b. cin >> x >> z >> y;

c. cin >> z >> x >> y;

4. Suppose x and y are int variables and ch is a char variable. Assume the
following input data:

13 28 D
14 E 98
A B 56

What value (if any) is assigned to x, y, and ch after each of the following
statements executes? (Use the same input for each statement.)

a. cin >> x >> y;
cin.ignore(50, '\n');
cin >> ch;

b. cin >> x;
cin.ignore(50, '\n');
cin >> y;
cin.ignore(50, '\n');
cin.get(ch);

c. cin >> y;
cin.ignore(50, '\n');
cin >> x >> ch;

3

Exercises | 167

d. cin.get(ch);
cin.ignore(50, '\n');
cin >> x;
cin.ignore(50, 'E');
cin >> y;

5. Given the input:

46 A 49

and the C++ code:

int x = 10, y = 18;
char z = '*';
cin >> x >> y >> z;
cout << x << " " << y << " " << z << endl;

What is the output?

6. Suppose that x and y are int variables, z is a double variable, and ch is a
char variable. Suppose the input statement is:

cin >> x >> y >> ch >> z;

What values, if any, are stored in x, y, z, and ch if the input is:

a. 35 62.78

b. 86 32A 92.6

c. 12 .45A 32

7. Which header file must be included to use the function steprecision?

8. Which header file must be included to use the function pow?

9. Suppose that name is a variable of type string. Write the input statement
to read and store the input Brenda Clinton in name. (Assume that the
input is from the standard input device.)

10. Write a C++ statement that uses the manipulator setfill to output a line
containing 35 stars, as in the following line:

11. Suppose that age is an int variable and name is a string variable. What are
the values of age and name after the following input statements execute:

cin >> age;
getline(cin, name);

if the input is:

a. 23 Lance Grant

b. 23
Lance Grant

12. Suppose that age is an int variable, ch is a char variable, and name is a
string variable. What are the values of age and name after the following
input statements execute:

168 | Chapter 3: Input/Output

3

cin >> age;
cin.get(ch);
getline(cin, name);

if the input is:

a. 23 Lance Grant

b. 23
Lance Grant

13. The following program is supposed to read two numbers from a file named
input.dat and write the sum of the numbers to a file named output.dat.
However, it fails to do so. Rewrite the program so that it accomplishes what
it is intended to do. (Also, include statements to close the files.)

#include <iostream>
#include <fstream>
using namespace std;

int main()
{

int num1, num2;
ifstream infile;

outfile.open("output.dat");
infile >> num1 >> num2;
outfile << "Sum = " << num1 + num2 << endl;
return 0;

}

14. What may cause an input stream to enter the fail state? What happens when
an input stream enters the fail state?

15. Which header file needs to be included in a program that uses the data types
ifstream and ofstream?

16. Suppose that infile is an ifstream variable and employee.dat is a file
that contains employees’ information. Write the C++ statement that opens
this file using the variable infile.

17. A program reads data from a file called inputFile.dat and, after doing
some calculations, writes the results to a file called outFile.dat. Answer
the following questions:

a. After the program executes, what are the contents of the file
inputFile.dat?

b. After the program executes, what are the contents of the file outFile.dat if
this file was empty before the program executed?

c. After the program executes, what are the contents of the file outFile.dat if
this file contained 100 numbers before the program executed?

d. What would happen if the file outFile.dat did not exist before the
program executed?

Exercises | 169

18. Suppose that infile is an ifstream variable and it is associated with the
file that contains the following data: 27306 savings 7503.35. Write the
C++ statement(s) that reads and stores the first input in the int variable
acctNumber, the second input in the string variable accountType, and
the third input in the double variable balance.

19. Suppose that you have the following statements:

ofstream outfile;
double distance = 375;
double speed = 58;
double travelTime;

Write C++ statements to do the following:

a. Open the file travel.dat using the variable outfile.

b. Write the statement to format your output to two decimal places in
fixed form.

c. Write the values of the variables day, distance, and speed in the file
travel.dat.

d. Calculate and write the travelTime in the file travel.dat.

e. Which header files are needed to process the information in (a) to (d)?

PROGRAMMING EXERCISES

1. Consider the following incomplete C++ program:

#include <iostream>

int main()
{

...
}

a. Write a statement that includes the header files fstream, string, and
iomanip in this program.

b. Write statements that declare inFile to be an ifstream variable and
outFile to be an ofstream variable.

c. The program will read data from the file inData.txt and write output
to the file outData.txt. Write statements to open both of these files,
associate inFile with inData.txt, and associate outFile with
outData.txt.

d. Suppose that the file inData.txt contains the following data:

10.20 5.35
15.6
Randy Gill 31
18500 3.5
A

170 | Chapter 3: Input/Output

The numbers in the first line represent the length and width, respectively, of
a rectangle. The number in the second line represents the radius of a circle.
The third line contains the first name, last name, and the age of a person. The
first number in the fourth line is the savings account balance at the beginning
of the month, and the second number is the interest rate per year. (Assume
that p¼ 3.1416.) The fifth line contains an uppercase letter between A and
Y (inclusive). Write statements so that after the program executes, the con-
tents of the file outData.txt are as shown below. If necessary, declare
additional variables. Your statements should be general enough so that if the
content of the input file changes and the program is run again (without
editing and recompiling), it outputs the appropriate results.

Rectangle:
Length = 10.20, width = 5.35, area = 54.57, parameter = 31.10

Circle:
Radius = 15.60, area = 764.54, circumference = 98.02

Name: Randy Gill, age: 31
Beginning balance = $18500.00, interest rate = 3.50
Balance at the end of the month = $18553.96

The character that comes after A in the ASCII set is B

e. Write statements that close the input and output files.

f. Write a C++ program that tests the statements in parts a through e.

2. Consider the following program in which the statements are in the incorrect
order. Rearrange the statements so that the program prompts the user to input
the height and the radius of the base of a cylinder and outputs the volume and
surface area of the cylinder. Format the output to two decimal places.

#include <iomanip>
#include <cmath>

int main()
{}

double height;

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;

cout << "Enter the height of the cylinder: ";
cin >> radius;
cout << endl;

return 0;

double radius;

3

Programming Exercises | 171

cout << "Surface area: "
<< 2 * radius * + 2 * PI * pow(radius, 2.0) << endl;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the radius of the base of the cylinder: ";
cin >> height;
cout << endl;

#include <iostream>
const double PI = 3.14159;

using namespace std;

3. Write a program that prompts the user to enter the weight of a person in
kilograms and outputs the equivalent weight in pounds. Output both the
weights rounded to two decimal places. (Note that 1 kilogram ¼ 2.2
pounds.) Format your output with two decimal places.

4. During each summer, John and Jessica grow vegetables in their back yard
and buy seeds and fertilizer from a local nursery. The nursery carries different
types of vegetable fertilizers in various bag sizes. When buying a particular
fertilizer, they want to know the price of the fertilizer per pound and the cost
of fertilizing per square foot. The following program prompts the user to
enter the size of the fertilizer bag, in pounds, the cost of the bag, and the
area, in square feet, that can be covered by the bag. The program should
output the desired result. However, the program contains logic errors. Find
and correct the logic errors so that the program works properly.

//Logic errors.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

double cost;
double area;

double bagSize;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the amount of fertilizer, in pounds, "
<< "in one bag: ";

cin >> bagSize;
cout << endl;

cout << "Enter the cost of the " << bagSize
<< " pound fertilizer bag: ";

172 | Chapter 3: Input/Output

3

cin >> cost;
cout << endl;

cout << "Enter the area, in square feet, that can be "
<< "fertilized by one bag: ";

cin >> area;
cout << endl;

cout << "The cost of the fertilizer per pound is: $"
<< bagSize / cost << endl;

cout << "The cost of fertilizing per square foot is: $"
<< area / cost << endl;

return 0;
}

5. The manager of a football stadium wants you to write a program that
calculates the total ticket sales after each game. There are four types of
tickets—box, sideline, premium, and general admission. After each game,
data is stored in a file in the following form:

ticketPrice numberOfTicketsSold
...

Sample data are shown below:

250 5750
100 28000
50 35750
25 18750

The first line indicates that the ticket price is $250 and that 5750 tickets were
sold at that price. Output the number of tickets sold and the total sale amount.
Format your output with two decimal places.

6. Write a program that calculates and prints the monthly paycheck for an
employee. The net pay is calculated after taking the following deductions:

Federal Income Tax: 15%
State Tax: 3.5%
Social Security Tax: 5.75%
Medicare/Medicaid Tax: 2.75%
Pension Plan: 5%
Health Insurance: $75.00

Your program should prompt the user to input the gross amount and the
employee name. The output will be stored in a file. Format your output to
have two decimal places. A sample output follows:

Bill Robinson
Gross Amount: $3575.00
Federal Tax: $ 536.25
State Tax: $ 125.13

Programming Exercises | 173

Social Security Tax: $ 205.56
Medicare/Medicaid Tax: ... $ 98.31
Pension Plan: $ 178.75
Health Insurance: $ 75.00
Net Pay: $2356.00

Note that the first column is left-justified, and the right column is right-
justified.

7. Redo Programming Exercise 21, in Chapter 2, so that each string can store
a line of text.

8. Three employees in a company are up for a special pay increase. You are
given a file, say Ch3_Ex8Data.txt, with the following data:

Miller Andrew 65789.87 5
Green Sheila 75892.56 6
Sethi Amit 74900.50 6.1

Each input line consists of an employee’s last name, first name, current salary,
and percent pay increase. For example, in the first input line, the last name of
the employee is Miller, the first name is Andrew, the current salary is
65789.87, and pay increase is 5%. Write a program that reads data from
the specified file and stores the output in the file Ch3_Ex8Output.dat.
For each employee, the data must be output in the following form:
firstName lastName updatedSalary. Format the output of decimal
numbers to two decimal places.

9. Write a program that accepts as input the mass, in grams, and density, in
grams per cubic centimeters, and outputs the volume of the object using the
formula: density ¼ mass / volume. Format your output to two decimal places.

10. Interest on a credit card’s unpaid balance is calculated using the average daily
balance. Suppose that netBalance is the balance shown in the bill, payment is
the payment made, d1 is the number of days in the billing cycle, and d2 is
the number of days payment is made before billing cycle. Then, the average
daily balance is:

averageDailyBalance ¼ ðnetBalance � d1� payment � d2Þ=d1

If the interest rate per month is, say, 0.0152, then the interest on the
unpaid balance is:

interest ¼ averageDailyBalance � 0:0152

Write a program that accepts as input netBalance, payment, d1, d2, and
interest rate per month. The program outputs the interest. Format your
output to two decimal places.

174 | Chapter 3: Input/Output

CONTROL STRUCTURES I
(SELECTION)

IN THIS CHAPTER , YOU WILL :

. Learn about control structures

. Examine relational and logical operators

. Explore how to form and evaluate logical (Boolean) expressions

. Discover how to use the selection control structures if, if ...else, and switch in a program

. Learn how to avoid bugs by avoiding partially understood concepts

. Learn to use the assert function to terminate a program

4C H A P T E R

Chapter 2 defined a program as a sequence of statements whose objective is to
accomplish some task. The programs you have examined so far were simple
and straightforward. To process a program, the computer begins at the first exe-
cutable statement and executes the statements in order until it comes to the end.
In this chapter and Chapter 5, you will learn how to tell a computer that it does
not have to follow a simple sequential order of statements; it can also make
decisions and repeat certain statements over and over until certain conditions
are met.

Control Structures
A computer can process a program in one of the following ways: in sequence; selectively,
by making a choice, which is also called a branch; repetitively, by executing a statement
over and over, using a structure called a loop; or by calling a function. Figure 4-1
illustrates the first three types of program flow. (In Chapter 7, we will show how function
calls work.) The programming examples in Chapters 2 and 3 included simple sequential
programs. With such a program, the computer starts at the beginning and follows the
statements in order. No choices are made; there is no repetition. Control structures
provide alternatives to sequential program execution and are used to alter the sequential
flow of execution. The two most common control structures are selection and repetition.
In selection, the program executes particular statements depending on some condition(s).
In repetition, the program repeats particular statements a certain number of times based on
some condition(s).

statement1

statement2

statementN

statement2 statement1

false trueexpression
statement

false

trueexpression

a. Sequence b. Selection c. Repetition

FIGURE 4-1 Flow of execution

176 | Chapter 4: Control Structures I (Selection)

Before you can learn about selection and repetition, you must understand the nature
of conditional statements and how to use them. Consider the following three
statements:

1. if (score is greater than or equal to 90)
grade is A

2. if (hours worked are less than or equal to 40)
wages = rate * hours

otherwise

wages = (rate * 40) + 1.5 *(rate *(hours – 40))

3. if (temperature is greater than 70 degrees and it is not
raining)

Go golfing!

These statements are examples of conditional statements. You can see that certain
statements are to be executed only if certain conditions are met. A condition is met if
it evaluates to true. For example, in statement 1:

score is greater than or equal to 90

is true if the value of score is greater than or equal to 90; it is false otherwise. For
example, if the value of score is 95, the statement evaluates to true. Similarly, if the
value of score is 86, the statement evaluates to false.

It would be useful if the computer could recognize these types of statements to be true
for appropriate values. Furthermore, in certain situations, the truth or falsity of a
statement could depend on more than one condition. For example, in statement 3, both
temperature is greater than 70 degrees and it is not raining must be true to
recommend golfing.

As you can see, for the computer to make decisions and repeat statements, it must be able
to react to conditions that exist when the program executes. The next few sections discuss
how to represent and evaluate conditional statements in C++.

Relational Operators
To make decisions, you must be able to express conditions and make comparisons. For
example, the interest rate and service charges on a checking account might depend on the
balance at the end of the month. If the balance is less than some minimum balance, not
only is the interest rate lower, but there is also usually a service charge. Therefore, to
determine the interest rate, you must be able to state the minimum balance and compare
the account balance with the minimum balance (a condition). The premium on an
insurance policy is also determined by stating conditions and making comparisons. For
example, to determine an insurance premium, you must be able to check the smoking
status of the policyholder. Nonsmokers (the condition) receive lower premiums than
smokers. Both of these examples involve comparing items. Certain items are compared

4

Relational Operators | 177

for equality against a particular condition; others are compared for inequality (greater than
or less than) against a particular condition.

In C++, a condition is represented by a logical (Boolean) expression. An expression that
has a value of either true or false is called a logical (Boolean) expression. More-
over, true and false are logical (Boolean) values. Suppose i and j are integers.
Consider the expression:

i > j

If this expression is a logical expression, it will have the value true if the value of
i is greater than the value of j; otherwise, it will have the value false. The
symbol > is called a relational operator. A relational operator allows you to make
comparisons in a program.

C++ includes six relational operators that allow you to state conditions and make
comparisons. Table 4-1 lists the relational operators.

In C++, the symbol ==, which consists of two equal signs, is called the equality operator.

Recall that the symbol = is called the assignment operator. Remember that the equality

operator, ==, determines whether two expressions are equal, whereas the assignment
operator, =, assigns the value of an expression to a variable.

Each of the relational operators is a binary operator; that is, it requires two operands.
Because the result of a comparison is true or false, expressions using these operators
evaluate to true or false.

Relational Operators and Simple Data Types
You can use the relational operators with all three simple data types. In the following
example, the expressions use both integers and real numbers:

TABLE 4-1 Relational Operators in C++

Operator Description

== equal to

!= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

178 | Chapter 4: Control Structures I (Selection)

4

EXAMPLE 4-1

Expression Meaning Value

8 < 15 8 is less than 15 true

6 != 6 6 is not equal to 6 false

2.5 > 5.8 2.5 is greater than 5.8 false

5.9 <= 7.5 5.9 is less than or equal to 7.5 true

Comparing Characters
For char values, whether an expression using relational operators evaluates to true or false
depends on a machine’s collating sequence. The collating sequence of some of the characters is:

ASCII ASCII ASCII ASCII
Value Char Value Char Value Char Value Char

32 ' ' 61 = 81 Q 105 i

33 ! 62 > 82 R 106 j

34 " 65 A 83 S 107 k

42 * 66 B 84 T 108 l

43 + 67 C 85 U 109 m

45 - 68 D 86 V 110 n

47 / 69 E 87 W 111 o

48 0 70 F 88 X 112 p

49 1 71 G 89 Y 113 q

50 2 72 H 90 Z 114 r

51 3 73 I 97 a 115 s

52 4 74 J 98 b 116 t

53 5 75 K 99 c 117 u

54 6 76 L 100 d 118 v

55 7 77 M 101 e 119 w

56 8 78 N 102 f 120 x

57 9 79 O 103 g 121 y

60 < 80 P 104 h 122 z

The ASCII character set is described in Appendix C.

Now, because 32 < 97, and the ASCII value of ' ' is 32 and the ASCII value of 'a' is
97, it follows that ' ' < 'a' is true. Similarly, using the previous ASCII values:

'R' > 'T' is false

'+' < '*' is false

'A' <= 'a' is true

Relational Operators | 179

note that comparing values of different data types may produce unpredictable results. For
example, the following expression compares an integer and a character:

8 < '5'

In this expression, on a particular machine, 8 would be compared with the collating
sequence of '5', which is 53. That is, 8 is compared with 53, which makes this particular
expression evaluate to true.

Expressions such as 4 < 6 and 'R' > 'T' are examples of logical (Boolean) expressions.
When C++ evaluates a logical expression, it returns an integer value of 1 if the logical
expression evaluates to true; it returns an integer value of 0 otherwise. In C++, any
nonzero value is treated as true.

Chapter 2 introduced the data type bool. Recall that the data type bool has two values,
true and false. In C++, true and false are reserved words. The identifier
true is set to 1, and the identifier false is set to 0. For readability, whenever
logical expressions are used, the identifiers true and false will be used here as the
value of the logical expression.

Relational Operators and the string Type
The relational operators can be applied to variables of type string. Variables of type
string are compared character by character, starting with the first character and using
the ASCII collating sequence. The character-by-character comparison continues until
either a mismatch is found or the last characters have been compared and are equal. The
following example shows how variables of type string are compared.

EXAMPLE 4-2

Suppose that you have the statements:

string str1 = "Hello";
string str2 = "Hi";
string str3 = "Air";
string str4 = "Bill";
string str5 = "Big";

The following expressions show how string relational expressions evaluate.

Expression Value /Explanation

str1 < str2 true

str1 = "Hello" and str2 = "Hi". The first characters
of str1 and str2 are the same, but the second character 'e'
of str1 is less than the second character 'i' of str2.
Therefore, str1 < str2 is true.

180 | Chapter 4: Control Structures I (Selection)

4

str1 > "Hen" false

str1 = "Hello". The first two characters of str1 and
"Hen" are the same, but the third character 'l' of str1 is
less than the third character 'n' of "Hen". Therefore,
str1 > "Hen" is false.

str3 < "An" true

str3 = "Air". The first characters of str3 and "An" are
the same, but the second character 'i' of "Air" is less than
the second character 'n' of "An". Therefore, str3 < "An"
is true.

str1 == "hello" false
str1 = "Hello". The first character 'H' of str1 is less
than the first character 'h' of "hello" because the ASCII
value of 'H' is 72, and the ASCII value of 'h' is 104.
Therefore, str1 == "hello" is false.

str3 <= str4 true
str3 = "Air" and str4 = "Bill". The first character
'A' of str3 is less than the first character 'B' of str4.
Therefore, str3 <= str4 is true.

str2 > str4 true
str2 = "Hi" and str4 = "Bill". The first character
'H' of str2 is greater than the first character 'B' of str4.
Therefore, str2 > str4 is true.

If two strings of different lengths are compared and the character-by-character compar-
ison is equal until it reaches the last character of the shorter string, the shorter string is
evaluated as less than the larger string, as shown next.

Expression Value/Explanation

str4 >= "Billy" false

str4 = "Bill". It has four characters, and "Billy" has
five characters. Therefore, str4 is the shorter string. All four
characters of str4 are the same as the corresponding first
four characters of "Billy", and "Billy" is the larger
string. Therefore, str4 >= "Billy" is false.

str5 <= "Bigger" true

str5 = "Big". It has three characters, and "Bigger"
has six characters. Therefore, str5 is the shorter string.
All three characters of str5 are the same as the
corresponding first three characters of "Bigger",
and "Bigger" is the larger string. Therefore,
str5 <= "Bigger" is true.

Relational Operators | 181

The program Chapter4_StringComparisons.cpp at the Web site accompanying this
book shows the results of the previous expressions.

Logical (Boolean) Operators and Logical Expressions
This section describes how to form and evaluate logical expressions that are combi-
nations of other logical expressions. Logical (Boolean) operators enable you to
combine logical expressions. C++ has three logical (Boolean) operators, as shown in
Table 4-2.

Logical operators take only logical values as operands and yield only logical values as
results. The operator ! is unary, so it has only one operand. The operators && and || are
binary operators. Tables 4-3, 4-4, and 4-5 define these operators.

Table 4-3 defines the operator ! (not). When you use the ! operator, !true is false
and !false is true. Putting ! in front of a logical expression reverses the value of that
logical expression.

EXAMPLE 4-3

Expression Value Explanation

!('A' > 'B') true Because'A' > 'B' isfalse,!('A' > 'B') istrue.

!(6 <= 7) false Because 6 <= 7 is true, !(6 <= 7) is false.

TABLE 4-3 The ! (Not) Operator

Expression !(Expression)

true (nonzero) false (0)

false (0) true (1)

TABLE 4-2 Logical (Boolean) Operators in C++

Operator Description

! not

&& and

|| or

182 | Chapter 4: Control Structures I (Selection)

Table 4-4 defines the operator && (and). From this table, it follows that
Expression1 && Expression2 is true if and only if both Expression1 and
Expression2 are true; otherwise, Expression1 && Expression2 evaluates to
false.

EXAMPLE 4-4

Expression Value Explanation

(14 >= 5) && ('A' < 'B') true Because (14 >= 5) is true, ('A' <
'B') is true, and true && true is
true, the expression evaluates to true.

(24 >= 35) && ('A' < 'B') false Because (24 >= 35) is false, ('A'
<'B') is true, and false && true is
false, the expression evaluates to false.

Table 4-5 defines the operator || (or). From this table, it follows that
Expression1 || Expression2 is true if and only if at least one of the expressions,
Expression1orExpression2, istrue; otherwise,Expression1||Expression2 evaluates
to false.

4

TABLE 4-4 The && (And) Operator

Expression1 Expression2 Expression1 && Expression2

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) false (0)

false (0) true (nonzero) false (0)

false (0) false (0) false (0)

TABLE 4-5 The || (Or) Operator

Expression1 Expression2 Expression1 || Expression2

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) true (1)

false (0) true (nonzero) true (1)

false (0) false (0) false (0)

Logical (Boolean) Operators and Logical Expressions | 183

EXAMPLE 4-5

Expression Value Explanation

(14 >= 5) || ('A' > 'B') true Because (14 >= 5) is true, ('A' >
'B') is false, and true || false is
true, the expression evaluates to true.

(24 >= 35) || ('A' > 'B') false Because (24 >= 35) is false,('A' >
'B') is false, and false || false is
false, the expression evaluates to false.

('A' <= 'a') || (7 != 7) true Because ('A' <= 'a') is true,
(7 != 7) is false, and true || false
is true, the expression evaluates to true.

Order of Precedence
Complex logical expressions can be difficult to evaluate. Consider the following logical
expression:

11 > 5 || 6 < 15 && 7 >= 8

This logical expression yields different results, depending on whether || or && is evaluated
first. If || is evaluated first, the expression evaluates to false. If && is evaluated first, the
expression evaluates to true.

An expression might contain arithmetic, relational, and logical operators, as in the expression:

5 + 3 <= 9 && 2 > 3

To work with complex logical expressions, there must be some priority scheme for
evaluating operators. Table 4-6 shows the order of precedence of some C++ operators,

TABLE 4-6 Precedence of Operators

Operators Precedence

!, +, - (unary operators) first

*, /, % second

+, - third

<, <=, >=, > fourth

==, != fifth

&& sixth

|| seventh

= (assignment operator) last

184 | Chapter 4: Control Structures I (Selection)

4

including the arithmetic, relational, and logical operators. (See Appendix B for the
precedence of all C++ operators.)

In C++, & and | are also operators. The meaning of these operators is different from the

meaning of && and ||. Using & in place of && or | in place of ||—as might result from a

typographical error—would produce very strange results.

Using the precedence rules in an expression, relational and logical operators are evaluated
from left to right. Because relational and logical operators are evaluated from left to right, the
associativity of these operators is said to be from left to right.

Example 4-6 illustrates how logical expressions consisting of variables are evaluated.

EXAMPLE 4-6

Suppose you have the following declarations:

bool found = true;
int age = 20;
double hours = 45.30;
double overTime = 15.00;
int count = 20;
char ch = 'B';

Consider the following expressions:

Expression Value / Explanation

!found false

Because found is true, !found is false.

hours > 40.00 true

Because hours is 45.30 and 45.30 > 40.00 is
true, the expression hours > 40.00 evaluates to
true.

!age false
age is 20, which is nonzero, so age is true.
Therefore, !age is false.

!found && (age >= 18) false
!found is false; age > 18 is 20 > 18 is true.
Therefore,!found && (age >= 18) is false &&
true, which evaluates to false.

!(found && (age >= 18)) false

Now, found && (age >= 18) is true && true,
which evaluates to true. Therefore, !(found &&
(age >= 18)) is !true, which evaluates to false.

Logical (Boolean) Operators and Logical Expressions | 185

Expression Value / Explanation

hours + overTime <= 75.00 true

Because hours + overTime is 45.30 + 15.00 =
60.30 and 60.30 <= 75.00 is true, it follows that
hours + overTime <= 75.00 evaluates to true.

(count >= 0) &&
(count <= 100)

true

Now, count is 20. Because 20 >= 0 is true,
count >= 0 is true. Also, 20 <= 100 is true, so
count <= 100 is true. Therefore, (count >=
0) && (count <= 100) is true && true,
which evaluates to true.

('A' <= ch && ch <= 'Z') true

Here, ch is 'B'. Because 'A' <= 'B' is true,
'A' <= ch evaluates to true. Also, because 'B'
<= 'Z' is true, ch <= 'Z' evaluates to true.
Therefore, ('A' <= ch && ch <= 'Z') is true
&& true, which evaluates to true.

The following program evaluates and outputs the values of these logical expressions. Note
that if a logical expression evaluates to true, the corresponding output is 1; if the logical
expression evaluates to false, the corresponding output is 0, as shown in the output at the
end of the program. (Recall that if the value of a logical expression is true, it evaluates to 1,
and if the value of the logical expression is false, it evaluates to 0.)

//Chapter 4 Logical operators

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

bool found = true;
int age = 20;
double hours = 45.30;
double overTime = 15.00;
int count = 20;
char ch = 'B';

cout << fixed << showpoint << setprecision(2);
cout << "found = " << found << ", age = " << age

<< ", hours = " << hours << ", overTime = " << overTime
<< "," << endl << "count = " << count
<< ", ch = " << ch << endl << endl;

cout << "!found evaluates to " << !found << endl;
cout << "hours > 40.00 evaluates to " << (hours > 40.00) << endl;
cout << "!age evaluates to " << !age << endl;
cout << "!found && (hours >= 0) evaluates to "

<< (!found && (hours >= 0)) << endl;

186 | Chapter 4: Control Structures I (Selection)

cout << "!(found && (hours >= 0)) evaluates to "
<< (!(found && (hours >= 0))) << endl;

cout << "hours + overTime <= 75.00 evaluates to "
<< (hours + overTime <= 75.00) << endl;

cout << "(count >= 0) && (count <= 100) evaluates to "
<< ((count >= 0) && (count <= 100)) << endl;

cout << "('A' <= ch && ch <= 'Z') evaluates to "
<< ('A' <= ch && ch <= 'Z') << endl;

return 0;
}

Sample Run:

found = 1, age = 20, hours = 45.30, overTime = 15.00,
count = 20, ch = B

!found evaluates to 0
hours > 40.00 evaluates to 1
!age evaluates to 0
!found && (hours >= 0) evaluates to 0
!(found && (hours >= 0)) evaluates to 0
hours + overTime <= 75.00 evaluates to 1
(count >= 0) && (count <= 100) evaluates to 1
('A' <= ch && ch <= 'Z') evaluates to 1

You can insert parentheses into an expression to clarify its meaning. You can also use
parentheses to override the precedence of operators. Using the standard order of pre-
cedence, the expression:

11 > 5 || 6 < 15 && 7 >= 8

is equivalent to:

11 > 5 || (6 < 15 && 7 >= 8)

In this expression, 11 >5 is true, 6<15 is true, and 7>=8 is false. Substitute these values in
the expression 11 > 5 || (6 < 15 && 7 >= 8) to get true || (true && false) = true ||
false = true. Therefore, the expression 11 > 5 || (6 < 15 && 7 >= 8) evaluates to true.

In C++, logical (Boolean) expressions can be manipulated or processed in either of two
ways: by using int variables or by using bool variables. The following sections describe
these methods.

int Data Type and Logical (Boolean) Expressions
Earlier versions of C++ did not provide built-in data types that had logical (or Boolean)
values true and false. Because logical expressions evaluate to either 1 or 0, the value of
a logical expression was stored in a variable of the data type int. Therefore, you can use
the int data type to manipulate logical (Boolean) expressions.

4

Logical (Boolean) Operators and Logical Expressions | 187

Recall that nonzero values are treated as true. Now, consider the declarations:

int legalAge;
int age;

and the assignment statement:

legalAge = 21;

If you regard legalAge as a logical variable, the value of legalAge assigned by this
statement is true.

The assignment statement:

legalAge = (age >= 21);

assigns the value 1 to legalAge if the value of age is greater than or equal to 21. The
statement assigns the value 0 if the value of age is less than 21.

bool Data Type and Logical (Boolean) Expressions
More recent versions of C++ contain a built-in data type, bool, that has the logical
(Boolean) values true and false. Therefore, you can manipulate logical (Boolean)
expressions using the bool data type. Recall that in C++, bool, true, and false are
reserved words. In addition, the identifier true has the value 1, and the identifier false
has the value 0. Now, consider the following declaration:

bool legalAge;
int age;

The statement:

legalAge = true;

sets the value of the variable legalAge to true. The statement:

legalAge = (age >= 21);

assigns the value true to legalAge if the value of age is greater than or equal to 21. This
statement assigns the value false to legalAge if the value of age is less than 21. For
example, if the value of age is 25, the value assigned to legalAge is true—that is, 1.
Similarly, if the value of age is 16, the value assigned to legalAge is false—that is, 0.

You can use either an int variable or a bool variable to store the value of a logical
expression. For the purpose of clarity, this book uses bool variables to store the values of
logical expressions.

Selection: if and if...else
Although there are only two logical values, true and false, they turn out to be extremely
useful because they permit programs to incorporate decision making that alters the
processing flow. The remainder of this chapter discusses ways to incorporate decisions

188 | Chapter 4: Control Structures I (Selection)

into a program. In C++, there are two selections, or branch control structures: if
statements and the switch structure. This section discusses how if and if. . .else
statements can be used to create one-way selection, two-way selection, and
multiple selections. The switch structure is discussed later in this chapter.

One-Way Selection
A bank would like to send a notice to a customer if her or his checking account balance
falls below the required minimum balance. That is, if the account balance is below the
required minimum balance, it should send a notice to the customer; otherwise, it should
do nothing. Similarly, if the policyholder of an insurance policy is a nonsmoker, the
company would like to apply a 10% discount to the policy premium. Both of these
examples involve one-way selection. In C++, one-way selections are incorporated using
the if statement. The syntax of one-way selection is:

if (expression)
statement

Note the elements of this syntax. It begins with the reserved word if, followed by
an expression contained within parentheses, followed by a statement. Note that
the parentheses around the expression are part of the syntax. The expression is
sometimes called a decision maker because it decides whether to execute the
statement that follows it. The expression is usually a logical expression. If the
value of the expression is true, the statement executes. If the value is false,
the statement does not execute and the computer goes on to the next statement in
the program. The statement following the expression is sometimes called the
action statement. Figure 4-2 shows the flow of execution of the if statement
(one-way selection).

4

expression statementtrue

false

FIGURE 4-2 One-way selection

Selection: if and if...else | 189

EXAMPLE 4-7

if (score >= 60)
grade = 'P';

In this code, if the expression (score >= 60) evaluates to true, the assignment statement,
grade = 'P';, executes. If the expression evaluates to false, the statements (if any)
following the if structure execute. For example, if the value of score is 65, the value
assigned to the variable grade is 'P'.

EXAMPLE 4-8

The following C++ program finds the absolute value of an integer.

//Program: Absolute value of an integer

#include <iostream>

using namespace std;

int main()
{

int number, temp;

cout << "Line 1: Enter an integer: "; //Line 1
cin >> number; //Line 2
cout << endl; //Line 3

temp = number; //Line 4

if (number < 0) //Line 5
number = -number; //Line 6

cout << "Line 7: The absolute value of "
<< temp << " is " << number << endl; //Line 7

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter an integer: -6734
Line 7: The absolute value of -6734 is 6734

The statement in Line 1 prompts the user to enter an integer; the statement in Line 2
inputs the number into the variable number. The statement in Line 4 copies the value of
number into temp, and the statement in Line 5 checks whether number is negative. If
number is negative, the statement in Line 6 changes number to a positive number. The
statement in Line 7 outputs the number and its absolute value. Note that because we want

190 | Chapter 4: Control Structures I (Selection)

4

to output both number and its absolute value, and if number is negative, the if statement
changes number to positive, we copied the value of number into temp in Line 4.

EXAMPLE 4-9

Consider the following statement:

if score >= 60 //syntax error
grade = 'P';

This statement illustrates an incorrect version of an if statement. The parentheses around
the logical expression are missing, which is a syntax error.

Putting a semicolon after the parentheses following the expression in an if statement
(that is, before the statement) is a semantic error. If the semicolon immediately follows
the closing parenthesis, the if statement will operate on the empty statement.

EXAMPLE 4-10

Consider the following C++ statements:

if (score >= 60); //Line 1
grade = 'P'; //Line 2

Because there is a semicolon at the end of the expression (see Line 1), the if statement in
Line 1 terminates. The action of this if statement is null, and the statement in Line 2 is
not part of the if statement in Line 1. Hence, the statement in Line 2 executes regardless
of how the if statement evaluates.

Two-Way Selection
There are many programming situations in which you must choose between two
alternatives. For example, if a part-time employee works overtime, the paycheck is
calculated using the overtime payment formula; otherwise, the paycheck is calculated
using the regular formula. This is an example of two-way selection. To choose between
two alternatives—that is, to implement two-way selections—C++ provides the if. . .
else statement. Two-way selection uses the following syntax:

if (expression)
statement1

else
statement2

Selection: if and if...else | 191

Take a moment to examine this syntax. It begins with the reserved word if, followed by a
logical expression contained within parentheses, followed by a statement, followed by the
reserved word else, followed by a second statement. Statements 1 and 2 are any valid
C++ statements. In a two-way selection, if the value of the expression is true,
statement1 executes. If the value of the expression is false, statement2 executes.
Figure 4-3 shows the flow of execution of the if. . .else statement (two-way selection).

EXAMPLE 4-11

Consider the following statements:

if (hours > 40.0) //Line 1
wages = 40.0 * rate +

1.5 * rate *(hours - 40.0); //Line 2
else //Line 3

wages = hours * rate; //Line 4

If the value of the variable hours is greater than 40.0, the wages include overtime
payment. Suppose that hours is 50. The expression in the if statement, in Line 1,
evaluates to true, so the statement in Line 2 executes. On the other hand, if hours is
30 or any number less than or equal to 40, the expression in the if statement, in Line 1,
evaluates to false. In this case, the program skips the statement in Line 2 and executes the
statement in Line 4—that is, the statement following the reserved word else executes.

In a two-way selection statement, putting a semicolon after the expression and
before statement1 creates a syntax error. If the if statement ends with a semicolon,
statement1 is no longer part of the if statement, and the else part of the
if. . .else statement stands all by itself. There is no stand-alone else statement in C++.
That is, it cannot be separated from the if statement.

expression

statement2 statement1

truefalse

FIGURE 4-3 Two-way selection

192 | Chapter 4: Control Structures I (Selection)

4

EXAMPLE 4-12

The following statements show an example of a syntax error.

if (hours > 40.0); //Line 1
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 2
else //Line 3

wages = hours * rate; //Line 4

The semicolon at the end of the if statement (see Line 1) ends the if statement, so the
statement in Line 2 separates the else clause from the if statement. That is, else is all
by itself. Because there is no stand-alone else statement in C++, this code generates a
syntax error. As shown in Example 4-10, in a one-way selection, the semicolon at the
end of an if statement is a logical error, whereas as shown in this example, in a two-way
selection, it is a syntax error.

EXAMPLE 4-13

The following program determines an employee’s weekly wages. If the hours worked
exceed 40, wages include overtime payment.

//Program: Weekly wages

#include <iostream>
#include <iomanip>

using namespace std;

int main()

double wages, rate, hours;

cout << fixed << showpoint << setprecision(2); //Line 1
cout << "Line 2: Enter working hours and rate: "; //Line 2
cin >> hours >> rate; //Line 3

if (hours > 40.0) //Line 4
wages = 40.0 * rate +

1.5 * rate * (hours - 40.0); //Line 5
else //Line 6

wages = hours * rate; //Line 7

cout << endl; //Line 8
cout << "Line 9: The wages are $" << wages

<< endl; //Line 9

return 0;
}

Selection: if and if...else | 193

Sample Run: In this sample run, the user input is shaded.

Line 2: Enter working hours and rate: 56.45 12.50

Line 9: The wages are $808.44

The statement in Line 1 sets the output of the floating-point numbers in a fixed decimal format,
with a decimal point, trailing zeros, and two decimal places. The statement in Line 2 prompts the
user to input the number of hours worked and the pay rate. The statement in Line 3 inputs these
values into the variables hours and rate, respectively. The statement in Line 4 checks whether
the value of the variable hours is greater than 40.0. If hours is greater than 40.0, then the
wages are calculated by the statement in Line 5, which includes overtime payment. Otherwise,
the wages are calculated by the statement in Line 7. The statement in Line 9 outputs the wages.

Let us now consider another example of an if statement and examine some of the
semantic errors that can occur.

EXAMPLE 4-14

Consider the following statements:

if (score >= 60) //Line 1
cout << "Passing" << endl; //Line 2
cout << "Failing" << endl; //Line 3

If the expression (score >= 60) evaluates to false, the output statement in Line 2 does
not execute. So the output would be Failing. That is, this set of statements performs the
same action as an if. . .else statement. It will execute the output statement in Line 3
rather than the output statement in Line 2. For example, if the value of score is 50, these
statements will output the following line:

Failing

However, if the expression (score >= 60) evaluates to true, the program will execute
both of the output statements, giving a very unsatisfactory result. For example, if the
value of score is 70, these statements will output the following lines:

Passing
Failing

The if statement controls the execution of only the statement in Line 2. The statement
in Line 3 always executes.

The correct code to print Passing or Failing, depending on the value of score, is:

if (score >= 60)
cout << "Passing" << endl;

else
cout << "Failing" << endl;

194 | Chapter 4: Control Structures I (Selection)

Compound (Block of) Statements
The if and if. . .else structures control only one statement at a time. Suppose, how-
ever, that you want to execute more than one statement if the expression in an if or
if. . .else statement evaluates to true. To permit more complex statements, C++
provides a structure called a compound statement or a block of statements. A
compound statement takes the following form:

{
statement_1
statement_2

.

.

.
statement_n

}

That is, a compound statement consists of a sequence of statements enclosed in curly
braces, {and }. In an if or if . . .else structure, a compound statement functions as if it
was a single statement. Thus, instead of having a simple two-way selection similar to the
following code:

if (age >= 18)
cout << "Eligible to vote." << endl;

else
cout << "Not eligible to vote." << endl;

you could include compound statements, similar to the following code:

if (age >= 18)
{

cout << "Eligible to vote." << endl;
cout << "No longer a minor." << endl;

}
else
{

cout << "Not eligible to vote." << endl;
cout << "Still a minor." << endl;

}

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

Multiple Selections: Nested if
In the previous sections, you learned how to implement one-way and two-way selections
in a program. Some problems require the implementation of more than two alternatives.
For example, suppose that if the checking account balance is more than $50,000, the
interest rate is 7%; if the balance is between $25,000 and $49,999.99, the interest rate is
5%; if the balance is between $1,000 and $24,999.99, the interest rate is 3%; otherwise,

4

Selection: if and if...else | 195

the interest rate is 0%. This particular problem has four alternatives—that is, multiple
selection paths. You can include multiple selection paths in a program by using an
if. . .else structure if the action statement itself is an if or if. . .else statement. When
one control statement is located within another, it is said to be nested.

Example 4-15 illustrates how to incorporate multiple selections using a nested if. . .else
structure.

EXAMPLE 4-15

Suppose that balance and interestRate are variables of type double. The following
statements determine the interestRate depending on the value of the balance.

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2

else //Line 3
if (balance >= 25000.00) //Line 4

interestRate = 0.05; //Line 5
else //Line 6

if (balance >= 1000.00) //Line 7
interestRate = 0.03; //Line 8

else //Line 9
interestRate = 0.00; //Line 10

A nested if. . .else structure demands the answer to an important question: How do you
know which else is paired with which if? Recall that in C++, there is no stand-alone
else statement. Every else must be paired with an if. The rule to pair an else with an if
is as follows:

Pairing an else with an if: In a nested if statement, C++ associates an else
with the most recent incomplete if—that is, the most recent if that has not been paired
with an else.

Using this rule, in Example 4-15, the else in Line 3 is paired with the if in Line 1. The else
in Line 6 is paired with the if in Line 4, and the else in Line 9 is paired with the if in Line 7.

To avoid excessive indentation, the code in Example 4-15 can be rewritten as follows:

if (balance > 50000.00) //Line 1
interestRate = 0.07; //Line 2

else if (balance >= 25000.00) //Line 3
interestRate = 0.05; //Line 4

else if (balance >= 1000.00) //Line 5
interestRate = 0.03; //Line 6

else //Line 7
interestRate = 0.00; //Line 8

The following examples will help you to see the various ways in which you can use
nested if structures to implement multiple selection.

196 | Chapter 4: Control Structures I (Selection)

EXAMPLE 4-16

Assume that score is a variable of type int. Based on the value of score, the following
code outputs the grade.

if (score >= 90)
cout << "The grade is A." << endl;

else if (score >= 80)
cout << "The grade is B." << endl;

else if (score >= 70)
cout << "The grade is C." << endl;

else if (score >= 60)
cout << "The grade is D." << endl;

else
cout << "The grade is F." << endl;

EXAMPLE 4-17

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 50) //Line 1
if (temperature >= 80) //Line 2

cout << "Good day for swimming." << endl; //Line 3
else //Line 4

cout << "Good day for golfing." << endl; //Line 5
else //Line 6

cout << "Good day to play tennis." << endl; //Line 7

In this C++ code, the else in Line 4 is paired with the if in Line 2, and the else in Line 6
is paired with the if in Line 1. Note that the else in Line 4 cannot be paired with the if in
Line 1. If you pair the else in Line 4 with the if in Line 1, the if in Line 2 becomes the
action statement part of the if in Line 1, leaving the else in Line 6 dangling. Also, the
statements in Lines 2 though 5 form the statement part of the if in Line 1. The indentation
does not determine the pairing, but should be used to communicate the pairing.

EXAMPLE 4-18

Assume that all variables are properly declared, and consider the following statements:

if (temperature >= 70) //Line 1
if (temperature >= 80) //Line 2

cout << "Good day for swimming." << endl; //Line 3
else //Line 4

cout << "Good day for golfing." << endl; //Line 5

4

Selection: if and if...else | 197

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is in Line 2. In this code, the if in Line 1 has no
else and is a one-way selection. Once again, the indentation does not determine the
pairing, but it communicates the pairing.

EXAMPLE 4-19

Assume that all variables are properly declared, and consider the following statements:

if (gender == 'M') //Line 1
if (age < 21) //Line 2

policyRate = 0.05; //Line 3
else //Line 4

policyRate = 0.035; //Line 5
else if (gender == 'F') //Line 6

if (age < 21) //Line 7
policyRate = 0.04; //Line 8

else //Line 9
policyRate = 0.03; //Line 10

In this code, the else in Line 4 is paired with the if in Line 2. Note that for the else in
Line 4, the most recent incomplete if is the if in Line 2. The else in Line 6 is paired
with the if in Line 1. The else in Line 9 is paired with the if in Line 7. Once again,
the indentation does not determine the pairing, but it communicates the pairing.

Comparing if...else Statements with a Series of if Statements
Consider the following C++ program segments, all of which accomplish the same task.

a. if (month == 1) //Line 1
cout << "January" << endl; //Line 2

else if (month == 2) //Line 3
cout << "February" << endl; //Line 4

else if (month == 3) //Line 5
cout << "March" << endl; //Line 6

else if (month == 4) //Line 7
cout << "April" << endl; //Line 8

else if (month == 5) //Line 9
cout << "May" << endl; //Line 10

else if (month == 6) //Line 11
cout << "June" << endl; //Line 12

b. if (month == 1)
cout << "January" << endl;

if (month == 2)
cout << "February" << endl;

if (month == 3)
cout << "March" << endl;

198 | Chapter 4: Control Structures I (Selection)

if (month == 4)
cout << "April" << endl;

if (month == 5)
cout << "May" << endl;

if (month == 6)
cout << "June" << endl;

Program segment (a) is written as a sequence of if. . .else statements; program segment
(b) is written as a series of if statements. Both program segments accomplish the same
thing. If month is 3, then both program segments output March. If month is 1, then in
program segment (a), the expression in the if statement in Line 1 evaluates to true. The
statement (in Line 2) associated with this if then executes; the rest of the structure,
which is the else of this if statement, is skipped; and the remaining if statements are
not evaluated. In program segment (b), the computer has to evaluate the expression in
each if statement because there is no else statement. As a consequence, program
segment (b) executes more slowly than does program segment (a).

Short-Circuit Evaluation
Logical expressions in C++ are evaluated using a highly efficient algorithm. This algo-
rithm is illustrated with the help of the following statements:

(x > y) || (x == 5) //Line 1
(a == b) && (x >= 7) //Line 2

In the statement in Line 1, the two operands of the operator || are the expressions
(x > y) and (x == 5). This expression evaluates to true if either the operand (x > y)
is true or the operand (x == 5) is true. With short-circuit evaluation, the computer
evaluates the logical expression from left to right. As soon as the value of the entire
logical expression is known, the evaluation stops. For example, in statement 1, if the
operand (x > y) evaluates to true, then the entire expression evaluates to true
because true || true is true and true || false is true. Therefore, the value of
the operand (x == 5) has no bearing on the final outcome.

Similarly, in the statement in Line 2, the two operands of the operator && are (a == b)
and (x >= 7). If the operand (a == b) evaluates to false, then the entire expression
evaluates to false because false && true is false and false && false is false.

Short-circuit evaluation (of a logical expression): A process in which the computer
evaluates a logical expression from left to right and stops as soon as the value of the
expression is known.

EXAMPLE 4-20

Consider the following expressions:

(age >= 21) || (x == 5) //Line 1
(grade == 'A') && (x >= 7) //Line 2

4

Selection: if and if...else | 199

For the expression in Line 1, suppose that the value of age is 25. Because (25 >= 21) is
true and the logical operator used in the expression is ||, the expression evaluates to
true. Due to short-circuit evaluation, the computer does not evaluate the expression
(x == 5). Similarly, for the expression in Line 2, suppose that the value of grade
is 'B'. Because ('B' == 'A') is false and the logical operator used in the
expression is &&, the expression evaluates to false. The computer does not evaluate
(x >= 7).

Comparing Floating-Point Numbers for Equality: A Precaution
Comparison of floating-point numbers for equality may not behave as you would expect.
For example, consider the following program:

#include <iostream>
#include <iomanip>
#include <cmath>

using namespace std;

int main()
{

double x = 1.0;
double y = 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0;

cout << fixed << showpoint << setprecision(17);

cout << "3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 = "
<< 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 << endl;

cout << "x = " << x << endl;
cout << "y = " << y << endl;

if (x == y)
cout << "x and y are the same." << endl;

else
cout << "x and y are not the same." << endl;

if (fabs(x - y) < 0.000001)
cout << "x and y are the same within the tolerance "

<< "0.000001." << endl;
else

cout << " x and y are not the same within the "
<< "tolerance 0.000001." << endl;

return 0;
}

200 | Chapter 4: Control Structures I (Selection)

Sample Run:

3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0 = 0.99999999999999989
x = 1.00000000000000000
y = 0.99999999999999989
x and y are not the same.
x and y are the same within the tolerance 0.000001.

In this program, x is initialized to 1.0 and y is initialized to 3.0 / 7.0 + 2.0 / 7.0
+ 2.0 / 7.0. Now, due to rounding, as shown by the output, this expression
evaluates to 0.99999999999999989. Therefore, the expression (x == y) evaluates
to false. However, if you evaluate the expression 3.0 / 7.0 + 2.0 / 7.0 + 2.0 /
7.0 by hand using a paper and a pencil, you will get 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0
= (3.0 + 2.0 + 2.0) / 7.0 = 7.0 / 7.0 = 1.0. That is, the value of y should be set
to 1.0.

The preceding program and its output show that you should be careful when comparing
floating-point numbers for equality. One way to check whether two floating-point
numbers are equal is to check whether the absolute value of their difference is less than
a certain tolerance. For example, suppose the tolerance is 0.000001. Then, x and y are
equal if the absolute value of (x – y) is less than 0.000001. To find the absolute value,
you can use the function fabs of the header file cmath, as shown in the program.
Therefore, the expression fabs(x – y) < 0.000001 determines whether the absolute
value of (x – y) is less than 0.000001.

Associativity of Relational Operators: A Precaution
Sometimes logical expressions do not behave as you might expect, as shown by the
following program, which determines if a number is between 0 and 10 (inclusive).

#include <iostream>

using namespace std;

int main()
{

int num;

cout << "Enter an integer: ";
cin >> num;
cout << endl;

if (0 <= num <= 10)
cout << num << " is within 0 and 10." << endl;

else
cout << num << " is not within 0 and 10." << endl;

return 0;
}

4

Selection: if and if...else | 201

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter an integer: 5

5 is within 0 and 10.

Sample Run 2:

Enter an integer: 20

20 is within 0 and 10.

Sample Run 3:

Enter an integer: -10

-10 is within 0 and 10.

Clearly, Sample Run 1 is correct and Sample Runs 2 and 3 are incorrect. Because the if
statement determines whether an integer is between 0 and 10, the problem is in the
expression in the if statement. So, let us look at this expression, which is:

0 <= num <= 10

Although this statement is a legal C++ expression, you do not get the desired result. Let us
evaluate this expression for certain values of num. Suppose that the value of num is 5. Then:

0 <= num <= 10 = 0 <= 5 <= 10

= (0 <= 5) <= 10
(Because relational operators
are evaluated from left to right)

= 1 <= 10
(Because 0 <= 5 is true, 0 <=
5 evaluates to 1)

= 1 (true)

Now, suppose that num = 20. Then:

0 <= num <= 10 = 0 <= 20 <= 10

= (0 <= 20) <= 10
(Because relational operators are
evaluated from left to right)

= 1 <= 10
(Because 0 <= 20 is true, 0
<= 20 evaluates to 1)

= 1 (true)

Now, you can see why the expression evaluates to true when num is 20. Similarly, if
num is �10, the expression 0 <= num <= 10 evaluates to true. In fact, this expression will
always evaluate to true, no matter what num is. This is due to the fact that the expression
0 <= num evaluates to either 0 or 1, and 0 <= 10 is true and 1 <= 10 is true. So what is

202 | Chapter 4: Control Structures I (Selection)

wrong with the expression 0 <= num <= 10? It is missing the logical operator &&. A correct
way to write this expression in C++ is:

0 <= num && num <= 10

You must take care when formulating logical expressions. When creating a complex
logical expression, you must use the proper logical operators.

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques
The debugging sections in Chapters 2 and 3 illustrated how to understand and fix syntax
and logic errors. In this section, we illustrate how to avoid bugs by avoiding partially
understood concepts and techniques.

The programs that you have written until now should have illustrated that a small
error such as omission of a semicolon at the end of a variable declaration or using a
variable without properly declaring it can prevent a program from successfully compil-
ing. Similarly, using a variable without properly initializing it can prevent a program
from running correctly. Recall that the condition associated with an if statement must
be enclosed in parentheses. Therefore, the following expression will result in a syntax
error.

if score >= 90

Example 4-12 illustrates that an unintended semicolon following the condition of the
following if statement:

if (hours > 40.0);

can prevent successful compilation or correct execution.

The approach that you take to solve a problem must use concepts and techniques
correctly; otherwise, your solution will be either incorrect or deficient. If you do not
understand a concept or technique completely, don’t use it until your understanding is
complete. The problem of using partially understood concepts and techniques can be
illustrated by the following program.

Suppose that we want to write a program that analyzes students’ GPA. If the GPA is
greater than or equal to 3.9, the student makes the dean’s honor list. If the GPA is less
than 2.00, the student is sent a warning letter indicating that the GPA is below the
graduation requirement. So, consider the following program:

//GPA program with bugs.

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3

4

Selection: if and if...else | 203

{ //Line 4
double gpa; //Line 5

cout << "Enter the GPA: "; //Line 6
cin >> gpa; //Line 7
cout << endl; //Line 8

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10

cout << "Dean\’s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

return 0; //Line 14
} //Line 15

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the GPA: 3.91

Dean's Honor List.

Sample Run 2:

Enter the GPA: 3.8

The GPA is below the graduation requirement.

See your academic advisor.

Sample Run 3:

Enter the GPA: 1.95

Let us look at these sample runs. Clearly, the output in Sample Run 1 is correct. In
Sample Run 2, the input is 3.8 and the output indicates that this GPA is below the
graduation requirement. However, a student with a GPA of 3.8 would graduate with
some type of honor. So, the output in Sample Run 2 is incorrect. In Sample Run 3, the
input is 1.95, and the output does not show any warning message. Therefore, the output
in Sample Run 3 is also incorrect. It means that the if. . .else statement in Lines 9 to 13
is incorrect. Let us look at these statements, that is:

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10

cout << "Dean\'s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

204 | Chapter 4: Control Structures I (Selection)

4

Following the rule of pairing an else with an if, the else in Line 12 is paired with the
if in Line 10. In other words, using the correct indentation, the code is:

if (gpa >= 2.0) //Line 9
if (gpa >= 3.9) //Line 10

cout << "Dean\'s Honor List." << endl; //Line 11
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

Now, we can see that the if statement in Line 9 is a one-way selection. Therefore, if the
input number is less than 2.0, no action will take place, that is, no warning message will
be printed. Now, suppose the input is 3.8. Then, the expression in Line 9 evaluates to
true, so the expression in Line 10 is evaluated, which evaluates to false. This means the
output statement in Line 13 executes, resulting in an unsatisfactory result.

In fact, the program should print the warning message only if the GPA is less than 2.0, and
it should print the message:

Dean's Honor List.

if the GPA is greater than or equal to 3.9.

To achieve that result, the else in Line 12 needs to be paired with the if in Line 9. To
pair the else in Line 12 with the if in Line 9, you need to use a compound statement, as
follows:

if (gpa >= 2.0) //Line 9
{

if (gpa >= 3.9) //Line 10
cout << "Dean\'s Honor List." << endl; //Line 11

}
else //Line 12

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 13

The correct program is as follows:

//Correct GPA program.

#include <iostream> //Line 1

using namespace std; //Line 2

int main() //Line 3
{ //Line 4

double gpa; //Line 5

cout << "Enter the GPA: "; //Line 6
cin >> gpa; //Line 7
cout << endl; //Line 8

Selection: if and if...else | 205

if (gpa >= 2.0) //Line 9
{ //Line 10

if (gpa >= 3.9) //Line 11
cout << "Dean\’s Honor List." << endl; //Line 12

} //Line 13
else //Line 14

cout << "The GPA is below the graduation "
<< "requirement. \nSee your "
<< "academic advisor." << endl; //Line 15

return 0; //Line 16
} //Line 17

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the GPA: 3.91

Dean’s Honor List.

Sample Run 2:

Enter the GPA: 3.8

Sample Run 3:

Enter the GPA: 1.95

The GPA is below the graduation requirement.
See your academic advisor.

In cases such as this one, the general rule is that you cannot look inside of a block (that is,
inside the braces) to pair an else with an if. The else in Line 14 cannot be paired with
the if in Line 11 because the if statement in Line 11 is enclosed within braces, and the
else in Line 14 cannot look inside those braces. Therefore, the else in Line 14 is paired
with the if in Line 9.

In this book, the C++ programming concepts and techniques are presented in a logical
order. When these concepts and techniques are learned one at a time in a logical order,
they are simple enough to be understood completely. Understanding a concept or
technique completely before using it will save you an enormous amount of debugging
time.

Input Failure and the if Statement
In Chapter 3, you saw that an attempt to read invalid data causes the input stream to enter a
fail state. Once an input stream enters a fail state, all subsequent input statements associated
with that input stream are ignored, and the computer continues to execute the program,
which produces erroneous results. You can use if statements to check the status of an input
stream variable and, if the input stream enters the fail state, include instructions that stop
program execution.

206 | Chapter 4: Control Structures I (Selection)

In addition to reading invalid data, other events can cause an input stream to enter the fail
state. Two additional common causes of input failure are the following:

• Attempting to open an input file that does not exist

• Attempting to read beyond the end of an input file

One way to address these causes of input failure is to check the status of the
input stream variable. You can check the status by using the input stream variable as the
logical expression in an if statement. If the last input succeeded, the input stream
variable evaluates to true; if the last input failed, it evaluates to false.

The statement:

if (cin)
cout << "Input is OK." << endl;

prints:

Input is OK.

if the last input from the standard input device succeeded. Similarly, if infile is an
ifstream variable, the statement:

if (!infile)
cout << "Input failed." << endl;

prints:

Input failed.

if the last input associated with the stream variable infile failed.

Suppose an input stream variable tries to open a file for inputting data into a program. If
the input file does not exist, you can use the value of the input stream variable, in
conjunction with the return statement, to terminate the program.

Recall that the last statement included in the function main is:

return 0;

This statement returns a value of 0 to the operating system when the program terminates.
A value of 0 indicates that the program terminated normally and that no error occurred
during program execution. Values of type int other than 0 can also be returned to the
operating system via the return statement. The return of any value other than 0,
however, indicates that something went wrong during program execution.

The return statement can appear anywhere in the program. Whenever a return
statement executes, it immediately exits the function in which it appears. In the case of
the function main, the program terminates when the return statement executes. You
can use these properties of the return statement to terminate the function main
whenever the input stream fails. This technique is especially useful when a program tries
to open an input file. Consider the following statements:

4

Selection: if and if...else | 207

ifstream infile;

infile.open("inputdat.dat"); //open inputdat.dat

if (!infile)
{

cout << "Cannot open the input file. "
<< "The program terminates." << endl;

return 1;
}

Suppose that the file inputdat.dat does not exist. The operation to open this file fails,
causing the input stream to enter the fail state. As a logical expression, the file stream
variable infile then evaluates to false. Because infile evaluates to false, the
expression !infile (in the if statement) evaluates to true, and the body of the if
statement executes. The message:

Cannot open the input file. The program terminates.

is printed on the screen, and the return statement terminates the program by returning a
value of 1 to the operating system.

Let’s now use the code that responds to input failure by including these features in
the Programming Example: Student Grade from Chapter 3. Recall that this program
calculates the average test score based on data from an input file and then outputs the
results to another file. The following programming code is the same as the code from
Chapter 3, except that it includes statements to exit the program if the input file does
not exist.

//Program to calculate the average test score.

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;

int main()
{

ifstream inFile; //input file stream variable
ofstream outFile; //output file stream variable

double test1, test2, test3, test4, test5;
double average;

string firstName;
string lastName;

inFile.open("test.txt"); //open the input file

if (!inFile)

208 | Chapter 4: Control Structures I (Selection)

4

{
cout << "Cannot open the input file. "

<< "The program terminates." << endl;
return 1;

}

outFile.open("testavg.out"); //open the output file

outFile << fixed << showpoint;
outFile << setprecision(2);

cout << "Processing data" << endl;

inFile >> firstName >> lastName;
outFile << "Student name: " << firstName

<< " " << lastName << endl;

inFile >> test1 >> test2 >> test3
>> test4 >> test5;

outFile << "Test scores: " << setw(4) << test1
<< setw(4) << test2 << setw(4) << test3
<< setw(4) << test4 << setw(4) << test5
<< endl;

average = (test1 + test2 + test3 + test4 + test5) / 5.0;

outFile << "Average test score: " << setw(6)
<< average << endl;

inFile.close();
outFile.close();

return 0;
}

Confusion between the Equality Operator (==) and the
Assignment Operator (=)
Recall that if the decision-making expression in the if statement evaluates to true, the
statement part of the if statement executes. In addition, the expression is usually a logical
expression. However, C++ allows you to use any expression that can be evaluated to either
true or false as an expression in the if statement. Consider the following statement:

if (x = 5)
cout << "The value is five." << endl;

The expression—that is, the decision maker—in the if statement is x = 5. The
expression x = 5 is called an assignment expression because the operator = appears in
the expression and there is no semicolon at the end.

This expression is evaluated as follows. First, the right side of the operator = is evaluated,
which evaluates to 5. The value 5 is then assigned to x. Moreover, the value 5—that is, the

Selection: if and if...else | 209

new value of x—also becomes the value of the expression in the if statement—that is, the
value of the assignment expression. Because 5 is nonzero, the expression in the if statement
evaluates to true, so the statement part of the if statement outputs: The value is five.

No matter how experienced a programmer is, almost everyone makes the mistake of
using = in place of == at one time or another. One reason why these two operators are
often confused is that most programming languages use = as an equality operator. Thus,
experience with other programming languages can create confusion. Sometimes the error
is merely typographical, another reason to be careful when typing code.

Despite the fact that an assignment expression can be used as an expression, using the
assignment operator in place of the equality operator can cause serious problems in a
program. For example, suppose that the discount on a car insurance policy is based on the
insured’s driving record. A driving record of 1 means that the driver is accident-free and
receives a 25% discount on the policy. The statement:

if (drivingCode == 1)
cout << "The discount on the policy is 25%." << endl;

outputs:

The discount on the policy is 25%.

only if the value of drivingCode is 1. However, the statement:

if (drivingCode = 1)
cout << "The discount on the policy is 25%." << endl;

always outputs:

The discount on the policy is 25%.

because the right side of the assignment expression evaluates to 1, which is nonzero and so
evaluates to true. Therefore, the expression in the if statement evaluates to true,
outputting the following line of text: The discount on the policy is 25%. Also, the
value 1 is assigned to the variable drivingCode. Suppose that before the if statement
executes, the value of the variable drivingCode is 4. After the if statement executes, not
only is the output wrong, but the new value also replaces the old driving code.

The appearance of = in place of == resembles a silent killer. It is not a syntax error, so the
compiler does not warn you of an error. Rather, it is a logical error.

Using = in place of == can cause serious problems, especially if it happens in a looping

statement. Chapter 5 discusses looping structures.

The appearance of the equality operator in place of the assignment operator can also cause
errors in a program. For example, suppose x, y, and z are int variables. The statement:

x = y + z;

210 | Chapter 4: Control Structures I (Selection)

assigns the value of the expression y + z to x. The statement:

x == y + z;

compares the value of the expression y + z with the value of x; the value of x remains the
same, however. If somewhere else in the program you are counting on the value of x
being y + z, a logic error will occur, the program output will be incorrect, and you will
receive no warning of this situation from the compiler. The compiler provides feedback
only about syntax errors, not logic errors. For this reason, you must use extra care when
working with the equality operator and the assignment operator.

Conditional Operator (?:)

The reader can skip this section without any discontinuation.

Certain if. . .else statements can be written in a more concise way by using C++’s
conditional operator. The conditional operator, written as ?:, is a ternary operator,
which means that it takes three arguments. The syntax for using the conditional operator is:

expression1 ? expression2 : expression3

This type of statement is called a conditional expression. The conditional expression is
evaluated as follows: If expression1 evaluates to a nonzero integer (that is, to true), the
result of the conditional expression is expression2. Otherwise, the result of the con-
ditional expression is expression3.

Consider the following statements:

if (a >= b)
max = a;

else
max = b;

You can use the conditional operator to simplify the writing of this if. . .else statement
as follows:

max = (a >= b) ? a : b;

Program Style and Form (Revisited): Indentation
In the section ‘‘Program Style and Form’’ of Chapter 2, we specified some guidelines to
write programs. Now that we have started discussing control structures, in this section,
we give some general guidelines to properly indent your program.

As you write programs, typos and errors are unavoidable. If your program is properly
indented, you can spot and fix errors quickly, as shown by several examples in this

4

Selection: if and if...else | 211

chapter. Typically, the IDE that you use will automatically indent your program. If for
some reason your IDE does not indent your program, you can indent your program
yourself.

Proper indentation can show the natural grouping of statements. You should insert a
blank line between statements that are naturally separate. In this book, the statements
inside braces, the statements of a selection structure, and an if statement within an if
statement are all indented four spaces to the right. Throughout the book, we use four
spaces to indent statements, especially to show the levels of control structures within
other control structures. You can also use four spaces for indentation.

There are two commonly used styles for placing braces. In this book, we place braces
on a line by themselves. Also, matching left and right braces are in the same column,
that is, they are the same number of spaces away from the left side of the program.
This style of placing braces easily shows the grouping of the statements and also
matches left and right braces. You can also follow this style to place and indent
braces.

In the second style of placing braces, the left brace need not be on a line by itself.
Typically, for control structures, the left brace is placed after the last right parenthesis of
the (logical) expression, and the right brace is on a line by itself. This style might save
some space. However, sometimes this style might not immediately show the grouping or
the block of the statements.

No matter what style of indentation you use, you should be consistent within your
programs, and the indentation should show the structure of the program.

Using Pseudocode to Develop, Test,
and Debug a Program
There are several ways to develop a program. One method involves using an informal
mixture of C++ and ordinary language, called pseudocode or just pseudo. Sometimes
pseudo provides a useful means to outline and refine a program before putting it into
formal C++ code. When you are constructing programs that involve complex nested
control structures, pseudo can help you quickly develop the correct structure of the
program and avoid making common errors.

One useful program segment determines the larger of two integers. If x and y are integers,
using pseudo, you can quickly write the following:

a. if (x > y) then
x is larger

b. if (y > x) then
y is larger

212 | Chapter 4: Control Structures I (Selection)

If the statement in (a) is true, then x is larger. If the statement in (b) is true, then y is
larger. However, for this code to work in concert to determine the larger of two integers,
the computer needs to evaluate both expressions:

(x > y) and (y > x)

even if the first statement is true. Evaluating both expressions is a waste of computer
time.

Let’s rewrite this pseudo as follows:

if (x > y) then
x is larger

else
y is larger

Here, only one condition needs to be evaluated. This code looks okay, so let’s put it
into C++.

#include <iostream>

using namespace std;

int main()
{

if (x > y)

Wait . . . once you begin translating the pseudo into a C++ program, you should
immediately notice that there is no place to store the value of x or y. The variables
were not declared, which is a very common oversight, especially for new program-
mers. If you examine the pseudo, you will see that the program needs three variables,
and you might as well make them self-documenting. Let’s start the program code
again:

#include <iostream>

using namespace std;

int main()
{

int num1, num2, larger; //Line 1

if (num1 > num2); //Line 2; error
larger = num1; //Line 3

else //Line 4
larger = num2; //Line 5

return 0;
}

Compiling this program will result in the identification of a common syntax error
(in Line 2). Recall that a semicolon cannot appear after the expression in the

4

Using Pseudocode to Develop, Test, and Debug a Program | 213

if. . .else statement. However, even if you corrected this syntax error, the program still
would not give satisfactory results because it tries to use identifiers that have no values.
The variables have not been initialized, which is another common error. In addition,
because there are no output statements, you would not be able to see the results of the
program.

Because there are so many mistakes in the program, you should try a walk-through to see
whether it works at all. You should always use a wide range of values in a walk-through to
evaluate the program under as many different circumstances as possible. For example, does
this program work if one number is zero, if one number is negative and the other number is
positive, if both numbers are negative, or if both numbers are the same? Examining the
program, you can see that it does not check whether the two numbers are equal. Taking all
of these points into account, you can rewrite the program as follows:

//Program: Compare Numbers
//This program compares two integers and outputs the largest.

#include <iostream>

using namespace std;

int main()

int num1, num2;

cout << "Enter any two integers: ";
cin >> num1 >> num2;
cout << endl;

cout << "The two integers entered are " << num1
<< " and " << num2 << endl;

if (num1 > num2)
cout << "The larger number is " << num1 << endl;

else if (num2 > num1)
cout << "The larger number is " << num2 << endl;

else
cout << "Both numbers are equal." << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter any two integers: 78 90
The two integers entered are 78 and 90
The larger number is 90

One thing you can learn from the preceding program is that you must first develop a
program using paper and pencil. Although a program that is first written on a piece of

214 | Chapter 4: Control Structures I (Selection)

4

paper is not guaranteed to run successfully on the first try, this step is still a good starting
point. On paper, it is easier to spot errors and improve the program, especially with large
programs.

switch Structures
Recall that there are two selection, or branch, structures in C++. The first selection
structure, which is implemented with if and if. . .else statements, usually requires
the evaluation of a (logical) expression. The second selection structure, which does
not require the evaluation of a logical expression, is called the switch structure.
C++’s switch structure gives the computer the power to choose from among many
alternatives.

A general syntax of the switch statement is:

switch (expression)
{
case value1:

statements1
break;

case value2:
statements2
break;
.
.
.

case valuen:
statementsn
break;

default:
statements

}

In C++, switch, case, break, and default are reserved words. In a switch
structure, first the expression is evaluated. The value of the expression is then
used to perform the actions specified in the statements that follow the reserved
word case. Recall that in a syntax, shading indicates an optional part of the
definition.

Although it need not be, the expression is usually an identifier. Whether it is an
identifier or an expression, the value can be only integral. The expression is
sometimes called the selector. Its value determines which statement is selected for
execution. A particular case value should appear only once. One or more statements
may follow a case label, so you do not need to use braces to turn multiple
statements into a single compound statement. The break statement may or may
not appear after each statement. Figure 4-4 shows the flow of execution of the
switch statement.

switch Structures | 215

The switch statement executes according to the following rules:

1. When the value of the expression is matched against a case
value (also called a label), the statements execute until either a
break statement is found or the end of the switch structure is
reached.

2. If the value of the expression does not match any of the case values,
the statements following the default label execute. If the switch
structure has no default label and if the value of the expression
does not match any of the case values, the entire switch statement is
skipped.

3. A break statement causes an immediate exit from the switch structure.

expression

statements1 break

break

break

statements2

statementsn

statements

case value1

case value2

case valuen

default

false

false

false

false

true

true

true

FIGURE 4-4 switch statement

216 | Chapter 4: Control Structures I (Selection)

4

EXAMPLE 4-21

Consider the following statements, in which grade is a variable of type char.

switch (grade)
{
case 'A':

cout << "The grade point is 4.0.";
break;

case 'B':
cout << "The grade point is 3.0.";
break;

case 'C':
cout << "The grade point is 2.0.";
break;

case 'D':
cout << "The grade point is 1.0.";
break;

case 'F':
cout << "The grade point is 0.0.";
break;

default:
cout << "The grade is invalid.";

}

In this example, the expression in the switch statement is a variable identifier. The
variable grade is of type char, which is an integral type. The possible values of grade
are 'A', 'B', 'C', 'D', and 'F'. Each case label specifies a different action to take,
depending on the value of grade. If the value of grade is 'A', the output is:

The grade point is 4.0.

EXAMPLE 4-22

The following program illustrates the effect of the break statement. It asks the user to
input a number between 0 and 10.

//Program: Effect of break statements in a switch structure

#include <iostream>

using namespace std;

int main()
{

int num;

cout << "Enter an integer between 0 and 7: "; //Line 1
cin >> num; //Line 2
cout << endl; //Line 3

switch Structures | 217

cout << "The number you entered is " << num
<< endl; //Line 4

switch(num) //Line 5
{
case 0: //Line 6
case 1: //Line 7

cout << "Learning to use "; //Line 8
case 2: //Line 9

cout << "C++'s "; //Line 10
case 3: //Line 11

cout << "switch structure." << endl; //Line 12
break; //Line 13

case 4: //Line 14
break; //Line 15

case 5: //Line 16
cout << "This program shows the effect "; //Line 17

case 6: //Line 18
case 7: //Line 19

cout << "of the break statement." << endl; //Line 20
break; //Line 21

default: //Line 22
cout << "The number is out of range." << endl; //Line 23

}

cout << "Out of the switch structure." << endl; //Line 24

return 0; //Line 25
}

Sample Runs: These outputs were obtained by executing the preceding program several
times. In each of these sample runs, the user input is shaded.

Sample Run 1:

Enter an integer between 0 and 7: 0

The number you entered is 0
Learning to use C++'s switch structure.
Out of the switch structure.

Sample Run 2:

Enter an integer between 0 and 7: 2

The number you entered is 2
C++'s switch structure.
Out of the switch structure.

Sample Run 3:

Enter an integer between 0 and 7: 4

The number you entered is 4
Out of the switch structure.

218 | Chapter 4: Control Structures I (Selection)

4

Sample Run 4:

Enter an integer between 0 and 7: 5

The number you entered is 5
This program shows the effect of the break statement.
Out of the switch structure.

Sample Run 5:

Enter an integer between 0 and 7: 7

The number you entered is 7
of the break statement.
Out of the switch structure.

Sample Run 6:

Enter an integer between 0 and 7: 8

The number you entered is 8
The number is out of range.
Out of the switch structure.

A walk-through of this program, using certain values of the switch expression num,
can help you understand how the break statement functions. If the value of num is 0,
the value of the switch expression matches the case value 0. All statements following
case 0: execute until a break statement appears.

The first break statement appears in Line 13, just before the case value of 4. Even
though the value of the switch expression does not match any of the case values (that
is, 1, 2, or 3), the statements following these values execute.

When the value of the switch expression matches a case value, all statements execute
until a break is encountered, and the program skips all case labels in between. Similarly,
if the value of num is 3, it matches the case value of 3, and the statements following this
label execute until the break statement is encountered in Line 13. If the value of num is
4, it matches the case value of 4. In this situation, the action is empty because only the
break statement, in Line 15, follows the case value of 4.

EXAMPLE 4-23

Although a switch structure’s case values (labels) are limited, the switch statement
expression can be as complex as necessary. For example, consider the following
switch statement:

switch (score / 10)
{
case 0:
case 1:
case 2:
case 3:

switch Structures | 219

case 4:
case 5:

grade = 'F';
break;

case 6:
grade = 'D';
break;

case 7:
grade = 'C';
break;

case 8:
grade = 'B';
break;

case 9:
case 10:

grade = 'A';
break;

default:
cout << "Invalid test score." << endl;

}

Assume that score is an int variable with values between 0 and 100. If score is 75,
score / 10 = 75 / 10 = 7, and the grade assigned is 'C'. If the value of score is between
0 and 59, the grade is 'F'. If score is between 0 and 59, then score / 10 is 0, 1, 2, 3, 4,
or 5. Each of these values corresponds to the grade 'F'.

Therefore, in this switch structure, the action statements of case 0, case 1, case 2,
case 3, case 4, and case 5 are all the same. Rather than write the statement grade =
'F'; followed by the break statement for each of the case values of 0, 1, 2, 3, 4, and 5,
you can simplify the programming code by first specifying all of the case values (as shown
in the preceding code) and then specifying the desired action statement. The case values
of 9 and 10 follow similar conventions.

In addition to being a variable identifier or a complex expression, the switch expression
can evaluate to a logical value. Consider the following statements:

switch (age >= 18)
{
case 1:

cout << "Old enough to be drafted." << endl;
cout << "Old enough to vote." << endl;
break;

case 0:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

If the value of age is 25, the expression age >= 18 evaluates to 1—that is, true. If
the expression evaluates to 1, the statements following the case label 1 execute. If the
value of age is 14, the expression age >= 18 evaluates to 0—that is, false—and the
statements following the case label 0 execute.

220 | Chapter 4: Control Structures I (Selection)

4

You can use true and false, instead of 1 and 0, respectively, in the case labels, and
rewrite the preceding switch statement as follows:

switch (age >= 18)
{
case true:

cout << "Old enough to be drafted." << endl;
cout << "Old enough to vote." << endl;
break;

case false:
cout << "Not old enough to be drafted." << endl;
cout << "Not old enough to vote." << endl;

}

As you can see from the preceding examples, the switch statement is an elegant way to
implement multiple selections. You will see the use of a switch statement in the program-
ming example at the end of this chapter. Even though no fixed rules exist that can be applied
to decide whether to use an if. . .else structure or a switch structure to implement
multiple selections, the following considerations should be remembered. If multiple selec-
tions involve a range of values, you should use either an if. . .else structure or a switch
structure, wherein you convert each range to a finite set of values.

For instance, in Example 4-23, the value of grade depends on the value of score. If
score is between 0 and 59, grade is 'F'. Because score is an int variable, 60 values
correspond to the grade of 'F'. If you list all 60 values as case values, the switch
statement could be very long. However, dividing by 10 reduces these 60 values to only 6
values: 0, 1, 2, 3, 4, and 5.

If the range of values consists of infinitely many values and you cannot reduce them to a
set containing a finite number of values, you must use the if. . .else structure. For
example, if score happens to be a double variable, the number of values between 0 and
60 is infinite. However, you can use the expression static_cast<int>(score) / 10
and still reduce this infinite number of values to just six values.

Avoiding Bugs by Avoiding Partially Understood Concepts
and Techniques (Revisited)
Earlier in this chapter, we discussed how a partial understanding of a concept or
technique can lead to errors in a program. In this section, we give another example to
illustrate the problem of using partially understood concepts and techniques. In Example
4-23, we illustrate how to assign a grade based on a test score between 0 and 100. Next,
consider the following program that assigns a grade based on a test score.

//Grade program with bugs.

#include <iostream> //Line 1

using namespace std; //Line 2

switch Structures | 221

int main() //Line 3
{ //Line 4

int testScore; //Line 5

cout << "Enter the test score: "; //Line 6
cin >> testScore; //Line 7
cout << endl; //Line 8

switch (testScore / 10) //Line 9
{ //Line 10
case 0: //Line 11
case 1: //Line 12
case 2: //Line 13
case 3: //Line 14
case 4: //Line 15
case 5: //Line 16

cout << "The grade is F." << endl; //Line 17
case 6: //Line 18

cout << "The grade is D." << endl; //Line 19
case 7: //Line 20

cout << "The grade is C." << endl; //LIne 21
case 8: //Line 22

cout << "The grade is B." << endl; //Line 23
case 9: //Line 24
case 10: //Line 25

cout << "The grade is A." << endl; //Line 26
default: //Line 27

cout << "Invalid test score." << endl; //Line 28
} //Line 29

return 0; //Line 30
} //Line 31

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the test score: 110

Invalid test score.

Sample Run 2:

Enter the test score: -70

Invalid test score.

Sample Run 3:

Enter the test score: 75

The grade is C.
The grade is B.
The grade is A.
Invalid test score.

222 | Chapter 4: Control Structures I (Selection)

From these sample runs, it follows that if the value of testScore is less than 0 or
greater than 100, the program produces correct results, but if the value of testScore
is between 0 and 100, say 75, the program produces incorrect results. Can you
see why?

As in Sample Run 3, suppose that the value of testScore is 75. Then, testScore % 10 = 7,
and this value matched the case label 7. So, as we indented, it should print The grade is C.
However, the output is:

The grade is C.
The grade is B.
The grade is A.
Invalid test score.

But why? Clearly only at most one cout statement is associated with each case label.
The problem is a result of having only a partial understanding of how the switch
structure works. As we can see, the switch statement does not include any break
statement. Therefore, after executing the statement(s) associated with the matching case
label, execution continues with the statement(s) associated with the next case label,
resulting in the printing of four unintended lines.

To output results correctly, the switch structure must include a break statement after
each cout statement, except the last cout statement. We leave it as an exercise for you to
modify this program so that it outputs correct results.

Once again, we can see that a partially understood concept can lead to serious errors in a
program. Therefore, taking time to understand each concept and technique completely
will save you hours of debugging time.

Terminating a Program with the assert Function
Certain types of errors that are very difficult to catch can occur in a program. For
example, division by zero can be difficult to catch using any of the programming
techniques you have examined so far. C++ includes a predefined function, assert, that
is useful in stopping program execution when certain elusive errors occur. In the case of
division by zero, you can use the assert function to ensure that a program terminates
with an appropriate error message indicating the type of error and the program location
where the error occurred.

Consider the following statements:

int numerator;
int denominator;
int quotient;
double hours;
double rate;
double wages;
char ch;

4

Terminating a Program with the assert Function | 223

1. quotient = numerator / denominator;

2. if (hours > 0 && (0 < rate && rate <= 15.50))
wages = rate * hours;

3. if ('A' <= ch && ch <= 'Z')

In the first statement, if the denominator is 0, logically you should not perform the
division. During execution, however, the computer would try to perform the division. If
the denominator is 0, the program would terminate with an error message stating that
an illegal operation has occurred.

The second statement is designed to compute wages only if hours is greater than 0 and
rate is positive and less than or equal to 15.50. The third statement is designed to
execute certain statements only if ch is an uppercase letter.

For all of these statements (for that matter, in any situation in which certain conditions
must be met), if conditions are not met, it would be useful to halt program execution
with a message indicating where in the program an error occurred. You could handle
these types of situations by including output and return statements in your program.
However, C++ provides an effective method to halt a program if required conditions are
not met through the assert function.

The syntax to use the assert function is:

assert(expression);

Here, expression is any logical expression. If expression evaluates to true, the next
statement executes. If expression evaluates to false, the program terminates and indicates
where in the program the error occurred.

The specification of the assert function is found in the header file cassert. Therefore,
for a program to use the assert function, it must include the following statement:

#include <cassert>

A statement using the assert function is sometimes called an assert statement.

Returning to the preceding statements, you can rewrite statement 1 (quotient =
numerator / denominator;) using the assert function. Because quotient should
be calculated only if denominator is nonzero, you include an assert statement before
the assignment statement as follows:

assert(denominator);
quotient = numerator / denominator;

Now, if denominator is 0, the assert statement halts the execution of the program
with an error message similar to the following:

Assertion failed: denominator, file c:\temp\assert
function\assertfunction.cpp, line 20

224 | Chapter 4: Control Structures I (Selection)

This error message indicates that the assertion of denominator failed. The error message
also gives the name of the file containing the source code and the line number where the
assertion failed.

You can also rewrite statement 2 using an assertion statement as follows:

assert(hours > 0 && (0 < rate && rate <= 15.50));
if (hours > 0 && (0 < rate && rate <= 15.50))

wages = rate * hours;

If the expression in the assert statement fails, the program terminates with an error
message similar to the following:

Assertion failed: hours > 0 && (0 < rate && rate <= 15.50), file
c:\temp\assertfunction\assertfunction.cpp, line 26

During program development and testing, the assert statement is very useful for enfor-
cing programming constraints. As you can see, the assert statement not only halts the
program, but also identifies the expression where the assertion failed, the name of the file
containing the source code, and the line number where the assertion failed.

Although assert statements are useful during program development, after a program has
been developed and put into use, if an assert statement fails for some reason, an end
user would have no idea what the error means. Therefore, after you have developed and
tested a program, you might want to remove or disable the assert statements. In a very
large program, it could be tedious, and perhaps impossible, to remove all of the assert
statements that you used during development. In addition, if you plan to modify a
program in the future, you might like to keep the assert statements. Therefore, the
logical choice is to keep these statements but to disable them. You can disable assert
statements by using the following preprocessor directive:

#define NDEBUG

This preprocessor directive #define NDEBUG must be placed before the directive
#include <cassert>.

4

PROGRAMMING EXAMPLE: Cable Company Billing
This programming example demonstrates a program that calculates a customer’s bill
for a local cable company. There are two types of customers: residential and business.
There are two rates for calculating a cable bill: one for residential customers and one
for business customers. For residential customers, the following rates apply:

• Bill processing fee: $4.50

• Basic service fee: $20.50

• Premium channels: $7.50 per channel.

Programming Example: Cable Company Billing | 225

For business customers, the following rates apply:

• Bill processing fee: $15.00

• Basic service fee: $75.00 for first 10 connections, $5.00 for each
additional connection

• Premium channels: $50.00 per channel for any number of
connections

The program should ask the user for an account number (an integer) and a customer
code. Assume that R or r stands for a residential customer, and B or b stands for a
business customer

Input The customer’s account number, customer code, number of premium channels

to which the user subscribes, and, in the case of business customers, number of

basic service connections.

Output Customer’s account number and the billing amount.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

The purpose of this program is to calculate and print the billing amount. To calculate
the billing amount, you need to know the customer for whom the billing amount is
calculated (whether the customer is residential or business) and the number of
premium channels to which the customer subscribes. In the case of a business
customer, you also need to know the number of basic service connections and the
number of premium channels. Other data needed to calculate the bill, such as the bill
processing fees and the cost of a premium channel, are known quantities. The
program should print the billing amount to two decimal places, which is standard
for monetary amounts. This problem analysis translates into the following algorithm:

1. Set the precision to two decimal places.

2. Prompt the user for the account number and customer type.

3. Based on the customer type, determine the number of premium
channels and basic service connections, compute the bill, and print
the bill:

a. If the customer type is R or r,

i. Prompt the user for the number of premium channels.

ii. Compute the bill.

iii. Print the bill.

b. If the customer type is B or b,

i. Prompt the user for the number of basic service connections
and number of premium channels.

ii. Compute the bill.

iii. Print the bill.

226 | Chapter 4: Control Structures I (Selection)

4

Variables Because the program will ask the user to input the customer account number,
customer code, number of premium channels, and number of basic service
connections, you need variables to store all of this information. Also, because the
program will calculate the billing amount, you need a variable to store the billing
amount. Thus, the program needs at least the following variables to compute and
print the bill:

int accountNumber; //variable to store the customer's
//account number

char customerType; //variable to store the customer code
int numOfPremChannels; //variable to store the number

//of premium channels to which the
//customer subscribes

int numOfBasicServConn; //variable to store the
//number of basic service connections
//to which the customer subscribes

double amountDue; //variable to store the billing amount

Named

Constants

As you can see, the bill processing fees, the cost of a basic service connection, and the
cost of a premium channel are fixed, and these values are needed to compute the bill.
Although these values are constants in the program, the cable company can change
them with little warning. To simplify the process of modifying the program later,
instead of using these values directly in the program, you should declare them as
named constants. Based on the problem analysis, you need to declare the following
named constants:

//Named constants – residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants – business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

Formulas The program uses a number of formulas to compute the billing amount. To compute
the residential bill, you need to know only the number of premium channels to
which the user subscribes. The following statement calculates the billing amount for a
residential customer.

amountDue = RES_BILL_PROC_FEES + RES_BASIC_SERV_COST
+ numOfPremChannels * RES_COST_PREM_CHANNEL;

To compute the business bill, you need to know the number of basic service
connections and the number of premium channels to which the user subscribes. If
the number of basic service connections is less than or equal to 10, the cost of the

Programming Example: Cable Company Billing | 227

basic service connections is fixed. If the number of basic service connections
exceeds 10, you must add the cost for each connection over 10. The following
statement calculates the business billing amount.

if (numOfBasicServConn <= 10)
amountDue = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST

+ numOfPremChannels * BUS_COST_PREM_CHANNEL;
else

amountDue = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST
+ (numOfBasicServConn - 10)

* BUS_BASIC_CONN_COST
+ numOfPremChannels * BUS_COST_PREM_CHANNEL;

MAIN

ALGORITHM

Based on the preceding discussion, you can now write the main algorithm.

1. To output floating-point numbers in a fixed decimal format with
a decimal point and trailing zeros, set the manipulators fixed and
showpoint. Also, to output floating-point numbers with two
decimal places, set the precision to two decimal places. Recall
that to use these manipulators, the program must include the
header file iomanip.

2. Prompt the user to enter the account number.

3. Get the customer account number.

4. Prompt the user to enter the customer code.

5. Get the customer code.

6. If the customer code is r or R,

a. Prompt the user to enter the number of premium channels.

b. Get the number of premium channels.

c. Calculate the billing amount.

d. Print the account number and the billing amount.

7. If the customer code is b or B,

a. Prompt the user to enter the number of basic service connections.

b. Get the number of basic service connections.

c. Prompt the user to enter the number of premium channels.

d. Get the number of premium channels.

e. Calculate the billing amount.

f. Print the account number and the billing amount.

8. If the customer code is something other than r, R, b, or B, output an
error message.

For Steps 6 and 7, the program uses a switch statement to calculate the bill for the
desired customer.

228 | Chapter 4: Control Structures I (Selection)

4

COMPLETE PROGRAM LISTING

//***
// Author: D. S. Malik
//
// Program: Cable Company Billing
// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of
// customers: residential and business.
//***

#include <iostream>
#include <iomanip>

using namespace std;

//Named constants – residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants – business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

int main()
{

//Variable declaration
int accountNumber;
char customerType;
int numOfPremChannels;
int numOfBasicServConn;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 1

cout << "This program computes a cable "
<< "bill." << endl;

cout << "Enter account number (an integer): "; //Step 2
cin >> accountNumber; //Step 3
cout << endl;

cout << "Enter customer type: "
<< "R or r (Residential), "
<< "B or b (Business): "; //Step 4

cin >> customerType; //Step 5
cout << endl;

Programming Example: Cable Company Billing | 229

switch (customerType)
{
case 'r': //Step 6
case 'R':

cout << "Enter the number"
<< " of premium channels: "; //Step 6a

cin >> numOfPremChannels; //Step 6b
cout << endl;

amountDue = RES_BILL_PROC_FEES //Step 6c
+ RES_BASIC_SERV_COST
+ numOfPremChannels *

RES_COST_PREM_CHANNEL;

cout << "Account number: "
<< accountNumber
<< endl; //Step 6d

cout << "Amount due: $"
<< amountDue
<< endl; //Step 6d

break;

case 'b': //Step 7
case 'B':

cout << "Enter the number of basic "
<< "service connections: "; //Step 7a

cin >> numOfBasicServConn; //Step 7b
cout << endl;

cout << "Enter the number"
<< " of premium channels: "; //Step 7c

cin >> numOfPremChannels; //Step 7d
cout << endl;

if (numOfBasicServConn<= 10) //Step 7e
amountDue = BUS_BILL_PROC_FEES

+ BUS_BASIC_SERV_COST
+ numOfPremChannels *

BUS_COST_PREM_CHANNEL;

else
amountDue = BUS_BILL_PROC_FEES

+ BUS_BASIC_SERV_COST
+ (numOfBasicServConn - 10) *

BUS_BASIC_CONN_COST
+ numOfPremChannels *

BUS_COST_PREM_CHANNEL;

cout << "Account number: "
<< accountNumber << endl; //Step 7f

cout << "Amount due: $" << amountDue
<< endl; //Step 7f

break;

230 | Chapter 4: Control Structures I (Selection)

4

default:
cout << "Invalid customer type." << endl; //Step 8

}//end switch

return 0;
}

Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number (an integer): 12345

Enter customer type: R or r (Residential), B or b (Business): b

Enter the number of basic service connections: 16

Enter the number of premium channels: 8

Account number: 12345
Amount due: $520.00

QUICK REVIEW

1. Control structures alter the normal flow of control.

2. The two most common control structures are selection and repetition.

3. Selection structures incorporate decisions in a program.

4. The relational operators are == (equality), < (less than), <= (less than or equal
to), > (greater than), >= (greater than or equal to), and != (not equal to).

5. Including a space between the relational operators ==, <=, >=, and ! =
creates a syntax error.

6. Characters are compared using a machine’s collating sequence.

7. Logical expressions evaluate to 1 (or a nonzero value) or 0. The logical
value 1 (or any nonzero value) is treated as true; the logical value 0 is
treated as false.

8. In C++, int variables can be used to store the value of a logical expression.

9. In C++, bool variables can be used to store the value of a logical expression.

10. In C++, the logical operators are ! (not), && (and), and || (or).

11. There are two selection structures in C++.

12. One-way selection takes the following form:
if (expression)

statement

If expression is true, the statement executes; otherwise, the computer
executes the statement following the if statement.

Quick Review | 231

13. Two-way selection takes the following form:
if (expression)

statement1
else

statement2

If expression is true, then statement1 executes; otherwise,
statement2 executes.

14. The expression in an if or if. . .else structure is usually a logical expression.

15. Including a semicolon before the statement in a one-way selection creates
a semantic error. In this case, the action of the if statement is empty.

16. Including a semicolon before statement1 in a two-way selection creates a
syntax error.

17. There is no stand-alone else statement in C++. Every else has a related if.

18. An else is paired with the most recent if that has not been paired with
any other else.

19. A sequence of statements enclosed between curly braces, {and }, is called a
compound statement or block of statements. A compound statement is
treated as a single statement.

20. You can use the input stream variable in an if statement to determine the
state of the input stream.

21. Using the assignment operator in place of the equality operator creates a
semantic error. This can cause serious errors in the program.

22. The switch structure is used to handle multiway selection.

23. The execution of a break statement in a switch statement immediately
exits the switch structure.

24. If certain conditions are not met in a program, the program can be
terminated using the assert function.

EXERCISES

1. Mark the following statements as true or false.

a. The result of a logical expression cannot be assigned to an int variable.

b. In a one-way selection, if a semicolon is placed after the expression in
an if statement, the expression in the if statement is always true.

c. Every if statement must have a corresponding else.

d. The expression in the if statement:

if (score = 30)
grade = 'A';

always evaluates to true.

232 | Chapter 4: Control Structures I (Selection)

4

e. The expression:

(ch >= 'A' && ch <= 'Z')

evaluates to false if either ch < 'A' or ch >= 'Z'.

f. Suppose the input is 5. The output of the code:

cin >> num;
if (num > 5)

cout << num;
num = 0;

else
cout << "Num is zero" << endl;

is: Num is zero

g. The expression in a switch statement should evaluate to a value of the
simple data type.

h. The expression !(x > 0) is true only if x is a negative number.

i. In C++, both ! and != are logical operators.

j. The order in which statements execute in a program is called the flow of
control.

2. Circle the best answer.

a. if (60 <= 12 * 5)
cout << "Hello";
cout << " There";

outputs the following:

(i) Hello There (ii) Hello (iii) Hello (iv) There
There

b. if ('a' > 'b' || 66 > static_cast<int>('A'))
cout << "#*#" << endl;

outputs the following:

(i) #*# (ii) # (iii) * (iv) none of these
*

#

c. if (7 <= 7)
cout << 6 - 9 * 2 / 6 << endl;

outputs the following:

(i) -1 (ii) 3 (iii) 3.0 (iv) none of these

d. if (7 < 8)
{

cout << "2 4 6 8" << endl;
cout << "1 3 5 7" << endl;

}

Exercises | 233

outputs the following:

(i) 2 4 6 8 (ii) 1 3 5 7 (iii) none of these
1 3 5 7

e. if (5 < 3)
cout << "*";

else if (7 == 8)
cout << "&";

else
cout << "$";

outputs the following:

(i) * (ii) & (iii) $ (iv) none of these

3. Suppose that x, y, and z are int variables, and x = 10, y = 15, and z = 20.
Determine whether the following expressions evaluate to true or false.

a. !(x > 10)

b. x <= 5 || y < 15

c. (x != 5) && (y != z)

d. x >= z || (x + y >= z)

e. (x <= y - 2) && (y >= z) || (z - 2 != 20)

4. Suppose that str1, str2, and str3 are string variables, and str1 =
"English", str2 = "Computer Science", and str3 = "Programming".
Evaluate the following expressions.

a. str1 >= str2

b. str1 != "english"

c. str3 < str2

d. str2 >= "Chemistry"

5. Suppose that x, y, z, and w are int variables, and x = 3, y = 4, z = 7, and w = 1.
What is the output of the following statements?

a. cout << "x == y: " << (x == y) << endl;

b. cout << "x != z: " << (x != z) << endl;

c. cout << "y == z - 3: " << (y == z - 3) << endl;

d. cout << "!(z > w): " << !(z > w) << endl;

e. cout << "x + y < z: " << (x + y < z) << endl;

6. What is the output of the following C++ code?

x = 100;
y = 200;
if (x > 100 && y <= 200)

cout << x << " " << y << " " << x + y << endl;

234 | Chapter 4: Control Structures I (Selection)

else
cout << x << " " << y << " " << 2 * x - y << endl;

7. Correct the following code so that it prints the correct message.

if (score >= 60)
cout << "You pass." << endl;

else;
cout << "You fail." << endl;

8. Write C++ statements that output Male if the gender is 'M', Female if the
gender is 'F', and invalid gender otherwise.

9. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int myNum = 10;
int yourNum = 30;

if (yourNum % myNum == 3)
{

yourNum = 3;
myNum = 1;

}
else if (yourNum % myNum == 2)
{

yourNum = 2;
myNum = 2;

}
else
{

yourNum = 1;
myNum = 3;

}

cout << myNum << " " << yourNum << endl;

return 0;
}

10. a. What is the output of the program in Exercise 9, if myNum = 5 and
yourNum = 12?

b. What is the output of the program in Exercise 9, if myNum = 30 and
yourNum = 33?

11. Suppose that sale and bonus are double variables. Write an if. . .else
statement that assigns a value to bonus as follows: If sale is greater than
$20,000, the value assigned to bonus is 0.10; If sale is greater than

4

Exercises | 235

$10,000 and less than or equal to $20,000, the value assigned to bonus is
0.05; otherwise, the value assigned to bonus is 0.

12. Suppose that overSpeed and fine are double variables. Assign the value
to fine as follows: If 0 < overSpeed <= 5, the value assigned to fine is
$20.00; if 5 < overSpeed <= 10, the value assigned to fine is $75.00 if
10 < overSpeed <= 15, the value assigned to fine is $150.00; if
overSpeed > 15, the value assigned to fine is $150.00 plus $20.00 per
mile over 15.

13. Suppose that score is an int variable. Consider the following if
statements:

if (score >= 90);
cout << "Discount = 10%" << endl;

a. What is the output if the value of score is 95? Justify your answer.

b. What is the output if the value of score is 85? Justify your answer.

14. Suppose that score is an int variable. Consider the following if statements:

i. if (score == 70)
cout << "Grade is C." << endl;

ii. if (score = 70)
cout << "Grade is C." << endl;

Answer the following questions:

a. What is the output in (i) and (ii) if the value of score is 70? What is
the value of score after the if statement executes?

b. What is the output in (i) and (ii) if the value of score is 80? What is
the value of score after the if statement executes?

15. Rewrite the following expressions using the conditional operator. (Assume
that all variables are declared properly.)

a. if (x >= y)
z = x - y;

else
z = y - x;

b. if (hours >= 40.0)
wages = 40 * 7.50 + 1.5 * 7.5 * (hours - 40);

else
wages = hours * 7.50;

c. if (score >= 60)
str = "Pass";

else
str = "Fail";

16. Rewrite the following expressions using an if. . .else statement. (Assume
that all variables are declared properly.)

236 | Chapter 4: Control Structures I (Selection)

4

a. (x < 5) ? y = 10 : y = 20;

b. (fuel >= 10) ? drive = 150 : drive = 30;

c. (booksBought >= 3) ? discount = 0.15 : discount = 0.0;

17. Suppose that you have the following conditional expression. (Assume that
all the variables are properly declared.)

(0 < backyard && backyard <= 5000) ? fertilizingCharges = 40.00
: fertilizingCharges = 40.00 + (backyard - 5000) * 0.01;

a. What is the value of fertilizingCharges if the value of backyard
is 3000?

b. What is the value of fertilizingCharges if the value of backyard
is 5000?

c. What is the value of fertilizingCharges if the value of backyard
is 6500?

18. State whether the following are valid switch statements. If not, explain
why. Assume that n and digit are int variables.

a. switch (n <= 2)
{
case 0:

cout << "Draw." << endl;
break;

case 1:
cout << "Win." << endl;
break;

case 2:
cout << "Lose." << endl;
break;

}

b. switch (digit / 4)
{
case 0,
case 1:

cout << "low." << endl;
break;

case 1,
case 2:

cout << "middle." << endl;
break;

case 3:
cout << "high." << endl;

}

c. switch (n % 6)
{
case 1:
case 2:
case 3:

Exercises | 237

case 4:
case 5:

cout << n;
break;

case 0:
cout << endl;
break;

}

d. switch (n % 10)
{
case 2:
case 4:
case 6:
case 8:

cout << "Even";
break;

case 1:
case 3:
case 5:
case 7:

cout << "Odd";
break;

}

19. Suppose the input is 5. What is the value of alpha after the following C++
code executes?

cin >> alpha;
switch (alpha)
{
case 1:
case 2:

alpha = alpha + 2;
break;

case 4:
alpha++;

case 5:
alpha = 2 * alpha;

case 6:
alpha = alpha + 5;
break;

default:
alpha--;

}

20. Suppose the input is 3. What is the value of beta after the following C++
code executes?

cin >> beta;
switch (beta)
{
case 3:

beta = beta + 3;

238 | Chapter 4: Control Structures I (Selection)

4

case 1:
beta++;
break;

case 5:
beta = beta + 5;

case 4:
beta = beta + 4;

}

21. Suppose the input is 6. What is the value of a after the following C++ code
executes?

cin >> a;
if (a > 0)

switch (a)
{
case 1:

a = a + 3;
case 3:

a++;
break;

case 6:
a = a + 6;

case 8:
a = a * 8;
break;

default:
a--;

}
else

a = a + 2;

22. In the following code, correct any errors that would prevent the program
from compiling or running.

include <iostream>

main ()
{

int a, b;
bool found;
cout << "Enter two integers: ;
cin >> a >> b;

if a > a*b && 10 < b
found = 2 * a > b;

else
{

found = 2 * a < b;
if found

a = 3;
c = 15;
if b

Exercises | 239

{
b = 0;
a = 1;

}
}

23. The following program contains errors. Correct them so that the program
will run and output w = 21.

#include <iostream>

using namespace std;

const int SECRET = 5

main ()
{

int x, y, w, z;
z = 9;

if z > 10
x = 12; y = 5, w = x + y + SECRET;

else
x = 12; y = 4, w = x + y + SECRET;

cout << "w = " << w << endl;
}

24. Write the missing statements in the following program so that it prompts
the user to input two numbers. If one of the numbers is 0, the program
should output a message indicating that both numbers must be nonzero. If
the first number is greater than the second number, it outputs the first
number divided by the second number; if the first number is less than the
second number, it outputs the second number divided by the first number;
otherwise, it outputs the product of the numbers.

#include <iostream>
using namespace std;

int main()
{

double firstNum, secondNum;

cout << "Enter two nonzero numbers: ";
cin >> firstNum >> secondNum;
cout << endl;

//Missing statements

return 0;
}

240 | Chapter 4: Control Structures I (Selection)

4

PROGRAMMING EXERCISES

1. Write a program that prompts the user to input a number. The program
should then output the number and a message saying whether the number is
positive, negative, or zero.

2. Write a program that prompts the user to input three numbers. The program
should then output the numbers in ascending order.

3. Write a program that prompts the user to input an integer between 0 and 35. If
the number is less than or equal to 9, the program should output the number;
otherwise, it should output A for 10, B for 11, C for 12 . . . and Z for 35. (Hint:
Use the cast operator, static_cast<char>(), for numbers >= 10.)

4. The statements in the following program are in incorrect order. Rearrange
the statements so that they prompt the user to input the shape type
(rectangle, circle, or cylinder) and the appropriate dimension of the
shape. The program then outputs the following information about the shape:
For a rectangle, it outputs the area and perimeter; for a circle, it outputs the
area and circumference; and for a cylinder, it outputs the volume and surface
area. After rearranging the statements, you program should be properly
indented.

using namespace std;

#include <iostream>

int main()
{

string shape;
double height;

#include <string>

cout << "Enter the shape type: (rectangle, circle, cylinder) ";
cin >> shape;
cout << endl;

if (shape == "rectangle")
{

cout << "Area of the circle = "
<< PI * pow(radius, 2.0) << endl;

cout << "Circumference of the circle: "
<< 2 * PI * pow(radius, 2.0) << endl;

cout << "Enter the height of the cylinder: ";
cin >> height;
cout << endl;

cout << "Enter the width of the rectangle: ";
cin >> width;
cout << endl;

Programming Exercises | 241

cout << "Perimeter of the rectangle = "
<< 2 * (length + width) << endl;

double width;
}

cout << "Surface area of the cylinder: "
<< 2 * radius * + 2 * PI * pow(radius, 2.0) << endl;

}
else if (shape == "circle")
{

cout << "Enter the radius of the circle: ";
cin >> radius;
cout << endl;

cout << "Volume of the cylinder = "
<< PI * pow(radius, 2.0)* height << endl;

double length;
}
return 0;
else if (shape == "cylinder")
{

double radius;

cout << "Enter the length of the rectangle: ";
cin >> length;
cout << endl;

#include <iomanip>

cout << "Enter the radius of the base of the cylinder: ";
cin >> radius;
cout << endl;

const double PI = 3.1416;
cout << "Area of the rectangle = "

<< length * width << endl;
else

cout << "The program does not handle " << shape << endl;
cout << fixed << showpoint << setprecision(2);

#include <cmath>
}

5. Write a program to implement the algorithm you designed in Exercise 21 of
Chapter 1.

6. In a right triangle, the square of the length of one side is equal to the sum of
the squares of the lengths of the other two sides. Write a program that
prompts the user to enter the lengths of three sides of a triangle and then
outputs a message indicating whether the triangle is a right triangle.

242 | Chapter 4: Control Structures I (Selection)

4

7. A box of cookies can hold 24 cookies, and a container can hold 75 boxes
of cookies. Write a program that prompts the user to enter the total
number of cookies, the number of cookies in a box, and the number of
cookie boxes in a container. The program then outputs the number of
boxes and the number of containers to ship the cookies. Note that each
box must contain the specified number of cookies, and each container
must contain the specified number of boxes. If the last box of cookies
contains less than the number of specified cookies, you can discard it and
output the number of leftover cookies. Similarly, if the last container
contains less than the number of specified boxes, you can discard it and
output the number of leftover boxes.

8. The roots of the quadratic equation ax2 + bx + c = 0, a 6¼ 0 are given by the
following formula:

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a

In this formula, the term b2� 4ac is called the discriminant. If b2� 4ac = 0,
then the equation has a single (repeated) root. If b2� 4ac > 0, the
equation has two real roots. If b2� 4ac< 0, the equation has two
complex roots. Write a program that prompts the user to input the
value of a (the coefficient of x2), b (the coefficient of x), and c (the
constant term) and outputs the type of roots of the equation. Further-
more, if b2� 4ac� 0, the program should output the roots of the
quadratic equation. (Hint: Use the function pow from the header file
cmath to calculate the square root. Chapter 3 explains how the func-
tion pow is used.)

9. Write a program that mimics a calculator. The program should take as input
two integers and the operation to be performed. It should then output the
numbers, the operator, and the result. (For division, if the denominator is
zero, output an appropriate message.) Some sample outputs follow:

3 + 4 = 7
13 * 5 = 65

10. Redo Exercise 9 to handle floating-point numbers. (Format your output to
two decimal places.)

11. Redo Programming Exercise 19 of Chapter 2, taking into account that your
parents buy additional savings bonds for you as follows:

a. If you do not spend any money to buy savings bonds, then because you
had a summer job, your parents buy savings bonds for you in an
amount equal to 1% of the money you save after paying taxes and
buying clothes, other accessories, and school supplies.

b. If you spend up to 25% of your net income to buy savings bonds, your
parents spend $0.25 for each dollar you spend to buy savings bonds,

Programming Exercises | 243

plus money equal to 1% of the money you save after paying taxes and
buying clothes, other accessories, and school supplies.

c. If you spend more than 25% of your net income to buy savings bonds,
your parents spend $0.40 for each dollar you spend to buy savings
bonds, plus money equal to 2% of the money you save after paying
taxes and buying clothes, other accessories, and school supplies.

12. A bank in your town updates its customers’ accounts at the end of each month.
The bank offers two types of accounts: savings and checking. Every customer
must maintain a minimum balance. If a customer’s balance falls below the
minimum balance, there is a service charge of $10.00 for savings accounts and
$25.00 for checking accounts. If the balance at the end of the month is at least
the minimum balance, the account receives interest as follows:

a. Savings accounts receive 4% interest.

b. Checking accounts with balances of up to $5,000 more than the
minimum balance receive 3% interest; otherwise, the interest is 5%.

Write a program that reads a customer’s account number (int type),
account type (char; s for savings, c for checking), minimum balance that
the account should maintain, and current balance. The program should then
output the account number, account type, current balance, and an appro-
priate message. Test your program by running it five times, using the
following data:

46728 S 1000 2700
87324 C 1500 7689
79873 S 1000 800
89832 C 2000 3000
98322 C 1000 750

13. Write a program that implements the algorithm given in Example 1-3
(Chapter 1), which determines the monthly wages of a salesperson.

14. The number of lines that can be printed on a paper depends on the paper size,
the point size of each character in a line, whether lines are double-spaced or
single-spaced, the top and bottom margin, and the left and right margins of
the paper. Assume that all characters are of the same point size, and all lines
are either single-spaced or double-spaced. Note that 1 inch = 72 points.
Moreover, assume that the lines are printed along the width of the paper. For
example, if the length of the paper is 11 inches and width is 8.5 inches, then
the maximum length of a line is 8.5 inches. Write a program that calculates
the number of characters in a line and the number of lines that can be printed
on a paper based on the following input from the user:

a. The length and width, in inches, of the paper

b. The top, bottom, left, and right margins

c. The point size of a line

d. If the lines are double-spaced, then double the point size of each character

244 | Chapter 4: Control Structures I (Selection)

15. Write a program that calculates and prints the bill for a cellular telephone
company. The company offers two types of service: regular and premium.
Its rates vary, depending on the type of service. The rates are computed as
follows:

Regular service: $10.00 plus first 50 minutes are free. Charges for
over 50 minutes are $0.20 per minute.

Premium service: $25.00 plus:

a. For calls made from 6:00 a.m. to 6:00 p.m., the first 75 minutes are free;
charges for more than 75 minutes are $0.10 per minute.

b. For calls made from 6:00 p.m. to 6:00 a.m., the first 100 minutes are
free; charges for more than 100 minutes are $0.05 per minute.

Your program should prompt the user to enter an account number, a
service code (type char), and the number of minutes the service was used.
A service code of r or R means regular service; a service code of p or P
means premium service. Treat any other character as an error. Your pro-
gram should output the account number, type of service, number of
minutes the telephone service was used, and the amount due from the user.

For the premium service, the customer may be using the service during the
day and the night. Therefore, to calculate the bill, you must ask the user to
input the number of minutes the service was used during the day and the
number of minutes the service was used during the night.

16. Write a program to implement the algorithm that you designed in Exercise
22 of Chapter 1. (Assume that the account balance is stored in the file
Ch4_Ex16_Data.txt.) Your program should output account balance before
and after withdrawal and service charges. Also save the account balance after
withdrawal in the file Ch4_Ex16_Output.txt.

17. You have several pictures of different sizes that you would like to frame. A
local picture-framing store offers two types of frames—regular and fancy.
The frames are available in white and can be ordered in any color the
customer desires. Suppose that each frame is 1 inch wide. The cost of
coloring the frame is $0.10 per inch. The cost of a regular frame is $0.15
per inch, and the cost of a fancy frame is $0.25 per inch. The cost of putting
a cardboard paper behind the picture is $0.02 per square inch, and the cost
of putting glass on top of the picture is $0.07 per square inch. The customer
can also choose to put crowns on the corners, which costs $0.35 per crown.
Write a program that prompts the user to input the following information
and then output the cost of framing the picture:

a. The length and width, in inches, of the picture

b. The type of the frame

c. Customer’s choice of color to color the frame

d. If the user wants to put the crowns, then the number of crowns

4

Programming Exercises | 245

18. Samantha and Vikas are looking to buy a house in a new development.
After looking at various models, the three models they like are colonial,
split-entry, and single-story. The builder gave them the base price and the
finished area in square feet of the three models. They want to know the
model(s) with the least price per square foot. Write a program that accepts as
input the base price and the finished area in square feet of the three models.
The program outputs the model(s) with the least price per square foot.

19. One way to determine how healthy a person is by measuring the body fat
of the person. The formulas to determine the body fat for female and male
are as follows:

Body fat formula for women:

A1 ¼ (body weight � 0.732) + 8.987
A2 ¼ wrist measurement (at fullest point) / 3.140
A3 ¼ waist measurement (at navel) � 0.157
A4 ¼ hip measurement (at fullest point) � 0.249
A5 ¼ forearm measurement (at fullest point) � 0.434
B ¼ A1 + A2 – A3 – A4 + A5
Body fat ¼ body weight – B
Body fat percentage ¼ body fat � 100 / body weight

Body fat formula for men:

A1 ¼ (body weight � 1.082) + 94.42
A2 ¼ wrist measurement � 4.15
B ¼ A1 – A2
Body fat ¼ body weight – B
Body fat percentage ¼ body fat � 100 / body weight

Write a program to calculate the body fat of a person.

246 | Chapter 4: Control Structures I (Selection)

CONTROL STRUCTURES II
(REPETITION)

IN THIS CHAPTER , YOU WILL :

. Learn about repetition (looping) control structures

. Explore how to construct and use counter-controlled,
sentinel-controlled, flag-controlled, and EOF-controlled
repetition structures

. Examine break and continue statements

. Discover how to form and use nested control structures

. Learn how to avoid bugs by avoiding patches

. Learn how to debug loops

5C H A P T E R

In Chapter 4, you saw how decisions are incorporated in programs. In this chapter, you
learn how repetitions are incorporated in programs.

Why Is Repetition Needed?
Suppose you want to add five numbers to find their average. From what you have learned
so far, you could proceed as follows (assume that all variables are properly declared):

cin >> num1 >> num2 >> num3 >> num4 >> num5; //read five numbers
sum = num1 + num2 + num3 + num4 + num5; //add the numbers
average = sum / 5; //find the average

But suppose you want to add and average 100, 1000, or more numbers. You would have
to declare that many variables and list them again in cin statements and, perhaps, again in
the output statements. This takes an exorbitant amount of space and time. Also, if you
want to run this program again with different values or with a different number of values,
you have to rewrite the program.

Suppose you want to add the following numbers:

5 3 7 9 4

Consider the following statements, in which sum and num are variables of type int:

1. sum = 0;

2. cin >> num;

3. sum = sum + num;

The first statement initializes sum to 0. Let us execute statements 2 and 3. Statement 2
stores 5 in num; statement 3 updates the value of sum by adding num to it. After statement
3, the value of sum is 5.

Let us repeat statements 2 and 3. After statement 2 (after the programming code reads the
next number):

num = 3

After statement 3:

sum = sum + num = 5 + 3 = 8

At this point, sum contains the sum of the first two numbers. Let us again repeat statements
2 and 3 (a third time). After statement 2 (after the code reads the next number):

num = 7

After statement 3:

sum = sum + num = 8 + 7 = 15

Now, sum contains the sum of the first three numbers. If you repeat statements 2 and 3
two more times, sum will contain the sum of all five numbers.

248 | Chapter 5: Control Structures II (Repetition)

If you want to add 10 numbers, you can repeat statements 2 and 3 ten times. And if you want to
add100numbers, youcan repeat statements2and3onehundred times. Ineither case, youdonot
have todeclare any additional variables, as youdid in the first code.Youcanuse thisC++code to
add any set of numbers, whereas the earlier code requires you to drastically change the code.

There are many other situations in which it is necessary to repeat a set of statements. For
example, for each student in a class, the formula for determining the course grade is the same.
C++ has three repetition, or looping, structures that let you repeat statements over and over
until certain conditions are met. This chapter introduces all three looping (repetition)
structures. The next section discusses the first repetition structure, called the while loop.

while Looping (Repetition) Structure
In the previous section, you saw that sometimes it is necessary to repeat a set of statements
several times. One way to repeat a set of statements is to type the set of statements in the
program over and over. For example, if you want to repeat a set of statements 100 times,
you type the set of statements 100 times in the program. However, this solution of
repeating a set of statements is impractical, if not impossible. Fortunately, there is a better
way to repeat a set of statements. As noted earlier, C++ has three repetition, or looping,
structures that allow you to repeat a set of statements until certain conditions are met.
This section discusses the first looping structure, called a while loop.

The general form of the while statement is:

while (expression)
statement

In C++, while is a reserved word. Of course, the statement can be either a simple
or compound statement. The expression acts as a decision maker and is usually a
logical expression. The statement is called the body of the loop. Note that the
parentheses around the expression are part of the syntax. Figure 5-1 shows the flow
of execution of a while loop.

5

expression statementtrue

false

FIGURE 5-1 while loop

while Looping (Repetition) Structure | 249

The expression provides an entry condition. If it initially evaluates to true, the
statement executes. The loop condition—the expression—is then reevaluated. If it again
evaluates to true, the statement executes again. The statement (body of the loop)
continues to execute until the expression is no longer true. A loop that continues to
execute endlessly is called an infinite loop. To avoid an infinite loop, make sure that the loop’s
body contains statement(s) that assure that the exit condition—the expression in the while
statement—will eventually be false.

EXAMPLE 5-1

Consider the following C++ program segment: (Assume that i is an int variable.)

i = 0; //Line 1

while (i <= 20) //Line 2
{

cout << i << " "; //Line 3
i = i + 5; //Line 4

}

cout << endl;

Sample Run:

0 5 10 15 20

In Line 1, the variable i is set to 0. The expression in the while statement (in Line
2), i <= 20, is evaluated. Because the expression i <= 20 evaluates to true, the body of
the while loop executes next. The body of the while loop consists of the statements in
Lines 3 and 4. The statement in Line 3 outputs the value of i, which is 0. The statement
in Line 4 changes the value of i to 5. After executing the statements in Lines 3 and 4, the
expression in the while loop (Line 2) is evaluated again. Because i is 5, the
expression i <= 20 evaluates to true and the body of the while loop executes again.
This process of evaluating the expression and executing the body of the while loop
continues until the expression, i <= 20 (in Line 2), no longer evaluates to true.

The variable i (in Line 2, Example 5-1) in the expression is called the loop control variable.

Note the following from Example 5-1:

a. Within the loop, i becomes 25 but is not printed because the entry
condition is false.

b. If you omit the statement:

i = i + 5;

from the body of the loop, you will have an infinite loop, continually
printing rows of zeros.

250 | Chapter 5: Control Structures II (Repetition)

5

c. You must initialize the loop control variable i before you execute the
loop. If the statement:

i = 0;

(in Line 1) is omitted, the loop may not execute at all. (Recall that
variables in C++ are not automatically initialized.)

d. In Example 5-1, if the two statements in the body of the loop are
interchanged, it may drastically alter the result. For example, consider
the following statements:

i = 0;

while (i <= 20)
{

i = i + 5;
cout << i << " ";

}

cout << endl;

Here, the output is:

5 10 15 20 25

Typically, this would be a semantic error because you rarely want a
condition to be true for i <= 20 and yet produce results for i > 20.

e. If you put a semicolon at the end of the while loop, (after the logical
expression), then the action of the while loop is empty or null. For
example, the action of the following while loop is empty.

i = 0;

while (i <= 20);
{

i = i + 5;
cout << i << " ";

}

cout << endl;

The statements within the braces do not form the body of the while loop.

Designing while Loops
As in Example 5-1, the body of a while executes only when the expression, in the
while statement, evaluates to true. Typically, the expression checks whether a
variable(s), called the loop control variable (LCV), satisfies certain conditions. For
example, in Example 5-1, the expression in the while statement checks whether
i <= 20. The LCV must be properly initialized before the while loop, and it should

while Looping (Repetition) Structure | 251

eventually make the expression evaluate to false. We do this by updating or
reinitializing the LCV in the body of the while loop. Therefore, typically, while loops
are written in the following form:

//initialize the loop control variable(s)

while (expression) //expression tests the LCV
{

.

.

.
//update the loop control variable(s)
.
.
.

}

For instance, in Example 5-1, the statement in Line 1 initializes the LCV i to 0. The
expression, i <= 20, in Line 2, checks whether i is less than or equal to 20, and the
statement in Line 4 updates the value of i.

EXAMPLE 5-2

Consider the following C++ program segment:

i = 20; //Line 1
while (i < 20) //Line 2
{

cout << i << " "; //Line 3
i = i + 5; //Line 4

}
cout << endl; //Line 5

It is easy to overlook the difference between this example and Example 5-1. In this example, in
Line 1, i is set to 20. Because i is 20, the expression i< 20 in the while statement (Line 2)
evaluates to false. Because initially the loop entry condition, i < 20, is false, the body of
the while loop never executes. Hence, no values are output, and the value of i remains 20.

The next few sections describe the various forms of while loops.

Case 1: Counter-Controlled while Loops
Suppose you know exactly how many times certain statements need to be executed. For
example, suppose you know exactly how many pieces of data (or entries) need to be read.
In such cases, the while loop assumes the form of a counter-controlled while loop.
Suppose that a set of statements needs to be executed N times. You can set up a counter

252 | Chapter 5: Control Structures II (Repetition)

5

(initialized to 0 before the while statement) to track how many items have been read.
Before executing the body of the while statement, the counter is compared with N. If
counter < N, the body of the while statement executes. The body of the loop
continues to execute until the value of counter >= N. Thus, inside the body of the
while statement, the value of counter increments after it reads a new item. In this case,
the while loop might look like the following:

counter = 0; //initialize the loop control variable

while (counter < N) //test the loop control variable
{

.

.

.
counter++; //update the loop control variable
.
.
.

}

If N represents the number of data items in a file, then the value of N can be determined
several ways. The program can prompt you to specify the number of items in the file; an
input statement can read the value; or you can specify the first item in the file as the number
of items in the file, so that you need not remember the number of input values (items). This
is useful if someone other than the programmer enters the data. Consider Example 5-3.

EXAMPLE 5-3

Suppose the input is:

8 9 2 3 90 38 56 8 23 89 7 2

Suppose you want to add these numbers and find their average. Consider the following
program:

//Program: Counter-Controlled Loop

#include <iostream>

using namespace std;

int main()
{

int limit; //store the number of data items
int number; //variable to store the number
int sum; //variable to store the sum
int counter; //loop control variable

cout << "Line 1: Enter the number of "
<< "integers in the list: "; //Line 1

cin >> limit; //Line 2
cout << endl; //Line 3

while Looping (Repetition) Structure | 253

sum = 0; //Line 4
counter = 0; //Line 5

cout << "Line 6: Enter " << limit
<< " integers." << endl; //Line 6

while (counter < limit) //Line 7
{

cin >> number; //Line 8
sum = sum + number; //Line 9
counter++; //Line 10

}

cout << "Line 11: The sum of the " << limit
<< " numbers = " << sum << endl; //Line 11

if (counter != 0) //Line 12
cout << "Line 13: The average = "

<< sum / counter << endl; //Line 13
else //Line 14

cout << "Line 15: No input." << endl; //Line 15

return 0; //Line 16
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter the number of integers in the list: 12

Line 6: Enter 12 integers.
8 9 2 3 90 38 56 8 23 89 7 2
Line 11: The sum of the 12 numbers = 335
Line 13: The average = 27

This program works as follows. The statement in Line 1 prompts the user to input the
number of data items. The statement in Line 2 reads the next input line and stores it in the
variable limit. The value of limit indicates the number of items in the list. The statements
in Lines 4 and 5 initialize the variables sum and counter to 0. (The variable counter is the
loop control variable.) The statement in Line 6 prompts the user to input numbers. (In this
sample run, the user is prompted to enter 12 integers.) The while statement in Line 7
checks the value of counter to determine how many items have been read. If counter is
less than limit, the while loop proceeds for the next iteration. The statement in Line 8
reads the next number and stores it in the variable number. The statement in Line 9 updates
the value of sum by adding the value of number to the previous value, and the statement in
Line 10 increments the value of counter by 1. The statement in Line 11 outputs the sum of
the numbers; the statements in Lines 12 through 15 output the average.

Note that sum is initialized to 0 in Line 4 in this program. In Line 9, after reading a number at
Line 8, the program adds it to the sum of all the numbers scanned before the current number.
The first number read will be added to zero (because sum is initialized to 0), giving the
correct sum of the first number. To find the average, divide sum by counter. If counter

254 | Chapter 5: Control Structures II (Repetition)

5

is 0, then dividing by zero will terminate the program and you get an error message.
Therefore, before dividing sum by counter, you must check whether or not counter is 0.

Notice that in this program, the statement in Line 5 initializes the LCV counter to 0.
The expression counter < limit in Line 7 evaluates whether counter is less than
limit. The statement in Line 10 updates the value of counter.

Case 2: Sentinel-Controlled while Loops
You do not always know how many pieces of data (or entries) need to be read, but you
may know that the last entry is a special value, called a sentinel. In this case, you read
the first item before the while statement. If this item does not equal the sentinel, the
body of the while statement executes. The while loop continues to execute as long as
the program has not read the sentinel. Such a while loop is called a sentinel-
controlled while loop. In this case, a while loop might look like the following:

cin >> variable; //initialize the loop control variable

while (variable != sentinel) //test the loop control variable
{

.

.

.
cin >> variable; //update the loop control variable
.
.
.

}

EXAMPLE 5-4

Suppose you want to read some positive integers and average them, but you do not have
a preset number of data items in mind. Suppose the number -999 marks the end of the
data. You can proceed as follows.

//Program: Sentinel-Controlled Loop

#include <iostream>

using namespace std;

const int SENTINEL = -999;

int main()
{

int number; //variable to store the number
int sum = 0; //variable to store the sum
int count = 0; //variable to store the total

//numbers read

while Looping (Repetition) Structure | 255

cout << "Line 1: Enter integers ending with "
<< SENTINEL << endl; //Line 1

cin >> number; //Line 2

while (number != SENTINEL) //Line 3
{

sum = sum + number; //Line 4
count++; //Line 5
cin >> number; //Line 6

}

cout << "Line 7: The sum of the " << count
<< " numbers is " << sum << endl; //Line 7

if (count != 0) //Line 8
cout << "Line 9: The average is "

<< sum / count << endl; //Line 9
else //Line 10

cout << "Line 11: No input." << endl; //Line 11

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter integers ending with -999
34 23 9 45 78 0 77 8 3 5 -999
Line 7: The sum of the 10 numbers is 282
Line 9: The average is 28

This program works as follows. The statement in Line 1 prompts the user to enter
numbers ending with -999. The statement in Line 2 reads the first number and stores it
in number. The while statement in Line 3 checks whether number is not equal to
SENTINEL. (The variable number is the loop control variable.) If number is not equal to
SENTINEL, the body of the while loop executes. The statement in Line 4 updates the
value of sum by adding number to it. The statement in Line 5 increments the value of
count by 1; the statement in Line 6 reads and stores the next number into number. The
statements in Lines 4 through 6 repeat until the program reads the SENTINEL. The
statement in Line 7 outputs the sum of the numbers, and the statements in Lines 8
through 10 output the average of the numbers.

Notice that the statement in Line 2 initializes the LCV number. The expression number
!= SENTINEL in Line 3 checks whether the value of number is not equal to SENTINEL.
The statement in Line 6 reinitializes the LCV number.

Next, consider another example of a sentinel-controlled while loop. In this example, the
user is prompted to enter the value to be processed. If the user wants to stop the program,
he or she can enter the sentinel.

256 | Chapter 5: Control Structures II (Repetition)

EXAMPLE 5-5

Telephone Digits
The following program reads the letter codes A to Z and prints the corresponding
telephone digit. This program uses a sentinel-controlled while loop. To stop the
program, the user is prompted for the sentinel, which is #. This is also an example of a
nested control structure, in which if. . .else, switch, and the while loop are nested.

//**
// Program: Telephone Digits
// This is an example of a sentinel-controlled loop. This
// program converts uppercase letters to their corresponding
// telephone digits.
//**

#include <iostream>

using namespace std;

int main()
{

char letter; //Line 1

cout << "Program to convert uppercase "
<< "letters to their corresponding "
<< "telephone digits." << endl; //Line 2

cout << "To stop the program enter #."
<< endl; //Line 3

cout << "Enter a letter: "; //Line 4
cin >> letter; //Line 5
cout << endl; //Line 6

while (letter != '#') //Line 7
{

cout << "The letter you entered is: "
<< letter << endl; //Line 8

cout << "The corresponding telephone "
<< "digit is: "; //Line 9

if (letter >= 'A' && letter <= 'Z') //Line 10
switch (letter) //Line 11
{
case 'A':
case 'B':
case 'C':

cout << 2 <<endl; //Line 12
break; //Line 13

5

while Looping (Repetition) Structure | 257

case 'D':
case 'E':
case 'F':

cout << 3 << endl; //Line 14
break; //Line 15

case 'G':
case 'H':
case 'I':

cout << 4 << endl; //Line 16
break; //Line 17

case 'J':
case 'K':
case 'L':

cout << 5 << endl; //Line 18
break; //Line 19

case 'M':
case 'N':
case 'O':

cout << 6 << endl; //Line 20
break; //Line 21

case 'P':
case 'Q':
case 'R':
case 'S':

cout << 7 << endl; //Line 22
break; //Line 23

case 'T':
case 'U':
case 'V':

cout << 8 << endl; //Line 24
break; //Line 25

case 'W':
case 'X':
case 'Y':
case 'Z':

cout << 9 << endl; //Line 26
}

else //Line 27
cout << "Invalid input." << endl; //Line 28

cout << "\nEnter another uppercase "
<< "letter to find its "
<< "corresponding telephone digit."
<< endl; //Line 29

cout << "To stop the program enter #."
<< endl; //Line 30

cout << "Enter a letter: "; //Line 31
cin >> letter; //Line 32
cout << endl; //Line 33

}//end while

return 0;
}

258 | Chapter 5: Control Structures II (Repetition)

5

Sample Run: In this sample run, the user input is shaded.

Program to convert uppercase letters to their corresponding telephone
digits.
To stop the program enter #.
Enter a letter: A
The letter you entered is: A
The corresponding telephone digit is: 2

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.
Enter a letter: D
The letter you entered is: D
The corresponding telephone digit is: 3

Enter another uppercase letter to find its corresponding telephone digit.
To stop the program enter #.
Enter a letter: #

This program works as follows. The statements in Lines 2 and 3 tell the user what to do. The
statement in Line 4 prompts the user to input a letter; the statement in Line 5 reads and stores
that letter into the variable letter. The while loop in Line 7 checks that the letter is #. If
the letter entered by the user is not #, the body of the while loop executes. The statement in
Line 8 outputs the letter entered by the user. The if statement in Line 10 checks whether
the letter entered by the user is uppercase. The statement part of the if statement is the
switch statement (Line 11). If the letter entered by the user is uppercase, the expression
in the if statement (in Line 10) evaluates to true and the switch statement executes; if the
letter entered by the user is not uppercase, the else statement (Line 27) executes. The
statements in Lines 12 through 26 determine the corresponding telephone digit.

Once the current letter is processed, the statements in Lines 29 and 30 again inform
the user what to do next. The statement in Line 31 prompts the user to enter a letter; the
statement in Line 32 reads and stores that letter into the variable letter. (Note that the
statement in Line 29 is similar to the statement in Line 2 and that the statements in Lines
30 through 33 are the same as the statements in Lines 3 through 6.) After the statement in
Line 33 (at the end of the while loop) executes, the control goes back to the top of the while
loop and the same process begins again. When the user enters #, the program terminates.

Notice that in this program, the variable letter is the loop control variable. First, it is
initialized in Line 5 by the input statement, and then it is updated in Line 32. The
expression in Line 7 checks whether letter is #.

In the program in Example 5-5, you can write the statements between Lines 10 and 28

using a switch structure. (See Programming Exercise 3 at the end of this chapter.)

Case 3: Flag-Controlled while Loops
A flag-controlled while loop uses a bool variable to control the loop. Suppose
found is a bool variable. The flag-controlled while loop takes the following form:

while Looping (Repetition) Structure | 259

found = false; //initialize the loop control variable

while (!found) //test the loop control variable
{

.

.

.
if (expression)

found = true; //update the loop control variable
.
.
.

}

The variable found, which is used to control the execution of the while loop, is called a
flag variable.

Example 5-6 further illustrates the use of a flag-controlled while loop.

EXAMPLE 5-6

Number Guessing Game
The following program randomly generates an integer greater than or equal to 0 and less
than 100. The program then prompts the user to guess the number. If the user guesses
the number correctly, the program outputs an appropriate message. Otherwise, the
program checks whether the guessed number is less than the random number. If the
guessed number is less than the random number generated by the program, the program
outputs the message ‘‘Your guess is lower than the number. Guess again!’’; otherwise, the
program outputs the message ‘‘Your guess is higher than the number. Guess again!’’. The
program then prompts the user to enter another number. The user is prompted to guess
the random number until the user enters the correct number.

To generate a random number, you can use the function rand of the header file
cstdlib. For example, the expression rand() returns an int value between 0 and
32767. Therefore, the statement:

cout << rand() << ", " << rand() << endl;

will output two numbers that appear to be random. However, each time the program is
run, this statement will output the same random numbers. This is because the function
rand uses an algorithm that produces the same sequence of random numbers each time the
program is executed on the same system. To generate different random numbers each time
the program is executed, you also use the function srand of the header file cstdlib. The
function srand takes as input an unsigned int, which acts as the seed for the algorithm.
By specifying different seed values, each time the program is executed, the function rand
will generate a different sequence of random numbers. To specify a different seed, you can
use the function time of the header file ctime, which returns the number of seconds
elapsed since January 1, 1970. For example, consider the following statements:

260 | Chapter 5: Control Structures II (Repetition)

5

srand(time(0));
num = rand() % 100;

The first statement sets the seed, and the second statement generates a random number
greater than or equal to 0 and less than 100. Note how the function time is used. It is
used with an argument, that is, parameter, which is 0.

The program uses the bool variable isGuessed to control the loop. The bool variable
isGuessed is initialized to false. It is set to true when the user guesses the correct
number.

//Flag-controlled while loop.
//Number guessing game.

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int main()
{

//declare the variables
int num; //variable to store the random

//number
int guess; //variable to store the number

//guessed by the user
bool isGuessed; //boolean variable to control

//the loop

srand(time(0)); //Line 1
num = rand() % 100; //Line 2

isGuessed = false; //Line 3

while (!isGuessed) //Line 4
{ //Line 5

cout << "Enter an integer greater"
<< " than or equal to 0 and "
<< "less than 100: "; //Line 6

cin >> guess; //Line 7
cout << endl; //Line 8

if (guess == num) //Line 9
{ //Line 10

cout << "You guessed the correct "
<< "number." << endl; //Line 11

isGuessed = true; //Line 12
} //Line 13
else if (guess < num) //Line 14

cout << "Your guess is lower than the "
<< "number.\n Guess again!"
<< endl; //Line 15

while Looping (Repetition) Structure | 261

else //Line 16
cout << "Your guess is higher than "

<< "the number.\n Guess again!"
<< endl; //Line 17

} //end while //Line 18

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter an integer greater than or equal to 0 and less than 100: 45

Your guess is higher than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 20

Your guess is lower than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 35

Your guess is higher than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 28

Your guess is lower than the number.
Guess again!

Enter an integer greater than or equal to 0 and less than 100: 32

You guessed the correct number.

The preceding program works as follows: The statement in Line 2 creates an integer
greater than or equal to 0 and less than 100 and stores this number in the variable num.
The statement in Line 3 sets the bool variable isGuessed to false. The expression in
the while loop at Line 4 evaluates the expression !isGuessed. If isGuessed is
false, then !isGuessed is true and the body of the while loop executes; if
isGuessed is true, then !isGuessed is false, so the while loop terminates.

The statement in Line 6 prompts the user to enter an integer greater than or equal to 0
and less than 100. The statement in Line 7 stores the number entered by the user in the
variable guess. The expression in the if statement in Line 9 determines whether
the value of guess is the same as num, that is, if the user guessed the number correctly.
If the value of guess is the same as num, the statement in Line 11 outputs the message:

You guessed the correct number.

The statement in Line 12 sets the variable isGuessed to true. The control then goes
back to Line 3. Because done is true, !isGuessed is false and the while loop
terminates.If the expression in Line 9 evaluates to false, then the else statement in
Line 14 determines whether the value of guess is less than or greater than num and
outputs the appropriate message.

262 | Chapter 5: Control Structures II (Repetition)

5

Case 4: EOF-Controlled while Loops
If the data file is frequently altered (for example, if data is frequently added or deleted), it’s
best not to read the data with a sentinel value. Someone might accidentally erase the sentinel
value or add data past the sentinel, especially if the programmer and the data entry person are
different people. Also, it can be difficult at times to select a good sentinel value. In such
situations, you can use an end-of-file (EOF)-controlled while loop.

Until now, we have used an input stream variable, such as cin, and the extraction
operator, >>, to read and store data into variables. However, the input stream variable
can also return a value after reading data, as follows:

1. If the program has reached the end of the input data, the input stream
variable returns the logical value false.

2. If the program reads any faulty data (such as a char value into an int
variable), the input stream enters the fail state. Once a stream enters the fail
state, any further I/O operations using that stream are considered to be null
operations; that is, they have no effect. Unfortunately, the computer does
not halt the program or give any error messages. It just continues executing
the program, silently ignoring each additional attempt to use that stream. In
this case, the input stream variable returns the value false.

3. In cases other than (1) and (2), the input stream variable returns the
logical value true.

You can use the value returned by the input stream variable to determine whether the
program has reached the end of the input data. Because the input stream variable returns the
logical value true or false, in a while loop, it can be considered a logical expression.

The following is an example of an EOF-controlled while loop:

cin >> variable; //initialize the loop control variable

while (cin) //test the loop control variable
{

.

.

.
cin >> variable; //update the loop control variable
.
.
.

}

Notice that here, the variable cin acts as the loop control variable.

eof Function
In addition to checking the value of an input stream variable, such as cin, to determine
whether the end of the file has been reached, C++ provides a function that you can use
with an input stream variable to determine the end-of-file status. This function is called

while Looping (Repetition) Structure | 263

eof. Like the I/O functions—such as get, ignore, and peek, discussed in Chapter 3—
the function eof is a member of the data type istream.

The syntax to use the function eof is:

istreamVar.eof()

in which istreamVar is an input stream variable, such as cin.

Suppose you have the declaration:

ifstream infile;

Further suppose that you opened a file using the variable infile. Consider the expression:

infile.eof()

This is a logical (Boolean) expression. The value of this expression is true if the program has
read past the end of the input file, infile; otherwise, the value of this expression is false.

This method of determining the end-of-file status (that is, using the function eof) works
best if the input is text. The earlier method of determining the end-of-file status works
best if the input consists of numeric data.

Suppose you have the declaration:

ifstream infile;
char ch;

infile.open("inputDat.dat");

The following while loop continues to execute as long as the program has not reached
the end of the file.

infile.get(ch);

while (!infile.eof())
{

cout << ch;
infile.get(ch);

}

As long as the program has not reached the end of the input file, the expression:

infile.eof()

is false and so the expression:

!infile.eof()

in the while statement is true. When the program reads past the end of the input file,
the expression:

infile.eof()

264 | Chapter 5: Control Structures II (Repetition)

5

becomes true, so the expression:

!infile.eof()

in the while statement becomes false and the loop terminates.

In the Windows console environment, the end-of-file marker is entered using Ctrl+z
(hold the Ctrl key and press z). In the UNIX environment, the end-of-file marker is
entered using Ctr+d (hold the Ctrl key and press d).

EXAMPLE 5-7

The following code uses an EOF-controlled while loop to find the sum of a set of
numbers:

int sum = 0;
int num;

cin >> num;

while (cin)
{

sum = sum + num; //Add the number to sum
cin >> num; //Get the next number

}

cout << "Sum = " << sum << endl;

EXAMPLE 5-8

Suppose we are given a file consisting of students’ names and their test scores, a number
between 0 and 100 (inclusive). Each line in the file consists of a student name followed by
the test score. We want a program that outputs each student’s name followed by the test
score followed by the grade. The program also needs to output the average test score for
the class. Consider the following program:

// This program reads data from a file consisting of students'
// names and their test scores. The program outputs each student's
// name followed by the test score followed by the grade. The
// program also outputs the average test score for all the students.

#include <iostream> //Line 1
#include <fstream> //Line 2
#include <string> //Line 3
#include <iomanip> //Line 4

using namespace std; //Line 5

while Looping (Repetition) Structure | 265

int main() //Line 6
{ //Line 7

//Declare variables to manipulate data
string firstName; //Line 8
string lastName; //Line 9
double testScore; //Line 10
char grade = ' '; //Line 11
double sum = 0; //Line 12
int count = 0; //Line 13

//Declare stream variables
ifstream inFile; //Line 14
ofstream outFile; //Line 15

//Open input file
inFile.open("Ch5_stData.txt"); //Line 16

if (!inFile) //Line 17
{ //Line 18

cout << "Cannot open input file. "
<< "Program terminates!" << endl; //Line 19

return 1; //Line 20
} //Line 21

//Open output file
outFile.open("Ch5_stData.out"); //Line 22

outFile << fixed << showpoint << setprecision(2); //Line 23

inFile >> firstName >> lastName; //read the name Line 24
inFile >> testScore; //read the test score Line 25

while (inFile) //Line 26
{ //Line 27

sum = sum + testScore; //update sum Line 28
count++; //increment count Line 29

//determine the grade
switch (static_cast<int> (testScore) / 10) //Line 30
{ //Line 31
case 0: //Line 32
case 1: //Line 33
case 2: //Line 34
case 3: //Line 35
case 4: //Line 36
case 5: //Line 37

grade = 'F'; //Line 38
break; //Line 39

case 6: //Line 40
grade = 'D'; //Line 41
break; //Line 42

case 7: //Line 43
grade = 'C'; //Line 44
break; //Line 45

266 | Chapter 5: Control Structures II (Repetition)

5

case 8: //Line 46
grade = 'B'; //Line 47
break; //Line 48

case 9: //Line 49
case 10: //Line 50

grade = 'A'; //Line 51
break; //Line 52

default: //Line 53
cout << "Invalid score." << endl; //Line 54

}//end switch //Line 55

outFile << left << setw(12) << firstName
<< setw(12) << lastName
<< right << setw(4) << testScore
<< setw(2) << grade << endl; //Line 56

inFile >> firstName >> lastName; //read the name Line 57
inFile >> testScore; //read the test score Line 58

}//end while //Line 59

outFile << endl; //Line 60

if (count != 0) //Line 61
outFile << "Class Average: " << sum / count

<<endl; //Line 62
else //Line 63

outFile << "No data." << endl; //Line 64

inFile.close(); //Line 65
outFile.close(); //Line 66

return 0; //Line 67
} //Line 68

Sample Run:

Input File:

Steve Gill 89
Rita Johnson 91.5
Randy Brown 85.5
Seema Arora 76.5
Samir Mann 73
Samantha McCoy 88.5

Output File:

Steve Gill 89.00 B
Rita Johnson 91.50 A
Randy Brown 85.50 B
Seema Arora 76.50 C
Samir Mann 73.00 C
Samantha McCoy 88.50 B

Class Average: 84.00

while Looping (Repetition) Structure | 267

The preceding program works as follows. The statements in Lines 8 to 13 declare and
initialize variables needed by the program. The statement in Lines 14 and 15 declares
inFile to be an ifstream variable and outFile to be an ofstream variable. The
statement in Line 16 opens the input file using the variable inFile. If the input file does
not exist, the statements in Lines 17 to 21 output an appropriate message and terminate
the program. The statement in Line 22 opens the output file using the variable outFile.
The statement in Line 23 sets the output of floating-point numbers to two decimal places
in a fixed form with trailing zeros.

The statements in Lines 24 and 25 and the while loop in Line 26 read each student’s first
name, last name, and test score and then output the name followed by the test score
followed by the grade. Specifically, the statement in Lines 24 and 57 reads the first and last
name; the statement in Lines 25 and 58 reads the test score. The statement in Line 28
updates the value of sum. (After reading all the data, the value of sum stores the sum of all
the test scores.) The statement in Line 29 updates the value of count. (The variable
count stores the number of students in the class.) The switch statement from Lines 30
to 55 determines the grade from testScore and stores it in the variable grade. The
statement in Line 56 outputs a student’s first name, last name, test score, and grade.

The if...else statement in Lines 61 to 64 outputs the class average and the statements
in Lines 65 and 66 close the files.

The Programming Example: Checking Account Balance, available on the Web site
accompanying this book, further illustrates how to use an EOF-controlled while loop
in a program.

More on Expressions in while Statements
In the examples of the previous sections, the expression in the while statement is quite
simple. In other words, the while loop is controlled by a single variable. However, there
are situations when the expression in the while statement may be more complex.

For example, the program in Example 5-6 uses a flag-controlled while loop to imple-
ment the Number Guessing Game. However, the program gives as many tries as the user
needs to guess the number. Suppose you want to give the user no more than five tries to
guess the number. If the user does not guess the number correctly within five tries, then
the program outputs the random number generated by the program as well as a message
that you have lost the game. In this case, you can write the while loop as follows (assume
that noOfGuesses is an int variable initialized to 0):

while ((noOfGuesses < 5) && (!isGuessed))
{

cout << "Enter an integer greater than or equal to 0 and "
<< "less than 100: ";

cin >> guess;
cout << endl;

268 | Chapter 5: Control Structures II (Repetition)

noOfGuesses++;
if (guess == num)
{

cout << "Winner!. You guessed the correct number."
<< endl;

isGuessed = true;
}
else if (guess < num)

cout << "Your guess is lower than the number.\n"
<< "Guess again!" << endl;

else
cout << "Your guess is higher than the number.\n"

<< "Guess again!" << endl;
}//end while

You also need the following code to be included after the while loop in case the user
cannot guess the correct number in five tries.

if (!isGuessed)
cout << "You lose! The correct number is " << num << endl;

Programming Exercise 16 at the end of this chapter asks you to write a complete C++
program to implement the Number Guessing Game in which the user has, at most, five
tries to guess the number.

As you can see from the preceding while loop, the expression in a while statement can
be complex. The main objective of a while loop is to repeat certain statement(s) until
certain conditions are met.

5

PROGRAMMING EXAMPLE: Fibonacci Number
So far, you have seen several examples of loops. Recall that in C++, while loops are
used when a certain statement(s) must be executed repeatedly until certain conditions are
met. Following is a C++ program that uses a while loop to find a Fibonacci number.

Consider the following sequence of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34,

Given the first two numbers of the sequence (say, a1 and a2), the nth number an, n>= 3,
of this sequence is given by:

an ¼ an�1 þ an�2

Thus:

a3 ¼ a2 þ a1 ¼ 1þ 1 ¼ 2;
a4 ¼ a3 þ a2 ¼ 2þ 1 ¼ 3;

and so on.

Programming Example: Fibonacci Number | 269

Such a sequence is called a Fibonacci sequence. In the preceding sequence, a2 = 1
and a1 = 1. However, given any first two numbers, using this process, you can
determine the nth number, an,n >= 3, of the sequence. The number determined this
way is called the nth Fibonacci number. Suppose a2 = 6 and a1 = 3.

Then:

a3 ¼ a2 þ a1 ¼ 6þ 3 ¼ 9; a4 ¼ a3 þ a2 ¼ 9þ 6 ¼ 15

Next, we write a program that determines the nth Fibonacci number given the first
two numbers.

Input The first two Fibonacci numbers and the desired Fibonacci number.

Output The nth Fibonacci number.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

To find, say, the tenth Fibonacci number of a sequence, you must first find a9 and a8,
which requires you to find a7 and a6, and so on. Therefore, to find a10, you must first
find a3, a4, a5, . . ., a9. This discussion translates into the following algorithm:

1. Get the first two Fibonacci numbers.

2. Get the desired Fibonacci number. That is, get the position, n, of
the Fibonacci number in the sequence.

3. Calculate the next Fibonacci number by adding the previous two
elements of the Fibonacci sequence.

4. Repeat Step 3 until the nth Fibonacci number is found.

5. Output the nth Fibonacci number.

Note that the program assumes that the first number of the Fibonacci sequence is less
than or equal to the second number of the Fibonacci sequence, and both numbers are
nonnegative. Moreover, the program also assumes that the user enters a valid value
for the position of the desired number in the Fibonacci sequence; that is, it is a
positive integer. (See Programming Exercise 12 at the end of this chapter.)

Variables Because the last two numbers must be known in order to find the current Fibonacci
number, you need the following variables: two variables—say, previous1 and
previous2 to hold the previous two numbers of the Fibonacci sequence; and one
variable—say, current—to hold the current Fibonacci number. The number of
times that Step 2 of the algorithm repeats depends on the position of the Fibonacci
number you are calculating. For example, if you want to calculate the tenth
Fibonacci number, you must execute Step 3 eight times. (Remember—the user gives
the first two numbers of the Fibonacci sequence.) Therefore, you need a variable to
store the number of times Step 3 should execute. You also need a variable to track
the number of times Step 3 has executed, the loop control variable. You therefore
need five variables for the data manipulation:

int previous1; //variable to store the first Fibonacci number
int previous2; //variable to store the second Fibonacci number

270 | Chapter 5: Control Structures II (Repetition)

5

int current; //variable to store the current
//Fibonacci number

int counter; //loop control variable
int nthFibonacci; //variable to store the desired

//Fibonacci number

To calculate the third Fibonacci number, add the values of previous1 and previous2
and store the result in current. To calculate the fourth Fibonacci number, add the value
of the second Fibonacci number (that is, previous2) and the value of the third Fibonacci
number (that is, current). Thus, when the fourth Fibonacci number is calculated, you
no longer need the first Fibonacci number. Instead of declaring additional variables, which
could be too many, after calculating a Fibonacci number to determine the next Fibonacci
number, current becomes previous2 and previous2 becomes previous1.
Therefore, you can again use the variable current to store the next Fibonacci number.
This process is repeated until the desired Fibonacci number is calculated. Initially,
previous1 and previous2 are the first two elements of the sequence, supplied by the
user. From the preceding discussion, it follows that you need five variables.

MAIN

ALGORITHM

1. Prompt the user for the first two numbers—that is, previous1 and
previous2.

2. Read (input) the first two numbers into previous1 and previous2.

3. Output the first two Fibonacci numbers. (Echo input.)

4. Prompt the user for the position of the desired Fibonacci number.

5. Read the position of the desired Fibonacci number into
nthFibonacci.

6. a. if (nthFibonacci == 1)
the desired Fibonacci number is the first Fibonacci number.
Copy the value of previous1 into current.

b. else if (nthFibonacci == 2)
the desired Fibonacci number is the second Fibonacci number.
Copy the value of previous2 into current.

c. else calculate the desired Fibonacci number as follows:

Because you already know the first two Fibonacci numbers of
the sequence, start by determining the third Fibonacci number.

c.1. Initialize counter to 3 to keep track of the calculated
Fibonacci numbers.

c.2. Calculate the next Fibonacci number, as follows:

current = previous2 + previous1;

c.3. Assign the value of previous2 to previous1.

c.4. Assign the value of current to previous2.

c.5. Increment counter.

Programming Example: Fibonacci Number | 271

Repeat Steps c.2 through c.5 until the Fibonacci number you want is calculated.

The following while loop executes Steps c.2 through c.5 and determines the
nth Fibonacci number.

while (counter <= nthFibonacci)
{

current = previous2 + previous1;
previous1 = previous2;
previous2 = current;
counter++;

}

7. Output the nthFibonacci number, which is current.

COMPLETE PROGRAM LISTING

//***
// Authors: D.S. Malik
//
// Program: nth Fibonacci number
// Given the first two numbers of a Fibonacci sequence, this
// program determines and outputs the desired number of the
// Fibonacci sequence.
//***

#include <iostream>

using namespace std;

int main()
{

//Declare variables
int previous1;
int previous2;
int current;
int counter;
int nthFibonacci;

cout << "Enter the first two Fibonacci "
<< "numbers: "; //Step 1

cin >> previous1 >> previous2; //Step 2
cout << endl;
cout << "The first two Fibonacci numbers are "

<< previous1 << " and " << previous2
<< endl; //Step 3

cout << "Enter the position of the desired "
<< "Fibonacci number: "; //Step 4

cin >> nthFibonacci; //Step 5
cout << endl;

if (nthFibonacci == 1) //Step 6.a
current = previous1;

272 | Chapter 5: Control Structures II (Repetition)

for Looping (Repetition) Structure
The while loop discussed in the previous section is general enough to implement
most forms of repetitions. The C++ for looping structure discussed here is a specialized
form of the while loop. Its primary purpose is to simplify the writing of counter-controlled
loops. For this reason, the for loop is typically called a counted or indexed for loop.

5

else if (nthFibonacci == 2) //Step 6.b
current = previous2;

else //Step 6.c
{

counter = 3; //Step 6.c.1

//Steps 6.c.2 - 6.c.5
while (counter <= nthFibonacci)
{

current = previous2 + previous1; //Step 6.c.2
previous1 = previous2; //Step 6.c.3
previous2 = current; //Step 6.c.4
counter++; //Step 6.c.5

}//end while
}//end else

cout << "The Fibonacci number at position "
<< nthFibonacci << " is " << current
<< endl; //Step 7

return 0;
}//end main

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter the first two Fibonacci numbers: 12 16

The first two Fibonacci numbers are 12 and 16
Enter the position of the desired Fibonacci number: 10

The Fibonacci number at position 10 is 796

Sample Run 2:

Enter the first two Fibonacci numbers: 1 1

The first two Fibonacci numbers are 1 and 1
Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is 610

for Looping (Repetition) Structure | 273

The general form of the for statement is:

for (initial statement; loop condition; update statement)
statement

The initial statement, loop condition, and update statement (called for
loop control statements) enclosed within the parentheses control the body (statement)
of the for statement. Figure 5-2 shows the flow of execution of a for loop.

The for loop executes as follows:

1. The initial statement executes.

2. The loop condition is evaluated. If the loop condition evaluates
to true:

i. Execute the for loop statement.

ii. Execute the update statement (the third expression in the parentheses).

3. Repeat Step 2 until the loop condition evaluates to false.

The initial statement usually initializes a variable (called the for loop control, or
for indexed, variable).

In C++, for is a reserved word.

As the name implies, the initial statement in the for loop is the first statement to
execute; it executes only once.

initial
statement

loop
condition statement

update
statementtrue

false

FIGURE 5-2 for loop

274 | Chapter 5: Control Structures II (Repetition)

EXAMPLE 5-9

The following for loop prints the first 10 nonnegative integers:

for (i = 0; i < 10; i++)
cout << i << " ";

cout << endl;

The initial statement, i = 0;, initializes the int variable i to 0. Next, the loop
condition, i < 10, is evaluated. Because 0 < 10 is true, the print statement executes and
outputs 0. The update statement, i++, then executes, which sets the value of i to 1.
Once again, the loop condition is evaluated, which is still true, and so on. When i
becomes 10, the loop condition evaluates to false, the for loop terminates, and
the statement following the for loop executes.

A for loop can have either a simple or compound statement.

The following examples further illustrate how a for loop executes.

EXAMPLE 5-10

1. The following for loop outputs Hello! and a star (on separate lines)
five times:

for (i = 1; i <= 5; i++)
{

cout << "Hello!" << endl;
cout << "*" << endl;

}

2. Consider the following for loop:

for (i = 1; i <= 5; i++)
cout << "Hello!" << endl;
cout << "*" << endl;

This loop outputs Hello! five times and the star only once. Note that
the for loop controls only the first output statement because the two
output statements are not made into a compound statement. Therefore,
the first output statement executes five times because the for loop body
executes five times. After the for loop executes, the second output
statement executes only once. The indentation, which is ignored by the
compiler, is nevertheless misleading.

5

for Looping (Repetition) Structure | 275

EXAMPLE 5-11

The following for loop executes five empty statements:

for (i = 0; i < 5; i++); //Line 1
cout << "*" << endl; //Line 2

The semicolon at the end of the for statement (before the output statement, Line 1)
terminates the for loop. The action of this for loop is empty, that is, null.

The preceding examples show that care is required in getting a for loop to perform the
desired action.

The following are some comments on for loops:

• If the loop condition is initially false, the loop body does not execute.

• The update expression, when executed, changes the value of the
loop control variable (initialized by the initial expression), which even-
tually sets the value of the loop condition to false. The for loop
body executes indefinitely if the loop condition is always true.

• C++ allows you to use fractional values for loop control variables of the
double type (or any real data type). Because different computers can
give these loop control variables different results, you should avoid using
such variables.

• A semicolon at the end of the for statement (just before the body of the
loop) is a semantic error. In this case, the action of the for loop is empty.

• In the for statement, if the loop condition is omitted, it is assumed
to be true.

• In a for statement, you can omit all three statements—initial
statement, loop condition, and update statement. The follow-
ing is a legal for loop:

for (;;)
cout << "Hello" << endl;

This is an infinite for loop, continuously printing the word Hello.

Following are more examples of for loops.

EXAMPLE 5-12

You can count backward using a for loop if the for loop control expressions are set correctly.

For example, consider the following for loop:

for (i = 10; i >= 1; i--)
cout << " " << i;

cout << endl;

276 | Chapter 5: Control Structures II (Repetition)

5

The output is:

10 9 8 7 6 5 4 3 2 1

In this for loop, the variable i is initialized to 10. After each iteration of the loop, i is
decremented by 1. The loop continues to execute as long as i >= 1.

EXAMPLE 5-13

You can increment (or decrement) the loop control variable by any fixed number. In the
following for loop, the variable is initialized to 1; at the end of the for loop, i is
incremented by 2. This for loop outputs the first 10 positive odd integers.

for (i = 1; i <= 20; i = i + 2)
cout << " " << i;

cout << endl;

EXAMPLE 5-14

Suppose that i is an int variable.

1. Consider the following for loop:

for (i = 10; i <= 9; i++)
cout << i << " ";

cout << endl;

In this for loop, the initial statement sets i to 10. Because initially the loop
condition (i <= 9) is false, nothing happens.

2. Consider the following for loop:

for (i = 9; i >= 10; i--)
cout << i << " ";

cout << endl;

In this for loop, the initial statement sets i to 9. Because initially the loop condition
(i >= 10) is false, nothing happens.

3. Consider the following for loop:

for (i = 10; i <= 10; i++) //Line 1
cout << i << " "; //Line 2

cout << endl; //Line 3

In this for loop, the initial statement sets i to 10. The loop condition (i <= 10)
evaluates to true, so the output statement in Line 2 executes, which outputs 10.

for Looping (Repetition) Structure | 277

Next, the update statement increments the value of i by 1, so the value of i becomes
11. Now the loop condition evaluates to false and the for loop terminates. Note
that the output statement in Line 2 executes only once.

4. Consider the following for loop:

for (i = 1; i <= 10; i++); //Line 1
cout << i << " "; //Line 2

cout << endl; //Line 3

This for loop has no effect on the output statement in Line 2. The semicolon at the
end of the for statement terminates the for loop; the action of the for loop is thus
empty. The output statement is all by itself and executes only once.

5. Consider the following for loop:

for (i = 1; ; i++)
cout << i << " ";

cout << endl;

In this for loop, because the loop condition is omitted from the for statement,
the loop condition is always true. This is an infinite loop.

EXAMPLE 5-15

In this example, a for loop reads five numbers and finds their sum and average.
Consider the following program code, in which i, newNum, sum, and average are
int variables.

sum = 0;

for (i = 1; i <= 5; i++)
{

cin >> newNum;
sum = sum + newNum;

}

average = sum / 5;
cout << "The sum is " << sum << endl;
cout << "The average is " << average << endl;

In the preceding for loop, after reading a newNum, this value is added to the previously
calculated (partial) sum of all the numbers read before the current number. The variable
sum is initialized to 0 before the for loop. Thus, after the program reads the first
number and adds it to the value of sum, the variable sum holds the correct sum of the
first number.

278 | Chapter 5: Control Structures II (Repetition)

The syntax of the for loop, which is:

for (initial expression; logical expression; update expression)
statement

is functionally equivalent to the following while statement:

initial expression
while (expression)
{

statement
update expression

}

For example, the following for and while loops are equivalent:

for (int i = 0; i < 10; i++) int i = 0;
cout << i << " "; while (i < 10)

cout << endl; {
cout << i << " ";
i++;

}
cout << endl;

If the number of iterations of a loop is known or can be determined in advance, typically

programmers use a for loop.

EXAMPLE 5-16 (F IBONACCI NUMBER PROGRAM: REVISITED)

The Programming Example: Fibonacci Number given in the previous section uses a
while loop to determine the desired Fibonacci number. You can replace the while
loop with an equivalent for loop as follows:

for (counter = 3; counter <= nthFibonacci; counter++)
{

current = previous2 + previous1;
previous1 = previous2;
previous2 = current;
counter++;

}//end for

The complete program listing of the program that uses a for loop to determine the
desired Fibonacci number is given at the Web site accompanying this book. The program
is named Ch5_FibonacciNumberUsingAForLoop.cpp.

In the following C++ program, we recommend that you walk through each step.

5

for Looping (Repetition) Structure | 279

EXAMPLE 5-17

The following C++ program finds the sum of the first n positive integers.

//Program to determine the sum of the first n positive integers.

#include <iostream>

using namespace std;

int main()
{

int counter; //loop control variable
int sum; //variable to store the sum of numbers
int n; //variable to store the number of

//first positive integers to be added

cout << "Line 1: Enter the number of positive "
<< "integers to be added: "; //Line 1

cin >> n; //Line 2
sum = 0; //Line 3
cout << endl; //Line 4

for (counter = 1; counter <= n; counter++) //Line 5
sum = sum + counter; //Line 6

cout << "Line 7: The sum of the first " << n
<< " positive integers is " << sum
<< endl; //Line 7

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Enter the number of positive integers to be added: 100

Line 7: The sum of the first 100 positive integers is 5050

The statement in Line 1 prompts the user to enter the number of positive integers to be added.
The statement in Line 2 stores the number entered by the user in n, and the statement in Line
3 initializes sum to 0. The for loop in Line 5 executes n times. In the for loop, counter is
initialized to 1 and is incremented by 1 after each iteration of the loop. Therefore, counter
ranges from 1 to n. Each time through the loop, the value of counter is added to sum. The
variable sum was initialized to 0, counter ranges from 1 to n, and the current value of
counter is added to the value of sum. Therefore, after the for loop executes, sum contains
the sum of the first n values, which in the sample run is 100 positive integers.

Recall that putting one control structure statement inside another is called nesting. The
following programming example demonstrates a simple instance of nesting. It also nicely
demonstrates counting.

280 | Chapter 5: Control Structures II (Repetition)

5

PROGRAMMING EXAMPLE: Classifying Numbers
This program reads a given set of integers and then prints the number of odd and
even integers. It also outputs the number of zeros.

The program reads 20 integers, but you can easily modify it to read any set of
numbers. In fact, you can modify the program so that it first prompts the user to
specify how many integers are to be read.

Input 20 integers—positive, negative, or zeros.

Output The number of zeros, even numbers, and odd numbers.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

After reading a number, you need to check whether it is even or odd. Suppose the
value is stored in number. Divide number by 2 and check the remainder. If the
remainder is 0, number is even. Increment the even count and then check whether
number is 0. If it is, increment the zero count. If the remainder is not 0, increment
the odd count.

The program uses a switch statement to decide whether number is odd or even.
Suppose that number is odd. Dividing by 2 gives the remainder 1 if number is
positive and the remainder -1 if it is negative. If number is even, dividing by 2 gives
the remainder 0 whether number is positive or negative. You can use the mod
operator, %, to find the remainder. For example:

6 % 2 = 0; -4 % 2 = 0; -7 % 2 = -1; 15 % 2 = 1

Repeat the preceding process of analyzing a number for each number in the list.

This discussion translates into the following algorithm:

1. For each number in the list:

a. Get the number.

b. Analyze the number.

c. Increment the appropriate count.

2. Print the results.

Variables Because you want to count the number of zeros, even numbers, and odd numbers,
you need three variables of type int—say, zeros, evens, and odds—to track the
counts. You also need a variable—say, number—to read and store the number to be
analyzed and another variable—say, counter—to count the numbers analyzed.
Therefore, you need the following variables in the program:

Programming Example: Classifying Numbers | 281

int counter; //loop control variable
int number; //variable to store the number read
int zeros; //variable to store the zero count
int evens; //variable to store the even count
int odds; //variable to store the odd count

Clearly, you must initialize the variables zeros, evens, and odds to zero. You can
initialize these variables when you declare them.

MAIN

ALGORITHM

1. Initialize the variables.

2. Prompt the user to enter 20 numbers.

3. For each number in the list:

a. Read the number.

b. Output the number (echo input).

c. If the number is even:

{
i. Increment the even count.

ii. If the number is zero, increment the zero count.
}
otherwise

Increment the odd count.

4. Print the results.

Before writing the C++ program, let us describe Steps 1–4 in greater detail. It will be
much easier for you to then write the instructions in C++.

1. Initialize the variables. You can initialize the variables zeros,
evens, and odds when you declare them.

2. Use an output statement to prompt the user to enter 20 numbers.

3. For Step 3, you can use a for loop to process and analyze the 20
numbers. In pseudocode, this step is written as follows:

for (counter = 1; counter <= 20; counter++)
{

read the number;
output number;

switch (number % 2) // check the remainder
{
case 0:

increment even count;
if (number == 0)

increment zero count;
break;

282 | Chapter 5: Control Structures II (Repetition)

5

case 1:
case –1:

increment odd count;
}//end switch

}//end for

4. Print the result. Output the value of the variables zeros, evens,
and odds.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Counts zeros, odds, and evens
// This program counts the number of odd and even numbers.
// The program also counts the number of zeros.
//**

#include <iostream>
#include <iomanip>

using namespace std;

const int N = 20;

int main()
{

//Declare variables
int counter; //loop control variable
int number; //variable to store the new number
int zeros = 0; //Step 1
int odds = 0; //Step 1
int evens = 0; //Step 1

cout << "Please enter " << N << " integers, "
<< "positive, negative, or zeros."
<< endl; //Step 2

cout << "The numbers you entered are:" << endl;

for (counter = 1; counter <= N; counter++) //Step 3
{

cin >> number; //Step 3a
cout << number << " "; //Step 3b

//Step 3c
switch (number % 2)

Programming Example: Classifying Numbers | 283

do...while Looping (Repetition) Structure
This section describes the third type of looping or repetition structure, called a do. . .while
loop. The general form of a do. . .while statement is as follows:

do
statement

while (expression);

Of course, statement can be either a simple or compound statement. If it is a
compound statement, enclose it between braces. Figure 5-3 shows the flow of execution
of a do. . .while loop.

{
case 0:

evens++;
if (number == 0)

zeros++;
break;

case 1:
case -1:

odds++;
} //end switch

} //end for loop

cout << endl;
//Step 4

cout << "There are " << evens << " evens, "
<< "which includes " << zeros << " zeros."
<< endl;

cout << "The number of odd numbers is: " << odds
<< endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Please enter 20 integers, positive, negative, or zeros.
The numbers you entered are:

0 0 -2 -3 -5 6 7 8 0 3 0 -23 -8 0 2 9 0 12 67 54
0 0 -2 -3 -5 6 7 8 0 3 0 -23 -8 0 2 9 0 12 67 54
There are 13 evens, which includes 6 zeros.
The number of odd numbers is: 7

We recommend that you do a walk-through of this program using the above sample
input.

284 | Chapter 5: Control Structures II (Repetition)

5

In C++, do is a reserved word.

The statement executes first, and then the expression is evaluated. If the expression
evaluates to true, the statement executes again. As long as the expression in a
do...while statement is true, the statement executes. To avoid an infinite loop, you
must, once again, make sure that the loop body contains a statement that ultimately makes
the expression false and assures that it exits properly.

EXAMPLE 5-18

i = 0;

do
{

cout << i << " ";
i = i + 5;

}
while (i <= 20);

The output of this code is:

0 5 10 15 20

After 20 is output, the statement:

i = i + 5;

changes the value of i to 25 and so i <= 20 becomes false, which halts the loop.

statement

true

false

expression

FIGURE 5-3 do...while loop

do...while Looping (Repetition) Structure | 285

In a while and for loop, the loop condition is evaluated before executing the body of
the loop. Therefore, while and for loops are called pretest loops. On the other hand,
the loop condition in a do. . .while loop is evaluated after executing the body of the
loop. Therefore, do. . .while loops are called posttest loops.

Because the while and for loops both have entry conditions, these loops may never
activate. The do...while loop, on the other hand, has an exit condition and therefore
always executes the statement at least once.

EXAMPLE 5-19

Consider the following two loops:

a. i = 11;
while (i <= 10)
{

cout << i << " ";
i = i + 5;

}
cout << endl;

b. i = 11;
do
{

cout << i << " ";
i = i + 5;

}
while (i <= 10);

cout << endl;

In (a), the while loop produces nothing. In (b), the do...while loop outputs the
number 11 and also changes the value of i to 16.

A do...while loop can be used for input validation. Suppose that a program prompts a user
to enter a test score, which must be greater than or equal to 0 and less than or equal to 50. If
the user enters a score less than 0 or greater than 50, the user should be prompted to re-enter
the score. The following do...while loop can be used to accomplish this objective:

int score;

do
{

cout << "Enter a score between 0 and 50: ";
cin >> score;
cout << endl;

}
while (score < 0 || score > 50);

286 | Chapter 5: Control Structures II (Repetition)

5

EXAMPLE 5-20

Divisibility Test by 3 and 9
Suppose that m and n are integers and m is nonzero. Then m is called a divisor of n
if n ¼ mt for some integer t; that is, when m divides n, the remainder is 0.
Let n¼ akak-1ak-2. . .a1a0 be an integer. Let s = ak + ak-1 + ak-2 + � � � + a1 + a0 be the sum of the
digits of n. It is known that n is divisible by 3 and 9 if s is divisible by 3 and 9. In other words,
an integer is divisible by 3 and 9 if and only if the sum of its digits is divisible by 3 and 9.

For example, suppose n = 27193257. Then s = 2 + 7 + 1 + 9 + 3 + 2 + 5 + 7 = 36. Because
36 is divisible by both 3 and 9, it follows that 27193257 is divisible by both 3 and 9.

Next, we write a program that determines whether a positive integer is divisible by 3 and 9
by first finding the sum of its digits and then checking whether the sum is divisible by 3 and 9.

To find the sum of the digits of a positive integer, we need to extract each digit of the
number. Consider the number 951372. Note that 951372 % 10 = 2, which is the last
digit of 951372. Also note that 951372 / 10 = 95137; that is, when the number is
divided by 10, it removes the last digit. Next, we repeat this process on the number
95137. Of course, we need to add the extracted digits.

Suppose that sum and num are int variables and the positive integer is stored in num. We
thus have the following algorithm to find the sum of the digits:

sum = 0;

do
{

sum = sum + num % 10; //extract the last digit
//and add it to sum

num = num / 10; //remove the last digit
}
while (num > 0);

Using this algorithm, we can write the following program that uses a do. . .while loop to
implement the preceding divisibility test algorithm.

//Program: Divisibility test by 3 and 9

#include <iostream>

using namespace std;

int main()
{

int num, temp, sum;

cout << "Enter a positive integer: ";
cin >> num;

do...while Looping (Repetition) Structure | 287

cout << endl;

temp = num;

sum = 0;

do
{

sum = sum + num % 10; //extract the last digit
//and add it to sum

num = num / 10; //remove the last digit
}
while (num > 0);

cout << "The sum of the digits = " << sum << endl;

if (sum % 3 == 0)
cout << temp << " is divisible by 3" << endl;

else
cout << temp << " is not divisible by 3" << endl;

if (sum % 9 == 0)
cout << temp << " is divisible by 9" << endl;

else
cout << temp << " is not divisible by 9" << endl;

}

Sample Run: In these sample runs, the user input is shaded.

Sample Run 1:

Enter a positive integer: 27193257

The sum of the digits = 36
27193257 is divisible by 3
27193257 is divisible by 9

Sample Run 2:

Enter a positive integer: 609321

The sum of the digits = 21
609321 is divisible by 3
609321 is not divisible by 9

Sample Run 3:

Enter a positive integer: 161905102

The sum of the digits = 25
161905102 is not divisible by 3
161905102 is not divisible by 9

288 | Chapter 5: Control Structures II (Repetition)

Choosing the Right Looping Structure
All three loops have their place in C++. If you know, or the program can determine in
advance, the number of repetitions needed, the for loop is the correct choice. If you do
not know, and the program cannot determine in advance the number of repetitions
needed, and it could be zero, the while loop is the right choice. If you do not know, and
the program cannot determine in advance the number of repetitions needed, and it is at
least one, the do...while loop is the right choice.

break and continue Statements
The break statement, when executed in a switch structure, provides an immediate
exit from the switch structure. Similarly, you can use the break statement in
while, for, and do. . .while loops. When the break statement executes in a
repetition structure, it immediately exits from the structure. The break statement
is typically used for two purposes:

• To exit early from a loop.

• To skip the remainder of the switch structure.

After the break statement executes, the program continues to execute with the first
statement after the structure. The use of a break statement in a loop can eliminate the
use of certain (flag) variables. The following C++ code segment helps illustrate this idea.
(Assume that all variables are properly declared.)

sum = 0;
isNegative = false;

cin >> num;

while (cin && !isNegative)
{

if (num < 0) //if num is negative, terminate the loop
//after this iteration

{
cout << "Negative number found in the data." << endl;
isNegative = true;

}
else
{

sum = sum + num;
cin >> num;

}
}

This while loop is supposed to find the sum of a set of positive numbers. If the data set
contains a negative number, the loop terminates with an appropriate error message. This
while loop uses the flag variable isNegative to accomplish the desired result. The
variable isNegative is initialized to false before the while loop. Before adding num

5

break and continue Statements | 289

to sum, check whether num is negative. If num is negative, an error message appears on
the screen and isNegative is set to true. In the next iteration, when the expression in
the while statement is evaluated, it evaluates to false because !isNegative is
false. (Note that because isNegative is true, !isNegative is false.)

The following while loop is written without using the variable isNegative:

sum = 0;
cin >> num;

while (cin)
{

if (num < 0) //if num is negative, terminate the loop
{

cout << "Negative number found in the data." << endl;
break;

}

sum = sum + num;
cin >> num;

}

In this form of the while loop, when a negative number is found, the expression in the
if statement evaluates to true; after printing an appropriate message, the break
statement terminates the loop. (After executing the break statement in a loop, the
remaining statements in the loop are discarded.)

The break statement is an effective way to avoid extra variables to control a loop and
produce an elegant code. However, break statements must be used very sparingly
within a loop. An excessive use of these statements in a loop will produce spaghetti-code

(loops with many exit conditions) that can be very hard to understand and manage. You

should be extra careful in using break statements and ensure that the use of the break
statements makes the code more readable and not less readable. If you’re not sure, don’t

use break statements.

The continue statement is used in while, for, and do. . .while structures. When the
continue statement is executed in a loop, it skips the remaining statements in the loop and
proceeds with the next iteration of the loop. In a while and do. . .while structure, the
expression (that is, the loop-continue test) is evaluated immediately after the continue
statement. In a for structure, the update statement is executed after the continue
statement, and then the loop condition (that is, the loop-continue test) executes.

If the previous program segment encounters a negative number, the while loop termi-
nates. If you want to discard the negative number and read the next number rather than
terminate the loop, replace the break statement with the continue statement, as shown
in the following example:

sum = 0;
cin >> num;

290 | Chapter 5: Control Structures II (Repetition)

5

while (cin)
{

if (num < 0)
{

cout << "Negative number found in the data." << endl;
cin >> num;
continue;

}

sum = sum + num;
cin >> num;

}

It was stated earlier that all three loops have their place in C++ and that one loop can
often replace another. The execution of a continue statement, however, is where the
while and do. . .while structures differ from the for structure. When the continue
statement is executed in a while or a do. . .while loop, the update statement may not
execute. In a for structure, the update statement always executes.

Nested Control Structures
In this section, we give examples that illustrate how to use nested loops to achieve useful
results and process data.

EXAMPLE 5-21

Suppose you want to create the following pattern:

*
**

Clearly, you want to print five lines of stars. In the first line, you want to print one star, in
the second line, two stars, and so on. Because five lines will be printed, start with the
following for statement:

for (i = 1; i <= 5; i++)

The value of i in the first iteration is 1, in the second iteration it is 2, and so on. You
can use the value of i as the limiting condition in another for loop nested within this
loop to control the number of stars in a line. A little more thought produces the
following code:

for (i = 1; i <= 5; i++) //Line 1
{ //Line 2

for (j = 1; j <= i; j++) //Line 3
cout << "*"; //Line 4

cout << endl; //Line 5
} //Line 6

Nested Control Structures | 291

A walk-through of this code shows that the for loop in Line 1 starts with i = 1. When
i is 1, the inner for loop in Line 3 outputs one star and the insertion point moves to the
next line. Then i becomes 2, the inner for loop outputs two stars, and the output
statement in Line 5 moves the insertion point to the next line, and so on. This process
continues until i becomes 6 and the loop stops.

What pattern does this code produce if you replace the for statement in Line 1 with the
following?

for (i = 5; i >= 1; i--)

EXAMPLE 5-22

Suppose you want to create the following multiplication table:

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50

The multiplication table has five lines. Therefore, as in Example 5-21, we use a for
statement to output these lines as follows:

for (i = 1; i <= 5; i++)
//output a line of numbers

In the first line, we want to print the multiplication table of one, in the second line we
want to print the multiplication table of 2, and so on. Notice that the first line starts with
1 and when this line is printed, i is 1. Similarly, the second line starts with 2 and when
this line is printed, the value of i is 2, and so on. If i is 1, i * 1 is 1; if i is 2, i * 2 is 2;
and so on. Therefore, to print a line of numbers, we can use the value of i as the starting
number and 10 as the limiting value. That is, consider the following for loop:

for (j = 1; j <= 10; j++)
cout << setw(3) << i * j;

Let us take a look at this for loop. Suppose i is 1. Then we are printing the first line of
the multiplication table. Also, j goes from 1 to 10 and so this for loop outputs the
numbers 1 through 10, which is the first line of the multiplication table. Similarly, if i is
2, we are printing the second line of the multiplication table. Also, j goes from 1 to 10,
and so this for loop outputs the second line of the multiplication table, and so on.

A little more thought produces the following nested loops to output the desired grid:

for (i = 1; i <= 5; i++) //Line 1
{ //Line 2

for (j = 1; j <= 10; j++) //Line 3
cout << setw(3) << i * j; //Line 4

cout << endl; //Line 5
} //Line 6

292 | Chapter 5: Control Structures II (Repetition)

EXAMPLE 5-23

Consider the following data:

65 78 65 89 25 98 -999
87 34 89 99 26 78 64 34 -999
23 99 98 97 26 78 100 63 87 23 -999
62 35 78 99 12 93 19 -999

The number -999 at the end of each line acts as a sentinel and therefore is not part
of the data. Our objective is to find the sum of the numbers in each line and output
the sum. Moreover, assume that this data is to be read from a file, say,
Exp_5_23.txt. We assume that the input file has been opened using the input file
stream variable infile.

This particular data set has four lines of input. So we can use a for loop or a counter-
controlled while loop to process each line of data. Let us use a while loop to process
these four lines. It follows that the while loop takes the following form:

counter = 0; //Line 1
while (counter < 4) //Line 2
{ //Line 3

//process the line //Line 4

//output the sum
counter++;

}

Let us now concentrate on processing a line. Each line has a varying number of data
items. For example, the first line has six numbers, the second line has eight numbers, and
so on. Because each line ends with -999, we can use a sentinel-controlled while loop to
find the sum of the numbers in each line. (Remember how a sentinel-controlled loop
works.) Consider the following while loop:

sum = 0; //Line 4
infile >> num; //Line 5
while (num != -999) //Line 6
{ //Line 7

sum = sum + num; //Line 8
infile >> num; //Line 9

} //Line 10

The statement in Line 4 initializes sum to 0, and the statement in Line 5 reads and stores the
first number of the line into num. The Boolean expression num != -999 in Line 6 checks
whether the number is -999. If num is not -999, the statements in Lines 8 and 9 execute.
The statement in Line 8 updates the value of sum; the statement in Line 9 reads and stores the
next number into num. The loop continues to execute as long as num is not -999.

It now follows that the nested loop to process the data is as follows. (Assume that all
variables are properly declared.)

5

Nested Control Structures | 293

counter = 0; //Line 1
while (counter < 4) //Line 2
{ //Line 3

sum = 0; //Line 4
infile >> num; //Line 5
while (num != -999) //Line 6
{ //Line 7

sum = sum + num; //Line 8
infile >> num; //Line 9

} //Line 10

cout << "Line " << counter + 1
<< ": Sum = " << sum << endl; //Line 11

counter++; //Line 12
} //Line 13

EXAMPLE 5-24

Suppose that we want to process data similar to the data in Example 5-23, but the input
file is of an unspecified length. That is, each line contains the same data as the data in each
line in Example 5-23, but we do not know the number of input lines.

Because we do not know the number of input lines, we must use an EOF-controlled
while loop to process the data. In this case, the required code is as follows. (Assume that
all variables are properly declared and the input file has been opened using the input file
stream variable infile.)

counter = 0; //Line 1
infile >> num; //Line 2
while (infile) //Line 3
{ //Line 4

sum = 0; //Line 5
while (num != -999) //Line 6
{ //Line 7

sum = sum + num; //Line 8
infile >> num; //Line 9

} //Line 10

cout << "Line " << counter + 1
<< ": Sum = " << sum << endl; //Line 11

counter++; //Line 12
infile >> num; //Line 13

} //Line 14

Notice that we have again used the variable counter. The only reason to do so is
because we want to print the line number with the sum of each line.

294 | Chapter 5: Control Structures II (Repetition)

5

EXAMPLE 5-25

Consider the following data:

101
John Smith
65 78 65 89 25 98 -999
102
Peter Gupta
87 34 89 99 26 78 64 34 -999
103
Buddy Friend
23 99 98 97 26 78 100 63 87 23 -999
104
Doctor Miller
62 35 78 99 12 93 19 -999
...

The number -999 at the end of a line acts as a sentinel and therefore is not part of the data.

Assume that this is the data of certain candidates seeking the student council’s presidential seat.

For each candidate, the data is in the following form:

ID
Name
Votes

The objective is to find the total number of votes received by the candidate. We assume
that the data is input from the file Exp_5_25.txt of unknown size. We also assume that
the input file has been opened using the input file stream variable infile.

Because the input file is of an unspecified length, we use an EOF-controlled while loop.
For each candidate, the first data item is the ID of type int on a line by itself; the second
data item is the name, which may consist of more than one word; and the third line
contains the votes received from the various departments.

To read the ID, we use the extraction operator >>; to read the name, we use the stream
function getline. Notice that after reading the ID, the reading marker is after the ID and the
character after the ID is the newline character. Therefore, after reading the ID, the reading
marker is after the ID and before the newline character (of the line containing the ID).

The function getline reads until the end of the line. Therefore, if we read the name
immediately after reading the ID, then what is stored in the variable name is the newline
character (after the ID). It follows that to read the name, we must read and discard the
newline character after the ID, which we can accomplish using the stream function get.
Therefore, the statements to read the ID and name are as follows:

infile >> ID; //read the ID
infile.get(ch); //read the newline character after the ID
getline(infile, name); //read the name

Nested Control Structures | 295

(Assume that ch is a variable of type char.) The general loop to process the data is:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3

infile.get(ch); //Line 4
getline(infile, name); //Line 5

//process the numbers in each line //Line 6
//output the name and total votes
infile >> ID; //begin processing the next line

}

The code to read and sum up the voting data is:

sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9

sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

} //Line 12

We can now write the following nested loop to process data as follows:

infile >> ID; //Line 1
while (infile) //Line 2
{ //Line 3

infile.get(ch); //Line 4
getline(infile, name); //Line 5
sum = 0; //Line 6
infile >> num; //Line 7; read the first number
while (num != -999) //Line 8
{ //Line 9

sum = sum + num; //Line 10; update sum
infile >> num; //Line 11; read the next number

}

cout << "Name: " << name
<< ", Votes: " << sum
<< endl; //Line 12

infile >> ID; //Line 13; begin processing the next line
}

Avoiding Bugs by Avoiding Patches
Debugging sections in the previous chapters illustrated how to debug syntax and logical
errors, and how to avoid partially understood concepts. In this section, we illustrate how
to avoid a software patch to fix a code. A software patch is a piece of code written on top
of an existing piece of code and intended to fix a bug in the original code.

296 | Chapter 5: Control Structures II (Repetition)

5

Suppose that the following data is in the file Ch5_LoopWithBugsData.txt.

87 78 83 94
23 89 92 70
92 78 34 56

The objective is to find the sum of the numbers in each line. For each line, output the
numbers together with their sum. Let us consider the following program:

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

ifstream infile;

int i;
int j;
int sum;
int num;

infile.open("Ch5_LoopWithBugsData.txt");

for (i = 1; i <= 4; i++)
{

sum = 0;

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";
sum = sum + num;

}

cout << "sum = " << sum << endl;
}

return 0;
}

Sample Run:

87 78 83 94 sum = 342
23 89 92 70 sum = 274
92 78 34 56 sum = 260
56 56 56 56 sum = 224

The sample run shows that there is a bug in the program because the file contains three
lines of input and the output contains four lines. Also, the number 56 in the last line
repeats four times. Clearly, there is a bug in the program and we must fix the code. Some
programmers, especially some beginners, address the symptom of the problem by adding
a software patch. In this case, the output should contain only three lines of output.

Avoiding Bugs by Avoiding Patches | 297

A beginning programmer might fix the code by adding a software patch as shown in the
following modified program.

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

ifstream infile;

int i;
int j;
int sum;
int num;

infile.open("Ch5_LoopWithBugsData.txt");

for (i = 1; i <= 4; i++)
{

sum = 0;

if (i != 4)
{

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";
sum = sum + num;

}

cout << "sum = " << sum << endl;
}

}

return 0;
}

Sample Run:

87 78 83 94 sum = 342
23 89 92 70 sum = 274
92 78 34 56 sum = 260

Clearly, the program is working correctly now.

As we can see, the programmer merely observed the symptom and addressed the problem by
adding a software patch. However, if you look at the code, not only does the program
execute extra statements, it is also an example of a partially understood concept. It appears that
the programmer does not have a good grasp of why the earlier program produced four lines
rather than three. Adding a patch eliminated the symptom, but it is a poor programming
practice. The programmer must resolve why the program produced four lines. Looking at the

298 | Chapter 5: Control Structures II (Repetition)

5

program closely, we can see that the four lines are produced because the outer loop executes
four times. The values assigned to loop control variable i are 1, 2, 3, and 4. This is an example
of the classic ‘‘off-by-one’’ problem. (In an ‘‘off-by-one problem,’’ either the loop executes
one too many or one too few times.) We can eliminate this problem by correctly setting the
values of the loop control variable. For example, we can rewrite the loops as follows:

for (i = 1; i <= 3; i++)
{

sum = 0;

for (j = 1; j <= 4; j++)
{

infile >> num;
cout << num << " ";;
sum = sum + num;

}

cout << "sum = " <<< sum << endl;
}

This code fixes the original problem without using a software patch. It also represents
good programming practice. The complete modified program is available at the Web site
accompanying this book and is named Ch5_LoopWithBugsCorrectedProgram.cpp.

Debugging Loops
As we have seen in the earlier debugging sections, no matter how careful a program is
designed and coded, errors are likely to occur. If there are syntax errors, the compiler will
identify them. However, if there are logical errors, we must carefully look at the code or
even maybe at the design and try to find the errors. To increase the reliability of the
program, errors must be discovered and fixed before the program is released to the users.

Once an algorithm is written, the next step is to verify that it works properly. If the algorithm
is a simple sequential flow or contains a branch, it can be hand traced or you can use the
debugger, if any, provided by the IDE. Typically, loops are harder to debug. The correctness
of a loop can be verified by using loop invariants. A loop invariant is a set of statements that
remains true each time the loop body is executed. Let p be a loop invariant and q be the
(logical) expression in a loop statement. Then p && q remains true before each iteration of the
loop and p && not(q) is true after the loop terminates. The full discussion of loop invariants is
beyond the scope of the book. However, you can learn about loop invariants in the book:
Discrete Mathematical Structures: Theory and Applications, D.S. Malik and M.K. Sen, Course
Technology, 2004. Here, we give a few tips that you can use to debug a loop.

As discussed in the previous section, the most common error associated with loops is off-
by-one. If a loop turns out to be an infinite loop, the error is most likely in the logical
expression that controls the execution of the loop. Check the logical expression carefully
and see if you have reversed an inequality, an assignment statement symbol appears in place
of the equality operator, or && appears in place of ||. If the loop changes the values of

Debugging Loops | 299

variables, you can print the values of the variables before and/or after each iteration or you
can use your IDE’s debugger, if any, and watch the values of variables during each iteration.

The debugging sections in this book are designed to help you understand the debugging
process. However, as you will realize, debugging can be a tiresome process. If your
program is very bad, do not debug. Throw it away and start over.

QUICK REVIEW

1. C++ has three looping (repetition) structures: while, for, and
do. . .while.

2. The syntax of the while statement is:
while (expression)

statement

3. In C++, while is a reserved word.

4. In the while statement, the parentheses around the expression (the
decision maker) are important; they mark the beginning and end of the
expression.

5. The statement is called the body of the loop.

6. The body of the while loop must contain a statement that eventually sets
the expression to false.

7. A counter-controlled while loop uses a counter to control the loop.

8. In a counter-controlled while loop, you must initialize the counter before
the loop, and the body of the loop must contain a statement that changes
the value of the counter variable.

9. A sentinel is a special value that marks the end of the input data. The
sentinel must be similar to, yet differ from, all the data items.

10. A sentinel-controlled while loop uses a sentinel to control the while
loop. The while loop continues to execute until the sentinel is read.

11. An EOF-controlled while loop continues to execute until the program
detects the end-of-file marker.

12. In the Windows console environment, the end-of-file marker is entered using
Ctrl+z (hold the Ctrl key and press z). In the UNIX environment, the
end-of-file marker is entered using Ctrl+d (hold the Ctrl key and press d).

13. A for loop simplifies the writing of a counter-controlled while loop.

14. In C++, for is a reserved word.

15. The syntax of the for loop is:
for (initialize statement; loop condition; update statement)

statement

statement is called the body of the for loop.

300 | Chapter 5: Control Structures II (Repetition)

5

16. Putting a semicolon at the end of the for loop (before the body of the for
loop) is a semantic error. In this case, the action of the for loop is empty.

17. The syntax of the do. . .while statement is:

do
statement

while (expression);

statement is called the body of the do. . .while loop.

18. Both while and for loops are called pretest loops. A do. . .while loop is
called a posttest loop.

19. The while and for loops may not execute at all, but the do. . .while loop
always executes at least once.

20. Executing a break statement in the body of a loop immediately terminates
the loop.

21. Executing a continue statement in the body of a loop skips the loop’s
remaining statements and proceeds with the next iteration.

22. When a continue statement executes in a while or do. . .while loop,
the expression update statement in the body of the loop may not execute.

23. After a continue statement executes in a for loop, the update statement
is the next statement executed.

EXERCISES

1. Mark the following statements as true or false.

a. In a counter-controlled while loop, it is not necessary to initialize the
loop control variable.

b. It is possible that the body of a while loop may not execute at all.

c. In an infinite while loop, the while expression (the decision maker) is
initially false, but after the first iteration it is always true.

d. The while loop:

j = 0;
while (j <= 10)

j++;

terminates if j > 10.

e. A sentinel-controlled while loop is an event-controlled while loop
whose termination depends on a special value.

f. A loop is a control structure that causes certain statements to execute
over and over.

g. To read data from a file of an unspecified length, an EOF-controlled
loop is a good choice.

Exercises | 301

h. When a while loop terminates, the control first goes back to the
statement just before the while statement, and then the control goes
to the statement immediately following the while loop.

2. What is the output of the following C++ code?

int count = 1;
int y = 100;
while (count < 100)
{

y = y - 1;
count++;

}
cout << " y = " << y << " and count = " << count << endl;

3. What is the output of the following C++ code?

int num = 5;
while (num > 5)

num = num + 2;
cout << num << endl;

4. What is the output of the following C++ code?

int num = 1;
while (num < 10)
{

cout << num << " ";
num = num + 2;

}
cout << endl;

5. When does the following while loop terminate?

ch = 'D';
while ('A' <= ch && ch <= 'Z')

ch = static_cast<char>(static_cast<int>(ch) + 1);

6. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

for (j = 1; j <= 3; j++)
{

cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

7. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> sum;
cin >> num;

while (num != -1)

302 | Chapter 5: Control Structures II (Repetition)

5

{
sum = sum + num;
cin >> num;

}
cout << "Sum = " << sum << endl;

8. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

cin >> num;
sum = num;

while (num != -1)
{

cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

9. Suppose that the input is 38 35 71 14 -1. What is the output of the
following code? Assume all variables are properly declared.

sum = 0;
cin >> num;

while (num != -1)
{

sum = sum + num;
cin >> num;

}
cout << "Sum = " << sum << endl;

10. Correct the following code so that it finds the sum of 20 numbers.

sum = 0;

while (count < 20)
cin >> num;
sum = sum + num;
count++;

11. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int x, y, z;

x = 4; y = 5;
z = y + 6;

while(((z - x) % 4) != 0)
{

cout << z << " ";
z = z + 7;

}

Exercises | 303

cout << endl;

return 0;
}

12. Suppose that the input is:

58 23 46 75 98 150 12 176 145 -999

What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int num;

cin >> num;

while (num != -999)
{

cout << num % 25 << " ";
cin >> num;

}

cout << endl;

return 0;
}

13. The following program is designed to input two numbers and output their
sum. It asks the user if he/she would like to run the program. If the answer
is Y or y, it prompts the user to enter two numbers. After adding the
numbers and displaying the results, it again asks the user if he/she would
like to add more numbers. However, the program fails to do so. Correct the
program so that it works properly.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

char response;
double num1;
double num2;

cout << "This program adds two numbers." << endl;
cout << "Would you like to run the program: (Y/y) ";
cin >> response;
cout << endl;

304 | Chapter 5: Control Structures II (Repetition)

5

cout << fixed << showpoint << setprecision(2);

while (response == 'Y' && response == 'y')
{

cout << "Enter two numbers: ";
cin >> num1 >> num2;
cout << endl;

cout << num1 << " + " << num2 << " = " << (num1 - num2)
<< endl;

cout << "Would you like to add again: (Y/y) ";
cin >> response;
cout << endl;

}

return 0;
}

14. What is the output of the following program segment?

int count = 0;

while (count++ < 10)
cout << "This loop can repeat statements." << endl;

15. What is the output of the following program segment?

int count = 5;

while (--count > 0)
cout << count << " ";

cout << endl;

16. What is the output of the following program segment?

int count = 5;

while (count-- > 0)
cout << count << " ";

cout << endl;

17. What is the output of the following program segment?

int count = 1;
while (count++ <= 5)

cout << count * (count - 2) << " ";

cout << endl;

18. What type of loop, such as counter-control and sentinel-control, will you
use in each of the following situations?

a. Sum the following series: 1 + (2 / 1) + (3 / 2) + (4 / 3) + (5 / 4)
+ ... + (10 / 9)

b. Sum the following numbers, except the last number: 17, 32, 62, 48, 58, -1

c. A file contains an employee’s salary. Update the employee’s salary.

Exercises | 305

19. Consider the following for loop:

int j, s;

s = 0;
for (j = 1; j <= 10; j++)

s = s + j * (j - 1);

In this for loop, identify the loop control variable, the initialization statement, the
loop condition, the update statement, and the statement that updates the value of s.

20. Given that the following code is correctly inserted into a program, state its
entire output as to content and form. (Assume all variables are properly
declared.)

num = 0;
for (i = 1; i <= 4; i++)
{

num = num + 10 * (i - 1);
cout << num << " ";

}
cout << endl;

21. Given that the following code is correctly inserted into a program, state its
entire output as to content and form. (Assume all variables are properly
declared.)

j = 2;
for (i = 0; i <= 5; i++)
{

cout << j << " ";
j = 2 * j + 3;

}
cout << j << " " << endl;

22. Assume that the following code is correctly inserted into a program:

int s = 0;

for (i = 0; i < 5; i++)
{

s = 2 * s + i;
cout << s << " ";

}
cout << endl;

a. What is the final value of s?
(i) 11 (ii) 4 (iii) 26 (iv) none of these

b. If a semicolon is inserted after the right parenthesis in the for loop
statement, what is the final value of s?
(i) 0 (ii) 1 (iii) 2 (iv) 5 (v) none of these

c. If the 5 is replaced with a 0 in the for loop control expression, what is
the final value of s?
(i) 0 (ii) 1 (iii) 2 (iv) none of these

306 | Chapter 5: Control Structures II (Repetition)

23. State what output, if any, results from each of the following statements:

a. for (i = 1; i <= 1; i++)
cout << "*";

cout << endl;

b. for (i = 2; i >= 1; i++)
cout << "*";

cout << endl;

c. for (i = 1; i <= 1; i--)
cout << "*";

cout << endl;

d. for (i = 12; i >= 9; i--)
cout << "*";

cout << endl;

e. for (i = 0; i <= 5; i++)
cout << "*";

cout << endl;

f. for (i = 1; i <= 5; i++)
{

cout << "*";
i = i + 1;

}
cout << endl;

24. Write a for statement to add all the multiples of 3 between 1 and 100.

25. What is the output of the following code? Is there a relationship between
the variables x and y? If yes, state the relationship? What is the output?

int x = 19683;
int i;
int y = 0;

for (i = x; i >= 1; i = i / 3)
y++;

cout << "x = " << x << ", y = " << y << endl;

26. Suppose that the input is 5 3 8. What is the output of the following code?
Assume all variables are properly declared.

cin >> a >> b >> c;
for (j = 1; j < a; j++)
{

d = b + c;
b = c;
c = d;
cout << c << " ";

}
cout << endl;

27. What is the output of the following C++ program segment? Assume all
variables are properly declared.

5

Exercises | 307

for (j = 0; j < 8; j++)
{

cout << j * 25 << " - ";

if (j != 7)
cout << (j + 1) * 25 - 1 << endl;

else
cout << (j + 1) * 25 << endl;

}

28. Suppose that the input is 38 35 71 44 -1. What is the output of the
following code? Assume all variables are properly declared.

sum = 0;
cin >> num;

for (jj = 1; j <= 3; j++)
{

cin >> num;
sum = sum + num;

}
cout << "Sum = " << sum << endl;

29. Which of the following apply to the while loop only? To the do. . .while
loop only? To both?

a. It is considered a conditional loop.

b. The body of the loop executes at least once.

c. The logical expression controlling the loop is evaluated before the loop
is entered.

d. The body of the loop may not execute at all.

30. The following program has more than five mistakes that prevent it from
compiling and/or running. Correct all such mistakes.

#include <iostream>

using namespace std;
const int N = 2,137;

main ()
{

int a, b, c, d:

a := 3;
b = 5;
c = c + d;
N = a + n;
for (i = 3; i <= N; i++)
{

cout << setw(5) << i;
i = i + 1;

}
return 0;

}

308 | Chapter 5: Control Structures II (Repetition)

5

31. What is the difference between a pretest loop and a posttest loop?

32. How many times will each of the following loops execute? What is the
output in each case?

a. x = 5; y = 50;
do

x = x + 10;
while (x < y);
cout << x << " " << y << endl;

b. x = 5; y = 80;
do

x = x * 2;
while (x < y);
cout << x << " " << y << endl;

c. x = 5; y = 20;
do

x = x + 2;
while (x >= y);
cout << x << " " << y << endl;

d. x = 5; y = 35;
while (x < y)

x = x + 10;
cout << x << " " << y << endl;

e. x = 5; y = 30;
while (x <= y)

x = x * 2;
cout << x << " " << y << endl;

f. x = 5; y = 30;
while (x > y)

x = x + 2;
cout << x << " " << y << endl;

33. Write an input statement validation loop that prompts the user to enter a
number less than 20 or greater than 75.

34. Rewrite the following as a for loop.

int i = 0, value = 0;

while (i <= 20)
{

if (i % 2 == 0 && i <= 10)
value = value + i * i;

else if (i % 2 == 0 && i > 10)
value = value + i;

else
value = value - i;

i = i + 1;
}

cout << "value = " << value << endl;

What is the output of this loop?

Exercises | 309

35. Write the while loop of Exercise 34 as a do. . .while loop.

36. The do. . .while loop in the following program is supposed to read some
numbers until it reaches a sentinel (in this case, -1). It is supposed to add all
of the numbers except for the sentinel. If the data looks like:

12 5 30 48 -1

the program does not add the numbers correctly. Correct the program so that it adds
the numbers correctly.

#include <iostream>

using namespace std;
int main()
{

int total = 0,
count = 0,
number;

do
{

cin >> number;
total = total + number;
count++;

}
while (number != -1);

cout << "The number of data read is " << count << endl;
cout << "The sum of the numbers entered is " << total

<< endl;

return 0;
}

37. Using the same data as in Exercise 36, the following loop also fails. Correct it.

cin >> number;
while (number != -1)

total = total + number;
cin >> number;
cout << endl;
cout << total << endl;

38. Using the same data as in Exercise 36, the following loop also fails. Correct it.

cin >> number;
while (number != -1)
{

cin >> number;
total = total + number;

}
cout << endl;
cout << total << endl;

39. Given the following program segment:

for (number = 1; number <= 10; number++)
cout << setw(3) << number;

write a while loop and a do. . .while loop that have the same output.

310 | Chapter 5: Control Structures II (Repetition)

40. Given the following program segment:

j = 2;
for (i = 1; i <= 5; i++);
{

cout << setw(4) << j;
j = j + 5;

}
cout << endl;

write a while loop and a do. . .while loop that have the same output.

41. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int x, y, z;
x = 4; y = 5;
z = y + 6;
do
{

cout << z << " ";
z = z + 7;

}
while (((z - x) % 4) != 0);

cout << endl;

return 0;
}

42. To learn how nested for loops work, do a walk-through of the following
program segments and determine, in each case, the exact output.

a. int i, j;

for (i = 1; i <= 5; i++)
{

for (j = 1; j <= 5; j++)
cout << setw(3) << i;

cout << endl;
}

b. int i, j;
for (i = 1; i <= 5; i++)
{

for (j = (i + 1); j <= 5; j++)
cout << setw(5) << j;

cout << endl;
}

5

Exercises | 311

c. int i, j;
for (i = 1; i <= 5; i++)
{

for (j = 1; j <= i; j++)
cout << setw(3) << j;

cout << endl;
}

d. const int M = 10;
const int N = 10;
int i, j;

for (i = 1; i <= M; i++)
{

for (j = 1; j <= N; j++)
cout << setw(3) << M * (i - 1) + j;

cout << endl;
}

e. int i, j;

for (i = 1; i <= 9; i++)
{

for (j = 1; j <= (9 - i); j++)
cout << " ";

for (j = 1; j <= i; j++)
cout << setw(1) << j;

for (j = (i - 1); j >= 1; j--)
cout << setw(1) << j;

cout << endl;
}

43. What is the output of the following program segment?

int count = 1;
do

cout << count *(count - 2) << " ";
while (count++ <= 5);

cout << endl;

44. What is the output of the following code?

int num = 12;

while (num >= 0)
{

if (num % 5 == 0)
break;

cout << num << " ";
num = num - 2;

}

cout << endl;

312 | Chapter 5: Control Structures II (Repetition)

5

45. What is the output of the following code?

int num = 12;

while (num >= 0)
{

if (num % 5 == 0)
{

num++;
continue;

}

cout << num << " ";
num = num - 2;

}
cout << endl;

46. What does a break statement do in a loop?

PROGRAMMING EXERCISES

1. Write a program that prompts the user to input an integer and then outputs
both the individual digits of the number and the sum of the digits. For
example, it should output the individual digits of 3456 as 3 4 5 6, output
the individual digits of 8030 as 8 0 3 0, output the individual digits of
2345526 as 2 3 4 5 5 2 6, output the individual digits of 4000 as 4 0 0
0, and output the individual digits of -2345 as 2 3 4 5.

2. The value of p can be approximated by using the following series:

� ¼ 4 1� 1
3
þ 1

5
� 1

7
þ � � � þ 1

2n� 1þ
1

2nþ 1 :
� �

The following program uses this series to find the approximate value of p. However,
the statements are in the incorrect order, and there is also a bug in this program.
Rearrange the statements and also find and remove the bug so that this program can
be used to approximate p.

#include <iostream>
#include <iomanip>

using namespace std;

int main()
{

double pi = 0;
long i;
long n;

cin >> n;
cout << "Enter the value of n: ";
cout << endl;

Programming Exercises | 313

if (i % 2 == 0)
pi = pi + (1 / (2 * i + 1));

else
pi = pi - (1 / (2 * i + 1));

for (i = 0; i < n; i++)
{

pi = 0;
pi = 4 * pi;

}

cout << endl << "pi = " << pi << endl;

return 0;
}

3. Rewrite the program of Example 5-5, Telephone Digits. Replace the state-
ments from Line 10 to Line 28 so that the program uses only a switch
structure to find the digit that corresponds to an uppercase letter.

4. The program Telephone Digits outputs only telephone digits that corre-
spond to uppercase letters. Rewrite the program so that it processes both
uppercase and lowercase letters and outputs the corresponding telephone
digit. If the input is something other than an uppercase or lowercase letter,
the program must output an appropriate error message.

5. To make telephone numbers easier to remember, some companies use letters
to show their telephone number. For example, using letters, the telephone
number 438-5626 can be shown as GET LOAN. In some cases, to make a
telephone number meaningful, companies might use more than seven letters.
For example, 225-5466 can be displayed as CALL HOME, which uses eight
letters. Write a program that prompts the user to enter a telephone number
expressed in letters and outputs the corresponding telephone number in digits. If
the user enters more than seven letters, then process only the first seven letters.
Also output the – (hyphen) after the third digit. Allow the user to use both
uppercase and lowercase letters as well as spaces between words. Moreover, your
program should process as many telephone numbers as the user wants.

6. Write a program that reads a set of integers and then finds and prints the sum
of the even and odd integers.

7. Write a program that prompts the user to input a positive integer. It should then
output a message indicating whether the number is a prime number. (Note: An
even number is prime if it is 2. An odd integer is prime if it is not divisible by
any odd integer less than or equal to the square root of the number.)

8. Let n = akak-1ak-2. . .a1a0 be an integer and t = a0 - a1 + a2 - � � � + (-1)k ak. It
is known that n is divisible by 11 if and only if t is divisible by 11. For
example, suppose that n = 8784204. Then, t = 4 - 0 + 2 - 4 + 8 - 7 + 8 =
11. Because 11 is divisible by 11, it follows that 8784204 is divisible by 11.
If n ¼ 54063297, then t = 7 - 9 + 2 - 3 + 6 - 0 + 4 - 5 = 2. Because 2 is not

314 | Chapter 5: Control Structures II (Repetition)

5

divisible by 11, 54063297 is not divisible by 11.Write a program that
prompts the user to enter a positive integer and then uses this criterion to
determine whether the number is divisible by 11.

9. Write a program that uses while loops to perform the following steps:

a. Prompt the user to input two integers: firstNum and secondNum
(firstNum must be less than secondNum).

b. Output all odd numbers between firstNum and secondNum.

c. Output the sum of all even numbers between firstNum and
secondNum.

d. Output the numbers and their squares between 1 and 10.

e. Output the sum of the square of the odd numbers between firstNum
and secondNum.

f. Output all uppercase letters.

10. Redo Exercise 9 using for loops.

11. Redo Exercise 9 using do. . .while loops.

12. The program in the Programming Example: Fibonacci Number does not
check whether the first number entered by the user is less than or equal to
the second number and whether both the numbers are nonnegative. Also,
the program does not check whether the user entered a valid value for the
position of the desired number in the Fibonacci sequence. Rewrite that
program so that it checks for these things.

13. The population of a town A is less than the population of town B.
However, the population of town A is growing faster than the popula-
tion of town B. Write a program that prompts the user to enter the
population and growth rate of each town. The program outputs after
how many years the population of town A will be greater than or equal
to the population of town B and the populations of both the towns at
that time. (A sample input is: Population of town A ¼ 5000, growth
rate of town A ¼ 4%, population of town B ¼ 8000, and growth rate of
town B ¼ 2%.)

14. Suppose that the first number of a sequence is x, in which x is an integer.
Define a0 ¼ x; an+1 ¼ an/2 if an is even; an+1 ¼ 3 � an + 1 if an is odd.
Then, there exists an integer k such that ak ¼ 1. Write a program that
prompts the user to input the value of x. The program output the
integer k such that ak ¼ 1 and the numbers a0, a1, a2, . . . , ak. (For example,
if x ¼ 75, then k ¼ 14, and the numbers a0, a1, a2, . . ., a14, respectively, are
75, 226, 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1.) Test your
program for the following values of x: 75, 111, 678, 732, 873 2048,
and 65535.

15. Enhance your program from Exercise 14 by outputting the position of the
largest number and the largest number of the sequence a0, a1, a2, . . ., ak.
(For example, the largest number of the sequence 75, 226, 113, 340, 170,

Programming Exercises | 315

85, 256, 128, 64, 32, 16, 8, 4, 2, 1 is 340, and its position is 4.) Test your
program for the following values of x: 75, 111, 678, 732, 873, 2048, and
65535.

16. The program in Example 5-6 implements the Number Guessing Game.
However, in that program, the user is given as many tries as needed to guess
the correct number. Rewrite the program so that the user has no more than
five tries to guess the correct number. Your program should print an
appropriate message, such as ‘‘You win!’’ or ‘‘You lose!’’.

17. Example 5-6 implements the Number Guessing Game program. If the
guessed number is not correct, the program outputs a message indicating
whether the guess is low or high. Modify the program as follows: Suppose
that the variables num and guess are as declared in Example 5-6 and diff
is an int variable. Let diff = the absolute value of (num – guess). If diff
is 0, then guess is correct and the program outputs a message indicating
that the user guessed the correct number. Suppose diff is not 0. Then the
program outputs the message as follows:

a. If diff is greater than or equal to 50, the program outputs the message
indicating that the guess is very high (if guess is greater than num) or
very low (if guess is less than num).

b. If diff is greater than or equal to 30 and less than 50, the program
outputs the message indicating that the guess is high (if guess is greater
than num) or low (if guess is less than num).

c. If diff is greater than or equal to 15 and less than 30, the program
outputs the message indicating that the guess is moderately high (if guess
is greater than num) or moderately low (if guess is less than num).

d. If diff is greater than 0 and less than 15, the program outputs the
message indicating that the guess is somewhat high (if guess is greater
than num) or somewhat low (if guess is less than num).

As in Programming Exercise 16, give the user no more than five tries to
guess the number. (To find the absolute value of num – guess, use the
expression abs(num – guess). The function abs is from the header file
cstdlib.

18. A high school has 1000 students and 1000 lockers, one locker for each
student. On the first day of school, the principal plays the following game:
She asks the first student to go and open all the lockers. She then asks the
second student to go and close all the even-numbered lockers. The third
student is asked to check every third locker. If it is open, the student closes
it; if it is closed, the student opens it. The fourth student is asked to check
every fourth locker. If it is open, the student closes it; if it is closed, the
student opens it. The remaining students continue this game. In general, the
nth student checks every nth locker. If the locker is open, the student closes
it; if it is closed, the student opens it. After all the students have taken their
turn, some of the lockers are open and some are closed. Write a program

316 | Chapter 5: Control Structures II (Repetition)

that prompts the user to enter the number of lockers in a school. After the
game is over, the program outputs the number of lockers that are opened.
Test run your program for the following inputs: 1000, 5000, 10000. Do
you see any pattern developing?

(Hint: Consider locker number 100. This locker is visited by student
numbers 1, 2, 4, 5, 10, 20, 25, 50, and 100. These are the positive divisors
of 100. Similarly, locker number 30 is visited by student numbers 1, 2, 3, 5,
6, 10, 15, and 30. Notice that if the number of positive divisors of a locker
number is odd, then at the end of the game, the locker is opened. If the
number of positive divisors of a locker number is even, then at the end of
the game, the locker is closed.)

19. When you borrow money to buy a house, a car, or for some other purpose,
you repay the loan by making periodic payments over a certain period of time.
Of course, the lending company will charge interest on the loan. Every
periodic payment consists of the interest on the loan and the payment toward
the principal amount. To be specific, suppose that you borrow $1000 at the
interest rate of 7.2% per year and the payments are monthly. Suppose that your
monthly payment is $25. Now, the interest is 7.2% per year and the payments
are monthly, so the interest rate per month is 7.2/12¼ 0.6%. The first month’s
interest on $1000 is 1000 � 0.006 ¼ 6. Because the payment is $25 and
interest for the first month is $6, the payment toward the principal amount is
25 – 6 ¼ 19. This means after making the first payment, the loan amount is
1000 – 19 ¼ 981. For the second payment, the interest is calculated on $981.
So the interest for the second month is 981 � 0.006 ¼ 5.886, that is,
approximately $5.89. This implies that the payment toward the principal is
25 – 5.89¼ 19.11 and the remaining balance after the second payment is 981 –
19.11 ¼ 961.89. This process is repeated until the loan is paid. Write a
program that accepts as input the loan amount, the interest rate per year,
and the monthly payment. (Enter the interest rate as a percentage. For
example, if the interest rate is 7.2% per year, then enter 7.2.) The program
then outputs the number of months it would take to repay the loan. (Note
that if the monthly payment is less than the first month’s interest, then after
each payment, the loan amount will increase. In this case, the program
must warn the borrower that the monthly payment is too low, and with
this monthly payment, the loan amount could not be repaid.)

20. Enhance your program from Exercise 19 by first telling the user the
minimum monthly payment and then prompting the user to enter the
monthly payment. Your last payment might be more than the remaining
loan amount and interest on it. In this case, output the loan amount before
the last payment and the actual amount of the last payment. Also, output the
total interest paid.

21. Write a complete program to test the code in Example 5-21.

22. Write a complete program to test the code in Example 5-22.

5

Programming Exercises | 317

23. Write a complete program to test the code in Example 5-23.

24. Write a complete program to test the code in Example 5-24.

25. Write a complete program to test the code in Example 5-25.

26. (The conical paper cup problem) You have been given the contract for
making little conical cups that come with bottled water. These cups are to
be made from a circular waxed paper of 4 inches in radius by removing a
sector of length x (see Figure 5-4). By closing the remaining part of the
circle, a conical cup is made. Your objective is to remove the sector so that
the cup is of maximum volume.

Write a program that prompts the user to enter the radius of the circular
waxed paper. The program should then output the length of the removed
sector so that the resulting cup is of maximum volume. Calculate your
answer to two decimal places.

27. (Apartment problem) A real estate office handles, say, 50 apartment units.
When the rent is, say, $600 per month, all the units are occupied. However,
for each, say, $40 increase in rent, one unit becomes vacant. Moreover,
each occupied unit requires an average of $27 per month for maintenance.
How many units should be rented to maximize the profit?

Write a program that prompts the user to enter:

a. The rent to occupy all the units.

b. The increase in rent that results in a vacant unit.

c. Amount to maintain a rented unit.

The program then outputs the number of units to be rented to maximize the profit.

4

r

h

4

x

FIGURE 5-4 Conical paper cup

318 | Chapter 5: Control Structures II (Repetition)

USER-DEFINED FUNCTIONS I
IN THIS CHAPTER , YOU WILL :

. Learn about standard (predefined) functions and discover how to use them in a program

. Learn about user-defined functions

. Examine value-returning functions, including actual and formal parameters

. Explore how to construct and use a value-returning, user-defined function in a program

6C H A P T E R

In Chapter 2, you learned that a C++ program is a collection of functions. One such
function is main. The programs in Chapters 1 through 5 use only the function
main; the programming instructions are packed into one function. This technique,
however, is good only for short programs. For large programs, it is not practical
(although it is possible) to put the entire programming instructions into one function,
as you will soon discover. You must learn to break the problem into manageable
pieces. This chapter first discusses the functions previously defined and then discusses
user-defined functions.

Let us imagine an automobile factory. When an automobile is manufactured, it is not
made from basic raw materials; it is put together from previously manufactured parts.
Some parts are made by the company itself; others, by different companies.

Functions are like building blocks. They let you divide complicated programs into
manageable pieces. They have other advantages, too:

• While working on one function, you can focus on just that part of the
program and construct it, debug it, and perfect it.

• Different people can work on different functions simultaneously.

• If a function is needed in more than one place in a program or in
different programs, you can write it once and use it many times.

• Using functions greatly enhances the program’s readability because it
reduces the complexity of the function main.

Functions are often called modules. They are like miniature programs; you can put
them together to form a larger program. When user-defined functions are discussed,
you will see that this is the case. This ability is less apparent with predefined functions
because their programming code is not available to us. However, because predefined
functions are already written for us, you will learn these first so that you can use them
when needed.

Predefined Functions
Before formally discussing predefined functions in C++, let us review a concept from a
college algebra course. In algebra, a function can be considered a rule or correspondence
between values, called the function’s arguments, and the unique values of the function
associated with the arguments. Thus, if f(x) = 2x + 5, then f(1) = 7, f(2) = 9, and
f(3) = 11, where 1, 2, and 3 are the arguments of f, and 7, 9, and 11 are the
corresponding values of the function f.

In C++, the concept of a function, either predefined or user-defined, is similar to that of
a function in algebra. For example, every function has a name and, depending on the
values specified by the user, it does some computation. This section discusses various
predefined functions.

320 | Chapter 6: User-Defined Functions I

Some of the predefined mathematical functions are pow(x, y), sqrt(x), and
floor(x).

The power function, pow(x, y), calculates xy; that is, the value of pow(x, y)= xy.
For example, pow(2, 3)= 23 = 8.0 and pow(2.5, 3)= 2.53 = 15.625. Because
the value of pow(x, y) is of type double, we say that the function pow is of type
double or that the function pow returns a value of type double. Moreover, x and y
are called the parameters (or arguments) of the function pow. Function pow has two
parameters.

The square root function, sqrt(x), calculates the nonnegative square root of x for
x >= 0.0. For example, sqrt(2.25) is 1.5. The function sqrt is of type double
and has only one parameter.

The floor function, floor(x), calculates the largest whole number that is less than or
equal to x. For example, floor(48.79) is 48.0. The function floor is of type
double and has only one parameter.

In C++, predefined functions are organized into separate libraries. For example, the
header file iostream contains I/O functions, and the header file cmath contains
math functions. Table 6-1 lists some of the predefined functions, the name of the
header file in which each function’s specification can be found, the data type of the
parameters, and the function type. The function type is the data type of the final
value returned by the function. (For a list of additional predefined functions, see
Appendix F.)

6

TABLE 6-1 Predefined Functions

Function Header File Purpose
Parameter(s)
Type

Result

abs(x) <cmath>
Returns the absolute value
of its argument: abs(-7) = 7

int
(double)

int
(double)

ceil(x) <cmath>
Returns the smallest whole
number that is not less than
x: ceil(56.34) = 57.0

double double

cos(x) <cmath>
Returns the cosine of angle:
x: cos(0.0) = 1.0

double
(radians)

double

exp(x) <cmath>
Returns ex, where e = 2.718:
exp(1.0) = 2.71828

double double

fabs(x) <cmath>
Returns the absolute value
of its argument:
fabs(-5.67) = 5.67

double double

Predefined Functions | 321

To use predefined functions in a program, you must include the header file that contains
the function’s specification via the include statement. For example, to use the function
pow, the program must include:

#include <cmath>

Example 6-1 shows you how to use some of the predefined functions.

Function Header File Purpose
Parameter(s)
Type

Result

floor(x) <cmath>
Returns the largest whole
number that is not greater than
x:floor(45.67) = 45.00

double double

islower(x) <cctype>

Returns true if x is a lowercase
letter; otherwise, it returns
false; islower('h') is
true

int int

isupper(x) <cctype>

Returns true if x is a uppercase
letter; otherwise, it returns
false; isupper('K') is
true

int int

pow(x, y) <cmath>
Returns xy; if x is negative, y
must be a whole number:
pow(0.16, 0.5) = 0.4

double double

sqrt(x) <cmath>

Returns the nonnegative
square root of x; x must be
nonnegative: sqrt(4.0) =
2.0

double double

tolower(x) <cctype>
Returns the lowercase value
of x if x is uppercase;
otherwise, it returns x

int int

toupper(x) <cctype>
Returns the uppercase value
of x if x is lowercase;
otherwise, it returns x

int int

TABLE 6-1 Predefined Functions (continued)

322 | Chapter 6: User-Defined Functions I

6

EXAMPLE 6-1

//How to use predefined functions.

#include <iostream>
#include <cmath>
#include <cctype>

using namespace std;

int main()
{

int x;
double u, v;

cout << "Line 1: Uppercase a is "
<< static_cast<char>(toupper('a'))
<< endl; //Line 1

u = 4.2; //Line 2
v = 3.0; //Line 3
cout << "Line 4: " << u << " to the power of "

<< v << " = " << pow(u, v) << endl; //Line 4

cout << "Line 5: 5.0 to the power of 4 = "
<< pow(5.0, 4) << endl; //Line 5

u = u + pow(3.0, 3); //Line 6
cout << "Line 7: u = " << u << endl; //Line 7

x = -15; //Line 8
cout << "Line 9: Absolute value of " << x

<< " = " << abs(x) << endl; //Line 9

return 0;
}

Sample Run:

Line 1: Uppercase a is A
Line 4: 4.2 to the power of 3 = 74.088
Line 5: 5.0 to the power of 4 = 625
Line 7: u = 31.2
Line 9: Absolute value of -15 = 15

This program works as follows. The statement in Line 1 outputs the uppercase letter that
corresponds to 'a', which is A. Note that the function toupper returns an int value.
Therefore, the value of the expression toupper('a') is 65, which is the ASCII value of 'A'.
To print A rather than 65, you need to apply the cast operator, as shown in the statement in
Line 1. In the statement in Line 4, the function pow is used to output uv. In C++ terminology,
it is said that the function pow is called with the parameters u and v. In this case, the values of u
and v are passed to the function pow. The other statements have similar meanings. Note that
the program includes the header files cctype and cmath, because it uses the functions
toupper, pow, and abs from these header files.

Predefined Functions | 323

User-Defined Functions
As Example 6-1 illustrates, using functions in a program greatly enhances the program’s
readability because it reduces the complexity of the function main. Also, once you write
and properly debug a function, you can use it in the program (or different programs)
again and again without having to rewrite the same code repeatedly. For instance, in
Example 6-1, the function pow is used more than once.

Because C++ does not provide every function that you will ever need and designers
cannot possibly know a user’s specific needs, you must learn to write your own
functions.

User-defined functions in C++ are classified into two categories:

• Value-returning functions—functions that have a return type. These
functions return a value of a specific data type using the return
statement, which we will explain shortly.

• Void functions—functions that do not have a return type. These
functions do not use a return statement to return a value.

The remainder of this chapter discusses value-returning functions. Many of the concepts
discussed in regard to value-returning functions also apply to void functions. Chapter 7
describes void functions.

Value-Returning Functions
The previous section introduced some predefined C++ functions such as pow, abs,
islower, and toupper. These are examples of value-returning functions. To use these
functions in your programs, you must know the name of the header file that contains the
functions’ specification. You need to include this header file in your program using the
include statement and know the following items:

1. The name of the function

2. The number of parameters, if any

3. The data type of each parameter

4. The data type of the value computed (that is, the value returned) by the
function, called the type of the function

Because the value returned by a value-returning function is unique, the natural
thing for you to do is to use the value in one of three ways:

• Save the value for further calculation.

• Use the value in some calculation.

• Print the value.

324 | Chapter 6: User-Defined Functions I

This suggests that a value-returning function is used:

• In an assignment statement.

• As a parameter in a function call.

• In an output statement.

That is, a value-returning function is used (called) in an expression.

Before we look at the syntax of a user-defined, value-returning function, let us consider
the things associated with such functions. In addition to the four properties described
previously, one more thing is associated with functions (both value-returning and void):

5. The code required to accomplish the task

The first four properties form what is called the heading of the function (also called the
function header); the fifth property is called the body of the function. Together, these
five properties form what is called the definition of the function. For example, for the
function abs, the heading might look like:

int abs(int number)

Similarly, the function abs might have the following definition:

int abs(int number)
{

if (number < 0)
number = -number;

return number;
}

The variable declared in the heading of the function abs is called the formal parameter
of the function abs. Thus, the formal parameter of abs is number.

The program in Example 6-1 contains several statements that use the function pow. That
is, in C++ terminology, the function pow is called several times. Later in this chapter, we
discuss what happens when a function is called.

Suppose that the heading of the function pow is:

double pow(double base, double exponent)

From the heading of the function pow, it follows that the formal parameters of pow are
base and exponent. Consider the following statements:

double u = 2.5;
double v = 3.0;
double x, y;

x = pow(u, v); //Line 1
y = pow(2.0, 3.2) + 5.1; //Line 2
cout << u << " to the power of 7 = " << pow(u, 7) << endl; //Line 3

6

Value-Returning Functions | 325

In Line 1, the function pow is called with the parameters u and v. In this case, the values
of u and v are passed to the function pow. In fact, the value of u is copied into base, and
the value of v is copied into exponent. The variables u and v that appear in the call to
the function pow in Line 1 are called the actual parameters of that call. In Line 2, the
function pow is called with the parameters 2.0 and 3.2. In this call, the value 2.0 is
copied into base, and 3.2 is copied into exponent. Moreover, in this call of the
function pow, the actual parameters are 2.0 and 3.2, respectively. Similarly, in Line 3,
the actual parameters of the function pow are u and 7; the value of u is copied into base,
and 7.0 is copied into exponent.

We can now formally present two definitions:

Formal Parameter: A variable declared in the function heading.

Actual Parameter: A variable or expression listed in a call to a function.

For predefined functions, you need to be concerned only with the first four properties.
Software companies do not give out the actual source code, which is the body of the
function. Otherwise, software costs would be exorbitant.

Syntax: Value-Returning function
The syntax of a value-returning function is:

functionType functionName(formal parameter list)
{

statements
}

in which statements are usually declaration statements and/or executable statements. In
this syntax, functionType is the type of the value that the function returns. The
functionType is also called the data type or the return type of the value-returning
function. Moreover, statements enclosed between curly braces form the body of the
function.

Syntax: Formal Parameter List
The syntax of the formal parameter list is:

dataType identifier, dataType identifier, ...

Function Call
The syntax to call a value-returning function is:

functionName(actual parameter list)

326 | Chapter 6: User-Defined Functions I

Syntax: Actual Parameter List
The syntax of the actual parameter list is:

expression or variable, expression or variable, ...

(In this syntax, expression can be a single constant value.) Thus, to call a value-
returning function, you use its name, with the actual parameters (if any) in parentheses.

A function’s formal parameter list can be empty. However, if the formal parameter list is
empty, the parentheses are still needed. The function heading of the value-returning
function thus takes, if the formal parameter list is empty, the following form:

functionType functionName()

If the formal parameter list of a value-returning function is empty, the actual parameter is
also empty in a function call. In this case (that is, an empty formal parameter list), in a
function call, the empty parentheses are still needed. Thus, a call to a value-returning
function with an empty formal parameter list is:

functionName()

In a function call, the number of actual parameters, together with their data types, must
match with the formal parameters in the order given. That is, actual and formal para-
meters have a one-to-one correspondence. (Chapter 7 discusses functions with default
parameters.)

As stated previously, a value-returning function is called in an expression. The expression
can be part of either an assignment statement or an output statement, or a parameter in a
function call. A function call in a program causes the body of the called function to
execute.

return Statement
Once a value-returning function computes the value, the function returns this value via
the return statement. In other words, it passes this value outside the function via the
return statement.

Syntax: return Statement
The return statement has the following syntax:

return expr;

in which expr is a variable, constant value, or expression. The expr is evaluated, and its
value is returned. The data type of the value that expr computes must match the
function type.

6

Value-Returning Functions | 327

In C++, return is a reserved word.

When a return statement executes in a function, the function immediately terminates
and the control goes back to the caller. Moreover, the function call statement is replaced
by the value returned by the return statement. When a return statement executes in
the function main, the program terminates.

To put the ideas in this discussion to work, let us write a function that determines the
larger of two numbers. Because the function compares two numbers, it follows that this
function has two parameters and that both parameters are numbers. Let us assume that the
data type of these numbers is floating-point (decimal)—say, double. Because the larger
number is of type double, the function’s data type is also double. Let us name this
function larger. The only thing you need to complete this function is the body of the
function. Thus, following the syntax of a function, you can write this function as follows:

double larger(double x, double y)
{

double max;

if (x >= y)
max = x;

else
max = y;

return max;
}

Note that the function larger requires that you use an additional variable max (called a
local declaration, in which max is a variable local to the function larger). Figure 6-1
describes various parts of the function larger.

{

max = x;

max = Y;
else

}

Function
return type

Function
name

Formal
parameters

Formal parameters list

Function return value

Local variable
Function

body

Function
heading larger(x, y)double double double

max;

max;

return

double

if (x >= y)

FIGURE 6-1 Various parts of the function larger

328 | Chapter 6: User-Defined Functions I

Suppose that num, num1, and num2 are double variables. Also suppose that num1 = 45.75
and num2 = 35.50. Figure 6-2 shows various calls to the function larger.

You can also write the definition of the function larger as follows:

double larger(double x, double y)
{

if (x >= y)
return x;

else
return y;

}

Because the execution of a return statement in a function terminates the function, the
preceding function larger can also be written (without the word else) as:

double larger(double x, double y)
{

if (x >= y)
return x;

return y;
}

Note that these forms of the function larger do not require you to declare any
local variable.

1. In the definition of the function larger, x and y are formal parameters.

2. The return statement can appear anywhere in the function. Recall that once a
return statement executes, all subsequent statements are skipped. Thus, it’s
a good idea to return the value as soon as it is computed.

6

num = larger(23.50, 37.80);

num = larger(num1, num2);

num = larger(34.50, num1);

Actual parameters

Actual parameters

Function call Actual parameters

Function call

Function call

FIGURE 6-2 Function calls

Value-Returning Functions | 329

EXAMPLE 6-2

Now that the function larger is written, the following C++ code illustrates how to use it.

double one = 13.00;
double two = 36.53;
double maxNum;

Consider the following statements:

cout << "The larger of 5 and 6 is " << larger(5, 6)
<< endl; //Line 1

cout << "The larger of " << one << " and " << two
<< " is " << larger(one, two) << endl; //Line 2

cout << "The larger of " << one << " and 29 is "
<< larger(one, 29) << endl; //Line 3

maxNum = larger(38.45, 56.78); //Line 4

• The expression larger(5, 6) in Line 1 is a function call, and 5 and 6
are actual parameters. When the expression larger(5, 6) executes, 5 is
copied into x, and 6 is copied into y. Therefore, the statement in Line 1
outputs the larger of 5 and 6.

• The expression larger(one, two) in Line 2 is a function call. Here, one
and two are actual parameters. When the expression larger(one, two)
executes, the value of one is copied into x, and the value of two is copied
into y. Therefore, the statement in Line 2 outputs the larger of one and two.

• The expression larger(one, 29) in Line 3 is also a function call. When
the expression larger(one, 29) executes, the value of one is copied
into x, and 29 is copied into y. Therefore, the statement in Line 3
outputs the larger of one and 29.

• The expression larger(38.45, 56.78) in Line 4 is a function call. In this
call, the actual parameters are 38.45 and 56.78. In this statement, the value
returned by the function larger is assigned to the variable maxNum.

In a function call, you specify only the actual parameter, not its data type. For example, in

Example 6-2, the statements in Lines 1, 2, 3, and 4 show how to call the function

larger with the actual parameters. However, the following statements contain incorrect

calls to the function larger and would result in syntax errors. (Assume that all variables

are properly declared.)

x = larger(int one, 29); //illegal
y = larger(int one, int 29); //illegal
cout << larger(int one, int two); //illegal

330 | Chapter 6: User-Defined Functions I

Once a function is written, you can use it anywhere in the program. The function
larger compares two numbers and returns the larger of the two. Let us now write
another function that uses this function to determine the largest of three numbers. We
call this function compareThree.

double compareThree(double x, double y, double z)
{

return larger(x, larger(y, z));
}

In the function heading, x, y, and z are formal parameters.

Let us take a look at the expression:

larger(x, larger(y, z))

in the definition of the function compareThree. This expression has two calls to the
function larger. The actual parameters to the outer call are x and larger(y, z);
the actual parameters to the inner call are y and z. It follows that, first, the expression
larger(y, z) is evaluated; that is, the inner call executes first, which gives the larger of y
and z. Suppose that larger(y, z) evaluates to, say, t. (Notice that t is either y or z.)
Next, the outer call determines the larger of x and t. Finally, the return statement returns
the largest number. It thus follows that to execute a function call, the parameters are evaluated
first. For example, the actual parameter larger(y, z) of the outer call evaluates first.

Note that the function larger is much more general purpose than the function
compareThree. Here, we are merely illustrating that once you have written a function,
you can use it to write other functions. Later in this chapter, we will show how to use the
function larger to determine the largest number from a set of numbers.

Function Prototype
Now that you have some idea of how to write and use functions in a program, the next
question relates to the order in which user-defined functions should appear in a program.
For example, do you place the function larger before or after the function main?
Should larger be placed before compareThree or after it? Following the rule that you
must declare an identifier before you can use it and knowing that the function main uses
the identifier larger, logically you must place larger before main.

In reality, C++ programmers customarily place the function main before all other user-
defined functions. However, this organization could produce a compilation error because
functions are compiled in the order in which they appear in the program. For example, if
the function main is placed before the function larger, the identifier larger is
undefined when the function main is compiled. To work around this problem of
undeclared identifiers, we place function prototypes before any function definition
(including the definition of main).

Function Prototype: The function heading without the body of the function.

6

Value-Returning Functions | 331

Syntax: Function Prototype
The general syntax of the function prototype of a value-returning function is:

functionType functionName(parameter list);

(Note that the function prototype ends with a semicolon.)

For the function larger, the prototype is:

double larger(double x, double y);

When writing the function prototype, you do not have to specify the variable name in the

parameter list. However, you must specify the data type of each parameter.

You can rewrite the function prototype of the function larger as follows:

double larger(double, double);

FINAL PROGRAM

You now know enough to write the entire program, compile it, and run it. The following
program uses the functions larger, compareThree, and main to determine the larger/
largest of two or three numbers.

//Program: Largest of three numbers

#include <iostream>

using namespace std;

double larger(double x, double y);
double compareThree(double x, double y, double z);

int main()
{

double one, two; //Line 1

cout << "Line 2: The larger of 5 and 10 is "
<< larger(5, 10) << endl; //Line 2

cout << "Line 3: Enter two numbers: "; //Line 3
cin >> one >> two; //Line 4
cout << endl; //Line 5

cout << "Line 6: The larger of " << one
<< " and " << two << " is "
<< larger(one, two) << endl; //Line 6

332 | Chapter 6: User-Defined Functions I

6

cout << "Line 7: The largest of 43.48, 34.00, "
<< "and 12.65 is "
<< compareThree(43.48, 34.00, 12.65)
<< endl; //Line 7

return 0;
}

double larger(double x, double y)
{

double max;

if (x >= y)
max = x;

else
max = y;

return max;
}

double compareThree (double x, double y, double z)
{

return larger(x, larger(y, z));
}

Sample Run: In this sample run, the user input is shaded.

Line 2: The larger of 5 and 10 is 10
Line 3: Enter two numbers: 25.6 73.85

Line 6: The larger of 25.6 and 73.85 is 73.85
Line 7: The largest of 43.48, 34.00, and 12.65 is 43.48

In the previous program, the function prototypes of the functions larger and

compareThree appear before their function definitions. Therefore, the definition of

the functions larger and compareThree can appear in any order.

Value-Returning Functions: Some Peculiarity
A value-returning function must return a value. Consider the following function, secret,
that takes as a parameter an int value. If the value of the parameter, x, is greater than 5, it
returns twice the value of x; otherwise, the value of x remains unchanged.

int secret(int x)
{

if (x > 5) //Line 1
return 2 * x; //Line 2

}

Because this is a value-returning function of type int, it must return a value of type int.
Suppose the value of x is 10. Then the expression x > 5 in Line 1 evaluates to true. So
the return statement in Line 2 returns the value 20. Now suppose that x is 3. The

Value-Returning Functions | 333

expression x > 5 in Line 1 now evaluates to false. The if statement therefore fails, and
the return statement in Line 2 does not execute. However, there are no more statements
to be executed in the body of the function. In this case, the function returns a strange
value. It thus follows that if the value of x is less than or equal to 5, the function does not
contain any valid return statements to return the value of x.

A correct definition of the function secret is:

int secret(int x)
{

if (x > 5) //Line 1
return 2 * x; //Line 2

return x; //Line 3
}

Here, if the value of x is less than or equal to 5, the return statement in Line 3
executes, which returns the value of x. On the other hand, if the value of x is, say
10, the return statement in Line 2 executes, which returns the value 20 and also
terminates the function.

Recall that in a value-returning function, the return statement returns the value.
Consider the following return statement:

return x, y; //only the value of y will be returned

This is a legal return statement. You might think that this return statement is
returning the values of x and y. However, this is not the case. Remember, a return
statement returns only one value, even if the return statement contains more
than one expression. If a return statement contains more than one expression, only
the value of the last expression is returned. Therefore, in the case of the above return
statement, the value of y is returned. The following program further illustrates this
concept.

// This program illustrates that a value-returning function
// returns only one value, even if the return statement
// contains more than one expression.

#include <iostream>

using namespace std;

int funcRet1();
int funcRet2(int z);

int main()
{

int num = 4;

cout << "Line 1: The value returned by funcRet1: "
<< funcRet1() << endl; // Line 1

334 | Chapter 6: User-Defined Functions I

cout << "Line 2: The value returned by funcRet2: "
<< funcRet2(num) << endl; // Line 2

return 0;
}

int funcRet1()
{

int x = 45;

return 23, x; //only the value of x is returned
}

int funcRet2(int z)
{

int a = 2;
int b = 3;

return 2 * a + b, z + b; //only the value of z + b is returned
}

Sample Run:

Line 1: The value returned by funcRet1: 45
Line 2: The value returned by funcRet2: 7

Even though a return statement can contain more than one expression, a return
statement in your program should contain only one expression. Having more than one
expression in a return statement may result in redundancy, wasted code, and a confusing
syntax.

More Examples of Value-Returning Functions

EXAMPLE 6-3

In this example, we write the definition of function courseGrade. This function takes as
a parameter an int value specifying the score for a course and returns the grade, a value of
type char, for the course. (We assume that the test score is a value between 0 and 100
inclusive.)

char courseGrade(int score)
{

switch (score / 10)
{
case 0:
case 1:
case 2:
case 3:

6

Value-Returning Functions | 335

case 4:
case 5:

return 'F';
case 6:

return 'D';
case 7:

return 'C';
case 8:

return 'B';
case 9:
case 10:

return 'A';
}

}

You can also write an equivalent definition of the function courseGrade that uses an
if. . .else structure to determine the course grade.

EXAMPLE 6-4 (ROLLING A PAIR OF DICE)

In this example, we write a function that rolls a pair of dice until the sum of the numbers
rolled is a specific number. We also want to know the number of times the dice are rolled
to get the desired sum.

The smallest number on each die is 1, and the largest number is 6. So the smallest sum of
the numbers rolled is 2, and the largest sum of the numbers rolled is 12. Suppose that we
have the following declarations.

int die1;
int die2;
int sum;
int rollCount = 0;

We use the random number generator, discussed in Chapter 5, to randomly generate a
number between 1 and 6. Then, the following statement randomly generates a number
between 1 and 6 and stores that number into die1, which becomes the number rolled
by die1.

die1 = rand() % 6 + 1;

Similarly, the following statement randomly generates a number between 1 and 6 and
stores that number into die2, which becomes the number rolled by die2.

die2 = rand() % 6 + 1;

The sum of the numbers rolled by two dice is:

sum = die1 + die2;

336 | Chapter 6: User-Defined Functions I

Next, we determine whether sum contains the desired sum of the numbers rolled by the
dice. If sum does not contain the desired sum, then we roll the dice again. This can be
accomplished by the following do...while loop. (Assume that the int variable num
contains the desired sum to be rolled.)

do
{

die1 = rand() % 6 + 1;
die2 = rand() % 6 + 1;
sum = die1 + die2;
rollCount++;

}
while (sum != num);

We can now write the function rollDice that takes as a parameter the desired sum of
the numbers to be rolled and returns the number of times the dice are rolled to roll the
desired sum.

int rollDice(int num)
{

int die1;
int die2;
int sum;
int rollCount = 0;

srand(time(0));

do
{

die1 = rand() % 6 + 1;
die2 = rand() % 6 + 1;
sum = die1 + die2;
rollCount++;

}
while (sum != num);

return rollCount;
}

The following program shows how to use the function rollDice in a program.

//Program: Roll dice

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

int rollDice(int num);

6

Value-Returning Functions | 337

int main()
{

cout << "The number of times the dice are rolled to "
<< "get the sum 10 = " << rollDice(10) << endl;

cout << "The number of times the dice are rolled to "
<< "get the sum 6 = " << rollDice(6) << endl;

return 0;
}

int rollDice(int num)
{

int die1;
int die2;
int sum;
int rollCount = 0;

srand(time(0));

do
{

die1 = rand() % 6 + 1;
die2 = rand() % 6 + 1;
sum = die1 + die2;
rollCount++;

}
while (sum != num);

return rollCount;
}

Sample Run:

The number of times the dice are rolled to get the sum 10 = 11
The number of times the dice are rolled to get the sum 6 = 7

We leave it as an exercise for you to modify this program so that it allows the user to
enter the desired sum of the numbers to be rolled. (See Programming Exercise 8 at the
end of this chapter.)

Following is an example of a function that returns a Boolean value.

EXAMPLE 6-5 (PALINDROME NUMBER)

In this example, a function, isNumPalindrome, is designed that returns true if a
nonnegative integer is a palindrome and returns false otherwise. A nonnegative integer

338 | Chapter 6: User-Defined Functions I

is a palindrome if it reads forward and backward in the same way. For example, the
integers 5, 44, 434, 1881, and 789656987 are all palindromes.

Suppose num is a nonnegative integer. If num < 10, it is a palindrome, so the function
should return true. Suppose num >= 10. To determine whether num is a palindrome,
first compare the first and the last digits of num. If the first and the last digits of num are
not the same, it is not a palindrome, so the function should return false. If the first and
the last digits of num are the same, remove the first and last digits of num and repeat this
process on the new number, which is obtained from num after removing the first and last
digits of num. Repeat this process as long as the number is >= 10.

For example, suppose that the input is 18281. Because the first and last digits of 18281
are the same, remove the first and last digits to get the number 828. Repeat this process
of comparing the first and last digits on 828. Once again, the first and last digits are the
same. After removing the first and last digits of 828, the resulting number is 2, which is
less than 10. Thus, 18281 is a palindrome.

To remove the first and last digits of num, you first need to find the highest
power of 10 that divides num and call it pwr. The highest power of 10 that divides
18281 is 4, that is, pwr = 4. Now 18281 % 10pwr = 8281, so the first digit is removed.
Also, because 8281 / 10 = 828, the last digit is removed. Therefore, to remove the
first digit, you can use the mod operator, in which the divisor is 10pwr. To remove
the last digit, divide the number by 10. You then decrement pwr by 2 for the next
iteration. The following algorithm implements this discussion:

1. If num < 10, it is a palindrome, so the function should return
true.

2. Suppose num is an integer and num >= 10. To see if num is a palin-
drome:

a. Find the highest power of 10 that divides num and call it pwr.
For example, the highest power of 10 that divides 434 is 2; the
highest power of 10 that divides 789656987 is 8.

b. While num is greater than or equal to 10, compare the first and last
digits of num.

b.1. If the first and last digits of num are not the same, num is not a
palindrome. Return false.

b.2. If the first and the last digits of num are the same:

b.2.1. Remove the first and last digits of num.

b.2.2. Decrement pwr by 2.

c. Return true.

6

Value-Returning Functions | 339

The following function implements this algorithm:

bool isNumPalindrome(int num)
{

int pwr = 0;

if (num < 10) //Step 1
return true;

else //Step 2
{

//Step 2.a
while (num / static_cast<int>(pow(10.0, pwr)) >= 10)

pwr++;
while (num >= 10) //Step 2.b
{

int tenTopwr = static_cast<int>(pow(10.0, pwr));

if ((num / tenTopwr) != (num % 10))
return false; //Step 2.b.1

else //Step 2.b.2
{

num = num % tenTopwr; //Step 2.b.2.1
num = num / 10; //Step 2.b.2.1
pwr = pwr - 2; //Step 2.b.2.2

}
}//end while

return true;
}//end else

}

In the definition of the function isNumPalindrome, the function pow from the

header file cmath is used to find the highest power of 10 that divides the number.

Therefore, make sure to include the header file cmath in your program.

Flow of Execution
As stated earlier, a C++ program is a collection of functions. Recall that functions can
appear in any order. The only thing that you have to remember is that you must declare
an identifier before you can use it. The program is compiled by the compiler sequentially
from beginning to end. Thus, if the function main appears before any other user-defined
functions, it is compiled first. However, if main appears at the end (or middle) of the
program, all functions whose definitions (not prototypes) appear before the function
main are compiled before the function main, in the order they are placed.

Function prototypes appear before any function definition, so the compiler translates
these first. The compiler can then correctly translate a function call. However, when the

340 | Chapter 6: User-Defined Functions I

program executes, the first statement in the function main always executes first, regardless
of where in the program the function main is placed. Other functions execute only when
they are called.

A function call statement transfers control to the first statement in the body of the function.
In general, after the last statement of the called function executes, control is passed back to
the point immediately following the function call. A value-returning function returns a
value. Therefore, after executing the value-returning function, when the control goes back
to the caller, the value that the function returns replaces the function call statement. The
execution continues at the point immediately following the function call.

Suppose that a program contains functions funcA and funcB, and funcA contains a
statement that calls funcB. Suppose that the program calls funcA. When the statement
that contains a call to funcB executes, funcB executes, and while funcB is executing,
the excution of the current call of funcA is on hold until funcB is done.

6

PROGRAMMING EXAMPLE: Largest Number
In this programming example, the function larger is used to determine the largest
number from a set of numbers. For the purpose of illustration, this program deter-
mines the largest number from a set of 10 numbers. You can easily enhance this
program to accommodate any set of numbers.

Input A set of 10 numbers.

Output The largest of 10 numbers.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Suppose that the input data is:

15 20 7 8 28 21 43 12 35 3

Read the first number of the data set. Because this is the only number read to this
point, you may assume that it is the largest number so far and call it max. Read the
second number and call it num. Now compare max and num and store the larger
number into max. Now max contains the larger of the first two numbers. Read the
third number. Compare it with max and store the larger number into max. At this
point, max contains the largest of the first three numbers. Read the next number,
compare it with max, and store the larger into max. Repeat this process for each
remaining number in the data set. Eventually, max will contain the largest number in
the data set. This discussion translates into the following algorithm:

1. Read the first number. Because this is the only number that you
have read so far, it is the largest number so far. Save it in a variable
called max.

Programming Example: Largest Number | 341

2. For each remaining number in the list:

a. Read the next number. Store it in a variable called num.

b. Compare num and max. If max < num, then num is the new
largest number, so update the value of max by copying num into
max. If max >= num, discard num; that is, do nothing.

3. Because max now contains the largest number, print it.

To find the larger of two numbers, the program uses the function larger.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// This program finds the largest number of a set of 10
// numbers.
//**

#include <iostream>

using namespace std;

double larger(double x, double y);

int main()
{

double num; //variable to hold the current number
double max; //variable to hold the larger number
int count; //loop control variable

cout << "Enter 10 numbers." << endl;
cin >> num; //Step 1
max = num; //Step 1

for (count = 1; count < 10; count++) //Step 2
{

cin >> num; //Step 2a
max = larger(max, num); //Step 2b

}

cout << "The largest number is " << max
<< endl; //Step 3

return 0;
}//end main

342 | Chapter 6: User-Defined Functions I

6
PROGRAMMING EXAMPLE: Cable Company

Chapter 4 contains a program to calculate the bill for a cable company. In that
program, all of the programming instructions are packed in the function main. Here,
we rewrite the same program using user-defined functions, further illustrating struc-
tured programming. The problem analysis phase shows how to divide a complex
problem into smaller subproblems. It also shows that while solving a particular
subproblem, you can focus on only that part of the problem.

Input to and output of the program are the same as before.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Because there are two types of customers, residential and business, the program contains
two separate functions: one to calculate the bill for residential customers and one to
calculate the bill for business customers. Both functions calculate the billing amount and
then return the billing amount to the function main. The function main prints the
amount due. Let us call the function that calculates the residential bill residential
and the function that calculates the business bill business. The formulas to calculate
the bills are the same as before.

As in Chapter 4, data such as the residential bill processing fee, the cost of residential
basic service connection, and so on are special. Therefore, these are declared as
named constants.

Function

residential

To compute the residential bill, you need to know the number of premium channels
to which the customer subscribes. Based on the number of premium channels, you
can calculate the billing amount. After calculating the billing amount, the function
returns the billing amount using the return statement. The following four steps
describe this function:

a. Prompt the user for the number of premium channels.

b. Read the number of premium channels.

double larger(double x, double y)
{

if (x >= y)
return x;

else
return y;

}

Sample Run: In this sample run, the user input is shaded.

Enter 10 numbers.
10 56 73 42 22 67 88 26 62 11
The largest number is 88

Programming Example: Cable Company | 343

c. Calculate the bill.

d. Return the amount due.

This function contains a statement to prompt the user to enter the number of premium
channels (Step a) and a statement to read the number of premium channels (Step b). Other
items needed to calculate the billing amount, such as the cost of basic service connection
and bill-processing fees, are defined as named constants (before the definition of the
function main). Therefore, to calculate the billing amount, this function does not need to
get any value from the function main. This function, therefore, has no parameters.

Local

Variables

(Function

residential)

From the previous discussion, it follows that the function residential requires
variables to store both the number of premium channels and the billing amount. This
function needs only two local variables to calculate the billing amount:

int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function residential can now be written as follows:

double residential()
{

int noOfPChannels; //number of premium channels
double bAmount; //billing amount
cout << "Enter the number of premium "

<< "channels used: ";
cin >> noOfPChannels;
cout << endl;

bAmount = RES_BILL_PROC_FEES +
RES_BASIC_SERV_COST +
noOfPChannels * RES_COST_PREM_CHANNEL;

return bAmount;
}

Function

business

To compute the business bill, you need to know the number of both the basic service
connections and the premium channels to which the customer subscribes. Then, based
on these numbers, you can calculate the billing amount. The billing amount is then
returned using the return statement. The following six steps describe this function:

a. Prompt the user for the number of basic service connections.

b. Read the number of basic service connections.

c. Prompt the user for the number of premium channels.

d. Read the number of premium channels.

e. Calculate the bill.

f. Return the amount due.

344 | Chapter 6: User-Defined Functions I

6

This function contains the statements to prompt the user to enter the number of basic
service connections and premium channels (Steps a and c). The function also contains
statements to input the number of basic service connections and premium channels
(Steps b and d). Other items needed to calculate the billing amount, such as the cost
of basic service connections and bill-processing fees, are defined as named constants
(before the definition of the function main). It follows that to calculate the billing
amount, this function does not need to get any values from the function main.
Therefore, it has no parameters.

Local

Variables

(Function

business)

From the preceding discussion, it follows that the function business requires
variables to store the number of basic service connections and premium channels, as
well as the billing amount. In fact, this function needs only three local variables to
calculate the billing amount:

int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

The definition of the function business can now be written as follows:

double business()
{

int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount
cout << "Enter the number of basic "

<< "service connections: ";
cin >> noOfBasicServiceConnections;
cout << endl;

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;
cout << endl;

if (noOfBasicServiceConnections <= 10)
bAmount = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST +

noOfPChannels * BUS_COST_PREM_CHANNEL;
else

bAmount = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST +
(noOfBasicServiceConnections - 10) *
BUS_BASIC_CONN_COST +
noOfPChannels * BUS_COST_PREM_CHANNEL;

return bAmount;
}

Programming Example: Cable Company | 345

MAIN

ALGORITHM

(Function

main)

1. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeros, set the manipulators fixed and
showpoint.

2. To output floating-point numbers to two decimal places, set the
precision to two decimal places.

3. Prompt the user for the account number.

4. Get the account number.

5. Prompt the user to enter the customer type.

6. Get the customer type.

7. a. If the customer type is R or r:

i. Call the function residential to calculate the bill.

ii. Print the bill.

b. If the customer type is B or b:

i. Call the function business to calculate the bill.

ii. Print the bill.

c. If the customer type is other than R, r, B, or b, it is an invalid
customer type.

COMPLETE PROGRAM LISTING

//***
// Author: D. S. Malik
//
// Program: Cable Company Billing
// This program calculates and prints a customer's bill for
// a local cable company. The program processes two types of
// customers: residential and business.
//***

#include <iostream>
#include <iomanip>
using namespace std;

//Named constants – residential customers
const double RES_BILL_PROC_FEES = 4.50;
const double RES_BASIC_SERV_COST = 20.50;
const double RES_COST_PREM_CHANNEL = 7.50;

//Named constants – business customers
const double BUS_BILL_PROC_FEES = 15.00;
const double BUS_BASIC_SERV_COST = 75.00;
const double BUS_BASIC_CONN_COST = 5.00;
const double BUS_COST_PREM_CHANNEL = 50.00;

346 | Chapter 6: User-Defined Functions I

6

double residential(); //Function prototype
double business(); //Function prototype

int main()
{

//declare variables
int accountNumber;
char customerType;
double amountDue;

cout << fixed << showpoint; //Step 1
cout << setprecision(2); //Step 2

cout << "This program computes a cable bill."
<< endl;

cout << "Enter account number: "; //Step 3
cin >> accountNumber; //Step 4
cout << endl;

cout << "Enter customer type: R, r "
<< "(Residential), B, b (Business): "; //Step 5

cin >> customerType; //Step 6
cout << endl;

switch (customerType) //Step 7
{
case 'r': //Step 7a
case 'R':

amountDue = residential(); //Step 7a.i
cout << "Account number = "

<< accountNumber << endl; //Step 7a.ii
cout << "Amount due = $"

<< amountDue << endl; //Step 7a.ii
break;

case 'b': //Step 7b
case 'B':

amountDue = business(); //Step 7b.i
cout << "Account number = "

<< accountNumber << endl; //Step 7b.ii
cout << "Amount due = $"

<< amountDue << endl; //Step 7b.ii
break;

default:
cout << "Invalid customer type."

<< endl; //Step 7c
}

return 0;
}

Programming Example: Cable Company | 347

double residential()
{

int noOfPChannels; //number of premium channels
double bAmount; //billing amount

cout << "Enter the number of premium "
<< "channels used: ";

cin >> noOfPChannels;
cout << endl;

bAmount = RES_BILL_PROC_FEES +
RES_BASIC_SERV_COST +
noOfPChannels * RES_COST_PREM_CHANNEL;

return bAmount;
}

double business()
{

int noOfBasicServiceConnections;
int noOfPChannels; //number of premium channels
double bAmount; //billing amount

cout << "Enter the number of basic "
<< "service connections: ";

cin >> noOfBasicServiceConnections;
cout << endl;
cout << "Enter the number of premium "

<< "channels used: ";
cin >> noOfPChannels;
cout << endl;

if (noOfBasicServiceConnections <= 10)
bAmount = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST +

noOfPChannels * BUS_COST_PREM_CHANNEL;
else

bAmount = BUS_BILL_PROC_FEES + BUS_BASIC_SERV_COST +
(noOfBasicServiceConnections - 10) *
BUS_BASIC_CONN_COST +
noOfPChannels * BUS_COST_PREM_CHANNEL;

return bAmount;
}

Sample Run: In this sample run, the user input is shaded.

This program computes a cable bill.
Enter account number: 21341

Enter customer type: R, r (Residential), B, b (Business): B

348 | Chapter 6: User-Defined Functions I

QUICK REVIEW

1. Functions are like miniature programs and are called modules.

2. Functions enable you to divide a program into manageable tasks.

3. The C++ system provides the standard (predefined) functions.

4. To use a standard function, you must:

i. Know the name of the header file that contains the function’s specification,

ii. Include that header file in the program, and

iii. Know the name and type of the function and number and types of the
parameters (arguments).

5. There are two types of user-defined functions: value-returning functions
and void functions.

6. Variables defined in a function heading are called formal parameters.

7. Expressions, variables, or constant values used in a function call are called
actual parameters.

8. In a function call, the number of actual parameters and their types must
match with the formal parameters in the order given.

9. To call a function, use its name together with the actual parameter list.

10. A value-returning function returns a value. Therefore, a value-returning
function is used (called) in either an expression or an output statement or as
a parameter in a function call.

11. The general syntax of a user-defined function is:
functionType functionName(formal parameter list)
{

statements
}

12. The line functionType functionName(formal parameter list) is
called the function heading (or function header). Statements enclosed
between braces ({ and }) are called the body of the function.

13. The function heading and the body of the function are called the definition
of the function.

6

Enter the number of basic service connections: 25

Enter the number of premium channels used: 9

Account number = 21341
Amount due = $615.00

Quick Review | 349

14. If a function has no parameters, you still need the empty parentheses in
both the function heading and the function call.

15. A value-returning function returns its value via the return statement.

16. A function can have more than one return statement. However, when-
ever a return statement executes in a function, the remaining statements
are skipped and the function exits.

17. A return statement returns only one value.

18. A function prototype is the function heading without the body of the
function; the function prototype ends with the semicolon.

19. A function prototype announces the function type, as well as the type and
number of parameters, used in the function.

20. In a function prototype, the names of the variables in the formal parameter
list are optional.

21. Function prototypes help the compiler correctly translate each function call.

22. In a program, function prototypes are placed before every function defini-
tion, including the definition of the function main.

23. When you use function prototypes, user-defined functions can appear in
any order in the program.

24. When the program executes, the execution always begins with the first
statement in the function main.

25. User-defined functions execute only when they are called.

26. A call to a function transfers control from the caller to the called
function.

27. In a function call statement, you specify only the actual parameters, not
their data type or the function type.

28. When a function exits, the control goes back to the caller.

EXERCISES

1. Mark the following statements as true or false.

a. To use a predefined function in a program, you need to know only the
name of the function and how to use it.

b. A value-returning function returns only one value.

c. Parameters allow you to use different values each time the function is
called.

d. When a return statement executes in a user-defined function, the
function immediately exits.

e. A value-returning function returns only integer values.

350 | Chapter 6: User-Defined Functions I

6

2. Determine the value of each of the following expressions.

a. static_cast<char>(toupper('b'))

b. static_cast<char>(toupper('7'))

c. static_cast<char>(toupper('K'))

d. static_cast<char>(toupper('*'))

e. static_cast<char>(tolower('D'))

f. static_cast<char>(tolower('8'))

g. static_cast<char>(tolower('h'))

h. static_cast<char>(tolower('$'))

3. Determine the value of each of the following expressions.

a. abs(-4) b. fabs(10.8) c. fabs(-2.5) d. pow(3.2, 2)

e. pow(2.5, 3) f. sqrt(25.0) g. sqrt(6.25)

h. pow(3.0, 4.0) / abs(-9) i. floor(28.95) j. ceil(35.2)

4. Using the functions described in Table 6-1, write each of the following as a
C++ expression. (The expression in (e) denotes the absolute value of x + 2.5.)

a. 2.05.2 b.
ffiffiffiffiffiffiffiffiffiffiffi
xþ yp c. uv – 3 d. �bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
e. xþ 2:5j j

5. Consider the following function definition:

double func(double x, int y, string name)
{

//function body
}

Which of the following is the correct function prototype of the function func?

i. double func();

ii. double func(double, int, string);

iii. double func(double x, int y, string name)

iv. func(double x, int y, string name);

6. Consider the following program:

#include <iostream>
#include <cmath>

using namespace std;

int main()
{

int num1;
int num2;

cout << "Enter two integers: ";
cin >> num1 >> num2;
cout << endl;

Exercises | 351

if (num1 != 0 && num2 != 0)
cout << sqrt(fabs(num1 + num2 + 0.0)) << endl;

else if (num1 != 0)
cout << floor(num1 + 0.0) << endl;

else if (num2 != 0)
cout << ceil(num2 + 0.0) << endl;

else
cout << 0 << endl;

return 0;
}

a. What is the output if the input is 12 4?

b. What is the output if the input is 3 27?

c. What is the output if the input is 25 0?

d. What is the output if the input is 0 49?

7. Consider the following statements:

double num1, num2, num3;
int int1, int2, int3;
int value;

num1 = 5.0; num2 = 6.0; num3 = 3.0;
int1 = 4; int2 = 7; int3 = 8;

and the function prototype:

double cube(double a, double b, double c);

Which of the following statements are valid? If they are invalid, explain why.

a. value = cube (num1, 15.0, num3);

b. cout << cube(num1, num3, num2) << endl;

c. cout << cube(6.0, 8.0, 10.5) << endl;

d. cout << cube(num1, num3) << endl;

e. value = cube(num1, int2, num3);

f. value = cube(7, 8, 9);

g. value = cube(int1, int2, int3);

8. Consider the following functions:

int secret(int x)
{

int i, j;

i = 2 * x;

if (i > 10)
j = x / 2;

352 | Chapter 6: User-Defined Functions I

else
j = x / 3;

return j - 1;
}

int another(int a, int b)
{

int i, j;

j = 0;

for (i = a; i <= b; i++)
j = j + i;

return j;
}

What is the output of each of the following program segments? Assume
that x, y, and k are int variables.

a. x = 10;

cout << secret(x) << endl;

b. x = 5; y = 8;

cout << another(x, y) << endl;

c. x = 10; k = secret(x);

cout << x << " " << k << " " << another(x, k) << endl;

d. x = 5; y = 8;
cout << another(y, x) << endl;

9. Consider the following function prototypes:

int test(int, char, double, int);
double two(double, double);
char three(int, int, char, double);

Answer the following questions.

a. How many parameters does the function test have? What is the type
of the function test ?

b. How many parameters does function two have? What is the type of
function two?

c. How many parameters does function three have? What is the type of
function three ?

d. How many actual parameters are needed to call the function test?
What is the type of each actual parameter, and in what order should
you use these parameters in a call to the function test?

e. Write a C++ statement that prints the value returned by the function
test with the actual parameters 5, 5, 7.3, and 'z'.

6

Exercises | 353

f. Write a C++ statement that prints the value returned by function two
with the actual parameters 17.5 and 18.3, respectively.

g. Write a C++ statement that prints the next character returned by
function three. (Use your own actual parameters.)

10. Why do you need to include function prototypes in a program that contains
user-defined functions?

11. Write the definition of a function that takes as input a char value and
returns true if the character is uppercase; otherwise, it returns false.

12. Consider the following function:

int mystery(int x, double y, char ch)
{

int u;
if ('A' <= ch && ch <= 'R')

return(2 * x + static_cast<int>(y));
else

return(static_cast<int>(2 * y) - x);
}

What is the output of the following C++ statements?

a. cout << mystery(5, 4.3, 'B') << endl;

b. cout << mystery(4, 9.7, 'v') << endl;

c. cout << 2 * mystery(6, 3.9, 'D') << endl;

13. Consider the following function:

int secret(int one)
{

int i;
int prod = 1;

for (i = 1; i <= 3; i++)
prod = prod * one;

return prod;
}

a. What is the output of the following C++ statements?

i. cout << secret(5) << endl;

ii. cout << 2 * secret(6) << endl;

b. What does the function secret do?

14. Write the definition of a function that takes as input the three numbers.
The function returns true if the first number to the power of the second
number equals the third number; otherwise, it returns false. (Assume that
the three numbers are of type double.)

354 | Chapter 6: User-Defined Functions I

15. What is the output of the following C++ program?

#include <iostream>
#include <cmath>

using namespace std;

int main()
{

int counter;

for (counter = 1; counter <= 100; counter++)
if (pow(floor(sqrt(counter + 0.0)), 2) == counter)

cout << counter << " ";

cout << endl;

return 0;
}

16. What is the output of the following program?

#include <iostream>

using namespace std;

int mystery(int x, int y, int z);

int main()
{

cout << mystery(7, 8, 3) << endl;
cout << mystery(10, 5, 30) << endl;
cout << mystery(9, 12, 11) << endl;
cout << mystery(5, 5, 8) << endl;
cout << mystery(10, 10, 10) << endl;

return 0;
}

int mystery(int x, int y, int z)
{

if (x <= y && x <= z)
return (y + z - x);

else if (y <= z && y <= x)
return (z + x - y);

else
return (x + y - z);

}

17. Write the definition of a function that takes as input three numbers and
returns the sum of the first two numbers multiplied by the third number.
(Assume that the three numbers are of type double.)

6

Exercises | 355

18. Show the output of the following program:

#include <iostream>

using namespace std;

int mystery(int);

int main()
{

int n;

for (n = 1; n <= 5; n++)
cout << mystery(n) << endl;

return 0;
}

int mystery(int k)
{

int x, y;

y = k;

for (x = 1; x <= (k - 1); x++)
y = y * (k - x);

return y;
}

PROGRAMMING EXERCISES

1. Write a program that uses the function isNumPalindrome given in Example
6-5 (Palindrome Number). Test your program on the following numbers:
10, 34, 22, 333, 678, 67876, 44444, and 123454321.

2. Write a value-returning function, isVowel, that returns the value true if a
given character is a vowel and otherwise returns false.

3. Write a program that prompts the user to input a sequence of characters and
outputs the number of vowels. (Use the function isVowel written in
Programming Exercise 2.)

4. Write a program that defines the named constant PI, const double
PI = 3.1419;, which stores the value of p. The program should use PI
and the functions listed in Table 6-1 to accomplish the following.

a. Output the value of
ffiffiffi
p
p

.

b. Prompt the user to input the value of a double variable r, which stores
the radius of a sphere. The program then outputs the following:

i. The value of 4pr2, which is the surface area of the sphere.
ii. The value of (4/3)pr3, which is the volume of the sphere.

356 | Chapter 6: User-Defined Functions I

6

5. The following program is designed to find the area of a rectangle, the area of
a circle, or the volume of a cylinder. However, (a) the statements are in the
incorrect order; (b) the function calls are incorrect; (c) the logical expression
in the while loop is incorrect; and (d) function definitions are incorrect.
Rewrite the program so that it works correctly. Your program must be
properly indented. (Note that the program is menu driven and allows the
user to run the program as long as the user wishes.)

#include <iostream>

using namespace std;

const double PI = 3.1419;

double rectangle(double l, double w);

#include <iomanip>

int main()
{

double radius;
double height;

cout << fixed << showpoint << setprecision(2) << endl;
cout << "This program can calculate the area of a rectangle, "

<< "the area of a circle, or volume of a cylinder." << endl;
cout << "To run the program enter: " << endl;
cout << "1: To find the area of rectangle." << endl;
cout << "2: To find the area of a circle." << endl;
cout << "3: To find the colume of a cylinder." << endl;
cout << "-1: To terminate the program." << endl;
cin >> choice;
cout << endl;

int choice;

while (choice != -1)
{

{
case 1:

cout << "Enter the radius of the base and the "
<< "height of the cylinder: ";

cin >> radius >> height;
cout << endl;

cout << "Area = " << circle(length, height) << endl;
break;

case 3:
double length, width;
cout << "Enter the radius of the circle: ";
cin >> radius;
cout << endl;

Programming Exercises | 357

cout << "Area = " << rectangle(radius)
<< endl;

break;

case 2:
cout << "Enter the length and the width "

<< "of the rectangle: ";
cin >> length >> width;
cout << endl;

cout << "Volume = " << cylinder(radius, height)
<< endl;

break;
default:

cout << "Invalid choice!" << endl;
}
switch (choice)

}

double circle(double r)
double cylinder(double bR, double h);

cout << "To run the program enter: " << endl;
cout << "2: To find the area of a circle." << endl;
cout << "1: To find the area of rectangle." << endl;
cout << "3: To find the colume of a cylinder." << endl;
cout << "-1: To terminate the program." << endl;
cin >> choice;
cout << endl;

return 0;
}

double rectangle(double l, double w)
{

return l * r;
}

double circle(double r)
{

return PI * r * w;
}

double cylinder(double bR, double h)
{

return PI * bR * bR * l;
}

6. Write a function, reverseDigit, that takes an integer as a parameter and
returns the number with its digits reversed. For example, the value of
reverseDigit(12345) is 54321; the value of reverseDigit(5600)
is 65; the value of reverseDigit(7008) is 8007; and the value of
reverseDigit(-532) is -235.

358 | Chapter 6: User-Defined Functions I

6

7. Modify the roll dice program, Example 6-4, so that it allows the user to
enter the desired sum of the numbers to be rolled. Also allow the user to call
the rollDice function as many times as the user desires.

8. The following formula gives the distance between two points, (x1, y1) and
(x2, y2) in the Cartesian plane:

ffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2

q

Given the center and a point on the circle, you can use this formula to find
the radius of the circle. Write a program that prompts the user to enter the
center and a point on the circle. The program should then output the
circle’s radius, diameter, circumference, and area. Your program must have
at least the following functions:

a. distance: This function takes as its parameters four numbers that
represent two points in the plane and returns the distance between them.

b. radius: This function takes as its parameters four numbers that repre-
sent the center and a point on the circle, calls the function distance
to find the radius of the circle, and returns the circle’s radius.

c. circumference: This function takes as its parameter a number that
represents the radius of the circle and returns the circle’s circumference.
(If r is the radius, the circumference is 2pr.)

d. area: This function takes as its parameter a number that represents the
radius of the circle and returns the circle’s area. (If r is the radius, the area is
pr2.)

Assume that p = 3.1416.
9. Rewrite the program in Programming Exercise 15 of Chapter 4 (cell phone

company) so that it uses the following functions to calculate the billing
amount. (In this programming exercise, do not output the number of
minutes during which the service is used.)

a. regularBill: This function calculates and returns the billing amount
for regular service.

b. premiumBill: This function calculates and returns the billing amount
for premium service.

10. Write a program that takes as input five numbers and outputs the mean
(average) and standard deviation of the numbers. If the numbers are x1, x2,
x3, x4, and x5, then the mean is x ¼ (x1 + x2 + x3 + x4 + x5)/5 and the
standard deviation is:

s ¼

ffi
ðx1 � xÞ2 þ ðx2 � xÞ2 þ ðx3 � xÞ2 þ ðx4 � xÞ2 þ ðx5 � xÞ2

5

s

Programming Exercises | 359

Your program must contain at least the following functions: a function that
calculates and returns the mean and a function that calculates the standard
deviation.

11. When you borrow money to buy a house, a car, or for some other purposes,
then you typically repay it by making periodic payments. Suppose that the
loan amount is L, r is the interest rate per year, m is the number of payments
in a year, and the loan is for t years. Suppose that i ¼ (r / m) and r is in
decimal. Then the periodic payment is:

R ¼ Li
1� ð1þ iÞ�mt

;

You can also calculate the unpaid loan balance after making certain payments.
For example, the unpaid balance after making k payments is:

L0 ¼ R 1� ð1þ iÞ
�ðmt�kÞ

i

" #

;

where R is the periodic payment. (Note that if the payments are monthly, then
m ¼ 12.)
Write a program that prompts the user to input the values of L, r, m, t, and k.
The program then outputs the apropriate values. Your program must contain
at least two functions, with appropriate parameters, to calculate the periodic
payments and the unpaid balance after certain payments. Make the program
menu driven and use a loop so that the user can repeat the program for
different values.

12. During the tax season, every Friday, J&J accounting firm provides assistance
to people who prepare their own tax returns. Their charges are as follows.

a. If a person has low income (<¼ 25,000) and the consulting time is less
than or equal to 30 minutes, there are no charges; otherwise, the service
charges are 40% of the regular hourly rate for the time over 30 minutes.

b. For others, if the consulting time is less than or equal to 20 minutes, there
are no service charges; otherwise, service charges are 70% of the regular
hourly rate for the time over 20 minutes.

(For example, suppose that a person has low income and spent 1 hour and 15 minutes, and
the hourly rate is $70.00. Then the billing amount is 70.00 � 0.40 � (45 / 60) ¼ $21.00.)
Write a program that prompts the user to enter the hourly rate, the total consulting time,
and whether the person has low income. The program should output the billing amount.
Your program must contain a function that takes as input the hourly rate, the total
consulting time, and a value indicating whether the person has low income. The function
should return the billing amount. Your program may prompt the user to enter the
consulting time in minutes.

360 | Chapter 6: User-Defined Functions I

USER-DEFINED FUNCTIONS II
IN THIS CHAPTER , YOU WILL :

. Learn how to construct and use void functions in a program

. Discover the difference between value and reference parameters

. Explore reference parameters and value-returning functions

. Learn about the scope of an identifier

. Examine the differences between local and global identifiers

. Discover static variables

. Learn how to debug programs using drivers and stubs

. Learn function overloading

. Explore functions with default parameters

7C H A P T E R

In Chapter 6, you learned how to use value-returning functions. In this chapter, you will
explore user-defined functions in general and, in particular, those C++ functions that do
not have a data type, called void functions.

Void Functions
Void functions and value-returning functions have similar structures. Both have a
heading and a body. Like value-returning functions, you can place user-defined void
functions either before or after the function main. However, the program execution
always begins with the first statement in the function main. If you place user-defined
void functions after the function main, you should place the function prototype
before the function main. A void function does not have a data type. Therefore,
functionType—that is, the return type—in the heading part and the return state-
ment in the body of the void functions are meaningless. However, in a void
function, you can use the return statement without any value; it is typically used
to exit the function early. Like value-returning functions, void functions may or may
not have formal parameters.

Because void functions do not have a data type, they are not used (called) in an
expression. A call to a void function is a stand-alone statement. Thus, to call a void
function, you use the function name together with the actual parameters (if any) in a
stand-alone statement. Before giving examples of void functions, next we give the syntax
of a void function.

FUNCTION DEFINITION

The function definition of void functions with parameters has the following syntax:

void functionName(formal parameter list)
{

statements
}

in which statements are usually declaration and/or executable statements. The formal
parameter list may be empty, in which case, in the function heading, the empty parentheses
are still needed.

FORMAL PARAMETER LIST

The formal parameter list has the following syntax:

dataType& variable, dataType& variable, ...

You must specify both the data type and the variable name in the formal parameter list.
The symbol & after dataType has a special meaning; it is used only for certain formal
parameters and is discussed later in this chapter.

362 | Chapter 7: User-Defined Functions II

FUNCTION CALL

The function call has the following syntax:

functionName(actual parameter list);

ACTUAL PARAMETER LIST

The actual parameter list has the following syntax:

expression or variable, expression or variable, ...

in which expression can consist of a single constant value. As with value-returning
functions, in a function call, the number of actual parameters together with their data
types must match the formal parameters in the order given. Actual and formal para-
meters have a one-to-one correspondence. A function call results in the execution of
the body of the called function. (Functions with default parameters are discussed at the
end of this chapter.)

Example 7-1 shows a void function with parameters.

EXAMPLE 7-1

void funexp(int a, double b, char c, int x)
{

.

.

.
}

The function funexp has four parameters.

Parameters provide a communication link between the calling function (such as main)
and the called function. They enable functions to manipulate different data each time
they are called. In general, there are two types of formal parameters: value parameters
and reference parameters.

Value parameter: A formal parameter that receives a copy of the content of the
corresponding actual parameter.

Reference parameter: A formal parameter that receives the location (memory address) of
the corresponding actual parameter.

When you attach & after the dataType in the formal parameter list of a function, the
variable following that dataType becomes a reference parameter.

7

Void Functions | 363

Example 7-2 shows a void function with value and reference parameters.

EXAMPLE 7-2

void expfun(int one, int& two, char three, double& four)
{

.

.

.
}

The function expfun has four parameters: (1) one, a value parameter of type int; (2)
two, a reference parameter of type int; (3) three, a value parameter of type char; and (4)
four, a reference parameter of type double.

EXAMPLE 7-3

We write a program to print a pattern (a triangle of stars) similar to the following:

*
* *

* * *
* * * *

The first line has one star with some blanks before the star, the second line has two stars,
some blanks before the stars, and a blank between the stars, and so on. Let’s write the
method printStars that has two parameters, a parameter to specify the number of
blanks before the stars in a line and a second parameter to specify the number of stars in a
line. To be specific, the definition of the method printStars is:

void printStars(int blanks, int starsInLine)
{

int count;

//print the number of blanks before the stars in a line
for (count = 1; count <= blanks; count++)

cout << ' ';

//print the number of stars with a blanks between stars
for (count = 1; count <= starsInLine; count++)

cout << " *";

cout << endl;
} //end printStars

The first parameter, blanks, determines how many blanks to print preceding the star(s);
the second parameter, starsInLine, determines how many stars to print in a line. If
the value of the parameter blanks is 30, for instance, then the first for loop in the

364 | Chapter 7: User-Defined Functions II

7

method printStars executes 30 times and prints 30 blanks. Also, because you want to
print a space between the stars, every iteration of the second for loop in the method
printStars prints the string " *"—a blank followed by a star.

Next, consider the following statements:

int numberOfLines = 15;
int numberOfBlanks = 30;

for (counter = 1; counter <= numberOfLines; counter++)
{

printStars(numberOfBlanks, counter);
numberOfBlanks--;

}

The for loop calls the function printStars. Every iteration of this for loop specifies the
number of blanks followed by the number of stars to print in a line, using the variables
numberOfBlanks and counter. Every invocation of the function printStars receives
one fewer blank and one more star than the previous call. For example, the first iteration
of the for loop in the method main specifies 30 blanks and 1 star (which are passed as
the parameters numberOfBlanks and counter to the function printStars). The
for loop then decrements the number of blanks by 1 by executing the statement,
numberOfBlanks--;. At the end of the for loop, the number of stars is incremented
by 1 for the next iteration. This is done by executing the update statement counter++
in the for statement, which increments the value of the variable counter by 1. In
other words, the second call of the function printStars receives 29 blanks and 2 stars
as parameters. Thus, the previous statements will print a triangle of stars consisting of
15 lines.

//Program: Print a triangle of stars

#include <iostream>

using namespace std;

void printStars(int blanks, int starsInLine);

int main()
{

int noOfLines; //variable to store the number of lines
int counter; //for loop control variable
int noOfBlanks; //variable to store the number of blanks

cout << "Enter the number of star lines (1 to 20) "
<< "to be printed: "; //Line 1

cin >> noOfLines; //Line 2

while (noOfLines < 0 || noOfLines > 20) //Line 3
{

cout << "Number of star lines should be "
<< "between 1 and 20" << endl; //Line 4

Void Functions | 365

cout << "Enter the number of star lines "
<< "(1 to 20) to be printed: "; //Line 5

cin >> noOfLines; //Line 6
}

cout << endl << endl; //Line 7
noOfBlanks = 30; //Line 8

for (counter = 1; counter <= noOfLines; counter++) //Line 9
{

printStars(noOfBlanks, counter); //Line 10
noOfBlanks--; //Line 11

}

return 0; //Line 12
}

void printStars(int blanks, int starsInLine)
{

int count;

for (count = 1; count <= blanks; count++) //Line 13
cout << ' '; //Line 14

for (count = 1; count <= starsInLine; count++) //Line 15
cout << " * "; //Line 16

cout << endl;
}

Sample Run: In this sample run, the user input is shaded.

Enter the number of star lines (1 to 20) to be printed: 15

*
* *
* * *
* * * *
* * * * *
* * * * * *
* * * * * * *
* * * * * * * *
* * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * *

In the function main, the user is first asked to specify how many lines of stars to print
(Line 1). (In this program, the user is restricted to 20 lines because a triangular grid of up
to 20 lines fits nicely on the screen.) Because the program is restricted to only 20 lines, the
while loop at Lines 3 through 6 ensures that the program prints only the triangular grid
of stars if the number of lines is between 1 and 20.

366 | Chapter 7: User-Defined Functions II

7

Value Parameters
The previous section defined two types of parameters—value parameters and reference
parameters. Example 7-3 shows a program that uses a function with parameters. Before
considering more examples of void functions with parameters, let us make the following
observation about value and reference parameters. When a function is called, the value of
the actual parameter is copied into the corresponding formal parameter. If the formal
parameter is a value parameter, then after copying the value of the actual parameter,
there is no connection between the formal parameter and actual parameter; that is, the
formal parameter has its own copy of the data. Therefore, during program execution, the
formal parameter manipulates the data stored in its own memory space. The program in
Example 7-4 further illustrates how a value parameter works.

EXAMPLE 7-4

The following program shows how a formal parameter of a primitive data type works.

//Example 7-4
//Program illustrating how a value parameter works.

#include <iostream>

using namespace std;

void funcValueParam(int num);

int main()
{

int number = 6; //Line 1

cout << "Line 2: Before calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 2

funcValueParam(number); //Line 3

cout << "Line 4: After calling the function "
<< "funcValueParam, number = " << number
<< endl; //Line 4

return 0;
}

void funcValueParam(int num)
{

cout << "Line 5: In the function funcValueParam, "
<< "before changing, num = " << num
<< endl; //Line 5

num = 15; //Line 6

Value Parameters | 367

cout << "Line 7: In the function funcValueParam, "
<< "after changing, num = " << num
<< endl; //Line 7

}

Sample Run:

Line 2: Before calling the function funcValueParam, number = 6
Line 5: In the function funcValueParam, before changing, num = 6
Line 7: In the function funcValueParam, after changing, num = 15
Line 4: After calling the function funcValueParam, number = 6

This program works as follows. The execution begins at the function main. The
statement in Line 1 declares and initializes the int variable number. The statement in
Line 2 outputs the value of number before calling the function funcValueParam; the
statement in Line 3 calls the function funcValueParam. The value of the variable
number is then passed to the formal parameter num. Control now transfers to the
function funcValueParam.

The statement in Line 5 outputs the value of num before changing its value. The
statement in Line 6 changes the value of num to 15; the statement in Line 7 outputs
the value of num. After this statement executes, the function funcValueParam exits and
control goes back to the function main.

The statement in Line 4 outputs the value of number after calling the function
funcValueParam. The sample run shows that the value of number (Lines 2 and 4)
remains the same even though the value of its corresponding formal parameter num was
changed within the function funcValueParam.

The output shows the sequence in which the statements execute.

After copying data, a value parameter has no connection with the actual parameter, so a
value parameter cannot pass any result back to the calling function. When the function
executes, any changes made to the formal parameters do not in any way affect the actual
parameters. The actual parameters have no knowledge of what is happening to the formal
parameters. Thus, value parameters cannot pass information outside of the function.
Value parameters provide only a one-way link between actual parameters and formal
parameters. Hence, functions with only value parameters have limitations.

Reference Variables as Parameters
The program in Example 7-4 illustrates how a value parameter works. On the other
hand, suppose that a formal parameter is a reference parameter. Because a reference
parameter receives the address (memory location) of the actual parameter, reference
parameters can pass one or more values from a function and can change the value of
the actual parameter.

368 | Chapter 7: User-Defined Functions II

7

Reference parameters are useful in three situations:

• When the value of the actual parameter needs to be changed

• When you want to return more than one value from a function

• When passing the address would save memory space and time relative to
copying a large amount of data

The first two situations are illustrated throughout this book. Chapters 9 and 11 discuss the
third situation, when arrays and classes are introduced.

Recall that when you attach & after the dataType in the formal parameter list of a
function, the variable following that dataType becomes a reference parameter.

You can declare a reference (formal) parameter as a constant by using the keyword const.
Chapters 10 and 11 discuss constant reference parameters. Until then, the reference para-

meters that you use will be nonconstant as defined in this chapter. From the definition of a

reference parameter, it follows that a constant value or an expression cannot be passed to a

nonconstant reference parameter. If a formal parameter is a nonconstant reference para-

meter, during a function call, its corresponding actual parameter must be a variable.

EXAMPLE 7-5

Calculate Grade
The following program takes a course score (a value between 0 and 100) and determines
a student’s course grade. This program has three functions: main, getScore, and
printGrade, as follows:

1. main

a. Get the course score.

b. Print the course grade.

2. getScore

a. Prompt the user for the input.

b. Get the input.

c. Print the course score.

3. printGrade

a. Calculate the course grade.

b. Print the course grade.

The complete program is as follows:

//This program reads a course score and prints the
//associated course grade.

#include <iostream>
using namespace std;

Reference Variables as Parameters | 369

void getScore(int& score);
void printGrade(int score);

int main()
{

int courseScore;

cout << "Line 1: Based on the course score, \n"
<< " this program computes the "
<< "course grade." << endl; //Line 1

getScore(courseScore); //Line 2

printGrade(courseScore); //Line 3

return 0;
}

void getScore(int& score)
{

cout << "Line 4: Enter course score: "; //Line 4
cin >> score; //Line 5
cout << endl << "Line 6: Course score is "

<< score << endl; //Line 6
}

void printGrade(int cScore)
{

cout << "Line 7: Your grade for the course is "; //Line 7

if (cScore >= 90) //Line 8
cout << "A." << endl;

else if (cScore >= 80)
cout << "B." << endl;

else if(cScore >= 70)
cout << "C." << endl;

else if (cScore >= 60)
cout << "D." << endl;

else
cout << "F." << endl;

}

Sample Run: In this sample run, the user input is shaded.

Line 1: Based on the course score,
this program computes the course grade.

Line 4: Enter course score: 85

Line 6: Course score is 85
Line 7: Your grade for the course is B.

This program works as follows. The program starts to execute at Line 1, which prints the
first line of the output (see the sample run). The statement in Line 2 calls the function
getScore with the actual parameter courseScore (a variable declared in main). Because

370 | Chapter 7: User-Defined Functions II

the formal parameter score of the function getScore is a reference parameter, the
address (that is, the memory location of the variable courseScore) passes to score.
Thus, both score and courseScore refer to the same memory location, which is
courseScore (see Figure 7-1).

Any changes made to score immediately change the value of courseScore.

Control is then transferred to the function getScore, and the statement in Line 4
executes, printing the second line of output. This statement prompts the user to enter
the course score. The statement in Line 5 reads and stores the value entered by
the user (85 in the sample run) in score, which is actually courseScore (because
score is a reference parameter). Thus, at this point, the value of the variables score
and courseScore is 85 (see Figure 7-2).

Next, the statement in Line 6 outputs the value of score as shown by the third line of the
sample run. After Line 6 executes, control goes back to the function main (see Figure 7-3).

7

courseScore

main

score

getScore

FIGURE 7-1 Variable courseScore and the parameter score

courseScore

main

score

getScore

85

FIGURE 7-2 Variable courseScore and the parameter score after the statement in Line 5
executes

courseScore

main

85

FIGURE 7-3 Variable courseScore after the statement in Line 6 is executed and control goes
back to main

Reference Variables as Parameters | 371

The statement in Line 3 executes next. It is a function call to the function printGrade
with the actual parameter courseScore. Because the formal parameter cScore of the
function printScore is a value parameter, the parameter cScore receives the value of
the corresponding actual parameter courseScore. Thus, the value of cScore is 85.
After copying the value of courseScore into cScore, no communication exists
between cScore and courseScore (see Figure 7-4).

The program then executes the statement in Line 7, which outputs the fourth line. The
if. . .else statement in Line 8 determines and outputs the grade for the course. Because
the output statement in Line 7 does not contain the newline character or the manipulator
endl, the output of the if. . .else statement is part of the fourth line of the output. After
the if. . .else statement executes, control goes back to the function main. Because the
next statement to execute in the function main is the last statement of the function main,
the program terminates.

In this program, the function main first calls the function getScore to obtain the course
score from the user. The function main then calls the function printGrade to calculate
and print the grade based on this course score. The course score is retrieved by the
function getScore; later, this course score is used by the function printGrade. Because
the value retrieved by the getScore function is used later in the program, the function
getScore must pass this value outside. Thus, the formal parameter that holds this value
must be a reference parameter.

Value and Reference Parameters and Memory
Allocation
When a function is called, memory for its formal parameters and variables declared in the
body of the function (called local variables) is allocated in the function data area. Recall that
in the case of a value parameter, the value of the actual parameter is copied into the memory
cell of its corresponding formal parameter. In the case of a reference parameter, the address of
the actual parameter passes to the formal parameter. That is, the content of the formal
parameter is an address. During data manipulation, the content of the formal parameter
directs the computer to manipulate the data of the memory cell indicated by its content.
Thus, in the case of a reference parameter, both the actual and formal parameters refer to the
same memory location. Consequently, during program execution, changes made by the
formal parameter permanently change the value of the actual parameter.

courseScore

main

cScore

printGrade

85 85

FIGURE 7-4 Variable courseScore and the parameter cScore

372 | Chapter 7: User-Defined Functions II

Stream variables (for example, ifstream and ofstream) should be passed by refer-

ence to a function. After opening the input/output file or after reading and/or outputting

data, the state of the input and/or output stream can then be passed outside the function.

Because parameter passing is fundamental to any programming language, Examples 7-6
and 7-7 further illustrate this concept. Each covers a different scenario.

EXAMPLE 7-6

The following program shows how reference and value parameters work.

//Example 7-6: Reference and value parameters

#include <iostream>

using namespace std;

void funOne(int a, int& b, char v);
void funTwo(int& x, int y, char& w);

int main()
{

int num1, num2;
char ch;

num1 = 10; //Line 1
num2 = 15; //Line 2
ch = 'A'; //Line 3

cout << "Line 4: Inside main: num1 = " << num1
<< ", num2 = " << num2 << ", and ch = "
<< ch << endl; //Line 4

funOne(num1, num2, ch); //Line 5

cout << "Line 6: After funOne: num1 = " << num1
<< ", num2 = " << num2 << ", and ch = "
<< ch << endl; //Line 6

funTwo(num2, 25, ch); //Line 7

cout << "Line 8: After funTwo: num1 = " << num1
<< ", num2 = " << num2 << ", and ch = "
<< ch << endl; //Line 8

return 0;
}

7

Value and Reference Parameters and Memory Allocation | 373

void funOne(int a, int& b, char v)
{

int one;

one = a; //Line 9
a++; //Line 10
b = b * 2; //Line 11
v = 'B'; //Line 12

cout << "Line 13: Inside funOne: a = " << a
<< ", b = " << b << ", v = " << v
<< ", and one = " << one << endl; //Line 13

}

void funTwo(int& x, int y, char& w)
{

x++; //Line 14
y = y * 2; //Line 15
w = 'G'; //Line 16

cout << "Line 17: Inside funTwo: x = " << x
<< ", y = " << y << ", and w = " << w
<< endl; //Line 17

}

Sample Run:

Line 4: Inside main: num1 = 10, num2 = 15, and ch = A
Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10
Line 6: After funOne: num1 = 10, num2 = 30, and ch = A
Line 17: Inside funTwo: x = 31, y = 50, and w = G
Line 8: After funTwo: num1 = 10, num2 = 31, and ch = G

Let us walk through this program. The values of the variables are shown before and/or
after each statement executes.

Just before the statement in Line 1 executes, memory is allocated only for the variables of
the function main; this memory is not initialized. After the statement in Line 3 executes,
the variables are as shown in Figure 7-5.

main

A ch
num2 15
num1 10

FIGURE 7-5 Values of the variables after the statement in Line 3 executes

374 | Chapter 7: User-Defined Functions II

The statement in Line 4 produces the following output:

Line 4: Inside main: num1 = 10, num2 = 15, and ch = A

The statement in Line 5 is a function call to the function funOne. Now function
funOne has three parameters and one local variable. Memory for the parameters
and the local variable of function funOne is allocated. Because the formal parameter
b is a reference parameter, it receives the address (memory location) of the
corresponding actual parameter, which is num2. The other two formal parameters
are value parameters, so they copy the values of their corresponding actual para-
meters. Just before the statement in Line 9 executes, the variables are as shown in
Figure 7-6.

After the statement in Line 9, one = a;, executes, the variables are as shown in
Figure 7-7.

After the statement in Line 10, a++;, executes, the variables are as shown in
Figure 7-8.

7

funOne

one

b
a 10

v A

main

A ch
num2 15
num1 10

FIGURE 7-6 Values of the variables just before the statement in Line 9 executes

funOne

one

b
a 10

10
v A

main

A ch
num2 15
num1 10

FIGURE 7-7 Values of the variables after the statement in Line 9 executes

Value and Reference Parameters and Memory Allocation | 375

After the statement in Line 11, b = b * 2;, executes, the variables are as shown in
Figure 7-9. (Note that the variable b changed the value of num2.)

After the statement in Line 12, v = 'B';, executes, the variables are as shown in Figure 7-10.

The statement in Line 13 produces the following output:

Line 13: Inside funOne: a = 11, b = 30, v = B, and one = 10

After the statement in Line 13 executes, control goes back to Line 6 and the memory
allocated for the variables of function funOne is deallocated. Figure 7-11 shows the values
of the variables of the function main.

funOne

one

b
a 11

10
v B

main

A ch
num2 30
num1 10

FIGURE 7-10 Values of the variables after the statement in Line 12 executes

funOne

one

b
a 11

10
v A

main

A ch
num2 30
num1 10

FIGURE 7-9 Values of the variables after the statement in Line 11 executes

funOne

one

b
a 11

10
v A

main

A ch
num2 15
num1 10

FIGURE 7-8 Values of the variables after the statement in Line 10 executes

376 | Chapter 7: User-Defined Functions II

Line 6 produces the following output:

Line 6: After funOne: num1 = 10, num2 = 30, and ch = A

The statement in Line 7 is a function call to the function funTwo. Now funTwo has three
parameters: x, y, and w. Also, x and w are reference parameters, and y is a value parameter.
Thus, x receives the address of its corresponding actual parameter, which is num2, and w
receives the address of its corresponding actual parameter, which is ch. The variable y
copies the value 25 into its memory cell. Figure 7-12 shows the values before the
statement in Line 14 executes.

After the statement in Line 14, x++;, executes, the variables are as shown in Figure 7-13.
(Note that the variable x changed the value of num2.)

7

main

A ch
num2 30
num1 10

FIGURE 7-11 Values of the variables when control goes back to Line 6

funTwo

y
x

w
25

main

A ch
num2 30
num1 10

FIGURE 7-12 Values of the variables before the statement in Line 14 executes

funTwo

y
x

w
25

main

A ch
num2 31
num1 10

FIGURE 7-13 Values of the variables after the statement in Line 14 executes

Value and Reference Parameters and Memory Allocation | 377

After the statement in Line 15, y = y *2;, executes, the variables are as shown in Figure 7-14.

After the statement in Line 16, w = 'G';, executes, the variables are as shown in
Figure 7-15. (Note that the variable w changed the value of ch.)

Line 17 produces the following output:

Line 17: Inside funTwo: x = 31, y = 50, and w = G

After the statement in Line 17 executes, control goes to Line 8. The memory allocated
for the variables of function funTwo is deallocated. The values of the variables of the
function main are as shown in Figure 7-16.

funTwo

y
x

w
50

main

A ch
num2 31
num1 10

FIGURE 7-14 Values of the variables after the statement in Line 15 executes

funTwo

y
x

w
50

main

G ch
num2 31
num1 10

FIGURE 7-15 Values of the variables after the statement in Line 16 executes

main

G ch
num2 31
num1 10

FIGURE 7-16 Values of the variables when control goes to Line 8

378 | Chapter 7: User-Defined Functions II

7

The statement in Line 8 produces the following output:

Line 8: After funTwo: num1 = 10, num2 = 31, and ch = G

After the statement in Line 8 executes, the program terminates.

EXAMPLE 7-7

This example also shows how reference parameters manipulate actual parameters.

//Example 7-7: Reference and value parameters.
//Program: Makes you think.

#include <iostream>

using namespace std;

void addFirst(int& first, int& second);
void doubleFirst(int one, int two);
void squareFirst(int& ref, int val);

int main()
{

int num = 5;

cout << "Line 1: Inside main: num = " << num
<< endl; //Line 1

addFirst(num, num); //Line 2
cout << "Line 3: Inside main after addFirst:"

<< " num = " << num << endl; //Line 3

doubleFirst(num, num); //Line 4
cout << "Line 5: Inside main after "

<< "doubleFirst: num = " << num << endl; //Line 5

squareFirst(num, num); //Line 6
cout << "Line 7: Inside main after "

<< "squareFirst: num = " << num << endl; //Line 7

return 0;
}

void addFirst(int& first, int& second)
{

cout << "Line 8: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 8

first = first + 2; //Line 9

cout << "Line 10: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 10

Value and Reference Parameters and Memory Allocation | 379

second = second * 2; //Line 11

cout << "Line 12: Inside addFirst: first = "
<< first << ", second = " << second << endl; //Line 12

}

void doubleFirst(int one, int two)
{

cout << "Line 13: Inside doubleFirst: one = "
<< one << ", two = " << two << endl; //Line 13

one = one * 2; //Line 14

cout << "Line 15: Inside doubleFirst: one = "
<< one << ", two = " << two << endl; //Line 15

two = two + 2; //Line 16

cout << "Line 17: Inside doubleFirst: one = "
<< one << ", two = " << two << endl; //Line 17

}

void squareFirst(int& ref, int val)
{

cout << "Line 18: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 18

ref = ref * ref; //Line 19

cout << "Line 20: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 20

val = val + 2; //Line 21

cout << "Line 22: Inside squareFirst: ref = "
<< ref << ", val = " << val << endl; //Line 22

}

Sample Run:

Line 1: Inside main: num = 5
Line 8: Inside addFirst: first = 5, second = 5
Line 10: Inside addFirst: first = 7, second = 7
Line 12: Inside addFirst: first = 14, second = 14
Line 3: Inside main after addFirst: num = 14
Line 13: Inside doubleFirst: one = 14, two = 14
Line 15: Inside doubleFirst: one = 28, two = 14
Line 17: Inside doubleFirst: one = 28, two = 16
Line 5: Inside main after doubleFirst: num = 14
Line 18: Inside squareFirst: ref = 14, val = 14
Line 20: Inside squareFirst: ref = 196, val = 14
Line 22: Inside squareFirst: ref = 196, val = 16
Line 7: Inside main after squareFirst: num = 196

380 | Chapter 7: User-Defined Functions II

7

Both parameters of the function addFirst are reference parameters, and both parameters
of the function doubleFirst are value parameters. The statement:

addFirst(num, num);

in the function main (Line 2) passes the reference of num to both formal parameters
first and second of the function addFirst, because the corresponding actual para-
meters for both formal parameters are the same. That is, the variables first and second
refer to the same memory location, which is num. Figure 7-17 illustrates this situation.

Any changes that first makes to its value immediately change the value of second and
num. Similarly, any changes that second makes to its value immediately change first
and num, because all three variables refer to the same memory location. (Note that num
was initialized to 5.)

The formal parameters of the function doubleFirst are value parameters. So the statement:

doubleFirst(num, num);

in the function main (Line 4) copies the value of num into one and two because the
corresponding actual parameters for both formal parameters are the same. Figure 7-18
illustrates this scenario.

Because both one and two are value parameters, any changes that one makes to its value do not
affect the values of two and num. Similarly, any changes that two makes to its value do not affect
one and num. (Note that the value of num before the function doubleFirst executes is 14.)

The formal parameter ref of the function squareFirst is a reference parameter, and
the formal parameter val is a value parameter. The variable ref receives the address of its

doubleFirst

one

two

main

num 14
14

14

FIGURE 7-18 Parameters of the function doubleFirst

addFirst

first

second

main

num 5

FIGURE 7-17 Parameters of the function addFirst

Value and Reference Parameters and Memory Allocation | 381

corresponding actual parameter, which is num, and the variable val copies the value of its
corresponding actual parameter, which is also num. Thus, both num and ref refer to the
same memory location, which is num. Figure 7-19 illustrates this situation.

Any changes that ref makes immediately change num. Any changes made by val do not
affect num. (Note that the value of num before the function squareFirst executes is 14.)

We recommend that you walk through the program in Example 7-8. The output shows
the order in which the statements execute.

Reference Parameters and Value-Returning
Functions
In Chapter 6, in the discussion of value-returning functions, you learned how to use
value parameters only. You can also use reference parameters in a value-returning
function, although this approach is not recommended. By definition, a value-returning
function returns a single value; this value is returned via the return statement. If a function
needs to return more than one value, you should change it to a void function and use the
appropriate reference parameters to return the values.

Scope of an Identifier
The previous sections and Chapter 6 presented several examples of programs with user-
defined functions. Identifiers are declared in a function heading, within a block, or outside a
block. A question naturally arises: Are you allowed to access any identifier anywhere in the
program? The answer is no. You must follow certain rules to access an identifier. The scope
of an identifier refers to where in the program an identifier is accessible (visible). Recall that
an identifier is the name of something in C++, such as a variable or function name.

This section examines the scope of an identifier. First, we define the following two terms:

Local identifier: Identifiers declared within a function (or block).

Local identifiers are not accessible outside of the function (block).

Global identifier: Identifiers declared outside of every function definition.

Also, C++ does not allow the nesting of functions. That is, you cannot include the
definition of one function in the body of another function.

squareFirst

ref

val

main

num 14
14

FIGURE 7-19 Parameters of the function squareFirst

382 | Chapter 7: User-Defined Functions II

7

In general, the following rules apply when an identifier is accessed:

1. Global identifiers (such as variables) are accessible by a function or a block if:

a. The identifier is declared before the function definition (block),

b. The function name is different than the identifier,

c. All parameters of the function have names different than the name
of the identifier, and

d. All local identifiers (such as local variables) have names different
than the name of the identifier.

2. (Nested Block) An identifier declared within a block is accessible:

a. Only within the block from the point at which it is declared until
the end of the block, and

b. By those blocks that are nested within that block if the nested block
does not have an identifier with the same name as that of the outside
block (the block that encloses the nested block).

3. The scope of a function name is similar to the scope of an identifier
declared outside any block. That is, the scope of a function name is the
same as the scope of a global variable.

Before considering an example to explain these scope rules, first note the scope of the
identifier declared in the for statement. C++ allows the programmer to declare a
variable in the initialization statement of the for statement. For example, the following
for statement:

for (int count = 1; count < 10; count++)
cout << count << endl;

declares the variable count and initializes it to 1. The scope of the variable count is
limited to only the body of the for loop.

This scope rule for the variable declared in a for statement may not apply to Standard C++.
In Standard C++, the scope of the variable declared in the initialize statement may

extend from the point at which it is declared until the end of the block that immediately

surrounds the for statement. (To be absolutely sure, check your compiler’s documentation.)

The following C++ program helps illustrate the scope rules:

#include <iostream>

using namespace std;

const double RATE = 10.50;
int z;
double t;

Scope of an Identifier | 383

void one(int x, char y);
void two(int a, int b, char x);
void three(int one, double y, int z);

int main()
{

int num, first;
double x, y, z;
char name, last;

.

.

.
return 0;

}

void one(int x, char y)
{

.

.

.
}

int w;

void two(int a, int b, char x)
{

int count;
.
.
.

}

void three(int one, double y, int z)
{

char ch;
int a;

.

.

.
//Block four
{

int x;
char a;

.

.
}//end Block four

.

.

.
}

384 | Chapter 7: User-Defined Functions II

Table 7-1 summarizes the scope (visibility) of the identifiers.

7

TABLE 7-1 Scope (Visibility) of the Identifiers

Identifier
Visibility
in one

Visibility
in two

Visibility
in three

Visibility
in Block
four

Visibility
in main

RATE (before main) Y Y Y Y Y

z (before main) Y Y N N N

t (before main) Y Y Y Y Y

main Y Y Y Y Y

local variables of main N N N N Y

one (function name) Y Y N N Y

x (one’s formal parameter) Y N N N N

y (one’s formal parameter) Y N N N N

w (before function two) N Y Y Y N

two (function name) Y Y Y Y Y

a (two’s formal parameter) N Y N N N

b (two’s formal parameter) N Y N N N

x (two’s formal parameter) N Y N N N

local variables of two N Y N N N

three (function name) Y Y Y Y Y

one (three’s formal
parameter)

N N Y Y N

y (three’s formal
parameter)

N N Y Y N

z (three’s formal
parameter)

N N Y Y N

ch (three’s local
variable)

N N Y Y N

a (three’s local variable) N N Y N N

x (block four’s local
variable)

N N N Y N

a (block four’s local
variable)

N N N Y N

Scope of an Identifier | 385

Note that function three cannot call function one, because function three has a formal
parameter named one. Similarly, the block marked four in function three cannot use
the int variable a, which is declared in function three, because block four has an
identifier named a.

Before closing this section, let us note the following about global variables:

1. Chapter 2 stated that C++ does not automatically initialize variables.
However, some compilers initialize global variables to their default
values. For example, if a global variable is of type int, char, or double,
it is initialized to zero.

2. In C++, :: is called the scope resolution operator. By using the
scope resolution operator, a global variable declared before the definition
of a function (block) can be accessed by the function (or block) even if
the function (or block) has an identifier with the same name as the
variable. In the preceding program, by using the scope resolution
operator, the function main can refer to the global variable z as ::z.
Similarly, suppose that a global variable t is declared before the defini-
tion of the function—say, funExample. Then, funExample can access
the variable t using the scope resolution operator even if funExample
has an identifier t. Using the scope resolution operator, funExample
refers to the variable t as ::t. Also, in the preceding program, using the
scope resolution operator, function three can call function one.

3. C++ provides a way to access a global variable declared after the defini-
tion of a function. In this case, the function must not contain any
identifier with the same name as the global variable. In the preceding
program, the global variable w is declared after the definition of function
one. The function one does not contain any identifier named w; there-
fore, w can be accessed by function one only if you declare w as an
external variable inside one. To declare w as an external variable inside
function one, the function one must contain the following statement:

extern int w;

In C++, extern is a reserved word. The word extern in the
above statement announces that w is a global variable declared elsewhere.
Thus, when function one is called, no memory for w, as declared inside
one, is allocated. In C++, external declaration also has another use, but
it is not discussed in this book.

Global Variables, Named Constants,
and Side Effects
A C++ program can contain global variables. Using global variables, however, has side
effects. If more than one function uses the same global variable and something goes
wrong, it is difficult to discover what went wrong and where. Problems caused by

386 | Chapter 7: User-Defined Functions II

7

global variables in one area of a program might be misunderstood as problems caused in
another area.

For example, consider the following program:

//Global variable

#include <iostream>

using namespace std;

int t;

void funOne(int& a);

int main()
{

t = 15; //Line 1

cout << "Line 2: In main: t = " << t << endl; //Line 2

funOne(t); //Line 3

cout << "Line 4: In main after funOne: "
<< " t = " << t << endl; //Line 4

return 0; //Line 5
}

void funOne(int& a)
{

cout << "Line 6: In funOne: a = " << a
<< " and t = " << t << endl; //Line 6

a = a + 12; //Line 7
cout << "Line 8: In funOne: a = " << a

<< " and t = " << t << endl; //Line 8

t = t + 13; //Line 9

cout << "Line 10: In funOne: a = " << a
<< " and t = " << t << endl; //Line 10

}

This program has a variable t that is declared before the definition of any function.
Because none of the functions has an identifier t, the variable t is accessible any-
where in the program. Also, the program consists of a void function with a reference
parameter.

In Line 3, the function main calls the function funOne, and the actual parameter passed
to funOne is t. So, a, the formal parameter of funOne, receives the address of t. Any
changes that a makes to its value immediately change t. Because t can be directly
accessed anywhere in the program, in Line 9, the function funOne changes the value of t

Global Variables, Named Constants, and Side Effects | 387

by using t itself. Thus, you can manipulate the value of t by using either a reference
parameter or t itself.

In the previous program, if the last value of t is incorrect, it would be difficult to
determine what went wrong and in which part of the program. We strongly recommend
that you do not use global variables; instead, use the appropriate parameters.

In the programs given in this book, we typically placed named constants before the
function main, outside of every function definition. That is, the named constants we
used are global named constants. Unlike global variables, global named constants have no
side effects because their values cannot be changed during program execution. More-
over, placing a named constant in the beginning of the program can increase readability,
even if it is used only in one function. If you need to later modify the program and
change the value of a named constant, it will be easier to find if it is placed in the
beginning of the program.

EXAMPLE 7-8 (MENU-DRIVEN PROGRAM)

The following is an example of a menu-driven program. When the program executes,
it gives the user a list of choices to choose from. This program further illustrates how
value and reference parameters work. It converts length from feet and inches to meters
and centimeters and vice versa. The program contains three functions: showChoices,
feetAndInchesToMetersAndCent, and metersAndCentTofeetAndInches. The func-
tion showChoices informs the user how to use the program. The user has the choice to
run the program as long as the user wishes.

//Menu-driven program.

#include <iostream>

using namespace std;

const double CONVERSION = 2.54;
const int INCHES_IN_FOOT = 12;
const int CENTIMETERS_IN_METER = 100;

void showChoices();

void feetAndInchesToMetersAndCent(int f, int in,
int& mt, int& ct);

void metersAndCentTofeetAndInches(int mt, int ct,
int& f, int& in);

int main()
{

int feet, inches;
int meters, centimeters;
int choice;

388 | Chapter 7: User-Defined Functions II

7

do
{

showChoices();
cin >> choice;
cout << endl;

switch (choice)
{
case 1:

cout << "Enter feet and inches: ";
cin >> feet >> inches;
cout << endl;
feetAndInchesToMetersAndCent(feet, inches,

meters, centimeters);
cout << feet << " feet(foot), "

<< inches << " inch(es) = "
<< meters << " meter(s), "
<< centimeters << " centimeter(s)." << endl;

break;

case 2:
cout << "Enter meters and centimeters: ";
cin >> meters >> centimeters;
cout << endl;
metersAndCentTofeetAndInches(meters, centimeters,

feet, inches);
cout << meters << " meter(s), "

<< centimeters << " centimeter(s) = "
<< feet << " feet(foot), "
<< inches << " inch(es)."
<< endl;

break;

case 99:
break;

default:
cout << "Invalid input." << endl;

}
}
while (choice != 99);

return 0;
}

void showChoices()
{

cout << "Enter--" << endl;
cout << "1: To convert from feet and inches to meters "

<< "and centimeters." << endl;
cout << "2: To convert from meters and centimeters to feet "

<< "and inches." << endl;
cout << "99: To quit the program." << endl;

}

Global Variables, Named Constants, and Side Effects | 389

void feetAndInchesToMetersAndCent(int f, int in,
int& mt, int& ct)

{
int inches;

inches = f * INCHES_IN_FOOT + in;
ct = static_cast<int>(inches * CONVERSION);
mt = ct / CENTIMETERS_IN_METER;
ct = ct % CENTIMETERS_IN_METER;

}

void metersAndCentTofeetAndInches(int mt, int ct,
int& f, int& in)

{
int centimeters;

centimeters = mt * CENTIMETERS_IN_METER + ct;
in = static_cast<int>(centimeters / CONVERSION);
f = in / INCHES_IN_FOOT;
in = in % INCHES_IN_FOOT;

}

Sample Run: In this sample run, the user input is shaded.

Enter--
1: To convert from feet and inches to meters and centimeters.
2: To convert from meters and centimeters to feet and inches.
99: To quit the program.
2

Enter meters and centimeters: 4 25

4 meter(s), 25 centimeter(s) = 13 feet(foot), 11 inch(es).
Enter--
1: To convert from feet and inches to meters and centimeters.
2: To convert from meters and centimeters to feet and inches.
99: To quit the program.
1

Enter feet and inches: 15 8

15 feet(foot), 8 inch(es) = 4 meter(s), 77 centimeter(s).
Enter--
1: To convert from feet and inches to meters and centimeters.
2: To convert from meters and centimeters to feet and inches.
99: To quit the program.
99

The do. . .while loop in the function main continues to execute as long as the user has
not entered 99, which allows the user to run the program as long as the user wishes. The
preceding output is self-explanatory.

390 | Chapter 7: User-Defined Functions II

7

Static and Automatic Variables
The variables discussed so far have followed two simple rules:

1. Memory for global variables remains allocated as long as the program executes.

2. Memory for a variable declared within a block is allocated at block entry
and deallocated at block exit. For example, memory for the formal
parameters and local variables of a function is allocated when the func-
tion is called and deallocated when the function exits.

A variable for which memory is allocated at block entry and deallocated at block exit is called
an automatic variable. A variable for which memory remains allocated as long as the
program executes is called a static variable. Global variables are static variables, and by default,
variables declared within a block are automatic variables. You can declare a static variable
within a block by using the reserved word static. The syntax for declaring a static variable is:

static dataType identifier;

The statement:

static int x;

declares x to be a static variable of type int.

Static variables declared within a block are local to the block, and their scope is the same
as that of any other local identifier of that block.

Most compilers initialize static variables to their default values. For example, static int
variables are initialized to 0. However, it is a good practice to initialize static variables
yourself, especially if the initial value is not the default value. In this case, static variables
are initialized when they are declared. The statement:

static int x = 0;

declares x to be a static variable of type int and initializes x to 0.

EXAMPLE 7-9

The following program shows how static and automatic variables behave.

//Program: Static and automatic variables

#include <iostream>

using namespace std;

void test();

int main()
{

int count;

Static and Automatic Variables | 391

for (count = 1; count <= 5; count++)
test();

return 0;
}

void test()
{

static int x = 0;
int y = 10;

x = x + 2;
y = y + 1;

cout << "Inside test x = " << x << " and y = "
<< y << endl;

}

Sample Run:

Inside test x = 2 and y = 11
Inside test x = 4 and y = 11
Inside test x = 6 and y = 11
Inside test x = 8 and y = 11
Inside test x = 10 and y = 11

In the function test, x is a static variable initialized to 0, and y is an automatic
variable initialized to 10. The function main calls the function test five times. Memory
for the variable y is allocated every time the function test is called and deallocated when
the function exits. Thus, every time the function test is called, it prints the same value
for y. However, because x is a static variable, memory for x remains allocated as long as
the program executes. The variable x is initialized once to 0. The subsequent calls of the
function test use the current value of x.

Because memory for static variables remains allocated between function calls, static
variables allow you to use the value of a variable from one function call to another
function call. Even though you can use global variables if you want to use certain values
from one function call to another, the local scope of a static variable prevents other
functions from manipulating its value.

Debugging: Using Drivers and Stubs
In this and the previous chapters, you learned how to write functions to divide a problem
into subproblems, solve each subproblem, and then combine the functions to form the
complete program to get a solution of the problem. A program may contain a number of
functions. In a complex program, usually, when a function is written, it is tested and
debugged alone. You can write a separate program to test the function. The program that
tests a function is called a driver program. For example, the program in Example 7-8
contains functions to convert the length from feet and inches to meters and centimeters

392 | Chapter 7: User-Defined Functions II

7

and vice versa. Before writing the complete program, you could write separate driver
programs to make sure that each function is working properly.

Sometimes, the results calculated by one function are needed in another function. In that
case, the function that depends on another function cannot be tested alone. For example,
consider the following program that determines the time to fill a swimming pool.

#include <iostream>
#include <iomanip>

using namespace std;

const double GALLONS_IN_A_CUBIC_FOOT = 7.48;

double poolCapacity(double len, double wid, double dep);
void poolFillTime(double len, double wid, double dep,

double fRate, int& fTime);
void print(int fTime);

int main()
{

double length, width, depth;
double fillRate;
int fillTime;

cout << fixed << showpoint << setprecision(2);

cout << "Enter the length, width, and the depth of the "
<< "pool (in feet): ";

cin >> length >> width >> depth;
cout << endl;

cout << "Enter the rate of the water (in gallons per minute): ";
cin >> fillRate;
cout << endl;

poolFillTime(length, width, depth, fillRate, fillTime);
print(fillTime);

return 0;
}

double poolCapacity(double len, double wid, double dep)
{

double volume;
double poolWaterCapacity;

volume = len * wid * dep;
poolWaterCapacity = volume * GALLONS_IN_A_CUBIC_FOOT;

return poolWaterCapacity;
}

Debugging: Using Drivers and Stubs | 393

void poolFillTime(double len, double wid, double dep,
double fRate, int& fTime)

{
double poolWaterCapacity;

poolWaterCapacity = poolCapacity(len, wid, dep);
fTime = static_cast<int> (poolWaterCapacity / fRate + 0.5);

}

void print(int fTime)
{

cout << "The time to fill the pool is approximately: "
<< ftime / 60 << " hour(s) and " << ftime % 60
<< " minute(s)." << endl;

}

Sample Run: In this sample run, the user input is shaded.

Enter the length, width, and the depth of the pool (in feet): 30 15 10

Enter the rate of the water (in gallons per minute): 100

The time to fill the pool is approximately: 5 hour(s) and 37 minute(s).

As you can see, the program contains the function poolCapacity to find the amount of
water needed to fill the pool, the function poolFillTime to find the time to fill the pool,
and some other functions. Now, to calculate the time to fill the pool, you must know the
amount of the water needed and the rate at which the water is released in the pool. Because
the results of the function poolCapacity are needed in the function poolFillTime, the
function poolFillTime cannot be tested alone. Does this mean that we must write the
functions in a specific order? Not necessarily, especially when different people are working
on different parts of the program. In situations such as these, we use function stubs.
A function stub is a function that is not fully coded. For a void function, a function stub
might consist of only a function header and a set of empty braces, {}, and for a value-
returning function it might contain only a return statement with a plausible return value. For
example, the function stub for the function poolCapacity can be:

double poolCapacity(double len, double wid, double dep)
{

return 1000.00;
}

This allows the function poolCapacity to be called while the program is being coded.
Ultimately, the stub for function poolCapacity is replaced with a function that properly
calculates the amount of water needed to fill the pool based on the values of the parameters.
In the meantime, the function stub allows work to continue on other parts of the program
that call the function poolCapacity.

Before we look at some programming examples, another concept about functions is
worth mentioning: function overloading.

394 | Chapter 7: User-Defined Functions II

7

Function Overloading: An Introduction
In a C++ program, several functions can have the same name. This is called function
overloading, or overloading a function name. Before we state the rules to over-
loading a function, let us define the following:

Two functions are said to have different formal parameter lists if both functions have:

• A different number of formal parameters or

• If the number of formal parameters is the same, then the data type of the formal
parameters, in the order you list them, must differ in at least one position.

For example, consider the following function headings:

void functionOne(int x)
void functionTwo(int x, double y)
void functionThree(double y, int x)
int functionFour(char ch, int x, double y)
int functionFive(char ch, int x, string name)

These functions all have different formal parameter lists.

Now consider the following function headings:

void functionSix(int x, double y, char ch)
void functionSeven(int one, double u, char firstCh)

The functions functionSix and functionSeven both have three formal parameters,
and the data type of the corresponding parameters is the same. Therefore, these functions
have the same formal parameter list.

To overload a function name, any two definitions of the function must have different
formal parameter lists.

Function overloading: Creating several functions with the same name.

The signature of a function consists of the function name and its formal parameter list. Two
functions have different signatures if they have either different names or different formal para-
meter lists. (Note that the signature of a function does not include the return type of the function.)

If a function’s name is overloaded, then all of the functions in the set have the same name.
Therefore, all of the functions in the set have different signatures if they have different
formal parameter lists. Thus, the following function headings correctly overload the
function functionXYZ:

void functionXYZ()
void functionXYZ(int x, double y)
void functionXYZ(double one, int y)
void functionXYZ(int x, double y, char ch)

Consider the following function headings to overload the function functionABC:

void functionABC(int x, double y)
int functionABC(int x, double y)

Function Overloading: An Introduction | 395

Both of these function headings have the same name and same formal parameter list.
Therefore, these function headings to overload the function functionABC are incorrect.
In this case, the compiler will generate a syntax error. (Notice that the return types of
these function headings are different.)

If a function is overloaded, then in a call to that function, the signature—that is, the
formal parameter list of the function—determines which function to execute.

Some authors define the signature of a function as the formal parameter list, and some

consider the entire heading of the function as its signature. However, in this book, the

signature of a function consists of the function’s heading and its formal parameter list. If

the function’s names are different, then, of course, the compiler would have no problem

in identifying which function is called, and it will correctly translate the code. However, if

a function’s name is overloaded, then, as noted, the function’s formal parameter list

determines which function’s body executes.

Suppose you need to write a function that determines the larger of two items. Both items
can be integers, floating-point numbers, characters, or strings. You could write several
functions as follows:

int largerInt(int x, int y);
char largerChar(char first, char second);
double largerDouble(double u, double v);
string largerString(string first, string second);

The function largerInt determines the larger of two integers; the function largerChar
determines the larger of two characters, and so on. All of these functions perform similar
operations. Instead of giving different names to these functions, you can use the same
name—say, larger—for each function; that is, you can overload the function larger.
Thus, you can write the previous function prototypes simply as:

int larger(int x, int y);
char larger(char first, char second);
double larger(double u, double v);
string larger(string first, string second);

If the call is larger(5, 3), for example, the first function is executed. If the call is
larger('A', '9'), the second function is executed, and so on.

Function overloading is used when you have the same action for different sets of data. Of
course, for function overloading to work, you must give the definition of each function.

Functions with Default Parameters

This section is not needed until Chapter 11.

396 | Chapter 7: User-Defined Functions II

7

This section discusses functions with default parameters. Recall that when a function is
called, the number of actual and formal parameters must be the same. C++ relaxes this
condition for functions with default parameters. You specify the value of a default
parameter when the function name appears for the first time, such as in the prototype.
In general, the following rules apply for functions with default parameters:

• If you do not specify the value of a default parameter, the default value is
used for that parameter.

• All of the default parameters must be the far-right parameters of the function.

• Suppose a function has more than one default parameter. In a function
call, if a value to a default parameter is not specified, then you must omit
all of the arguments to its right.

• Default values can be constants, global variables, or function calls.

• The caller has the option of specifying a value other than the default for
any default parameter.

• You cannot assign a constant value as a default value to a reference parameter.

Consider the following function prototype:

void funcExp(int x, int y, double t, char z = 'A', int u = 67,
char v = 'G', double w = 78.34);

The function funcExp has seven parameters. The parameters z, u, v, and w are default
parameters. If no values are specified for z, u, v, and w in a call to the function funcExp,
their default values are used.

Suppose you have the following statements:

int a, b;
char ch;
double d;

The following function calls are legal:

1. funcExp(a, b, d);

2. funcExp(a, 15, 34.6, 'B', 87, ch);

3. funcExp(b, a, 14.56, 'D');

In statement 1, the default values of z, u, v, and w are used. In statement 2, the default
value of z is replaced by 'B', the default value of u is replaced by 87, the default value of
v is replaced by the value of ch, and the default value of w is used. In statement 3, the
default value of z is replaced by 'D', and the default values of u, v, and w are used.

The following function calls are illegal:

1. funcExp(a, 15, 34.6, 46.7);

2. funcExp(b, 25, 48.76, 'D', 4567, 78.34);

In statement 1, because the value of z is omitted, all other default values must be omitted.
In statement 2, because the value of v is omitted, the value of w should be omitted, too.

Functions with Default Parameters | 397

The following are illegal function prototypes with default parameters:

1. void funcOne(int x, double z = 23.45, char ch, int u = 45);

2. int funcTwo(int length = 1, int width, int height = 1);

3. void funcThree(int x, int& y = 16, double z = 34);

In statement 1, because the second parameter z is a default parameter, all other parameters
after z must be default parameters. In statement 2, because the first parameter is a default
parameter, all parameters must be the default parameters. In statement 3, a constant value
cannot be assigned to y because y is a reference parameter.

Example 7-10 further illustrates functions with default parameters.

EXAMPLE 7-10

#include <iostream>
#include <iomanip>

using namespace std;

int volume(int l = 1, int w = 1, int h = 1);
void funcOne(int& x, double y = 12.34, char z = 'B');

int main()
{

int a = 23;
double b = 48.78;
char ch = 'M';

cout << fixed << showpoint;
cout << setprecision(2);

cout << "Line 1: a = " << a << ", b = "
<< b << ", ch = " << ch << endl; //Line 1

cout << "Line 2: Volume = " << volume()
<< endl; //Line 2

cout << "Line 3: Volume = " << volume(5, 4)
<< endl; //Line 3

cout << "Line 4: Volume = " << volume(34)
<< endl; //Line 4

cout << "Line 5: Volume = "
<< volume(6, 4, 5) << endl; //Line 5

funcOne(a); //Line 6
funcOne(a, 42.68); //Line 7
funcOne(a, 34.65, 'Q'); //Line 8

cout << "Line 9: a = " << a << ", b = "
<< b << ", ch = " << ch << endl; //Line 9

return 0;
}

398 | Chapter 7: User-Defined Functions II

int volume(int l, int w, int h)
{

return l * w * h; //Line 10
}

void funcOne(int& x, double y, char z)
{

x = 2 * x; //Line 11
cout << "Line 12: x = " << x << ", y = "

<< y << ", z = " << z << endl; //Line 12
}

Sample Run:

Line 1: a = 23, b = 48.78, ch = M
Line 2: Volume = 1
Line 3: Volume = 20
Line 4: Volume = 34
Line 5: Volume = 120
Line 12: x = 46, y = 12.34, z = B
Line 12: x = 92, y = 42.68, z = B
Line 12: x = 184, y = 34.65, z = Q
Line 9: a = 184, b = 48.78, ch = M

In programs in this book, the definition of the function main is placed before the definition

of any user-defined functions. You must, therefore, specify the default value for a parameter

in the function prototype and in the function prototype only, not in the function definition.

7

PROGRAMMING EXAMPLE: Classify Numbers
In this example, we use functions to rewrite the program that determines the number of
odds and evens from a given list of integers. This program was first written in Chapter 5.

The main algorithm remains the same:

1. Initialize the variables, zeros, odds, and evens to 0.

2. Read a number.

3. If the number is even, increment the even count, and if the number is
also zero, increment the zero count; else, increment the odd count.

4. Repeat Steps 2 and 3 for each number in the list.

The main parts of the program are: initialize the variables, read and classify the
numbers, and then output the results. To simplify the function main and further
illustrate parameter passing, the program includes:

Programming Example: Classify Numbers | 399

• A function initialize to initialize the variables, such as zeros,
odds, and evens.

• A function getNumber to get the number.

• A function classifyNumber to determine whether the number is
odd or even (and whether it is also zero). This function also incre-
ments the appropriate count.

• A function printResults to print the results.

Let us now describe each of these functions.

initialize The function initialize initializes variables to their initial values. The variables that
we need to initialize are zeros, odds, and evens. As before, their initial values are
all zero. Clearly, this function has three parameters. Because the values of the formal
parameters initializing these variables must be passed outside of the function, these
formal parameters must be reference parameters. Essentially, this function is:

void initialize(int& zeroCount, int& oddCount, int& evenCount)
{

zeroCount = 0;
oddCount = 0;
evenCount = 0;

}

getNumber The function getNumber reads a number and then passes this number to the function
main. Because you need to pass only one number, this function has only one
parameter. The formal parameter of this function must be a reference parameter
because the number read is passed outside of the function. Essentially, this function is:

void getNumber(int& num)
{

cin >> num;
}

You can also write the function getNumber as a value-returning function. See the
note at the end of this programming example.

classifyNumber The function classifyNumber determines whether the number is odd or even, and
if the number is even, it also checks whether the number is zero. It also updates the
values of some of the variables, zeros, odds, and evens. This function needs to
know the number to be analyzed; therefore, the number must be passed as a
parameter. Because this function also increments the appropriate count, the variables
(that is, zeros, odds, and evens declared in main) holding the counts must be
passed as parameters to this function. Thus, this function has four parameters.

Because the number will only be analyzed, you need to pass only its value. Thus, the
formal parameter corresponding to this variable is a value parameter. After analyzing
the number, this function increments the values of some of the variables, zeros,
odds, and evens. Therefore, the formal parameters corresponding to these variables

400 | Chapter 7: User-Defined Functions II

7

must be reference parameters. The algorithm to analyze the number and increment
the appropriate count is the same as before. The definition of this function is:

void classifyNumber(int num, int& zeroCount, int& oddCount,
int& evenCount)

{
switch (num % 2)
{
case 0:

evenCount++;
if (num == 0)

zeroCount++;
break;

case 1:
case -1:

oddCount++;
} //end switch

} //end classifyNumber

printResults The function printResults prints the final results. To print the results (that is, the
number of zeros, odds, and evens), this function must have access to the values of the
variables, zeros, odds, and evens declared in the function main. Therefore,
this function has three parameters. Because this function prints only the values of
the variables, the formal parameters are value parameters. The definition of this
function is:

void printResults(int zeroCount, int oddCount, int evenCount)
{

cout << "There are " << evenCount << " evens, "
<< "which includes " << zeroCount << " zeros"
<< endl;

cout << "The number of odd numbers is: " << oddCount
<< endl;

} //end printResults

We now give the main algorithm and show how the function main calls these
functions.

MAIN

ALGORITHM

1. Call the function initialize to initialize the variables.

2. Prompt the user to enter 20 numbers.

3. For each number in the list:

a. Call the function getNumber to read a number.

b. Output the number.

c. Call the function classifyNumber to classify the number and
increment the appropriate count.

4. Call the function printResults to print the final results.

Programming Example: Classify Numbers | 401

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Classify Numbers
// This program reads 20 numbers and outputs the number of
// zeros, odd, and even numbers.
//***

#include <iostream>
#include <iomanip>

using namespace std;

const int N = 20;

//Function prototypes
void initialize(int& zeroCount, int& oddCount, int& evenCount);
void getNumber(int& num);
void classifyNumber(int num, int& zeroCount, int& oddCount,

int& evenCount);
void printResults(int zeroCount, int oddCount, int evenCount);

int main()
{

//Variable declaration
int counter; //loop control variable
int number; //variable to store the new number
int zeros; //variable to store the number of zeros
int odds; //variable to store the number of odd integers
int evens; //variable to store the number of even integers

initialize(zeros, odds, evens); //Step 1

cout << "Please enter " << N << " integers."
<< endl; //Step 2

cout << "The numbers you entered are: "
<< endl;

for (counter = 1; counter <= N; counter++) //Step 3
{

getNumber(number); //Step 3a
cout << number << " "; //Step 3b
classifyNumber(number, zeros, odds, evens); //Step 3c

} // end for loop

cout << endl;

402 | Chapter 7: User-Defined Functions II

7

printResults(zeros, odds, evens); //Step 4

return 0;
}

void initialize(int& zeroCount, int& oddCount, int& evenCount)
{

zeroCount = 0;
oddCount = 0;
evenCount = 0;

}

void getNumber(int& num)
{

cin >> num;
}

void classifyNumber(int num, int& zeroCount, int& oddCount,
int& evenCount)

{
switch (num % 2)
{
case 0:

evenCount++;
if (num == 0)

zeroCount++;
break;

case 1:
case -1:

oddCount++;
} //end switch

} //end classifyNumber

void printResults(int zeroCount, int oddCount, int evenCount)
{

cout << "There are " << evenCount << " evens, "
<< "which includes " << zeroCount << " zeros"
<< endl;

cout << "The number of odd numbers is: " << oddCount
<< endl;

} //end printResults

Sample Run: In this sample run, the user input is shaded.

Please enter 20 integers.
The numbers you entered are:
0 0 12 23 45 7 -2 -8 -3 -9 4 0 1 0 -7 23 -24 0 0 12
0 0 12 23 45 7 -2 -8 -3 -9 4 0 1 0 -7 23 -24 0 0 12
There are 12 evens, which includes 6 zeros
The number of odd numbers is: 8

Programming Example: Classify Numbers | 403

In the previous program, because the data is assumed to be input from the standard

input device (the keyboard) and the function getNumber returns only one value, you
can also write the function getNumber as a value-returning function. If written as a

value-returning function, the definition of the function getNumber is:

int getNumber()
{

int num;

cin >> num;

return num;
}

In this case, the statement (function call):

getNumber(number);

in the function main should be replaced by the statement:

number = getNumber();

Of course, you also need to change the function prototype.

PROGRAMMING EXAMPLE: Data Comparison
This programming example illustrates:

• How to read data from more than one file in the same program.

• How to send output to a file.

• How to generate bar graphs.

• With the help of functions and parameter passing, how to use the
same program segment on different (but similar) sets of data.

• How to use structured design to solve a problem and how to perform
parameter passing.

This program is broken into two parts. First, you learn how to read data from more
than one file. Second, you learn how to generate bar graphs.

Two groups of students at a local university are enrolled in certain special courses
during the summer semester. The courses are offered for the first time and are taught
by different teachers. At the end of the semester, both groups are given the same tests
for the same courses, and their scores are recorded in separate files. The data in each
file is in the following form:

404 | Chapter 7: User-Defined Functions II

7

courseNo score1, score2, ..., scoreN –999
courseNo score1, score2, ..., scoreM –999
.
.
.

Let us write a program that finds the average course score for each course for each
group. The output is of the following form:

Course No Group No Course Average
CSC 1 83.71

2 80.82

ENG 1 82.00
2 78.20

.

.

.

Avg for group 1: 82.04
Avg for group 2: 82.01

Input Because the data for the two groups are recorded in separate files, the input
data appears in two separate files.

Output As shown above.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Reading input data from both files is straightforward. Suppose the data is stored in the
file group1.txt for group 1 and file group2.txt for group 2. After processing the
data for one group, we can process the data for the second group for the same course
and continue until we run out of data. Processing data for each course is similar and is
a two-step process:

1. a. Sum the scores for the course.

b. Count the number of students in the course.

c. Divide the total score by the number of students to find the
course average.

2. Output the results.

We are comparing only the averages of the corresponding courses in each group, and
the data in each file is ordered according to course ID. To ensure that only the
averages of the corresponding courses are compared, we compare the course IDs for
each group. If the corresponding course IDs are not the same, we output an error
message and terminate the program.

This discussion suggests that we should write a function, calculateAverage, to find the
course average. We should also write another function, printResult, to output the data
in the form given. By passing the appropriate parameters, we can use the same functions,
calculateAverage and printResult, to process each course’s data for both groups.
(In the second part of the program, we modify the function printResult.)

Programming Example: Data Comparison | 405

The preceding discussion translates into the following algorithm:

1. Initialize the variables.

2. Get the course IDs for group 1 and group 2.

3. If the course IDs are different, print an error message and exit the program.

4. Calculate the course averages for group 1 and group 2.

5. Print the results in the form given above.

6. Repeat Steps 2 through 5 for each course.

7. Print the final results.

Variables

(Function

main)

The preceding discussion suggests that the program needs the following variables for
data manipulation in the function main:

string courseId1; //course ID for group 1
string courseId2; //course ID for group 2
int numberOfCourses;
double avg1; //average for a course in group 1
double avg2; //average for a course in group 2
double avgGroup1; //average group 1
double avgGroup2; //average group 2
ifstream group1; //input stream variable for group 1
ifstream group2; //input stream variable for group 2

ofstream outfile; //output stream variable

Next, we discuss the functions calculateAverage and printResult. Then, we
will put the function main together.

calculate
Average

This function calculates the average for a course. Because the input is stored in a file and
the input file is opened in the function main, we must pass the ifstream variable
associated with the input file to this function. Furthermore, after calculating the course
average, this function must pass the course average to the function main. Therefore,
this function has two parameters, and both parameters must be reference parameters.

To find the course average, we must first find the sum of all scores for the course and the
number of students who took the course and then divide the sum by the number of
students. Thus, we need a variable to find the sum of the scores, a variable to count the
number of students, and a variable to read and store a score. Of course, we must initialize
the variable to find the sum and the variable to count the number of students to zero.

Local

Variables

(Function

calculate
Average)

In the previous discussion of data manipulation, we identified three variables for the
function calculateAverage:

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

406 | Chapter 7: User-Defined Functions II

7

The above discussion translates into the following algorithm for the function
calculateAverage:

1. Declare and initialize variables.

2. Get the (next) course score, score.

3. while the score is not -999

a. Update totalScore by adding the course score.

b. Increment numberOfStudents by 1.

c. Get the (next) course score, score.

4. courseAvg = totalScore / numberOfStudents;

We are now ready to write the definition of the function calculateAverage.

void calculateAverage(ifstream& inp, double& courseAvg)
{

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

inp >> score;
while (score != -999)
{

totalScore = totalScore + score;
numberOfStudents++;
inp >> score;

} //end while

courseAvg = totalScore / numberOfStudents;
} //end calculate Average

printResult The function printResult prints the group’s course ID, group number, and
course average. The output is stored in a file. So we must pass four parameters to
this function: the ofstream variable associated with the output file, the group
number, the course ID, and the course average for the group. The ofstream
variable must be passed by reference. Because the function uses only the values of
the other variables, the remaining three parameters should be value parameters.
Also, from the output, it is clear that we print the course ID only before the group
number.

1. In pseudocode, the algorithm is:

if (group number == 1)
print course ID

else
print a blank

print group number and course average

Programming Example: Data Comparison | 407

The definition of the function printResult follows:

void printResult(ofstream& outp, string courseID, int groupNo,
double avg)

{
if (groupNo == 1)

outp << " " << courseID << " ";
else

outp << " ";

outp << setw(8) << groupNo << setw(17) << avg << endl;
} //end printResult

Now that we have designed and defined the functions calculateAverage and
printResult, we can describe the algorithm for the function main. Before out-
lining the algorithm, however, we note the following: It is quite possible that in both
input files, the data is ordered according to the course IDs, but one file might have
fewer courses than the other. We do not discover this error until after we have
processed both files and discovered that one file has unprocessed data. Make sure to
check for this error before printing the final answer—that is, the averages for group 1
and group 2.

MAIN

ALGORITHM:

Function main

1. Declare the variables (local declaration).

2. Open the input files.

3. Print a message if you are unable to open a file and terminate the
program.

4. Open the output file.

5. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeros, set the manipulators fixed
and showpoint. Also, to output floating-point numbers to two
decimal places, set the precision to two decimal places.

6. Initialize the course average for group 1 to 0.0.

7. Initialize the course average for group 2 to 0.0.

8. Initialize the number of courses to 0.

9. Print the heading.

10. Get the course ID, courseId1, for group 1.

11. Get the course ID, courseId2, for group 2.

12. For each course in group 1 and group 2,

a. if (courseId1 != courseId2)
{

cout << "Data error: Course IDs do not match.\n";
return 1;

}

408 | Chapter 7: User-Defined Functions II

7

b. else
{

i. Calculate the course average for group 1 (call the func-
tion calculateAverage and pass the appropriate para-
meters).

ii. Calculate the course average for group 2 (call the func-
tion calculateAverage and pass the appropriate para-
meters).

iii. Print the results for group 1 (call the function
printResult and pass the appropriate parameters).

iv. Print the results for group 2 (call the function
printResult and pass the appropriate parameters).

v. Update the average for group 1.

vi. Update the average for group 2.

vii. Increment the number of courses.

}

c. Get the course ID, courseId1, for group 1.

d. Get the course ID, courseId2, for group 2.

13. a. if not_end_of_file on group 1 and end_of_file on group 2
print ‘‘Ran out of data for group 2 before group 1’’

b. else if end_of_file on group 1 and not_end_of_file on group 2
print ‘‘Ran out of data for group 1 before group 2’’

c. else print the average of group 1 and group 2.

14. Close the input and output files.

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Comparison of Class Averages
// This program computes and compares the class averages of
// two groups of students.
//**

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
using namespace std;

Programming Example: Data Comparison | 409

//Function prototypes
void calculateAverage(ifstream& inp, double& courseAvg);
void printResult(ofstream& outp, string courseId,

int groupNo, double avg);

int main()
{

//Step 1
string courseId1; //course ID for group 1
string courseId2; //course ID for group 2
int numberOfCourses;
double avg1; //average for a course in group 1
double avg2; //average for a course in group 2
double avgGroup1; //average group 1
double avgGroup2; //average group 2
ifstream group1; //input stream variable for group 1
ifstream group2; //input stream variable for group 2
ofstream outfile; //output stream variable

group1.open("group1.txt"); //Step 2
group2.open("group2.txt"); //Step 2

if (!group1 || !group2) //Step 3
{

cout << "Unable to open files." << endl;
cout << "Program terminates." << endl;
return 1;

}

outfile.open("student.out"); //Step 4
outfile << fixed << showpoint; //Step 5
outfile << setprecision(2); //Step 5

avgGroup1 = 0.0; //Step 6
avgGroup2 = 0.0; //Step 7

numberOfCourses = 0; //Step 8

outfile << "Course No Group No "
<< "Course Average" << endl; //Step 9

group1 >> courseId1; //Step 10
group2 >> courseId2; //Step 11
while (group1 && group2) //Step 12
{

if (courseId1 != courseId2) //Step 12a
{

cout << "Data error: Course IDs "
<< "do not match." << endl;

410 | Chapter 7: User-Defined Functions II

7

cout << "Program terminates." << endl;
return 1;

}
else //Step 12b
{

calculateAverage(group1, avg1); //Step 12b.i
calculateAverage(group2, avg2); //Step 12b.ii
printResult(outfile, courseId1,

1, avg1); //Step 12b.iii
printResult(outfile, courseId2,

2, avg2); //Step 12b.iv
avgGroup1 = avgGroup1 + avg1; //Step 12b.v
avgGroup2 = avgGroup2 + avg2; //Step 12b.vi
outfile << endl;
numberOfCourses++; //Step 12b.vii

}

group1 >> courseId1; //Step 12c
group2 >> courseId2; //Step 12d

} //end while

if (group1 && !group2) //Step 13a
cout << "Ran out of data for group 2 "

<< "before group 1." << endl;
else if (!group1 && group2) //Step 13b

cout << "Ran out of data for group 1 "
<< "before group 2." << endl;

else //Step 13c
{

outfile << "Avg for group 1: "
<< avgGroup1 / numberOfCourses
<< endl;

outfile << "Avg for group 2: "
<< avgGroup2 / numberOfCourses
<< endl;

}

group1.close(); //Step 14
group2.close(); //Step 14
outfile.close(); //Step 14

return 0;
}

void calculateAverage(ifstream& inp, double& courseAvg)
{

double totalScore = 0.0;
int numberOfStudents = 0;
int score;

Programming Example: Data Comparison | 411

inp >> score;
while (score != -999)
{

totalScore = totalScore + score;
numberOfStudents++;
inp >> score;

}//end while

courseAvg = totalScore / numberOfStudents;
} //end calculate Average

void printResult(ofstream& outp, string courseID, int groupNo,
double avg)

{
if (groupNo == 1)

outp << " " << courseID << " ";
else

outp << " ";
outp << setw(8) << groupNo << setw(17) << avg << endl;

} //end printResult

Sample Run:

Course No Group No Course Average
CSC 1 83.71

2 80.82

ENG 1 82.00
2 78.20

HIS 1 77.69
2 84.15

MTH 1 83.57
2 84.29

PHY 1 83.22
2 82.60

Avg for group 1: 82.04
Avg for group 2: 82.01

Input Data Group 1

CSC 80 100 70 80 72 90 89 100 83 70 90 73 85 90 -999
ENG 80 90 80 94 90 74 78 63 83 80 90 -999
HIS 90 70 80 70 90 50 89 83 90 68 90 60 80 -999
MTH 74 80 75 89 90 73 90 82 74 90 84 100 90 79 -999
PHY 100 83 93 80 63 78 88 89 75 -999

412 | Chapter 7: User-Defined Functions II

7

Input Data Group 2

CSC 90 75 90 75 80 89 100 60 80 70 80 -999
ENG 80 80 70 68 70 78 80 90 90 76 -999
HIS 100 80 80 70 90 76 88 90 90 75 90 85 80 -999
MTH 80 85 85 92 90 90 74 90 83 65 72 90 84 100 -999
PHY 90 93 73 85 68 75 67 100 87 88 -999

BAR

GRAPH

In the business world, company executives often like to see results in some visual
form, such as bar graphs. Many currently available software packages can analyze data
in several forms and then display the results in a visual form, such as bar graphs or pie
charts. The second part of this program aims to display the results found earlier in the
form of bar graphs, as shown below:

Course Course Average
ID 0 10 20 30 40 50 60 70 80 90 100

|....|....|....|....|....|....|....|....|....|....|
CSC ***

##
ENG ***

#######################################
.
.
.

Group 1 -- ****
Group 2 -- ####

Avg for group 1: 82.04
Avg for group 2: 82.01

Each symbol (* or #) in the bar graph represents two points. If a course average is less
than 2, no symbol is printed.

Because the output is in the form of a bar graph, we need to modify the function
printResult.

Print Bars The function printResult prints the course ID and the bar graph representing the
average for a course. The output is stored in a file. So we must pass four parameters to
this function: the ofstream variable associated with the output file, the group
number (to print * or #), the course ID, and the course average for the department.
To print the bar graph, we can use a loop to print a symbol for each two points. If the
average is 78.45, for example, we must print 39 symbols to represent this average.
To find the number of symbols to print, we can use integer division as follows:

numberOfSymbols = static_cast<int>(average) / 2;

For example, static_cast<int>(78.45) / 2 = 78 / 2 = 39.

Following this discussion, the definition of the function printResult is:

Programming Example: Data Comparison | 413

QUICK REVIEW

1. A function that does not have a data type is called a void function.

2. A return statement without any value can be used in a void function. If a return
statement is used in a void function, it is typically used to exit the function early.

3. The heading of a void function starts with the word void.

4. In C++, void is a reserved word.

5. A void function may or may not have parameters.

void printResult(ofstream& outp, string courseID,
int groupNo, double avg)

{
int noOfSymbols;
int count;

if (groupNo == 1)
outp << setw(4) << courseID << " ";

else
outp << " ";

noOfSymbols = static_cast<int>(avg)/2;

if (groupNo == 1)
for (count = 1; count <= noOfSymbols; count++)

outp << '*';
else

for (count = 1; count <= noOfSymbols; count++)
outp << '#';

outp << endl;
}//end printResult

We also include a function printHeading to print the first two lines of the output.
The definition of this function is:

void printHeading(ofstream& outp)
{

outp << "Course Course Average" << endl;
outp << " ID 0 10 20 30 40 50 60 70"

<< " 80 90 100" << endl;
outp << " |....|....|....|....|....|....|....|"

<< "....|....|....|" << endl;
}//end printHeading

Replace the function printResult in the preceding program, include the function
printHeading, include the statements to output — Group 1 -- **** and Group 2
-- #### — , and rerun the program. Your program should generate a bar graph
similar to bar graph shown earlier. (The complete program listing is available on the
Web site accompanying this book.)

414 | Chapter 7: User-Defined Functions II

7

6. A call to a void function is a stand-alone statement.

7. To call a void function, you use the function name together with the actual
parameters in a stand-alone statement.

8. There are two types of formal parameters: value parameters and reference
parameters.

9. A value parameter receives a copy of its corresponding actual parameter.

10. A reference parameter receives the address (memory location) of its corres-
ponding actual parameter.

11. The corresponding actual parameter of a value parameter is an expression, a
variable, or a constant value.

12. A constant value cannot be passed to a reference parameter.

13. The corresponding actual parameter of a reference parameter must be a variable.

14. When you include & after the data type of a formal parameter, the formal
parameter becomes a reference parameter.

15. The stream variables should be passed by reference to a function.

16. If a formal parameter needs to change the value of an actual parameter, in the
function heading, you must declare this formal parameter as a reference parameter.

17. The scope of an identifier refers to those parts of the program where it is accessible.

18. Variables declared within a function (or block) are called local variables.

19. Variables declared outside of every function definition (and block) are
called global variables.

20. The scope of a function name is the same as the scope of an identifier
declared outside of any block.

21. See the scope rules in this chapter (section, Scope of an Identifier).

22. C++ does not allow the nesting of function definitions.

23. An automatic variable is a variable for which memory is allocated on
function (or block) entry and deallocated on function (or block) exit.

24. A static variable is a variable for which memory remains allocated through-
out the execution of the program.

25. By default, global variables are static variables.

26. In C++, a function can be overloaded.

27. Two functions are said to have different formal parameter lists if both
functions have:

• A different number of formal parameters or

• If the number of formal parameters is the same, then the data type of the
formal parameters, in the order you list them, must differ in at least one
position.

28. The signature of a function consists of the function name and its formal
parameter list. Two functions have different signatures if they have either
different names or different formal parameter lists.

Quick Review | 415

29. If a function is overloaded, then in a call to that function, the signature—
that is, the formal parameter list of the function—determines which
function to execute.

30. C++ allows functions to have default parameters.

31. If you do not specify the value of a default parameter, the default value is
used for that parameter.

32. All of the default parameters must be the far-right parameters of the function.

33. Suppose a function has more than one default parameter. In a function call,
if a value to a default parameter is not specified, then you must omit all
arguments to its right.

34. Default values can be constants, global variables, or function calls.

35. The calling function has the option of specifying a value other than the
default for any default parameter.

36. You cannot assign a constant value as a default value to a reference parameter.

EXERCISES

1. Mark the following statements as true or false.

a. A function that changes the value of a reference parameter also changes
the value of the actual parameter.

b. A variable name cannot be passed to a value parameter.

c. If a C++ function does not use parameters, parentheses around the
empty parameter list are still required.

d. In C++, the names of the corresponding formal and actual parameters
must be the same.

e. Whenever the value of a reference parameter changes, the value of the
actual parameter changes.

f. In C++, function definitions can be nested; that is, the definition of one
function can be enclosed in the body of another function.

g. Using global variables in a program is a better programming style than
using local variables, because extra variables can be avoided.

h. In a program, global constants are as dangerous as global variables.

i. The memory for a static variable remains allocated between function calls.

2. Identify the following items in the programming code shown below.

a. Function prototype, function heading, function body, and function definitions

b. Function call statements, formal parameters, and actual parameters

c. Value parameters and reference parameters

d. Local variables and global variables

416 | Chapter 7: User-Defined Functions II

7

#include <iostream> //Line 1

using namespace std; //Line 2

int one; //Line 3

void hello(int&, double, char); //Line 4

int main() //Line 5
{ //Line 6

int x; //Line 7
double y; //Line 8
char z; //Line 9
.
.
.
hello(x, y, z); //Line 10
.
.
.
hello(x, y - 3.5, 'S'); //Line 11
.
.
.

} //Line 12

void hello(int& first, double second, char ch) //Line 13
{ //Line 14

int num; //Line 15
double y; //Line 16
int u ; //Line 17
.
.
.

} //Line 18

3. a. Explain the difference between an actual and a formal parameter.

b. Explain the difference between a value and a reference parameter.

c. Explain the difference between a local and a global variable.

4. What is the output of the following program?

#include <iostream>
using namespace std;

void func1();
void func2();

int main()
{

int num;

cout << "Enter 1 or 2: ";

Exercises | 417

cin >> num;
cout << endl;

cout << "Take ";

if (num == 1)
func1();

else if (num == 2)
func2();

else
cout << "Invalid input. You must enter a 1 or 2" << endl;

return 0;
}

void func1()
{

cout << "Programming I." <<endl;
}

void func2()
{

cout << "Programming II." << endl;
}

a. What is the output if the input is 1?

b. What is the output if the input is 2?

c. What is the output if the input is 3?

d. What is the output if the input is -1?

5. Write the definition of a void function that takes as input a decimal number
and as output 3 times the value of the decimal number. Format your output
to two decimal places.

6. Write the definition of a void function that takes as input two decimal
numbers. If the first number is nonzero, it outputs the second number divided
by the first number; otherwise, it outputs a message indicating that the second
number cannot be divided by the first number because the first number is 0.

7. Write the definition of a void function with three reference parameters of type
int, double, and string. The function sets the values of the int and double
variables to 0 and the value of the string variable to the empty string.

8. Write the definition of a void function that takes as input two parameters
of type int, say sum and testScore. The function updates the value of
sum by adding the value of testScore. The new value of sum is reflected
in the calling environment.

9. What is the output of the following program?

#include <iostream>
using namespace std;

418 | Chapter 7: User-Defined Functions II

7

void find(int a, int& b, int& c,)

int main()
{

int one, two, three;

one = 5;
two = 10;
three = 15;

find(one, two, three);
cout << one << ", " << two << ", " << three << endl;

find(two, one, three);
cout << one << ", " << two << ", " << three << endl;

find(three, two, one);
cout << one << ", " << two << ", " << three << endl;

find(two, three, one);
cout << one << ", " << two << ", " << three << endl;

return 0;
}

void find(int a, int& b, int& c)
{

int temp;

c = a + b;
temp = a;
a = b;
b = 2 * temp;

}

10. What is the output of the following program?

#include <iostream>
using namespace std;

int x;

void summer(int&, int);
void fall(int, int&);

int main()
{

int intNum1 = 2;
int intNum2 = 5;
x = 6;

summer(intNum1, intNum2);
cout << intNum1 << " " << intNum2 << " " << x << endl;

Exercises | 419

fall(intNum1, intNum2);
cout << intNum1 << " " << intNum2 << " " << x << endl;
return 0;

}

void summer(int& a, int b)
{

int intNum1;
intNum1 = b + 12;
a = 2 * b + 5;
b = intNum1 + 4;

}

void fall(int u, int& v)
{

int intNum2;
intNum2= x;
v = intNum2 * 4;
x = u - v;

}

11. In the following program, number the marked statements to show the order
in which they will execute (the logical order of execution).

#include <iostream>

using namespace std;

void func(int val1, int val2);

int main()
{

int num1, num2;
___ cout << "Please enter two integers." << endl;
___ cin >> num1 >> num2;
___ func (num1, num2);
___ cout << " The two integers are " << num1

<< ", " << num2 << endl;
___ return 0;
}
void func(int val1, int val2)
{

int val3, val4;
___ val3 = val1 + val2;
___ val4 = val1 * val2;
___ cout << "The sum and product are " << val3

<< " and " << val4 << endl;
}

12. Consider the following program:

#include <iostream>
#include <cmath>
#include <iomanip>

420 | Chapter 7: User-Defined Functions II

7

using namespace std;

void traceMe(double x, double y);

int main()
{

double one, two;

cout << "Enter two numbers: ";
cin >> one >> two;
cout << endl;

traceMe(one, two);
traceMe(two, one);

return 0;
}

void traceMe(double x, double y)
{

double z;

if (x != 0)
z = sqrt(y) / x;

else
{

cout << "Enter a nonzero number: ";
cin >> x;
cout << endl;
z = floor(pow(y, x));

}

cout << fixed << showpoint << setprecision(2);
cout << x << ", " <<< y << ", " <<< z << endl;

}

a. What is the output if the input is 3 625?

b. What is the output if the input is 24 1024?

c. What is the output if the input is 0 196?

13. The function traceMe in Exercise 12 outputs the values of x, y, and z.
Modify the definition of this function so that rather than print these values,
it sends the values back to the calling environment and the calling environ-
ment prints these values.

14. In Exercise 12, determine the scope of each identifier.

15. What is the output of the following code fragment? (Note: alpha and beta
are int variables.)

alpha = 5;
beta = 10;

Exercises | 421

if (beta >= 10)
{

int alpha = 10;
beta = beta + alpha;
cout << alpha << ' ' << beta << endl;

}
cout << alpha << ' ' << beta << endl;

16. Consider the following program. What is its exact output? Show the values
of the variables after each line executes, as in Example 7-6.

#include <iostream>

using namespace std;

void funOne(int& a);

int main()
{

int num1, num2;

num1 = 10; //Line 1

num2 = 20; //Line 2

cout << "Line 3: In main: num1 = " << num1
<< ", num2 = " << num2 << endl; //Line 3

funOne(num1); //Line 4
cout << "Line 5: In main after funOne: num1 = "

<< num1 << ", num2 = " << num2 << endl; //Line 5

return 0; //Line 6
}

void funOne(int& a)
{

int x = 12;
int z;

z = a + x; //Line 7

cout << "Line 8: In funOne: a = " << a
<< ", x = " << x
<< ", and z = " << z << endl; //Line 8

x = x + 5; //Line 9

cout << "Line 10: In funOne: a = " << a
<< ", x = " << x
<< ", and z = " << z << endl; //Line 10

a = a + 8; //Line 11

422 | Chapter 7: User-Defined Functions II

7

cout << "Line 12: In funOne: a = " << a
<< ", x = " << x
<< ", and z = " << z << endl; //Line 12

}

17. What is the output of the following program?

#include <iostream>
using namespace std;

void tryMe(int& v);

int main()
{

int x = 8;

for (int count = 1; count < 5; count++)
tryMe(x);

return 0;
}

void tryMe(int& v)
{

static int num = 2;

if (v % 2 == 0)
{

num++;
v = v + 3;

}
else
{

num--;
v = v + 5;

}
cout << v << ", " << num << endl;

}

18. What is the signature of a function?

19. Consider the following function prototype:

void testDefaultParam(int a, int b = 7, char z = '*');

Which of the following function calls is correct?

a. testDefaultParam(5);

b. testDefaultParam(5, 8);

c. testDefaultParam(6, '#');

d. testDefaultParam(0, 0, '*');

20. Consider the following function definition:

void defaultParam(int u, int v = 5, double z = 3.2)
{

int a;

Exercises | 423

u = u + static_cast<int>(2 * v + z);
a = u + v * z;
cout << "a = " << a << endl;

}

What is the output of the following function calls?

a. defaultParam(6);

b. defaultParam(3, 4);

c. defaultParam(3, 0, 2.8);

PROGRAMMING EXERCISES

1. Consider the definition of the function main.

int main()
{

int x, y;
char z;
double rate, hours;
double amount;
.
.
.

}

The variables x, y, z, rate, and hours referred to in items a through f below
are the variables of the function main. Each of the functions described must
have the appropriate parameters to access these variables. Write the following
definitions:

a. Write the definition of the function initialize that initializes x and y
to 0 and z to the blank character.

b. Write the definition of the function getHoursRate that prompts the
user to input the hours worked and rate per hour to initialize the
variables hours and rate of the function main.

c. Write the definition of the value-returning function payCheck that calculates
and returns the amount to be paid to an employee based on the hours worked
and rate per hour. The hours worked and rate per hour are stored in the
variables hours and rate, respectively, of the function main. The formula for
calculating the amount to be paid is as follows: For the first 40 hours, the rate is
the given rate; for hours over 40, the rate is 1.5 times the given rate.

d. Write the definition of the function printCheck that prints the hours
worked, rate per hour, and the salary.

e. Write the definition of the function funcOne that prompts the user to
input a number. The function then changes the value of x by assigning
the value of the expression 2 times the (old) value of x plus the value of y
minus the value entered by the user.

424 | Chapter 7: User-Defined Functions II

7

f. Write the definition of the function nextChar that sets the value of z to
the next character stored in z.

g. Write the definition of a function main that tests each of these functions.

2. Consider the following C++ code:

#include <iostream>
#include <cmath>
#include <iomanip>

using namespace std;

void func1();
void func2(/*formal parameters*/);

int main()
{

int num1, num2;
double num3;

int choice;

cout << fixed << showpoint << setprecision(2);

do
{

func1();
cin >> choice;
cout << endl;

if (choice == 1)
{

func2(num1, num2, num3);
cout << num1 << ", " << num2 << ", " << num3 << endl;

}
}
while (choice != 99);

return 0;
}

void func1()
{

cout << "To run the program, enter 1." << endl;
cout << "To exit the pogram, enter 99." << endl;
cout << "Enter 1 or 99: ";

}

void func2(/*formal parameters*/)
{

//Write the body of func2.
}

Programming Exercises | 425

The function func2 has three parameters of type int, int, and double, say a, b,
and c, respectively. Write the definition of func2 so that its action is as follows:

a. Prompt the user to input two integers and store the numbers in a and b,
respectively.

b. If both of the numbers are nonzero:

i. If a >= b, the value assigned to c is a to the power b, that is, ab.

ii. If a < b, the value assigned to c is b to the power a, that is, ba.

c. If a is nonzero and b is zero, the value assigned to c is the square root of
the absolute value of a.

d. If b is nonzero and a is zero, the value assigned to c is the square root of
the absolute value of b.

e. Otherwise, the value assigned to c is 0.

The values of a, b, and c are passed back to the calling environment.

After completing the definition of the func2 and writing its function
prototype, test run your program

3. The statements in the following program are not in the correct order.
Rearrange the statements so that the program outputs the total time an
employee spent on the job each day. The program asks the user to enter the
employee’s name, the arrival time (arrival hour, arrival minute, AM or PM),
and departure time (departure hour, departure minute, AM or PM). The
program also allows the user to run the program as long as the user wishes.
After rearranging the statements, your program must be properly indented.

#include <iostream>
#include <string>

using namespace std;

int main()
{

string employeeName;
int arrivalHr;

int departureHr;
int departureMin;
bool departureAM;

char response;
char discard;
char isAM;

cout << "This program calculates the total time spent by an "
<< "employee on the job." << endl;

cout << "To run the program, enter (y/Y): ";
cin >> response;
cout << endl;

426 | Chapter 7: User-Defined Functions II

7

cin.get(discard);

while (response == 'y' || response == 'Y')
{

cout << "Enter employee's name: ";
getline(cin, employeeName);
cout << endl;

if (isAM == 'y' || isAM == 'Y')
arrivalAM = true;

else
arrivalAM = false;

cout << "Enter departure hour: ";
cin >> departureHr;
cout << endl;
cout << "Enter departure minute: ";
cin >> departureMin;
cout << endl;
cout << "Enter (y/Y) if departure is before 12:00PM: ";
cin >> isAM;
cout << endl;

if (isAM == 'y' || isAM == 'Y')
departureAM = true;

else
departureAM = false;

cout << employeeName << endl;
timeOnJob(arrivalHr, arrivalMin, arrivalAM,

departureHr, departureMin, departureAM);

cout << "Enter arrival hour: ";
cin >> arrivalHr;
cout << endl;
cout << "Enter arrival minute: ";
cin >> arrivalMin;
cout << endl;
cout << "Enter (y/Y) if arrival is before 12:00PM: ";
cin >> isAM;
cout << endl;

int arrivalMin;
bool arrivalAM;
cout << "Run program again (y/Y): ";
cin >> response;
cout << endl;
cin.get(discard);

}

return 0;
}

Programming Exercises | 427

void timeOnJob(int arvHr, int arvMin, bool arvIsAM,
int depHr, int depMin, bool depIsAM)

{
int arvTimeInMin;
int depTimeInMin;
int timeOnJobInMin;

else if (arvIsAM == true && depIsAM == false)
{

arvTimeInMin = arvHr * 60 + arvMin;
depTimeInMin = depHr * 60 + depMin;

timeOnJobInMin = (720 - arvTimeInMin) + depTimeInMin;
cout << "Time spent of job: "

<< timeOnJobInMin / 60 << " hour(s) and "
<< timeOnJobInMin % 60 << " minutes." << endl;

}

else
if (arvTimeInMin <= depTimeInMin)
{

timeOnJobInMin = depTimeInMin - arvTimeInMin;
cout << "Time spent of job: "

<< timeOnJobInMin / 60 << " hour(s) and "
<< timeOnJobInMin % 60 << " minutes." << endl;

}
else

cout << "Invalid input." << endl;
if ((arvIsAM == true && depIsAM == true)

|| (arvIsAM == false && depIsAM == false))
{

cout << "Invalid input." << endl;
}

void timeOnJob(int arvHr, int arvMin, bool arvIsAM,
int depHr, int depMin, bool depIsAM);

}

4. The function printGrade in Example 7-5 is written as a void function
to compute and output the course grade. The course score is passed as
a parameter to the function printGrade. Rewrite the function
printGrade as a value-returning function so that it computes and returns
the course grade. (The course grade must be output in the function main.)
Also, change the name of the function to calculateGrade.

5. In this exercise, you are to modify the Classify Numbers programming
example in this chapter. As written, the program inputs the data from the
standard input device (keyboard) and outputs the results on the standard
output device (screen). The program can process only 20 numbers. Rewrite
the program to incorporate the following requirements:

428 | Chapter 7: User-Defined Functions II

7

a. Data to the program is input from a file of an unspecified length; that is, the
program does not know in advance how many numbers are in the file.

b. Save the output of the program in a file.

c. Modify the function getNumber so that it reads a number from the
input file (opened in the function main), outputs the number to the
output file (opened in the function main), and sends the number read to
the function main. Print only 10 numbers per line.

d. Have the program find the sum and average of the numbers.

e. Modify the function printResult so that it outputs the final results to
the output file (opened in the function main). Other than outputting the
appropriate counts, this new definition of the function printResult
should also output the sum and average of the numbers.

6. For research purposes and to better help students, the admissions office of
your local university wants to know how well female and male students
perform in certain courses. You receive a file that contains female and male
student GPAs for certain courses. Due to confidentiality, the letter code f is
used for female students and m for male students. Every file entry consists of
a letter code followed by a GPA. Each line has one entry. The number of
entries in the file is unknown. Write a program that computes and outputs
the average GPA for both female and male students. Format your results to
two decimal places. Your program should use the following functions:

a. Function openFiles: This function opens the input and output files,
and sets the output of the floating-point numbers to two decimal places
in a fixed decimal format with a decimal point and trailing zeros.

b. Function initialize: This function initializes variables such as
countFemale, countMale, sumFemaleGPA, and sumMaleGPA.

c. Function sumGrades: This function finds the sum of the female and
male students’ GPAs.

d. Function averageGrade: This function finds the average GPA for
female and male students.

e. Function printResults: This function outputs the relevant results.

f. There can be no global variables. Use the appropriate parameters to pass
information in and out of functions.

7. Write a program that prints the day number of the year, given the date in the
form month-day-year. For example, if the input is 1-1-2006, the day
number is 1; if the input is 12-25-2006, the day number is 359. The program
should check for a leap year. A year is a leap year if it is divisible by 4, but not
divisible by 100. For example, 1992 and 2008 are divisible by 4, but not
by 100. A year that is divisible by 100 is a leap year if it is also divisible by
400. For example, 1600 and 2000 are divisible by 400. However, 1800 is not
a leap year because 1800 is not divisible by 400.

Programming Exercises | 429

8. Write a progam that reads a string and outputs the number of times each
lowercase vowel appears in it. Your program must contain a function with
one of its parameters as a string variable and return the number of times each
lowercase vowel appears in it. Also write a program to test your function. (Note
that if str is a variable of type string, then str.at(i) returns the character at
the ith position. The position of the first character is 0. Also, str.length()
returns the length of the str, that is, the number of characters in str.)

9. Redo Programming Exercise 8 as follows. Write a progam that reads a string
and outputs the number of times each lowercase vowel appears in it. Your
program must contain a function with one of its parameters as a char
variable, and if the character is a vowel, it increments that vowel’s count.

10. Write a function that takes as a parameter an integer (as a long value) and
returns the number of odd, even, and zero digits. Also write a program to
test your function.

11. The cost to become a member of a fitness center is as follows: (a) Senior
citizens discount is 30%, (b) If membership is bought and paid for 12 or
more months, the discount is 15%, (c) If more than five personal training
sessions are bought and paid for, the discount on each session is 20%. Write
a menu-driven program that determines the cost of a new membership.
Your program must contain a function that displays the general information
about the fitness center and its charges; a function to get all of the necessary
information to determine the membership cost; and a function to determine
the membership cost. Use appropriate parameters to pass information in and
out of a function. (Do not use any global variables.)

12. Write a program that outputs inflation rates for two successive years and
whether the inflation is increasing or decreasing. Ask the user to input the
current price of an item and its price one year and two years ago. To
calculate the inflation rate for a year, subtract the price of the item for that
year from the price of the item one year ago and then divide the result by
the price a year ago. Your program must contain at least the following
functions: a function to get the input, a function to calculate the results, and
a function to output the results. Use appropriate parameters to pass the
information in and out of the function. Do not use any global variables.

13. Write a program to convert the time from 24-hour notation to 12-hour
notation and vice versa. Your program must be menu driven, giving the user
the choice of converting the time between the two notations. Furthermore,
your program must contain at least the following functions: a function to convert
the time from 24-hour notation to 12-hour notation, a function to convert the
time from 12-hour notation to 24-hour notation, a function to display the
choices, function(s) to get the input, and function(s) to display the results. (For
12-hour time notation, your program must display AM or PM.)

14. (The box problem) You have been given a flat cardboard of area, say, 70
square inches to make an open box by cutting a square from each corner and

430 | Chapter 7: User-Defined Functions II

folding the sides (see Figure 7-20). Your objective is to determine the dimen-
sions, that is, the length and width, and the side of the square to be cut from the
corners so that the resulting box is of maximum length.

Write a program that prompts the user to enter the area of the flat cardboard.
The program then outputs the length and width of the cardboard and the
length of the side of the square to be cut from the corner so that the resulting
box is of maximum volume. Calculate your answer to three decimal places.
Your program must contain a function that takes as input the length and width
of the cardboard and returns the side of the square that should be cut to
maximize the volume. The function also returns the maximum volume.

15. (The power station problem) A power station is on one side of a river
that is one-half mile wide, and a factory is eight miles downstream on the
other side of the river (see Figure 7-21). It costs $7 per foot to run power
lines over land and $9 per foot to run them under water. Your objective is
to determine the most economical path to lay the power line. That is,
determine how long the power line should run under water and how long
it should run over land to achieve the minimum total cost of laying the
power line.

7

x

y

z

y
x

z
x

y

z

FIGURE 7-20 Cardboard box

1/2 mile

8 miles
x miles

y miles

FIGURE 7-21 Power station, river, and factory

Programming Exercises | 431

Write a program that prompts the user to enter:

a. The width of the river

b. The distance of the factory downstream on the other side of the river

c. The cost of laying the power line under water

d. The cost of laying the power line over land

The program then outputs the length of the power line that should run
under water and the length that should run over land so the cost of
constructing the power line is at the minimum. The program should
also output the total cost of constructing the power line.

16. (Pipe problem, requires trigonometry) A pipe is to be carried
around the right-angled corner of two intersecting corridors. Suppose
that the widths of the two intersecting corridors are 5 feet and 8 feet
(see Figure 7-22). Your objective is to find the length of the longest
pipe, rounded to the nearest foot, that can be carried level around the
right-angled corner.

Write a program that prompts the user to input the widths of both of the
hallways. The program then outputs the length of the longest pipe, rounded to
the nearest foot, that can be carried level around the right-angled corner. (Note
that the length of the pipe is given by l = AB + BC = 8 / sin y + 5 / cos y,
where 0 < y < p/2.)

5

8

A

B
θ

C
l

FIGURE 7-22 Pipe problem

432 | Chapter 7: User-Defined Functions II

USER-DEFINED SIMPLE DATA
TYPES, NAMESPACES, AND
THE string TYPE

IN THIS CHAPTER , YOU WILL :

. Learn how to create and manipulate your own simple data type called the enumeration type

. Become familiar with the typedef statement

. Learn about the namespace mechanism

. Explore the string data type and learn how to use the various string functions to manipulate
strings

8C H A P T E R

In Chapter 2, you learned that C++’s simple data type is divided into three categories:
integral, floating-point, and enum. In subsequent chapters, you worked mainly with
integral and floating-point data types. In this chapter, you will learn about the enum
type. Moreover, the statement using namespace std; (discussed in Chapter 2) is used
in every C++ program that uses ANSI/ISO Standard C++ style header files. The second
half of this chapter examines the purpose of this statement. In fact, you will learn what the
namespace mechanism is. You will also learn about the string type and many useful
functions that you can use to effectively manipulate strings.

Enumeration Type

This section may be skipped without any loss of continuity.

Chapter 2 defined a data type as a set of values together with a set of operations on them.
For example, the int data type consists of integers from -2,147,483,648 to
2,147,483,647 and the set of operations on these numbers—namely, the arithmetic
operations (+, -, *, /, and %). Because the main objective of a program is to manipulate
data, the concept of a data type becomes fundamental to any programming language. By
providing data types, you specify what values are legal and tell the user what kinds of
operations are allowed on those values. The system thus provides you with built-in
checks against errors.

The data types that you have worked with until now were mostly int, bool, char, and
double. Even though these data types are sufficient to solve just about any problem,
situations occur when these data types are not adequate to solve a particular problem.
C++ provides a mechanism for users to create their own data types, which greatly
enhances the flexibility of the programming language.

In this section, you will learn how to create your own simple data types, known as the
enumeration types. In ensuing chapters, you will learn more advanced techniques to
create complex data types.

To define an enumeration type, you need the following items:

• A name for the data type

• A set of values for the data type

• A set of operations on the values

C++ lets you define a new simple data type wherein you specify its name and values, but
not the operations. Preventing users from creating their own operations helps to avoid
potential system failures.

The values that you specify for the data type must be identifiers.

434 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

The syntax for enumeration type is:

enum typeName {value1, value2, ...};

in which value1, value2, ... are identifiers called enumerators. In C++, enum is a
reserved word.

By listing all of the values between the braces, you also specify an ordering between
the values. That is, value1 < value2 < value3 <.... Thus, the enumeration
type is an ordered set of values. Moreover, the default value assigned to these
enumerators starts at 0. That is, the default value assigned to value1 is 0,
the default value assigned to value2 is 1, and so on. (You can assign different
values—other than the default values—for the enumerators when you define the
enumeration type.) Also notice that the enumerators value1, value2, ... are not
variables.

EXAMPLE 8-1

The statement:

enum colors {BROWN, BLUE, RED, GREEN, YELLOW};

defines a new data type called colors, and the values belonging to this data type are
BROWN, BLUE, RED, GREEN, and YELLOW.

EXAMPLE 8-2

The statement:

enum standing {FRESHMAN, SOPHOMORE, JUNIOR, SENIOR};

defines standing to be an enumeration type. The values belonging to standing are
FRESHMAN, SOPHOMORE, JUNIOR, and SENIOR.

EXAMPLE 8-3

Consider the following statements:

enum grades {'A', 'B', 'C', 'D', 'F'}; //illegal enumeration type
enum places {1ST, 2ND, 3RD, 4TH}; //illegal enumeration type

8

Enumeration Type | 435

These are illegal enumeration types because none of the values is an identifier. The
following, however, are legal enumeration types:

enum grades {A, B, C, D, F};
enum places {FIRST, SECOND, THIRD, FOURTH};

If a value has already been used in one enumeration type, it cannot be used by any other
enumeration type in the same block. The same rules apply to enumeration types declared
outside of any blocks. Example 8-4 illustrates this concept.

EXAMPLE 8-4

Consider the following statements:

enum mathStudent {JOHN, BILL, CINDY, LISA, RON};
enum compStudent {SUSAN, CATHY, JOHN, WILLIAM}; //illegal

Suppose that these statements are in the same program in the same block. The second
enumeration type, compStudent, is not allowed because the value JOHN was used in the
previous enumeration type mathStudent.

Declaring Variables
Once a data type is defined, you can declare variables of that type. The syntax for
declaring variables of an enum type is the same as before:

dataType identifier, identifier,...;

The statement:

enum sports {BASKETBALL, FOOTBALL, HOCKEY, BASEBALL, SOCCER,
VOLLEYBALL};

defines an enumeration type called sports. The statement:

sports popularSport, mySport;

declares popularSport and mySport to be variables of type sports.

Assignment
Once a variable is declared, you can store values in it. Assuming the previous declaration,
the statement:

popularSport = FOOTBALL;

436 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

stores FOOTBALL in popularSport. The statement:

mySport = popularSport;

copies the value of popularSport into mySport.

Operations on Enumeration Types
No arithmetic operations are allowed on the enumeration type. So the following state-
ments are illegal:

mySport = popularSport + 2; //illegal
popularSport = FOOTBALL + SOCCER; //illegal
popularSport = popularSport * 2; //illegal

Also, the increment and decrement operations are not allowed on enumeration types. So
the following statements are illegal:

popularSport++; //illegal
popularSport––; //illegal

Suppose you want to increment the value of popularSport by 1. You can use the cast
operator as follows:

popularSport = static_cast<sports>(popularSport + 1);

When the type name is used, the compiler assumes that the user understands what he or
she is doing. Thus, the preceding statement is compiled, and during execution, it advances
the value of popularSport to the next value in the list. Consider the following
statements:

popularSport = FOOTBALL;
popularSport = static_cast<sports>(popularSport + 1);

After the second statement, the value of popularSport is HOCKEY. Similarly, the
statements:

popularSport = FOOTBALL;
popularSport = static_cast<sports>(popularSport - 1);

result in storing BASKETBALL in popularSport.

Relational Operators
Because an enumeration is an ordered set of values, the relational operators can be used
with the enumeration type. Once again, suppose you have the enumeration type sports
and the variables popularSport and mySport as defined earlier. Then:

FOOTBALL <= SOCCER is true
HOCKEY > BASKETBALL is true
BASEBALL < FOOTBALL is false

8

Enumeration Type | 437

Suppose that:

popularSport = SOCCER;
mySport = VOLLEYBALL;

Then:

popularSport < mySport is true

ENUMERATION TYPES AND LOOPS

Recall that the enumeration type is an integral type and that, using the cast operator (that
is, type name), you can increment, decrement, and compare the values of the enumera-
tion type. Therefore, you can use these enumeration types in loops. Suppose mySport is
a variable as declared earlier. Consider the following for loop:

for (mySport = BASKETBALL; mySport <= SOCCER;
mySport = static_cast<sports>(mySport + 1))

.

.

.

This for loop has five iterations.

Using enumeration types in loops increases the readability of the program.

Input /Output of Enumeration Types
Because input and output are defined only for built-in data types such as int, char,
double, and so on, the enumeration type can be neither input nor output (directly).
However, you can input and output enumeration indirectly. Example 8-5 illustrates this
concept.

EXAMPLE 8-5

Suppose you have the following statements:

enum courses {ALGEBRA, BASIC, PASCAL, CPP, PHILOSOPHY, ANALYSIS,
CHEMISTRY, HISTORY};

courses registered;

The first statement defines an enumeration type, courses; the second declares a variable
registered of type courses. You can read (that is, input) the enumeration type with
the help of the char data type. Note that you can distinguish between some of the values
in the enumeration type courses just by reading the first character and others by reading
the first two characters. For example, you can distinguish between ALGEBRA and BASIC
just by reading the first character; you can distinguish between ALGEBRA and ANALYSIS
by reading the first two characters. To read these values from, say, the keyboard, you read
two characters and then use a selection structure to assign the value to the variable
registered. Thus, you need to declare two variables of type char.

438 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

char ch1, ch2;
cin >> ch1 >> ch2; //Read two characters

The following switch statement assigns the appropriate value to the variable registered:

switch (ch1)
{
case 'a':
case 'A':

if (ch2 == 'l' || ch2 == 'L')
registered = ALGEBRA;

else
registered = ANALYSIS;

break;
case 'b':
case 'B':

registered = BASIC;
break;

case 'c':
case 'C':

if (ch2 == 'h' || ch2 == 'H')
registered = CHEMISTRY;

else
registered = CPP;

break;
case 'h':
case 'H':

registered = HISTORY;
break;

case 'p':
case 'P':

if (ch2 == 'a' || ch2 == 'A')
registered = PASCAL;

else
registered = PHILOSOPHY;

break;
default:

cout << "Illegal input." << endl;
}

Similarly, you can output the enumeration type indirectly:

switch (registered)
{
case ALGEBRA:

cout << "Algebra";
break;

case ANALYSIS:
cout << "Analysis";
break;

case BASIC:
cout << "Basic";
break;

8

Enumeration Type | 439

case CHEMISTRY:
cout << "Chemistry";
break;

case CPP:
cout << "CPP";
break;

case HISTORY:
cout << "History";
break;

case PASCAL:
cout << "Pascal";
break;

case PHILOSOPHY:
cout << "Philosophy";

}

If you try to output the value of an enumerator directly, the computer will output the value

assigned to the enumerator. For example, suppose that registered = ALGEBRA;.
The following statement will output the value 0 because the (default) value assigned to
ALGEBRA is 0:

cout << registered << endl;

Similarly, the following statement will output 4:

cout << PHILOSOPHY << endl;

Functions and Enumeration Types
You can pass the enumeration type as a parameter to functions just like any other simple
data type—that is, by either value or reference. Also, just like any other simple data type,
a function can return a value of the enumeration type. Using this facility, you can use
functions to input and output enumeration types.

The following function inputs data from the keyboard and returns a value of the
enumeration type. Assume that the enumeration type courses is defined as before:

courses readCourses()
{

courses registered;
char ch1, ch2;

cout << "Enter the first two letters of the course: "
<< endl;

cin >> ch1 >> ch2;

switch (ch1)
{
case 'a':

440 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

case 'A':
if (ch2 == 'l' || ch2 == 'L')

registered = ALGEBRA;
else

registered = ANALYSIS;
break;

case 'b':
case 'B':

registered = BASIC;
break;

case 'c':
case 'C':

if (ch2 == 'h' || ch2 == 'H')
registered = CHEMISTRY;

else
registered = CPP;

break;
case 'h':
case 'H':

registered = HISTORY;
break;

case 'p':
case 'P':

if (ch2 == 'a' || ch2 == 'A')
registered = PASCAL;

else
registered = PHILOSOPHY;

break;
default:

cout << "Illegal input." << endl;
}
return registered;

} //end readCourse

The following function outputs an enumeration type value:

void printEnum(courses registered)
{

switch (registered)
{
case ALGEBRA:

cout << "Algebra";
break;

case ANALYSIS:
cout << "Analysis";
break;

case BASIC:
cout << "Basic";
break;

case CHEMISTRY:
cout << "Chemistry";
break;

8

Enumeration Type | 441

case CPP:
cout << "CPP";
break;

case HISTORY:
cout << "History";
break;

case PASCAL:
cout << "Pascal";
break;

case PHILOSOPHY:
cout << "Philosophy";

}//end switch
}//end printEnum

Declaring Variables When Defining the Enumeration Type
In previous sections, you first defined an enumeration type and then declared variables of that
type. C++ allows you to combine these two steps into one. That is, you can declare variables
of an enumeration type when you define an enumeration type. For example, the statement:

enum grades {A, B, C, D, F} courseGrade;

defines an enumeration type, grades, and declares a variable courseGrade of type
grades.

Similarly, the statement:

enum coins {PENNY, NICKEL, DIME, HALFDOLLAR, DOLLAR} change, usCoins;

defines an enumeration type, coins, and declares two variables, change and usCoins,
of type coins.

Anonymous Data Types
A data type wherein you directly specify values in the variable declaration with no type
name is called an anonymous type. The following statement creates an anonymous type:

enum {BASKETBALL, FOOTBALL, BASEBALL, HOCKEY} mySport;

This statement specifies the values and declares a variable mySport, but no name is given
to the data type.

Creating an anonymous type, however, has drawbacks. First, because there is no name for
the type, you cannot pass an anonymous type as a parameter to a function, and a function
cannot return an anonymous type value. Second, values used in one anonymous type can
be used in another anonymous type, but variables of those types are treated differently.
Consider the following statements:

enum {ENGLISH, FRENCH, SPANISH, GERMAN, RUSSIAN} languages;
enum {ENGLISH, FRENCH, SPANISH, GERMAN, RUSSIAN} foreignLanguages;

442 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Even though the variables languages and foreignLanguages have the same values,
the compiler treats them as variables of different types. The following statement is,
therefore, illegal:

languages = foreignLanguages; //illegal

Even though these facilities are available, use them with care. To avoid confusion, first
define an enumeration type and then declare the variables.

We now describe the typedef statement in C++.

typedef Statement
In C++, you can create synonyms or aliases to a previously defined data type by using the
typedef statement. The general syntax of the typedef statement is:

typedef existingTypeName newTypeName;

In C++, typedef is a reserved word. Note that the typedef statement does not create
any new data type; it creates only an alias to an existing data type.

EXAMPLE 8-6

The statement:

typedef int integer;

creates an alias, integer, for the data type int. Similarly, the statement:

typedef double real;

creates an alias, real, for the data type double. The statement:

typedef double decimal;

creates an alias, decimal, for the data type double.

Using the typedef statement, you can create your own Boolean data type, as shown in
Example 8-7.

EXAMPLE 8-7

From Chapter 4, recall that logical (Boolean) expressions in C++ evaluate to 1 or 0,
which are, in fact, int values. As a logical value, 1 represents true and 0 represents
false. Consider the following statements:

8

Enumeration Type | 443

typedef int Boolean; //Line 1
const Boolean TRUE = 1; //Line 2
const Boolean FALSE = 0; //Line 3
Boolean flag; //Line 4

The statement in Line 1 creates an alias, Boolean, for the data type int. The
statements in Lines 2 and 3 declare the named constants TRUE and FALSE and initialize
them to 1 and 0, respectively. The statement in Line 4 declares flag to be a variable of
type Boolean. Because flag is a variable of type Boolean, the following statement is
legal:

flag = TRUE;

PROGRAMMING EXAMPLE: The Game of Rock, Paper, and Scissors
Children often play the game of rock, paper, and scissors. This game has two players,
each of whom chooses one of the three objects: rock, paper, or scissors. If player 1
chooses rock and player 2 chooses paper, player 2 wins the game because paper
covers the rock. The game is played according to the following rules:

• If both players choose the same object, this play is a tie.

• If one player chooses rock and the other chooses scissors, the player
choosing the rock wins this play because the rock breaks the scissors.

• If one player chooses rock and the other chooses paper, the player
choosing the paper wins this play because the paper covers the rock.

• If one player chooses scissors and the other chooses paper, the player
choosing the scissors wins this play because the scissors cut the paper.

Write an interactive program that allows two people to play this game.

Input This program has two types of input:

• The users’ responses when asked to play the game.

• The players’ choices.

Output The players’ choices and the winner of each play. After the game is over,
the total number of plays and the number of times that each player won
should be output as well.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Two players play this game. Players enter their choices via the keyboard. Each
player enters R or r for Rock, P or p for Paper, or S or s for Scissors. While the
first player enters a choice, the second player looks elsewhere. Once both entries
are in, if the entries are valid, the program outputs the players’ choices and declares
the winner of the play. The game continues until one of the players decides to quit

444 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

the game. After the game ends, the program outputs the total number of plays and
the number of times that each player won. This discussion translates into the
following algorithm:

1. Provide a brief explanation of the game and how it is played.

2. Ask the users if they want to play the game.

3. Get plays for both players.

4. If the plays are valid, output the plays and the winner.

5. Update the total game count and winner count.

6. Repeat Steps 2 through 5 while the users agree to play the game.

7. Output the number of plays and times that each player won.

We will use the enumeration type to describe the objects.

enum objectType {ROCK, PAPER, SCISSORS};

Variables

(Function main)

It is clear that you need the following variables in the function main:

int gameCount; //variable to store the number of
//games played

int winCount1; //variable to store the number of games
//won by player 1

int winCount2; //variable to store the number of games
//won by player 2

int gamewinner;
char response; //variable to get the user's response to

//play the game
char selection1;
char selection2;
objectType play1; //player1's selection
objectType play2; //player2's selection

This program is divided into the following functions, which the ensuing sections
describe in detail.

• displayRules: This function displays some brief information about the
game and its rules.

• validSelection: This function checks whether a player’s selection is valid.
The only valid selections are R, r, P, p, S, and s.

• retrievePlay: Because enumeration types cannot be read directly, this func-
tion converts the entered choice (R, r, P, p, S, or s) and returns the
appropriate object type.

• gameResult: This function outputs the players’ choices and the winner of
the game.

Programming Example: The Game of Rock, Paper, and Scissors | 445

• convertEnum: This function is called by the function gameResult to
output the enumeration type values.

• winningObject: This function determines and returns the winning
object.

• displayResults: After the game is over, this function displays the final
results.

Function

displayRules

This function has no parameters. It consists only of output statements to explain the
game and rules of play. Essentially, this function’s definition is:

void displayRules()
{

cout << " Welcome to the game of Rock, Paper, "
<< "and Scissors." << endl;

cout << " This is a game for two players. For each "
<< "game, each" << endl;

cout << " player selects one of the objects Rock, "
<< "Paper, or Scissors." << endl;

cout << " The rules for winning the game are: " << endl;
cout << "1. If both players select the same object, it "

<< "is a tie." << endl;
cout << "2. Rock breaks Scissors: So player who selects "

<< "Rock wins." << endl;
cout << "3. Paper covers Rock: So player who selects "

<< "Paper wins." << endl;
cout << "4. Scissors cuts Paper: So player who selects "

<< "Scissors wins." << endl << endl;
cout << "Enter R or r to select Rock, P or p to select "

<< "Paper, and S or s to select Scissors." << endl;
}

Function

validSelection

This function checks whether a player’s selection is valid.

if selection is 'R' or 'r' or 'S' or 's' or 'P' or 'p', then
it is a valid selection;

otherwise the selection is invalid.

Let’s use a switch statement to check for the valid selection. The definition of this
function is:

bool validSelection(char selection)
{

switch (selection)
{
case 'R':
case 'r':
case 'P':
case 'p':
case 'S':

446 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

case 's':
return true;

default:
return false;

}
}

Function

retrievePlay

Because the enumeration type cannot be read directly, this function converts the entered
choice (R, r, P, p, S, or s) and returns the appropriate object type. This function thus has
one parameter, of type char. It is a value-returning function, and it returns a value of
type objectType. In pseudocode, the algorithm of this function is:

if selection is 'R' or 'r'
return ROCK;

if selection is 'P' or 'p'
return PAPER;

if selection is 'S' or 's'
return SCISSORS;

The definition of the function retrievePlay is:

objectType retrievePlay(char selection)
{

objectType object;

switch (selection)
{
case 'R':
case 'r':

object = ROCK;
break;

case 'P':
case 'p':

object = PAPER;
break;

case 'S':
case 's':

object = SCISSORS;
}

return object;
}

Function

gameResult

This function decides whether a game is a tie or which player is the winner. It
outputs the players’ selections and the winner of the game. Clearly, this function has
three parameters: player 1’s choice, player 2’s choice, and a parameter to return the
winner. In pseudocode, this function is:

a. if player1 and player2 have the same selection, then
this is a tie game.

Programming Example: The Game of Rock, Paper, and Scissors | 447

b. else
{

1. Determine the winning object. (Call function winningObject)
2. Output each player's choice.
3. Determine the winning player.
4. Return the winning player via a reference parameter to the

function main so that the function main can update the
winning player's win count.

}

The definition of this function is:

void gameResult(objectType play1, objectType play2,
int& winner)

{
objectType winnerObject;

if (play1 == play2)
{

winner = 0;
cout << "Both players selected ";
convertEnum(play1);
cout << ". This game is a tie." << endl;

}
else
{

winnerObject = winningObject(play1, play2);

//Output each player's choice
cout << "Player 1 selected ";
convertEnum(play1);
cout << " and player 2 selected ";
convertEnum(play2);
cout << ". ";

//Decide the winner
if (play1 == winnerObject)

winner = 1;
else if (play2 == winnerObject)

winner = 2;

//Output the winner
cout << "Player " << winner << " wins this game."

<< endl;
}

}

Function

convertEnum

Because enumeration types cannot be output directly, let’s write the function
convertEnum to output objects of the enum type objectType. This function
has one parameter, of type objectType. It outputs the string that corresponds to the
objectType. In pseudocode, this function is:

448 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

if object is ROCK
output "Rock"

if object is PAPER
output "Paper"

if object is SCISSORS
output "Scissors"

The definition of the function convertNum is:

void convertEnum(objectType object)
{

switch (object)
{
case ROCK:

cout << "Rock";
break;

case PAPER:
cout << "Paper";
break;

case SCISSORS:
cout << "Scissors";

}
}

Function

winningObject

To decide the winner of the game, you look at the players’ selections and then at the
rules of the game. For example, if one player chooses ROCK and another chooses
PAPER, the player who chose PAPER wins. In other words, the winning object is
PAPER. The function winningObject, given two objects, decides and returns the
winning object. Clearly, this function has two parameters of type objectType, and
the value returned by this function is also of type objectType. The definition of
this function is:

objectType winningObject(objectType play1, objectType play2)
{

if ((play1 == ROCK && play2 == SCISSORS)
|| (play2 == ROCK && play1 == SCISSORS))

return ROCK;
else if ((play1 == ROCK && play2 == PAPER)

|| (play2 == ROCK && play1 == PAPER))
return PAPER;

else
return SCISSORS;

}

Function

displayResults

After the game is over, this function outputs the final results—that is, the total
number of plays and the number of plays won by each player. The total number of
plays is stored in the variable gameCount, the number of plays won by player 1 is
stored in the variable winCount1, and the number of plays won by player 2 is stored

Programming Example: The Game of Rock, Paper, and Scissors | 449

in the variable winCount2. This function has three parameters corresponding to
these three variables. Essentially, the definition of this function is:

void displayResults(int gCount, int wCount1, int wCount2)
{

cout << "The total number of plays: " << gCount
<< endl;

cout << "The number of plays won by player 1: "
<< wCount1 << endl;

cout << "The number of plays won by player 2: "
<< wCount2 << endl;

}

We are now ready to write the algorithm for the function main.

MAIN

ALGORITHM

1. Declare the variables.

2. Initialize the variables.

3. Display the rules.

4. Prompt the users to play the game.

5. Get the users’ responses to play the game.

6. while (response is yes)

{

a. Prompt player 1 to make a selection.

b. Get the play for player 1.

c. Prompt player 2 to make a selection.

d. Get the play for player 2.

e. If both plays are legal:

{

i. Increment the total game count.

ii. Declare the winner of the game.

iii. Increment the winner’s game win count by 1.

}

f. Prompt the users to determine whether they want to play again.

g. Get the players’ responses.

}

7. Output the game results.

450 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Rock, Paper, and Scissors
// This program plays the game of rock, paper, and scissors.
//***

#include <iostream>

using namespace std;

enum objectType {ROCK, PAPER, SCISSORS};

//Function prototypes
void displayRules();
objectType retrievePlay(char selection);
bool validSelection(char selection);
void convertEnum(objectType object);
objectType winningObject(objectType play1, objectType play2);
void gameResult(objectType play1, objectType play2, int& winner);
void displayResults(int gCount, int wCount1, int wCount2);

int main()
{

//Step 1
int gameCount; //variable to store the number of

//games played
int winCount1; //variable to store the number of games

//won by player 1
int winCount2; //variable to store the number of games

//won by player 2
int gamewinner;
char response; //variable to get the user's response to

//play the game
char selection1;
char selection2;
objectType play1; //player1's selection
objectType play2; //player2's selection

//Initialize variables; Step 2
gameCount = 0;
winCount1 = 0;
winCount2 = 0;

displayRules(); //Step 3

cout << "Enter Y/y to play the game: "; //Step 4
cin >> response; //Step 5
cout << endl;

Programming Example: The Game of Rock, Paper, and Scissors | 451

Namespaces
In July 1998, ANSI/ISO Standard C++ was officially approved. Most recent compilers
are also compatible with ANSI/ISO Standard C++. (To be absolutely sure, check your
compiler’s documentation.) The two standards, Standard C++ and ANSI/ISO Standard
C++, are virtually the same. The ANSI/ISO Standard C++ language has some features
that are not available in Standard C++, which the remainder of this chapter addresses.

while (response == 'Y' || response == 'y') //Step 6
{

cout << "Player 1 enter your choice: "; //Step 6a
cin >> selection1; //Step 6b
cout << endl;

cout << "Player 2 enter your choice: "; //Step 6c
cin >> selection2; //Step 6d
cout << endl;

//Step 6e
if (validSelection(selection1)

&& validSelection(selection2))
{

play1 = retrievePlay(selection1);
play2 = retrievePlay(selection2);
gameCount++; //Step 6e.i
gameResult(play1, play2, gamewinner); //Step 6e.ii

if (gamewinner == 1) //Step 6e.iii
winCount1++;

else if (gamewinner == 2)
winCount2++;

}//end if

cout << "Enter Y/y to play the game: "; //Step 6f
cin >> response; //Step 6g
cout << endl;

}//end while

displayResults(gameCount, winCount1,
winCount2); //Step 7

return 0;
}//end main

//Place the definitions of the functions displayRules,
//validSelection, retrievePlay, convertEnum, winningObject,
//gameResult, and displayResults as described previously here.

452 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

In subsequent chapters, unless specified otherwise, the C++ syntax applies to both
standards. First, we discuss the namespace mechanism of the ANSI/ISO Standard
C++, which was introduced in Chapter 2.

When a header file, such as iostream, is included in a program, the global identifiers in the
header file also become the global identifiers in the program. Therefore, if a global identifier
in a program has the same name as one of the global identifiers in the header file, the
compiler generates a syntax error (such as ‘‘identifier redefined’’). The same problem can
occur if a program uses third-party libraries. To overcome this problem, third-party vendors
begin their global identifiers with a special symbol. In Chapter 2, you learned that because
compiler vendors begin their global identifier names with an underscore (_), to avoid linking
errors, you should not begin identifier names in your program with an underscore (_).

ANSI/ISO Standard C++ tries to solve this problem of overlapping global identifier
names with the namespace mechanism.

The general syntax of the statement namespace is:

namespace namespace_name
{

members
}

in which members is usually named constants, variable declarations, functions, or another
namespace. Note that namespace_name is a C++ identifier.

In C++, namespace is a reserved word.

EXAMPLE 8-8

The statement:

namespace globalType
{

const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult();

}

defines globalType to be a namespace with four members: named constants N and
RATE, the variable count, and the function printResult.

The scope of a namespace member is local to the namespace. You can usually
access a namespace member outside the namespace in one of two ways, as described
below.

8

Namespaces | 453

The general syntax for accessing a namespace member is:

namespace_name::identifier

Recall that in C++, :: is called the scope resolution operator.

To access the member RATE of the namespace globalType, the following statement is
required:

globalType::RATE

To access the member printResult (which is a function), the following statement is
required:

globalType::printResult();

Thus, to access a member of a namespace, you use the namespace_name, followed by
the scope resolution operator, followed by the member name.

To simplify the accessing of a namespace member, ANSI/ISO Standard C++ provides
the use of the statement using. The syntax to use the statement using is as follows:

a. To simplify the accessing of all namespace members:

using namespace namespace_name;

b. To simplify the accessing of a specific namespace member:

using namespace_name::identifier;

For example, the using statement:

using namespace globalType;

simplifies the accessing of all members of the namespace globalType. The statement:

using globalType::RATE;

simplifies the accessing of the member RATE of the namespace globalType.

In C++, using is a reserved word.

You typically put the using statement after the namespace declaration. For the
namespace globalType, for example, you usually write the code as follows:

namespace globalType
{

const int N = 10;
const double RATE = 7.50;
int count = 0;
void printResult();

}
using namespace globalType;

454 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

After the using statement, to access a namespace member, you do not have to put the
namespace_name and the scope resolution operator before the namespace member.
However, if a namespace member and a global identifier in a program have the same
name, to access this namespace member in the program, the namespace_name and
the scope resolution operator must precede the namespace member. Similarly, if a
namespace member and an identifier in a block have the same name, to access this
namespace member in the block, the namespace_name and the scope resolution
operator must precede the namespace member.

Examples 8-9 through 8-12 help clarify the use of the namespace mechanism.

EXAMPLE 8-9

Consider the following C++ code:

#include <iostream>

using namespace std;
.
.
.
int main()
{

.

.

.
}
.
.
.

In this example, you can refer to the global identifiers of the header file iostream, such
as cin, cout, and endl, without using the prefix std:: before the identifier name. The
obvious restriction is that the block (or function) that refers to the global identifier (of the
header file iostream) must not contain any identifier with the same name as this global
identifier.

EXAMPLE 8-10

Consider the following C++ code:

#include <cmath>

int main()
{

double x = 15.3;
double y;

Namespaces | 455

y = std::pow(x, 2);
.
.
.

}

This example accesses the function pow of the header file cmath.

EXAMPLE 8-11

Consider the following C++ code:

#include <iostream>
.
.
.
int main()
{

using namespace std;
.
.
.

}
.
.
.

In this example, the function main can refer to the global identifiers of the header file
iostream without using the prefix std:: before the identifier name. The using
statement appears inside the function main. Therefore, other functions (if any) should
use the prefix std:: before the name of the global identifier of the header file iostream
unless the function has a similar using statement.

EXAMPLE 8-12

Consider the following C++ code:

#include <iostream>

using namespace std; //Line 1

int t; //Line 2
double u; //Line 3

namespace expN
{

int x; //Line 4
char t; //Line 5

456 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

double u; //Line 6
void printResult(); //Line 7

}

using namespace expN;

int main()
{

int one; //Line 8
double t; //Line 9
double three; //Line 10

.

.

.
}

void expN::printResult() //Definition of the function printResult
{

.

.

.
}

In this C++ program:

1. To refer to the variable t in Line 2 in main, use the scope resolution
operator, which is :: (that is, refer to t as ::t), because the function
main has a variable named t (declared in Line 9). For example, to copy
the value of x into t, you can use the statement ::t = x;.

2. To refer to the member t (declared in Line 5) of the namespace expN
in main, use the prefix expN:: with t (that is, refer to t as expN::t)
because there is a global variable named t (declared in Line 2) and a
variable named t in main.

3. To refer to the member u (declared in Line 6) of the namespace expN
in main, use the prefix expN:: with u (that is, refer to u as expN::u)
because there is a global variable named u (declared in Line 3).

4. You can reference the member x (declared in Line 4) of the namespace
expN in main as either x or expN::x because there is no global
identifier named x and the function main does not contain any identifier
named x.

5. The definition of a function that is a member of a namespace, such
as printResult, is usually written outside the namespace as in
the preceding program. To write the definition of the function
printResult, the name of the function in the function heading
can be either printResult or expN::printResult (because no
other global identifier is named printResult).

8

Namespaces | 457

The identifiers in the system-provided header files, such as iostream, cmath, and
iomanip, are defined in the namespace std. For this reason, to simplify the
accessing of identifiers from these header files, we have been using the following state-

ment in the programs that we write:

using namespace std;

string Type
In Chapter 2, you were introduced to the data type string. Recall that prior to the
ANSI/ISO C++ language standard, the Standard C++ library did not provide a string
data type. Compiler vendors often supplied their own programmer-defined string
type, and the syntax and semantics of string operations often varied from vendor to
vendor.

The data type string is a programmer-defined type and is not part of the C++
language; the C++ standard library supplies it. Before using the data type string, the
program must include the header file string, as follows:

#include <string>

Recall that in C++, a string is a sequence of zero or more characters, and strings are
enclosed in double quotation marks.

The statement:

string name = "William Jacob";

declares name to be a string variable and initializes name to "William Jacob".
The position of the first character, W, in name is 0; the position of the second character,
i, is 1; and so on. That is, the position of the first character in a string variable starts
with 0, not 1.

The variable name can store (just about) any size string.

Chapter 3 discussed I/O operations on the string type; Chapter 4 explained relational
operations on the string type. We recommend that you revisit Chapters 3 and 4 and
review the I/O and relational operations on the string type.

Other operators, such as the binary operator + (to allow the string concatenation
operation) and the array index (subscript) operator [], have also been defined for the
data type string. Let’s see how these operators work on the string data type.

Suppose you have the following declarations:

string str1, str2, str3;

458 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

The statement:

str1 = "Hello There";

stores the string "Hello There" in str1. The statement:

str2 = str1;

copies the value of str1 into str2.

If str1 = "Sunny", the statement:

str2 = str1 + " Day";

stores the string "Sunny Day" into str2.

Suppose str1 = "Hello" and str2 = "There". The statement:

str3 = str1 + " " + str2;

stores "Hello There" into str3. This statement is equivalent to the statement:

str3 = str1 + ' ' + str2;

Also, the statement:

str1 = str1 + " Mickey";

updates the value of str1 by appending the string " Mickey" to its old value. Therefore,
the new value of str1 is "Hello Mickey".

For the operator + to work with the string data type, one of the operands of + must be a
string variable. For example, the following statements will not work:

str1 = "Hello " + "there!"; //illegal
str2 = "Sunny Day" + '!'; //illegal

If str1 = "Hello there", the statement:

str1[6] = 'T';

replaces the character t with the character T. Recall that the position of the first character
in a string variable is 0. Therefore, because t is the seventh character in str1, its
position is 6.

In C++, [] is called the array subscript operator.

As illustrated previously, using the array subscript operator together with the position of
the character, you can access an individual character within a string.

8

string Type | 459

EXAMPLE 8-13

The following program shows the effect of the preceding statements.

//Example string operations

#include <iostream>
#include <string>

using namespace std;

int main()
{

string name = "William Jacob"; //Line 1
string str1, str2, str3, str4; //Line 2

cout << "Line 3: Name = " << name << endl; //Line 3

str1 = "Hello There"; //Line 4
cout << "Line 5: str1 = " << str1 << endl; //Line 5

str2 = str1; //Line 6
cout << "Line 7: str2 = " << str2 << endl; //Line 7

str1 = "Sunny"; //Line 8
str2 = str1 + " Day"; //Line 9
cout << "Line 10: str2 = " << str2 << endl; //Line 10

str1 = "Hello"; //Line 11
str2 = "There"; //Line 12
str3 = str1 + " " + str2; //Line 13
cout << "Line 14: str3 = " << str3 << endl; //Line 14

str3 = str1 + ' ' + str2; //Line 15
cout << "Line 16: str3 = " << str3 << endl; //Line 16

str1 = str1 + " Mickey"; //Line 17
cout << "Line 18: str1 = " << str1 << endl; //Line 18

str1 = "Hello there"; //Line 19
cout << "Line 20: str1[6] = " << str1[6]

<< endl; //Line 20

str1[6] = 'T'; //Line 21
cout << "Line 22: str1 = " << str1 << endl; //Line 22

//String input operations
cout << "Line 23: Enter a string with "

<< "no blanks: "; //Line 23
cin >> str1; //Line 24

char ch; //Line 25

460 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

cin.get(ch); //Read the newline character; Line 26
cout << endl; //Line 27

cout << "Line 28: The string you entered = "
<< str1 << endl; //Line 28

cout << "Line 29: Enter a sentence: "; //Line 29
getline(cin, str2); //Line 30
cout << endl; //Line 31

cout << "Line 32: The sentence is: " << str2
<< endl; //Line 32

return 0;
}

Sample Run: In the following sample run, the user input is shaded.

Line 3: Name = William Jacob
Line 5: str1 = Hello There
Line 7: str2 = Hello There
Line 10: str2 = Sunny Day
Line 14: str3 = Hello There
Line 16: str3 = Hello There
Line 18: str1 = Hello Mickey
Line 20: str1[6] = t
Line 22: str1 = Hello There
Line 23: Enter a string with no blanks: Programming

Line 28: The string you entered = Programming
Line 29: Enter a sentence: Testing string operations

Line 32: The sentence is: Testing string operations

The preceding output is self-explanatory, and its unraveling is left as an exercise for you.

Additional string Operations
The data type string has a data type, string::size_type, and a named constant,
string::npos, defined as follows:

The data type string contains several other functions for string manipulation. The
following table describes some these functions. In this table, we assume that strVar is a
string variable and str is a string variable, a string constant, or a character array.
(Arrays are disussed in Chapter 9.)

string::size_type An unsigned integer (data) type

string::npos The maximum value of the (data) type string::size_type,
a number such as 4294967295 on many machines

string Type | 461

TABLE 8-1 Some string functions

Expression Effect

strVar.at(index) Returns the element at the position specified by
index.

strVar[index]
Returns the element at the position specified by
index.

strVar.append(n, ch) Appends n copies of ch to strVar, in which ch
is a char variable or a char constant.

strVar.append(str) Appends str to strVar.

strVar.clear() Deletes all the characters in strVar.

strVar.compare(str) Compares strVar and str. (This operation
is discussed in Chapter 4.)

strVar.empty() Returns true if strVar is empty; otherwise,
it returns false.

strVar.erase() Deletes all the characters in strVar.

strVar.erase(pos, n) Deletes n characters from strVar starting at
position pos.

strVar.find(str)
Returns the index of the first occurrence of str
in strVar. If str is not found, the special value
string::npos is returned.

strVar.find(str, pos) Returns the index of the first occurrence at or
after pos where str is found in strVar.

strVar.find_first_of
(str, pos)

Returns the index of the first occurrence of any
character of strVar in str. The search starts
at pos.

strVar.find_first_not_of
(str, pos)

Returns the index of the first occurrence of any
character of str not in strVar. The search
starts at pos.

strVar.insert(pos, n, ch);
Inserts n occurrences of the character ch at index
pos into strVar; pos and n are of type
string::size_type; ch is a character.

strVar.insert(pos, str); Inserts all the characters of str at index pos
into strVar.

strVar.length() Returns a value of type string::size_type
giving the number of characters strVar.

462 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Next, we show how some of these functions work.

EXAMPLE 8-14 (clear, empty, erase, length, AND size FUNCTIONS)

Consider the following statements:

string firstName = "Elizabeth";
string name = firstName + " Jones";
string str1 = "It is sunny.";
string str2 = "";
string str3 = "computer science";
string str4 = "C++ programming.";
string str5 = firstName + " is taking " + str4;

string::size_type len;

Next, we show the effect of clear, empty, erase, length, and size functions.

8

strVar.replace(pos, n, str);

Starting at index pos, replaces the next n
characters of strVar with all the characters of
str. If n > length of strVar, then all the
characters until the end of strVar are replaced.

strVar.substr(pos, len)

Returns a string that is a substring of strVar
starting at pos. The length of the substring is at
most len characters. If len is too large, it
means ‘‘to the end‘‘ of the string in strVar.

strVar.size() Returns a value of type string::size_type
giving the number of characters strVar.

strVar.swap(str1); Swaps the contents of strVar and str1. str1
is a string variable.

Statement Effect

str3.clear(); str3 ¼ "";
str1.empty(); Returns false;

str2.empty(); Returns true;

str4.erase(11, 4); str4 ¼ "C++ program.";
cout << firstName.length() << endl; Outputs 9

cout << name.length() << endl; Outputs 15

cout << str1.length() << endl; Outputs 12

cout << str5.size() << endl; Outputs 36

len = name.length(); The value of len is 15

string Type | 463

The following program illustrates the use of the length function.

//Example: clear, empty, erase, length, and size functions

#include <iostream>
#include <string>

using namespace std;

int main()
{

string firstName = "Elizabeth"; //Line 1
string name = firstName + " Jones"; //Line 2
string str1 = "It is sunny."; //Line 3
string str2 = ""; //Line 4
string str3 = "computer science"; //Line 5
string str4 = "C++ programming."; //Line 6
string str5 = firstName + " is taking " + str4; //Line 7

string::size_type len; //Line 8

cout << "Line 9: str3: " << str3 << endl; //Line 9
str3.clear(); //Line 10
cout << "Line 11: After clear, str3: " << str3

<< endl; //Line 11

cout << "Line 12: str1.empty(): " << str1.empty()
<< endl; //Line 12

cout << "Line 13: str2.empty(): " << str2.empty()
<< endl; //Line 13

cout << "Line 14: str4: " << str4 << endl; //Line 14
str4.erase(11, 4); //Line 15
cout << "Line 16: After erase(11, 4), str4: "

<< str4 << endl; //Line 16

cout << "Line 17: Length of \"" << firstName << "\" = "
<< static_cast<unsigned int> (firstName.length())
<< endl; //Line 17

cout << "Line 18: Length of \"" << name << "\" = "
<< static_cast<unsigned int> (name.length())
<< endl; //Line 18

cout << "Line 19: Length of \"" << str1 << "\" = "
<< static_cast<unsigned int> (str1.length())
<< endl; //Line 19

cout << "Line 20: Size of \"" << str5 << "\" = "
<< static_cast<unsigned int> (str5.size())
<< endl; //Line 20

len = name.length(); //Line 21
cout << "Line 22: len = "

<< static_cast<unsigned int> (len) << endl; //Line 22

return 0; //Line 23
}

464 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Sample Run:

Line 9: str3: computer science
Line 11: After clear, str3:
Line 12: str1.empty(): 0
Line 13: str2.empty(): 1
Line 14: str4: C++ programming.
Line 16: After erase(11, 4), str4: C++ program.
Line 17: Length of "Elizabeth" = 9
Line 18: Length of "Elizabeth Jones" = 15
Line 19: Length of "It is sunny." = 12
Line 20: Size of "Elizabeth is taking C++ programming." = 36
Line 22: len = 15

The output of this program is self-explanatory. The details are left as an exercise for you.
Notice that this program uses the static cast operator to output the value returned by the
function length. This is because the function length returns a value of the type
string::size_type. Without the cast operator, some compilers might give the
following warning message:

conversion from 'size_t' to 'unsigned int', possible loss of data

EXAMPLE 8-15 (find FUNCTION)

Suppose str1 and str2 are of type string. The following are valid calls to the
function find:

str1.find(str2)
str1.find("the")
str1.find('a')
str1.find(str2 + "xyz")
str1.find(str2 + 'b')

Consider the following statements:

string sentence = "Outside it is cloudy and warm.";
string str = "cloudy";

string::size_type position;

Next, we show the effect of the find function.

8

Statement Effect

cout << sentence.find("is") << endl; Outputs 11

cout << sentence.find('s') << endl; Outputs 3

cout << sentence.find(str) << endl; Outputs 14

cout << sentence.find("the") << endl; Outputs the value of string::npos

cout << sentence.find('i', 6) << endl; Outputs 8

position = sentence.find("warm"); Assigns 25 to position

string Type | 465

Note that the search is case sensitive. Therefore, the position of o (lowercase o) in the
string sentence is 16.

The following program evaluates the previous statements.

//Example: find function

#include <iostream>
#include <string>

using namespace std;

int main()
{

string sentence = "Outside it is cloudy and warm."; //Line 1
string str = "cloudy"; //Line 2

string::size_type position; //Line 3

cout << "Line 4: sentence = \"" << sentence
<< "\"" << endl; //Line 4

cout << "Line 5: The position of \"is\" in sentence = "
<< static_cast<unsigned int> (sentence.find("is"))
<< endl; //Line 5

cout << "Line 6: The position of 's' in sentence = "
<< static_cast<unsigned int> (sentence.find('s'))
<< endl; //Line 6

cout << "Line 7: The position of \"" << str
<< "\" in sentence = "
<< static_cast<unsigned int> (sentence.find(str))
<< endl; //Line 7

cout << "Line 8: The position of \"the\" in sentence = "
<< static_cast<unsigned int> (sentence.find("the"))
<< endl; //Line 8

cout << "Line 9: The first occurrence of \'i\' in "
<< "sentence \n after position 6 = "
<< static_cast<unsigned int> (sentence.find('i', 6))
<< endl; //Line 9

position = sentence.find("warm"); //Line 10
cout << "Line 11: " << "Position = "

<< position << endl; //Line 11

return 0; //Line 12
}

466 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

Sample Run:

Line 4: sentence = "Outside it is cloudy and warm."
Line 5: The position of "is" in sentence = 11
Line 6: The position of 's' in sentence = 3
Line 7: The position of "cloudy" in sentence = 14
Line 8: The position of "the" in sentence = 4294967295
Line 9: The first occurrence of 'i' in sentence

after position 6 = 8
Line 11: Position = 25

The output of this program is self-explanatory. The details are left as an exercise for you.
Notice that this program uses the static cast operator to output the value returned by
the function find. This is because the function find returns a value of the type
string::size_type. Without the cast operator, some compilers might give the
following warning message:

conversion from 'size_t' to 'unsigned int', possible loss of data

EXAMPLE 8-16 (insert AND replace FUNCTIONS)

Suppose that you have the following statements:

string firstString = "Cloudy and warm.";
string secondString ="Hello there";
string thirdString = "Henry is taking programming I.";
string str1 = " very ";
string str2 = "Lisa";

Next, we show the effect of insert and replace functions.

The following program evaluates the previous statements.

//Example: insert and replace functions

#include <iostream>
#include <string>

using namespace std;

Statement Effect

firstString.insert(10, str1); firstString = "Cloudy and very
warm."

secondString.insert(11, 5, '!'); secondString = "Hello there!!!!!"

thirdString.replace(0, 5, str2); thirdString = "Lisa is taking
programming I."

string Type | 467

int main()
{

string firstString = "Cloudy and warm."; //Line 1
string secondString = "Hello there"; //Line 2
string thirdString = "Henry is taking programming I."; //Line 3
string str1 = " very "; //Line 4
string str2 = "Lisa"; //Line 5

cout << "Line 6: firstString = " << firstString
<< endl; //Line 6

firstString.insert(10, str1); //Line 7
cout << "Line 8: After insert; firstString = "

<< firstString << endl; //Line 8

cout << "Line 9: secondString = " << secondString
<< endl; //Line 9

secondString.insert(11, 5, '!'); //Line 10
cout << "Line 11: After insert; secondString = "

<< secondString << endl; //Line 11

cout << "Line 12: thirdString = " << thirdString
<< endl; //Line 12

thirdString.replace(0, 5, str2); //Line 13
cout << "Line 14: After replace, thirdString = "

<< thirdString << endl; //Line 14

return 0; //Line 15
}

Sample Run:

Line 6: firstString = Cloudy and warm.
Line 8: After insert; firstString = Cloudy and very warm.
Line 9: secondString = Hello there
Line 11: After insert; secondString = Hello there!!!!!
Line 12: thirdString = Henry is taking programming I.
Line 14: After replace, thirdString = Lisa is taking programming I.

The output of this program is self-explanatory. The details are left as an exercise for you.

EXAMPLE 8-17 (substr FUNCTION)

Consider the following statements:

string sentence;
string str;

sentence = "It is cloudy and warm.";

468 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

Next, we show the effect of the substr function.

The following program illustrates how to use the string function substr.

//Example: substr function

#include <iostream>
#include <string>

using namespace std;

int main()
{

string sentence; //Line 1
string str; //Line 2

sentence = "It is cloudy and warm."; //Line 3

cout << "Line 4: substr(0, 5) in \""
<< sentence << "\" = \""
<< sentence.substr(0, 5) << "\"" << endl; //Line 4

cout << "Line 5: substr(6, 6) in \""
<< sentence << "\" = \""
<< sentence.substr(6, 6) << "\"" << endl; //Line 5

cout << "Line 6: substr(6, 16) in \""
<< sentence << "\" = " << endl
<< " \"" << sentence.substr(6, 16)
<< "\"" << endl; //Line 6

cout << "Line 7: substr(17, 10) in \""
<< sentence << "\" = \""
<< sentence.substr(17, 10) << "\"" << endl; //Line 7

cout << "Line 8: substr(3, 6) in \""
<< sentence << "\" = \""
<< sentence.substr(3, 6) << "\"" << endl; //Line 8

8

Statement Effect

cout << sentence.substr(0, 5) << endl; Outputs: It is

cout << sentence.substr(6, 6) << endl; Outputs: cloudy

cout << sentence.substr(6, 16) << endl; Outputs: cloudy and warm.

cout << sentence.substr(17, 10) << endl; Outputs: warm.

cout << sentence.substr(3, 6) << endl; Outputs: is clo

str = sentence.substr(0, 8); str = "It is cl"

str = sentence.substr(2, 10); str = " is cloudy"

string Type | 469

str = sentence.substr(0, 8); //Line 9
cout << "Line 10: " << "str = \"" << str

<< "\"" << endl; //Line 10

str = sentence.substr(2, 10); //Line 11
cout << "Line 12: " << "str = \"" << str

<< "\"" << endl; //Line 12

return 0;
}

Sample Run:

Line 4: substr(0, 5) in "It is cloudy and warm." = "It is"
Line 5: substr(6, 6) in "It is cloudy and warm." = "cloudy"
Line 6: substr(6, 16) in "It is cloudy and warm." =

"cloudy and warm."
Line 7: substr(17, 10) in "It is cloudy and warm." = "warm."
Line 8: substr(3, 6) in "It is cloudy and warm." = "is clo"
Line 10: str = "It is cl"
Line 12: str = " is cloudy"

The output of this program is self-explanatory. The details are left as an exercise for you.

EXAMPLE 8-18 (swap FUNCTION)

The swap function is used to swap—that is, interchange—the contents of two string
variables.

Suppose you have the following statements:

string str1 = "Warm";
string str2 = "Cold";

After the following statement executes, the value of str1 is "Cold" and the value of
str2 is "Warm".

str1.swap(str2);

Additional string functions are described in Appendix F (Header File string).

470 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

PROGRAMMING EXAMPLE: Pig Latin Strings
In this programming example, we write a program that prompts the user to input a
string and then outputs the string in the pig Latin form. The rules for converting a
string into pig Latin form are as follows:

1. If the string begins with a vowel, add the string "-way" at the end
of the string. For example, the pig Latin form of the string "eye" is
"eye-way".

2. If the string does not begin with a vowel, first add "-" at the end of
the string. Then rotate the string one character at a time; that is,
move the first character of the string to the end of the string until the
first character of the string becomes a vowel. Then add the string
"ay" at the end. For example, the pig Latin form of the string
"There" is "ere-Thay".

3. Strings such as "by" contain no vowels. In cases like this, the letter
y can be considered a vowel. So, for this program, the vowels are
a, e, i, o, u, y, A, E, I, O, U, and Y. Therefore, the pig Latin form
of "by" is "y-bay".

4. Strings such as "1234" contain no vowels. The pig Latin form
of the string "1234" is "1234-way". That is, the pig Latin form
of a string that has no vowels in it is the string followed by the
string "-way".

Input Input to the program is a string.

Output Output of the program is the string in the pig Latin form.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Suppose that str denotes a string. To convert str into pig Latin, check the first
character, str[0], of str. If str[0] is a vowel, add "-way" at the end of str—
that is, str = str + "-way".

Suppose that the first character of str, str[0], is not a vowel. First, add "-" at the
end of the string. Then, remove the first character of str from str and put it at the
end of str. Now, the second character of str becomes the first character of str.
This process of checking the first character of str and moving it to the end of str if
the first character of str is not a vowel is repeated until either the first character of
str is a vowel or all the characters of str are processed, in which case str does not
contain any vowels.

In this program, we write a function isVowel to determine whether a character is a
vowel, a function rotate to move the first character of str to the end of str, and

Programming Example: Pig Latin Strings | 471

a function pigLatinString to find the pig Latin form of str. The previous
discussion translates into the following algorithm:

1. Get str.

2. Find the pig Latin form ofstr by using the functionpigLatinString.

3. Output the pig Latin form of str.

Before writing the main algorithm, each of these functions is described in detail.

Function

isVowel

This function takes a character as a parameter and returns true if the character is
a vowel and false otherwise. The definition of the function isVowel is:

bool isVowel(char ch)
{

switch (ch)
{
case 'A':
case 'E':
case 'I':
case 'O':
case 'U':
case 'Y':
case 'a':
case 'e':
case 'i':
case 'o':
case 'u':
case 'y':

return true;
default:

return false;
}

}

Function

rotate

This function takes a string as a parameter, removes the first character of the string,
and places it at the end of the string. This is done by extracting the substring, starting
at position 1 (which is the second character) until the end of the string, and then
adding the first character of the string. The new string is returned as the value of this
function. Essentially, the definition of the function rotate is:

string rotate(string pStr)
{

string::size_type len = pStr.length();

string rStr;

rStr = pStr.substr(1, len - 1) + pStr[0];

return rStr;
}

472 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

Function

pigLatinString

This function takes a string, pStr, as a parameter and returns the pig Latin form
of pStr. Suppose pStr denotes the string to be converted to its pig Latin form.
There are three possible cases: pStr[0] is a vowel, pStr contains a vowel and the
first character of pStr is not a vowel, or pStr contains no vowels. Suppose that
pStr[0] is not a vowel. Move the first character of pStr to the end of pStr. This
process is repeated until either the first character of pStr has become a vowel or all
the characters of pStr are checked, in which case pStr does not contain any vowels.
This discussion translates into the following algorithm:

1. If pStr[0] is a vowel, add "-way" at the end of pStr.

2. Suppose pStr[0] is not a vowel.

3. Move the first character of pStr to the end of pStr. The second
character of pStr becomes the first character of pStr. Now pStr
may or may not contain a vowel. We use a bool variable, foundVo-
wel, which is set to true if pStr contains a vowel and false
otherwise.

a. Suppose that len denotes the length of pStr.

b. Initialize foundVowel to false.

c. If pStr[0] is not a vowel, move pStr[0] to the end of pStr
by calling the function rotate.

d. Repeat Step b until either the first character of pStr becomes a
vowel or all the characters of pStr have been checked.

4. Convert pStr into the pig Latin form.

5. Return pStr.

The definition of the function pigLatinString is:

string pigLatinString(string pStr)
{

string::size_type len;

bool foundVowel;

string::size_type counter;

if (isVowel(pStr[0])) //Step 1
pStr = pStr + "-way";

else //Step 2
{

pStr = pStr + '-';
pStr = rotate(pStr); //Step 3

len = pStr.length(); //Step 3.a
foundVowel = false; //Step 3.b

Programming Example: Pig Latin Strings | 473

for (counter = 1; counter < len - 1;
counter++) //Step 3.d

if (isVowel(pStr[0]))
{

foundVowel = true;
break;

}
else //Step 3.c

pStr = rotate(pStr);

if (!foundVowel) //Step 4
pStr = pStr.substr(1, len) + "-way";

else
pStr = pStr + "ay";

}

return pStr; //Step 5
}

MAIN

ALGORITHM

1. Get the string.

2. Call the function pigLatinString to find the pig Latin form of
the string.

3. Output the pig Latin form of the string.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Pig Latin Strings
// This program reads a string and outputs the pig Latin form
// of the string.
//***

#include <iostream>
#include <string>

using namespace std;

bool isVowel(char ch);
string rotate(string pStr);
string pigLatinString(string pStr);

int main()
{

string str;

cout << "Enter a string: ";
cin >> str;

474 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

QUICK REVIEW

1. An enumeration type is a set of ordered values.

2. C++’s reserved word enum is used to create an enumeration type.

3. The syntax of enum is:
enum typeName {value1, value2,...};

in which value1, value2,. . . are identifiers, and value1 < value2 <

4. No arithmetic operations are allowed on the enumeration type.

8

cout << endl;

cout << "The pig Latin form of " << str << " is: "
<< pigLatinString(str) << endl;

return 0;
}

//Place the definitions of the functions isVowel, rotate, and
//pigLatinString and as described previously here.

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1:

Enter a string: eye

The pig Latin form of eye is: eye-way

Sample Run 2:

Enter a string: There

The pig Latin form of There is: ere-Thay

Sample Run 3:

Enter a string: why

The pig Latin form of why is: y-whay

Sample Run 4:

Enter a string: 123456

The pig Latin form of 123456 is: 123456-way

Quick Review | 475

5. Relational operators can be used with enum values.

6. Enumeration type values cannot be input or output directly.

7. Enumeration types can be passed as parameters to functions either by value
or by reference.

8. A function can return a value of the enumeration type.

9. An anonymous type is one in which a variable’s values are specified without
any type name.

10. C++’s reserved word typedef is used to create synonyms or aliases to
previously defined data types.

11. Anonymous types cannot be passed as parameters to functions.

12. The namespace mechanism is a feature of ANSI/ISO Standard C++.

13. A namespace member is usually a named constant, variable, function, or
another namespace.

14. The scope of a namespace member is local to the namespace.

15. One way to access a namespace member outside the namespace is to
precede the namespace member name with the namespace name and
scope resolution operator.

16. In C++, namespace is a reserved word.

17. To use the namespace mechanism, the program must include the ANSI/
ISO Standard C++ header files—that is, the header files without the
extension h.

18. The using statement simplifies the accessing of namespace members.

19. In C++, using is a reserved word.

20. The keyword namespace must appear in the using statement.

21. When accessing a namespace member without the using statement, the
namespace name and the scope resolution operator must precede the
name of the namespace member.

22. To use an identifier declared in the standard header files without the
namespace name, after including all the necessary header files, the follow-
ing statement must appear in the program:

using namespace std;

23. A string is a sequence of zero or more characters.

24. Strings in C++ are enclosed in double quotation marks.

25. To use the type string, the program must include the header file
string. The other header files used in the program should be ANSI/
ISO Standard C++ style header files.

26. The assignment operator can be used with the string type.

27. The operator + can be used to concatenate two values of the type string.
For the operator + to work with the string data type, one of the operands
of + must be a string variable.

476 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

28. Relational operators, discussed in Chapter 4, can be applied to the string
type.

29. In a string, the position of the first character is 0, the position of the second
character is 1, and so on.

30. The length of a string is the number of characters in the string.

31. In C++, [] is called the array subscript operator.

32. To access an individual character within a string, use the array subscript
operator together with the position of the character.

33. The string type contains functions such as at, append, clear, compare,
erase, find, find_first_of, find_first_not_of, insert, length,
replace, size, substr, and swap to manipulate strings. These functions
are describe in Table 8-1.

EXERCISES

1. Mark the following statements as true or false.

a. The following is a valid C++ enumeration type:

enum romanNumerals {I, V, X, L, C, D, M};

b. Given the declaration:

enum cars {FORD, GM, TOYOTA, HONDA};
cars domesticCars = FORD;

the statement:

domesticCars = domesticCars + 1;

sets the value of domesticCars to GM.

c. A function can return a value of an enumeration type.

d. You can input the value of an enumeration type directly from a standard
input device.

e. The only arithmetic operations allowed on the enumeration type are
increment and decrement.

f. The values in the domain of an enumeration type are called enumerators.

g. The following are legal C++ statements in the same block of a C++
program:

enum mathStudent {BILL, JOHN, LISA, RON, CINDY, SHELLY};
enum historyStudent {AMANDA, BOB, JACK, TOM, SUSAN};

h. The following statement creates an anonymous type:

enum {A, B, C, D, F} studentGrade;

i. You can use the namespace mechanism with header files with the
extension h.

8

Exercises | 477

j. Suppose str = "ABCD";. After the statement str[1] = 'a';, the value
of str is "aBCD".

k. Suppose str = "abcd". After the statement:

str = str + "ABCD";

the value of str is "ABCD".

2. Write C++ statements that do the following:

a. Define an enum type, bookType, with the values MATH, CSC, ENGLISH,
HISTORY, PHYSICS, and PHILOSOPHY.

b. Declare a variable book of type bookType.

c. Assign MATH to the variable book.

d. Advance book to the next value in the list.

e. Output the value of the variable book.

3. Given:

enum currencyType {DOLLAR, POUND, FRANK, LIRA, MARK};
currencyType currency;

which of the following statements are valid?

a. currency = DOLLAR;

b. cin >> currency;

c. currency = static_cast<currencyType>(currency + 1);

d. for (currency = DOLLAR; currency <= MARK; currency++)
cout << "*";

4. Given:

enum cropType {WHEAT, CORN, RYE, BARLEY, OATS};
cropType crop;

circle the correct answer.

a. static_cast<int>(WHEAT) is 0
(i) true (ii) false

b. static_cast<cropType>(static_cast<int>(WHEAT) - 1) is
WHEAT
(i) true (ii) false

c. RYE > WHEAT
(i) true (ii) false

d. for (crop = wheat; crop <= oats; ++crop)
cout << "*";

cout << endl;

outputs: *****
(i) true (ii) false

478 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

5. What is wrong with the following program?

#include <iostream> //Line 1

int main() //Line 2
{

cout << "Hello World! " << endl; //Line 3

return 0; //Line 4
}

6. What is wrong with the following program?

#include <iostream.h> //Line 1

using namespace std; //Line 2

int main() //Line 3
{

int x = 0; //Line 4
cout << "x = " << x << endl; //Line 5
return 0; //Line 6

}

7. What is wrong with the following program?

#include <iostream> //Line 1

namespace aaa //Line 2
{

const int X = 0; //Line 3
double y; //Line 4

}

using namespace std; //Line 5

int main() //Line 6
{

y = 34.50; //Line 7
cout << "X = " << X << ", y = " << y

<< endl; //Line 8
return 0; //Line 9

}

8. What is wrong with the following program?

#include <iostream> //Line 1
#include <cmath> //Line 2

using std; //Line 3

int main() //Line 4
{

return 0; //Line 5
}

8

Exercises | 479

9. Consider the following C++ code:

string str1;
string str2;
char ch;

cin >> str1;
str2 = str1;
cin >> ch;
str2[0] = ch;
cout << str1 << " –> " << str2 << endl;

Answer the following questions.

a. What is the output if the input is Hello J?

b. What is the output if the input is Bingo R?

c. What is the output if the input is Sunny B?

10. Suppose that you have the following statements:

string str1, str2;

cin >> str1 >> str2;

if (str1 == str2)
cout << str1 + '!' << endl;

else if (str1 > str2)
cout << str1 + " > " + str2 << endl;

else
cout << str1 + " < " + str2 << endl;

Answer the following questions.

a. What is the output if the input is diamond diamond?

b. What is the output if the input is diamond gold?

c. What is the output if the input is silver gold?

11. What is the output of the following program?

#include <iostream>
#include <string>

using namespace std;

int main()
{

string str1 = "Amusement Park";
string str2 = "Going to";
string str3 = "the";
string str;

cout << str2 + ' '+ str3 + ' ' + str1 << endl;
cout << str1.length() << endl;
cout << str1.find('P') << endl;
cout << str1.substr(1, 5) << endl;

480 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

str = "ABCDEFGHIJK";
cout << str << endl;
cout << str.length() << endl;

str[0] = 'a';
str[2] = 'd';

cout << str << endl;

return 0;
}

12. Consider the following statement:

string str = "Now is the time for the party!";

What is the output of the following statements? (Assume that all parts are
independent of each other.)

a. cout << str.size() << endl;

b. cout << str.substr(7, 8) << endl;

c. string::size_type ind = str.find('f');
string s = str.substr(ind + 4, 9);
cout << s << endl;

d. cout << str.insert(11, "best ") << endl;

e. str.erase(16, 14);
str.insert(16, "to study for the exam?");
cout << str << endl;

PROGRAMMING EXERCISES

1. a. Define an enumeration type, triangleType, that has the values
scalene, isosceles, equilateral, and noTriangle.

b. Write a function, triangleShape, that takes as parameters three num-
bers, each of which represents the length of a side of the triangle. The
function should return the shape of the triangle. (Note: In a triangle, the sum
of the lengths of any two sides is greater than the length of the third side.)

c. Write a program that prompts the user to input the length of the sides of
a triangle and outputs the shape of the triangle.

2. Redo Programming Exercise 14 of Chapter 4 (cell phone company) so that
all of the named constants are defined in a namespace.

3. The Programming Example: Pig Latin Strings converts a string into the pig
Latin form, but it processes only one word. Rewrite the program so that it
can be used to process a text of an unspecified length. If a word ends with a
punctuation mark, in the pig Latin form, put the punctuation at the end of
the string. For example, the pig Latin form of Hello! is ello-Hay!.
Assume that the text contains the following punctuation marks: , (comma),

8

Programming Exercises | 481

. (period), ? (question mark), ; (semicolon), and : (colon). (Your program
may store the output in a file.)

4. Write a program that prompts the user to input a string. The program then uses
the function substr to remove all the vowels from the string. For example, if
str = "There", then after removing all the vowels, str = "Thr". After
removing all the vowels, output the string. Your program must contain a
function to remove all the vowels and a function to determine whether a
character is a vowel.

5. Write a program that can be used to calculate the federal tax. The tax is
calculated as follows: For single people, the standard exemption is $4,000; for
married people, the standard exemption is $7,000. A person can also put up
to 6% of his or her gross income in a pension plan. The tax rates are as
follows: If the taxable income is:

• Between $0 and $15,000, the tax rate is 15%.

• Between $15,001 and $40,000, the tax is $2,250 plus 25% of the taxable
income over $15,000.

• Over $40,000, the tax is $8,460 plus 35% of the taxable income over
$40,000.

Prompt the user to enter the following information:

• Marital status

• If the marital status is ‘‘married,’’ ask for the number of children under
the age of 14

• Gross salary (If the marital status is ‘‘married’’ and both spouses have
income, enter the combined salary.)

• Percentage of gross income contributed to a pension fund

Your program must consist of at least the following functions:

a. Function getData: This function asks the user to enter the relevant data.

b. Function taxAmount: This function computes and returns the tax owed.

To calculate the taxable income, subtract the sum of the standard exemption,
the amount contributed to a pension plan, and the personal exemption,
which is $1,500 per person. (Note that if a married couple has two children
under the age of 14, then the personal exemption is $1,500 * 4 = $6,000.)

6. A set of integers a, b, and c is called a Pythagorean triple if a2 + b2 = c2. For
example, the integers 3, 4, and 5 form a Pythagorean triple because 32 + 42 =
52. To find Pythagorean triples, use the following formula. Let m and n be
integers. If a = m2 – n2, b = 2mn, and c = m2 + n2, then a, b, and c are a
Pythagorean triple. Write a program that prompts the user to enter values for
m and n and then outputs the Pythagorean triple corresponding to m and n.

7. (Fraction calculator) Write a program that lets the user perform arithmetic
operations on fractions. Fractions are of the form a/b, in which a and b are
integers and b 6¼ 0. Your program must be menu driven, allowing the user to

482 | Chapter 8: User-Defined Simple Data Types, Namespaces, and the string Type

8

select the operation (+, -, *, or /) and input the numerator and denominator
of each fraction. Furthermore, your program must consist of at least the
following functions:

a. Function menu: This function informs the user about the program’s
purpose, explains how to enter data, and allows the user to select the
operation.

b. Function addFractions: This function takes as input four integers
representing the numerators and denominators of two fractions, adds the
fractions, and returns the numerator and denominator of the result.
(Notice that this function has a total of six parameters.)

c. Function subtractFractions: This function takes as input four
integers representing the numerators and denominators of two fractions,
subtracts the fractions, and returns the numerator and denominator of
the result. (Notice that this function has a total of six parameters.)

d. Function multiplyFractions: This function takes as input four
integers representing the numerators and denominators of two fractions,
multiplies the fractions, and returns the numerators and denominators of
the result. (Notice that this function has a total of six parameters.)

e. Function divideFractions: This function takes as input four integers
representing the numerators and denominators of two fractions, divides
the fractions, and returns the numerator and denominator of the result.
(Notice that this function has a total of six parameters.)

Some sample outputs are:

3 / 4 + 2 / 5 = 23 / 20
2 / 3 * 3 / 5 = 6 / 15

Your answer need not be in the lowest terms.

8. Write a program that reads in a line consisting of a student’s name, Social
Security number, user ID, and password. The program outputs the string in
which all the digits of the Social Security number, and all the characters in
the password are replaced by x. (The Social Security number is in the form
000-00-0000, and the user ID and the password do not contain any
spaces.) Your program should not use the operator [] to access a string
element. Use the appropriate functions described in Table 8-1.

9. You are given a file consisting of students’ names in the following form:
lastName, firstName middleName. (Note that a student may not have a
middle name.) Write a program that converts each name to the following
form: firstName middleName lastName. Your program must read each
student’s entire name in a variable and must consist of a function that takes as
input a string, consists of a student’s name, and returns the string consisting of
the altered name. Use the string function find to find the index of ,; the
function length to find the length of the string; and the function substr
to extract the firstName, middleName, and lastName.

Programming Exercises | 483

This page intentionally left blank

ARRAYS AND STRINGS
IN THIS CHAPTER , YOU WILL :

. Learn about arrays

. Explore how to declare and manipulate data into arrays

. Learn about ‘‘array index out of bounds’’

. Become familiar with the restrictions on array processing

. Discover how to pass an array as a parameter to a function

. Learn how to search an array

. Learn about C-strings

. Examine the use of string functions to process C-strings

. Discover how to input data into—and output data from—a C-string

. Learn about parallel arrays

. Discover how to manipulate data in a two-dimensional array

. Learn about multidimensional arrays

9C H A P T E R

In previous chapters, you worked with simple data types. In Chapter 2, you learned that
C++ data types fall into three categories. One of these categories is the structured data
type. This chapter and the next few chapters focus on structured data types.

Recall that a data type is called simple if variables of that type can store only one value at
a time. In contrast, in a structured data type, each data item is a collection of other data
items. Simple data types are building blocks of structured data types. The first structured
data type that we will discuss is an array. In Chapters 10 and 11, we will discuss other
structured data types.

Before formally defining an array, let us consider the following problem. We want to
write a C++ program that reads five numbers, finds their sum, and prints the numbers in
reverse order.

In Chapter 5, you learned how to read numbers, print them, and find the sum. The
difference here is that we want to print the numbers in reverse order. This means we
cannot print the first four numbers until we have printed the fifth, and so on. To do this,
we need to store all of the numbers before we start printing them in reverse order. From
what we have learned so far, the following program accomplishes this task.

//Program to read five numbers, find their sum, and print the
//numbers in reverse order.

#include <iostream>

using namespace std;

int main()
{

int item0, item1, item2, item3, item4;
int sum;

cout << "Enter five integers: ";
cin >> item0 >> item1 >> item2 >> item3 >> item4;
cout << endl;

sum = item0 + item1 + item2 + item3 + item4;

cout << "The sum of the numbers = " << sum << endl;
cout << "The numbers in the reverse order are: ";
cout << item4 << " " << item3 << " " << item2 << " "

<< item1 << " " << item0 << endl;

return 0;
}

This program works fine. However, if you need to read 100 (or more) numbers and
print them in reverse order, you would have to declare 100 variables and write many
cin and cout statements. Thus, for large amounts of data, this type of program is not
desirable.

486 | Chapter 9: Arrays and Strings

Note the following in the previous program:

1. Five variables must be declared because the numbers are to be printed in
reverse order.

2. All variables are of type int—that is, of the same data type.

3. The way in which these variables are declared indicates that the variables
to store these numbers all have the same name—except the last char-
acter, which is a number.

Statement 1 tells you that you have to declare five variables. Statement 3 tells you
that it would be convenient if you could somehow put the last character, which is a
number, into a counter variable and use one for loop to count from 0 to 4 for
reading and another for loop to count from 4 to 0 for printing. Finally, because all
variables are of the same type, you should be able to specify how many variables
must be declared—and their data type—with a simpler statement than the one we
used earlier.

The data structure that lets you do all of these things in C++ is called an array.

Arrays
An array is a collection of a fixed number of components all of the same data type. A
one-dimensional array is an array in which the components are arranged in a list form.
This section discusses only one-dimensional arrays. Arrays of two dimensions or more are
discussed later in this chapter.

The general form for declaring a one-dimensional array is:

dataType arrayName[intExp];

in which intExp is any constant expression that evaluates to a positive integer. Also,
intExp specifies the number of components in the array.

EXAMPLE 9-1

The statement:

int num[5];

declares an array num of five components. Each component is of type int. The compo-
nents are num[0], num[1], num[2], num[3], and num[4]. Figure 9-1 illustrates the
array num.

9

Arrays | 487

To save space, we also draw an array, as shown in Figure 9-2(a) or 9-2(b).

Accessing Array Components
The general form (syntax) used for accessing an array component is:

arrayName[indexExp]

in which indexExp, called the index, is any expression whose value is a nonnegative
integer. The index value specifies the position of the component in the array.

In C++, [] is an operator called the array subscripting operator. Moreover, in C++,
the array index starts at 0.

num[0]

num[1]

num[2]

num[3]

num[4]

FIGURE 9-1 Array num

num[0] num[1] num[2] num[3] num[4]
num

[0] [1] [2] [3] [4]
num

(a)

(b)

FIGURE 9-2 Array num

488 | Chapter 9: Arrays and Strings

Consider the following statement:

int list[10];

This statement declares an array list of 10 components. The components are
list[0], list[1], ..., list[9]. In other words, we have declared 10 variables
(see Figure 9-3).

The assignment statement:

list[5] = 34;

stores 34 in list[5], which is the sixth component of the array list (see Figure 9-4).

Suppose i is an int variable. Then, the assignment statement:

list[3] = 63;

is equivalent to the assignment statements:

i = 3;
list[i] = 63;

If i is 4, then the assignment statement:

list[2 * i - 3] = 58;

stores 58 in list[5] because 2 * i - 3 evaluates to 5. The index expression is evaluated
first, giving the position of the component in the array.

Next, consider the following statements:

list[3] = 10;
list[6] = 35;
list[5] = list[3] + list[6];

9

[0]

list

[1] [3] [6] [8] [9][7][2] [4] [5]

FIGURE 9-3 Array list

[0]

list

[1] [3]

34

[6] [8] [9][7][2] [4] [5]

FIGURE 9-4 Array list after execution of the statement list[5]= 34;

Arrays | 489

The first statement stores 10 in list[3], the second statement stores 35 in list[6],
and the third statement adds the contents of list[3] and list[6] and stores the result
in list[5] (see Figure 9-5).

EXAMPLE 9-2

You can also declare arrays as follows:

const int ARRAY_SIZE = 10;
int list[ARRAY_SIZE];

That is, you can first declare a named constant and then use the value of the named
constant to declare an array and specify its size.

When you declare an array, its size must be known. For example, you cannot do the

following:

int arraySize; //Line 1

cout << "Enter the size of the array: "; //Line 2
cin >> arraySize; //Line 3
cout << endl; //Line 4

int list[arraySize]; //Line 5; not allowed

The statement in Line 2 asks the user to enter the size of the array when the program

executes. The statement in Line 3 inputs the size of the array into arraySize. When

the compiler compiles Line 1, the value of the variable arraySize is unknown. Thus,

when the compiler compiles Line 5, the size of the array is unknown and the compiler will

not know how much memory space to allocate for the array. In Chapter 13, you will learn

how to specify the size of an array during program execution and then declare an array of

that size using pointers. Arrays that are created by using pointers during program execu-

tion are called dynamic arrays. For now, whenever you declare an array, its size must be

known.

[0]

list

[1] [2] [3] [4] [5]

45

[6] [8]

10 35

[9][7]

FIGURE 9-5 Array list after execution of the statements list[3]= 10;, list[6]= 35;, and
list[5] = list[3] + list[6];

490 | Chapter 9: Arrays and Strings

Processing One-Dimensional Arrays
Some of the basic operations performed on a one-dimensional array are initializing,
inputting data, outputting data stored in an array, and finding the largest and/or
smallest element. Moreover, if the data is numeric, some other basic operations are
finding the sum and average of the elements of the array. Each of these operations
requires the ability to step through the elements of the array. This is easily
accomplished using a loop. For example, suppose that we have the following
statements:

int list[100]; //list is an array of size 100
int i;

The following for loop steps through each element of the array list, starting at the first
element of list:

for (i = 0; i < 100; i++) //Line 1
//process list[i] //Line 2

If processing the list requires inputting data into list, the statement in Line 2 takes
the form of an input statement, such as the cin statement. For example, the
following statements read 100 numbers from the keyboard and store the numbers
in list:

for (i = 0; i < 100; i++) //Line 1
cin >> list[i]; //Line 2

Similarly, if processing list requires outputting the data, then the statement in Line 2
takes the form of an output statement. Example 9-3 further illustrates how to process
one-dimensional arrays.

EXAMPLE 9-3

This example shows how loops are used to process arrays. The following declaration is
used throughout this example:

double sales[10];
int index;
double largestSale, sum, average;

The first statement declares an array sales of 10 components, with each component
being of type double. The meaning of the other statements is clear.

a. Initializing an array: The following loop initializes every compo-
nent of the array sales to 0.0.

for (index = 0; index < 10; index++)
sales[index] = 0.0;

9

Arrays | 491

b. Reading data into an array: The following loop inputs the data
into the array sales. For simplicity, we assume that the data is
entered from the keyboard.

for (index = 0; index < 10; index++)
cin >> sales[index];

c. Printing an array: The following loop outputs the array sales.
For simplicity, we assume that the output goes to the screen.

for (index = 0; index < 10; index++)
cout << sales[index] << " ";

d. Finding the sum and average of an array: Because the array
sales, as its name implies, represents certain sales data, it is natural
to find the total sale and average sale amounts. The following C++
code finds the sum of the elements of the array sales and the
average sale amount:

sum = 0;
for (index = 0; index < 10; index++)

sum = sum + sales[index];

average = sum / 10;

e. Largest element in the array: We now discuss the algorithm to
find the first occurrence of the largest element in an array—that is, the
first array component with the largest value. However, in general, the
user is more interested in determining the location of the largest
element in the array. Of course, if you know the location (that is,
the index of the largest element in the array), you can easily determine
the value of the largest element in the array. So let us describe the
algorithm to determine the index of the first occurrence of the largest
element in an array—in particular, the index of the largest sale amount
in the array sales. We will use the index of the first occurrence of the
largest element in the array to find the largest sale.

We assume that maxIndex will contain the index of the first occur-
ence of the largest element in the array sales. The general algorithm
is straightforward. Initially, we assume that the first element in the list is
the largest element, so maxIndex is initialized to 0. We then compare
the element pointed to by maxIndex with every subsequent element
in the list. Whenever we find an element in the array larger than the
element pointed to by maxIndex, we update maxIndex so that it
points to the new larger element. The algorithm is as follows:

maxIndex = 0;
for (index = 1; index < 10; index++)

if (sales[maxIndex] < sales[index])
maxIndex = index;

largestSale = sales[maxIndex];

492 | Chapter 9: Arrays and Strings

Let us demonstrate how this algorithm works with an example. Suppose the array sales
is as given in Figure 9-6.

Here, we determine the largest element in the array sales. Before the for loop begins,
maxIndex is initialized to 0, and the for loop initializes index to 1. In the following,
we show the values of maxIndex, index, and certain array elements during each
iteration of the for loop.

index maxIndex
sales
[maxIndex]

sales
[index]

sales[maxIndex] <
sales[index]

1 0 12.50 8.35 12.50 < 8.35 is false
2 0 12.50 19.60 12.50 < 19.60 is true;

maxIndex = 2
3 2 19.60 25.00 19.60 < 25.00 is true;

maxIndex = 3
4 3 25.00 14.00 25.00 < 14.00 is false
5 3 25.00 39.43 25.00 < 39.43 is true;

maxIndex = 5
6 5 39.43 35.90 39.43 < 35.90 is false
7 5 39.43 98.23 39.43 < 98.23 is true;

maxIndex = 7
8 7 98.23 66.65 98.23 < 66.65 is false
9 7 98.23 35.64 98.23 < 35.64 is false

After the for loop executes, maxIndex = 7, giving the index of the largest element in
the array sales. Thus, largestSale = sales[maxIndex] = 98.23.

You can write an algorithm to find the smallest element in the array that is similar to the

algorithm for finding the largest element in an array. (See Programming Exercise 2 at the

end of this chapter.)

Now that we know how to declare and process arrays, let us rewrite the program that we
discussed in the beginning of this chapter. Recall that this program reads five numbers,
finds the sum, and prints the numbers in reverse order.

9

sales

[0]

12.50 8.35 19.60 25.00 14.00 39.43 35.90 98.23 66.65 35.64

[1] [2] [3] [4] [5] [6] [7] [8] [9]

FIGURE 9-6 Array sales

Arrays | 493

EXAMPLE 9-4

//Program to read five numbers, find their sum, and
//print the numbers in reverse order.

#include <iostream>

using namespace std;

int main()
{

int item[5]; //Declare an array item of five components
int sum;
int counter;

cout << "Enter five numbers: ";

sum = 0;

for (counter = 0; counter < 5; counter++)
{

cin >> item[counter];
sum = sum + item[counter];

}

cout << endl;

cout << "The sum of the numbers is: " << sum << endl;
cout << "The numbers in reverse order are: ";

//Print the numbers in reverse order.
for (counter = 4; counter >= 0; counter--)

cout << item[counter] << " ";

cout << endl;

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Enter five numbers: 12 76 34 52 89

The sum of the numbers is: 263
The numbers in reverse order are: 89 52 34 76 12

Array Index Out of Bounds
Consider the following declaration:

double num[10];
int i;

494 | Chapter 9: Arrays and Strings

The component num[i] is valid, that is, i is a valid index if i = 0, 1, 2, 3, 4, 5, 6, 7,
8, or 9.

The index—say, index—of an array is in bounds if index >= 0 and index <=
ARRAY_SIZE � 1. If either index < 0 or index > ARRAY_SIZE � 1, then we say
that the index is out of bounds.

Unfortunately, in C++, there is no guard against out-of-bound indices. Thus, C++
does not check whether the index value is within range—that is, between 0 and
ARRAY_SIZE � 1. If the index goes out of bounds and the program tries to access
the component specified by the index, then whatever memory location is indicated by
the index that location is accessed. This situation can result in altering or accessing the
data of a memory location that you never intended to modify or access. Consequently,
several strange things can happen if the index goes out of bounds during execution. It is
solely the programmer’s responsibility to make sure that the index is within bounds.

A loop such as the following can set the index out of bounds:

for (i = 0; i <= 10; i++)
list[i] = 0;

Here, we assume that list is an array of 10 components. When i becomes 10, the loop
test condition i <= 10 evaluates to true and the body of the loop executes, which results
in storing 0 in list[10]. Logically, list[10] does not exist.

On some new compilers, if an array index goes out of bounds in a progam, it is possible

that the program terminates with an error message. For example, see the programs

Example_ArrayIndexOutOfBoundsA.cpp and

Example_ArrayIndexOutOfBoundsB.cpp at the Web site accompanying

this book.

Array Initialization During Declaration
Like any other simple variable, an array can be initialized while it is being declared. For
example, the following C++ statement declares an array, sales, of five components and
initializes these components.

double sales[5] = {12.25, 32.50, 16.90, 23, 45.68};

The values are placed between curly braces and separated by commas—here,
sales[0] = 12.25, sales[1] = 32.50, sales[2] = 16.90, sales[3] = 23.00,
and sales[4] = 45.68.

When initializing arrays as they are declared, it is not necessary to specify the size of the
array. The size is determined by the number of initial values in the braces. However, you
must include the brackets following the array name. The previous statement is, therefore,
equivalent to:

double sales[] = {12.25, 32.50, 16.90, 23, 45.68};

9

Arrays | 495

Although it is not necessary to specify the size of the array if it is initialized during
declaration, it is a good practice to do so.

Partial Initialization of Arrays During Declaration
When you declare and initialize an array simultaneously, you do not need to initialize all
components of the array. This procedure is called partial initialization of an array
during declaration. However, if you partially initialize an array during declaration, you
must exercise some caution. The following examples help to explain what happens when
you declare and partially initialize an array.

The statement:

int list[10] = {0};

declares list to be an array of 10 components and initializes all of the components to 0.
The statement:

int list[10] = {8, 5, 12};

declares list to be an array of 10 components and initializes list[0] to 8, list[1]
to 5, list[2] to 12, and all other components to 0. Thus, if all of the values are not
specified in the initialization statement, the array components for which the values are not
specified are initialized to 0. Note that, here, the size of the array in the declaration
statement does matter. For example, the statement:

int list[] = {5, 6, 3};

declares list to be an array of three components and initializes list[0] to 5,
list[1] to 6, and list[2] to 3. In contrast, the statement:

int list[25] = {4, 7};

declares list to be an array of 25 components. The first two components are initialized
to 4 and 7, respectively, and all other components are initialized to 0.

When you partially initialize an array, then all of the elements that follow the last
uninitialized elements must be uninitialized. Therefore, the following statement will
result in a syntax error:

int list[10] = {2, 5, 6, , 8}; //illegal

In this initialization, because the fourth element is uninitialized, all elements that follow
the fourth element must be left unintialized.

Some Restrictions on Array Processing
Consider the following statements:

int myList[5] = {0, 4, 8, 12, 16}; //Line 1
int yourList[5]; //Line 2

496 | Chapter 9: Arrays and Strings

The statement in Line 1 declares and initializes the array myList, and the statement in
Line 2 declares the array yourList. Note that these arrays are of the same type and have
the same number of components. Suppose that you want to copy the elements of
myList into the corresponding elements of yourList. The following statement is
illegal:

yourList = myList; //illegal

In fact, this statement will generate a syntax error. C++ does not allow aggregate
operations on an array. An aggregate operation on an array is any operation that
manipulates the entire array as a single unit.

To copy one array into another array, you must copy it component-wise—that is, one
component at a time. This can be done using a loop, such as the following:

for (int index = 0; index < 5; index ++)
yourList[index] = myList[index];

Next, suppose that you want to read data into the array yourList. The following
statement is illegal and, in fact, would generate a syntax error.

cin >> yourList; //illegal

To read data into yourList, you must read one component at a time, using a loop such
as the following:

for (int index = 0; index < 5; index ++)
cin >> yourList[index];

Similarly, determining whether two arrays have the same elements and printing the
contents of an array must be done component-wise. Note that the following statements
are illegal in the sense that they do not generate a syntax error; however, they do not give
the desired results.

cout << yourList;

if (myList <= yourList)
.
.
.

We will comment on these statements in the section Base Address of an Array and Array
in Computer Memory later in this chapter.

Arrays as Parameters to Functions
Now that you have seen how to work with arrays, a question naturally arises: How are
arrays passed as parameters to functions?

By reference only: In C++, arrays are passed by reference only.

Because arrays are passed by reference only, you do not use the symbol & when declaring
an array as a formal parameter.

9

Arrays | 497

When declaring a one-dimensional array as a formal parameter, the size of the array is
usually omitted. If you specify the size of a one-dimensional array when it is declared as a
formal parameter, the size is ignored by the compiler.

EXAMPLE 9-5

Consider the following function:

void funcArrayAsParam(int listOne[], double listTwo[])
{

.

.

.
}

The function funcArrayAsParam has two formal parameters: (1) listOne, a one-
dimensional array of type int (that is, the component type is int) and (2) listTwo, a
one-dimensional array of type double. In this declaration, the size of both arrays is
unspecified.

Sometimes, the number of elements in the array might be less than the size of the
array. For example, the number of elements in an array storing student data might
increase or decrease as students drop or add courses. In such situations, we want to
process only the components of the array that hold actual data. To write a function to
process such arrays, in addition to declaring an array as a formal parameter, we declare
another formal parameter specifying the number of elements in the array, as in the
following function:

void initialize(int list[], int listSize)
{

int count;

for (count = 0; count < listSize; count++)
list[count] = 0;

}

The first parameter of the function initialize is an int array of any size. When the
function initialize is called, the size of the actual array is passed as the second
parameter of the function initialize.

Constant Arrays as Formal Parameters
Recall that when a formal parameter is a reference parameter, then whenever the formal
parameter changes, the actual parameter changes as well. However, even though an array
is always passed by reference, you can still prevent the function from changing the actual
parameter. You do so by using the reserved word const in the declaration of the formal
parameter. Consider the following function:

498 | Chapter 9: Arrays and Strings

void example(int x[], const int y[], int sizeX, int sizeY)
{

.

.

.
}

Here, the function example can modify the array x, but not the array y. Any attempt to
change y results in a compile-time error. It is a good programming practice to declare an
array to be constant as a formal parameter if you do not want the function to modify the
array.

EXAMPLE 9-6

This example shows how to write functions for array processing and declare an array as a
formal parameter.

//Function to initialize an int array to 0.
//The array to be initialized and its size are passed
//as parameters. The parameter listSize specifies the
//number of elements to be initialized.

void initializeArray(int list[], int listSize)
{

int index;

for (index = 0; index < listSize; index++)
list[index] = 0;

}

//Function to read and store the data into an int array.
//The array to store the data and its size are passed as
//parameters. The parameter listSize specifies the number
//of elements to be read.

void fillArray(int list[], int listSize)
{

int index;

for (index = 0; index < listSize; index++)
cin >> list[index];

}

//Function to print the elements of an int array.
//The array to be printed and the number of elements
//are passed as parameters. The parameter listSize
//specifies the number of elements to be printed.

void printArray(const int list[], int listSize)
{

int index;

for (index = 0; index < listSize; index++)
cout << list[index] << " ";

}

9

Arrays | 499

//Function to find and return the sum of the
//elements of an int array. The parameter listSize
//specifies the number of elements to be added.

int sumArray(const int list[], int listSize)
{

int index;
int sum = 0;

for (index = 0; index < listSize; index++)
sum = sum + list[index];

return sum;
}

//Function to find and return the index of the first
//largest element in an int array. The parameter listSize
//specifies the number of elements in the array.

int indexLargestElement(const int list[], int listSize)
{

int index;
int maxIndex = 0; //assume the first element is the largest

for (index = 1; index < listSize; index++)
if (list[maxIndex] < list[index])

maxIndex = index;

return maxIndex;
}

//Function to copy some or all of the elements of one array
//into another array. Starting at the position specified
//by src, the elements of list1 are copied into list2
//starting at the position specified by tar. The parameter
//numOfElements specifies the number of elements of list1 to
//be copied into list2. Starting at the position specified
//by tar, the list2 must have enough components to copy the
//elements of list1. The following call copies all of the
//elements of list1 into the corresponding positions in
//list2: copyArray(list1, 0, list2, 0, numOfElements);

void copyArray(int list1[], int src, int list2[],
int tar, int numOfElements)

{
for (int index = src; index < src + numOfElements; index++)
{

list2[index] = list1[tar];
tar++;

}
}

Example 9-7 will illustrate how to use some of these functions in a program.

500 | Chapter 9: Arrays and Strings

Base Address of an Array and Array in Computer Memory
The base address of an array is the address (that is, the memory location) of the first array
component. For example, if list is a one-dimensional array, then the base address of
list is the address of the component list[0].

Consider the following statements:

int myList[5]; //Line 1

This statement declares myList to be an array of five components of type int. The
components are myList[0], myList[1], myList[2], myList[3], and myList[4].
The computer allocates five memory spaces, each large enough to store an int value, for
these components. Moreover, the five memory spaces are contiguous.

The base address of the array myList is the address of the component myList[0].
Suppose that the base address of the array myList is 1000. Then, the address of the
component myList[0] is 1000. Typically, the memory allocated for an int variable is
four bytes. Recall from Chapter 1 that main memory is an ordered sequence of cells, and
each cell has a unique address. Typically, each cell is one byte. Therefore, to store a value
into myList[0], starting at the address 1000, the next four bytes are allocated for
myList[0]. It follows that the starting address of myList[1] is 1004, the starting
address of myList[2] is 1008, and so on (see Figure 9-7).

9

myList [0]

myList [1]

myList [3]

myList [2]

myList [4]

Memory
addresses

1000
1001
1002
1003
1004
1005
1006
1007
1008

.

.

.

.

.

.

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

Address of
myList [0]

Address of
myList [1]

Address of
myList [2]

Address of
myList [3]

Address of
myList [4]

FIGURE 9-7 Array myList and the addresses of its components

Arrays | 501

Now myList is the name of an array. There is also a memory space associated with the
identifier myList, and the base address of the array is stored in that memory space.
Consider the following statement:

cout << myList << endl; //Line 2

Earlier, we said that this statement will not give the desired result. That is, this statement
will not output the values of the components of myList. In fact, the statement outputs the
value of myList, which is the base address of the array. This is why the statement will
not generate a syntax error.

Suppose that you also have the following statement:

int yourList[5];

Then, in the statement:

if (myList <= yourList) //Line 3
.
.
.

the expression myList <= yourList evaluates to true if the base address of the array
myList is less than the base address of the array yourList; and evaluates to false
otherwise. It does not determine whether the elements of myList are less than or equal to
the corresponding elements of yourList.

The Web site accompanying this book contains the program

BaseAddressOfAnArray.cpp, which clarifies statements such as those in

Lines 2 and 3.

You might be wondering why the base address of an array is so important. The reason is
that when you declare an array, the only things about the array that the computer
remembers are the name of the array, its base address, the data type of each component,
and (possibly) the number of components. Using the base address of the array and the
index of an array component, the computer determines the address of a particular
component. For example, suppose you want to access the value of myList[3].
Now, the base address of myList is 1000. Each component of myList is of type
int, so it uses four bytes to store a value, and the index is 3. To access the value of
myList[3], the computer calculates the address 1000 + 4 * 3 = 1000 + 12 = 1012.
That is, this is the starting address of myList[3]. So, starting at 1012, the computer
accesses the next four bytes.

When you pass an array as a parameter, the base address of the actual array is
passed to the formal parameter. For example, suppose that you have the following
function:

502 | Chapter 9: Arrays and Strings

9

void arrayAsParameter(int list[], int size)
{

.

.

.

list[2] = 28; //Line 4

.

.

.
}

Also, suppose that you have the following call to this function:

arrayAsParameter(myList, 5); //Line 5

In this statement, the base address of myList is passed to the formal parameter list.
Therefore, the base address of list is 1000. The definition of the function contains
the statement list[2] = 28;. This statement stores 28 into list[2]. To access
list[2], the computer calculates the address as follows: 1000 + 4 * 2 = 1008. So,
starting at the address 1008, the computer accesses the next four bytes and stores 28.
Note that, in fact, 1008 is the address of myList[2] (see Figure 9-7). It follows that
during the execution of the statement in Line 5, the statement in Line 4 stores the value
28 into myList[2]. It also follows that during the execution of the function call
statement in Line 5, list[index] and myList[index] refer to the same memory
space, where 0 <= index and index < 5.

If C++ allowed arrays to be passed by value, the computer would have to allocate memory

for the components of the formal parameter and copy the contents of the actual array into

the corresponding formal parameter when the function is called. If the array size was

large, this process would waste memory as well as the computer time needed for copying

the data. That is why in C++ arrays are always passed by reference.

Functions Cannot Return a Value of the Type Array
C++ does not allow functions to return a value of the type array. Note that the functions
sumArray and indexLargestElement described earlier return values of type int.

EXAMPLE 9-7

The following program illustrates how arrays are passed as actual parameters in a function
call. (Note that this program uses the functions written in Example 9-6).

//Arrays as parameters to functions

#include <iostream>

Arrays | 503

using namespace std;

const int ARRAY_SIZE = 10;

void initializeArray(int x[],int sizeX);
void fillArray(int x[],int sizeX);
void printArray(const int x[],int sizeX);
int sumArray(const int x[],int sizeX);
int indexLargestElement(const int x[],int sizeX);
void copyArray(int list1[], int src, int list2[],

int tar, int numOfElements);
int main()
{

int listA[ARRAY_SIZE] = {0}; //Declare the array listA
//of 10 components and
//initialize each component
//to 0.

int listB[ARRAY_SIZE]; //Declare the array listB
//of 10 components.

cout << "Line 1: listA elements: "; //Line 1

//Output the elements of listA using
//the function printArray

printArray(listA, ARRAY_SIZE); //Line 2
cout << endl; //Line 3

//Initialize listB using the function
//initializeArray

initializeArray(listB, ARRAY_SIZE); //Line 4

cout << "Line 5: listB elements: "; //Line 5

//Output the elements of listB
printArray(listB, ARRAY_SIZE); //Line 6
cout << endl << endl; //Line 7

cout << "Line 8: Enter " << ARRAY_SIZE
<< " integers: "; //Line 8

//Input data into listA using the
//function fillArray

fillArray(listA, ARRAY_SIZE); //Line 9
cout << endl; //Line 10

cout << "Line 11: After filling listA, "
<< "the elements are:" << endl; //Line 11

//Output the elements of listA
printArray(listA, ARRAY_SIZE); //Line 12
cout << endl << endl; //Line 13

504 | Chapter 9: Arrays and Strings

//Find and output the sum of the elements
//of listA

cout << "Line 14: The sum of the elements of "
<< "listA is: "
<< sumArray(listA, ARRAY_SIZE) << endl
<< endl; //Line 14

//Find and output the position of the largest
//element in listA

cout << "Line 15: The position of the largest "
<< "element in listA is: "
<< indexLargestElement(listA, ARRAY_SIZE)
<< endl; //Line 15

//Find and output the largest element
//in listA

cout << "Line 16: The largest element in "
<< "listA is: "
<< listA[indexLargestElement(listA, ARRAY_SIZE)]
<< endl << endl; //Line 16

//Copy the elements of listA into listB using the
//function copyArray

copyArray(listA, 0, listB, 0, ARRAY_SIZE); //Line 17

cout << "Line 18: After copying the elements "
<< "of listA into listB," << endl
<< " listB elements are: "; //Line 18

//Output the elements of listB
printArray(listB, ARRAY_SIZE); //Line 19
cout << endl; //Line 20

return 0;
}

//Place the definitions of the functions initializeArray,
//fillArray, and so on here. Example 9-6 gives the definitions
//of these functions.

Sample Run: In this sample run, the user input is shaded.

Line 1: listA elements: 0 0 0 0 0 0 0 0 0 0
Line 5: ListB elements: 0 0 0 0 0 0 0 0 0 0

Line 8: Enter 10 integers: 33 77 25 63 56 48 98 39 5 12

Line 11: After filling listA, the elements are:
33 77 25 63 56 48 98 39 5 12

Line 14: The sum of the elements of listA is: 456

9

Arrays | 505

Line 15: The position of the largest element in listA is: 6
Line 16: The largest element in listA is: 98

Line 18: After copying the elements of listA into listB,
listB elements are: 33 77 25 63 56 48 98 39 5 12

The output of this program is straightforward. First, we declare the array listA of 10
components and initialize each component of listA to 0. Then, we declare the array
listB of 10 components. The statement in Line 2 calls the function printArray and
outputs the values stored in listA. The statement in Line 9 calls the function fillArray
to input the data into listA. The statement in Line 14 calls the function sumArray and
outputs the sum of all of the elements of listA. Similarly, the statement in Line 16 outputs
the value of the largest element in listA.

Integral Data Type and Array Indices

The sections ‘‘Enumeration Type’’ and ‘‘typedef Statement’’ from Chapter 8 are
required to understand this section.

Other than integers, C++ allows any integral type to be used as an array index. This
feature can greatly enhance a program’s readability. Consider the following statements:

enum paintType {GREEN, RED, BLUE, BROWN, WHITE, ORANGE, YELLOW};
double paintSale[7];
paintType paint;

The following loop initializes each component of the array paintSale to 0:

for (paint = GREEN; paint <= YELLOW;
paint = static_cast<paintType>(paint + 1))

paintSale[paint] = 0.0;

The following statement updates the sale amount of RED paint:

paintSale[RED] = paintSale[RED] + 75.69;

As you can see, the above code is much easier to follow than the code that used integers
for the index. For this reason, you should use the enumeration type for the array index or
other integral data types wherever possible. Note that when using the enumeration type
for array indices, use the default values of the identifiers in the enumeration type. That is,
the value of the first identifier must be 0, and so on. (Recall from Chapter 8 that the
default values of identifiers in an enumeration type start at 0; however, the identifiers can
be set to other values.)

506 | Chapter 9: Arrays and Strings

Other Ways to Declare Arrays
Suppose that a class has 20 students and you need to keep track of their scores. Because
the number of students can change from semester to semester, instead of specifying the
size of the array while declaring it, you can declare the array as follows:

const int NO_OF_STUDENTS = 20;
int testScores[NO_OF_STUDENTS];

Other forms used to declare arrays are:

const int SIZE = 50; //Line 1
typedef double list[SIZE]; //Line 2

list yourList; //Line 3
list myList; //Line 4

The statement in Line 2 defines a data type list, which is an array of 50 components of
type double. The statements in Lines 3 and 4 declare two variables, yourList and
myList. Both are arrays of 50 components of type double. Of course, these statements
are equivalent to:

double yourList[50];
double myList[50];

Searching an Array for a Specific Item
Searching a list for a given item is one of the most common operations performed on a
list. The search algorithm we describe is called the sequential search or linear search.
As the name implies, you search the array sequentially, starting from the first array
element. You compare searchItem with the elements in the array (the list) and continue
the search until either you find the item or no more data is left in the list to compare
with searchItem.

Consider the list of seven elements shown in Figure 9-8.

Suppose that you want to determine whether 27 is in the list. A sequential search works
as follows: First, you compare 27 with list[0], that is, compare 27 with 35. Because
list[0] 6¼ 27, you then compare 27 with list[1], that is, with 12, the second item in
the list. Because list[1] 6¼ 27, you compare 27 with the next element in the list, that is,
compare 27 with list[2]. Because list[2] = 27, the search stops. This search is successful.

9

35

[0] [1] [3][2] [4] [5] [6]

12 27 18 45 16 38list

FIGURE 9-8 List of seven elements

Searching an Array for a Specific Item | 507

Let us now search for 10. As before, the search starts at the first element in the list, that is,
at list[0]. Proceeding as before, we see that, this time, the search item, which is 10, is
compared with every item in the list. Eventually, no more data is left in the list to
compare with the search item. This is an unsuccessful search.

It now follows that, as soon as you find an element in the list that is equal to the search item,
you must stop the search and report success. (In this case, you usually also report the location
in the list where the search item was found.) Otherwise, after the search item is unsuccessfully
compared with every element in the list, you must stop the search and report failure.

Suppose that the name of the array containing the list elements is list. The previous
discussion translates into the following algorithm for the sequential search:

found is set to false;
loc = 0;

while (loc < listLength and not found)
if (list[loc] is equal to searchItem)

found is set to true
else

increment loc

if (found)
return loc;

else
return -1;

The following function performs a sequential search on a list. To be specific, and for
illustration purposes, we assume that the list elements are of type int.

int seqSearch(const int list[], int listLength, int searchItem)
{

int loc;
bool found = false;

loc = 0;

while (loc < listLength && !found)
if (list[loc] == searchItem)

found = true;
else

loc++;

if (found)
return loc;

else
return -1;

}

If the function seqSearch returns a value greater than or equal to 0, it is a successful
search; otherwise, it is an unsuccessful search.

508 | Chapter 9: Arrays and Strings

As you can see from this code, you start the search by comparing searchItem with the
first element in the list. If searchItem is equal to the first element in the list, you
exit the loop; otherwise, loc is incremented by 1 to point to the next element in the
list. You then compare searchItem with the next element in the list, and so on.

EXAMPLE 9-8

// This program illustrates how to use a sequential search in a
// program.

#include <iostream> //Line 1

using namespace std; //Line 2

const int ARRAY_SIZE = 10; //Line 3

int seqSearch(const int list[], int listLength,
int searchItem); //Line 4

int main() //Line 5
{ //Line 6

int intList[ARRAY_SIZE]; //Line 7
int number; //Line 8

cout << "Line 9: Enter " << ARRAY_SIZE
<< " integers." << endl; //Line 9

for (int index = 0; index < ARRAY_SIZE; index++) //Line 10
cin >> intList[index]; //Line 11

cout << endl; //Line 12

cout << "Line 13: Enter the number to be "
<< "searched: "; //Line 13

cin >> number; //Line 14
cout << endl; //Line 15

int pos = seqSearch(intList, ARRAY_SIZE, number); //Line 16

if (pos!= -1) //Line 17
cout <<"Line 18: " << number

<< " is found at position " << pos
<< endl; //Line 18

else //Line 19
cout << "Line 20: " << number

<< " is not in the list." << endl; //Line 20

return 0; //Line 21
} //Line 22

//Place the definition of the function seqSearch
//given previously here.

9

Searching an Array for a Specific Item | 509

Sample Run 1: In this sample run, the user input is shaded.

Line 9: Enter 10 integers.
2 56 34 25 73 46 89 10 5 16

Line 13: Enter the number to be searched: 25

Line 18: 25 is found at position 3

Sample Run 2:

Line 9: Enter 10 integers.
2 56 34 25 73 46 89 10 5 16

Line 13: Enter the number to be searched: 38

Line 20: 38 is not in the list.

C-Strings (Character Arrays)
Until now, we have avoided discussing character arrays for a simple reason: Character
arrays are of special interest, and you process them differently than you process other
arrays. C++ provides many (predefined) functions that you can use with character arrays.

Character array: An array whose components are of type char.

Recall that the most widely used character sets are ASCII and EBCDIC. The first character
in the ASCII character set is the null character, which is nonprintable. Also, recall that in
C++, the null character is represented as '\0', a backslash followed by a zero.

The statement:

ch = '\0';

stores the null character in ch, wherein ch is a char variable.

As you will see, the null character plays an important role in processing character arrays.
Because the collating sequence of the null character is 0, the null character is less than any
other character in the char data set.

The most commonly used term for character arrays is C-strings. However, there is a
subtle difference between character arrays and C-strings. Recall that a string is a sequence
of zero or more characters, and strings are enclosed in double quotation marks. In C++,
C-strings are null terminated; that is, the last character in a C-string is always the null
character. A character array might not contain the null character, but the last character in
a C-string is always the null character. As you will see, the null character should not
appear anywhere in the C-string except the last position. Also, C-strings are stored in
(one-dimensional) character arrays.

510 | Chapter 9: Arrays and Strings

9

The following are examples of C-strings:

"John L. Johnson"
"Hello there."

From the definition of C-strings, it is clear that there is a difference between 'A' and
"A". The first one is character A; the second is C-string A. Because C-strings are null
terminated, "A" represents two characters: 'A' and '\0'. Similarly, the C-string
"Hello" represents six characters: 'H', 'e', 'l', 'l', 'o', and '\0'. To store
'A', we need only one memory cell of type char; to store "A", we need two memory
cells of type char—one for 'A' and one for '\0'. Similarly, to store the C-string
"Hello" in computer memory, we need six memory cells of type char.

Consider the following statement:

char name[16];

This statement declares an array name of 16 components of type char. Because C-strings
are null terminated and name has 16 components, the largest string that can be stored in
name is of length 15. If you store a C-string of length 10 in name, the first 11
components of name are used and the last 5 are left unused.

The statement:

char name[16] = {'J', 'o', 'h', 'n', '\0'};

declares an array name containing 16 components of type char and stores the C-string
"John" in it. During char array variable declaration, C++ allows the C-string notation to
be used in the initialization statement. The above statement is, therefore, equivalent to:

char name[16] = "John"; //Line A

Recall that the size of an array can be omitted if the array is initialized during the
declaration.

The statement:

char name[] = "John"; //Line B

declares a C-string variable name of a length large enough—in this case, 5—and stores
"John" in it. There is a difference between the last two statements: Both statements store
"John" in name, but the size of name in the statement in Line A is 16, and the size of
name in the statement in Line B is 5.

Most rules that apply to other arrays also apply to character arrays. Consider the following
statement:

char studentName[26];

Suppose you want to store "Lisa L. Johnson" in studentName. Because aggregate
operations, such as assignment and comparison, are not allowed on arrays, the following
statement is not legal:

studentName = "Lisa L. Johnson"; //illegal

C-Strings (Character Arrays) | 511

C++ provides a set of functions that can be used for C-string manipulation. The header
file cstring describes these functions. We often use three of these functions: strcpy
(string copy, to copy a C-string into a C-string variable—that is, assignment); strcmp
(string comparison, to compare C-strings); and strlen (string length, to find the length
of a C-string). Table 9-1 summarizes these functions.

To use these functions, the program must include the header file cstring via the
include statement. That is, the following statement must be included in the program:

#include <cstring>

String Comparison
In C++, C-strings are compared character by character using the system’s collating
sequence. Let us assume that you use the ASCII character set.

1. The C-string "Air" is less than the C-string "Boat" because the first
character of "Air" is less than the first character of "Boat".

2. The C-string "Air" is less than the C-string "An" because the first
characters of both strings are the same, but the second character 'i'
of "Air" is less than the second character 'n' of "An".

3. The C-string "Bill" is less than the C-string "Billy" because the first
four characters of "Bill" and "Billy" are the same, but the fifth
character of "Bill", which is '\0' (the null character), is less than the
fifth character of "Billy", which is 'y'. (Recall that C-strings in C++
are null terminated.)

4. The C-string "Hello" is less than "hello" because the first character
'H' of the C-string "Hello" is less than the first character 'h' of the
C-string "hello".

TABLE 9-1 strcpy, strcmp, and strlen Functions

Function Effect

strcpy(s1, s2)
Copies the string s2 into the string variable s1

The length of s1 should be at least as large as s2

strcmp(s1, s2)

Returns a value < 0 if s1 is less than s2

Returns 0 if s1 and s2 are the same

Returns a value > 0 if s1 is greater than s2

strlen(s)
Returns the length of the string s, excluding the null
character

512 | Chapter 9: Arrays and Strings

9

As you can see, the function strcmp compares its first C-string argument with its second
C-string argument character by character.

EXAMPLE 9-9

Suppose you have the following statements:

char studentName[21];
char myname[16];
char yourname[16];

The following statements show how string functions work:

Statement Effect

strcpy(myname, "John Robinson"); myname = "John Robinson"

strlen("John Robinson"); Returns 13, the length of the string
"John Robinson"

int len;
len = strlen("Sunny Day"); Stores 9 into len

strcpy(yourname, "Lisa Miller");
strcpy(studentName, yourname);

yourname = "Lisa Miller"
studentName = "Lisa Miller"

strcmp("Bill", "Lisa"); Returns a value < 0

strcpy(yourname, "Kathy Brown");
strcpy(myname, "Mark G. Clark");
strcmp(myname, yourname);

yourname = "Kathy Brown"
myname = "Mark G. Clark"
Returns a value > 0

In this chapter, we defined a C-string to be a sequence of zero or more characters.

C-strings are enclosed in double quotation marks. We also said that C-strings are null

terminated, so the C-string "Hello" has six characters even though only five are
enclosed in double quotation marks. Therefore, to store the C-string "Hello" in
computer memory, you must use a character array of size 6. The length of a C-string is the

number of actual characters enclosed in double quotation marks; for example, the length

of the C-string "Hello" is 5. Thus, in a logical sense, a C-string is a sequence of zero or
more characters, but in the physical sense (that is, to store the C-string in computer

memory), a C-string has at least one character. Because the length of the C-string is the

actual number of characters enclosed in double quotation marks, we defined a C-string to

be a sequence of zero or more characters. However, you must remember that the null

character stored in computer memory at the end of the C-string plays a key role when we

compare C-strings, especially C-strings such as "Bill" and "Billy".

C-Strings (Character Arrays) | 513

Reading and Writing Strings
As mentioned earlier, most rules that apply to arrays apply to C-strings as well. Aggregate
operations, such as assignment and comparison, are not allowed on arrays. Even the input/
output of arrays is done component-wise. However, the one place where C++ allows
aggregate operations on arrays is the input and output of C-strings (that is, character arrays).

We will use the following declaration for our discussion:

char name[31];

String Input
Because aggregate operations are allowed for C-string input, the statement:

cin >> name;

stores the next input C-string into name. The length of the input C-string must be less
than or equal to 30. If the length of the input string is 4, the computer stores the four
characters that are input and the null character '\0'. If the length of the input C-string is
more than 30, then because there is no check on the array index bounds, the computer
continues storing the string in whatever memory cells follow name. This process can
cause serious problems, because data in the adjacent memory cells will be corrupted.

When you input a C-string using an input device, such as the keyboard, you do not include

the double quotes around it unless the double quotes are part of the string. For example,

the C-string "Hello" is entered as Hello.

Recall that the extraction operator, >>, skips all leading whitespace characters and stops
reading data into the current variable as soon as it finds the first whitespace character or
invalid data. As a result, C-strings that contain blanks cannot be read using the extraction
operator, >>. For example, if a first name and last name are separated by blanks, they
cannot be read into name.

How do you input C-strings with blanks into a character array? Once again, the function get
comes to our rescue. Recall that the function get is used to read character data. Until now,
the form of the function get that you have used (Chapter 3) read only a single character.
However, the function get can also be used to read strings. To read C-strings, you use the
form of the function get that has two parameters. The first parameter is a C-string variable;
the second parameter specifies how many characters to read into the string variable.

To read C-strings, the general form (syntax) of the get function, together with an input
stream variable such as cin, is:

cin.get(str, m + 1);

This statement stores the next m characters, or all characters until the newline character
'\n' is found, into str. The newline character is not stored in str. If the input C-string
has fewer than m characters, then the reading stops at the newline character.

514 | Chapter 9: Arrays and Strings

9

Consider the following statements:

char str[31];
cin.get(str, 31);

If the input is:

William T. Johnson

then "William T. Johnson" is stored in str. Suppose that the input is:

Hello there. My name is Mickey Blair.

Then, because str can store, at most, 30 characters, the C-string "Hello there. My
name is Mickey" is stored in str.

Now, suppose that we have the statements:

char str1[26];
char str2[26];
char discard;

and the two lines of input:

Summer is warm.
Winter will be cold.

Further, suppose that we want to store the first C-string in str1 and the second C-string in
str2. Both str1 and str2 can store C-strings that are up to 25 characters in length. Because
the number of characters in the first line is 15, the reading stops at '\n'. You must read and
discard the newline character at the end of the first line to store the second line into str2. The
following sequence of statements stores the first line into str1 and the second line into str2:

cin.get(str1, 26);
cin.get(discard);
cin.get(str2, 26);

To read and store a line of input, including whitespace characters, you can also use the
stream function getline. Suppose that you have the following declaration:

char textLine[100];

The following statement will read and store the next 99 characters, or until the newline
character, into textLine. The null character will be automatically appended as the last
character of textLine.

cin.getline(textLine, 100);

String Output
The output of C-strings is another place where aggregate operations on arrays are allowed.
You can output C-strings by using an output stream variable, such as cout, together with
the insertion operator, <<. For example, the statement:

cout << name;

outputs the contents of name on the screen. The insertion operator, <<, continues to
write the contents of name until it finds the null character. Thus, if the length of name is
4, the above statement outputs only four characters. If name does not contain the null

C-Strings (Character Arrays) | 515

character, then you will see strange output because the insertion operator continues to
output data from memory adjacent to name until '\0' is found.

Specifying Input/Output Files at Execution Time
In Chapter 3, you learned how to read data from a file. In subsequent chapters, the name of
the input file was included in the open statement. By doing so, the program always received
data from the same input file. In real-world applications, the data may actually be collected at
several locations and stored in separate files. Also, for comparison purposes, someone might
want to process each file separately and then store the output in separate files. To accomplish
this task efficiently, the user would prefer to specify the name of the input and/or output file
at execution time rather than in the programming code. C++ allows the user to do so.

Consider the following statements:

ifstream infile;
ofstream outfile;

char fileName[51]; //assume that the file name is at most
//50 characters long

The following statements prompt and allow the user to specify the input and output files
at execution time:

cout << "Enter the input file name: ";
cin >> fileName;

infile.open(fileName); //open the input file
.
.
.

cout << "Enter the output file name: ";
cin >> fileName;

outfile.open(fileName); //open the output file

The Programming Example: Code Detection, given later in this chapter, further illus-
trates how to specify the names of input and output files during program execution.

string Type and Input/Output Files
In Chapter 8, we discussed the data type string. We now want to point out that values (that
is, strings) of type string are not null terminated. Variables of type string can also be used
to read and store the names of input/output files. However, the argument to the function
open must be a null-terminated string—that is, a C-string. Therefore, if we use a variable of
type string to read the name of an input/output file and then use this variable to open a file,
the value of the variable must (first) be converted to a C-string (that is, a null-terminated string).
The header file string contains the function c_str, which converts a value of type string
to a null-terminated character array (that is, C-string). The syntax to use the function c_str is:

strVar.c_str()

in which strVar is a variable of type string.

516 | Chapter 9: Arrays and Strings

The following statements illustrate how to use variables of type string to read the
names of the input/output files during program execution and open those files:

ifstream infile;
string fileName;

cout << "Enter the input file name: ";
cin >> fileName;

infile.open(fileName.c_str()); //open the input file

Of course, you must also include the header file string in the program. The output file
has similar conventions.

Parallel Arrays
Two (or more) arrays are called parallel if their corresponding components hold related
information.

Suppose you need to keep track of students’ course grades, together with their ID numbers, so
that their grades can be posted at the end of the semester. Further, suppose that there is a
maximum of 50 students in a class and their IDs are 5 digits long. Because there may be 50
students, you need 50 variables to store the students’ IDs and 50 variables to store their grades.
You can declare two arrays: studentId of type int and courseGrade of type char. Each
array has 50 components. Furthermore, studentId[0] and courseGrade[0] will store
the ID and course grade of the first student, studentId[1] and courseGrade[1] will
store the ID and course grade of the second student, and so on.

The statements:

int studentId[50];
char courseGrade[50];

declare these two arrays.

Suppose you need to input data into these arrays, and the data is provided in a file in the
following form:

studentId courseGrade

For example, a sample data set is:

23456 A
86723 B
22356 C
92733 B
11892 D
.
.
.

Suppose that the input file is opened using the ifstream variable infile. Because the
size of each array is 50, a maximum of 50 elements can be stored into each array.
Moreover, it is possible that there may be fewer than 50 students in the class. Therefore,

9

Parallel Arrays | 517

while reading the data, we also count the number of students and ensure that the array
indices do not go out of bounds. The following loop reads the data into the parallel arrays
studentId and courseGrade:

int noOfStudents = 0;

infile >> studentId[noOfStudents] >> courseGrade[noOfStudents];

while (infile && noOfStudents < 50)
{

noOfStudents++;
infile >> studentId[noOfStudents]

>> courseGrade[noOfStudents];
}

Note that, in general, when swapping values in one array, the corresponding values in
parallel arrays must also be swapped.

Two- and Multidimensional Arrays
The remainder of this chapter discusses two-dimensional arrays and ways to work with
multidimensional arrays.

In the previous section, you learned how to use one-dimensional arrays to manipulate
data. If the data is provided in a list form, you can use one-dimensional arrays. However,
sometimes data is provided in a table form. For example, suppose that you want to track
the number of cars in a particular color that are in stock at a local dealership. The
dealership sells six types of cars in five different colors. Figure 9-9 shows sample data.

You can see that the data is in a table format. The table has 30 entries, and every entry is an
integer. Because the table entries are all of the same type, you can declare a one-dimensional
array of 30 components of type int. The first five components of the one-dimensional array

10

18

12

16

10

9

7

11

10

6

7

4

12

15

9

13

12

7

10

17

5

8

6

12

4

10

12

3

4

11

inStock

[GM]

[FORD]

[TOYOTA]

[BMW]

[NISSAN]

[VOLVO]

[RED] [BROWN] [BLACK] [WHITE] [GRAY]

FIGURE 9-9 Table inStock

518 | Chapter 9: Arrays and Strings

can store the data of the first row of the table, the next five components of the one-
dimensional array can store the data of the second row of the table, and so on. In other
words, you can simulate the data given in a table format in a one-dimensional array.

If you do so, the algorithms to manipulate the data in the one-dimensional array will be
somewhat complicated, because you must know where one row ends and another begins.
You must also correctly compute the index of a particular element. C++ simplifies the
processing of manipulating data in a table form with the use of two-dimensional arrays.
This section first discusses how to declare two-dimensional arrays and then looks at ways
to manipulate data in a two-dimensional array.

Two-dimensional array: A collection of a fixed number of components arranged in rows
and columns (that is, in two dimensions), wherein all components are of the same type.

The syntax for declaring a two-dimensional array is:

dataType arrayName[intExp1][intExp2];

wherein intExp1 and intExp2 are constant expressions yielding positive integer values.
The two expressions, intExp1 and intExp2, specify the number of rows and the
number of columns, respectively, in the array.

The statement:

double sales[10][5];

declares a two-dimensional array sales of 10 rows and 5 columns, in which every
component is of type double. As in the case of a one-dimensional array, the rows are
numbered 0...9 and the columns are numbered 0...4 (see Figure 9-10).

9

sales

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4]

[5]

[6]

[7]

[8]

[9]

FIGURE 9-10 Two-dimensional array sales

Two- and Multidimensional Arrays | 519

Accessing Array Components
To access the components of a two-dimensional array, you need a pair of indices: one for
the row position and one for the column position.

The syntax to access a component of a two-dimensional array is:

arrayName[indexExp1][indexExp2]

wherein indexExp1 and indexExp2 are expressions yielding nonnegative integer
values. indexExp1 specifies the row position; indexExp2 specifies the column
position.

The statement:

sales[5][3] = 25.75;

stores 25.75 into row number 5 and column number 3 (that is, the sixth row and the
fourth column) of the array sales (see Figure 9-11).

Suppose that:

int i = 5;
int j = 3;

Then, the previous statement:

sales[5][3] = 25.75;

is equivalent to:

sales[i][j] = 25.75;

So the indices can also be variables.

sales

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

25.75

[4]

[4]

sales [5] [3]

[5]

[6]

[7]

[8]

[9]

FIGURE 9-11 sales[5][3]

520 | Chapter 9: Arrays and Strings

9

Two-Dimensional Array Initialization During Declaration
Like one-dimensional arrays, two-dimensional arrays can be initialized when they are declared.
The following example helps illustrate this concept. Consider the following statement:

int board[4][3] = {{2, 3, 1},
{15, 25, 13},
{20, 4, 7},
{11, 18, 14}};

This statement declares board to be a two-dimensional array of four rows and three
columns. The components of the first row are 2, 3, and 1; the components of the second row
are 15, 25, and 13; the components of the third row are 20, 4, and 7; and the components of
the fourth row are 11, 18, and 14, respectively. Figure 9-12 shows the array board.

To initialize a two-dimensional array when it is declared:

1. The elements of each row are enclosed within curly braces and separated
by commas.

2. All rows are enclosed within curly braces.

3. For number arrays, if all components of a row are not specified, the
unspecified components are initialized to 0. In this case, at least one of
the values must be given to initialize all the components of a row.

Two-Dimensional Arrays and Enumeration Types

The section ‘‘Enumeration Types’’ in Chapter 8 is required to understand this section.

You can also use the enumeration type for array indices. Consider the following statements:

const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;
enum carType {GM, FORD, TOYOTA, BMW, NISSAN, VOLVO};
enum colorType {RED, BROWN, BLACK, WHITE, GRAY};

int inStock[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];

[0]

board [0]

2 3
15 25
20 4
11 18 14

7
13
1

[1]

[1]

[2]

[2]

[3]

FIGURE 9-12 Two-dimensional array board

Two- and Multidimensional Arrays | 521

These statements define the carType and colorType enumeration types and define
inStock as a two-dimensional array of six rows and five columns. Suppose that each
row in inStock corresponds to a car type, and each column in inStock corresponds to
a color type. That is, the first row corresponds to the car type GM, the second row
corresponds to the car type FORD, and so on. Similarly, the first column corresponds to
the color type RED, the second column corresponds to the color type BROWN, and so on.
Suppose further that each entry in inStock represents the number of cars of a particular
type and color (see Figure 9-13).

The statement:

inStock[1][3] = 15;

is equivalent to the following statement (see Figure 9-14):

inStock[FORD][WHITE] = 15;

inStock

[GM]

[FORD]

[TOYOTA]

[BMW]

[NISSAN]

[VOLVO]

[RED] [BROWN] [BLACK] [WHITE] [GRAY]

FIGURE 9-13 Two-dimensional array inStock

inStock

[GM]

[FORD]

[TOYOTA]

[BMW]

[NISSAN]

[VOLVO]

[RED] [BROWN] [BLACK] [WHITE]

inStock [FORD] [WHITE]

15

[GRAY]

FIGURE 9-14 inStock[FORD][WHITE]

522 | Chapter 9: Arrays and Strings

The second statement easily conveys the message—that is, set the number of WHITE
FORD cars to 15. This example illustrates that enumeration types can be used effectively
to make the program readable and easy to manage.

PROCESSING TWO-DIMENSIONAL ARRAYS

A two-dimensional array can be processed in three ways:

1. Process the entire array.

2. Process a particular row of the array, called row processing.

3. Process a particular column of the array, called column processing.

Initializing and printing the array are examples of processing the entire two-dimensional
array. Finding the largest element in a row (column) or finding the sum of a row
(column) are examples of row (column) processing. We will use the following declaration
for our discussion:

const int NUMBER_OF_ROWS = 7; //This can be set to any number.
const int NUMBER_OF_COLUMNS = 6; //This can be set to any number.

int matrix[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];
int row;
int col;
int sum;
int largest;
int temp;

Figure 9-15 shows the array matrix.

Because the components of a two-dimensional array are of the same type, the
components of any row or column are of the same type. This means that each
row and each column of a two-dimensional array is a one-dimensional array. There-
fore, when processing a particular row or column of a two-dimensional array, we use

9

matrix

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4] [5]

[5]

[6]

FIGURE 9-15 Two-dimensional array matrix

Two- and Multidimensional Arrays | 523

algorithms similar to those that process one-dimensional arrays. We further explain this
concept with the help of the two-dimensional array matrix, as declared previously.

Suppose that we want to process row number 5 of matrix (that is, the sixth row of
matrix). The components of row number 5 of matrix are:

matrix[5][0], matrix[5][1], matrix[5][2], matrix[5][3], matrix[5][4],
matrix[5][5]

We see that in these components, the first index (the row position) is fixed at 5. The
second index (the column position) ranges from 0 to 5. Therefore, we can use the
following for loop to process row number 5:

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
process matrix[5][col]

Clearly, this for loop is equivalent to the following for loop:

row = 5;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

process matrix[row][col]

Similarly, suppose that we want to process column number 2 of matrix, that is, the third
column of matrix. The components of this column are:

matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], matrix[4][2],
matrix[5][2], matrix[6][2]

Here, the second index (that is, the column position) is fixed at 2. The first index (that is,
the row position) ranges from 0 to 6. In this case, we can use the following for loop to
process column 2 of matrix:

for (row = 0; row < NUMBER_OF_ROWS; row++)
process matrix[row][2]

Clearly, this for loop is equivalent to the following for loop:

col = 2;
for (row = 0; row < NUMBER_OF_ROWS; row++)

process matrix[row][col]

Next, we discuss specific processing algorithms.

Initialization
Suppose that you want to initialize row number 4, that is, the fifth row, to 0. As
explained earlier, the following for loop does this:

row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

matrix[row][col] = 0;

If you want to initialize the entire matrix to 0, you can also put the first index, that is,
the row position, in a loop. By using the following nested for loops, we can initialize
each component of matrix to 0:

524 | Chapter 9: Arrays and Strings

9

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

matrix[row][col] = 0;

Print
By using a nested for loop, you can output the components of matrix. The following
nested for loops print the components of matrix, one row per line:

for (row = 0; row < NUMBER_OF_ROWS; row++)
{

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

cout << endl;
}

Input
The following for loop inputs the data into row number 4, that is, the fifth row of matrix:

row = 4;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cin >> matrix[row][col];

As before, by putting the row number in a loop, you can input data into each component
of matrix. The following for loop inputs data into each component of matrix:

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

cin >> matrix[row][col];

Sum by Row
The following for loop finds the sum of row number 4 of matrix; that is, it adds the
components of row number 4.

sum = 0;
row = 4;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

sum = sum + matrix[row][col];

Once again, by putting the row number in a loop, we can find the sum of each row
separately. Following is the C++ code to find the sum of each individual row:

//Sum of each individual row
for (row = 0; row < NUMBER_OF_ROWS; row++)
{

sum = 0;
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

sum = sum + matrix[row][col];

cout << "Sum of row " << row + 1 << " = " << sum << endl;
}

Two- and Multidimensional Arrays | 525

Sum by Column
As in the case of sum by row, the following nested for loop finds the sum of each
individual column:

//Sum of each individual column
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
{

sum = 0;
for (row = 0; row < NUMBER_OF_ROWS; row++)

sum = sum + matrix[row][col];

cout << "Sum of column " << col + 1 << " = " << sum
<< endl;

}

Largest Element in Each Row and Each Column
As stated earlier, two other operations on a two-dimensional array are finding the largest
element in each row and each column and finding the sum of both diagonals. Next, we
give the C++ code to perform these operations.

The following for loop determines the largest element in row number 4:

row = 4;
largest = matrix[row][0]; //Assume that the first element of

//the row is the largest.
for (col = 1; col < NUMBER_OF_COLUMNS; col++)

if (largest < matrix[row][col])
largest = matrix[row][col];

The following C++ code determines the largest element in each row and each column:

//Largest element in each row
for (row = 0; row < NUMBER_OF_ROWS; row++)
{

largest = matrix[row][0]; //Assume that the first element
//of the row is the largest.

for (col = 1; col < NUMBER_OF_COLUMNS; col++)
if (largest < matrix[row][col])

largest = matrix[row][col];

cout << "The largest element in row " << row + 1 << " = "
<< largest << endl;

}

//Largest element in each column
for (col = 0; col < NUMBER_OF_COLUMNS; col++)
{

largest = matrix[0][col]; //Assume that the first element
//of the column is the largest.

for (row = 1; row < NUMBER_OF_ROWS; row++)
if (largest < matrix[row][col])

largest = matrix[row][col];

cout << "The largest element in column " << col + 1
<< " = " << largest << endl;

}

526 | Chapter 9: Arrays and Strings

Passing Two-Dimensional Arrays as Parameters to Functions
Two-dimensional arrays can be passed as parameters to a function, and they are passed by
reference. The base address (that is, the address of the first component of the actual
parameter) is passed to the formal parameter. If matrix is the name of a two-dimensional
array, then matrix[0][0] is the first component of matrix.

When storing a two-dimensional array in the computer’s memory, C++ uses the row
order form. That is, the first row is stored first, followed by the second row, followed by
the third row, and so on.

In the case of a one-dimensional array, when declaring it as a formal parameter, we
usually omit the size of the array. Because C++ stores two-dimensional arrays in row
order form, to compute the address of a component correctly, the compiler must know
where one row ends and the next row begins. Thus, when declaring a two-dimensional
array as a formal parameter, you can omit the size of the first dimension, but not the
second; that is, you must specify the number of columns.

Suppose we have the following declaration:

const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;

Consider the following definition of the function printMatrix:

void printMatrix(int matrix[][NUMBER_OF_COLUMNS],
int noOfRows)

{
int row, col;

for (row = 0; row < noOfRows; row++)
{

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
cout << setw(5) << matrix[row][col] << " ";

cout << endl;
}

}

This function takes as a parameter a two-dimensional array of an unspecified number of
rows and five columns, and outputs the content of the two-dimensional array. During
the function call, the number of columns of the actual parameter must match the number
of columns of the formal parameter.

Similarly, the following function outputs the sum of the elements of each row of a two-
dimensional array whose elements are of type int.

void sumRows(int matrix[][NUMBER_OF_COLUMNS], int noOfRows)
{

int row, col;
int sum;

//Sum of each individual row
for (row = 0; row < noOfRows; row++)

9

Two- and Multidimensional Arrays | 527

{
sum = 0;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)
sum = sum + matrix[row][col];

cout << "Sum of row " << (row + 1) << " = " << sum
<< endl;

}
}

The following function determines the largest element in each row:

void largestInRows(int matrix[][NUMBER_OF_COLUMNS],
int noOfRows)

{
int row, col;
int largest;

//Largest element in each row
for (row = 0; row < noOfRows; row++)
{

largest = matrix[row][0]; //Assume that the first element
//of the row is the largest.

for (col = 1; col < NUMBER_OF_COLUMNS; col++)
if (largest < matrix[row][col])

largest = matrix[row][col];

cout << "The largest element of row " << (row + 1)
<< " = " << largest << endl;

}
}

Likewise, you can write a function to find the sum of the elements of each column, read
the data into a two-dimensional array, find the largest and/or smallest element in each
row or column, and so on.

Example 9-10 shows how the functions printMatrix, sumRows, and largestInRows
are used in a program.

EXAMPLE 9-10

The following program illustrates how two-dimensional arrays are passed as parameters to
functions.

// Two-dimensional arrays as parameters to functions.

#include <iostream>
#include <iomanip>

using namespace std;

const int NUMBER_OF_ROWS = 6;
const int NUMBER_OF_COLUMNS = 5;

528 | Chapter 9: Arrays and Strings

9

void printMatrix(int matrix[][NUMBER_OF_COLUMNS],
int NUMBER_OF_ROWS);

void sumRows(int matrix[][NUMBER_OF_COLUMNS],
int NUMBER_OF_ROWS);

void largestInRows(int matrix[][NUMBER_OF_COLUMNS],
int NUMBER_OF_ROWS);

int main()
{

int board[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS]
= {{23, 5, 6, 15, 18},

{4, 16, 24, 67, 10},
{12, 54, 23, 76, 11},
{1, 12, 34, 22, 8},
{81, 54, 32, 67, 33},
{12, 34, 76, 78, 9}}; //Line 1

printMatrix(board, NUMBER_OF_ROWS); //Line 2
cout << endl; //Line 3
sumRows(board, NUMBER_OF_ROWS); //Line 4
cout << endl; //Line 5
largestInRows(board, NUMBER_OF_ROWS); //Line 6

return 0;
}

//Place the definitions of the functions printMatrix,
//sumRows, and largestInRows as described previously here.

Sample Run:

23 5 6 15 18
4 16 24 67 10

12 54 23 76 11
1 12 34 22 8

81 54 32 67 33
12 34 76 78 9

Sum of row 1 = 67
Sum of row 2 = 121
Sum of row 3 = 176
Sum of row 4 = 77
Sum of row 5 = 267
Sum of row 6 = 209

The largest element in row 1 = 23
The largest element in row 2 = 67
The largest element in row 3 = 76
The largest element in row 4 = 34
The largest element in row 5 = 81
The largest element in row 6 = 78

In this program, the statement in Line 1 declares and initializes board to be a two-
dimensional array of six rows and five columns. The statement in Line 2 uses the

Two- and Multidimensional Arrays | 529

function printMatrix to output the elements of board (see the first six lines of the
Sample Run). The statement in Line 4 uses the function sumRows to calculate and print
the sum of each row. The statement in Line 6 uses the function largestInRows to find
and print the largest element in each row.

Arrays of Strings
Suppose that you need to perform an operation, such as alphabetizing a list of names. Because
every name is a string, a convenient way to store the list of names is to use an array. Strings in
C++ can be manipulated using either the data typestring or character arrays (C-strings). Also,
on some compilers, the data type stringmay not be available in Standard C++ (that is, non-
ANSI/ISO Standard C++). This section illustrates both ways to manipulate a list of strings.

Arrays of Strings and the string Type
Processing a list of strings using the data type string is straightforward. Suppose that the
list consists of a maximum of 100 names. You can declare an array of 100 components of
type string as follows:

string list[100];

Basic operations, such as assignment, comparison, and input/output, can be performed on
values of the string type. Therefore, the data in list can be processed just like any
one-dimensional array discussed in the first part of this chapter.

Arrays of Strings and C-Strings (Character Arrays)
Suppose that the largest string (for example, name) in your list is 15 characters long and
your list has 100 strings. You can declare a two-dimensional array of characters of
100 rows and 16 columns as follows (see Figure 9-16):

char list[100][16];

list
list[0]
list[1]
list[2]
list[3]

list[40]

. . .

. . .

list[41]

list[98]
list[99]

FIGURE 9-16 Array list of strings

530 | Chapter 9: Arrays and Strings

Now list[j] for each j, 0 <= j <= 99, is a string of at most 15 characters in length.
The following statement stores "Snow White" in list[1] (see Figure 9-17):

strcpy(list[1], "Snow White");

Suppose that you want to read and store data in list and that there is one entry per line.
The following for loop accomplishes this task:

for (j = 0; j < 100; j++)
cin.get(list[j], 16);

The following for loop outputs the string in each row:

for (j = 0; j < 100; j++)
cout << list[j] << endl;

You can also use other string functions (such as strcmp and strlen) and for loops to
manipulate list.

The data type string has operations such as assignment, concatenation, and relational

operations defined for it. If you use Standard C++ header files and the data type string

is available on your compiler, we recommend that you use the data type string to

manipulate lists of strings.

Another Way to Declare a Two-Dimensional Array

This section may be skipped without any loss of continuity.

9

list

S n o w W h i t e \0
list[0]
list[1]
list[2]
list[3]

list[40]

. . .

. . .

list[41]

list[98]
list[99]

FIGURE 9-17 Array list, showing list[1]

Two- and Multidimensional Arrays | 531

If you know the size of the tables with which the program will be working, then you can
use typedef to first define a two-dimensional array data type and then declare variables
of that type.

For example, consider the following:

const int NUMBER_OF_ROWS = 20;
const int NUMBER_OF_COLUMNS = 10;

typedef int tableType[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];

The previous statement defines a two-dimensional array data type tableType. Now we
can declare variables of this type. So:

tableType matrix;

declares a two-dimensional array matrix of 20 rows and 10 columns.

You can also use this data type when declaring formal parameters, as shown in the
following code:

void initialize(tableType table)
{

int row;
int col;

for (row = 0; row < NUMBER_OF_ROWS; row++)
for (col = 0; col < NUMBER_OF_COLUMNS; col++)

table[row][col] = 0;
}

This function takes as an argument any variable of type tableType, which is a two-
dimensional array, and initializes the array to 0.

By first defining a data type, you do not need to keep checking the exact number of
columns when you declare a two-dimensional array as a variable or formal parameter, or
when you pass an array as a parameter during a function call.

Multidimensional Arrays
In this chapter, we defined an array as a collection of a fixed number of elements (called
components) of the same type. A one-dimensional array is an array in which the
elements are arranged in a list form; in a two-dimensional array, the elements are
arranged in a table form. We can also define three-dimensional or larger arrays. In
C++, there is no limit on the dimension of arrays. Following is the general definition of
an array.

n-dimensional array: A collection of a fixed number of elements (called components)
arranged in n dimensions (n >¼ 1).

532 | Chapter 9: Arrays and Strings

The general syntax for declaring an n-dimensional array is:

dataType arrayName[intExp1][intExp2] ... [intExpn];

where intExp1, intExp2, ... , and intExpn are constant expressions yielding
positive integer values.

The syntax to access a component of an n-dimensional array is:

arrayName[indexExp1][indexExp2] ... [indexExpn]

where indexExp1,indexExp2, ..., and indexExpn are expressions yielding non
negative integer values. indexExpi gives the position of the array component in the ith
dimension.

For example, the statement:

double carDealers[10][5][7];

declares carDealers to be a three-dimensional array. The size of the first dimen-
sion is 10, the size of the second dimension is 5, and the size of the third
dimension is 7. The first dimension ranges from 0 to 9, the second dimension
ranges from 0 to 4, and the third dimension ranges from 0 to 6. The base address
of the array carDealers is the address of the first array component—that is, the
address of carDealers[0][0][0]. The total number of components in the array
carDealers is 10 * 5 * 7 = 350.

The statement:

carDealers[5][3][2] = 15564.75;

sets the value of the component carDealers[5][3][2] to 15564.75.

You can use loops to process multidimensional arrays. For example, the nested for
loops:

for (i = 0; i < 10; i++)
for (j = 0; j < 5; j++)

for (k = 0; k < 7; k++)
carDealers[i][j][k] = 0.0;

initialize the entire array to 0.0.

When declaring a multidimensional array as a formal parameter in a function, you can
omit the size of the first dimension but not the other dimensions. As parameters, multi-
dimensional arrays are passed by reference only, and a function cannot return a value of
the array type. There is no check to determine whether the array indices are within
bounds.

9

Two- and Multidimensional Arrays | 533

PROGRAMMING EXAMPLE: Code Detection
When a message is transmitted in secret code over a transmission channel, it is
usually sent as a sequence of bits, that is, 0s and 1s. Due to noise in the
transmission channel, the transmitted message may become corrupted. That is,
the message received at the destination is not the same as the message transmitted;
some of the bits may have been changed. There are several techniques to check
the validity of the transmitted message at the destination. One technique is to
transmit the same message twice. At the destination, both copies of the message are
compared bit by bit. If the corresponding bits are the same, the message received is
error-free.

Let’s write a program to check whether the message received at the destination is
error-free. For simplicity, assume that the secret code representing the message is a
sequence of digits (0 to 9) and the maximum length of the message is 250 digits.
Also, the first number in the message is the length of the message. For example, if the
secret code is:

7 9 2 7 8 3 5 6

then the actual message is 7 digits long, and it is transmitted twice.

The above message is transmitted as:

7 9 2 7 8 3 5 6 7 9 2 7 8 3 5 6

Input A file containing the secret code and its copy

Output The secret code, its copy, and a message—if the received code is error-free—in
the following form:

Code Digit Code Digit Copy
9 9
2 2
7 7
8 8
3 3
5 5
6 6

Message transmitted OK.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Because we have to compare the corresponding digits of the secret code and its copy, we
first read the secret code and store it in an array. Then we read the first digit of the copy
and compare it with the first digit of the secret code, and so on. If any of the
corresponding digits are not the same, we indicate this fact by printing a message next
to the digits. Because the maximum length of the message is 250, we use an array of 250
components. The first number in the secret code, and in the copy of the secret code,
indicates the length of the code. This discussion translates into the following algorithm:

534 | Chapter 9: Arrays and Strings

9

1. Open the input and output files.

2. If the input file does not exist, exit the program.

3. Read the length of the secret code.

4. If the length of the secret code is greater than 250, terminate the
program because the maximum length of the code in this program is 250.

5. Read and store the secret code into an array.

6. Read the length of the copy.

7. If the length of the secret code and its copy are the same, compare
the codes. Otherwise, print an error message.

To simplify the function main, let us write a function, readCode, to read the secret
code and another function, compareCode, to compare the codes.

readCode This function first reads the length of the secret code. If the length of the
secret code is greater than 250, a bool variable lenCodeOk, which is a
reference parameter, is set to false and the function terminates. The value of
lenCodeOk is passed to the calling function to indicate whether the secret code
was read successfully. If the length of the code is less than 250, the readCode
function reads and stores the secret code into an array. Because the input is stored
into a file and the file was opened in the function main, the input stream variable
corresponding to the input file must be passed as a parameter to this function.
Furthermore, after reading the length of the secret code and the code itself, the
readCode function must pass these values to the function main. Therefore, this
function has four parameters: an input file stream variable, an array to store the
secret code, the length of the code, and the bool parameter lenCodeOk. The
definition of the function readCode is as follows:

void readCode(ifstream& infile, int list[], int& length,
bool& lenCodeOk)

{
int count;

lenCodeOk = true;

infile >> length; //get the length of the secret code

if (length > MAX_CODE_SIZE)
{

lenCodeOk = false;
return;

}

//Get the secret code.
for (count = 0; count < length; count++)

infile >> list[count];
}

Programming Example: Code Detection | 535

compareCode This function compares the secret code with its copy. Therefore, it must have access
to the array containing the secret code and the length of the secret code. The copy of
the secret code and its length are stored in the input file. Thus, the input stream
variable corresponding to the input file must be passed as a parameter to this function.
Also, the compareCode function compares the secret code with the copy and prints
an appropriate message. Because the output will be stored in a file, the output stream
variable corresponding to the output file must also be passed as a parameter to this
function. Therefore, the function has four parameters: an input file stream variable,
an output file stream variable, the array containing the secret code, and the length of
the secret code. This discussion translates into the following algorithm for the
function compareCode:

a. Declare the variables.

b. Set a bool variable codeOk to true.

c. Read the length of the copy of the secret code.

d. If the length of the secret code and its copy are not the same, output
an appropriate error message and terminate the function.

e. For each digit in the input file:

e.1. Read the next digit of the copy of the secret code.

e.2. Output the corresponding digits from the secret code and its copy.

e.3. If the corresponding digits are not the same, output an error
message and set the bool variable codeOk to false.

f. If the bool variable codeOk is true

Output a message indicating that the secret code was transmitted
correctly.

else

Output an error message.

Following this algorithm, the definition of the function compareCode is:

void compareCode(ifstream& infile, ofstream& outfile,
const int list[], int length)

{
//Step a

int length2;
int digit;
bool codeOk;
int count;

codeOk = true; //Step b

infile >> length2; //Step c

536 | Chapter 9: Arrays and Strings

9

if (length != length2) //Step d
{

cout << "The original code and its copy "
<< "are not of the same length."
<< endl;

return;
}

outfile << "Code Digit Code Digit Copy"
<< endl;

for (count = 0; count < length; count++) //Step e
{

infile >> digit; //Step e.1
outfile << setw(5) << list[count]

<< setw(17) << digit; //Step e.2

if (digit != list[count]) //Step e.3
{

outfile << " code digits are not the same"
<< endl;

codeOk = false;
}
else

outfile << endl;
}

if (codeOk) //Step f
outfile << "Message transmitted OK."

<< endl;
else

outfile << "Error in transmission. "
<< "Retransmit!!" << endl;

}

Following is the algorithm for the function main.

Main

Algorithm

1. Declare the variables.

2. Open the files.

3. Call the function readCode to read the secret code.

4. if (length of the secret code <= 250)

Call the function compareCode to compare the codes.

else

Output an appropriate error message.

Programming Example: Code Detection | 537

COMPLETE PROGRAM LISTING

//**
// Author: D.S. Malik
//
// Program: Check Code
// This program determines whether a code is transmitted
// correctly.
//**

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

const int MAX_CODE_SIZE = 250;

void readCode(ifstream& infile, int list[],
int& length, bool& lenCodeOk);

void compareCode(ifstream& infile, ofstream& outfile,
const int list[], int length);

int main()
{

//Step 1
int codeArray[MAX_CODE_SIZE]; //array to store the secret

//code
int codeLength; //variable to store the

//length of the secret code
bool lengthCodeOk; //variable to indicate if the length

//of the secret code is less than or
//equal to 250

ifstream incode; //input file stream variable
ofstream outcode; //output file stream variable

char inputFile[51]; //variable to store the name of the
//input file

char outputFile[51]; //variable to store the name of
//the output file

cout << "Enter the input file name: ";
cin >> inputFile;
cout << endl;

//Step 2
incode.open(inputFile);
if (!incode)
{

cout << "Cannot open the input file." << endl;
return 1;

}

538 | Chapter 9: Arrays and Strings

9

cout << "Enter the output file name: ";
cin >> outputFile;
cout << endl;

outcode.open(outputFile);

readCode(incode, codeArray, codeLength,
lengthCodeOk); //Step 3

if (lengthCodeOk) //Step 4
compareCode(incode, outcode, codeArray,

codeLength);
else

cout << "Length of the secret code "
<< "must be <= " << MAX_CODE_SIZE
<< endl; //Step 5

incode.close();
outcode.close();

return 0;
}

//Place the definitions of the functions readCode and
//compareCode, as described previously, here.

Sample Run: In this sample run, the user input is shaded.

Enter the input file name: Ch9_SecretCodeData.txt

Enter the output file name: Ch9_SecretCodeOut.txt

Input File Data: (Ch9_SecretCodeData.txt)

7 9 2 7 8 3 5 6 7 9 2 7 8 3 5 6

Output File Data: (Ch9_SecretCodeOut.txt)

Code Digit Code Digit Copy
9 9
2 2
7 7
8 8
3 3
5 5
6 6

Message transmitted OK.

Programming Example: Code Detection | 539

PROGRAMMING EXAMPLE: Text Processing
(Line and letter count) Let us now write a program that reads a given text, outputs
the text as is, and also prints the number of lines and the number of times each letter
appears in the text. An uppercase letter and a lowercase letter are treated as being the
same; that is, they are tallied together.

Because there are 26 letters, we use an array of 26 components to perform the letter
count. We also need a variable to store the line count.

The text is stored in a file, which we will call textin.txt. The output will be
stored in a file, which we will call textout.out.

Input A file containing the text to be processed.

Output A file containing the text, number of lines, and the number of times a
letter appears in the text.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Based on the desired output, it is clear that we must output the text as is. That is, if the
text contains any whitespace characters, they must be output as well. Furthermore, we
must count the number of lines in the text. Therefore, we must know where the line
ends, which means that we must trap the newline character. This requirement suggests
that we cannot use the extraction operator to process the input file. Because we also
need to perform the letter count, we use the get function to read the text.

Let us first describe the variables that are necessary to develop the program. This will
simplify the discussion that follows.

Variables We need to store the line count and the letter count. Therefore, we need a variable
to store the line count and 26 variables to perform the letter count. We will use an
array of 26 components to perform the letter count. We also need a variable to read
and store each character in turn, because the input file is to be read character by
character. Because data is to be read from an input file and output is to be saved in a
file, we need an input stream variable to open the input file and an output stream
variable to open the output file. These statements indicate that the function main
needs (at least) the following variables:

int lineCount; //variable to store the line count
int letterCount[26]; //array to store the letter count
char ch; //variable to store a character
ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

In this declaration, letterCount[0] stores the A count, letterCount[1]
stores the B count, and so on. Clearly, the variable lineCount and the array
letterCount must be initialized to 0.

540 | Chapter 9: Arrays and Strings

9

The algorithm for the program is:

1. Declare the variables.

2. Open the input and output files.

3. Initialize the variables.

4. While there is more data in the input file:

4.1. For each character in a line:

4.1.1. Read and write the character.

4.1.2. Increment the appropriate letter count.

4.2. Increment the line count.

5. Output the line count and letter counts.

6. Close the files.

To simplify the function main, we divide it into four functions:

• Function initialize

• Function copyText

• Function characterCount

• Function writeTotal

The following sections describe each of these functions in detail. Then, with the help
of these functions, we describe the algorithm for the function main.

initialize This function initializes the variable lineCount and the array letterCount to 0. It,
therefore, has two parameters: one corresponding to the variable lineCount and one
corresponding to the array letterCount. Clearly, the parameter corresponding to
lineCount must be a reference parameter. The definition of this function is:

void initialize(int& lc, int list[])
{

int j;
lc = 0;

for (j = 0; j < 26; j++)
list[j] = 0;

} //end initialize

copyText This function reads a line and outputs the line. After reading a character, it calls the
function characterCount to update the letter count. Clearly, this function has
four parameters: an input file stream variable, an output file stream variable, a char
variable, and the array to update the letter count.

Note that the copyText function does not perform the letter count, but we still
pass the array letterCount to it. We take this step because this function calls the

Programming Example: Text Processing | 541

function characterCount, which needs the array letterCount to update the
appropriate letter count. Therefore, we must pass the array letterCount to
the copyText function so that it can pass the array to the function characterCount.

void copyText(ifstream& intext, ofstream& outtext, char& ch,
int list[])

{
while (ch != '\n') //process the entire line
{

outtext << ch; //output the character
characterCount(ch, list); //call the function

//character count
intext.get(ch); //read the next character

}
outtext << ch; //output the newline character

} //end copyText

characterCount This function increments the letter count. To increment the appropriate letter count,
it must know what the letter is. Therefore, the characterCount function has two
parameters: a char variable and the array to update the letter count. In pseudocode,
this function is:

a. Convert the letter to uppercase.

b. Find the index of the array corresponding to this letter.

c. If the index is valid, increment the appropriate count. At this
step, we must ensure that the character is a letter. We are
counting only letters, so other characters—such as commas,
hyphens, and periods—are ignored.

Following this algorithm, the definition of this function is:

void characterCount(char ch, int list[])
{

int index;

ch = toupper(ch); //Step a

index = static_cast<int>(ch)
- static_cast<int>('A'); //Step b

if (0 <= index && index < 26) //Step c
list[index]++;

} //end characterCount

writeTotal This function outputs the line count and the letter count. It has three parameters: the
output file stream variable, the line count, and the array to output the letter count.
The definition of this function is:

542 | Chapter 9: Arrays and Strings

9

void writeTotal(ofstream& outtext, int lc, int list[])
{

int index;

outtext << endl << endl;
outtext << "The number of lines = " << lc << endl;

for (index = 0; index < 26; index++)
outtext << static_cast<char>(index

+ static_cast<int>('A'))
<< " count = " << list[index] << endl;

} //end writeTotal

We now describe the algorithm for the function main.

MAIN

ALGORITHM

1. Declare the variables.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Open the output file.

5. Initialize the variables, such as lineCount and the array
letterCount.

6. Read the first character.

7. While (not end of input file):

7.1. Process the next line; call the function copyText.

7.2. Increment the line count. (Increment the variable lineCount.)

7.3. Read the next character.

8. Output the line count and letter counts. Call the function
writeTotal.

9. Close the files.

COMPLETE PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Line and Letter Count
// This programs reads a text, outputs the text as is, and also
// prints the number of lines and the number of times each
// letter appears in the text. An uppercase letter and a
// lowercase letter are treated as being the same; that is,
// they are tallied together.
//***

Programming Example: Text Processing | 543

#include <iostream>
#include <fstream>
#include <cctype>

using namespace std;

void initialize(int& lc, int list[]);
void copyText(ifstream& intext, ofstream& outtext, char& ch,

int list[]);
void characterCount(char ch, int list[]);
void writeTotal(ofstream& outtext, int lc, int list[]);

int main()
{

//Step 1; Declare variables
int lineCount;
int letterCount[26];
char ch;
ifstream infile;
ofstream outfile;

infile.open("textin.txt"); //Step 2

if (!infile) //Step 3
{

cout << "Cannot open the input file."
<< endl;

return 1;
}

outfile.open("textout.out"); //Step 4

initialize(lineCount, letterCount); //Step 5

infile.get(ch); //Step 6

while (infile) //Step 7
{

copyText(infile, outfile, ch, letterCount); //Step 7.1
lineCount++; //Step 7.2
infile.get(ch); //Step 7.3

}

writeTotal(outfile, lineCount, letterCount); //Step 8

infile.close(); //Step 9
outfile.close(); //Step 9

return 0;
}

544 | Chapter 9: Arrays and Strings

9

void initialize(int& lc, int list[])
{

int j;
lc = 0;

for (j = 0; j < 26; j++)
list[j] = 0;

} //end initialize

void copyText(ifstream& intext, ofstream& outtext, char& ch,
int list[])

{
while (ch != '\n') //process the entire line

{
outtext << ch; //output the character

characterCount(ch, list); //call the function
//character count

intext.get(ch); //read the next character
}

outtext << ch; //output the newline character
} //end copyText

void characterCount(char ch, int list[])
{

int index;

ch = toupper(ch); //Step a

index = static_cast<int>(ch)
- static_cast<int>('A'); //Step b

if (0 <= index & index < 26) //Step c
list[index]++;

} //end characterCount

void writeTotal(ofstream& outtext, int lc, int list[])
{

int index;

outtext << endl << endl;
outtext << "The number of lines = " << lc << endl;

for (index = 0; index < 26; index++)
outtext << static_cast<char>(index

+ static_cast<int>('A'))
<< " count = " << list[index] << endl;

} //end writeTotal

Programming Example: Text Processing | 545

Sample Run (textout.out):

Today we live in an era where information is processed almost at the

speed of light. Through computers, the technological revolution is

drastically changing the way we live and communicate with one

another. Terms such as "the Internet," which were unfamiliar just
a few years ago, are very common today. With the help of computers you

can send letters to, and receive letters from, loved ones within

seconds. You no longer need to send a résumé by mail to apply for a

job; in many cases you can simply submit your job application via

the Internet. You can watch how stocks perform in real time, and

instantly buy and sell them. Students regularly "surf" the Internet
and use computers to design their classroom projects. They also use

powerful word-processing software to complete their term papers.

Many people maintain and balance their checkbooks on computers.

The number of lines = 15
A count = 53
B count = 7
C count = 30
D count = 19
E count = 81
F count = 11
G count = 10
H count = 29
I count = 41
J count = 4
K count = 3
L count = 31
M count = 26
N count = 50
O count = 59
P count = 21
Q count = 0
R count = 45
S count = 48
T count = 62
U count = 24
V count = 7
W count = 15
X count = 0
Y count = 20
Z count = 0

546 | Chapter 9: Arrays and Strings

QUICK REVIEW

1. A data type is simple if variables of that type can hold only one value at a time.

2. In a structured data type, each data item is a collection of other data items.

3. An array is a structured data type with a fixed number of components.
Every component is of the same type, and components are accessed using
their relative positions in the array.

4. Elements of a one-dimensional array are arranged in the form of a list.

5. There is no check on whether an array index is out of bounds.

6. In C++, an array index starts with 0.

7. An array index can be any expression that evaluates to a nonnegative integer.
The value of the index must always be less than the size of the array.

8. There are no aggregate operations on arrays, except for the input/output of
character arrays (C-strings).

9. Arrays can be initialized during their declaration. If there are fewer initial
values than the array size, the remaining elements are initialized to 0.

10. The base address of an array is the address of the first array component. For
example, if list is a one-dimensional array, the base address of list is the
address of list[0].

11. When declaring a one-dimensional array as a formal parameter, you usually
omit the array size. If you specify the size of a one-dimensional array in the
formal parameter declaration, the compiler will ignore the size.

12. In a function call statement, when passing an array as an actual parameter,
you use only its name.

13. As parameters to functions, arrays are passed by reference only.

14. Because as parameters, arrays are passed by reference only, when declaring an
array as a formal parameter, you do not use the symbol & after the data type.

15. A function cannot return a value of type array.

16. Although as parameters, arrays are passed by reference, when declaring an
array as a formal parameter, using the reserved word const before the data
type prevents the function from modifying the array.

17. Individual array components can be passed as parameters to functions.

18. The sequential search algorithm searches a list for a given item, starting with
the first element in the list. It continues to compare the search item with
the other elements in the list until either the item is found or the list has no
more elements left to be compared with the search item

19. In C++, a string is any sequence of characters enclosed between double
quotation marks.

20. In C++, C-strings are null terminated.

9

Quick Review | 547

21. In C++, the null character is represented as '\0'.

22. In the ASCII character set, the collating sequence of the null character is 0.

23. C-strings are stored in character arrays.

24. Character arrays can be initialized during declaration using string notation.

25. Input and output of C-strings is the only place where C++ allows aggregate
operations.

26. The header file cstring contains the specifications of the functions that
can be used for C-string manipulation.

27. Commonly used C-string manipulation functions include strcpy (string
copy), strcmp (string comparison), and strlen (string length).

28. C-strings are compared character by character.

29. Because C-strings are stored in arrays, individual characters in the C-string
can be accessed using the array component access notation.

30. Parallel arrays are used to hold related information.

31. In a two-dimensional array, the elements are arranged in a table form.

32. To access an element of a two-dimensional array, you need a pair of
indices: one for the row position and one for the column position.

33. In a two-dimensional array, the rows are numbered 0 to ROW_SIZE � 1
and the columns are numbered 0 to COLUMN_SIZE � 1.

34. If matrix is a two-dimensional array, then the base address of matrix is
the address of the array component matrix[0][0].

35. In row processing, a two-dimensional array is processed one row at
a time.

36. In column processing, a two-dimensional array is processed one column at
a time.

37. When declaring a two-dimensional array as a formal parameter, you can
omit the size of the first dimension but not the second.

38. When a two-dimensional array is passed as an actual parameter, the number
of columns of the actual and formal arrays must match.

39. C++ stores, in computer memory, two-dimensional arrays in a row order form.

EXERCISES

1. Mark the following statements as true or false.

a. A double type is an example of a simple data type.

b. A one-dimensional array is an example of a structured data type.

c. Arrays can be passed as parameters to a function either by value or by
reference.

548 | Chapter 9: Arrays and Strings

d. A function can return a value of type array.

e. The size of an array is determined at compile time.

f. The only aggregate operations allowable on int arrays are the incre-
ment and decrement operations.

g. Given the declaration:

int list[10];

the statement:

list[5] = list[3] + list[2];

updates the content of the fifth component of the array list.

h. If an array index goes out of bounds, the program always terminates in an
error.

i. In C++, some aggregate operations are allowed for strings.

j. The declaration:

char name[16] = "John K. Miller";

declares name to be an array of 15 characters because the string "John K.
Miller" has only 14 characters.

k. The declaration:

char str = "Sunny Day";

declares str to be a string of an unspecified length.

l. As parameters, two-dimensional arrays are passed either by value or by
reference.

2. Consider the following declaration:

double salary[10];

In this declaration, identify the following:

a. The array name.

b. The array size.

c. The data type of each array component.

d. The range of values for the index of the array.

3. Identify error(s), if any, in the following array declarations.

a. int list[10];

b. constint size = 100;
double list[SIZE];

c. int numList[0..9];

d. string names[20];

e. scores[50] double;

9

Exercises | 549

4. Determine whether the following array declarations are valid. If a declara-
tion is invaid, explain why.

a. int list75;

b. int size;
double list[size];

c. int test[-10];

d. double sales[40.5];

5. What would be a valid range for the index of an array of size 50?

6. Write C++ statements to do the following:

a. Declare an array alpha of 15 components of type int.

b. Output the value of the tenth component of the array alpha.

c. Set the value of the fifth component of the array alpha to 35.

d. Set the value of the ninth component of the array alpha to the sum of
the sixth and thirteenth components of the array alpha.

e. Set the value of the fourth component of the array alpha to three
times the value of the eighth component minus 57.

f. Output alpha so that five components per line are printed.

7. What is the output of the following program segment?

int temp[5];

for (int i = 0; i < 5; i++)
temp[i] = 2 * i - 3;

for (int i = 0; i < 5; i++)
cout << temp[i] << " ";

cout << endl;

temp[0] = temp[4];
temp[4] = temp[1];
temp[2] = temp[3] + temp[0];

for (int i = 0; i < 5; i++)
cout << temp[i] << " ";

cout << endl;

8. Suppose list is an array of five components of type int. What is stored in
list after the following C++ code executes?

for (int i = 0; i < 5; i++)
{

list[i] = 2 * i + 5;
if (i % 2 == 0)

list[i] = list[i] - 3;
}

550 | Chapter 9: Arrays and Strings

9. Suppose list is an array of six components of type int. What is stored in
list after the following C++ code executes?

list[0] = 5;
for (int i = 1; i < 6; i++)
{

list[i] = i * i + 5;
if (i > 2)

list[i] = 2 * list[i] - list[i - 1];
}

10. Correct the following code so that it correctly initializes and outputs the
elements of the array.

myList;

int myList[10];

for (int i = 1; i <= 10; i++)
cin >> myList;

for (int i = 1; i <= 10; i++)
cout << myList[i] << " ";

cout << endl;

11. What is array index out of bounds? Does C++ check for array indices
within bounds?

12. Suppose that scores is an array of 10 components of type double, and:

scores = {2.5, 3.9, 4.8, 6.2, 6.2, 7.4, 7.9, 8.5, 8.5, 9.9}

The following is supposed to ensure that the elements of scores are in
nondecreasing order. However, there are errors in the code. Find and correct
the errors.

for (int i = 1; i <= 10; i++)
if (scores[i] >= scores[i + 1])

cout << i << " and " << (i + 1)
<< " elements of scores are out of order." << endl;

13. Write C++ statements to define and initialize the following arrays.

a. Array heights of 10 components of type double. Initilaize this array
to the following values: 5.2, 6.3, 5.8, 4.9, 5.2, 5.7, 6.7, 7.1, 5.10, 6.0.

b. Array weights of 7 components of type int. Initilaize this array to the
following values: 120, 125, 137, 140, 150, 180, 210.

c. Array specialSymbols of type char. Initilaize this array to the
following values: '$', '#', '%', '@', '&', '! ', '^'.

d. Array seasons of 4 components of type string. Initilaize this array to
the following values: "fall", "winter", "spring", "summer".

9

Exercises | 551

14. Determine whether the following array declarations are valid.

a. int a[5] = {0, 4, 3, 2, 7};

b. int b[10] = {0, 7, 3, 12};

c. int c[7] = {12, 13, , 14, 16, , 8};

d. double lengths[] = {12.7, 13.9, 18.75, 20.78};

e. char name[8] = "Samantha";

15. Suppose that you have the following declaration:

int list[10] = {8, 9, 15, 12, 80};

What is stored in each of the components of list.

16. What is the output of the following code?

int list[] ={6, 8, 2, 14, 13};

for (int i = 0; i < 4; i++)
list[i] = list[i] - list[i + 1];

for (int i = 0; i < 5; i++)
cout << i << " " << list[i] << endl;

17. Consider the following function heading:

void tryMe(int x[], int size);

and the declarations:

int list[100];
int score[50];
double gpas[50];

Which of the following function calls is valid?

a. tryMe(list, 100);

b. tryMe(list, 75);

c. tryMe(score, 100);

d. tryMe(score, 49);

e. tryMe(gpa, 50);

18. Suppose that you have the following function definition.

void sum(int x, int y, int& z)
{

z = x + y;
}

Consider the following declarations:

int list1[10], list2[10], list3[10];
int a, b, c;

552 | Chapter 9: Arrays and Strings

Which of the following function calls is valid?

a. sum(a, b, c);

b. sum(list1[0], list2[0], a);

c. sum(list1, list2, c);

d. for (int i = 1; i <= 10; i++)
sum(list1[i], list2[i], list[3]);

19. What is the output of the following C++ code?

double salary[5] = {25000, 36500, 85000, 62500, 97000};
double raise = 0.03;

cout << fixed << showpoint << setprecision(2);

for (int i = 0; i < 5; i++)
cout << (i + 1) << " " << salary[i] << " "

<< salary[i] * raise << endl;

20. A car dealer has 10 salespersons. Each salesperson keeps track of the number
of cars sold each month and reports it to the management at the end of the
month. The management keeps the data in a file and assigns a number, 1 to
10, to each salesperson. The following statement declares an array, cars, of
10 components of type int to store the number of cars sold by each
salesperson.

int cars[10];

Write the code to store the number of cars sold by each salesperson in the
array cars, output the total numbers of cars sold at the end of each month,
and output the salesperson number selling the maximum number cars.
(Assume that data is in the file cars.dat, and this file has been opened
using the ifstream variable inFile.)

21. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int count;
int alpha[5];

alpha[0] = 5;
for (count = 1; count < 5; count++)
{

alpha[count] = 5 * count + 10;
alpha[count - 1] = alpha[count] - 4;

}

9

Exercises | 553

cout << "List elements: ";
for (count = 0; count < 5; count++)

cout << alpha[count] << " ";
cout << endl;

return 0;
}

22. What is the output of the following program?

#include <iostream>

using namespace std;

int main()
{

int j;
int one[5];
int two[10];

for (j = 0; j < 5; j++)
one[j] = 5 * j + 3;

cout << "One contains: ";
for (j = 0; j < 5; j++)

cout << one[j] << " ";
cout << endl;
for (j = 0; j < 5; j++)
{

two[j] = 2 * one[j] - 1;
two[j + 5] = one[4 - j] + two [j];

}

cout << "Two contains: ";
for (j = 0; j < 10; j++)

cout << two[j] << " ";
cout << endl;

return 0;
}

23. What is the output of the following C++ code?

const double PI = 3.14159;
double cylinderRadii[5] = {3.5, 7.2, 10.5, 9.8, 6.5};
double cylinderHeights[5] = {10.7, 6.5, 12.0, 10.5, 8.0};
double cylinderVolumes[5];

cout << fixed << showpoint << setprecision(2);

for (int i = 0; i < 5; i++)
cylinderVolumes[i] = 2 * PI * cylinderRadii[i]

* cylinderHeights[i];

for (int i = 0; i < 5; i++)
cout << (i + 1) << " " << cylinderRadii[i] << " "

<< cylinderHeights[i] << " " << cylinderVolumes[i] << endl;

554 | Chapter 9: Arrays and Strings

9

24. When an array is passed as an actual parameter to a function, what is actually
being passed?

25. In C++, as an actual parameter, can an array be passed by value?

26. Given the declaration:

char string15[16];

mark the following statements as valid or invalid. If a statement is invalid, explain why.

a. strcpy(string15, "Hello there");

b. strlen(string15);

c. string15 = "Jacksonville";

d. cin >> string15;

e. cout << string15;

f. if (string15 >= "Nice day")
cout << string15;

g. string15[6] = 't';

27. Given the declaration:

char str1[15];
char str2[15] = "Good day";

mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. str1 = str2;

b. if (str1 == str2)
cout << " Both strings are of the same length." << endl;

c. if (strlen(str1) >= strlen(str2))
str1 = str2;

d. if (strcmp(str1, str2) < 0)
cout << "str1 is less that str2." << endl;

28. Given the declaration:

char name[8] = "Shelly";

mark the following statements as ‘‘Yes’’ if they output Shelly. Otherwise, mark
the statement as ‘‘No’’ and explain why it does not output Shelly.

a. cout << name;

b. for (int j = 0; j < 6; j++)
cout << name[j];

c. int j = 0;
while (name[j] != '\0')

cout << name[j++];

d. int j = 0;
while (j < 8)

cout << name[j++];

Exercises | 555

29. Given the declaration:

char str1[21];
char str2[21];

a. Write a C++ statement that stores "Sunny Day" in str1.

b. Write a C++ statement that stores the length of str1 into the int
variable length.

c. Write a C++ statement that copies the value of name into str2.

d. Write C++ code that outputs str1 if str1 is less than or equal to
str2, and otherwise outputs str2.

30. Assume the following declarations:

char name[21];
char yourName[21];
char studentName[31];

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. cin >> name;

b. cout << studentName;

c. yourName[0] = '\0';

d. yourName = studentName;

e. if (yourName == name)
studentName = name;

f. int x = strcmp(yourName, studentName);

g. strcpy(studentName, Name);

h. for (int j = 0; j < 21; j++)
cout << name[j];

31. Define a two-dimensional array named temp of three rows and four
columns of type int such that the first row is initialized to 6, 8, 12, 9;
the second row is initialized to 17, 5, 10, 6; and the third row is initialized
to 14, 13, 16, 20.

32. Suppose that array temp is as defined in Exercise 31. Write C++ statements
to accomplish the following:

a. Output the contents of the first row and first column element of temp.

b. Output the contents of the first row and last column element of temp.

c. Output the contents of the last row and first column element of temp.

d. Output the contents of the last row and last column element of temp.

33. Consider the following declarations:

const int CAR_TYPES = 5;
const int COLOR_TYPES = 6;

556 | Chapter 9: Arrays and Strings

9

double sales[CAR_TYPES][COLOR_TYPES];

a. How many components does the array sales have?

b. What is the number of rows in the array sales?

c. What is the number of columns in the array sales?

d. To sum the sales by CAR_TYPES, what kind of processing is required?

e. To sum the sales by COLOR_TYPES, what kind of processing is required?

34. Write C++ statements that do the following:

a. Declare an array alpha of 10 rows and 20 columns of type int.

b. Initialize the array alpha to 0.

c. Store 1 in the first row and 2 in the remaining rows.

d. Store 5 in the first column, and make sure that the value in each
subsequent column is twice the value in the previous column.

e. Print the array alpha one row per line.

f. Print the array alpha one column per line.

35. Consider the following declaration:

int beta[3][3];

What is stored in beta after each of the following statements executes?

a. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = 0;

b. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = i + j;

c. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = i * j;

d. for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

beta[i][j] = 2 * (i + j) % 4;

36. Suppose that you have the following declarations:

int times[30][7];
int speed[15][7];
int trees[100][7];
int students[50][7];

a. Write the definition of the function print that can be used to output
the contents of these arrays.

b. Write the C++ statements that call the function print to output the
contents of the arrays times, speed, trees, and students.

Exercises | 557

PROGRAMMING EXERCISES

1. Write a C++ program that declares an array alpha of 50 components of
type double. Initialize the array so that the first 25 components are equal to
the square of the index variable, and the last 25 components are equal to
three times the index variable. Output the array so that 10 elements per line
are printed.

2. Write a C++ function, smallestIndex, that takes as parameters an int
array and its size and returns the index of the first occurrence of the smallest
element in the array. Also, write a program to test your function.

3. Write a C++ function, lastLargestIndex, that takes as parameters an int
array and its size and returns the index of the last occurrence of the
largest element in the array. Also, write a program to test your function.

4. Write a program that reads a file consisting of students’ test scores in the
range 0–200. It should then determine the number of students having
scores in each of the following ranges: 0–24, 25–49, 50–74, 75–99,
100–124, 125–149, 150–174, and 175–200. Output the score ranges
and the number of students. (Run your program with the following input
data: 76, 89, 150, 135, 200, 76, 12, 100, 150, 28, 178, 189, 167, 200,
175, 150, 87, 99, 129, 149, 176, 200, 87, 35, 157, 189.)

5. Write a program that prompts the user to input a string and outputs the
string in uppercase letters. (Use a character array to store the string.)

6. The history teacher at your school needs help in grading a True/False test.
The students’ IDs and test answers are stored in a file. The first entry in the
file contains answers to the test in the form:

TFFTFFTTTTFFTFTFTFTT

Every other entry in the file is the student ID, followed by a blank, followed
by the student’s responses. For example, the entry:

ABC54301 TFTFTFTT TFTFTFFTTFT

indicates that the student ID is ABC54301 and the answer to question 1 is
True, the answer to question 2 is False, and so on. This student did not
answer question 9. The exam has 20 questions, and the class has more than
150 students. Each correct answer is awarded two points, each wrong answer
gets one point deducted, and no answer gets zero points. Write a program
that processes the test data. The output should be the student’s ID, followed
by the answers, followed by the test score, followed by the test grade.
Assume the following grade scale: 90%–100%, A; 80%–89.99%, B;
70%–79.99%, C; 60%–69.99%, D; and 0%–59.99%, F.

7. Write a program that allows the user to enter the last names of five candidates
in a local election and the number of votes received by each candidate. The
program should then output each candidate’s name, the number of votes

558 | Chapter 9: Arrays and Strings

received, and the percentage of the total votes received by the candidate.
Your program should also output the winner of the election. A sample
output is:

Candidate Votes Received % of Total Votes

Johnson 5000 25.91
Miller 4000 20.73
Duffy 6000 31.09
Robinson 2500 12.95
Ashtony 1800 9.33
Total 19300

The Winner of the Election is Duffy.

8. Consider the following function main:

int main()
{

int inStock[10][4];
int alpha[20];
int beta[20];
int gamma[4] = {11, 13, 15, 17};
int delta[10] = {3, 5, 2, 6, 10, 9, 7, 11, 1, 8};

.

.

.
}

a. Write the definition of the function setZero that initializes any one-
dimensional array of type int to 0.

b. Write the definition of the function inputArray that prompts the user
to input 20 numbers and stores the numbers into alpha.

c. Write the definition of the function doubleArray that initializes the ele-
ments of beta to two times the corresponding elements in alpha. Make
sure that you prevent the function from modifying the elements of alpha.

d. Write the definition of the function copyGamma that sets the elements
of the first row of inStock to gamma and the remaining rows of
inStock to three times the previous row of inStock. Make sure that
you prevent the function from modifying the elements of gamma.

e. Write the definition of the function copyAlphaBeta that stores alpha
into the first five rows of inStock and beta into the last five rows of
inStock. Make sure that you prevent the function from modifying the
elements of alpha and beta.

f. Write the definition of the function printArray that prints any one-
dimensional array of type int. Print 15 elements per line.

9

Programming Exercises | 559

g. Write the definition of the function setInStock that prompts the user
to input the elements for the first column of inStock. The function
should then set the elements in the remaining columns to two times the
corresponding element in the previous column, minus the correspond-
ing element in delta.

h. Write C++ statements that call each of the functions in parts a through g.

i. Write a C++ program that tests the function main and the functions
discussed in parts a through g. (Add additional functions, such as print-
ing a two-dimensional array, as needed.)

9. Write a program that uses a two-dimensional array to store the highest and
lowest temperatures for each month of the year. The program should
output the average high, average low, and the highest and lowest tempera-
tures for the year. Your program must consist of the following functions:

a. Function getData: This function reads and stores data in the two-
dimensional array.

b. Function averageHigh: This function calculates and returns the
average high temperature for the year.

c. Function averageLow: This function calculates and returns the aver-
age low temperature for the year.

d. Function indexHighTemp: This function returns the index of the
highest high temperature in the array.

e. Function indexLowTemp: This function returns the index of the
lowest low temperature in the array.

(These functions must all have the appropriate parameters.)

10. Programming Exercise 8 in Chapter 6 asks you find the mean and standard
deviation of five numbers. Extend this programming exercise to find the
mean and standard deviation of up to 100 numbers. Suppose that the mean
(average) of n numbers x1, x2, . . ., xn is x. Then, the standard deviation of
these numbers is:

s ¼

ffi
ðx1 � xÞ2 þ ðx2 � xÞ2 þ � � � þ ðxi � xÞ2 þ � � � þ ðxn � xÞ2

n

s

11. (Adding Large Integers) In C++, the largest int value is 2147483647.
So, an integer larger than this cannot be stored and processed as an integer.
Similarly, if the sum or product of two positive integers is greater than
2147483647, the result will be incorrect. One way to store and manipulate
large integers is to store each individual digit of the number in an array.
Write a program that inputs two positive integers of, at most, 20 digits and
outputs the sum of the numbers. If the sum of the numbers has more than
20 digits, output the sum with an appropriate message. Your program must,

560 | Chapter 9: Arrays and Strings

at least, contain a function to read and store a number into an array and
another function to output the sum of the numbers. (Hint: Read numbers as
strings and store the digits of the number in the reverse order.)

12. Jason, Samantha, Ravi, Sheila, and Ankit are preparing for an upcoming
marathon. Each day of the week, they run a certain number of miles and
write them into a notebook. At the end of the week, they would like to
know the number of miles run each day, the total miles for the week, and
average miles run each day. Write a program to help them analyze their
data. Your program must contain parallel arrays: an array to store the names
of the runners and a two-dimensional array of five rows and seven columns
to store the number of miles run by each runner each day. Furthermore,
your program must contain at least the following functions: a function to
read and store the runners’ names and the numbers of miles run each day; a
function to find the total miles run by each runner and the average number
of miles run each day; and a function to output the results. (You may
assume that the input data is stored in a file and each line of data is in the
following form: runnerName milesDay1 milesDay2 milesDay3
milesDay4 milesDay5 milesDay6 milesDay7.)

13. Write a program to calculate students’ average test scores and their grades.
You may assume the following input data:

Johnson 85 83 77 91 76
Aniston 80 90 95 93 48
Cooper 78 81 11 90 73
Gupta 92 83 30 69 87
Blair 23 45 96 38 59
Clark 60 85 45 39 67
Kennedy 77 31 52 74 83
Bronson 93 94 89 77 97
Sunny 79 85 28 93 82
Smith 85 72 49 75 63

Use three arrays: a one-dimensional array to store the students’ names, a
(parallel) two-dimensional array to store the test scores, and a parallel one-
dimensional array to store grades. Your program must contain at least the
following functions: a function to read and store data into two arrays, a
function to calculate the average test score and grade, and a function to
output the results. Have your program also output the class average.

14. (Airplane Seating Assignment) Write a program that can be used to
assign seats for a commercial airplane. The airplane has 13 rows, with six
seats in each row. Rows 1 and 2 are first class, rows 3 through 7 are business
class, and rows 8 through 13 are economy class. Your program must prompt
the user to enter the following information:

a. Ticket type (first class, business class, or economy class)

b. Desired seat

9

Programming Exercises | 561

Output the seating plan in the following form:

Here, * indicates that the seat is available; X indicates that the seat is
occupied. Make this a menu-driven program; show the user’s choices and
allow the user to make the appropriate choices.

A B C D E F

Row 1 * * X * X X

Row 2 * X * X * X

Row 3 * * X X * X

Row 4 X * X * X X

Row 5 * X * X * *

Row 6 * X * * * X

Row 7 X * * * X X

Row 8 * X * X X *

Row 9 X * X X * X

Row 10 * X * X X X

Row 11 * * X * X *

Row 12 * * X X * X

Row 13 * * * * X *

562 | Chapter 9: Arrays and Strings

RECORDS (structs)
IN THIS CHAPTER , YOU WILL :

. Learn about records (structs)

. Examine various operations on a struct

. Explore ways to manipulate data using a struct

. Learn about the relationship between a struct and functions

. Discover how arrays are used in a struct

. Learn how to create an array of struct items

10C H A P T E R

In Chapter 9, you learned how to group values of the same type by using arrays. You also
learned how to process data stored in an array and how to perform list operations, such as
searching and sorting.

This chapter may be skipped without experiencing any discontinuation.

In this chapter, you will learn how to group related values that are of different types. C++
provides another structured data type, called a struct (some languages use the term
‘‘record’’), to group related items of different types. An array is a homogeneous data
structure; a struct is typically a heterogeneous data structure. The treatment of a
struct in this chapter is similar to the treatment of a struct in C. A struct in this
chapter, therefore, is a C-like struct. Chapter 11 introduces and discusses another
structured data type, called a class.

Records (structs)
Suppose that you want to write a program to process student data. A student record
consists of, among other things, the student’s name, student ID, GPA, courses taken,
and course grades. Thus, various components are associated with a student. However,
these components are all of different types. For example, the student’s name is a
string, and the GPA is a floating-point number. Because these components are of
different types, you cannot use an array to group all of the items associated with a
student. C++ provides a structured data type called struct to group items of
different types. Grouping components that are related but of different types offers
several advantages. For example, a single variable can pass all the components as
parameters to a function.

struct: A collection of a fixed number of components in which the components are
accessed by name. The components may be of different types.

The components of a struct are called the members of the struct. The general syntax
of a struct in C++ is:

struct structName
{

dataType1 identifier1;
dataType2 identifier2;

.

.

.
dataTypen identifiern;

};

564 | Chapter 10: Records (structs)

In C++, struct is a reserved word. The members of a struct, even though they
are enclosed in braces (that is, they form a block), are not considered to form a
compound statement. Thus, a semicolon (after the right brace) is essential to end the
struct statement. A semicolon at the end of the struct definition is, therefore, a
part of the syntax.

The statement:

struct employeeType
{

string firstName;
string lastName;
string address1;
string address2;
double salary;
string deptID;

};

defines a struct employeeType with six members. The members firstName,
lastName, address1, address2, and deptID are of type string, and the member
salary is of type double.

Like any type definition, a struct is a definition, not a declaration. That is, it defines
only a data type; no memory is allocated.

Once a data type is defined, you can declare variables of that type. Let us first define a
struct type, studentType, and then declare variables of that type.

struct studentType
{

string firstName;
string lastName;
char courseGrade;
int testScore;
int programmingScore;
double GPA;

};

//variable declaration
studentType newStudent;
studentType student;

These statements declare two struct variables, newStudent and student, of type
studentType. The memory allocated is large enough to store firstName, lastName,
courseGrade, testScore, programmingScore, and GPA (see Figure 10-1).

1
0

Records (structs) | 565

You can also declare struct variables when you define the struct. For example,
consider the following statements:

struct studentType
{

string firstName;
string lastName;
char courseGrade;
int testScore;
int programmingScore;
double GPA;

} tempStudent;

These statements define the struct studentType and also declare tempStudent
to be a variable of type studentType.

Typically, in a program, a struct is defined before the definitions of all of the functions
in the program so that the struct can be used throughout the program. Therefore, if you
define a struct and also simultaneously declare a struct variable (as in the preceding
statements), then that struct variable becomes a global variable and thus can be
accessed anywhere in the program. Keeping in mind the side effects of global variables,

you first should only define a struct and then declare the struct variables.

Accessing struct Members
In arrays, you access a component by using the array name together with the relative
position (index) of the component. The array name and index are separated using square
brackets. To access a structure member (component), you use the struct variable name
together with the member name; these names are separated by a dot (period). The syntax
for accessing a struct member is:

structVariableName.memberName

newStudent

firstName

lastName

courseGrade

testScore

programmingScore

GPA

student

firstName

lastName

courseGrade

testScore

programmingScore

GPA

FIGURE 10-1 structs newStudent and student

566 | Chapter 10: Records (structs)

The structVariableName.memberName is just like any other variable. For example,
newStudent.courseGrade is a variable of type char, newStudent.firstName is a
string variable, and so on. As a result, you can do just about anything with struct
members that you normally do with variables. You can, for example, use them in assign-
ment statements or input/output (where permitted) statements.

In C++, the dot (.) is an operator called the member access operator.

Suppose you want to initialize the member GPA of newStudent to 0.0. The following
statement accomplishes this task:

newStudent.GPA = 0.0;

Similarly, the statements:

newStudent.firstName = "John";
newStudent.lastName = "Brown";

store "John" in the member firstName and "Brown" in the member lastName of
newStudent.

After the preceding three assignment statements execute, newStudent is as shown in
Figure 10-2.

The statement:

cin >> newStudent.firstName;

reads the next string from the standard input device and stores it in:

newStudent.firstName

The statement:

cin >> newStudent.testScore >> newStudent.programmingScore;

1
0

newStudent

firstName

lastName

courseGrade

testScore

programmingScore

GPA 0.0

Brown

John

FIGURE 10-2 struct newStudent

Records (structs) | 567

reads two integer values from the keyboard and stores them in newStudent.testScore
and newStudent.programmingScore, respectively.

Suppose that score is a variable of type int. The statement:

score = (newStudent.testScore + newStudent.programmingScore) / 2;

assigns the average of newStudent.testScore and newStudent.programmingScore
to score.

The following statement determines the course grade and stores it in
newStudent.courseGrade:

if (score >= 90)
newStudent.courseGrade = 'A';

else if (score >= 80)
newStudent.courseGrade = 'B';

else if (score >= 70)
newStudent.courseGrade = 'C';

else if (score >= 60)
newStudent.courseGrade = 'D';

else
newStudent.courseGrade = 'F';

Assignment
We can assign the value of one struct variable to another struct variable of the same type
by using an assignment statement. Suppose that newStudent is as shown in Figure 10-3.

The statement:

student = newStudent;

newStudent

firstName

lastName

courseGrade

testScore

programmingScore

GPA 3.9

Robinson

A

95

98

Lisa

FIGURE 10-3 struct newStudent

568 | Chapter 10: Records (structs)

copies the contents of newStudent into student. After this assignment statement
executes, the values of student are as shown in Figure 10-4.

In fact, the assignment statement:

student = newStudent;

is equivalent to the following statements:

student.firstName = newStudent.firstName;
student.lastName = newStudent.lastName;
student.courseGrade = newStudent.courseGrade;
student.testScore = newStudent.testScore;
student.programmingScore = newStudent.programmingScore;
student.GPA = newStudent.GPA;

Comparison (Relational Operators)
To compare struct variables, you compare them member-wise. As with an array, no
aggregate relational operations are performed on a struct. For example, suppose that
newStudent and student are declared as shown earlier. Furthermore, suppose that
you want to see whether student and newStudent refer to the same student. Now
newStudent and student refer to the same student if they have the same first name
and the same last name. To compare the values of student and newStudent, you must
compare them member-wise, as follows:

if (student.firstName == newStudent.firstName &&
student.lastName == newStudent.lastName)

.

.

.

1
0

student

firstName

lastName

courseGrade

testScore

programmingScore

GPA 3.9

Robinson

A

95

98

Lisa

FIGURE 10-4 student after student = newStudent

Records (structs) | 569

Although you can use an assignment statement to copy the contents of one struct into
another struct of the same type, you cannot use relational operators on struct
variables. Therefore, the following would be illegal:

if (student == newStudent) //illegal
.
.
.

Input /Output
No aggregate input/output operations are allowed on a struct variable. Data in a
struct variable must be read one member at a time. Similarly, the contents of a struct
variable must be written one member at a time.

We have seen how to read data into a struct variable. Let us now see how to output a
struct variable. The statement:

cout << newStudent.firstName << " " << newStudent.lastName
<< " " << newStudent.courseGrade
<< " " << newStudent.testScore
<< " " << newStudent.programmingScore
<< " " << newStudent.GPA << endl;

outputs the contents of the struct variable newStudent.

struct Variables and Functions
Recall that arrays are passed by reference only, and a function cannot return a value of
type array. However:

• A struct variable can be passed as a parameter either by value or by
reference, and

• A function can return a value of type struct.

The following function reads and stores a student’s first name, last name, test score,
programming score, and GPA. It also determines the student’s course grade and stores it
in the member courseGrade.

void readIn(studentType& student)
{

int score;

cin >> student.firstName >> student.lastName;
cin >> student.testScore >> student.programmingScore;
cin >> student.GPA;

score = (newStudent.testScore + newStudent.programmingScore) / 2;

if (score >= 90)
student.courseGrade = 'A';

570 | Chapter 10: Records (structs)

else if (score >= 80)
student.courseGrade = 'B';

else if (score >= 70)
student.courseGrade = 'C';

else if (score >= 60)
student.courseGrade = 'D';

else
student.courseGrade = 'F';

}

The statement:

readIn(newStudent);

calls the function readIn. The function readIn stores the appropriate information in
the variable newStudent.

Similarly, we can write a function that will print the contents of a struct variable. For
example, the following function outputs the contents of a struct variable of type
studentType on the screen:

void printStudent(studentType student)
{

cout << student.firstName << " " << student.lastName
<< " " << student.courseGrade
<< " " << student.testScore
<< " " << student.programmingScore
<< " " << student.GPA << endl;

}

Arrays versus structs
The previous discussion showed us that a struct and an array have similarities as well as
differences. Table 10-1 summarizes this discussion.

1
0

TABLE 10-1 Arrays vs. structs

Aggregate Operation Array struct

Arithmetic No No

Assignment No Yes

Input/output No (except strings) No

Comparison No No

Parameter passing By reference only By value or by reference

Function returning a value No Yes

Records (structs) | 571

Arrays in structs
A list is a set of elements of the same type. Thus, a list has two things associated with it:
the values (that is, elements) and the length. Because the values and the length are both
related to a list, we can define a struct containing both items.

const int ARRAY_SIZE = 1000;

struct listType
{

int listElem[ARRAY_SIZE]; //array containing the list
int listLength; //length of the list

};

The following statement declares intList to be a struct variable of type listType
(see Figure 10-5):

listType intList;

The variable intList has two members: listElem, an array of 1000 components of
type int, and listLength, of type int. Moreover, intList.listElem accesses the
member listElem, and intList.listLength accesses the member listLength.

Consider the following statements:

intList.listLength = 0; //Line 1
intList.listElem[0] = 12; //Line 2
intList.listLength++; //Line 3
intList.listElem[1] = 37; //Line 4
intList.listLength++; //Line 5

The statement in Line 1 sets the value of the member listLength to 0. The statement
in Line 2 stores 12 in the first component of the array listElem. The statement in Line
3 increments the value of listLength by 1. The meaning of the other statements is
similar. After these statements execute, intList is as shown in Figure 10-6.

.

.

.

listElem[0]

listLength

listElem[1]

listElem[999]

intList
listElem

listElem[2]

FIGURE 10-5 struct variable intList

572 | Chapter 10: Records (structs)

Next, we write the sequential search algorithm to determine whether a given item is in
the list. If searchItem is found in the list, then the function returns its location in the
list; otherwise, the function returns -1.

int seqSearch(const listType& list, int searchItem)
{

int loc;

bool found = false;

for (loc = 0; loc < list.listLength; loc++)
if (list.listElem[loc] == searchItem)
{

found = true;
break;

}

if (found)
return loc;

else
return -1;

}

In this function, because listLength is a member of list, we access this by
list.listLength. Similarly, we can access an element of list via
list.listElem[loc].

Notice that the formal parameter list of the function seqSearch is declared as
a constant reference parameter. This means that list receives the address of the
corresponding actual parameter, but list cannot modify the actual parameter.

Recall that when a variable is passed by value, the formal parameter copies the value of
the actual parameter. Therefore, if the formal parameter modifies the data, the modifica-
tion has no effect on the data of the actual parameter.

1
0

37
12

.

.

.

2

listElem[0]

listLength

listElem[1]

listElem[999]

intList
listElem

listElem[2]

FIGURE 10-6 intList after the statements in Lines 1 through 5 execute

Records (structs) | 573

Suppose that a struct has several data members requiring a large amount of memory to
store the data, and you need to pass a variable of that struct type by value. The
corresponding formal parameter then receives a copy of the data of the variable. The
compiler must then allocate memory for the formal parameter in order to copy the value
of the actual parameter. This operation might require, in addition to a large amount of
storage space, a considerable amount of computer time to copy the value of the actual
parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only
the address of the actual parameter. Therefore, an efficient way to pass a variable as a
parameter is by reference. If a variable is passed by reference, then when the formal
parameter changes, the actual parameter also changes. Sometimes, however, you do not
want the function to be able to change the values of the actual parameter. In C++, you
can pass a variable by reference and still prevent the function from changing its value.
This is done by using the keyword const in the formal parameter declaration, as shown
in the definition of the function seqSearch.

Likewise, we can also rewrite the sorting, binary search, and other list-processing functions.

structs in Arrays
Suppose a company has 50 full-time employees. We need to print their monthly
paychecks and keep track of how much money has been paid to each employee in the
year-to-date. First, let’s define an employee’s record:

struct employeeType
{

string firstName;
string lastName;
int personID;
string deptID;
double yearlySalary;
double monthlySalary;
double yearToDatePaid;
double monthlyBonus;

};

Each employee has the following members (components): first name, last name, personal
ID, department ID, yearly salary, monthly salary, year-to-date paid, and monthly bonus.

Because we have 50 employees and the data type of each employee is the same, we can
use an array of 50 components to process the employees’ data.

employeeType employees[50];

This statement declares the array employees of 50 components of type employeeType
(see Figure 10-7). Every element of employees is a struct. For example, Figure 10-7
also shows employees[2].

574 | Chapter 10: Records (structs)

Suppose we also have the following declaration:

int counter;

Further, suppose that every employee’s initial data—first name, last name, personal ID,
department ID, and yearly salary—are provided in a file. For our discussion, we
assume that each employee’s data is stored in a file, say, employee.dat. The following
C++ code loads the data into the employees’ array. We assume that, initially,
yearToDatePaid is 0 and that the monthly bonus is determined each month based
on performance.

ifstream infile; //input stream variable
//assume that the file employee.dat has been opened

for (counter = 0; counter < 50; counter++)
{

infile >> employees[counter].firstName
>> employees[counter].lastName
>> employees[counter].personID
>> employees[counter].deptID
>> employees[counter].yearlySalary;

employees[counter].monthlySalary =
employees[counter].yearlySalary / 12;

employees[counter].yearToDatePaid = 0.0;
employees[counter].monthlyBonus = 0.0;

}

Suppose that for a given month, the monthly bonuses are already stored in each employee’s
record, and we need to calculate the monthly paycheck and update the yearToDatePaid
amount. The following loop computes and prints the employee’s paycheck for the month:

double payCheck; //variable to calculate the paycheck

for (counter = 0; counter < 50; counter++)

1
0

[49]

.

.

.

[0]
[1]

employees

[2]
firstName
lastName

personID

deptID

yearlySalary

monthlySalary

yearToDatePaid
monthlyBonus

employees[2]

FIGURE 10-7 Array of employees

Records (structs) | 575

{
cout << employees[counter].firstName << " "

<< employees[counter].lastName << " ";

payCheck = employees[counter].monthlySalary +
employees[counter].monthlyBonus;

employees[counter].yearToDatePaid =
employees[counter].yearToDatePaid +
payCheck;

cout << setprecision(2) << payCheck << endl;
}

structs within a struct
You have seen how the struct and array data structures can be combined to organize
information. You also saw examples wherein a member of a struct is an array, and the
array type is a struct. In this section, you will learn about situations for which it is
beneficial to organize data in a struct by using another struct.

Let us consider the following employee record:

struct employeeType
{

string firstname;
string middlename;
string lastname;
string empID;
string address1;
string address2;
string city;
string state;
string zip;
int hiremonth;
int hireday;
int hireyear;
int quitmonth;
int quitday;
int quityear;
string phone;
string cellphone;
string fax;
string pager;
string email;
string deptID;
double salary;

};

As you can see, a lot of information is packed into one struct. This struct has 22
members. Some members of this struct will be accessed more frequently than others,
and some members are more closely related than others. Moreover, some members will

576 | Chapter 10: Records (structs)

1
0

have the same underlying structure. For example, the hire date and the quit date are of
the date type int. Let us reorganize this struct as follows:

struct nameType
{

string first;
string middle;
string last;

};

struct addressType
{

string address1;
string address2;
string city;
string state;
string zip;

};

struct dateType
{

int month;
int day;
int year;

};

struct contactType
{

string phone;
string cellphone;
string fax;
string pager;
string email;

};

We have separated the employee’s name, address, and contact type into subcategories.
Furthermore, we have defined a struct dateType. Let us rebuild the employee’s
record as follows:

struct employeeType
{

nameType name;
string empID;
addressType address;
dateType hireDate;
dateType quitDate;
contactType contact;
string deptID;
double salary;

};

The information in this employee’s struct is easier to manage than the previous one.
Some of this struct can be reused to build another struct. For example, suppose that
you want to define a customer’s record. Every customer has a first name, last name, and

Records (structs) | 577

middle name, as well as an address and a way to be contacted. You can, therefore, quickly
put together a customer’s record by using the structs nameType, addressType,
contactType, and the members specific to the customer.

Next, let us declare a variable of type employeeType and discuss how to access its members.

Consider the following statement:

employeeType newEmployee;

This statement declares newEmployee to be a struct variable of type employeeType
(see Figure 10-8).

newEmployee

name first

middle

last

address 1

address 2

city

state

zip

phone

cellphone

fax

pager

email

month

day

year

month

day

year

empID

address

hireDate

quitDate

contact

deptID

salary

FIGURE 10-8 struct variable newEmployee

578 | Chapter 10: Records (structs)

The statement:

newEmployee.salary = 45678.00;

sets the salary of newEmployee to 45678.00. The statements:

newEmployee.name.first = "Mary";
newEmployee.name.middle = "Beth";
newEmployee.name.last = "Simmons";

set the first, middle, and last name of newEmployee to "Mary", "Beth", and
"Simmons", respectively. Note that newEmployee has a member called name. We
access this member via newEmployee.name. Note also that newEmployee.name is a
struct and has three members. We apply the member access criteria to access the
member first of the struct newEmployee.name. So, newEmployee.name.first
is the member where we store the first name.

The statement:

cin >> newEmployee.name.first;

reads and stores a string into newEmployee.name.first. The statement:

newEmployee.salary = newEmployee.salary * 1.05;

updates the salary of newEmployee.

The following statement declares employees to be an array of 100 components,
wherein each component is of type employeeType:

employeeType employees[100];

The for loop:

for (int j = 0; j < 100; j++)
cin >> employees[j].name.first >> employees[j].name.middle

>> employees[j].name.last;

reads and stores the names of 100 employees in the array employees. Because employees
is an array, to access a component, we use the index. For example, employees[50] is the
51st component of the array employees (recall that an array index starts with 0). Because
employees[50] is a struct, we apply the member access criteria to select a particular
member.

1
0

Records (structs) | 579

PROGRAMMING EXAMPLE: Sales Data Analysis
A company has six salespeople. Every month, they go on road trips to sell the
company’s product. At the end of each month, the total sales for each salesperson,
together with that salesperson’s ID and the month, is recorded in a file. At the end of
each year, the manager of the company wants to see this report in this following
tabular format:

----------- Annual Sales Report -----------

ID QT1 QT2 QT3 QT4 Total

12345 1892.00 0.00 494.00 322.00 2708.00

32214 343.00 892.00 9023.00 0.00 10258.00

23422 1395.00 1901.00 0.00 0.00 3296.00

57373 893.00 892.00 8834.00 0.00 10619.00

35864 2882.00 1221.00 0.00 1223.00 5326.00

54654 893.00 0.00 392.00 3420.00 4705.00

Total 8298.00 4906.00 18743.00 4965.00

Max Sale by SalesPerson: ID = 57373, Amount = $10619.00
Max Sale by Quarter: Quarter = 3, Amount = $18743.00

In this report, QT1 stands for quarter 1 (months 1 to 3), QT2 for quarter 2 (months 4
to 6), QT3 for quarter 3 (months 7 to 9), and QT4 for quarter 4 (months 10 to 12).

The salespeople’s IDs are stored in one file; the sales data is stored in another file. The
sales data is in the following form:

salesPersonID month saleAmount
.
.
.

Furthermore, the sales data is in no particular order; it is not ordered by ID.

A sample sales data is:

12345 1 893
32214 1 343
23422 3 903
57373 2 893
.
.
.

580 | Chapter 10: Records (structs)

1
0

Let us write a program that produces the output in the specified format.

Input One file containing each salesperson’s ID and a second file containing
the sales data.

Output A file containing the annual sales report in the above format.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

Based on the problem’s requirements, it is clear that the main components for each
salesperson are the salesperson’s ID, quarterly sales amount, and total annual sales
amount. Because the components are of different types, we can group them with the
help of a struct, defined as follows:

struct salesPersonRec
{

string ID; //salesperson's ID
double saleByQuarter[4]; //array to store the total

//sales for each quarter
double totalSale; //salesperson's yearly sales amount

};

Because there are six salespeople, we use an array of six components, wherein each
component is of type salesPersonRec, defined as follows:

salesPersonRec salesPersonList[NO_OF_SALES_PERSON];

wherein the value of NO_OF_SALES_PERSON is 6.

Because the program requires us to find the company’s total sales for each quarter, we
need an array of four components to store the data. Note that this data will be used to
determine the quarter in which the maximum sales were made. Therefore, the
program also needs the following array:

double totalSaleByQuarter[4];

Recall that in C++, the array index starts with 0. Therefore,
totalSaleByQuarter[0] stores data for quarter 1, totalSaleByQuarter[1]
stores data for quarter 2, and so on.

We will refer to these variables throughout the discussion.

The array salesPersonList is as shown in Figure 10-9.

Programming Example: Sales Data Analysis | 581

The first step of the program is to read the salespeople’s IDs into the array
salesPersonList and initialize the quarterly sales and total sales for each salesperson
to 0. After this step, the array salesPersonList is as shown in Figure 10-10.

salesPersonList[0]

salesPersonList ID saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 10-9 Array salesPersonList

salesPersonList[0]

salesPersonList ID

12345 0.0 0.0 0.0 0.0 0.0

32214 0.0 0.0 0.0 0.0 0.0

23422 0.0 0.0 0.0 0.0 0.0

57373 0.0 0.0 0.0 0.0 0.0

35864 0.0 0.0 0.0 0.0 0.0

54654 0.0 0.0 0.0 0.0 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 10-10 Array salesPersonList after initialization

582 | Chapter 10: Records (structs)

1
0

The next step is to process the sales data. Processing the sales data is quite straightfor-
ward. For each entry in the file containing the sales data:

1. Read the salesperson’s ID, month, and sale amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to this salesperson.

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sale amount for the month.

Once the sales data file is processed:

1. Calculate the total sales by salesperson.

2. Calculate the total sales by quarter.

3. Print the report.

This discussion translates into the following algorithm:

1. Initialize the array salesPersonList.

2. Process the sales data.

3. Calculate the total sales by quarter.

4. Calculate the total sales by salesperson.

5. Print the report.

6. Calculate and print the maximum sales by salesperson.

7. Calculate and print the maximum sales by quarter.

To reduce the complexity of the main program, let us write a separate function for
each of these seven steps.

Function

initialize

This function reads the salesperson’s ID from the input file and stores the salesperson’s ID
in the array salesPersonList. It also initializes the quarterly sales amount and the
total sales amount for each salesperson to 0. The definition of this function is:

void initialize(ifstream& indata, salesPersonRec list[],
int listSize)

{
int index;
int quarter;

for (index = 0; index < listSize; index++)
{

indata >> list[index].ID; //get salesperson's ID

for (quarter = 0; quarter < 4; quarter++)
list[index].saleByQuarter[quarter] = 0.0;

list[index].totalSale = 0.0;
}

} //end initialize

Programming Example: Sales Data Analysis | 583

Function

getData

This function reads the sales data from the input file and stores the appropriate
information in the array salesPersonList. The algorithm for this function is:

1. Read the salesperson’s ID, month, and sales amount for the month.

2. Search the array salesPersonList to locate the component
corresponding to the salesperson. (Because the salespeople’s IDs
are not sorted, we will use a sequential search to search the array.)

3. Determine the quarter corresponding to the month.

4. Update the sales for the quarter by adding the sales amount for the
month.

Suppose that the entry read is:

57373 2 350

Here, the salesperson’s ID is 57373, the month is 2, and the sale amount is 350.
Suppose that the array salesPersonList is as shown in Figure 10-11.

Now, ID 57373 corresponds to the array component salesPersonList[3], and
month 2 corresponds to quarter 1. Therefore, you add 350 to 354.80 to get the
new amount, 704.80. After processing this entry, the array salesPersonList is
as shown in Figure 10-12.

salesPersonList[0]

salesPersonList ID

12345 150.80 0.0 0.0 654.92 0.0

32214 0.0 439.90 0.0 0.0 0.0

23422 0.0 0.0 0.0 564.76 0.0

57373 354.80 0.0 0.0 0.0 0.0

35864 0.0 0.0 763.90 0.0 0.0

54654 783.45 0.0 0.0 563.80 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 10-11 Array salesPersonList

584 | Chapter 10: Records (structs)

1
0

The definition of the function getData is:

void getData(ifstream& infile, salesPersonRec list[],
int listSize)

{
int index;
int quarter;
string sID;
int month;
double amount;

infile >> sID; //get salesperson’s ID

while (infile)
{

infile >> month >> amount; //get the sale month and
//the sale amount

for (index = 0; index < listSize; index++)
if (sID == list[index].ID)

break;

salesPersonList[0]

salesPersonList ID

ID = 57373
month = 2

12345 150.80 0.0 0.0 654.92 0.0

32214 0.0 439.90 0.0 0.0 0.0

23422 0.0 0.0 0.0 564.76 0.0

57373 704.80 0.0 0.0 0.0 0.0

35864 0.0 0.0 763.90 0.0 0.0

54654 783.45 0.0 0.0 563.80 0.0

saleByQuarter totalSale

salesPersonList[1]

salesPersonList[2]

salesPersonList[3]

salesPersonList[4]

salesPersonList[5]

FIGURE 10-12 Array salesPersonList after processing entry 57373 2 350

Programming Example: Sales Data Analysis | 585

if (1 <= month && month <= 3)
quarter = 0;

else if (4 <= month && month <= 6)
quarter = 1;

else if (7 <= month && month <= 9)
quarter = 2;

else
quarter = 3;

if (index < listSize)
list[index].saleByQuarter[quarter] += amount;

else
cout << "Invalid salesperson's ID." << endl;

infile >> sID;
} //end while

} //end getData

Function

saleByQuarter

This function finds the company’s total sales for each quarter. To find the total sales for
each quarter, we add the sales amount of each salesperson for that quarter. Clearly, this
function must have access to the array salesPersonList and the array
totalSaleByQuarter. This function also needs to know the number of rows in
each array. Thus, this function has three parameters. The definition of this function is:

void saleByQuarter(salesPersonRec list[], int listSize,
double totalByQuarter[])

{
int quarter;
int index;

for (quarter = 0; quarter < 4; quarter++)
totalByQuarter[quarter] = 0.0;

for (quarter = 0; quarter < 4; quarter++)
for (index = 0; index < listSize; index++)

totalByQuarter[quarter] +=
list[index].saleByQuarter[quarter];

} //end saleByQuarter

Function

totalSaleByPerson

This function finds each salesperson’s yearly sales amount. To find an employee’s yearly
sales amount, we add that employee’s sales amount for the four quarters. Clearly, this
function must have access to the array salesPersonList. This function also needs to
know the size of the array. Thus, this function has two parameters.

The definition of this function is:

void totalSaleByPerson(salesPersonRec list[], int listSize)
{

int index;
int quarter;

586 | Chapter 10: Records (structs)

1
0

for (index = 0; index < listSize; index++)
for (quarter = 0; quarter < 4; quarter++)

list[index].totalSale +=
list[index].saleByQuarter[quarter];

} //end totalSaleByPerson

Function

printReport

This function prints the annual report in the specified format. The algorithm in
pseudocode is:

1. Print the heading—that is, the first three lines of output.

2. Print the data for each salesperson.

3. Print the last line of the table.

Note that the next two functions will produce the final two lines of output.

Clearly, the printReport function must have access to the array salesPersonList
and the arraytotalSaleByQuarter. Also, because the output will be stored in a file, this
function must have access to the ofstream variable associated with the output file. Thus,
this function has four parameters: a parameter corresponding to the array
salesPersonList, a parameter corresponding to the array totalSaleByQuarter, a
parameter specifying the size of the array, and a parameter corresponding to the ofstream
variable. The definition of this function is:

void printReport(ofstream& outfile, salesPersonRec list[],
int listSize, double saleByQuarter[])

{
int index;
int quarter;

outfile << "––––––––––– Annual Sales Report –––––––––"
<< "––––" << endl;

outfile << endl;
outfile << " ID QT1 QT2 QT3 "

<< "QT4 Total" << endl;
outfile << "___"

<< "_________________" << endl;

for (index = 0; index < listSize; index++)
{

outfile << list[index].ID << " ";

for (quarter = 0; quarter < 4; quarter++)
outfile << setw(10)

<< list[index].saleByQuarter[quarter];

outfile << setw(10) << list[index].totalSale << endl;
}

outfile << "Total ";

Programming Example: Sales Data Analysis | 587

for (quarter = 0; quarter < 4; quarter++)
outfile << setw(10)<< saleByQuarter[quarter];

outfile << endl << endl;
} //end printReport

Function

maxSaleByPerson

This function prints the name of the salesperson who produces the maximum sales
amount. To identify this salesperson, we look at the sales total for each salesperson
and find the largest sales amount. Because each employee’s sales total is maintained
in the array salesPersonList, this function must have access to the array
salesPersonList. Also, because the output will be stored in a file, this function
must have access to the ofstream variable associated with the output file.
Therefore, this function has three parameters: a parameter corresponding to the
array salesPersonList, a parameter specifying the size of this array, and a
parameter corresponding to the output file.

The algorithm to find the largest sales amount is similar to the algorithm to find the
largest element in an array (discussed in Chapter 9). The definition of this function is:

void maxSaleByPerson(ofstream& outData, salesPersonRec list[],
int listSize)

{
int maxIndex = 0;
int index;

for (index = 1; index <listSize; index++)
if (list[maxIndex].totalSale <list[index].totalSale)

maxIndex = index;

outData << "Max Sale by SalesPerson: ID = "
<< list[maxIndex].ID
<< ", Amount = $" << list[maxIndex].totalSale
<< endl;

} //end maxSaleByPerson

Function

maxSaleByQuarter

This function prints the quarter in which the maximum sales were made. To identify
this quarter, we look at the total sales for each quarter and find the largest sales amount.
Because the sales total for each quarter is in the array totalSaleByQuarter, this
function must have access to the array totalSaleByQuarter. Also, because the
output will be stored in a file, this function must have access to the ofstream variable
associated with the output file. Therefore, this function has two parameters: a para-
meter corresponding to the array totalSaleByQuarter and a parameter corre-
sponding to the output file.

The algorithm to find the largest sales amount is the same as the algorithm to find the
largest element in an array (discussed in Chapter 9). The definition of this function is:

void maxSaleByQuarter(ofstream& outData,
double saleByQuarter[])

588 | Chapter 10: Records (structs)

1
0

{
int quarter;
int maxIndex = 0;

for (quarter = 0; quarter < 4; quarter++)
if (saleByQuarter[maxIndex] < saleByQuarter[quarter])

maxIndex = quarter;

outData << "Max Sale by Quarter: Quarter = "
<< maxIndex + 1
<< ", Amount = $" << saleByQuarter[maxIndex]
<< endl;

} //end maxSaleByQuarter

To make the program more flexible, we will prompt the user to specify the input and
output files during its execution.

We are now ready to write the algorithm for the function main.

Main

Algorithm

1. Declare the variables.

2. Prompt the user to enter the name of the file containing the
salesperson’s ID data.

3. Read the name of the input file.

4. Open the input file.

5. If the input file does not exist, exit the program.

6. Initialize the array salesPersonList. Call the function
initialize.

7. Close the input file containing the salesperson’s ID data and clear
the input stream.

8. Prompt the user to enter the name of the file containing the sales
data.

9. Read the name of the input file.

10. Open the input file.

11. If the input file does not exist, exit the program.

12. Prompt the user to enter the name of the output file.

13. Read the name of the output file.

14. Open the output file.

15. To output floating-point numbers in a fixed decimal format with
the decimal point and trailing zeroes, set the manipulators fixed
and showpoint. Also, to output floating-point numbers to two
decimal places, set the precision to two decimal places.

Programming Example: Sales Data Analysis | 589

16. Process the sales data. Call the function getData.

17. Calculate the total sales by quarter. Call the functionsaleByQuarter.

18. Calculate the total sales for each salesperson. Call the function
totalSaleByPerson.

19. Print the report in a tabular format. Call the function printReport.

20. Find and print the salesperson who produces the maximum sales
for the year. Call the function maxSaleByPerson.

21. Find and print the quarter that produces the maximum sales for the
year. Call the function maxSaleByQuarter.

22. Close the files.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Sales Data Analysis
// This program processes sales data for a company. For each
// salesperson, it outputs the ID, the total sales by each
// quarter, and the total sales for the year. It also outputs
// the salesperson's ID generating the maximum sale for the
// year and the sales amount. The quarter generating the
// maximum sale and the sales amount is also output.
//***

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

using namespace std;

const int NO_OF_SALES_PERSON = 6;

struct salesPersonRec
{

string ID; //salesperson's ID
double saleByQuarter[4]; //array to store the total

//sales for each quarter
double totalSale; //salesperson's yearly sales amount

};

void initialize(ifstream& indata, salesPersonRec list[],
int listSize);

590 | Chapter 10: Records (structs)

1
0

void getData(ifstream& infile, salesPersonRec list[],
int listSize);

void saleByQuarter(salesPersonRec list[], int listSize,
double totalByQuarter[]);

void totalSaleByPerson(salesPersonRec list[], int listSize);
void printReport(ofstream& outfile, salesPersonRec list],

int listSize, double saleByQuarter[]);
void maxSaleByPerson(ofstream& outData, salesPersonRec list[],

int listSize);
void maxSaleByQuarter(ofstream& outData, double saleByQuarter[]);

int main()
{

//Step 1
ifstream infile; //input file stream variable
ofstream outfile; //output file stream variable

string inputFile; //variable to hold the input file name
string outputFile; //variable to hold the output file name

double totalSaleByQuarter[4]; //array to hold the
//sale by quarter

salesPersonRec salesPersonList[NO_OF_SALES_PERSON]; //array
//to hold the salesperson's data

cout << "Enter the salesPerson ID file name: "; //Step 2
cin >> inputFile; //Step 3
cout << endl;

infile.open(inputFile.c_str()); //Step 4

if (!infile) //Step 5
{

cout << "Cannot open the input file."
<< endl;

return 1;
}

initialize(infile, salesPersonList,
NO_OF_SALES_PERSON); //Step 6

infile.close(); //Step 7
infile.clear(); //Step 7

cout << "Enter the sales data file name: "; //Step 8
cin >> inputFile; //Step 9
cout << endl;

infile.open(inputFile.c_str()); //Step 10

Programming Example: Sales Data Analysis | 591

if (!infile) //Step 11
{

cout << "Cannot open the input file."
<< endl;

return 1;
}

cout << "Enter the output file name: "; //Step 12
cin >> outputFile; //Step 13
cout << endl;

outfile.open(outputFile.c_str()); //Step 14
outfile << fixed << showpoint

<< setprecision(2); //Step 15

getData(infile, salesPersonList,
NO_OF_SALES_PERSON); //Step 16

saleByQuarter(salesPersonList,
NO_OF_SALES_PERSON,
totalSaleByQuarter); //Step 17

totalSaleByPerson(salesPersonList,
NO_OF_SALES_PERSON); //Step 18

printReport(outfile, salesPersonList,
NO_OF_SALES_PERSON,
totalSaleByQuarter); //Step 19

maxSaleByPerson(outfile, salesPersonList,
NO_OF_SALES_PERSON); //Step 20

maxSaleByQuarter(outfile, totalSaleByQuarter); //Step 21

infile.close(); //Step 22
outfile.close(); //Step 22

return 0;
}

//Place the definitions of the functions initialize,
//getData, saleByQuarter, totalSaleByPerson,
//printReport, maxSaleByPerson, and maxSaleByQuarter here.

Sample Run: In this sample run, the user input is shaded.

Enter the salesPerson ID file name: Ch10_SalesManID.txt

Enter the sales data file name: Ch10_SalesData.txt

Enter the output file name: Ch10_SalesDataAnalysis.txt

592 | Chapter 10: Records (structs)

1
0

Input File: Salespeople’s IDs

12345
32214
23422
57373
35864
54654

Input File: Salespeople’s Data

12345 1 893
32214 1 343
23422 3 903
57373 2 893
35864 5 329
54654 9 392
12345 2 999
32214 4 892
23422 4 895
23422 2 492
57373 6 892
35864 10 1223
54654 11 3420
12345 12 322
35864 5 892
54654 3 893
12345 8 494
32214 8 9023
23422 6 223
23422 4 783
57373 8 8834
35864 3 2882

Sample Run:

–––––––––––– Annual Sales Report ––––––––––––

ID QT1 QT2 QT3 QT4 Total

12345 1892.00 0.00 494.00 322.00 2708.00
32214 343.00 892.00 9023.00 0.00 10258.00
23422 1395.00 1901.00 0.00 0.00 3296.00
57373 893.00 892.00 8834.00 0.00 10619.00
35864 2882.00 1221.00 0.00 1223.00 5326.00
54654 893.00 0.00 392.00 3420.00 4705.00
Total 8298.00 4906.00 18743.00 4965.00

Max Sale by SalesPerson: ID = 57373, Amount = $10619.00
Max Sale by Quarter: Quarter = 3, Amount = $18743.00

Programming Example: Sales Data Analysis | 593

QUICK REVIEW

1. A struct is a collection of a fixed number of components.
2. Components of a struct can be of different types.
3. The syntax to define a struct is:

struct structName
{

dataType1 identifier1;
dataType2 identifier2;

.

.

.
dataTypen identifiern;

};

4. In C++, struct is a reserved word.

5. In C++, struct is a definition; no memory is allocated. Memory is
allocated for the struct variables only when you declare them.

6. Components of a struct are called members of the struct.

7. Components of a struct are accessed by name.

8. In C++, the dot (.) operator is called the member access operator.

9. Members of a struct are accessed by using the dot (.) operator. For
example, if employeeType is a struct, employee is a variable of type
employeeType, and name is a member of employee, then the expression
employee.name accesses the member name. That is, employee.name is
a variable and can be manipulated like other variables.

10. The only built-in operations on a struct are the assignment and member
access operations.

11. Neither arithmetic nor relational operations are allowed on struct(s).

12. As a parameter to a function, a struct can be passed either by value or by
reference.

13. A function can return a value of type struct.

14. A struct can be a member of another struct.

EXERCISES

1. Mark the following statements as true or false.

a. All members of a struct must be of different types.

b. A function cannot return a value of type struct.

c. A member of a struct can be another struct.

d. The only allowable operations on a struct are assignment and mem-
ber selection.

594 | Chapter 10: Records (structs)

e. An array can be a member of a struct.

f. In C++, some aggregate operations are allowed on a struct.

g. Because a struct has a finite number of components, relational opera-
tions are allowed on a struct.

2. Define a struct, checkingAccount, to store the following data about a
checking account: account holder’s name (string), account number (int),
balance (double), and the interest rate (double).

3. Assume the definition of Exercise 2. Declare a checkingAccount variable
and write C++ statements to store the following information: account
holder’s name—Jason Miller, account number—17328910, balance—
24476.38, interest rate—2.5%.

4. Define a struct, movieType, to store the following data about a movie:
movie name (string), movie director (string), producer (string), the
year movie was released (int), and number of copies in stock.

5. Assume the definition of Exercise 4. Declare a variable of type movieType
to store the following data: movie name—Summer Vacation, director—
Tom Blair, producer—Rajiv Merchant, year the movie released—2005,
the number of copies in stock—34.

6. Consider the following statements:

struct nameType struct dateType struct personalInfoType
{ { {

string first; int month; nameType name;
string last; int day; int pID;

}; int year; dateType dob;
}; };

personalInfoType person;
personalInfoType classList[100];
nameType student;

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. person.name.first = "William";

b. cout << person.name << endl;

c. classList[1] = person;

d. classList[20].pID = 000011100;

e. person = classList[20];

f. student = person.name;

g. cin >> student;

h. for (int j = 0; j < 100; j++)
classList[j].pID = 00000000;

i. classList.dob.day = 1;

j. student = name;

1
0

Exercises | 595

7. Consider the following statements (nameType is as defined in Exercise 6):

struct employeeType
{

nameType name;
int performanceRating;
int pID;
string dept;
double salary;

};
employeeType employees[100];
employeeType newEmployee;

Mark the following statements as valid or invalid. If a statement is invalid, explain
why.

a. newEmployee.name = "John Smith";

b. cout << newEmployee.name;

c. employees[35] = newEmployee;

d. if (employees[45].pID == 555334444)
employees[45].performanceRating = 1;

e. employees.salary = 0;

8. Assume the declarations of Exercises 6 and 7. Write C++ statements that do
the following:

a. Store the following information in newEmployee:

name: Mickey Doe
pID: 111111111
performanceRating: 2
dept: ACCT
salary: 34567.78

b. In the array employees, initialize each performanceRating to 0.

c. Copy the information of the 20th component of the array employees
into newEmployee.

d. Update the salary of the 50th employee in the array employees by
adding 5735.87 to its previous value.

9. Assume that you have the following definition of a struct.

struct partsType
{ string partName;

int partNum;
double price;
int quantitiesInStock;

};

Declare an array, inventory, of 100 components of type partsType.

596 | Chapter 10: Records (structs)

10. Assume the definition of Exercise 9.

a. Write a C++ code to initialize each component of inventory as
follows: partName to null string, partNum to -1, price to 0.0, and
quantitiesInStock to 0.

b. Write a C++ code that uses a loop to output the data stored in
inventory. Assume that the variable length indicates the number
of elements in inventory.

11. Assume the definition and declaration of Exercise 9. Write the definition of
a void function that can be used to input data in a variable of type
partsType. Also write a C++ code that uses your function to input data
in inventory.

12. Suppose that you have the following definitions:

struct timeType struct tourType
{ {

int hr; string cityName;
double min; int distance;
int sec; timeType travelTime;

}; };

a. Declare the variable destination of type tourType.

b. Write C++ statements to store the following data in destination:
cityName—Chicago, distance—550 miles, travelTime—9 hours
and 30 minutes.

c. Write the definition of a function to output the data stored in a variable
of type tourType.

d. Write the definition of a value-returning function that inputs data into
a variable of type tourType.

e. Write the definition of void function with a reference parameter of
type tourType to input data in a variable of type tourType.

PROGRAMMING EXERCISES

1. Assume the definition of Exercise 4, which defines the struct movieType.
Write a program that declares a variable of type movieType, prompts the
user to input data about a movie, and outputs the movie data.

2. Write a program that reads students’ names followed by their test scores.
The program should output each student’s name followed by the test scores
and the relevant grade. It should also find and print the highest test score
and the name of the students having the highest test score.

1
0

Programming Exercises | 597

Student data should be stored in a struct variable of type studentType,
which has four components: studentFName and studentLName of type
string, testScore of type int (testScore is between 0 and 100), and
grade of type char. Suppose that the class has 20 students. Use an array of 20
components of type studentType.

Your program must contain at least the following functions:

a. A function to read the students’ data into the array.

b. A function to assign the relevant grade to each student.

c. A function to find the highest test score.

d. A function to print the names of the students having the highest test
score.

Your program must output each student’s name in this form: last name
followed by a comma, followed by a space, followed by the first name; the
name must be left justified. Moreover, other than declaring the variables and
opening the input and output files, the function main should only be a
collection of function calls.

3. Define a struct, menuItemType, with two components: menuItem of
type string and menuPrice of type double.

4. Write a program to help a local restaurant automate its breakfast billing
system. The program should do the following:

a. Show the customer the different breakfast items offered by the restaurant.

b. Allow the customer to select more than one item from the menu.

c. Calculate and print the bill.
Assume that the restaurant offers the following breakfast items (the price
of each item is shown to the right of the item):

Plain Egg $1.45
Bacon and Egg $2.45
Muffin $0.99
French Toast $1.99
Fruit Basket $2.49
Cereal $0.69
Coffee $0.50
Tea $0.75

Use an array, menuList, of the struct menuItemType, as defined in
Programming Exercise 2. Your program must contain at least the
following functions:

• Function getData: This function loads the data into the array
menuList.

• Function showMenu: This function shows the different items
offered by the restaurant and tells the user how to select the items.

598 | Chapter 10: Records (structs)

• Function printCheck: This function calculates and prints the check.
(Note that the billing amount should include a 5% tax.)
A sample output is:

Welcome to Johnny's Restaurant
Bacon and Egg $2.45
Muffin $0.99
Coffee $0.50
Tax $0.20
Amount Due $4.14

Format your output with two decimal places. The name of each item in the
output must be left justified. You may assume that the user selects only one
item of a particular type.

5. Redo Exercise 4 so that the customer can select multiple items of a
particular type. A sample output in this case is:

Welcome to Johnny's Restaurant
1 Bacon and Egg $2.45
2 Muffin $1.98
1 Coffee $0.50

Tax $0.25
Amount Due $5.18

6. Write a program whose main function is merely a collection of variable
declarations and function calls. This program reads a text and outputs the
letters, together with their counts, as explained below in the function
printResult. (There can be no global variables! All information must
be passed in and out of the functions. Use a structure to store the informa-
tion.) Your program must consist of at least the following functions:

• Function openFile: Opens the input and output files. You must pass
the file streams as parameters (by reference, of course). If the file does not
exist, the program should print an appropriate message and exit. The
program must ask the user for the names of the input and output files.

• Function count: Counts every occurrence of capital letters A-Z and
small letters a-z in the text file opened in the function openFile. This
information must go into an array of structures. The array must be
passed as a parameter, and the file identifier must also be passed as a
parameter.

• Function printResult: Prints the number of capital letters and small
letters, as well as the percentage of capital letters for every letter A-Z and
the percentage of small letters for every letter a-z. The percentages
should look like this: ‘‘25%’’. This information must come from an array
of structures, and this array must be passed as a parameter.

1
0

Programming Exercises | 599

7. Write a program that declares a struct to store the data of a baseball
player (player’s name, number of home runs, and number of hits). Declare
an array of 10 components to store the data of 10 baseball players. Your
program must contain a function to input data and a function to output
data. Add functions to search the array to find the index of a specific
player, and update the data of a player. (You may assume that input data is
stored in a file.) Before the program terminates, give the user the option to
save data in a file. Your program should be menu driven, giving the user
various choices.

600 | Chapter 10: Records (structs)

CLASSES AND DATA
ABSTRACTION

IN THIS CHAPTER , YOU WILL :

. Learn about classes

. Learn about private, protected, and public members of a class

. Explore how classes are implemented

. Examine constructors and destructors

. Learn about the abstract data type (ADT)

. Explore how classes are used to implement ADTs

. Learn about information hiding

. Explore how information hiding is implemented in C++

. Learn about the static members of a class

11C H A P T E R

In Chapter 10, you learned how to group data items that are of different types by using a
struct. The definition of a struct given in Chapter 10 is similar to the definition of a
C-struct. However, the members of a C++ struct can be data items as well as functions.
C++ provides another structured data type, called a class, which is specifically designed to
group data and functions. This chapter first introduces classes and explains how to use them
and then discusses the similarities and differences between a struct and a class.

Chapter 10 is not a prerequisite for this chapter. In fact, a struct and a class have similar
capabilities, as discussed in the section ‘‘A struct versus a class’’ in this chapter.

Classes
Chapter 1 introduced the problem-solving methodology called object-oriented design
(OOD). In OOD, the first step is to identify the components, called objects. An object
combines data and the operations on that data in a single unit. In C++, the mechanism
that allows you to combine data and the operations on that data in a single unit is called a
class. Now that you know how to store and manipulate data in computer memory and
how to construct your own functions, you are ready to learn how objects are constructed.
This and subsequent chapters develop and implement programs using OOD. This chapter
first explains how to define a class and use it in a program.

A class is a collection of a fixed number of components. The components of a class are
called the members of the class.

The general syntax for defining a class is:

class classIdentifier
{

classMembersList
};

in which classMembersList consists of variable declarations and/or functions. That is,
a member of a class can be either a variable (to store data) or a function.

• If a member of a class is a variable, you declare it just like any other
variable. Also, in the definition of the class, you cannot initialize a
variable when you declare it.

• If a member of a class is a function, you typically use the function
prototype to declare that member.

• If a member of a class is a function, it can (directly) access any member of the
class—member variables and member functions. That is, when you write
the definition of a member function, you can directly access any member
variable of the class without passing it as a parameter. The only obvious
condition is that you must declare an identifier before you can use it.

602 | Chapter 11: Classes and Data Abstraction

In C++, class is a reserved word, and it defines only a data type; no memory is
allocated. It announces the declaration of a class. Moreover, note the semicolon (;) after
the right brace. The semicolon is part of the syntax. A missing semicolon, therefore, will
result in a syntax error.

The members of a class are classified into three categories: private, public, and
protected. This chapter mainly discusses the first two types, private and public.

In C++, private, protected, and public are reserved words and are called member
access specifiers.

Following are some facts about public and private members of a class:

• By default, all members of a class are private.

• If a member of a class is private, you cannot access it outside of the
class. (Example 11-1 illustrates this concept.)

• A public member is accessible outside of the class. (Example 11-1
illustrates this concept.)

• To make a member of a class public, you use the member access
specifier public with a colon, :.

Suppose that we want to define a class to implement the time of day in a program.
Because a clock gives the time of day, let us call this class clockType. Furthermore, to
represent time in computer memory, we use three int variables: one to represent the
hours, one to represent the minutes, and one to represent the seconds.

Suppose these three variables are:

int hr;
int min;
int sec;

We also want to perform the following operations on the time:

1. Set the time.

2. Retrieve the time.

3. Print the time.

4. Increment the time by one second.

5. Increment the time by one minute.

6. Increment the time by one hour.

7. Compare the two times for equality.

To implement these seven operations, we will write seven functions—setTime, getTime,
printTime, incrementSeconds, incrementMinutes, incrementHours, and
equalTime.

From this discussion, it is clear that the class clockType has 10 members: three
member variables and seven member functions.

1
1

Classes | 603

Some members of the class clockType will be private; others will be public.
Deciding which member to make public and which to make private depends on the
nature of the member. The general rule is that any member that needs to be accessed
outside of the class is declared public; any member that should not be accessed directly
by the user should be declared private. For example, the user should be able to set the
time and print the time. Therefore, the members that set the time and print the time
should be declared public.

Similarly, the members to increment the time and compare the time for equality should
be declared public. On the other hand, to prevent the direct manipulation of the
member variables hr, min, and sec, we will declare them private. Furthermore, note
that if the user has direct access to the member variables, member functions such as
setTime are not needed. The second part of this chapter (beginning with the section
‘‘Information Hiding’’) explains why some members need to be public and others
should be private.

The following statements define the class clockType:

class clockType
{
public:

void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

private:
int hr;
int min;
int sec;

};

In this definition:

• The class clockType has seven member functions: setTime,
getTime, printTime, incrementSeconds, incrementMinutes,
incrementHours, and equalTime. It has three member variables: hr,
min, and sec.

• The three member variables—hr, min, and sec—are private to the
class and cannot be accessed outside of the class. (Example 11-1 illustrates
this concept.)

• The seven member functions—setTime, getTime, printTime,
incrementSeconds, incrementMinutes, incrementHours, and
equalTime—can directly access the member variables (hr, min, and
sec). In other words, when we write the definitions of these functions,

604 | Chapter 11: Classes and Data Abstraction

we do not pass these member variables as parameters to the member
functions.

• In the function equalTime, the formal parameter is a constant
reference parameter. That is, in a call to the function equalTime,
the formal parameter receives the address of the actual parameter, but
the formal parameter cannot modify the value of the actual parameter.
You could have declared the formal parameter as a value parameter,
but that would require the formal parameter to copy the value of the
actual parameter, which could result in poor performance. (See the
section ‘‘Reference Parameters and Class Objects (Variables)’’ in this
chapter for an explanation.)

• The word const at the end of the member functions getTime,
printTime, and equalTime specifies that these functions cannot
modify the member variables of a variable of type clockType.

The private and public members can appear in any order. If you want, you
can declare the private members first and then declare the public ones. The
section ‘‘Order of public and private Members of a Class’’ in this chapter
discusses this issue.

In the definition of the class clockType, all member variables are private
and all member functions are public. However, a member function can also be
private. For example, if a member function is used only to implement other
member functions of the class and the user does not need to access this

function, you make it private. Similarly, a member variable of a class can also
be public.

Note that we have not yet written the definitions of the member functions of the class.
You will learn how to write them shortly.

The function setTime sets the three member variables—hr, min, and sec—to a given
value. The given values are passed as parameters to the function setTime. The function
printTime prints the time, that is, the values of hr, min, and sec. The function
incrementSeconds increments the time by one second, the function increment-
Minutes increments the time by one minute, the function incrementHours incre-
ments the time by one hour, and the function equalTime compares two times for
equality.

Note that the function equalTime has only one parameter, although you need two
things to make a comparison. We will explain this point with the help of an example in
the section ‘‘Implementation of Member Functions,’’ later in this chapter.

1
1

Classes | 605

Unified Modeling Language Class Diagrams
A class and its members can be described graphically using a notation known as the
Unified Modeling Language (UML) notation. For example, Figure 11-1 shows the
UML class diagram of the class clockType.

The top box contains the name of the class. The middle box contains the member variables
and their data types. The last box contains the member function name, parameter list, and the
return type of the function. A + (plus) sign in front of a member name indicates that this
member is a public member; a - (minus) sign indicates that this is a private member. The
symbol # before the member name indicates that the member is a protected member.

Variable (Object) Declaration
Once a class is defined, you can declare variables of that type. In C++ terminology, a class
variable is called a class object or class instance. To help you become familiar with this
terminology, from now on we will use the term class object, or simply object, for a class
variable.

The syntax for declaring a class object is the same as that for declaring any other variable.
The following statements declare two objects of type clockType:

clockType myClock;
clockType yourClock;

Each object has 10 members: seven member functions and three member variables. Each
object has separate memory allocated for hr, min, and sec.

In actuality, memory is allocated only for the member variables of each class object. The C++
compiler generates only one physical copy of a member function of a class, and each class
object executes the same copy of the member function. Therefore, whenever we draw the

clockType
-hr: int
-min: int
-sec: int

+setTime(int, int, int): void
+getTime(int&, int&, int&) const: void
+printTime() const: void
+incrementSeconds(): int
+incrementMinutes(): int
+incrementHours(): int
+equalTime(const clockType&) const: bool

FIGURE 11-1 UML class diagram of the class clockType

606 | Chapter 11: Classes and Data Abstraction

figure of a class object, we will show only the member variables. As an example, Figure 11-2
shows the objects myClock and yourClock with values in their member variables.

Accessing Class Members
Once an object of a class is declared, it can access the members of the class. The general
syntax for an object to access a member of a class is:

classObjectName.memberName

The class members that a class object can access depend on where the object is declared.

• If the object is declared in the definition of a member function of the
class, then the object can access both the public and private members.
(We will elaborate on this when we write the definition of the member
function equalTime of the class clockType in the section ‘‘Imple-
mentation of Member Functions,’’ later in this chapter.)

• If the object is declared elsewhere (for example, in a user’s program),
then the object can access only the public members of the class.

Recall that in C++, the dot, . (period), is an operator called the member access operator.

Example 11-1 illustrates how to access the members of a class.

EXAMPLE 11-1

Suppose we have the following declaration (say, in a user’s program):

clockType myClock;
clockType yourClock;

Consider the following statements:

myClock.setTime(5, 2, 30);
myClock.printTime();
yourClock.setTime(x, y, z); //assume x, y, and z are

//variables of type int

1
1

hr 12
min 35
sec 45

yourClockhr 8
min 12
sec 30

myClock

FIGURE 11-2 Objects myClock and yourClock

Classes | 607

if (myClock.equalTime(yourClock))
.
.
.

These statements are legal; that is, they are syntactically correct.

In the first statement, myClock.setTime(5, 2, 30);, the member function
setTime is executed. The values 5, 2, and 30 are passed as parameters to the
function setTime, and the function uses these values to set the values of the three
member variables hr, min, and sec of myClock to 5, 2, and 30, respectively.
Similarly, the second statement executes the member function printTime and
outputs the contents of the three member variables of myClock. In the third
statement, the values of the variables x, y, and z are used to set the values of the
three member variables of yourClock.

In the fourth statement, the member function equalTime executes and compares
the three member variables of myClock to the corresponding member variables of
yourClock. Because in this statement equalTime is a member of the object
myClock, it has direct access to the three member variables of myClock. So it
needs one more object, which in this case is yourClock, to compare. This explains
why the function equalTime has only one parameter.

The objects myClock and yourClock can access only public members of the class.
Thus, the following statements are illegal because hr and min are declared as private
members of the class clockType and, therefore, cannot be accessed by the objects
myClock and yourClock:

myClock.hr = 10; //illegal
myClock.min = yourClock.min; //illegal

Built-in Operations on Classes
Most of C++’s built-in operations do not apply to classes. You cannot use arithmetic
operators to perform arithmetic operations on class objects (unless they are overloaded;
see Chapter 14). For example, you cannot use the operator + to add two class objects
of, say, type clockType. Also, you cannot use relational operators to compare two
class objects for equality (unless they are overloaded; see Chapter 14).

The two built-in operations that are valid for class objects are member access (.) and
assignment (=). You have seen how to access an individual member of a class by using the
name of the class object, then a dot, and then the member name. (For example, if
myClock is a clockType object, in the statement myClock. incrementSeconds();,
myClock accesses the member incrementSeconds.)

We now show how an assignment statement works with the help of an example.

608 | Chapter 11: Classes and Data Abstraction

Assignment Operator and Classes
Suppose that myClock and yourClock are clockType objects, as defined previously.
Furthermore, suppose that the values of myClock and yourClock are as shown in
Figure 11-3(a).

The statement:

myClock = yourClock; //Line 1

copies the value of yourClock into myClock. That is,

• the value of yourClock.hr is copied into myClock.hr,

• the value of yourClock.min is copied into myClock.min, and

• the value of yourClock.sec is copied into myClock.sec.

In other words, the values of the three member variables of yourClock are copied into
the corresponding member variables of myClock. Therefore, an assignment statement
performs a member-wise copy. After the statement in Line 1 executes, the values of
myClock and yourClock are as shown in Figure 11-3(b).

Class Scope
A class object can be either automatic (that is, created each time the control reaches
its declaration and destroyed when the control exits the surrounding block) or static
(that is, created once, when the control reaches its declaration, and destroyed when the
program terminates). Also, you can declare an array of class objects. A class object
has the same scope as other variables. A member of a class has the same scope as a
member of a struct. That is, a member of a class is local to the class. You access
a class member outside of the class by using the class object name and the
member access operator (.).

1
1

hr 14
min 39
sec 28

yourClock

hr 2
min 26
sec 47

myClock

hr 14
min 39
sec 28

yourClock

hr 14
min 39
sec 28

myClock

(a) myClock and yourClock before
executing myClock = yourClock;

(b) myClock and yourClock after
executing myClock = yourClock;

FIGURE 11-3 myClock and yourClock before and after executing the statement myClock =
yourClock;

Classes | 609

Functions and Classes
The following rules describe the relationship between functions and classes:

• Class objects can be passed as parameters to functions and returned as
function values.

• As parameters to functions, class objects can be passed either by value or
by reference.

• If a class object is passed by value, the contents of the member variables of
the actual parameter are copied into the corresponding member variables
of the formal parameter.

Reference Parameters and Class Objects (Variables)
Recall that when a variable is passed by value, the formal parameter copies the value of
the actual parameter. That is, memory space to copy the value of the actual parameter is
allocated for the formal parameter. As a parameter, a class object can be passed by value.

Suppose that a class has several member variables requiring a large amount of memory to store
data, and you need to pass a variable by value. The corresponding formal parameter then
receives a copy of the data of the variable. That is, the compiler must allocate memory for the
formal parameter, so as to copy the value of the member variables of the actual parameter.
This operation might require, in addition to a large amount of storage space, a considerable
amount of computer time to copy the value of the actual parameter into the formal parameter.

On the other hand, if a variable is passed by reference, the formal parameter receives only the
address of the actual parameter. Therefore, an efficient way to pass a variable as a parameter is
by reference. If a variable is passed by reference, then when the formal parameter changes, the
actual parameter also changes. Sometimes, however, you do not want the function to be able
to change the values of the member variables. In C++, you can pass a variable by reference
and still prevent the function from changing its value by using the keyword const in the
formal parameter declaration. As an example, consider the following function definition:

void testTime(const clockType& otherClock)
{

clockType dClock;
.
.
.

}

The function testTime contains a reference parameter, otherClock. The parameter
otherClock is declared using the keyword const. Thus, in a call to the function
testTime, the formal parameter otherClock receives the address of the actual para-
meter, but otherClock cannot modify the contents of the actual parameter. For example,
after the following statement executes, the value of myClock will not be altered:

testTime(myClock);

610 | Chapter 11: Classes and Data Abstraction

Generally, if you want to declare a class object as a value parameter, you declare it as a
reference parameter using the keyword const, as described previously.

Recall that if a formal parameter is a value parameter, within the function definition,
you can change the value of the formal parameter. That is, you can use an assignment
statement to change the value of the formal parameter (which, of course, would have
no effect on the actual parameter). However, if a formal parameter is a constant
reference parameter, you cannot use an assignment statement to change its value
within the function, nor can you use any other function to change its value. Therefore,
within the definition of the function testTime, you cannot alter the value of
otherClock. For example, the following would be illegal in the definition of the
function testTime:

otherClock.setTime(5, 34, 56); //illegal
otherClock = dClock; //illegal

Implementation of Member Functions
When we defined the class clockType, we included only the function prototype
for the member functions. For these functions to work properly, we must write the
related algorithms. One way to implement these functions is to provide the function
definition rather than the function prototype in the class itself. Unfortunately, the
class definition would then be very long and difficult to comprehend. Another reason
for providing function prototypes instead of function definitions relates to informa-
tion hiding; that is, we want to hide the details of the operations on the data. We
will discuss this issue later in this chapter, in the section ‘‘Information Hiding.’’

Next, let us write the definitions of the member functions of the class clockType.
That is, we will write the definitions of the functions setTime, getTime, printTime,
incrementSeconds, equalTime, and so on. Because the identifiers setTime,
printTime, and so forth are local to the class, we cannot reference them (directly) outside
of the class. In order to reference these identifiers, we use the scope resolution operator, ::
(double colon). In the function definition’s heading, the name of the function is the name of
the class, followed by the scope resolution operator, followed by the function name. For
example, the definition of the function setTime is as follows:

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

1
1

Classes | 611

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

Note that the definition of the function setTime checks for the valid values of hours,
minutes, and seconds. If these values are out of range, the member variables hr, min,
and sec are initialized to 0. Let us now explain how the member function setTime
works when accessed by an object of type clockType.

The member function setTime is a void function and has three parameters.
Therefore:

• A call to this function is a stand-alone statement.

• We must use three parameters in a call to this function.

Furthermore, recall that because setTime is a member of the class clockType, it can
directly access the member variables hr, min, and sec, as shown in the definition of
setTime.

Suppose that myClock is an object of type clockType (as declared previously). The
object myClock has three member variables, as shown in Figure 11-4(a).

Consider the following statement:

myClock.setTime(3, 48, 52);

In the statement myClock.setTime(3, 48, 52);, setTime is accessed by the object
myClock. Therefore, the three variables—hr, min, and sec—referred to in the body of
the function setTime are the three member variables of myClock. Thus, the values 3,
48, and 52, which are passed as parameters in the preceding statement, are assigned to the
three member variables of myClock by the function setTime (see the body of the
function setTime). After the previous statement executes, the object myClock is as
shown in Figure 11-4(b).

hr
min
sec

myClock

hr 3
min 48
sec 52

myClock

(a) myClock before executing
myClock.setTime(3, 48, 52);

(b) myClock after executing
myClock.setTime(3, 48, 52);

FIGURE 11-4 myClock before and after executing the statement myClock.setTime(3, 48, 52);

612 | Chapter 11: Classes and Data Abstraction

1
1

Next, let us give the definitions of the other member functions of the class clockType.
The definitions of these functions are simple and easy to follow:

void clockType::getTime(int& hours, int& minutes,
int& seconds) const

{
hours = hr;
minutes = min;
seconds = sec;

}

void clockType::printTime() const
{

if (hr < 10)
cout << "0";

cout << hr << ":";

if (min < 10)
cout << "0";

cout << min << ":";

if (sec < 10)
cout << "0";

cout << sec;
}

void clockType::incrementHours()
{

hr++;
if (hr > 23)

hr = 0;
}

void clockType::incrementMinutes()
{

min++;
if (min > 59)
{

min = 0;
incrementHours(); //increment hours

}
}

void clockType::incrementSeconds()
{

sec++;

if (sec > 59)
{

sec = 0;
incrementMinutes(); //increment minutes

}
}

Classes | 613

From the definitions of the functions incrementMinutes and incrementSeconds,
it is clear that a member function of a class can call other member functions of the
class.

The function equalTime has the following definition:

bool clockType::equalTime(const clockType& otherClock) const
{

return (hr == otherClock.hr
&& min == otherClock.min
&& sec == otherClock.sec);

}

Let us see how the member function equalTime works.

Suppose that myClock and yourClock are objects of type clockType, as declared
previously. Further suppose that we have myClock and yourClock, as shown in
Figure 11-5.

Consider the following statement:

if (myClock.equalTime(yourClock))
.
.
.

In the expression:

myClock.equalTime(yourClock)

the object myClock accesses the member function equalTime. Because otherClock
is a reference parameter, the address of the actual parameter yourClock is passed to the
formal parameter otherClock, as shown in Figure 11-6.

hr 14

min 25

sec 54

yourClock
hr 14

min 8

sec 25

myClock

FIGURE 11-5 Objects myClock and yourClock

614 | Chapter 11: Classes and Data Abstraction

The member variables hr, min, and sec of otherClock have the values 14, 25, and
54, respectively. In other words, when the body of the function equalTime executes,
the value of otherClock.hr is 14, the value of otherClock.min is 25, and the value
of otherClock.sec is 54. The function equalTime is a member of myClock. When
the function equalTime executes, the variables hr, min, and sec in the body of the
function equalTime are the member variables of the object myClock. Therefore, the
member hr of myClock is compared with otherClock.hr, the member min of
myClock is compared with otherClock.min, and the member sec of myClock is
compared with otherClock.sec.

Once again, from the definition of the function equalTime, it is clear why it has only
one parameter.

Let us again take a look at the definition of the function equalTime. Notice that within
the definition of this function, the object otherClock accesses the member variables hr,
min, and sec. However, these member variables are private. So is there any violation?
The answer is no. The function equalTime is a member of the class clockType, and
hr, min, and sec are the member variables. Moreover, otherClock is an object of type
clockType. Therefore, the object otherClock can access its private member vari-
ables within the definition of the function equalTime.

The same is true for any member function of a class. In general, when you write the
definition of a member function, say, dummyFunction, of a class, say, dummyClass,
and the function uses an object, dummyObject of the class dummyClass, then within
the definition of dummyFunction, the object dummyObject can access its private
member variables (in fact, any private member of the class).

Once a class is properly defined and implemented, it can be used in a program. A program
or software that uses and manipulates the objects of a class is called a client of that class.

When you declare objects of the class clockType, every object has its own copy of
the member variables hr, min, and sec. In object-oriented terminology, variables such
as hr, min, and sec are called instance variables of the class because every object has its
own instance of the data.

1
1

hr 14
min 25
sec 54

yourClockhr 14
min 8
sec 25

myClock

otherClock

equalTime

FIGURE 11-6 Object myClock and parameter otherClock

Classes | 615

Accessor and Mutator Functions
Let us look at the member functions of the class clockType. The function setTime
sets the values of the member variables to the values specified by the user. In other
words, it alters or modifies the values of the member variables. Similarly, the functions
incrementSeconds, incrementMinutes, and incrementHours also modify the
member variables. On the other hand, functions such as getTime, printTime, and
equalTime only access the values of the member variables. They do not modify the
member variables. We can, therefore, categorize the member functions of the class
clockType into two categories: member functions that modify the member variables
and member functions that only access, and do not modify, the member variables.

This is typically true for any class. That is, every class has member functions that only
access and do not modify the member variables, called accessor functions, and member
functions that modify the member variables, called mutator functions.

Accessor function: A member function of a class that only accesses (that is, does not
modify) the value(s) of the member variable(s).

Mutator function: A member function of a class that modifies the value(s) of the member
variable(s).

Because an accessor function only accesses the values of the member variables, as a
safeguard, we typically include the reserved word const at the end of the headings of
these functions. Moreover, a constant member function of a class cannot modify the
member variables of that class. For example, see the headings of the member functions
getTime, printTime, and equalTime of the class clockType.

A member function of a class is called a constant function if its heading contains the reserved
word const at the end. For example, the member functions getTime, printTime, and
equalTime of the class clockType are constant functions. A constant member function
of a class cannot modify the member variables of that class, so these are accessor functions.
One thing that should be remembered about constant member functions is that a constant
member function of a class can only call other constant member functions of that class.
Therefore, you should be careful when you make a member function constant.

Example 11-2 shows how to use the class clockType in a program. Note that we
have combined the definition of the class, the definition of the member functions, and the
main function to create a complete program. Later in this chapter, you will learn how to
separate the definition of the class clockType, the definitions of the member func-
tions, and the main program, using three files.

EXAMPLE 11-2

//The program listing of the program that defines
//and uses the class clockType

616 | Chapter 11: Classes and Data Abstraction

1
1

#include <iostream>
using namespace std;

class clockType
{
public:

void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

private:
int hr;
int min;
int sec;

};

int main()
{

clockType myClock;
clockType yourClock;

int hours;
int minutes;
int seconds;

//Set the time of myClock
myClock.setTime(5, 4, 30); //Line 1

cout << "Line 2: myClock: "; //Line 2
myClock.printTime(); //print the time of myClock Line 3
cout << endl; //Line 4

cout << "Line 5: yourClock: "; //Line 5
yourClock.printTime(); //print the time of yourClock Line 6
cout << endl; //Line 7

//Set the time of yourClock
yourClock.setTime(5, 45, 16); //Line 8

cout << "Line 9: After setting, yourClock: "; //Line 9
yourClock.printTime(); //print the time of yourClock Line 10
cout << endl; //Line 11

//Compare myClock and yourClock
if (myClock.equalTime(yourClock)) //Line 12

cout << "Line 13: Both times are equal."
<< endl; //Line 13

Classes | 617

else //Line 14
cout << "Line 15: The two times are not equal."

<< endl; //Line 15

cout << "Line 16: Enter the hours, minutes, and "
<< "seconds: "; //Line 16

cin >> hours >> minutes >> seconds; //Line 17
cout << endl; //Line 18

//Set the time of myClock using the value of the
//variables hours, minutes, and seconds

myClock.setTime(hours, minutes, seconds); //Line 19

cout << "Line 20: New myClock: "; //Line 20
myClock.printTime(); //print the time of myClock Line 21
cout << endl; //Line 22

//Increment the time of myClock by one second
myClock.incrementSeconds(); //Line 23

cout << "Line 24: After incrementing myClock by "
<< "one second, myClock: "; //Line 24

myClock.printTime(); //print the time of myClock Line 25
cout << endl; //Line 26

//Retrieve the hours, minutes, and seconds of the
//object myClock

myClock.getTime(hours, minutes, seconds); //Line 27

//Output the value of hours, minutes, and seconds
cout << "Line 28: hours = " << hours

<< ", minutes = " << minutes
<< ", seconds = " << seconds << endl; //Line 28

return 0;
}//end main

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

618 | Chapter 11: Classes and Data Abstraction

//Place the definitions of the remaining functions, getTime,
//incrementHours, incrementMinutes, incrementSeconds, printTime,
//and equalTime, of the class clockType, as described
//previously here.

Sample Run: In this sample run, the user input is shaded.

Line 2: myClock: 05:04:30
Line 5: yourClock: 0-858993460:0-858993460:0-858993460
Line 9: After setting, yourClock: 05:45:16
Line 15: The two times are not equal.
Line 16: Enter the hours, minutes, and seconds: 5 23 59

Line 20: New myClock: 05:23:59
Line 24: After incrementing myClock by one second, myClock: 05:24:00
Line 28: hours = 5, minutes = 24, seconds = 0

The value of yourClock, as printed in the second line of the output (Line 5), is
machine dependent you might get different values.

Order of public and private Members of a Class
C++ has no fixed order in which you declare public and private members; you can
declare them in any order. The only thing you need to remember is that, by default, all
members of a class are private. You must use the member access specifier public to
make a member available for public access. If you decide to declare the private
members after the public members (as is done in the case of clockType), you must
use the member access specifier private to begin the declaration of the private
members.

We can declare the class clockType in one of three ways, as shown in Examples 11-3
through 11-5.

EXAMPLE 11-3

This declaration is the same as before. For the sake of completeness, we include the class
definition:

class clockType
{
public:

void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

1
1

Classes | 619

private:
int hr;
int min;
int sec;

};

EXAMPLE 11-4

class clockType
{
private:

int hr;
int min;
int sec;

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

};

EXAMPLE 11-5

class clockType
{

int hr;
int min;
int sec;

public:
void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();
void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;

};

620 | Chapter 11: Classes and Data Abstraction

In Example 11-5, because the identifiers hr, min, and sec do not follow any member
access specifier, they are private.

It is a common practice to list all of the public members first and then the private
members. This way, you can focus your attention on the public members.

Constructors
In the program in Example 11-2, when we printed the value of yourClock without
calling the function setTime, the output was some strange numbers (see the output of
Line 5 in the sample run). This is due to the fact that C++ does not automatically initialize
the variables. Because the private members of a class cannot be accessed outside of the
class (in our case, the member variables), if the user forgets to initialize these variables by
calling the function setTime, the program will produce erroneous results.

To guarantee that the member variables of a class are initialized, you use constructors.
There are two types of constructors: with parameters and without parameters. The
constructor without parameters is called the default constructor.

Constructors have the following properties:

• The name of a constructor is the same as the name of the class.

• A constructor, even though it is a function, has no type. That is, it is
neither a value-returning function nor a void function.

• A class can have more than one constructor. However, all constructors of
a class have the same name.

• If a class has more than one constructor, the constructors must have
different formal parameter lists. That is, either they have a different
number of formal parameters or, if the number of formal parameters is
the same, then the data type of the formal parameters, in the order you
list, must differ in at least one position.

• Constructors execute automatically when a class object enters its scope.
Because they have no types, they cannot be called like other functions.

• Which constructor executes depends on the types of values passed to the
class object when the class object is declared.

Let us extend the definition of the class clockType by including two constructors:

class clockType
{
public:

void setTime(int, int, int);
void getTime(int&, int&, int&) const;
void printTime() const;
void incrementSeconds();

1
1

Classes | 621

void incrementMinutes();
void incrementHours();
bool equalTime(const clockType&) const;
clockType(int, int, int); //constructor with parameters
clockType(); //default constructor

private:
int hr;
int min;
int sec;

};

This definition of the class clockType includes two constructors: one with three
parameters and one without any parameters. Let us now write the definitions of these
constructors:

clockType::clockType(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

clockType::clockType() //default constructor
{

hr = 0;
min = 0;
sec = 0;

}

From the definitions of these constructors, it follows that the default constructor sets the
three member variables—hr, min, and sec—to 0. Also, the constructor with parameters
sets the member variables to whatever values are assigned to the formal parameters.
Moreover, we can write the definition of the constructor with parameters by calling
the function setTime, as follows:

clockType::clockType(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

622 | Chapter 11: Classes and Data Abstraction

1
1

Invoking a Constructor
Recall that when a class object is declared, a constructor is automatically executed.
Because a class might have more than one constructor, including the default constructor,
next we discuss how to invoke a specific constructor.

Invoking the Default Constructor
Suppose that a class contains the default constructor. The syntax to invoke the default
constructor is:

className classObjectName;

For example, the statement:

clockType yourClock;

declares yourClock to be an object of type clockType. In this case, the default
constructor executes, and the member variables of yourClock are initialized to 0.

If you declare an object and want the default constructor to be executed, the empty

parentheses after the object name are not required in the object declaration statement. In

fact, if you accidentally include the empty parentheses, the compiler generates a syntax error

message. For example, the following statement to declare the objectyourClock is illegal:

clockType yourClock(); //illegal object declaration

Invoking a Constructor with Parameters
Suppose a class contains constructors with parameters. The syntax to invoke a constructor
with a parameter is:

className classObjectName(argument1, argument2, ...);

in which argument1, argument2, and so on are either a variable or an expression.

Note the following:

• The number of arguments and their type should match the formal
parameters (in the order given) of one of the constructors.

• If the type of the arguments does not match the formal parameters of any
constructor (in the order given), C++ uses type conversion and looks for
the best match. For example, an integer value might be converted to a
floating-point value with a zero decimal part. Any ambiguity will result
in a compile-time error.

Consider the statement:

clockType myClock(5, 12, 40);

Classes | 623

This statement declares an object myClock of type clockType. Here, we are passing three
values of type int, which matches the type of the formal parameters of the constructor with
a parameter. Therefore, the constructor with parameters of the class clockType executes,
and the three member variables of the object myClock are set to 5, 12, and 40.

Example 11-6 further illustrates how constructors are executed.

EXAMPLE 11-6

Consider the following class definition:

class inventory
{
public:

inventory(); //Line 1
inventory(string); //Line 2
inventory(string, int, double); //Line 3
inventory(string, int, double, int); //Line 4

//Add additional functions

private:
string name;
int itemNum;
double price;
int unitsInStock;

};

This class has four constructors and four member variables. Suppose that the definitions of
the constructors are as follows:

inventory::inventory() //default constructor
{

name = "";
itemNum = -1;
price = 0.0;
unitsInStock = 0;

}

inventory::inventory(string n)
{

name = n;
itemNum = -1;
price = 0.0;
unitsInStock = 0;

}

inventory::inventory(string n, int iNum, double cost)
{

name = n;
itemNum = iNum;
price = cost;
unitsInStock = 0;

}

624 | Chapter 11: Classes and Data Abstraction

1
1

inventory::inventory(string n, int iNum, double cost, int inStock)
{

name = n;
itemNum = iNum;
price = cost;
unitsInStock = inStock;

}

Consider the following declarations:

inventory item1;
inventory item2("Dryer");
inventory item3("Washer", 2345, 278.95);
inventory item4("Toaster", 8231, 34.49, 200);

For item1, the default constructor in Line 1 executes because no value is passed to this
variable. For item2, the constructor in Line 2 executes because only one parameter,
which is of type string, is passed, and it matches with the constructor in Line 2. For
item3, the constructor in Line 3 executes because three parameters are passed to item3,
and they match with the constructor in Line 3. Similarly, for item4, the constructor in
Line 4 executes (see Figure 11-7).

If the values passed to a class object do not match the parameters of any constructor and

if no type conversion is possible, a compile-time error will be generated.

name
itemNum -1
price 0.0

item1

unitsInStock 0

name Dryer
itemNum -1
price 0.0

item2

unitsInStock 0

name Toaster
itemNum 8231
price 34.49

item4

unitsInStock 200

name Washer
itemNum 2345
price 278.95

item3

unitsInStock 0

FIGURE 11-7 Effect of constructors on objects

Classes | 625

Constructors and Default Parameters
A constructor can also have default parameters. In such cases, the rules for declaring
formal parameters are the same as those for declaring default formal parameters in a
function. Moreover, actual parameters to a constructor with default parameters are
passed according to the rules for functions with default parameters. (Chapter 7 discusses
functions with default parameters.) Using the rules for defining default parameters, in the
definition of the class clockType, you can replace both constructors using the following
statement. (Recall that in the function prototype, the name of a formal parameter is optional.)

clockType clockType(int = 0, int = 0, int = 0); //Line 1

In the implementation file, the definition of this constructor is the same as the definition
of the constructor with parameters.

If you replace the constructors of the class clockType with the constructor in Line 1
(the constructor with the default parameters), then you can declare clockType objects
with zero, one, two, or three arguments, as follows:

clockType clock1; //Line 2
clockType clock2(5); //Line 3
clockType clock3(12, 30); //Line 4
clockType clock4(7, 34, 18); //Line 5

The member variables of clock1 are initialized to 0. The member variable hr of clock2
is initialized to 5, and the member variables min and sec of clock2 are initialized to 0.
The member variable hr of clock3 is initialized to 12, the member variable min of
clock3 is initialized to 30, and the member variable sec of clock3 is initialized to 0.
The member variable hr of clock4 is initialized to 7, the member variable min of
clock4 is initialized to 34, and the member variable sec of clock4 is initialized to 18.

Using these conventions, we can say that a constructor that has no parameters, or has all
default parameters, is called the default constructor.

Classes and Constructors: A Precaution
As discussed in the preceding section, constructors provide guaranteed initialization of the
object’s member variables. Typically, the default constructor is used to initialize the member
variables to some default values, and this constructor has no parameters. A constructor with
parameters is used to initialize the member variables to some specific values.

We have seen that if a class has no constructor(s), then the object created is uninitialized
because C++ does not automatically initialize variables when they are declared. In reality, if a
class has no constructor(s), then C++ automatically provides the default constructor. How-
ever, this default constructor does not do anything. The object declared is still uninitialized.

The important things to remember about classes and constructors are the following:

• If a class has no constructor(s), C++ automatically provides the default
constructor. However, the object declared is still uninitialized.

626 | Chapter 11: Classes and Data Abstraction

1
1

• On the other hand, suppose a class, say, dummyClass, includes con-
structor(s) with parameter(s) and does not include the default constructor. In
this case, C++ does not provide the default constructor for the class
dummyClass. Therefore, when an object of the class dummyClass is
declared, we must include the appropriate arguments in its declaration.

The following code further explains this. Consider the definition of the following class:

class dummyClass
{
public:

void print() const;

dummyClass(int dX, int dY);

private:
int x;
int y;

};

The class dummyClass does not have the default constructor. It has a constructor with
parameters. Given this definition of the class dummyClass, the following object
declaration is legal:

dummyClass myObject(10, 25); //object declaration is legal

However, because the class dummyClass does not contain the default constructor, the
following declaration is incorrect and would generate a syntax error:

dummyClass dummyObject; //incorrect object declaration

Therefore, to avoid such pitfalls, if a class has constructor(s), the class should also include
the default constructor.

Arrays of Class Objects (Variables) and Constructors
If a class has constructors and you declare an array of that class’s objects, the class should have the
default constructor. The default constructor is typically used to initialize each (array) class object.

For example, if you declare an array of 100 class objects, then it is impractical (if not
impossible) to specify different constructors for each component. (We will further clarify
this at the end of this section.)

Suppose that you have 100 employees who are paid on an hourly basis, and you need to keep
track of their arrival and departure times. You can declare two arrays—arrivalTimeEmp
and departureTimeEmp—of 100 components each, wherein each component is an object
of type clockType.

Consider the following statement:

clockType arrivalTimeEmp[100]; //Line 1

The statement in Line 1 creates the array of objects arrivalTimeEmp[0],
arrivalTimeEmp[1], . . ., arrivalTimeEmp[99], as shown in Figure 11-8.

Classes | 627

You can now use the functions of the class clockType to manipulate the time for
each employee. For example, the following statement sets the arrival time, that is, hr,
min, and sec, of the 50th employee to 8, 5, and 10, respectively (see Figure 11-9).

arrivalTimeEmp[49].setTime(8, 5, 10); //Line 2

To output the arrival time of each employee, you can use a loop, such as the following:

for (int j = 0; j < 100; j++) //Line 3
{

cout << "Employee " << (j + 1)
<< " arrival time: ";

arrivalTimeEmp[j].printTime(); //Line 4
cout << endl;

}

The statement in Line 4 outputs the arrival time of an employee in the form
hr:min:sec.

arrivalTimeEmp[0]
arrivalTimeEmp[1]

arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

arrivalTimeEmp

arrivalTimeEmp[49]
hr 8
min 5
sec 10

FIGURE 11-9 Array arrivalTimeEmp after setting the time of employee 49

arrivalTimeEmp[0]
arrivalTimeEmp[1]

arrivalTimeEmp[49]

arrivalTimeEmp[98]
arrivalTimeEmp[99]

arrivalTimeEmp

arrivalTimeEmp[49]
hr 0
min 0
sec 0

FIGURE 11-8 Array arrivalTimeEmp

628 | Chapter 11: Classes and Data Abstraction

To keep track of the departure time of each employee, you can use the array
departureTimeEmp.

Similarly, you can use arrays to manage a list of names or other objects.

Before leaving our discussion of arrays of class objects, we would like to point out the

following: The beginning of this section stated that if you declare an array of class objects

and the class has constructor(s), then the class should have the default constructor. The

compiler uses the default constructor to initialize the array of objects. If the array size is

large, then it is impractical to specify a different constructor with parameters for each

object. For a small-sized array, we can manage to specify a different constructor with

parameters.

For example, the following statement declares clocks to be an array of two compo-

nents. The member variables of the first component are initialized to 8, 35, and 42,

respectively. The member variables of the second component are initialized to 6, 52, and

39, respectively.

clockType clocks[2] = {clockType(8, 35, 42), clockType(6, 52, 39)};

In fact, the expression clockType(8, 35, 42) creates an anonymous object of the

class clockType; initializes its member variables to 8, 35, and 42, respectively;
and then uses a member-wise copy to initialize the object clock[0].

Consider the following statement, which creates the object myClock and initializes its

member variables to 10, 45, and 38, respectively. This is how we have been creating and

initializing objects. In fact, the statement:

clockType myClock(10, 45, 38);

is equivalent to the statement:

clockType myClock = clockType(10, 45, 38);

However, the first statement is more efficient. It does not first require that an anonymous

object be created and then member-wise copied in order to initialize myClock.

The main point that we are stressing here, and that we discussed in the preceding section,

is the following: To avoid any pitfalls, if a class has constructor(s), it should also have the

default constructor.

Destructors
Like constructors, destructors are also functions. Moreover, like constructors, a destructor
does not have a type. That is, it is neither a value-returning function nor a void function.
However, a class can have only one destructor, and the destructor has no parameters. The
name of a destructor is the tilde character (~), followed by the name of the class. For
example, the name of the destructor for the class clockType is:

~clockType();

1
1

Classes | 629

The destructor automatically executes when the class object goes out of scope. The use of
destructors is discussed in subsequent chapters.

Data Abstraction, Classes, and Abstract
Data Types
For the car that we drive, most of us want to know how to start the car and drive it.
Most people are not concerned with the complexity of how the engine works. By
separating the design details of a car’s engine from its use, the manufacturer helps the
driver focus on how to drive the car. Our daily life has other similar examples. For
the most part, we are concerned only with how to use certain items, rather than with
how they work.

Separating the design details (that is, how the car’s engine works) from its use is
called abstraction. In other words, abstraction focuses on what the engine does and
not on how it works. Thus, abstraction is the process of separating the logical
properties from the implementation details. Driving the car is a logical property;
the construction of the engine constitutes the implementation details. We have an
abstract view of what the engine does but are not interested in the engine’s actual
implementation.

Abstraction can also be applied to data. Earlier sections of this chapter defined a data type
clockType. The data type clockType has three member variables and the following
basic operations:

1. Set the time.

2. Return the time.

3. Print the time.

4. Increment the time by one second.

5. Increment the time by one minute.

6. Increment the time by one hour.

7. Compare two times to see whether they are equal.

The actual implementation of the operations, that is, the definitions of the member
functions of the class clockType, was postponed.

Data abstraction is defined as a process of separating the logical properties of the data from
its implementation. The definition of clockType and its basic operations are the logical
properties; the storing of clockType objects in the computer and the algorithms to
perform these operations are the implementation details of clockType.

Abstract data type (ADT): A data type that separates the logical properties from the
implementation details.

630 | Chapter 11: Classes and Data Abstraction

Like any other data type, an ADT has three things associated with it: the name of the
ADT, called the type name; the set of values belonging to the ADT, called the domain;
and the set of operations on the data. Following these conventions, we can define the
clockType ADT as follows:

dataTypeName
clockType

domain
Each clockType value is a time of day in the form of hours,
minutes, and seconds.

operations
Set the time.
Return the time.
Print the time.
Increment the time by one second.
Increment the time by one minute.
Increment the time by one hour.
Compare the two times to see whether they are equal.

EXAMPLE 11-7

A list is defined as a set of values of the same type. Because all values in a list are of the
same type, a convenient way to represent and process a list is to use an array. You can
define a list as an ADT as follows:

dataTypeName
listType

domain
Every listType value is an array of, say, 1000 numbers

operations
Check to see whether the list is empty.
Check to see whether the list is full.
Search the list for a given item.
Delete an item from the list.
Insert an item in the list.
Sort the list.
Destroy the list.
Print the list.

The next obvious question is how to implement an ADT in a program. To implement an
ADT, you must represent the data and write algorithms to perform the operations.

The previous section used classes to group data and functions together. Furthermore, our
definition of a class consisted only of the specifications of the operations; functions to
implement the operations were written separately. Thus, we see that classes are a
convenient way to implement an ADT. In fact, in C++, classes were specifically designed
to handle ADTs.

1
1

Data Abstraction, Classes, and Abstract Data Types | 631

Next, we define the class listType to implement a list as an ADT. Typically in a list,
not only do we store the elements, but we also keep track of the number of elements in
the list. Therefore, our class listType has two member variables: one to store the
elements and another to keep track of the number of elements in the list. The following
class, listType, defines the list as an ADT.

class listType
{
public:

bool isEmptyList() const;
bool isFullList() const;
int search(int searchItem) const;
void insert(int newElement);
void remove(int removeElement);
void destroyList();
void printList() const;
listType(); //constructor

private:
int list[1000];
int length;

};

Figure 11-10 shows the UML class diagram of the class listType.

A struct Versus a class
Chapter 10 defined a struct as a fixed collection of components, wherein the compo-
nents can be of different types. This definition of components in a struct included only
member variables. However, a C++ struct is very similar to a C++ class. As with a

listType

-list: int
-length: int

+isEmptyList() const: bool
+isFullList() const: bool
+search(int) const: int
+insert(int): void
+remove(int): void
+destroyList(): void
+printList(): const: void
+listType()

FIGURE 11-10 UML class diagram of the class listType

632 | Chapter 11: Classes and Data Abstraction

class, members of a struct can also be functions, including constructors and a
destructor. The only difference between a struct and a class is that, by default, all
members of a struct are public, and all members of a class are private. You can
use the member access specifier private in a struct to make a member private.

In C, the definition of a struct is similar to the definition of a struct in C++, as given
in Chapter 10. Because C++ evolved from C, the standard C-structs are perfectly
acceptable in C++. However, the definition of a struct in C++ was expanded to
include member functions and constructors and destructors. In the future, because a
class is a syntactically separate entity, specially designed to handle an ADT, the
definition of a class may evolve in a completely different way than the definition of a
C-like struct.

Both C++ classes and structs have the same capabilities. However, most programmers
restrict their use of structures to adhere to their C-like structure form and thus do not use
them to include member functions. In other words, if all of the member variables of a
class are public and the class has no member functions, you typically use a struct to
group these members. This is, in fact, how it is done in this book.

Information Hiding
The previous section defined the class clockType to implement the time in a
program. We then wrote a program that used the class clockType. In fact, we
combined the class clockType with the function definitions to implement the
operations and the function main so as to complete the program. That is, the specifica-
tion and implementation details of the class clockType were directly incorporated
into the program.

Is it a good practice to include the specification and implementation details of a class in
the program? Definitely not. There are several reasons for not doing so. Suppose the
definition of the class and the definitions of the member functions are directly included in
the user’s program. The user then has direct access to the definition of the class and the
definitions of the member functions. Therefore, the user can modify the operations in
any way the user pleases. The user can also modify the member variables of an object in
any way the user pleases. Thus, in this sense, the private member variables of an object
are no longer private to the object.

If several programmers use the same object in a project and if they have direct access to
the internal parts of the object, there is no guarantee that every programmer will use the
same object in exactly the same way. Thus, we must hide the implementation details. The
user should know only what the object does, not how it does it. Hiding the implementa-
tion details frees the user from having to fit this extra piece of code in the program. Also,
by hiding the details, we can ensure that an object will be used in exactly the same way
throughout the project. Furthermore, once an object has been written, debugged, and
tested properly, it becomes (and remains) error-free.

1
1

Information Hiding | 633

This section discusses how to hide the implementation details of an object. For illustration
purposes, we will use the class clockType.

To implement clockType in a program, the user must declare objects of type
clockType and know which operations are allowed and what the operations do.
So, the user must have access to the specification details. Because the user is not
concerned with the implementation details, we must put those details in a separate file
called an implementation file. Also, because the specification details can be too long,
we must free the user from having to include them directly in the program. However,
the user must be able to look at the specification details so that he or she can correctly
call the functions, and so forth. We must, therefore, put the specification details in a
separate file. The file that contains the specification details is called the header file (or
interface file).

The implementation file contains the definitions of the functions to implement the
operations of an object. This file contains, among other things (such as the preprocessor
directives), the C++ statements. Because a C++ program can have only one function,
main, the implementation file does not contain the function main. Only the user
program contains the function main. Because the implementation file does not contain
the function main, we cannot produce the executable code from this file. In fact, we
produce what is called the object code from the implementation file. The user then links
the object code produced by the implementation file with the object code of the program
that uses the class to create the final executable code.

Finally, the header file has an extension h, whereas the implementation file has an extension
cpp. Suppose that the specification details of the class clockType are in a file called
clockType. The complete name of this file should then be clockType.h. If the
implementation details of the class clockType are in a file—say, clockTypeImp—the
name of this file must be clockTypeImp.cpp.

The file clockTypeImp.cpp contains only the definitions of the functions, not
the definition of the class. Thus, to resolve the problem of an undeclared identifier
(such as the function names and variable names), we include the header file
clockType.h in the file clockTypeImp.cpp with the help of the include
statement. The following include statement is required by any program that uses
the class clockType, as well as by the implementation file that defines the
operations for the class clockType:

#include "clockType.h"

Note that the header file clockType.h is enclosed in double quotation marks, not angular
brackets. The header file clockType.h is called the user-defined header file. Typically, all
user-defined header files are enclosed in double quotation marks, whereas the system-
provided header files (such as iostream) are enclosed between angular brackets.

The implementation contains the definitions of the functions, and these definitions are
hidden from the user because the user is typically provided only the object code.

634 | Chapter 11: Classes and Data Abstraction

However, the user of the class should be aware of what a particular function does and
how to use it. Therefore, in the specification file with the function prototypes, we
include comments that briefly describe the function and specify any preconditions and/
or postconditions.

Precondition: A statement specifying the condition(s) that must be true before the
function is called.

Postcondition: A statement specifying what is true after the function call is completed.

Following are the specification and implementation files for the class clockType:

//clockType.h, the specification file for the class clockType

class clockType
{
public:

void setTime(int hours, int minutes, int seconds);
//Function to set the time.
//The time is set according to the parameters.
//Postcondition: hr = hours; min = minutes;
// sec = seconds;
// The function checks whether the
// values of hours, minutes, and seconds
// are valid. If a value is invalid, the
// default value 0 is assigned.

void getTime(int& hours, int& minutes, int& seconds) const;
//Function to return the time.
//Postcondition: hours = hr; minutes = min;
// seconds = sec;

void printTime() const;
//Function to print the time.
//Postcondition: The time is printed in the form
// hh:mm:ss.

void incrementSeconds();
//Function to increment the time by one second.
//Postcondition: The time is incremented by one second.
// If the before-increment time is
// 23:59:59, the time is reset to 00:00:00.

void incrementMinutes();
//Function to increment the time by one minute.
//Postcondition: The time is incremented by one minute.
// If the before-increment time is
// 23:59:53, the time is reset to 00:00:53.

void incrementHours();
//Function to increment the time by one hour.
//Postcondition: The time is incremented by one hour.

1
1

Information Hiding | 635

// If the before-increment time is
// 23:45:53, the time is reset to 00:45:53.

bool equalTime(const clockType& otherClock) const;
//Function to compare the two times.
//Postcondition: Returns true if this time is equal to
// otherClock; otherwise, returns false.

clockType(int hours, int minutes, int seconds);
//Constructor with parameters.
//The time is set according to the parameters.
//Postcondition: hr = hours; min = minutes;
// sec = seconds;
// The constructor checks whether the
// values of hours, minutes, and seconds
// are valid. If a value is invalid, the
// default value 0 is assigned.

clockType();
//Default constructor
//The time is set to 00:00:00.
//Postcondition: hr = 0; min = 0; sec = 0;

private:
int hr; //variable to store the hours
int min; //variable to store the minutes
int sec; //variable to store the seconds

};

//clockTypeImp.cpp, the implementation file

#include <iostream>
#include "clockType.h"

using namespace std;
.
.
.

//Place the definitions of the member functions of the class
//clockType here.

.

.

.

Next, we describe the user file containing the program that uses the class clockType.

//The user program that uses the class clockType

#include <iostream>
#include "clockType.h"

636 | Chapter 11: Classes and Data Abstraction

using namespace std;
.
.
.

//Place the definitions of the function main and the other
//user-defined functions here

.

.

.

To save space, we have not provided the complete details of the implementation file and

the file that contains the user program. However, you can find these files and the

specification (header) file at the Web site accompanying this book.

Executable Code
The previous section discussed how to hide the implementation details of a class. To use
an object in a program, during execution, the program must be able to access the
implementation details of the object (that is, the algorithms to implement the operations
on the object). This section discusses how a client’s program obtains access to the
implementation details of an object. For illustration purposes, we will use the class
clockType.

As explained previously, to use the class clockType, the program must include the
header file clockType.h via the include statement. For example, the following
program segment includes the header file clockType.h:

//Program test.cpp

#include "clockType.h"
.
.
.
int main()
{

.

.

.
}

The program test.cpp must include only the header file, not the implementation file.
To create the executable code to run the program test.cpp, the following steps are
required:

1. We separately compile the file clockTypeImp.cpp and create the
object code file clockTypeImp.obj. The object code file contains
the machine language code, but the code is not in an executable form.

1
1

Executable Code | 637

Suppose that the command cc invokes the C++ compiler or linker, or
both, on the computer’s system command line. The command:

cc -c clockTypeImp.cpp

creates the object code file clockTypeImp.obj.

2. To create the executable code for the source code file test.cpp, we
compile the source code file test.cpp, create the object code file
test.obj, and then link the files test.obj and clockTypeImp.obj
to create the executable file test.exe. The following command on the
system command line creates the executable file test.exe:

cc test.cpp clockTypeImp.obj

1. To create the object code file for any source code file, we use the command line

option -c on the system command line. For example, to create the

object code file for the source code file, called exercise.cpp, we

use the following command on the system command line:

cc -c exercise.cpp

2. To link more than one object code file with a source code file, we list all of the

object code files on the system command line. For example, to link

A.obj and B.obj with the source code file test.cpp, we use the

command:

cc test.cpp A.obj B.obj

3. If a source code file is modified, it must be recompiled.

4. If modifications in one source file affect other files, the other files must be

recompiled and relinked.

5. The user must have access to the header file and the object code file. Access to

the header file is needed to see what the objects do and how to use

them. Access to the object code file is needed so that the user can link

the program with the object code to produce an executable code. The

user does not need access to the source code file containing the

implementation details.

As stated in Chapter 1, IDEs Visual C++ 2008 Express, Visual Studio .NET, C++
Builder, and CodeWarrior put the editor, compiler, and linker all into one package.
With one command, the program is compiled and linked with the other necessary files.
These systems also manage multiple-file programs in the form of a project. Thus, a
project consists of several files, called the project files. These systems usually have a
command, called build, rebuild, or make. (Check your system’s documentation.)
When the build, rebuild, or make command is applied to a project, the system
automatically compiles and links all of the files required to create the executable code.

638 | Chapter 11: Classes and Data Abstraction

When one or more files in the project change, you can use these commands to
recompile and relink the files.

EXAMPLE 11-8

In Example 6-4, the function rollDice rolls a pair of dice until the sum of the numbers
rolled is a given number and returns the number of times the dice are rolled to get the
desired sum. In fact, we can design a class that implements the basic properties of a die.
Consider the definition of the following class die.

class die
{
public:

die();
//Default constructor
//Sets the default number rolled by a die to 1

int roll();
//Function to roll a die.
//This function uses a random number generator to randomly
//generate a number between 1 and 6, and stores the number
//in the instance variable num and returns the number.

int getNum() const;
//Function to return the number on the top face of the die.
//Returns the value of the instance variable num.

private
int num;

};

The definitions of the member functions are given next.

die::die()
{

num = 1;
srand(time(0));

}

int die::roll()
{

num = rand() % 6 + 1;

return num;
}

int die::getNum() const
{

return num;
}

1
1

Executable Code | 639

The following program shows how to use the class die in a program.

//The user program that uses the class die

#include <iostream>
#include "die.h"

using namespace std;

int main()
{ //Line 1

die die1; //Line 2
die die2; //Line 3

cout << "Line 4: die1: " << die1.getNum() << endl; //Line 4

cout << "Line 5: die2: " << die2.getNum() << endl; //Line 5

cout << "Line 6: After rolling die1: "
<< die1.roll() << endl; //Line 6

cout << "Line 7: After rolling die2: "
<< die2.roll() << endl; //Line 7

cout << "Line 8: The sum of the numbers rolled"
<< " by the dice is: "
<< die1.getNum() + die2.getNum() << endl; //Line 8

cout << "Line 9: After again rolling, the sum of "
<< "the numbers rolled is: "
<< die1.roll() + die2.roll() << endl; //Line 9

return 0; //Line 10
}//end main //Line 11

Sample Run:

Line 4: die1: 1
Line 5: die2: 1
Line 6: After rolling die1: 3
Line 7: After rolling die2: 4
Line 8: The sum of the numbers rolled by the dice is: 7
Line 9: After again rolling, the sum of the numbers rolled is: 5

The preceding program works as follows. The statements in Lines 2 and 3 create the
objects die1 and die2, and, using the default constructor, set both the dice to 1. The
statements in Lines 4 and 5 output the number of both the dice. The statement in Line 6
rolls die1 and outputs the number rolled. Similarly, the statement in Line 7 rolls die2 and
outputs the number rolled. The statement in Line 8 outputs the sum of the numbers rolled
by die1 and die2. The statement in Line 9 again rolls both the dice and outputs the sum
of the numbers rolled.

640 | Chapter 11: Classes and Data Abstraction

Example 11-9 further illustrates how classes are designed and implemented. The class
personType that is designed in Example 11-9 is very useful; we will use this class in
subsequent chapters.

EXAMPLE 11-9

The most common attributes of a person are the person’s first name and last name. The
typical operations on a person’s name are to set the name and print the name. The
following statements define a class with these properties.

#include <string>

using namespace std;

class personType
{
public:

void print() const;
//Function to output the first name and last name
//in the form firstName lastName.

void setName(string first, string last);
//Function to set firstName and lastName according
//to the parameters.
//Postcondition: firstName = first; lastName = last;

string getFirstName() const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType(string first = "", string last = "");
//Constructor
//Sets firstName and lastName according to the parameters.
//The default values of the parameters are null strings.
//Postcondition: firstName = first; lastName = last;

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

Figure 11-11 shows the UML class diagram of the class personType.

1
1

Executable Code | 641

We now give the definitions of the member functions of the class personType.

void personType::print() const
{

cout << firstName << " " << lastName;
}

void personType::setName(string first, string last)
{

firstName = first;
lastName = last;

}

string personType::getFirstName() const
{

return firstName;
}

string personType::getLastName() const
{

return lastName;
}

//constructor
personType::personType(string first, string last)
{

firstName = first;
lastName = last;

}

personType
-firstName: string
-lastName: string

+print(): void
+setName(string, string): void
+getFirstName() const: string
+getLastName() const: string
+personType(string = "", string = "")

FIGURE 11-11 UML class diagram of the class personType

642 | Chapter 11: Classes and Data Abstraction

Static Members of a Class

This section may be skipped without any loss of continuation.

In Chapter 7, we described two types of variables, automatic and static. Recall that if
a local variable of a function is static, it exists between function calls. Similar to static
variables, a class can have static members, functions, or variables. Let us note the
following about the static members of a class:

• If a function of a class is static, in the class definition it is declared using
the keyword static in its heading.

• If a member variable of a class is static, it is declared using the keyword
static, as discussed in Chapter 7 and also illustrated in Example 11-10.

• A public static member, function, or variable of a class can be
accessed using the class name and the scope resolution operator.

Example 11-10 clarifies the effect of the keyword static.

EXAMPLE 11-10

Consider the following definition of the class illustrate:

class illustrate
{
public:

static int count; //public static variable

void print() const;
//Function to output x, y, and count.

void setX(int a);
//Function to set x.
//Postcondition: x = a;

static void incrementY();
//static function
//Function to increment y by 1.
//Postcondition: y = y + 1

illustrate(int a = 0);
//constructor
//Postcondition: x = a;
// If no value is specified for a, x = 0;

1
1

Static Members of a Class | 643

private:
int x;
static int y; //private static variable

};

Suppose that the static member variables and the definitions of the member functions
of the class illustrate are as follows. (These statements are all placed in the
implementation file. Also, notice that all static member variables are initialized, as
shown below.)

int illustrate::count = 0;
int illustrate::y = 0;

void illustrate::print() const
{

cout << "x = " << x << ", y = " << y
<< ", count = " << count << endl;

}

void illustrate::setX(int a)
{

x = a;
}

void illustrate::incrementY()
{

y++;
}

illustrate::illustrate(int a)
{

x = a;
}

Because the function incrementY is static and public, the following statement is
legal:

illustrate::incrementY();

Similarly, because the member variable count is static and public, the following
statement is legal:

illustrate::count++;

Next, we elaborate on static member variables a bit more. Suppose that you have a
class, say, myClass, with member variables (static as well as non-static). When
you create objects of type myClass, only non-static member variables of the class
myClass become the member variables of each object. For each static member
variable of a class, C++ allocates only one memory space. All myClass objects refer to
the same memory space. In fact, static member variables of a class exist even when no

644 | Chapter 11: Classes and Data Abstraction

object of that class type exists. You can access the public static member variables
outside of the class, as explained earlier in this section.

Next, we explain how memory space is allocated for static and non-static member
variables of a class.

Suppose that you have the class illustrate, as given in Example 11-10. Memory
space then exists for the static member variables y and count.

Consider the following statements:

illustrate illusObject1(3); //Line 1
illustrate illusObject2(5); //Line 2

The statements in Line 1 and Line 2 declare illusObject1 and illusObject2 to be
illustrate type objects (see Figure 11-12).

Now, consider the following statements:

illustrate::incrementY();
illustrate::count++;

After these statements execute, the objects and static members are as shown in Figure 11-13. 1
1

illusObject2illusObject1

y 0
count 0

x 5x 3

FIGURE 11-12 illusObject1 and illusObject2

illusObject2illusObject1

y 1
count 1

x 5x 3

FIGURE 11-13 illusObject1 and illusObject2 after the statements illustrate::
incrementY(); and illustrate::count++; execute

Static Members of a Class | 645

The output of the statement:

illusObject1.print();

is:

x = 3, y = 1, count = 1

Similarly, the output of the statement:

illusObject2.print();

is:

x = 5, y = 1, count = 1

Now consider the statement:

illustrate::count++;

After this statement executes, the objects and static members are as shown in
Figure 11-14.

The output of the statements:

illusObject1.print();
illusObject2.print();

is:

x = 3, y = 1, count = 2
x = 5, y = 1, count = 2

The program in Example 11-11 further illustrates how static members of a class work.

illusObject2illusObject1

y 1
count 2

x 5x 3

FIGURE 11-14 illusObject1 and illusObject2 after the statement illustrate::
count++; executes

646 | Chapter 11: Classes and Data Abstraction

EXAMPLE 11-11

#include <iostream>

#include "illustrate.h"

using namespace std;

int main()
{

illustrate illusObject1(3); //Line 1
illustrate illusObject2(5); //Line 2

illustrate::incrementY(); //Line 3
illustrate::count++; //Line 4
illusObject1.print(); //Line 5
illusObject2.print(); //Line 6
cout << "Line 7: ***Increment y using "

<< "illusObject1***" << endl; //Line 7

illusObject1.incrementY(); //Line 8
illusObject1.setX(8); //Line 9
illusObject1.print(); //Line 10
illusObject2.print(); //Line 11

cout << "Line 12: ***Increment y using "
<< "illusObject2***" << endl; //Line 12

illusObject2.incrementY(); //Line 13
illusObject2.setX(23); //Line 14
illusObject1.print(); //Line 15
illusObject2.print(); //Line 16

return 0;
}

Sample Run:

x = 3, y = 1, count = 1
x = 5, y = 1, count = 1
Line 7: ***Increment y using illusObject1***
x = 8, y = 2, count = 1
x = 5, y = 2, count = 1
Line 12: ***Increment y using illusObject2***
x = 8, y = 3, count = 1
x = 23, y = 3, count = 1

The preceding program works as follows. The static member variables y and count
are initialized to 0. The statement in Line 1 declares illusObject1 to be an object of
the class illustrate and initializes its member variable x to 3. The statement in

1
1

Static Members of a Class | 647

Line 2 declares illusObject2 to be an object of the class illustrate and
initializes its member variable x to 5.

The statement in Line 3 uses the name of the class illustrate and the function
incrementY to increment y. Now, count is a public static member of the class
illustrate. So the statement in Line 4 uses the name of the class illustrate to
directly access count and increments it by 1. The statements in Lines 5 and 6 output the data
stored in the objects illusObject1 and illusObject2. Notice that the value of y for
both objects is the same. Similarly, the value of count for both objects is the same.

The statement in Line 7 is an output statement. The statement in Line 8 uses the object
illusObject1 and the function incrementY to increment y. The statement in Line 9
sets the value of the member variable x of illusObject1 to 8. Lines 10 and 11 output the
data stored in the objects illusObject1 and illusObject2. Notice that the value of y
for both objects is the same. Similarly, the value of count for both objects is the same.
Moreover, notice that the statement in Line 9 changes only the value of the member variable
x of illusObject1 because x is not a static member of the class illustrate.

The statement in Line 13 uses the object illusObject2 and the function incrementY
to increment y. The statement in Line 14 sets the value of the member variable x
of illusObject2 to 23. Lines 15 and 16 output the data stored in the objects
illusObject1 and illusObject2. Notice that the value of y for both objects is
the same. Similarly, the value of count for both objects is the same. Moreover, notice
that the statement in Line 14 changes only the value of the member variable x of
illusObject2, because x is not a static member of the class illustrate.

Here are some additional comments on static members of a class. As you have seen in
this section, a static member function of a class does not need any object to be
invoked. It can be called using the name of the class and the scope resolution operator, as

illustrated. Therefore, a static member function cannot use anything that depends on
a calling object. In other words, in the definition of a static member function, you
cannot use a non-static member variable or a non-static function unless there is
an object declared locally that accesses the non-static member variable or the non-
static member function.

Let us again consider the class illustrate, as defined in Example 11-10. This class
contains both static and non-static member variables. When we declare objects of
this class, each object has its own copy of the member variable x, which is non-static,
and all objects share the member variables y and count, which are static. Earlier in
this chapter, we defined the terminology instance variables of a class using the class
clockType. However, at that point, we did not discuss static member variables of a
class. A class can have static as well as non-static member variables. We can,
therefore, make the general statement that non-static member variables of a class are
called the instance variables of the class.

648 | Chapter 11: Classes and Data Abstraction

1
1

PROGRAMMING EXAMPLE: Candy Machine
A common place to buy candy is from a machine. A new candy machine has been
purchased for the gym, but it is not working properly. The machine sells candies,
chips, gum, and cookies. You have been asked to write a program for this candy
machine so that it can be put into operation.

The program should do the following:

1. Show the customer the different products sold by the candy machine.

2. Let the customer make the selection.

3. Show the customer the cost of the item selected.

4. Accept money from the customer.

5. Release the item.

Input The item selection and the cost of the item.

Output The selected item.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

A candy machine has two main components: a built-in cash register and several
dispensers to hold and release the products.

Cash Register Let us first discuss the properties of a cash register. The register has some cash on hand, it
accepts the amount from the customer, and if the amount deposited is more than the cost
of the item, then—if possible—it returns the change. For simplicity, we assume that the
user deposits the money greater than or equal to the cost of the product. The cash register
should also be able to show to the candy machine’s owner the amount of money in the
register at any given time. The following class defines the properties of a cash register:

class cashRegister
{
public:

int getCurrentBalance() const;
//Function to show the current amount in the cash
//register.
//Postcondition: The value of cashOnHand is returned.

void acceptAmount(int amountIn);
//Function to receive the amount deposited by
//the customer and update the amount in the register.
//Postcondition: cashOnHand = cashOnHand + amountIn;

cashRegister(int cashIn = 500);
//Constructor
//Sets the cash in the register to a specific amount.

Programming Example: Candy Machine | 649

//Postcondition: cashOnHand = cashIn;
// If no value is specified when the
// object is declared, the default value
// assigned to cashOnHand is 500.

private:
int cashOnHand; //variable to store the cash

//in the register
};

Figure 11-15 shows the UML class diagram of the class cashRegister.

Next, we give the definitions of the functions to implement the operations of the
class cashRegister. The definitions of these functions are very simple and easy to
follow.

The function getCurrentBalance shows the current amount in the cash register. It
returns the value of the private member variable cashOnHand. So its definition is:

int cashRegister::getCurrentBalance() const
{

return cashOnHand;
}

The function acceptAmount accepts the amount of money deposited by the customer.
It updates the cash in the register by adding the amount deposited by the customer to the
previous amount in the cash register. Essentially, the definition of this function is:

void cashRegister::acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

In the definition of the class cashRegister, the constructor is declared with a
default value. Therefore, if the user does not specify any value when the object is
declared, the default value is used to initialize the member variable cashOnHand. Recall
that because we have specified the default value for the constructor’s parameter in the

cashRegister

–cashOnHand: int

+getCurrentBalance() const: int
+acceptAmount(int): void
+cashRegister(int = 500)

FIGURE 11-15 UML class diagram of the class cashRegister

650 | Chapter 11: Classes and Data Abstraction

1
1

definition of the class, in the heading of the definition of the constructor, we do not
specify the default value. The definition of the constructor is as follows:

cashRegister::cashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

Note that the definition of the constructor checks for valid values of the parameter
cashIn. If the value of cashIn is less than 0, the value assigned to the member
variable cashOnHand is 500.

Dispenser The dispenser releases the selected item if it is not empty. It should show the number
of items in the dispenser and the cost of the item. The following class defines the
properties of a dispenser. Let us call this class dispenserType:

class dispenserType
{
public:

int getNoOfItems() const;
//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.

int getCost() const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.

void makeSale();
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;

dispenserType(int setNoOfItems = 50, int setCost = 50);
//Constructor
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;
// If no value is specified for a
// parameter, then its default value is
// assigned to the corresponding member
// variable.

private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item

};

Programming Example: Candy Machine | 651

Figure 11-16 shows the UML class diagram of the class dispenserType.

Because the candy machine sells four types of items, we shall declare four objects of
type dispenserType. For example, the statement:

dispenserType chips(100, 65);

declares chips to be an object of type dispenserType, sets the number of
chip bags in the dispenser to 100, and sets the cost of each chip bag to 65 cents
(see Figure 11-17).

Next, we discuss the definitions of the functions to implement the operations of the
class dispenserType.

The function getNoOfItems returns the number of items of a particular product.
Because the number of items currently in the dispenser is stored in the private
member variable numberOfItems, the function returns the value of
numberOfItems. The definition of this function is:

int dispenserType::getNoOfItems() const
{

return numberOfItems;
}

dispenserType

+getNoOfItems() const: int
+getCost(): const: int
+makeSale(): void
+dispenserType(int = 50, int = 50)

–numberOfItems: int
–cost: int

FIGURE 11-16 UML class diagram of the class dispenserType

cost

chips 100
65

numberOfItems

FIGURE 11-17 Object chips

652 | Chapter 11: Classes and Data Abstraction

1
1

The function getCost returns the cost of a product. Because the cost of a product is
stored in the private member variable cost, the function returns the value of
cost. The definition of this function is:

int dispenserType::getCost() const
{

return cost;
}

When a product is sold, the number of items in that dispenser is reduced by 1. There-
fore, the function makeSale reduces the number of items in the dispenser by 1. That is,
it decrements the value of the private member variable numberOfItems by 1. The
definition of this function is:

void dispenserType::makeSale()
{

numberOfItems--;
}

The definition of the constructor checks for valid values of the parameters. If these
values are less than 0, the default values are assigned to the member variables. The
definition of the constructor is:

//constructor
dispenserType::dispenserType(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

MAIN

PROGRAM

When the program executes, it must do the following:

1. Show the different products sold by the candy machine.

2. Show how to select a particular product.

3. Show how to terminate the program.

Furthermore, these instructions must be displayed after processing each selection
(except exiting the program) so that the user need not remember what to do if he
or she wants to buy two or more items. Once the user has made the appropriate
selection, the candy machine must act accordingly. If the user has opted to buy a
product and that product is available, the candy machine should show the cost of the

Programming Example: Candy Machine | 653

product and ask the user to deposit the money. If the amount deposited is at least the
cost of the item, the candy machine should sell the item and display an appropriate
message.

This discussion translates into the following algorithm:

1. Show the selection to the customer.

2. Get the selection.

3. If the selection is valid and the dispenser corresponding to the
selection is not empty, sell the product.

We divide this program into three functions: showSelection, sellProduct, and
main.

showSelection This function displays the information necessary to help the user select and buy a
product. This definition of the function showSelection is:

void showSelection()
{

cout << "*** Welcome to Shelly's Candy Shop ***" << endl;
cout << "To select an item, enter " << endl;
cout << "1 for Candy" << endl;
cout << "2 for Chips" << endl;
cout << "3 for Gum" << endl;
cout << "4 for Cookies" << endl;
cout << "9 to exit" << endl;

}//end showSelection

sellProduct This function attempts to sell the product selected by the customer. Therefore, it
must have access to the dispenser holding the product. The first thing that this
function does is check whether the dispenser holding the product is empty. If the
dispenser is empty, the function informs the customer that this product is sold out. If
the dispenser is not empty, it tells the user to deposit the necessary amount to buy the
product.

If the user does not deposit enough money to buy the product, sellProduct tells the user
how much additional money must be deposited. If the user fails to deposit enough money
in two tries to buy the product, the function simply returns the money. (Programming
Exercise 9, at the end of this chapter, asks you to revise the definition of the method
sellProduct so that it keeps asking the user to enter the additional amount as long as
the user has not entered enough money to buy the product.) If the amount
deposited by the user is sufficient, it accepts the money and sells the product.
Selling the product means to decrement the number of items in the dispenser
by 1 and to update the money in the cash register by adding the cost of
the product. (Because this program does not return the extra money

654 | Chapter 11: Classes and Data Abstraction

1
1

deposited by the customer, the cash register is updated by adding the money
entered by the user.)

From this discussion, it is clear that the function sellProduct must have access to
the dispenser holding the product (to decrement the number of items in the dispenser
by 1 and to show the cost of the item) as well as the cash register (to update the cash).
Therefore, this function has two parameters: one corresponding to the dispenser and
the other corresponding to the cash register. Furthermore, both parameters must be
referenced.

In pseudocode, the algorithm for this function is:

1. If the dispenser is not empty,

a. Show and prompt the customer to enter the cost of the item.

b. Get the amount entered by the customer.

c. If the amount entered by the customer is less than the cost of the
product,

i. Show and prompt the customer to enter the additional
amount.

ii. Calculate the total amount entered by the customer.

d. If the amount entered by the customer is at least the cost of the
product,

i. Update the amount in the cash register.

ii. Sell the product—that is, decrement the number of items
in the dispenser by 1.

iii. Display an appropriate message.

e. If the amount entered by the user is less than the cost of the
item, return the amount.

2. If the dispenser is empty, tell the user that this product is sold out.

This definition of the function sellProduct is:

void sellProduct(dispenserType& product,
cashRegister& pCounter)

{
int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not
//empty

{
cout << "Please deposit " << product.getCost()

<< " cents" << endl;
cin >> amount;

Programming Example: Candy Machine | 655

if (amount < product.getCost())
{

cout << "Please deposit another "
<< product.getCost()- amount
<< " cents" << endl;

cin >> amount2;
amount = amount + amount2;

}

if (amount >= product.getCost())
{

pCounter.acceptAmount(amount);
product.makeSale();
cout << "Collect your item at the bottom and "

<< "enjoy." << endl;
}
else

cout << "The amount is not enough. "
<< "Collect what you deposited." << endl;

cout << "*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< endl << endl;

}
else

cout << "Sorry, this item is sold out." << endl;
}//end sellProduct

Now that we have described the functions showSelection and sellProduct, the
function main is described next.

main The algorithm for the function main is as follows:

1. Create the cash register—that is, declare an object of type
cashRegister.

2. Create four dispensers—that is, declare four objects of type
dispenserType and initialize these objects. For example, the statement:

dispenserType candy(100, 50);

creates a dispenser object, candy, to hold the candies. The number of items
in the dispenser is 100, and the cost of an item is 50 cents.

3. Declare additional variables as necessary.

4. Show the selection; call the function showSelection.

5. Get the selection.

6. While not done (a selection of 9 exits the program),

a. Sell the product; call the function sellProduct.

b. Show the selection; call the function showSelection.

c. Get the selection.

656 | Chapter 11: Classes and Data Abstraction

1
1

The definition of the function main is as follows:

int main()
{

cashRegister counter;
dispenserType candy(100, 50);
dispenserType chips(100, 65);
dispenserType gum(75, 45);
dispenserType cookies(100, 85);

int choice; //variable to hold the selection

showSelection();
cin >> choice;

while (choice != 9)
{

switch (choice)
{
case 1:

sellProduct(candy, counter);
break;

case 2:
sellProduct(chips, counter);
break;

case 3:
sellProduct(gum, counter);
break;

case 4:
sellProduct(cookies, counter);
break;

default :
cout << "Invalid selection." << endl;

}//end switch

showSelection();
cin >> choice;

}//end while

return 0;

}//end main

COMPLETE PROGRAM LISTING

In the previous sections, we designed the classes to implement cash registers and
dispensers to implement a candy machine. In this section, for the sake of complete-
ness, we give complete definitions of the classes, the implementation file, and the user
program to implement a candy machine.

Programming Example: Candy Machine | 657

//**
// Author: D.S. Malik
//
// class cashRegister
// This class specifies the members to implement a cash
// register.
//**

class cashRegister
{
public:

int getCurrentBalance() const;
//Function to show the current amount in the cash
//register.
//Postcondition: The value of cashOnHand is returned.

void acceptAmount(int amountIn);
//Function to receive the amount deposited by
//the customer and update the amount in the register.
//Postcondition: cashOnHand = cashOnHand + amountIn;

cashRegister(int cashIn = 500);
//Constructor
//Sets the cash in the register to a specific amount.
//Postcondition: cashOnHand = cashIn;
// If no value is specified when the
// object is declared, the default value
// assigned to cashOnHand is 500.

private:
int cashOnHand; //variable to store the cash

//in the register
};

//**
// Author: D.S. Malik
//
// class dispenserType
// This class specifies the members to implement a dispenser.
//**

class dispenserType
{
public:

int getNoOfItems() const;
//Function to show the number of items in the machine.
//Postcondition: The value of numberOfItems is returned.

int getCost() const;
//Function to show the cost of the item.
//Postcondition: The value of cost is returned.

void makeSale();
//Function to reduce the number of items by 1.
//Postcondition: numberOfItems--;

658 | Chapter 11: Classes and Data Abstraction

1
1

dispenserType(int setNoOfItems = 50, int setCost = 50);
//Constructor
//Sets the cost and number of items in the dispenser
//to the values specified by the user.
//Postcondition: numberOfItems = setNoOfItems;
// cost = setCost;
// If no value is specified for a
// parameter, then its default value is
// assigned to the corresponding member
// variable.

private:
int numberOfItems; //variable to store the number of

//items in the dispenser
int cost; //variable to store the cost of an item

};

//**
// Author: D.S. Malik
//
// Implementation file candyMachineImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the classes cashRegister and
// dispenserType.
//**

#include <iostream>
#include "candyMachine.h"

using namespace std;

int cashRegister::getCurrentBalance() const
{

return cashOnHand;
}

void cashRegister::acceptAmount(int amountIn)
{

cashOnHand = cashOnHand + amountIn;
}

cashRegister::cashRegister(int cashIn)
{

if (cashIn >= 0)
cashOnHand = cashIn;

else
cashOnHand = 500;

}

int dispenserType::getNoOfItems() const
{

return numberOfItems;
}

Programming Example: Candy Machine | 659

int dispenserType::getCost() const
{

return cost;
}

void dispenserType::makeSale()
{

numberOfItems--;
}

dispenserType::dispenserType(int setNoOfItems, int setCost)
{

if (setNoOfItems >= 0)
numberOfItems = setNoOfItems;

else
numberOfItems = 50;

if (setCost >= 0)
cost = setCost;

else
cost = 50;

}

Main

Program

//***
// Author: D.S. Malik
//
// This program uses the classes cashRegister and
// dispenserType to implement a candy machine.
// **

#include <iostream>
#include "candyMachine.h"

using namespace std;

void showSelection();
void sellProduct(dispenserType& product,

cashRegister& pCounter);

int main()
{

cashRegister counter;
dispenserType candy(100, 50);
dispenserType chips(100, 65);
dispenserType gum(75, 45);
dispenserType cookies(100, 85);

int choice; //variable to hold the selection

showSelection();
cin >> choice;

while (choice != 9)
{

switch (choice)

660 | Chapter 11: Classes and Data Abstraction

1
1

{
case 1:

sellProduct(candy, counter);
break;

case 2:
sellProduct(chips, counter);
break;

case 3:
sellProduct(gum, counter);
break;

case 4:
sellProduct(cookies, counter);
break;

default:
cout << "Invalid selection." << endl;

}//end switch
showSelection();
cin >> choice;

}//end while

return 0;
}//end main

void showSelection()
{

cout << "*** Welcome to Shelly's Candy Shop ***" << endl;
cout << "To select an item, enter " << endl;
cout << "1 for Candy" << endl;
cout << "2 for Chips" << endl;
cout << "3 for Gum" << endl;
cout << "4 for Cookies" << endl;
cout << "9 to exit" << endl;

}//end showSelection

void sellProduct(dispenserType& product,
cashRegister& pCounter)

{
int amount; //variable to hold the amount entered
int amount2; //variable to hold the extra amount needed

if (product.getNoOfItems() > 0) //if the dispenser is not
//empty

{
cout << "Please deposit " << product.getCost()

<< " cents" << endl;
cin >> amount;

if (amount < product.getCost())
{

cout << "Please deposit another "
<< product.getCost()- amount
<< " cents" << endl;

cin >> amount2;
amount = amount + amount2;

}

Programming Example: Candy Machine | 661

if (amount >= product.getCost())
{

pCounter.acceptAmount(amount);
product.makeSale();
cout << "Collect your item at the bottom and "

<< "enjoy." << endl;
}
else

cout << "The amount is not enough. "
<< "Collect what you deposited." << endl;

cout << "*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*"
<< endl << endl;

}
else

cout << "Sorry, this item is sold out." << endl;
}//end sellProduct

Sample Run: In this sample run, the user input is shaded.

*** Welcome to Shelly's Candy Shop ***
To select an item, enter
1 for Candy
2 for Chips
3 for Gum
4 for Cookies
9 to exit
1
Please deposit 50 cents
50
Collect your item at the bottom and enjoy.
--*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

*** Welcome to Shelly's Candy Shop ***
To select an item, enter
1 for Candy
2 for Chips
3 for Gum
4 for Cookies
9 to exit
9

We placed the definitions of the classes cashRegister and
dispenserType in the same header file candyMachine.h. However, you
can also place the definitions of these classes in separate header files and include
those header files in the files that use these classes, such as the implementation
file of these classes and the file that contains the main program. Similarly, you
can also create separate implementation files for these classes. The Web site
accompanying this book contains these header and implementation files.

662 | Chapter 11: Classes and Data Abstraction

QUICK REVIEW

1. A class is a collection of a fixed number of components.

2. Components of a class are called the members of the class.

3. Members of a class are accessed by name.

4. In C++, class is a reserved word.

5. Members of a class are classified into one of three categories: private,
protected, and public.

6. The private members of a class are not accessible outside of the class.

7. The public members of a class are accessible outside of the class.

8. By default, all members of a class are private.

9. The public members are declared using the member access specifier
public and the colon, :.

10. The private members are declared using the member access specifier
private and the colon, :.

11. A member of a class can be a function or a variable.

12. If any member of a class is a function, you usually use the function
prototype to declare it.

13. If any member of a class is a variable, it is declared like any other variable.

14. In the definition of a class, you cannot initialize a variable when you declare it.

15. In the Unified Modeling Language (UML) diagram of a class, the top box
contains the name of the class. The middle box contains the member
variables and their data types. The last box contains the member function
name, parameter list, and the return type of the function. A + (plus) sign in
front of a member indicates that this member is a public member. A -
(minus) sign preceding a member indicates that this is a private member.
The symbol # before the member name indicates that the member is a
protected member.

16. In C++, a class is a definition. No memory is allocated for the class
itself; memory is allocated for the class variables when you declare them.

17. In C++, class variables are called class objects or class instances or, simply,
objects.

18. A class member is accessed using the class variable name, followed by the
dot operator (.), followed by the member name.

19. The only built-in operations on classes are the assignment and member selection.

20. As parameters to functions, classes can be passed either by value or by reference.

21. A function can return a value of type class.

22. Any program (or software) that uses a class is called a client of the class.

1
1

Quick Review | 663

23. A member function of a class that only accesses (that is, does not modify)
the value(s) of the member variable(s) is called an accessor function.

24. A member function of a class that modifies the value(s) of the member
variable(s) is called a mutator function.

25. A member function of a class is called a constant function if its heading
contains the reserved word const at the end. Moreover, a constant
member function of a class cannot modify the member variables of the class.

26. A constant member function of a class can only call the other constant
member functions of the class.

27. Constructors guarantee that the member variables are initialized when an
object is declared.

28. The name of a constructor is the same as the name of the class.

29. A class can have more than one constructor.

30. A constructor without parameters is called the default constructor.

31. Constructors automatically execute when a class object enters its scope.

32. Destructors automatically execute when a class object goes out of scope.

33. A class can have only one destructor, and the destructor has no parameters.

34. The name of a destructor is the tilde (~), followed by the class name (no
spaces in between).

35. Constructors and destructors are functions without any type; that is, they
are neither value-returning nor void. As a result, they cannot be called like
other functions.

36. A data type that separates the logical properties from the implementation
details is called an abstract data type (ADT).

37. Classes were specifically designed in C++ to handle ADTs.

38. To implement an ADT, you must represent the data and write related
algorithms to implement the operations.

39. A precondition is a statement specifying the condition(s) that must be true
before the function is called.

40. A postcondition is a statement specifying what is true after the function call
is completed.

41. A public static member, function or variable, of a class can be accessed
using the class name and the scope resolution operator.

42. For each static variable of a class, C++ allocates only one memory
space. All objects of the class refer to the same memory space.

43. static member variables of a class exist even when no object of the
class type exists.

44. Non-static member variables of a class are called the instance variables of
the class.

664 | Chapter 11: Classes and Data Abstraction

EXERCISES

1. Mark the following statements as true or false.

a. The member variables of a class must be of the same type.

b. The member functions of a class must be public.

c. A class can have more than one constructor.

d. A class can have more than one destructor.

e. Both constructors and destructors can have parameters.

2. Find the syntax errors in the definitions of the following classes.

a. class AA
{
public:

void print()const;
int sum();
AA();
int AA(int, int);

private:
int x;
int y;

};

b. class BB
{

int one;
int two;

public:
bool equal() const;
print();
BB(int, int);

}

c. class CC
{
public;

void set(int, int);
void print()const;
CC();
CC(int, int);
bool CC(int, int);

private:
int u;
int v;

};

3. Consider the following declarations:

class xClass
{
public:

void func();
void print() const ;

1
1

Exercises | 665

xClass ();
xClass (int, double);

private:
int u;
double w;

};

and assume that the following statement is in a user program:

xClass x;

a. How many members does class xClass have?

b. How many private members does class xClass have?

c. How many constructors does class xClass have?

d. Write the definition of the member function func so that u is set to 10
and w is set to 15.3.

e. Write the definition of the member function print that prints the
contents of u and w.

f. Write the definition of the default constructor of the class xClass so
that the private member variables are initialized to 0.

g. Write a C++ statement that prints the values of the member variables of
the object x.

h. Write a C++ statement that declares an object t of type xClass and
initializes the member variables of t to 20 and 35.0, respectively.

4. Consider the definition of the following class:

class CC
{
public :

CC(); //Line 1
CC(int); //Line 2
CC(int, int); //Line 3
CC(double, int); //Line 4

.

.

.
private:

int u;
double v;

};

a. Give the line number containing the constructor that is executed in
each of the following declarations.

i. CC one;

ii. CC two(5, 6);

iii. CC three(3.5, 8);

666 | Chapter 11: Classes and Data Abstraction

1
1

b. Write the definition of the constructor in Line 1 so that the private
member variables are initialized to 0.

c. Write the definition of the constructor in Line 2 so that the private
member variable u is initialized according to the value of the parameter,
and the private member variable v is initialized to 0.

d. Write the definition of the constructors in Lines 3 and 4 so that the private
member variables are initialized according to the values of the parameters.

5. Consider the definition of the following class:

class testClass
{
public:

int sum();
//Returns the sum of the private member variables

void print() const;
//Prints the values of the private member variables

testClass();
//Default constructor
//Initializes the private member variables to 0

testClass(int a, int b);
//Constructors with parameters
//initializes the private member variables to the values
//specified by the parameters
//Postcondition: x = a; y = b;

private:
int x;
int y;

};

a. Write the definitions of the member functions as described in the
definition of the class testClass.

b. Write a test program to test the various operations of the class testClass.

6. Given the definition of the class clockType with constructors (as described in
this chapter), what is the output of the following C++ code?

clockType clock1;
clockType clock2(23, 13, 75);

clock1.printTime();
cout << endl;
clock2.printTime();
cout << endl;

clock1.setTime(6, 59, 39);
clock1.printTime();
cout << endl;

clock1.incrementMinutes();
clock1.printTime();
cout << endl;

Exercises | 667

clock1.setTime(0, 13, 0);

if (clock1.equalTime(clock2))
cout << "Clock1 time is the same as clock2 time."

<< endl;
else

cout << "The two times are different." << endl;

7. Assume the definition of the class personType as given in this chapter.

a. Write a C++ statement that declares student to be a personType
object, and initialize its first name to "Buddy" and last name to
"Arora".

b. Write a C++ statement that outputs the data stored in the object
student.

c. Write C++ statements that change the first name of student to
"Susan" and the last name to "Gilbert".

8. Explain why you would need both public and private members in a class.

9. What is a constructor? Why would you include a constructor in a class.?

10. Which of the following characters appears before a destructor’s name?

a. # b. ! c. ~ d. $

11. What is a destructor and what is its purpose?

12. Write the definition of a class that has the following properties:

a. The name of the class is secretType.

b. The class secretType has four member variables: name of type
string, age and weight of type int, and height of type double.

c. The class secretType has the following member functions. (Make
each accessor function constant.)

print—outputs the data stored in the member variables with the
appropriate titles

setName—function to set the name

setAge—function to set the age

setWeight—function to set the weight

setHeight—function to set the height

getName—value-returning function to return the name

getAge—value-returning function to return the age

getWeight—value-returning function to return the weight

getHeight—value-returning function to return the height

constructor—with default parameters: The default value of name is the
empty string " ", and the default values of age, weight, and height are 0.

d. Write the definition of the member functions of the class secretType,
as described in Part c.

668 | Chapter 11: Classes and Data Abstraction

13. Consider the following definition of the class myClass:

class myClass
{
public:

void setX(int a);
//Function to set the value of x.
//Postcondition: x = a;

void printX() const;
//Function to output x.

static void printCount();
//Function to output count.

static void incrementCount();
//Function to increment count.
//Postcondition: count++;

myClass(int a = 0);
//constructor with default parameters
//Postcondition x = a;
//If no value is specified for a, x = 0;

private:
int x;
static int count;

};

a. Write a C++ statement that initializes the member variable count to
0.

b. Write a C++ statement that increments the value of count by 1.

c. Write a C++ statement that outputs the value of count.

d. Write the definitions of the functions of the class myClass as
described in its definition.

e. Write a C++ statement that declares myObject1 to be a myClass
object and initializes its member variable x to 5.

f. Write a C++ statement that declares myObject2 to be a myClass
object and initializes its member variable x to 7.

g. Which of the following statements are valid? (Assume that myObject1
and myObject2 are as declared in Parts e and f.)

myObject1.printCount(); //Line 1
myObject1.printX(); //Line 2
myClass.printCount(); //Line 3
myClass.printX(); //Line 4
myClass::count++; //Line 5

h. Assume that myObject1 and myObject2 are as declared in Parts e and f.
What is the output of the following C++ code?

myObject1.printX();
cout << endl;
myObject1.incrementCount();

1
1

Exercises | 669

myClass::incrementCount();
myObject1.printCount();
cout << endl;
myObject2.printCount();
cout << endl;
myObject2.printX();
cout << endl;
myObject1.setX(14);
myObject1.incrementCount();
myObject1.printX();
cout << endl;
myObject1.printCount();
cout << endl;
myObject2.printCount();
cout << endl;

14. In Example 11-8, we designed the class die. Using this class, declare an
array named rolls, of 100 components of type die. Write C++ state-
ments to roll each die of the array rolls, find and output the heighest
number rolled and the number of times this number was rolled, and find
and output the number that is rolled the maximum number of times
together with its count. Also write a program to test your statements.

PROGRAMMING EXERCISES

1. Write a program that converts a number entered in Roman numerals to
decimal. Your program should consist of a class, say, romanType. An
object of type romanType should do the following:

a. Store the number as a Roman numeral.

b. Convert and store the number into decimal form.

c. Print the number as a Roman numeral or decimal number as requested
by the user.

The decimal values of the Roman numerals are:

M 1000

D 500

C 100

L 50

X 10

V 5

I 1

d. Test your program using the following Roman numerals: MCXIV,
CCCLIX, MDCLXVI.

670 | Chapter 11: Classes and Data Abstraction

2. Design and implement a class dayType that implements the day of the
week in a program. The class dayType should store the day, such as Sun
for Sunday. The program should be able to perform the following operations
on an object of type dayType:

a. Set the day.

b. Print the day.

c. Return the day.

d. Return the next day.

e. Return the previous day.

f. Calculate and return the day by adding certain days to the current day.
For example, if the current day is Monday and we add 4 days, the day to
be returned is Friday. Similarly, if today is Tuesday and we add 13 days,
the day to be returned is Monday.

g. Add the appropriate constructors.

3. Write the definitions of the functions to implement the operations for the
class dayType as defined in Programming Exercise 2. Also, write a
program to test various operations on this class.

4. This chapter defines the class clockType to implement time in a pro-
gram. Add functions to this class so that a program that uses this class can set
only the hours, minutes, or seconds and retrieve only the hours, minutes, or
seconds. Also write a program to test your class.

5. Example 11-9 defined a class personType to store the name of a person.
The member functions that we included merely print the name and set the
name of a person. Redefine the class personType so that, in addition to
what the existing class does, you can:

a. Set the first name only.

b. Set the last name only.

c. Store and set the middle name.

d. Check whether a given first name is the same as the first name of this person.

e. Check whether a given last name is the same as the last name of this person.

Write the definitions of the member functions to implement the operations
for this class. Also, write a program to test various operations on this class.

6. a. Some of the characteristics of a book are the title, author(s), publisher,
ISBN, price, and year of publication. Design a class bookType that
defines the book as an ADT.

i. Each object of the class bookType can hold the following
information about a book: title, up to four authors, publisher,
ISBN, price, and number of copies in stock. To keep track of
the number of authors, add another member variable.

1
1

Programming Exercises | 671

ii. Include the member functions to perform the various operations on
objects of type bookType. For example, the usual operations that
can be performed on the title are to show the title, set the title, and
check whether a title is the same as the actual title of the book.
Similarly, the typical operations that can be performed on the
number of copies in stock are to show the number of copies in stock,
set the number of copies in stock, update the number of copies in
stock, and return the number of copies in stock. Add similar opera-
tions for the publisher, ISBN, book price, and authors. Add the
appropriate constructors and a destructor (if one is needed).

b. Write the definitions of the member functions of the class bookType.

c. Write a program that uses the class bookType and tests various
operations on the objects of the class bookType. Declare an array
of 100 components of type bookType. Some of the operations that you
should perform are to search for a book by its title, search by ISBN, and
update the number of copies of a book.

7. In this exercise, you will design a class memberType.

a. Each object of memberType can hold the name of a person, member
ID, number of books bought, and amount spent.

b. Include the member functions to perform the various operations on the
objects of memberType—for example, modify, set, and show a person’s
name. Similarly, update, modify, and show the number of books bought
and the amount spent.

c. Add the appropriate constructors.

d. Write the definitions of the member functions of memberType.

e. Write a program to test various operations of your class memberType.

8. Using the classes designed in Programming Exercises 6 and 7, write a
program to simulate a bookstore. The bookstore has two types of customers:
those who are members of the bookstore and those who buy books from the
bookstore only occasionally. Each member has to pay a $10 yearly member-
ship fee and receives a 5% discount on each book purchased.

For each member, the bookstore keeps track of the number of books
purchased and the total amount spent. For every eleventh book that a
member buys, the bookstore takes the average of the total amount of the
last 10 books purchased, applies this amount as a discount, and then resets the
total amount spent to 0.

Write a program that can process up to 1000 book titles and 500 members. Your
program should contain a menu that gives the user different choices to effectively
run the program; in other words, your program should be user driven.

9. The method sellProduct of the Candy Machine programming example
gives the user only two chances to enter enough money to buy the product.

672 | Chapter 11: Classes and Data Abstraction

Rewrite the definition of the method sellProduct so that it keeps prompt-
ing the user to enter more money as long as the user has not entered enough
money to buy the product. Also, write a program to test your method.

10. Write the definition of a class, swimmingPool, to implement the
properties of a swimming pool. Your class should have the instance
variables to store the length (in feet), width (in feet), depth (in feet), the
rate (in gallons per minute) at which the water is filling the pool, and the
rate (in gallons per minute) at which the water is draining from the pool.
Add appropriate constructors to initialize the instance variables. Also add
member functions to do the following: determine the amount of water
needed to fill an empty or partially filled pool; determine the time needed
to completely or partially fill or empty the pool; add or drain water for a
specific amount of time.

11. (Tic-Tac-Toe) Write a program that allows two players to play the tic-tac-toe
game. Your program must contain the class ticTacToe to implement a
ticTacToe object. Include a 3-by-3 two-dimensional array, as a private
member variable, to create the board. If needed, include additional member
variables. Some of the operations on a ticTacToe object are printing the
current board, getting a move, checking if a move is valid, and determining the
winner after each move. Add additional operations as needed.

12. The equation of a line in standard form is ax + by ¼ c, wherein both a and
b cannot be zero, and a, b, and c are real numbers. If b 6¼ 0, then –a/b is the
slope of the line. If a ¼ 0, then it is a horizontal line, and if b ¼ 0, then it is
a vertical line. The slope of a vertical line is undefined. Two lines are
parallel if they have the same slope or both are vertical lines. Two lines are
perpendicular if either one of the lines is horizontal and the other is vertical
or the product of their slopes is –1. Design the class lineType to store a
line. To store a line, you need to store the values of a (coefficient of x), b
(coefficient of y), and c. Your class must contain the following operations.

a. If a line is nonvertical, then determine its slope.

b. Determine if two lines are equal. (Two lines a1x + b1y ¼ c1 and a2x +
b2y ¼ c2 are equal if either a1 ¼ a2, b1 ¼ b2, and c1 ¼ c2 or a1 ¼ ka2,

b1 ¼ kb2, and c1 ¼ kc2 for some real number k.)
c. Determine if two lines are parallel.

d. Determine if two lines are perpendicular.

e. If two lines are not parallel, then find the point of intersection.

Add appropriate constructors to initialize variables of lineType. Also write
a program to test your class.

1
1

Programming Exercises | 673

13. Typically, everyone saves money periodically for retirement, buying a
house, or for some other purposes. If you are saving money for retirement,
then the money you put in a retirement fund is tax sheltered, and the
employer also makes some contribution into your retirement fund. In this
exercise, for simplicity, we assume that the money is put into an account that
pays a fixed interest rate, and money is deposited into the account at the end
of the specified period. Suppose that a person deposits R dollars m times a
year into an account that pays r % interest compounded m times a year for t
years. Then the total accumulated at the end of t years is given by

R 1þr=mð Þ
mt�1

r=m

h i
. For example, suppose that you deposit $500 at the end of

each month into an account that pays 4.8% interest per year compounded
monthly for 25 years. Then the total money accumulated into the account is
500[(1 + 0.048/12)300 – 1]/(0.048/12) ¼ $289,022.42.
On the other hand, suppose that you want to accumulate S dollars in t years
and would like to know how much money, m times a year, you should
deposit into an account that pays r% interest compounded m times a year.

The periodic payment is given by the formula
sðr=mÞ

ð1þr=mÞmt�1.

Design a class that uses the above formulas to determine the total accumulated
into an account and the periodic deposits to accumulate a specifc amount.
Your class should have instance variables to store the periodic deposit, the
value of m, the interest rate, and the number of years the money will be
saved. Add appropriate constructors to initialize instance variable, functions to
set the values of the instance variables, functions to retrieve the values of the
instance variables, and functions to do the necessary calculations and output
results.

674 | Chapter 11: Classes and Data Abstraction

INHERITANCE AND
COMPOSITION

IN THIS CHAPTER , YOU WILL :

. Learn about inheritance

. Learn about derived and base classes

. Explore how to redefine the member functions of a base class

. Examine how the constructors of base and derived classes work

. Learn how to construct the header file of a derived class

. Explore three types of inheritance: public, protected, and private

. Learn about composition (aggregation)

. Become familiar with the three basic principles of object-oriented design

12C H A P T E R

Chapter 11 introduced classes, abstract data types (ADT), and ways to implement ADT in
C++. By using classes, you can combine data and operations in a single unit. An object,
therefore, becomes a self-contained entity. Operations can directly access the data, but the
internal state of an object cannot be manipulated directly.

In addition to implementing ADT, classes have other features. For instance, classes can
create new classes from existing classes. This important feature encourages code reuse. In
C++, you can relate two or more classes in more than one way. Two common ways to
relate classes in a meaningful way are:

• Inheritance (‘‘is-a’’ relationship)

• Composition (aggregation) (‘‘has-a’’ relationship)

Inheritance
Suppose that you want to design a class, partTimeEmployee, to implement and
process the characteristics of a part-time employee. The main features associated with
a part-time employee are the name, pay rate, and number of hours worked. In
Example 11-9 (in Chapter 11), we designed a class to implement a person’s name.
Every part-time employee is a person. Therefore, rather than design the class
partTimeEmployee from scratch, we want to be able to extend the definition of
the class personType (from Example 11-9) by adding additional members (data
and/or functions).

Of course, we do not want to make the necessary changes directly to the class
personType—that is, edit the class personType and add and/or delete members.
In fact, we want to create the class partTimeEmployee without making any
physical changes to the class personType by adding only the members that are
necessary. For example, because the class personType already has members to store
the first name and last name, we will not include any such members in the class
partTimeEmployee. In fact, these member variables will be inherited from the
class personType. (We will design such a class in Example 12-3.)

In Chapter 11, we extensively studied and designed the class clockType to implement
the time of day in a program. The class clockType has three member variables to store
the hours, minutes, and seconds. Certain applications, in addition to the hours, minutes, and
seconds, might also require us to store the time zone. In this case, we would like to extend
the definition of the class clockType and create a class, extClockType, to accom-
modate this new information. That is, we want to derive the class extClockType by
adding a member variable—say, timeZone—and the necessary member functions to
manipulate the time (see Programming Exercise 1 at the end of this chapter). In C++, the
mechanism that allows us to accomplish this task is the principle of inheritance. Inheritance is
an ‘‘is-a’’ relationship; for instance, ‘‘every employee is a person.’’

Inheritance lets us create new classes from existing classes. The new classes that we create
from the existing classes are called the derived classes; the existing classes are called the

676 | Chapter 12: Inheritance and Composition

base classes. The derived classes inherit the properties of the base classes. So rather than
create completely new classes from scratch, we can take advantage of inheritance and
reduce software complexity.

Each derived class, in turn, becomes a base class for a future derived class. Inheritance
can be either single inheritance or multiple inheritance. In single inheritance, the
derived class is derived from a single base class; in multiple inheritance, the derived
class is derived from more than one base class. This chapter concentrates on single
inheritance.

Inheritance can be viewed as a tree-like, or hierarchical, structure wherein a base class is
shown with its derived classes. Consider the tree diagram shown in Figure 12-1.

In this diagram, shape is the base class. The classes circle and rectangle are
derived from shape, and the class square is derived from rectangle. Every
circle and every rectangle is a shape. Every square is a rectangle.

The general syntax of a derived class is:

class className: memberAccessSpecifier baseClassName
{

member list
};

in which memberAccessSpecifier is public, protected, or private. When no
memberAccessSpecifier is specified, it is assumed to be a private inheritance. (We
discuss protected inheritance later in this chapter.)

1
2

circle rectangle

square

shape

FIGURE 12-1 Inheritance hierarchy

Inheritance | 677

EXAMPLE 12-1

Suppose that we have defined a class called shape. The following statements specify that
the class circle is derived from shape, and it is a public inheritance.

class circle: public shape
{

.

.

.
};

On the other hand, consider the following definition of the class circle:

class circle: private shape
{

.

.

.
};

This is a private inheritance. In this definition, the public members of shape
become private members of the class circle. So any object of type circle
cannot directly access these members. The previous definition of circle is equiva-
lent to:

class circle: shape
{

.

.

.
};

That is, if we do not use either the memberAccessSpecifier public or private,
the public members of a base class are inherited as private members.

The following facts about the base and the derived classes should be kept in mind.

1. The private members of a base class are private to the base class;
hence, the members of the derived class cannot directly access them. In
other words, when you write the definitions of the member functions of
the derived class, you cannot directly access the private members of
the base class.

2. The public members of a base class can be inherited either as public
members or as private members by the derived class. That is, the
public members of the base class can become either public or
private members of the derived class.

3. The derived class can include additional members—data and/or functions.

678 | Chapter 12: Inheritance and Composition

4. The derived class can redefine the public member functions of the base
class. That is, in the derived class, you can have a member function with
the same name, number, and types of parameters as a function in the
base class. However, this redefinition applies only to the objects of the
derived class, not to the objects of the base class.

5. All member variables of the base class are also member variables of
the derived class. Similarly, the member functions of the base class
(unless redefined) are also member functions of the derived class.
(Remember Rule 1 when accessing a member of the base class in the
derived class.)

The next sections describe two important issues related to inheritance. The first issue is
the redefinition of the member functions of the base class in the derived class. While
discussing this issue, we will also address how to access the private (data) members of
the base class in the derived class. The second key inheritance issue is related to the
constructor. The constructor of a derived class cannot directly access the private
member variables of the base class. Thus, we need to ensure that the private member
variables that are inherited from the base class are initialized when a constructor of the
derived class executes.

Redefining (Overriding) Member Functions of the Base Class
Suppose that a class derivedClass is derived from the class baseClass.
Further assume that both derivedClass and baseClass have some member
variables. It then follows that the member variables of the class derivedClass
are its own member variables, together with the member variables of baseClass.
Suppose that baseClass contains a function, print, that prints the values of the
member variables of baseClass. Now derivedClass contains member variables
in addition to the member variables inherited from baseClass. Suppose that
you want to include a function that prints the values of the member variables of
derivedClass. You can give any name to this function. However, in the class
derivedClass, you can also name this function as print (the same name used by
baseClass). This is called redefining (or overriding) the member function of the
base class. Next, we illustrate how to redefine the member functions of a base class
with the help of an example.

To redefine a public member function of a base class in the derived class, the
corresponding function in the derived class must have the same name, number, and

types of parameters. In other words, the name of the function being redefined in the

derived class must have the same name and the same set of parameters. If the

corresponding functions in the base class and the derived class have the same name but

different sets of parameters, then this is function overloading in the derived class,

which is also allowed.

1
2

Inheritance | 679

Consider the definition of the following class:

class rectangleType
{
public:

void setDimension(double l, double w);
//Function to set the length and width of the rectangle.
//Postcondition: length = l; width = w;

double getLength() const;
//Function to return the length of the rectangle.
//Postcondition: The value of length is returned.

double getWidth() const;
//Function to return the width of the rectangle.
//Postcondition: The value of width is returned.

double area() const;
//Function to return the area of the rectangle.
//Postcondition: The area of the rectangle is
// calculated and returned.

double perimeter() const;
//Function to return the perimeter of the rectangle.
//Postcondition: The perimeter of the rectangle is
// calculated and returned.

void print() const;
//Function to output the length and width of
//the rectangle.

rectangleType();
//Default constructor
//Postcondition: length = 0; width = 0;

rectangleType(double l, double w);
//Constructor with parameters
//Postcondition: length = l; width = w;

private:
double length;
double width;

};

Figure 12-2 shows the UML class diagram of the class rectangleType.

680 | Chapter 12: Inheritance and Composition

The class rectangleType has 10 members.

Suppose that the definitions of the member functions of the class rectangleType are
as follows:

void rectangleType::setDimension(double l, double w)
{

if (l >= 0)
length = l;

else
length = 0;

if (w >= 0)
width = w;

else
width = 0;

}

double rectangleType::getLength() const
{

return length;
}

double rectangleType::getWidth() const
{

return width;
}

double rectangleType::area() const
{

return length * width;
}

1
2

rectangleType

–length: double
–width: double

+setDimension(double, double): void
+getLength() const: double
+getWidth() const: double
+area() const: double
+perimeter() const: double
+print() const: void
+rectangleType()
+rectangleType(double, double)

FIGURE 12-2 UML class diagram of the class rectangleType

Inheritance | 681

double rectangleType::perimeter() const
{

return 2 * (length + width);
}

void rectangleType::print() const
{

cout << "Length = " << length
<< "; Width = " << width;

}

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

rectangleType::rectangleType()
{

length = 0;
width = 0;

}

Now consider the definition of the following class boxType, derived from the
class rectangleType:

class boxType: public rectangleType
{
public:

void setDimension(double l, double w, double h);
//Function to set the length, width, and height
//of the box.
//Postcondition: length = l; width = w; height = h;

double getHeight() const;
//Function to return the height of the box.
//Postcondition: The value of height is returned.

double area() const;
//Function to return the surface area of the box.
//Postcondition: The surface area of the box is
// calculated and returned.

double volume() const;
//Function to return the volume of the box.
//Postcondition: The volume of the box is
// calculated and returned.

void print() const;
//Function to output the length, width, and height of a box.

boxType();
//Default constructor
//Postcondition: length = 0; width = 0; height = 0;

682 | Chapter 12: Inheritance and Composition

boxType(double l, double w, double h);
//Constructor with parameters
//Postcondition: length = l; width = w; height = h;

private:
double height;

};

Figure 12-3 shows the UML class diagram of the class boxType and the inheritance
hierarchy.

From the definition of the class boxType, it is clear that the class boxType
is derived from the class rectangleType, and it is a public inheritance. Therefore,
all public members of the class rectangleType are public members of the
class boxType. The class boxType also overrides (redefines) the functions print
and area.

In general, while writing the definitions of the member functions of a derived class to
specify a call to a public member function of the base class, we do the following:

• If the derived class overrides a public member function of the base
class, then to specify a call to that public member function of the base
class, you use the name of the base class, followed by the scope resolution
operator, ::, followed by the function name with the appropriate para-
meter list.

• If the derived class does not override a public member function of the
base class, you may specify a call to that public member function by
using the name of the function and the appropriate parameter list. (See
the following note for member functions of the base class that are over-
loaded in the derived class.)

1
2

boxType

rectangleType

boxType

–height: double

+setDimension(double, double, double): void
+getHeight() const: double
+area() const: double
+volume() const: double
+print() const: void
+boxType()
+boxType(double, double, double)

FIGURE 12-3 UML class diagram of the class boxType and the inheritance hierarchy

Inheritance | 683

If a derived class overloads a public member function of the base class, then while
writing the definition of a member function of the derived class, to specify a call to

that (overloaded) member function of the base class, you might need (depending on

the compiler) to use the name of the base class, followed by the scope resolution

operator, ::, followed by the function name with the appropriate parameter list. For

example, the class boxType overloads the member function setDimension of
the class rectangleType. (See the definition of the function setDimension
[of the class boxType], given later in this section.)

Next, let us write the definition of the member function print of the class boxType.

The class boxType has three member variables: length, width, and height. The
member function print of the class boxType prints the values of these member
variables. To write the definition of the function print of the class boxType, keep in
mind the following:

• The member variables length and width are private members of
the class rectangleType, so they cannot be directly accessed in the
class boxType. Therefore, when writing the definition of the function
print of the class boxType, we cannot access length and width
directly.

• The member variables length and width of the class rectangleType
are accessible in the class boxType through the public member
functions of the class rectangleType. Therefore, when writing the
definition of the member function print of the class boxType, we first
call the member function print of the class rectangleType to print
the values of length and width. After printing the values of length and
width, we output the values of height.

To call the member function print of rectangleType in the definition of the
member function print of boxType, we must use the following statement:

rectangleType::print();

This statement ensures that we call the member function print of the base class
rectangleType, not of the class boxType.

The definition of the member function print of the class boxType is:

void boxType::print() const
{

rectangleType::print();
cout << "; Height = " << height;

}

Let us write the definitions of the remaining member functions of the class boxType.

684 | Chapter 12: Inheritance and Composition

1
2

The definition of the function setDimension is:

void boxType::setDimension(double l, double w, double h)
{

rectangleType::setDimension(l, w);

if (h >= 0)
height = h;

else
height = 0;

}

Notice that in the preceding definition of the function setDimension, a call to the
member function setDimension of the class rectangleType is preceded by the
name of the class and the scope resolution operator, even though the class boxType
overloads—not overrides—the function setDimension.

The definition of the function getHeight is:

double boxType::getHeight() const
{

return height;
}

The member function area of the class boxType determines the surface area of a box.
To determine the surface area of a box, we need to access the length and width of the box,
which are declared as private members of the class rectangleType. Therefore, we
use the member functions getLength and getWidth of the class rectangleType to
retrieve the length and width, respectively. Because the class boxType does not contain
any member functions that have the names getLength or getWidth, we call these
member functions of the class rectangleType without using the name of the base class.

double boxType::area() const
{

return 2 * (getLength() * getWidth()
+ getLength() * height
+ getWidth() * height);

}

The member function volume of the class boxType determines the volume of a box.
To determine the volume of a box, you multiply the length, width, and height of the
box or multiply the area of the base of the box by its height. Let us write the definition of
the member function volume by using the second alternative. To do this, you can use
the member function area of the class rectangleType to determine the area of the
base. Because the class boxType overrides the member function area, to specify a call
to the member function area of the class rectangleType, we use the name of the
base class and the scope resolution operator, as shown in the following definition:

double boxType::volume() const
{

return rectangleType::area() * height;
}

Inheritance | 685

In the next section, we discuss how to specify a call to the constructor of the base class
when writing the definition of a constructor of the derived class.

Constructors of Derived and Base Classes
A derived class can have its own private member variables, so a derived class can
explicitly include its own constructors. A constructor typically serves to initialize the
member variables. When we declare a derived class object, this object inherits the
members of the base class, but the derived class object cannot directly access the
private (data) members of the base class. The same is true for the member functions
of a derived class. That is, the member functions of a derived class cannot directly access
the private members of the base class.

As a consequence, the constructors of a derived class can (directly) initialize only the
(public data) members inherited from the base class of the derived class. Thus,
when a derived class object is declared, it must also automatically execute one of the
constructors of the base class. Because constructors cannot be called like other
functions, the execution of a derived class’s constructor must trigger the execution
of one of the base class’s constructors. This is, in fact, what happens. Furthermore, a
call to the base class’s constructor is specified in the heading of the definition of a
derived class constructor.

In the preceding section, we defined the class rectangleType and derived the
class boxType from it. Moreover, we illustrated how to override a member function
of the class rectangleType. Let us now discuss how to write the definitions of the
constructors of the class boxType.

The class rectangleType has two constructors and two member variables. The
class boxType has three member variables: length, width, and height. The
member variables length and width are inherited from the class rectangleType.

First, let us write the definition of the default constructor of the class boxType.
Recall that, if a class contains the default constructor and no values are specified when
the object is declared, the default constructor executes and initializes the object. Because
the class rectangleType contains the default constructor, when writing the defini-
tion of the default constructor of the class boxType, we do not specify any constructor
of the base class.

boxType::boxType()
{

height = 0.0;
}

Next, we discuss how to write the definitions of constructors with parameters. To trigger
the execution of a constructor (with parameters) of the base class, you specify the name of
a constructor of the base class with the parameters in the heading of the definition of the
constructor of the derived class.

686 | Chapter 12: Inheritance and Composition

Consider the following definition of the constructor with parameters of the class boxType:

boxType::boxType(double l, double w, double h)
: rectangleType(l, w)

{
if (h >= 0)

height = h;
else

height = 0;
}

In this definition, we specify the constructor of rectangleType with two parameters.
When this constructor of boxType executes, it triggers the execution of the constructor
with two parameters of type double of the class rectangleType.

Consider the following statements:

rectangleType myRectangle(5.0, 3.0); //Line 1
boxType myBox(6.0, 5.0, 4.0); //Line 2

The statement in Line 1 creates the rectangleType object myRectangle. Thus, the
object myRectangle has two member variables: length and width. The statement in
Line 2 creates the boxType object myBox. Thus, the object myBox has three member
variables: length, width, and height (see Figure 12-4).

Consider the following statements:

myRectangle.print(); //Line 3
cout << endl; //Line 4
myBox.print(); //Line 5
cout << endl; //Line 6

In the statement in Line 3, the member function print of the class rectangleType
is executed. In the statement in Line 5, the function print associated with the class
boxType is executed. Recall that, if a derived class overrides a member function of the
base class, the redefinition applies only to the objects of the derived class. Thus, the
output of the statement in Line 3 is:

Length = 5.0; Width = 3.0

1
2

3.0

5.0
myRectangle

myBox

length

width
5.0

6.0length

width

4.0height

FIGURE 12-4 Objects myRectangle and myBox

Inheritance | 687

The output of the statement in Line 5 is:

Length = 6.0; Width = 5.0; Height = 4.0

When the object myBox enters its scope, the constructors of the classes rectangleType
and boxType execute. Note that the constructors of a base class are not inherited in a derived
class. A call to a constructor of a base class is specified in the definition of a constructor of the
derived class. When a derived class constructor executes, first a constructor of the base class
executes to initialize the data members inherited from the base class, and then the constructor
of the derived class executes to initialize the data members declared by the derived class. So
first, the constructor of the class rectangleType executes to initialize the instance
variables length and width, and then the constructor of the class boxType executes to
initialize the instance variable height.

The program in Example 12-2 shows how the objects of a base class and a derived class
behave.

EXAMPLE 12-2

Consider the following C++ program:

#include <iostream>
#include <iomanip>
#include "rectangleType.h"
#include "boxType.h"

using namespace std;

int main()
{

rectangleType myRectangle1; //Line 1
rectangleType myRectangle2(8, 6); //Line 2

boxType myBox1; //Line 3
boxType myBox2(10, 7, 3); //Line 4

cout << fixed << showpoint << setprecision(2); //Line 5

cout << "Line 6: myRectangle1: "; //Line 6
myRectangle1.print(); //Line 7
cout << endl; //Line 8
cout << "Line 9: Area of myRectangle1: "

<< myRectangle1.area() << endl; //Line 9

cout << "Line 10: myRectangle2: "; //Line 10
myRectangle2.print(); //Line 11
cout << endl; //Line 12
cout << "Line 13: Area of myRectangle2: "

<< myRectangle2.area() << endl; //Line 13

688 | Chapter 12: Inheritance and Composition

1
2

cout << "Line 14: myBox1: "; //Line 14
myBox1.print(); //Line 15
cout << endl; //Line 16
cout << "Line 17: Surface Area of myBox1: "

<< myBox1.area() << endl; //Line 17
cout << "Line 18: Volume of myBox1: "

<< myBox1.volume() << endl; //Line 18

cout << "Line 19: myBox2: "; //Line 19
myBox2.print(); //Line 20
cout << endl; //Line 21
cout << "Line 22: Surface Area of myBox2: "

<< myBox2.area() << endl; //Line 22
cout << "Line 23: Volume of myBox2: "

<< myBox2.volume() << endl; //Line 23

return 0; //Line 24
}

Sample Run:

Line 6: myRectangle1: Length = 0.00; Width = 0.00
Line 9: Area of myRectangle1: 0.00
Line 10: myRectangle2: Length = 8.00; Width = 6.00
Line 13: Area of myRectangle2: 48.00
Line 14: myBox1: Length = 0.00; Width = 0.00; Height = 0.00
Line 17: Surface Area of myBox1: 0.00
Line 18: Volume of myBox1: 0.00
Line 19: myBox2: Length = 10.00; Width = 7.00; Height = 3.00
Line 22: Surface Area of myBox2: 242.00
Line 23: Volume of myBox2: 210.00

The preceding program works as follows: The statement in Line 1 creates the rectangleType
object myRectangle1 and initializes its member variables to 0. The statement in Line 2
creates the rectangleType object myRectangle2 and initializes its member variables
length and width to 8.0 and 6.0, respectively.

The statement in Line 3 creates the boxType object myBox1 and initializes its member
variables to 0. The statement in Line 4 creates the boxType object myBox2 and initializes
its member variables length, width, and height to 10.0, 7.0, and 3.0, respectively.

The statement in Line 5 sets the output of the decimal number to two decimal places in a
fixed decimal format with the decimal point and trailing zeros.

The statements in Lines 6 through 9 output the length, width, and area of myRectangle1.
Because the member variables of myRectangle1 are initialized to 0 by the default
constructor, the area of the rectangle is 0 square units. See Line 9 in the sample run.

The statements in Lines 10 through 13 output the length, width, and area of
myRectangle2. Because the member variables length and width of myRectangle2
are initialized to 8.0 and 6.0, respectively, by the constructor with parameters, the area of
this rectangle is 48.0 square units. See Line 13 in the sample run.

Inheritance | 689

The statements in Lines 14 through 18 output the length, width, height, surface area, and
volume of myBox1. Because the member variables of myBox1 are initialized to 0 by the
default constructor, the surface area of this box is 0.0 square units, and the volume is 0.0
cubic units. See Lines 17 and 18 in the sample run.

The statements in Lines 19 through 23 output the length, width, height, surface area, and
volume of myBox2. Because the member variables length, width, and height of
myBox2 are initialized to 10.0, 7.0, and 3.0, respectively, by the constructor with
parameters, the surface area of this box is 242.0 square units, and the volume is 210.0
cubic units. See Lines 22 and 23 in the sample run.

From the output of this program, it follows that the redefinition of the functions print
and area in the class boxType applies only to an object of type boxType.

(Constructors with default parameters and the inheritance hierarchy) Recall that a class can

have a constructor with default parameters. Therefore, a derived class can also have a

constructor with default parameters. For example, suppose that the definition of the

class rectangleType is as shown below. (To save space, these definitions have no
documentation.)

class rectangleType
{
public:

void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter()const;
void print() const;
rectangleType(double l = 0, double w = 0);

//Constructor with default parameters

private:
double length;
double width;

};

Suppose the definition of the constructor is:

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

690 | Chapter 12: Inheritance and Composition

Now suppose that the definition of the class boxType is:

class boxType: public rectangleType
{
public:

void setDimension(double l, double w, double h);
double getHeight()const;
double area() const;
double volume() const;
void print() const;
boxType(double l = 0, double w = 0, double h = 0);

//Constructor with default parameters

private:
double height;

};

You can write the definition of the constructor of the class boxType as follows:
boxType::boxType(double l, double w, double h)

: rectangleType(l, w)
{

if (h >= 0)
height = h;

else
height = 0;

}

Notice that this definition also takes care of the default constructor of the class
boxType.

Suppose that a base class, baseClass, has private member variables and constructors.
Further suppose that the class derivedClass is derived from baseClass, and
derivedClass has no member variables. Therefore, the member variables of

derivedClass are the ones inherited from baseClass. A constructor cannot be called

like other functions, and the member variables of baseClass cannot be directly accessed

by the member functions of derivedClass. To guarantee the initialization of the

inherited member variables of an object of type derivedClass, even though

derivedClass has no member variables, it must have the appropriate constructors.

A constructor (with parameters) of derivedClass merely issues a call to a constructor

(with parameters) of baseClass. Therefore, when you write the definition of the

constructor (with parameters) of derivedClass, the heading of the definition of the

constructor contains a call to an appropriate constructor (with parameters) of baseClass,

and the body of the constructor is empty—that is, it contains only the opening and closing

braces.

1
2

Inheritance | 691

EXAMPLE 12-3

Suppose that you want to define a class to group the attributes of an employee. There are
both full-time employees and part-time employees. Part-time employees are paid based on
the number of hours worked and an hourly rate. Suppose that you want to define a class to
keep track of a part-time employee’s information, such as name, pay rate, and hours
worked. You can then print the employee’s name together with his or her wages. Because
every employee is a person and Example 11-9 (Chapter 11) defined the class
personType to store the first name and the last name together with the necessary operations
on name, we can define a class partTimeEmployee based on the class personType.
You can also redefine the print function to print the appropriate information.

class partTimeEmployee: public personType
{
public:

void print() const;
//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs
// firstName lastName wages are $$$$.$$

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

void setNameRateHours(string first, string last,
double rate, double hours);

//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee(string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

Figure 12-5 shows the UML class diagram of the class partTimeEmployee and the
inheritance hierarchy.

692 | Chapter 12: Inheritance and Composition

1
2

The definitions of the member functions of the class partTimeEmployee are as follows:

void partTimeEmployee::print() const
{

personType::print(); //print the name of the employee
cout << "'s wages are: $" << calculatePay() << endl;

}

double partTimeEmployee::calculatePay() const
{

return (payRate * hoursWorked);
}

void partTimeEmployee::setNameRateHours(string first,
string last, double rate, double hours)

{
personType::setName(first, last);
payRate = rate;
hoursWorked = hours;

}

//Constructor
partTimeEmployee::partTimeEmployee(string first, string last,

double rate, double hours)
: personType(first, last)

{
if (rate >= 0)

payRate = rate;
else

payRate = 0;

if (hours >= 0)
hoursWorked = hours;

else
hoursWorked = 0;

}

partTimeEmployee

–payRate:
–hoursWorked:

+print()
+calculatePay()
+setNameRateHours(string, string,
):
+partTimeEmployee(string = "", string = "",

personType

partTimeEmployee

const void

void

:
const double:

double, double

double

double
double

double = 0)= 0),

FIGURE 12-5 UML class diagram of the class partTimeEmployee and inheritance hierarchy

Inheritance | 693

Destructors in a Derived Class
Recall from Chapter 11 that a class can have a destructor. As we will see in the next
chapter, destructors are typically used to deallocate dynamic memory allocated by the
objects of a class. (A memory space that is allocated during execution time is called a
dynamic memory space. The next chapter explains how to create and work with dynamic
memory.) Suppose that a base class and its derived class have destructors. When a derived
class object goes out of scope, it automatically invokes its destructor. When the destructor
of the derived class executes, it automatically invokes the destructor of the base class.
So when writing the definition of the destructor of the derived class, an explict call to
the destructor of the base class is not needed. Furthermore, when the destructor of the
derived class exectues first, it executes its own code and then calls the destructor of the
base class. For example, suppose that class three is derived from class two, class
two is derived from class one, and these classes have destructors. When an object of
class three goes out of scope, first the destructor of class three executes, then the
destructor of class two executes, and finally, the destructor of class one executes.
That is, the destructors execute in the reverse order.

HEADER FILE OF A DERIVED CLASS

The previous section explained how to derive new classes from previously defined
classes. To define new classes, you create new header files. The base classes are
already defined, and header files contain their definitions. Thus, to create new
classes based on the previously defined classes, the header files of the new classes
contain commands that tell the computer where to look for the definitions of the
base classes.

Suppose that the definition of the class personType is placed in the header file
personType.h. To create the definition of the class partTimeEmployee, the
header file—say, partTimeEmployee.h—must contain the preprocessor directive:

#include "personType.h"

before the definition of the class partTimeEmployee. To be specific, the header file
partTimeEmployee.h is as shown below.

//Header file partTimeEmployee

#include "personType.h"

class partTimeEmployee: public personType
{
public:

void print() const;
//Function to output the first name, last name, and
//the wages.
//Postcondition: Outputs
// firstName lastName wages are $$$$.$$

694 | Chapter 12: Inheritance and Composition

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

void setNameRateHours(string first, string last,
double rate, double hours);

//Function to set the first name, last name, payRate,
//and hoursWorked according to the parameters.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

partTimeEmployee(string first = "", string last = "",
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and hoursWorked
//according to the parameters. If no value is specified,
//the default values are assumed.
//Postcondition: firstName = first; lastName = last;
// payRate = rate; hoursWorked = hours

private:
double payRate; //variable to store the pay rate
double hoursWorked; //variable to store the hours worked

};

The definitions of the member functions can be placed in a separate file. Recall that to
include a system-provided header file, such as iostream, in a user program, you enclose
the header file between angular brackets; to include a user-defined header file in a
program, you enclose the header file between double quotation marks.

Multiple Inclusions of a Header File
The previous section discussed how to create the header file of a derived class. To
include a header file in a program, you use the preprocessor command. Recall that
before a program is compiled, the preprocessor first processes the program. Consider
the following header file:

//Header file test.h

const int ONE = 1;
const int TWO = 2;

Suppose that the header file testA.h includes the file test.h in order to use the
identifiers ONE and TWO. To be specific, suppose that the header file testA.h looks like:

//Header file testA.h

#include "test.h"
.
.
.

1
2

Inheritance | 695

Now, consider the following program code:

//Program headerTest.cpp

#include "test.h"
#include "testA.h"
.
.
.

When the program headerTest.cpp is compiled, it is first processed by the preprocessor.
The preprocessor includes first the header file test.h and then the header file testA.h.
When the header file testA.h is included, because it contains the preprocessor directive
#include "test.h", the header file test.h is included twice in the program. The
second inclusion of the header file test.h results in compile-time errors, such as the
identifier ONE already being declared. This problem occurs because the first inclusion of
the header file test.h has already defined the variables ONE and TWO. To avoid multiple
inclusion of a file in a program, we use certain preprocessor commands in the header file. Let
us first rewrite the header file test.h using these preprocessor commands and then explain
the meaning of these commands.

//Header file test.h

#ifndef H_test
#define H_test
const int ONE = 1;
const int TWO = 2;
#endif

a. #ifndef H_test means ‘‘if not defined H_test’’

b. #define H_test means ‘‘define H_test’’

c. #endif means ‘‘end if’’

Here, H_test is a preprocessor identifier.

The effect of these commands is as follows: If the identifier H_test is not defined,
we must define the identifier H_test and let the remaining statements between
#define and #endif pass through the compiler. If the header file test.h
is included the second time in the program, the statement #ifndef fails and all
of the statements until #endif are skipped. In fact, all header files are written using
similar preprocessor commands.

C++ Stream Classes
Chapter 3 described in detail how to perform input/output (I/O) using standard I/O
devices and file I/O. In particular, you used the object cin, the extraction operator >>,
and functions such as get and ignore to read data from the standard input device. You
also used the object cout and the insertion operator << to send output to the standard
output device. To use cin and cout, the programs included the header file iostream,

696 | Chapter 12: Inheritance and Composition

1
2

which includes the definitions of the classes istream and ostream. Moreover, for file
I/O, the programs included the header file fstream, and they used objects of type
ifstream for file input and objects of type ofstream for file output. This section
briefly describes how stream classes are related and implemented in C++.

In C++, stream classes are implemented using the inheritance mechanism, as shown in
Figure 12-6.

Figure 12-6 shows the stream classes that we have encountered in previous chapters.
From this figure, it follows that the class ios is the base class for all stream classes.
Classes istream and ostream are directly derived from the class ios. The class
ifstream is derived from the class istream, and the class ofstream is derived
from the class ostream. Moreover, using the mechanism of multiple inheritance, the
class iostream (not to be confused with the header file iostream—these are separate
things) and the class fstream are derived from the class iostream. (The classes
iostream and fstream are not discussed in this book.)

The class ios contains formatting flags and member functions to access and/or modify
the setting of these flags. To identify the I/O status, the class ios contains an integer
status word. This integer status word provides a continuous update reporting the status of
the stream.

The classes istream and ostream are responsible for providing the operations for
the data transfer between memory and devices. The class istream defines the
extraction operator, >>, and functions such as get and ignore. The class ostream
defines the insertion operator, <<, which is used by the object cout.

The class ifstream is derived from the class istream to provide the file input
operations. Similarly, the class ofstream is derived from the class ostream to
provide the file output operations. Objects of type ifstream are used for file input;
objects of type ofstream are used for file output. The header file fstream contains the
definitions of the classes ifstream and ofstream.

istream ostream

ofstream

ios

ifstream

FIGURE 12-6 C++ stream classes hierarchy

Inheritance | 697

Protected Members of a Class
The private members of a class are private to the class and cannot be directly
accessed outside of the class. Only member functions of that class can access the
private members. As discussed previously, the derived class cannot directly access
the private members of a base class. However, it is sometimes necessary (say, for
efficiency and/or to simplify the code) for a derived class to directly access a private
member of a base class. If you make a private member become public, then anyone
can access that member. Recall that the members of a class are classified into three
categories: public, private, and protected. So, for a base class to give access to a
member to its derived class and still prevent its direct access outside of the class, you
must declare that member under the memberAccessSpecifier protected. Thus,
the accessibility of a protected member of a class is in between public and
private. A derived class can directly access the protected members of a base class.

To summarize, if a member of a base class needs to be accessed by a derived class, that
member is declared under the memberAccessSpecifier protected.

Inheritance as public, protected, or private
Suppose class B is derived from class A. Then, B cannot directly access the private
members of A. That is, the private members of A are hidden in B. What about the
public and protected members of A? This section gives the rules that generally apply
when accessing the members of a base class.

Consider the following statement:

class B: memberAccessSpecifier A
{

.

.

.
};

In this statement, memberAccessSpecifier is either public, protected, or private.

1. If memberAccessSpecifier is public—that is, the inheritance is
public—then:

a. The public members of A are public members of B. They can be
directly accessed in class B.

b. The protected members of A are protected members of B.
They can be directly accessed by the member functions (and
friend functions) of B.

c. The private members of A are hidden in B. They cannot be
directly accessed in B. They can be accessed by the member functions
(and friend functions) of B through the public or protected
members of A.

698 | Chapter 12: Inheritance and Composition

1
2

2. If memberAccessSpecifier is protected—that is, the inheritance
is protected—then:

a. The public members of A are protected members of B. They can
be accessed by the member functions (and friend functions) of B.

b. The protected members of A are protected members of B. They
can be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden in B. They cannot be
directly accessed in B. They can be accessed by the member
functions (and friend functions) of B through the public or
protected members of A.

3. If memberAccessSpecifier is private—that is, the inheritance is
private—then:

a. The public members of A are private members of B. They can
be accessed by the member functions (and friend functions) of B.

b. The protected members of A are private members of B. They can
be accessed by the member functions (and friend functions) of B.

c. The private members of A are hidden in B. They cannot be
directly accessed in B. They can be accessed by the member
functions (and friend functions) of B through the public or
protected members of A.

Chapter 14 describes the friend functions.

Example 12-4 illustrates how the member functions of a derived class can directly access a
protected member of the base class.

EXAMPLE 12-4

(Accessing protected Members in the Derived Class)
Consider the following definition of the class bClass:

class bClass
{
public:

void setData(double);
void setData(char, double);
void print() const;

Inheritance | 699

bClass(char ch = '*', double u = 0.0);

protected:
char bCh;

private:
double bX;

};

The definition of the class bClass contains a protected member variable bCh of
type char and a private member variable bX of type double. It also contains an
overloaded member function setData. One version is used to set both member vari-
ables; the other version is used to set only the private member variable. The class also
has a constructor with default parameters. Suppose that the definitions of the member
functions and the constructor are as follows:

void bClass::setData(double u)
{

bX = u;
}
void bClass::setData(char ch, double u)
{

bCh = ch;
bX = u;

}

void bClass::print() const
{

cout << "Base class: bCh = " << bCh << ", bX = " << bX
<< endl;

}

bClass::bClass(char ch, double u)
{

bCh = ch;
bX = u;

}

Next, we derive a class dClass from the class bClass using public inheritance as
follows:

class dClass: public bClass
{
public:

void setData(char, double, int);
void print() const;

dClass(char ch = '*', double u = 0.0, int x = 0);

private:
int dA;

};

700 | Chapter 12: Inheritance and Composition

The class dClass contains a private member variable dA of type int. It also
contains a constructor, a member function setData with three parameters, and the
function print.

Let us now write the definition of the function setData. Because bCh is a protected
member variable of the class bClass, it can be directly accessed in the definition of the
function setData. However, because bX is a private member variable of the class
bClass, the function setData cannot directly access it. Thus, the function setData
must set bX by using the function setData of the class bClass. The definition of the
function setData of the class dClass can be written as follows:

void dClass::setData(char ch, double v, int a)
{

bClass::setData(v);

bCh = ch; //initialize bCh using the assignment statement
dA = a;

}

Note that the definition of the function setData calls the function bClass::setData,
with one parameter to set the member variable bX, and then directly sets the value of bCh.
Next, let us write the definition of the function print (of the class dClass).

We now write the definition of the function print of the class dClass. Notice that
in the definition of the class bClass, the member function print is not overloaded as
in the member function setData. It prints the values of both member variables, bCh and
bX. The member variable bX is a private member variable, so it cannot be directly
accessed in the class dClass. Even though bCh is a protected member variable and
it can be directly accessed in the class dClass, we must print its value using the
function print of the class bClass, because this function outputs the values of both
bCh and dX. For this reason, we first call the function print (of the class bClass) and
then output only the value of dA. The definition of the function print is:

void dClass::print() const
{

bClass::print();

cout << "Derived class dA = " << dA << endl;
}

The definition of the constructor is:

dClass::dClass(char ch, double u, int x)
: bClass(ch, u)

{
dA = x;

}

The following program illustrates how the objects of bClass and dClass work. We assume
that the definition of the class bClass is in the header file protectMembClass.h, and
the definition of the class dClass is in the header file protectMembInDerivedCl.h.

1
2

Inheritance | 701

//Accessing protected members of a base class in the derived
//class.

#include <iostream>
#include "protectMembClass.h"
#include "protectMembInDerivedCl.h"

using namespace std;

int main()
{

bClass bObject; //Line 1
dClass dObject; //Line 2

bObject.print(); //Line 3
cout << endl; //Line 4

cout << "*** Derived class object ***" << endl; //Line 5

dObject.setData('&', 2.5, 7); //Line 6

dObject.print(); //Line 7

return 0;
}

Sample Run:

Base class: bCh = *, bX = 0

*** Derived class object ***
Base class: bCh = &, bX = 2.5
Derived class dA = 7

When you write the definitions of the member functions of the class dClass, the
protected member variable bCh can be accessed directly. However, dClass objects
cannot directly access bCh. That is, the following statement is illegal (it is, in fact, a syntax
error):

dObject.bCh = '&'; //illegal

Composition (Aggregation)
Composition (aggregation) is another way to relate two classes. In composition (aggre-
gation), one or more members of a class are objects of another class type. Composition is
a ‘‘has-a’’ relation; for example, ‘‘every person has a date of birth.’’

Example 11-9 in Chapter 11 defined a class called personType. The class personType
stores a person’s first name and last name. Suppose we want to keep track of additional
information for a person, such as a personal ID (e.g., a Social Security number)

702 | Chapter 12: Inheritance and Composition

and a date of birth. Because every person has a personal ID and a date of birth, we can
define a new class, called personalInfo, in which one of the members is an object of
type personType. We can declare additional members to store the personal ID and date
of birth for the class personalInfo.

First, we define another class, dateType, to store only a person’s date of birth.
Then, we construct the class personalInfo from the classes personType and
dateType. This way, we can demonstrate how to define a new class using two
classes.

To define the class dateType, we need three member variables—to store the
month, day number, and year. Some of the operations that need to be performed on
a date are to set the date and to print the date. The following statements define the
class dateType:

class dateType
{
public:

void setDate(int month, int day, int year);
//Function to set the date.
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day;
// dYear = year

int getDay() const;
//Function to return the day.
//Postcondition: The value of dDay is returned.

int getMonth() const;
//Function to return the month.
//Postcondition: The value of dMonth is returned.

int getYear() const;
//Function to return the year.
//Postcondition: The value of dYear is returned.

void printDate() const;
//Function to output the date in the form mm-dd-yyyy.

dateType(int month = 1, int day = 1, int year = 1900);
//Constructor to set the date
//The member variables dMonth, dDay, and dYear are set
//according to the parameters.
//Postcondition: dMonth = month; dDay = day; dYear = year;
// If no values are specified, the default
// values are used to initialize the member
// variables.

1
2

Composition (Aggregation) | 703

private:
int dMonth; //variable to store the month
int dDay; //variable to store the day
int dYear; //variable to store the year

};

Figure 12-7 shows the UML class diagram of the class dateType.

The definitions of the member functions of the class dateType are as follows:

void dateType::setDate(int month, int day, int year)
{

dMonth = month;
dDay = day;
dYear = year;

}

The definition of the function setDate, before storing the date into the member
variables, does not check whether the date is valid. That is, it does not confirm whether
month is between 1 and 12, year is greater than 0, and day is valid (for example, for
January, day should be between 1 and 31). In Programming Exercise 2 at the end of this
chapter, you are asked to rewrite the definition of the function setDate so that the date
is validated before storing it in the member variables. The definitions of the remaining
member functions are as follows:

int dateType::getDay() const
{

return dDay;
}

int dateType::getMonth() const
{

return dMonth;
}

dateType

–dMonth: int
–dDay: int
–dYear: int

+setDate(int, int, int): void
+getDay() const: int
+getMonth() const: int
+getYear() const: int
+printDate() const: void
+dateType(int = 1, int = 1, int = 1900)

FIGURE 12-7 UML class diagram of the class dateType

704 | Chapter 12: Inheritance and Composition

int dateType::getYear() const
{

return dYear;
}

void dateType::printDate() const
{

cout << dMonth << "-" << dDay << "-" << dYear;
}

//Constructor with parameters
dateType::dateType(int month, int day, int year)
{

dMonth = month;
dDay = day;
dYear = year;

}

Just as in the case of setDate, in Programming Exercise 2, you are asked to rewrite the
definition of the constructor so that it checks for the valid values of month, day, and
year before storing the date into the member variables.

Next, we give the definition of the class personalInfo.

class personalInfo
{
public:

void setpersonalInfo(string first, string last, int month,
int day, int year, int ID);

//Function to set the personal information.
//The member variables are set according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day;
// dYear = year; personID = ID;

void printpersonalInfo () const;
//Function to print the personal information.

personalInfo(string first = "", string last = "",
int month = 1, int day = 1, int year = 1900,
int ID = 0);

//Constructor
//The member variables are set according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// dMonth = month; dDay = day;
// dYear = year; personID = ID;
// If no values are specified, the default
// values are used to initialize the member
// variables.

1
2

Composition (Aggregation) | 705

private:
personType name;
dateType bDay;
int personID;

};

Figure 12-8 shows the UML class diagram of the class personalInfo and composi-
tion (aggregation).

Before we give the definition of the member functions of the class personalInfo,
let us discuss how the constructors of the objects bDay and name are invoked.

Recall that a class constructor is automatically executed when a class object enters its
scope. Suppose that we have the following statement:

personalInfo student;

When the object student enters its scope, the objects bDay and name, which are
members of student, also enter their scopes. As a result, one of their constructors is
executed. We, therefore, need to know how to pass arguments to the constructors of the
member objects (that is, bDay and name), which occurs when we give the definitions of
the constructors of the class. Recall that constructors do not have a type and so cannot be
called like other functions. The arguments to the constructor of a member object (such as
bDay) are specified in the heading part of the definition of the constructor of the class.
Furthermore, member objects of a class are constructed (that is, initialized) in the order
they are declared (not in the order they are listed in the constructor’s member initializa-
tion list) and before the containing class objects are constructed. Thus, in our case, the
object name is initialized first, then bDay, and finally, student.

The following statements illustrate how to pass arguments to the constructors of the
member objects name and bDay:

personalInfo

-name: personType
-bDay: dateType
-personID: int

setpersonalInfo(string, string, int, int,
int, int): void

printpersonalInfo () const: void
personalInfo(string = "", string = "",

int = 1, int = 1,
int = 1900, int = 0)

personalInfo

personType dateType

FIGURE 12-8 UML class diagram of the class personalInfo and composition (aggregation)

706 | Chapter 12: Inheritance and Composition

1
2

personalInfo::personalInfo(string first, string last, int month,
int day, int year, int ID)

: name(first, last), bDay(month, day, year)
{

.

.

.
}

The definitions of the member functions of the class personalInfo are as follows:

void personalInfo::setpersonalInfo(string first, string last,
int month, int day, int year, int ID)

{
name.setName(first,last);
bDay.setDate(month,day,year);
personID = ID;

}

void personalInfo::printpersonalInfo() const
{

name.print();
cout << "'s date of birth is ";
bDay.printDate();
cout << endl;
cout << "and personal ID is " << personID;

}

personalInfo::personalInfo(string first, string last, int month,
int day, int year, int ID)

: name(first, last), bDay(month, day, year)
{

personID = ID;

}

In the case of inheritance, use the class name to invoke the base class’s constructor. In

the case of composition, use the member object name to invoke its own constructor.

Object-Oriented Design (OOD) and
Object-Oriented Programming (OOP)
The first 10 chapters of this book used the top-down approach to programming, also
called structured programming, to write programs. Problems were broken down into
modules, and each module solved a particular part of the problem. Data requirements
were identified, and functions were written to manipulate the data. The functions and the
data were kept separate, and the functions acted on the data in a passive way. Structured
programming, therefore, has certain limitations. In structured programming, functions are

Object-Oriented Design (OOD) and Object-Oriented Programming (OOP) | 707

dependent on the data, and functions are designed specifically to solve a particular
problem. It is quite difficult, if not impossible, to reuse a function written for one
program in another program. For some of these reasons, structured programming is not
very efficient for large software development.

Chapter 11 began with the introduction of classes. We learned how classes are defined
and used. Later in that chapter, we concentrated on the data requirements of a problem
and the logical operations on that data. With the help of classes, we combined the data—
and the operations on that data—in a single unit. That is, the data and operations were
encapsulated in a single unit. Also, with the help of classes, we were able to separate the
data and the algorithms to manipulate that data. However, the functions to implement
the operations on the data had direct access to the data. This chapter explains how to
create new classes from existing classes through inheritance (and also using composition).
Furthermore, an object has the capability to hide the information details. These are some
of the features of object-oriented design (OOD).

The three basic principles of OOD are as follows:

• Encapsulation—The ability to combine data and operations on that
data in a single unit.

• Inheritance—The ability to create new objects (classes) from existing
objects (classes).

• Polymorphism—The ability to use the same expression to denote
different operations.

In OOD, an object is a fundamental entity; in structured programming, a function is a
fundamental entity. In OOD, we debug classes; in structured programming, we debug
functions. In OOD, a program is a collection of interacting objects; in structured program-
ming, a program is a collection of interacting functions. Also, OOD encourages code reuse.
Once a class becomes error-free, it can be reused in many programs because it is a self-
contained entity. Object-oriented programming (OOP) implements OOD.

To create objects, we must know how to represent the data and write functions to
manipulate that data. Thus, we must know everything that we have learned in Chapters 2
through 9. The first nine chapters are essential for any type of programming, whether
structured or object-oriented.

C++ supports OOP through the use of classes. We have already examined the first
two features of OOP, encapsulation and inheritance, in this chapter and Chapter 11.
Chapter 14 discusses the third feature of OOD: polymorphism. A polymorphic function
or operator has many forms.

In C++, a function name and the operators can be overloaded. An example of function
overloading occurs when the function is called, and the operator is evaluated according to
the arguments used. For instance, if both operands are integers, the division operator
yields an integer result; otherwise, the division operator yields a decimal result. Suppose a
class has constructors. If no arguments are passed to an object when it is declared, the

708 | Chapter 12: Inheritance and Composition

default constructor is executed; otherwise, one of the constructors with parameters is
executed. However, all constructors have the same name.

C++ also provides parametric polymorphism. In parametric polymorphism, the (data)
type is left unspecified and then later instantiated. Templates (discussed in Chapter 14)
provide parametric polymorphism. Also, C++ provides virtual functions as a means to
implement polymorphism in an inheritance hierarchy, which allows the run-time selec-
tion of appropriate member functions. (Chapter 13 discusses virtual functions.)

There are several OOP languages in existence today, including Ada, Modula-2, Object Pascal,
Turbo Pascal, Eiffel, C++, Java, and Smalltalk. The earliest OOP language was Simula,
developed in 1967. The OOP terminology is influenced by the vocabulary of Smalltalk, the
OOP language largely developed at a Xerox research center during the 1970s. An OOP
language uses many ‘‘fancy’’ words, such as methods, message passing, and so forth.

OOP is a natural and intuitive way to view the programming process. When we view an
object, we immediately think of what it can do. For example, when we think about a car,
we also think about the operations on the car, such as starting the car and driving the car.
When programmers think about a list, they also think about the operations on the list,
such as searching, sorting, and inserting. OOP allows ADT to be created and used. In
C++, we implement ADT through the use of classes.

Objects are created when class variables are declared. Objects interact with each other via
function calls. Every object has an internal state and an external state. The private
members form the internal state; the public members form the external state. Only the
object can manipulate its internal state.

Identifying Classes, Objects, and Operations
In this book’s first 10 chapters, in the problem analysis phase, we analyzed the problem,
identified the data, and outlined the algorithm. To reduce the complexity of the function
main, we wrote functions to manipulate the data. In Chapter 11, we used the OOD
technique and first identified the objects that made up the overall problem. The objects
were designed and implemented independently of the main program. The hardest part in
OOD is to identify the classes and objects. In this section, we describe a common and
simple technique to identify classes and objects.

We begin with a description of the problem and then identify all of the nouns and verbs. We
choose our classes from the list of nouns, and we choose our operations from the list of verbs.

For example, suppose that we want to write a program that calculates and prints the
volume and surface area of a cylinder. We can state this problem as follows:

Write a program to input the dimensions of a cylinder and calculate and print the
surface area and volume.

In this statement, the nouns are bold, and the verbs are italic. From the list of nouns—
program, dimensions, cylinder, surface area, and volume—we can easily visualize

1
2

Object-Oriented Design (OOD) and Object-Oriented Programming (OOP) | 709

cylinder to be a class—say, cylinderType—from which we can create many cylinder
objects of various dimensions. The nouns dimensions, surface area, and volume are
characteristics of a cylinder and thus can hardly be considered classes.

After we identify a class, the next step is to determine three pieces of information:

• Operations that an object of that class type can perform

• Operations that can be performed on an object of that class type

• Information that an object of that class type must maintain

From the list of verbs identified in the problem description, we choose a list of possible
operations that an object of that class can perform, or has performed, on itself. For
example, from the list of verbs for the cylinder problem description—write, input, calculate,
and print—the possible operations for a cylinder object are input, calculate, and print.

For the class cylinderType, the dimensions represent the data. The center of the base,
radius of the base, and height of the cylinder are the characteristics of the dimensions.
You can input data to the object either by a constructor or by a mutator function.

The verb calculate applies to determining the volume and the surface area. From this, you
can deduce the operations: cylinderVolume and cylinderSurfaceArea. Similarly,
the verb print applies to the display of the volume and the surface area on an output
device. In Programming Exercise 5 at the end of this chapter, you are asked to design a
class to implement the characteristics of a cylinder.

Identifying classes via the nouns and verbs from the descriptions of the problem is not the
only technique possible. There are several other OOD techniques in the literature.
However, this technique is sufficient for the programming exercises in this book.

PROGRAMMING EXAMPLE: Grade Report
This programming example further illustrates the concepts of inheritance and composi-
tion.

The mid-semester point at your local university is approaching. The registrar’s office
wants to prepare the grade reports as soon as the students’ grades are recorded.
However, some of the students enrolled have not yet paid their tuition.

1. If a student has paid the tuition, the grades are shown on the grade
report together with the grade point average (GPA).

2. If a student has not paid the tuition, the grades are not printed. For
these students, the grade report contains a message indicating that
the grades have been held for nonpayment of the tuition. The grade
report also shows the billing amount.

The registrar’s office and the business office want your help in writing a program that
can analyze the students’ data and print the appropriate grade reports. The data is
stored in a file in the following form:

710 | Chapter 12: Inheritance and Composition

1
2

15000 345
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade
courseName courseNumber creditHours grade
.
.
.
studentName studentID isTuitionPaid numberOfCourses
courseName courseNumber creditHours grade
courseName courseNumber creditHours grade
.
.
.

The first line indicates the number of students enrolled and the tuition rate per credit
hour. The students’ data is given thereafter.

A sample input file is as follows:

3 345
Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A
.
.
.

The first line indicates that the input file contains three students’ data, and the tuition
rate is $345 per credit hour. Next, the course data for student Lisa Miller is given:
Lisa Miller’s ID is 890238, she has paid the tuition, and she is taking four courses.
The course number for the mathematics class she is taking is MTH345, the course has
four credit hours, her mid-semester grade is A, and so on.

The desired output for each student is in the following form:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade

CSC478 ComputerSci 3 B

HIS356 History 3 A

MTH345 Mathematics 4 A

PHY357 Physics 3 B

Total number of credits: 13
Mid-Semester GPA: 3.54

It is clear from this output that the courses must be ordered according to the course
number. To calculate the GPA, we assume that the grade A is equivalent to four

Programming Example: Grade Report | 711

points, B is equivalent to three points, C is equivalent to two points, D is equivalent to
one point, and F is equivalent to zero points.

Input A file containing the data in the form given previously. For easy reference,
let us assume that the name of the input file is stData.txt.

Output A file containing the output in the form given previously.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We must first identify the main components of the program. The university has
students, and every student takes courses. Thus, the two main components are the
student and the course.

Let us first describe the course component.

Course The main characteristics of a course are the course name, course number, and
number of credit hours.

Some of the basic operations that need to be performed on an object of the course
type are:

1. Set the course information.

2. Print the course information.

3. Show the credit hours.

4. Show the course number.

The following class defines the course as an ADT:

class courseType
{
public:

void setCourseInfo(string cName, string cNo, int credits);
//Function to set the course information.
//The course information is set according to the
//parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseCredits = credits;

void print(ostream& outF);
//Function to print the course information.
//This function sends the course information to the
//output device specified by the parameter outF. If the
//actual parameter to this function is the object cout,
//then the output is shown on the standard output device.
//If the actual parameter is an ofstream variable, say,
//outFile, then the output goes to the file specified by
//outFile.

int getCredits();
//Function to return the credit hours.
//Postcondition: The value of courseCredits is returned.

712 | Chapter 12: Inheritance and Composition

1
2

string getCourseNumber();
//Function to return the course number.
//Postcondition: The value of courseNo is returned.

string getCourseName();
//Function to return the course name.
//Postcondition: The value of courseName is returned.

courseType(string cName = "", string cNo = "",
int credits = 0);

//Constructor
//The object is initialized according to the parameters.
//Postcondition: courseName = cName; courseNo = cNo;
// courseCredits = credits;

private:
string courseName; //variable to store the course name
string courseNo; //variable to store the course number
int courseCredits; //variable to store the credit hours

};

Figure 12-9 shows the UML class diagram of the class courseType.

Next, we discuss the definitions of the functions to implement the operations of the
class courseType. These definitions are quite straightforward and easy to follow.

The function setCourseInfo sets the values of the private member variables
according to the values of the parameters. Its definition is:

courseType

–courseName: string
–courseNo: string
–courseCredits: int

+setCourseInfo(string, string,int): void
+print(ostream&): void
+getCredits(): int
+getCourseNumber(): string
+getCourseName(): string
+courseType(string = "", string = "", int = 0)

FIGURE 12-9 UML class diagram of the class courseType

Programming Example: Grade Report | 713

void courseType::setCourseInfo(string cName, string cNo,
int credits)

{
courseName = cName;
courseNo = cNo;
courseCredits = credits;

} //end setCourseInfo

The function print prints the course information. The parameter outF specifies the
output device. Also, we print the course name and course number left-justified rather
than right-justified (the default). Thus, we need to set the left manipulator. Before
printing the credit hours, the manipulator is set to be right-justified. The following
steps describe this function:

1. Set the left manipulator.

2. Print the course number.

3. Print the course name.

4. Set the right manipulator.

5. Print the credit hours.

The definition of the function print is:

void courseType::print(ostream& outF)
{

outF << left; //Step 1
outF << setw(8) << courseNo << " "; //Step 2
outF << setw(15) << courseName; //Step 3
outF << right; //Step 4
outF << setw(3) << courseCredits << " "; //Step 5

} //end print

The constructor is declared with the default values. If no values are specified when a
courseType object is declared, the constructor uses the default to initialize the
object. Using the default values, the object’s member variables are initialized as
follows: courseNo to blank, courseName to blank, and courseCredits to 0.
Otherwise, the values specified in the object declaration are used to initialize the
object. Its definition is:

courseType::courseType(string cName, string cNo, int credits)
{

courseName = cName;
courseNo = cNo;
courseCredits = credits;

} //end default constructor

714 | Chapter 12: Inheritance and Composition

1
2

The definitions of the remaining functions are as follows:

int courseType::getCredits()
{

return courseCredits;
} //end getCredits

string courseType::getCourseNumber()
{

return courseNo;
}//end getCourseNumber

string courseType::getCourseName()
{

return courseName;
} //end getCourseName

Next, we discuss the student component.

Notice that in the definition of the class courseType, the member functions,
such as print and getCredits, are accessor functions. This class also has

other accessor functions. As noted in Chapter 11, we typically define the accessor

functions with the keyword const at the end of their headings. We leave it as
an exercise for you to redefine this class so that the accessor functions are

declared as constant functions. (See Programming Exercise 13 at the end of this

chapter.)

Student The main characteristics of a student are the student name, student ID, number of
courses in which enrolled, courses in which enrolled, and grade for each course.
Because every student has to pay tuition, we also include a member to indicate
whether the student has paid the tuition.

Every student is a person, and every student takes courses. We have already designed
a class personType to process a person’s first name and last name. We have also
designed a class to process the information for a course. Thus, we see that we can
derive the class studentType to keep track of a student’s information from the
class personType, and one member of this class is of type courseType. We can
add more members as needed.

The basic operations to be performed on an object of type studentType are as
follows:

1. Set the student information.

2. Print the student information.

3. Calculate the number of credit hours taken.

Programming Example: Grade Report | 715

4. Calculate the GPA.

5. Calculate the billing amount.

6. Because the grade report will print the courses in ascending order,
sort the courses according to the course number.

The following class defines studentType as an ADT. We assume that a student
takes no more than six courses per semester.

class studentType: public personType
{
public:

void setInfo(string fname, string lName, int ID,
int nOfCourses, bool isTPaid,
courseType courses[], char courseGrades[]);

//Function to set the student's information.
//Postcondition: The member variables are set
// according to the parameters.

void print(ostream& outF, double tuitionRate);
//Function to print the student's grade report.
//If the member variable isTuitionPaid is true, the grades
//are shown; otherwise, three stars are printed. If the
//actual parameter corresponding to outF is the object
//cout, then the output is shown on the standard output
//device. If the actual parameter corresponding to outF
//is an ofstream object, say outFile, then the output
//goes to the file specified by outFile.

studentType();
//Default constructor
//The member variables are initialized.

int getHoursEnrolled();
//Function to return the credit hours a student is
//enrolled in.
//Postcondition: The number of credit hours is
// calculated and returned.

double getGpa();
//Function to return the grade point average.
//Postcondition: The gpa is calculated and returned.

double billingAmount(double tuitionRate);
//Function to return the tuition fees.
//Postcondition: The billing amount is calculated
//and returned.

716 | Chapter 12: Inheritance and Composition

1
2

private:
void sortCourses();

//Function to sort the courses.
//Postcondition: The array coursesEnrolled is sorted.
// For each course, its grade is stored in
// the array coursesGrade. Therefore, when
// the array coursesEnrolled is sorted, the
// corresponding entries in the array
// coursesGrade are adjusted.

int sId; //variable to store the student ID
int numberOfCourses; //variable to store the number

//of courses
bool isTuitionPaid; //variable to indicate whether the

//tuition is paid
courseType coursesEnrolled[6]; //array to store the courses
char coursesGrade[6]; //array to store the course grades

};

Figure 12-10 shows the UML class diagram of the class studentType together
with the inheritance and composition (aggregation) relation.

Before writing the definitions of the member functions of the class studentType,
we make the following note.

studentType

-sId: int
-numberOfCourses: int
-isTuitionPaid: bool
-coursesEnrolled[6]: courseType
-coursesGrade[6]: char

+setInfo(string, string, int, int, bool,
 courseType [], char []): void
+print(ostream&, double): void
+getHoursEnrolled(): int
+getGpa(): double
+billingAmount(double): double
-sortCourses(): void
+studentType()

studentType

personType

courseType

FIGURE 12-10 UML class diagram of the class studentType together with inheritance and
composition (aggregation) relation

Programming Example: Grade Report | 717

Notice that in the definition of the class studentType, the member functions,
such as print and getGpa, are accessor functions. This class also has other

accessor functions. As noted in Chapter 11, we typically define the accessor

functions with the keyword const at the end of their headings. We leave it as an
exercise for you to redefine this class so that the accessor functions are declared as

constant functions. (See Programming Exercise 13 at the end of this chapter.)

Note that the member function sortCourses to sort the array coursesEnrolled
is a private member of the class studentType. This is due to the fact that this
function is needed for internal data manipulation, and the user of the class does not
need to access this member.

Next, we discuss the definitions of the functions to implement the operations of the
class studentType.

The function setInfo first initializes the private member variables according to
the incoming parameters. This function then calls the function sortCourses to sort
the array coursesEnrolled by course number. The class studentType is
derived from the class personType, and the variables to store the first name and
last name are private member variables of that class. Therefore, we call the member
function setName of the class personType and pass the appropriate variables to
set the first and last names. The definition of the function setInfo is as follows:

void studentType::setInfo(string fName, string lName, int ID,
int nOfCourses, bool isTPaid,
courseType courses[], char cGrades[])

{
int i;

setName(fName, lName); //set the name

sId = ID; //set the student ID
isTuitionPaid = isTPaid; //set isTuitionPaid
numberOfCourses = nOfCourses; //set the number of courses

//set the course information
for (i = 0; i < numberOfCourses; i++)
{

coursesEnrolled[i] = courses[i];
coursesGrade[i] = cGrades[i];

}

sortCourses(); //sort the array coursesEnrolled
} //end setInfo

718 | Chapter 12: Inheritance and Composition

1
2

The default constructor initializes the private member variables to the default
values. Note that because the private member variable coursesEnrolled is
of type courseType and is an array, the default constructor of the class
courseType executes automatically, and the entire array is initialized.

studentType::studentType()
{

numberOfCourses = 0;
sId = 0;
isTuitionPaid = false;

for (int i = 0; i < 6; i++)
coursesGrade[i] = '*';

} //end default constructor

The function print prints the grade report. The parameter outF specifies the
output device. If the student has paid his or her tuition, the grades and the GPA are
shown. Otherwise, three stars are printed in place of each grade, the GPA is not
shown, a message indicates that the grades are being held for nonpayment of the
tuition, and the amount due is shown. This function has the following steps:

1. Output the student’s name.

2. Output the student’s ID.

3. Output the number of courses in which the student is enrolled.

4. Output the heading:
Course No Course Name Credits Grade

5. Print each course’s information.

For each course, print:

a. Course No, Course Name, Credits

b. if isTuitionPaid is true

Output the grade

else

Output three stars.

6. Print the total credit hours.

7. To output the GPA and billing amount in a fixed decimal format
with the decimal point and trailing zeros, set the necessary flag. Also,
set the precision to two decimal places.

8. if isTuitionPaid is true

Output the GPA

else

Output the billing amount and a message about withholding the grades.

Programming Example: Grade Report | 719

The definition of the function print is as follows:

void studentType::print(ostream& outF, double tuitionRate)
{

int i;

outF << "Student Name: " << getFirstName()
<< " " << getLastName() << endl; //Step 1

outF << "Student ID: " << sId << endl; //Step 2

outF << "Number of courses enrolled: "
<< numberOfCourses << endl; //Step 3

outF << endl;

outF << left;
outF << "Course No" << setw(15) << " Course Name"

<< setw(8) << "Credits"
<< setw(6) << "Grade" << endl; //Step 4

outF << right;
for (i = 0; i < numberOfCourses; i++) //Step 5
{

coursesEnrolled[i].print(outF); //Step 5a

if (isTuitionPaid) //Step 5b
outF <<setw(4) << coursesGrade[i] << endl;

else
outF << setw(4) << "***" << endl;

}
outF << endl;

outF << "Total number of credit hours: "
<< getHoursEnrolled() << endl; //Step 6

outF << fixed << showpoint << setprecision(2); //Step 7

if (isTuitionPaid) //Step 8
outF << "Mid-Semester GPA: " << getGpa()

<< endl;
else
{

outF << "*** Grades are being held for not paying "
<< "the tuition. ***" << endl;

outF << "Amount Due: $" << billingAmount(tuitionRate)
<< endl;

}

outF << "-*"
<< "-*-*-*-*-" << endl << endl;

} //end print

720 | Chapter 12: Inheritance and Composition

1
2

Let us take a look at the formal parameter of the function print. The formal

parameter outF is an object of the class ostream. We can use this function to
send the output to the standard output device, the screen, or to a file. As indicated in

the definition of the class, if the actual parameter is, say, cout, then the output is

displayed on the screen. If the actual parameter is, say, outfile, an object of the

class ofstream, then the output is sent to the device indicated by outfile.
As mentioned in the section, ‘‘C++ Stream Hierarchy,’’ the class ofstream is
derived from the class ostream. Therefore, the class ostream is the base
class. In C++, if a formal reference parameter is of the type ostream, it can refer to

an object of the class ofstream.

In general, C++ allows a formal reference parameter of the base class type to refer to an

object of the derived class. Of course, for user-defined classes, some other things need to

be taken into account for this mechanism to work properly, which we will discuss in

Chapter 13 (in the section ‘‘Inheritance, Pointers, and Virtual Functions’’).

The function getHoursEnrolled calculates and returns the total credit hours that
a student is taking. These credit hours are needed to calculate both the GPA and the
billing amount. The total credit hours are calculated by adding the credit hours of
each course in which the student is enrolled. Because the credit hours for a course are
in the private member variable of an object of type courseType, we use the
member function getCredits of the class courseType to retrieve the credit
hours. The definition of this function is:

int studentType::getHoursEnrolled()
{

int totalCredits = 0;
int i;

for (i = 0; i < numberOfCourses; i++)
totalCredits += coursesEnrolled[i].getCredits();

return totalCredits;
} //end getHoursEnrolled

If a student has not paid the tuition, the function billingAmount calculates
and returns the amount due, based on the number of credit hours enrolled. The
definition of this function is:

double studentType::billingAmount(double tuitionRate)
{

return tuitionRate * getHoursEnrolled();
} //end billingAmount

Programming Example: Grade Report | 721

We now discuss the function getGpa. This function calculates a student’s GPA. To find
the GPA, we find the equivalent points for each grade, add the points, and then divide
the sum by the total credit hours the student is taking. The definition of this function is:

double studentType::getGpa()
{

int i;
double sum = 0.0;

for (i = 0; i < numberOfCourses; i++)
{

switch (coursesGrade[i])
{
case 'A':

sum += coursesEnrolled[i].getCredits() * 4;
break;

case 'B':
sum += coursesEnrolled[i].getCredits() * 3;
break;

case 'C':
sum += coursesEnrolled[i].getCredits() * 2;
break;

case 'D':
sum += coursesEnrolled[i].getCredits() * 1;
break;

case 'F':
break;

default:
cout << "Invalid Course Grade." << endl;

}
}

return sum / getHoursEnrolled();
} //end getGpa

The function sortCourses sorts the array coursesEnrolled by course number.
To sort the array, we use a selection sort algorithm. Because we will compare the
course numbers, which are strings and private member variables of the class
courseType, we first retrieve and store the course numbers in local variables.

void studentType::sortCourses()
{

int i, j;
int minIndex;
courseType temp; //variable to swap the data
char tempGrade; //variable to swap the grades
string course1;
string course2;

722 | Chapter 12: Inheritance and Composition

1
2

for (i = 0; i < numberOfCourses - 1; i++)
{

minIndex = i;

for (j = i + 1; j < numberOfCourses; j++)
{

//get the course numbers
course1 =

coursesEnrolled[minIndex].getCourseNumber();
course2 = coursesEnrolled[j].getCourseNumber();

if (course1 > course2)
minIndex = j;

}//end for

temp = coursesEnrolled[minIndex];
coursesEnrolled[minIndex] = coursesEnrolled[i];
coursesEnrolled[i] = temp;

tempGrade = coursesGrade[minIndex];
coursesGrade[minIndex] = coursesGrade[i];
coursesGrade[i] = tempGrade;

} //end for
} //end sortCourses

MAIN

PROGRAM

Now that we have designed the classes courseType and studentType, we will
use these classes to complete the program.

We will restrict our program to process a maximum of 10 students. Note that this
program can easily be enhanced to process any number of students.

Because the print function of the class does the necessary computations to print the
final grade report, the main program has very little work to do. In fact, all that is left
for the main program is to declare the objects to hold the students’ data, load the data
into these objects, and then print the grade reports. Because the input is in a file and
the output will be sent to a file, we declare stream variables to access the input and
output files. Essentially, the main algorithm for the program is:

1. Declare the variables.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Open the output file.

5. Get the number of students registered and the tuition rate.

6. Load the students’ data.

7. Print the grade reports.

Programming Example: Grade Report | 723

VARIABLES This program processes a maximum of 10 students. Therefore, we must declare an
array of 10 components of type studentType to hold the students’ data. We also need
to store the number of students registered and the tuition rate. Because the data will be
read from a file and because the output is sent to a file, we need two stream variables
to access the input and output files. Thus, we need the following variables:

studentType studentList[MAX_NO_OF_STUDENTS]; //array to store
//the students' data

int noOfStudents; //variable to store the number of students
double tuitionRate; //variable to store the tuition rate

ifstream infile; //input stream variable
ofstream outfile; //output stream variable

Function

getStudentData

This function has three parameters: a parameter to access the input file, a parameter to
access the array studentList, and a parameter to know the number of students
registered. In pseudocode, the definition of this function is as follows:

For each student in the university,

1. Get the first name, last name, student ID, and isPaid.

2. if isPaid is ‘Y’
set isTuitionPaid to true

else
set isTuitionPaid to false

3. Get the number of courses the student is taking.

4. For each course:
Get the course name, course number, credit hours, and grade.
Load the course information into a courseType object.

5. Load the data into a studentType object.

We need to declare several local variables to read and store the data. The definition of
the function getStudentData is:

void getStudentData(ifstream& infile,
studentType studentList[],
int numberOfStudents)

{
//local variables

string fName; //variable to store the first name
string lName; //variable to store the last name
int ID; //variable to store the student ID
int noOfCourses; //variable to store the number of courses
char isPaid; //variable to store Y/N, that is,

//is tuition paid
bool isTuitionPaid; //variable to store true/false

724 | Chapter 12: Inheritance and Composition

1
2

string cName; //variable to store the course name
string cNo; //variable to store the course number
int credits; //variable to store the course credit hours

int count; //loop control variable
int i; //loop control variable

courseType courses[6]; //array of objects to store the
//course information

char cGrades[6]; //array to hold the course grades

for (count = 0; count < numberOfStudents; count++)
{

infile >> fName >> lName >> ID >> isPaid; //Step 1

if (isPaid == 'Y') //Step 2
isTuitionPaid = true;

else
isTuitionPaid = false;

infile >> noOfCourses; //Step 3

for (i = 0; i < noOfCourses; i++) //Step 4
{

infile >> cName >> cNo >> credits
>> cGrades[i]; //Step 4.a

courses[i].setCourseInfo(cName, cNo,
credits); //Step 4.b

}
studentList[count].setInfo(fName, lName, ID,

noOfCourses,
isTuitionPaid,
courses, cGrades); //Step 5

}//end for
} //end getStudentData

Function

printGrade

Reports

This function prints the grade reports. For each student, it calls the function print
of the class studentType to print the grade report. The definition of the function
printGradeReports is:

void printGradeReports(ofstream& outfile,
studentType studentList[],
int numberOfStudents,
double tuitionRate)

{
int count;
for (count = 0; count < numberOfStudents; count++)

studentList[count].print(outfile, tuitionRate);
} //end printGradeReports

Programming Example: Grade Report | 725

PROGRAMMING LISTING

//**
// Author: D.S. Malik
//
// class courseType
// This class specifies the members to implement a course's
// information.
//**

#ifndef H_courseType
#define H_courseType

#include <fstream>
#include <string>

using namespace std;

//The definition of the class courseType goes here.
.
.
.
#endif

//**
// Author: D.S. Malik
//
// Implementation file courseTypeImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the class courseType.
//**

#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
#include "courseType.h"

using namespace std;

//The definitions of the member functions of the class
//courseType go here.
.
.
.

726 | Chapter 12: Inheritance and Composition

1
2

//**
// Author: D.S. Malik
//
// class personType
// This class specifies the members to implement a person's
// first name and last name.
//**

#ifndef H_personType
#define H_personType

#include <string>

using namespace std;

//The definition of the class personType goes here.
.
.
.
#endif

//**
// Author: D.S. Malik
//
// Implementation file personTypeImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the class personType.
//**

#include <iostream>
#include <string>
#include "personType.h"

using namespace std;

//The definitions of the member functions of the class
//personType go here.
.
.
.

//**
// Author: D.S. Malik
//
// class studentType
// This class specifies the members to implement a student's
// information.
//**

Programming Example: Grade Report | 727

#ifndef H_studentType
#define H_studentType

#include <fstream>
#include <string>
#include "personType.h"
#include "courseType.h"

using namespace std;

//The definition of the class studentType goes here.
.
.
.

#endif

//**
// Author: D.S. Malik
//
// Implementation file studentTypeImp.cpp
// This file contains the definitions of the functions to
// implement the operations of the class studentType.
//**

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include "personType.h"
#include "courseType.h"
#include "studentType.h"

using namespace std;

//The definitions of the member functions of the class
//studentType go here.
.
.
.

//**
// Author: D.S. Malik
//
// This program reads students' data from a file and outputs
// the grades. If student has not paid the tuition, the
// grades are not shown, and an appropriate message is
// output. The output is stored in a file.
//**

728 | Chapter 12: Inheritance and Composition

1
2

#include <iostream>
#include <fstream>
#include <string>
#include "studentType.h"

using namespace std;

const int MAX_NO_OF_STUDENTS = 10;

void getStudentData(ifstream& infile,
studentType studentList[],
int numberOfStudents);

void printGradeReports(ofstream& outfile,
studentType studentList[],
int numberOfStudents,
double tuitionRate);

int main()
{

studentType studentList[MAX_NO_OF_STUDENTS];

int noOfStudents;
double tuitionRate;
ifstream infile;
ofstream outfile;

infile.open("stData.txt");

if (!infile)
{

cout << "The input file does not exist. "
<< "Program terminates." << endl;

return 1;
}

outfile.open("sDataOut.txt");

infile >> noOfStudents; //get the number of students
infile >> tuitionRate; //get the tuition rate

getStudentData(infile, studentList, noOfStudents);
printGradeReports(outfile, studentList,

noOfStudents, tuitionRate);

return 0;
}

//Place the definitions of the functions getStudentData and
//printGradeReports here.

Programming Example: Grade Report | 729

Sample Run:

Student Name: Lisa Miller
Student ID: 890238
Number of courses enrolled: 4

Course No Course Name Credits Grade
CSC478 ComputerSci 3 B
HIS356 History 3 A
MTH345 Mathematics 4 A
PHY357 Physics 3 B

Total number of credit hours: 13
Mid-Semester GPA: 3.54
-*-

Student Name: Bill Wilton
Student ID: 798324
Number of courses enrolled: 5

Course No Course Name Credits Grade
BIO234 Biology 4 ***
CHM256 Chemistry 4 ***
ENG378 English 3 ***
MTH346 Mathematics 3 ***
PHL534 Philosophy 3 ***

Total number of credit hours: 17
*** Grades are being held for not paying the tuition. ***
Amount Due: $5865.00
-*-

Student Name: Dandy Goat
Student ID: 746333
Number of courses enrolled: 6

Course No Course Name Credits Grade
BUS128 Business 3 C
CHM348 Chemistry 4 B
CSC201 ComputerSci 3 B
ENG328 English 3 B
HIS101 History 3 A
MTH137 Mathematics 3 A

Total number of credit hours: 19
Mid-Semester GPA: 3.16
-*-

730 | Chapter 12: Inheritance and Composition

QUICK REVIEW

1. Inheritance and composition (aggregation) are meaningful ways to relate
two or more classes.

2. Inheritance is an ‘‘is-a’’ relation.

3. Composition (aggregation) is a ‘‘has-a’’ relation.

4. In a single inheritance, the derived class is derived from only one existing
class called the base class.

5. In a multiple inheritance, a derived class is derived from more than one base
class.

6. The private members of a base class are private to the base class. The
derived class cannot directly access them.

7. The public members of a base class can be inherited either as public or
private by the derived class.

8. A derived class can redefine the member functions of a base class, but this
redefinition applies only to the objects of the derived class.

9. A call to a base class’s constructor (with parameters) is specified in the
heading of the definition of the derived class’s constructor.

1
2

Input File:

3 345
Lisa Miller 890238 Y 4
Mathematics MTH345 4 A
Physics PHY357 3 B
ComputerSci CSC478 3 B
History HIS356 3 A

Bill Wilton 798324 N 5
English ENG378 3 B
Philosophy PHL534 3 A
Chemistry CHM256 4 C
Biology BIO234 4 A
Mathematics MTH346 3 C

Dandy Goat 746333 Y 6
History HIS101 3 A
English ENG328 3 B
Mathematics MTH137 3 A
Chemistry CHM348 4 B
ComputerSci CSC201 3 B
Business BUS128 3 C

Quick Review | 731

10. If in the heading of the definition of a derived class’s constructor, no call to
a constructor (with parameters) of a base class is specified, then during the
derived class’s object declaration and initialization, the default constructor
(if any) of the base class executes.

11. When initializing the object of a derived class, the constructor of the base
class is executed first.

12. Review the inheritance rules given in this chapter.

13. In composition (aggregation), a member of a class is an object of another class.

14. In composition (aggregation), a call to the constructor of the member
objects is specified in the heading of the definition of the class’s constructor.

15. The three basic principles of OOD are encapsulation, inheritance, and
polymorphism.

16. An easy way to identify classes, objects, and operations is to describe the
problem in English and then identify all of the nouns and verbs. Choose your
classes (objects) from the list of nouns and operations from the list of verbs.

EXERCISES

1. Mark the following statements as true or false.

a. The constructor of a derived class can specify a call to the constructor of
the base class in the heading of the function definition.

b. The constructor of a derived class can specify a call to the constructor of
the base class using the name of the class.

c. Suppose that x and y are classes, one of the member variables of x is an
object of type y, and both classes have constructors. The constructor of x
specifies a call to the constructor of y by using the object name of type y.

2. Draw a class hierarchy in which several classes are derived from a single base
class.

3. Suppose that a class employeeType is derived from the class
personType (see Example 11-9 in Chapter 11). Give examples of
members—data and functions—that can be added to the class
employeeType.

4. Consider the following statements:

class dog: public animal
{

...
};

In this declaration, which class is the base class, and which class is the derived class?

732 | Chapter 12: Inheritance and Composition

1
2

5. Consider the following class definition:

class circle class cylinder: public circle
{ {
public: public:

void print() const; void print() const;
void setRadius(double); void setHeight(double);
double getRadius(); double getHeight();
double area(); double volume();
circle(); double area();
circle(double); cylinder();

cylinder(double, double);
private: private:

double radius; double height;
}; };

Suppose that you have the declaration:
cylinder newCylinder;

Determine the private members of the object newCylinder.

6. Suppose that class three is derived from class two, class two is
derived from class one, and each class has instance variables. Suppose
that an object of class three enters its scope, so the constructors of these
classes will execute. Determine the order in which the constructors of these
classes will execute.

7. Consider the following class definition:

class aClass
{
public:

void print() const;
void set(int, int);
aClass();
aClass(int, int);

private:
int u;
int v;

};

What is wrong with the following class definitions?

a. class bClass public aClass
{
public:

void print();
void set(int, int, int);

private:
int z;

}

Exercises | 733

b. class cClass: public aClass
{
public:

void print();
int sum();
cClass();
cClass(int)

}

8. Consider the following statements:

class yClass class xClass: public yClass
{ {
public: public:

void one(); void one();
void two(int, int); xClass();
yClass();

private:
private: int z;

int a;
int b; };

};

Suppose the following statements are in a user program (client code):

yClass y;
xClass x;

a. The private members of yClass are public members of xClass.
True or False?

b. Mark the following statements as valid or invalid. If a statement is
invalid, explain why.

i. void yClass::one()
{

cout << a + b << endl;
}

ii. y.a = 15;

x.b = 30;

iii. void xClass::one()
{

a = 10;
b = 15;
z = 30;
cout << a + b + z << endl;

}

iv. cout << y.a << " " << y.b << " " << x.z << endl;

9. Assume the declaration of Exercise 8.

a. Write the definition of the default constructor of yClass so that the
private member variables of yClass are initialized to 0.

734 | Chapter 12: Inheritance and Composition

b. Write the definition of the default constructor of xClass so that the
private member variables of xClass are initialized to 0.

c. Write the definition of the member function two of yClass so that
the private member variable a is initialized to the value of the first
parameter of two, and the private member variable b is initialized to
the value of the second parameter of two.

10. Explain the difference between the private and protected members of
a class.

11. Explain the difference between the protected and public members of a
class.

12. Consider the following class definition:

class first
{
public:

void setX();
void print const();

protected:
int y;
void setY(int a);

private:
int x;

};

Suppose that class second is derived from class first using the
statement:

class second: private first

Determine which members of class first are private, protected,
and public in class second.

13. Assume the declaration of Exercise 12. Suppose that class third is
derived from class first using the statement:

class third: protected first

Determine which members of class first are private, protected,
and public in class third.

14. Assume the declaration of Exercise 12. Suppose that class fourth is
derived from class first using the statement:

class fourth: public first

Determine which members of class first are private, protected,
and public in class fourth.

15. Assume the declaration of Exercise 12. Suppose that class fifth is
derived from class first using the statement:

class fifth: first

1
2

Exercises | 735

Determine which members of class first are private, protected,
and public in class fifth.

16. What is wrong with the following code?

class classA
{
protected:

void setX(int a); //Line 1
//Postcondition: x = a; //Line 2

private: //Line 3
int x; //Line 4

};
.
.
.
int main()
{

classA aObject; //Line 5

aObject.setX(4); //Line 6
return 0; //Line 7

}

17. Consider the following code:

class one
{
public:

void print() const;
//Output the values of x and y

protected:
void setData(int u, int v);

//Postcondition: x = u; y = v;
private:

int x;
int y;

};

class two: public one
{
public:

void setData(int a, int b, int c);
//Postcondition: x = a; y = b; z = c;

void print() const;
//Output the values of x, y, and z

private:
int z;

};

a. Write the definition of the function setData of the class two.

b. Write the definition of the function print of the class two.

736 | Chapter 12: Inheritance and Composition

18. What is the output of the following C++ program?

#include <iostream>
#include <string>

using namespace std;

class baseClass
{
public:

void print() const;

baseClass(string s = " ", int a = 0);
//Postcondition: str = s; x = a;

protected:
int x;

private:
string str;

};

class derivedClass: public baseClass
{
public:

void print() const;

derivedClass(string s = "", int a = 0, int b = 0);
//Postcondition: str = s; x = a; y = b;

private:
int y;

};

int main()
{

baseClass baseObject("This is the base class", 2);
derivedClass derivedObject("DDDDDD", 3, 7);

baseObject.print();
derivedObject.print();

return 0;
}
void baseClass::print() const
{

cout << x << " " << str << endl;
}

1
2

Exercises | 737

baseClass::baseClass(string s, int a)
{

str = s;
x = a;

}

void derivedClass::print() const
{

cout << "Derived class: " << y << endl;
baseClass::print();

}

derivedClass::derivedClass(string s, int a, int b)
:baseClass("Hello Base", a + b)

{
y = b;

}

19. Consider the following class definitions:

class baseClass
{
public:

void print() const;
int getX() const;
baseClass(int a = 0);

protected:
int x;

};

class derivedClass: public baseClass
{
public:

void print() const;
int getResult() const;
derivedClass(int a = 0, int b = 0);

private:
int y;

};

Suppose the definitions of the member functions of these classes are as
follows:

void baseClass::print() const
{

cout << "In base: x = " << x << endl;
}

baseClass::baseClass(int a)
{

x = a;
}

738 | Chapter 12: Inheritance and Composition

int baseClass::getX() const
{

return x;
}

void derivedClass::print() const
{

cout << "In derived: x = " << x << ", y = " << y
<< "; x + y = " << x + y << endl;

}

int derivedClass::getResult() const
{

return x + y;
}

derivedClass::derivedClass(int a, int b)
: baseClass(a)

{
y = b;

}

What is the output of the following function main?

int main()
{

baseClass baseObject(7);
derivedClass derivedObject(3, 8);

baseObject.print();
derivedObject.print();

cout << "****" << baseObject.getX() << endl;
cout << "####" << derivedObject.getResult() << endl;

return 0;
}

PROGRAMMING EXERCISES

1. In Chapter 11, the class clockType was designed to implement the time
of day in a program. Certain applications, in addition to hours, minutes, and
seconds, might require you to store the time zone. Derive the class
extClockType from the class clockType by adding a member variable
to store the time zone. Add the necessary member functions and constructors
to make the class functional. Also, write the definitions of the member
functions and the constructors. Finally, write a test program to test your
class.

2. In this chapter, the class dateType was designed to implement the date
in a program, but the member function setDate and the constructor do not

1
2

Programming Exercises | 739

check whether the date is valid before storing the date in the member
variables. Rewrite the definitions of the function setDate and the con-
structor so that the values for the month, day, and year are checked before
storing the date into the member variables. Add a member function,
isLeapYear, to check whether a year is a leap year. Moreover, write a
test program to test your class.

3. A point in the x-y plane is represented by its x-coordinate and y-coordinate.
Design a class, pointType, that can store and process a point in the x-y
plane. You should then perform operations on the point, such as setting the
coordinates of the point, printing the coordinates of the point, returning the
x-coordinate, and returning the y-coordinate. Also, write a program to test
various operations on the point.

4. Every circle has a center and a radius. Given the radius, we can determine
the circle’s area and circumference. Given the center, we can determine its
position in the x-y plane. The center of the circle is a point in the x-y plane.
Design a class, circleType, that can store the radius and center of the
circle. Because the center is a point in the x-y plane and you designed the
class to capture the properties of a point in Programming Exercise 3, you
must derive the class circleType from the class pointType. You
should be able to perform the usual operations on the circle, such as setting
the radius, printing the radius, calculating and printing the area and circum-
ference, and carrying out the usual operations on the center. Also, write a
program to test various operations on a circle.

5. Every cylinder has a base and height, wherein the base is a circle. Design a
class, cylinderType, that can capture the properties of a cylinder and
perform the usual operations on the cylinder. Derive this class from the
class circleType designed in Programming Exercise 4. Some of the
operations that can be performed on a cylinder are as follows: calculate and
print the volume, calculate and print the surface area, set the height, set the
radius of the base, and set the center of the base. Also, write a program to test
various operations on a cylinder.

6. Using classes, design an online address book to keep track of the names,
addresses, phone numbers, and dates of birth of family members, close
friends, and certain business associates. Your program should be able to
handle a maximum of 500 entries.

a. Define a class, addressType, that can store a street address, city,
state, and ZIP code. Use the appropriate functions to print and store the
address. Also, use constructors to automatically initialize the member
variables.

b. Define a class extPersonType using the class personType (as
defined in Example 11-9, Chapter 11), the class dateType (as designed
in this chapter’s Programming Exercise 2), and the class addressType.
Add a member variable to this class to classify the person as a family

740 | Chapter 12: Inheritance and Composition

member, friend, or business associate. Also, add a member variable to store
the phone number. Add (or override) the functions to print and store the
appropriate information. Use constructors to automatically initialize the
member variables.

c. Define the class addressBookType using the previously defined
classes. An object of the type addressBookType should be able to
process a maximum of 500 entries.

The program should perform the following operations:

i. Load the data into the address book from a disk.

ii. Sort the address book by last name.

iii. Search for a person by last name.

iv. Print the address, phone number, and date of birth (if it exists) of a
given person.

v. Print the names of the people whose birthdays are in a given month.

vi. Print the names of all of the people between two last names.

vii. Depending on the user’s request, print the names of all family
members, friends, or business associates.

7. In Programming Exercise 2, the class dateType was designed and imple-
mented to keep track of a date, but it has very limited operations. Redefine
the class dateType so that it can perform the following operations on a
date, in addition to the operations already defined:

a. Set the month.

b. Set the day.

c. Set the year.

d. Return the month.

e. Return the day.

f. Return the year.

g. Test whether the year is a leap year.

h. Return the number of days in the month. For example, if the date is
3-12-2013, the number of days to be returned is 31 because there are
31 days in March.

i. Return the number of days passed in the year. For example, if the date is
3-18-2013, the number of days passed in the year is 77. Note that the
number of days returned also includes the current day.

j. Return the number of days remaining in the year. For example, if the
date is 3-18-2013, the number of days remaining in the year is 288.

k. Calculate the new date by adding a fixed number of days to the date. For
example, if the date is 3-18-2013 and the days to be added are 25, the
new date is 4-12-2013.

1
2

Programming Exercises | 741

8. Write the definitions of the functions to implement the operations defined
for the class dateType in Programming Exercise 7.

9. The class dateType defined in Programming Exercise 7 prints the date in
numerical form. Some applications might require the date to be printed in
another form, such as March 24, 2013. Derive the class extDateType so
that the date can be printed in either form.

Add a member variable to the class extDateType so that the month
can also be stored in string form. Add a member function to output the
month in the string format, followed by the year—for example, in the
form March 2013.

Write the definitions of the functions to implement the operations for the
class extDateType.

10. Using the classes extDateType (Programming Exercise 9) and dayType
(Chapter 11, Programming Exercise 2), design the class calendarType so
that, given the month and the year, we can print the calendar for that month.
To print a monthly calendar, you must know the first day of the month and
the number of days in that month. Thus, you must store the first day of
the month, which is of the form dayType, and the month and the year of the
calendar. Clearly, the month and the year can be stored in an object of
the form extDateType by setting the day component of the date to 1 and
the month and year as specified by the user. Thus, the class calendarType
has two member variables: an object of the type dayType and an object of the
type extDateType.

Design the class calendarType so that the program can print a calendar
for any month starting January 1, 1500. Note that the day for January 1 of the
year 1500 is a Monday. To calculate the first day of a month, you can add the
appropriate days to Monday of January 1, 1500.

For the class calendarType, include the following operations:

a. Determine the first day of the month for which the calendar will be
printed. Call this operation firstDayOfMonth.

b. Set the month.

c. Set the year.

d. Return the month.

e. Return the year.

f. Print the calendar for the particular month.

g. Add the appropriate constructors to initialize the member variables.

11. a. Write the definitions of the member functions of the class
calendarType (designed in Programming Exercise 10) to imple-
ment the operations of the class calendarType.

742 | Chapter 12: Inheritance and Composition

b. Write a test program to print the calendar for either a particular month
or a particular year. For example, the calendar for September 2013 is:

September 2013
Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

12. In this exercise, you will design various classes and write a program to
computerize the billing system of a hospital.

a. Design the class doctorType, inherited from the class
personType, defined in Chapter 11, with an additional data member
to store a doctor’s speciality. Add appropriate constructors and mem-
ber functions to initialize, access, and manipulate the data members.

b. Design the class billType with data members to store a patient’s ID
and a patient’s hospital charges, such as pharmacy charges for medicine,
doctor’s fee, and room charges. Add appropriate constructors and
member functions to initialize and access and manipulate the data
members.

c. Design the class patientType, inherited from the class
personType, defined in Chapter 11, with additional data members
to store a patient’s ID, age, date of birth, attending physician’s name,
the date when the patient was admitted in the hospital, and the date
when the patient was discharged from the hospital. (Use the class
dateType to store the date of birth, admit date, discharge date, and
the class doctorType to store the attending physician’s name.)
Add appropriate constructors and member functions to initialize,
access, and manipulate the data members.

Write a program to test your classes.

13. In the Programming Example Grade Report, in the definitions of the
classes courseType and studentType, the accessor functions are not
made constants; that is, they are not defined with the reserved word const
at the end of their headings. Redefine these classes so that all of the accessor
functions are constant functions. Accordingly, modify the definitions of the
accessor functions and rerun the program.

14. a. Define the class bankAccount to store a bank customer’s account
number and balance. Suppose that account number is of type int, and
balance is of type double. Your class should, at least, provide the
following operations: set the account number, retrieve the account
number, retrieve the balance, deposit and withdraw money, and print
account information. Add appropriate constructors.

1
2

Programming Exercises | 743

b. Every bank offers a checking account. Derive the class
checkingAccount from the class bankAccount (designed in
part (a)). This class inherits members to store the account number
and the balance from the base class. A customer with a checking
account typically receives interest, maintains a minimum balance,
and pays service charges if the balance falls below the minimum
balance. Add member variables to store this additional information.
In addition to the operations inherited from the base class, this class
should provide the following operations: set interest rate, retrieve
interest rate, set minimum balance, retrieve minimum balance, set
service charges, retrieve service charges, post interest, verify if the
balance is less than the minimum balance, write a check, withdraw
(override the method of the base class), and print account informa-
tion. Add appropriate constructors.

c. Every bank offers a savings account. Derive the class
savingsAccount from the class bankAccount (designed in part
(a)). This class inherits members to store the account number and
the balance from the base class. A customer with a savings account
typically receives interest, makes deposits, and withdraws money. In
addition to the operations inherited from the base class, this class
should provide the following operations: set interest rate, retrieve
interest rate, post interest, withdraw (override the method of the
base class), and print account information. Add appropriate con-
structors.

d. Write a program to test your classes designed in parts (b) and (c).

744 | Chapter 12: Inheritance and Composition

POINTERS, CLASSES, VIRTUAL
FUNCTIONS, ABSTRACT
CLASSES, AND LISTS

IN THIS CHAPTER , YOU WILL :

. Learn about the pointer data type and pointer variables

. Explore how to declare and manipulate pointer variables

. Learn about the address of operator and the dereferencing operator

. Discover dynamic variables

. Explore how to use the new and delete operators to manipulate dynamic variables

. Learn about pointer arithmetic

. Discover dynamic arrays

. Become aware of the shallow and deep copies of data

. Discover the peculiarities of classes with pointer member variables

. Learn about virtual functions

. Examine the relationship between the address of operator and classes

. Become aware of abstract classes

13C H A P T E R

In Chapter 2, you learned that C++’s data types are classified into three categories:
simple, structured, and pointers. Until now, you have studied only the first two data
types. This chapter discusses the third data type called the pointer data type. You will first
learn how to declare pointer variables (or pointers, for short) and manipulate the data to
which they point. Later, you will use these concepts when you study dynamic arrays and
linked lists. Linked lists are discussed in Chapter 17.

Pointer Data Type and Pointer Variables
Chapter 2 defined a data type as a set of values together with a set of operations. Recall that
the set of values is called the domain of the data type. In addition to these two properties,
until now, all of the data types you have encountered have one more thing associated with
them: the name of the data type. For example, there is a data type called int. The set of
values belonging to this data type includes integers that range between –2147483648 and
2147483647, and the operations allowed on these values are the arithmetic operators
described in Chapter 2. To manipulate numeric integer data in the range –2147483648
to 2147483647, you can declare variables using the word int. The name of the data type
allows you to declare a variable. Next, we describe the pointer data type.

The values belonging to pointer data types are the memory addresses of your computer.
As in many other languages, there is no name associated with the pointer data type in
C++. Because the domain—that is, the set of values of a pointer data type—is the
addresses (memory locations), a pointer variable is a variable whose content is an address,
that is, a memory location.

Pointer variable: A variable whose content is an address (that is, a memory address).

Declaring Pointer Variables
As remarked previously, there is no name associated with pointer data types. Moreover,
pointer variables store memory addresses. So the obvious question is: If no name is
associated with a pointer data type, how do you declare pointer variables?

The value of a pointer variable is an address. That is, the value refers to another memory
space. The data is typically stored in this memory space. Therefore, when you declare a
pointer variable, you also specify the data type of the value to be stored in the memory
location pointed to by the pointer variable.

In C++, you declare a pointer variable by using the asterisk symbol (*) between the data
type and the variable name. The general syntax to declare a pointer variable is:

dataType *identifier;

As an example, consider the following statements:

int *p;
char *ch;

746 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

In these statements, both p and ch are pointer variables. The content of p (when
properly assigned) points to a memory location of type int, and the content of ch
points to a memory location of type char. Usually, p is called a pointer variable of
type int, and ch is called a pointer variable of type char.

Before discussing how pointers work, let us make the following observations. The
statement:

int *p;

is equivalent to the statement:

int* p;

which is equivalent to the statement:

int * p;

Thus, the character * can appear anywhere between the data type name and the variable name.

Now, consider the following statement:

int* p, q;

In this statement, only p is the pointer variable, not q. Here, q is an int variable. To avoid
confusion, we prefer to attach the character * to the variable name. So the preceding
statement is written as:

int *p, q;

Of course, the statement:

int *p, *q;

declares both p and q to be pointer variables of type int.

Now that you know how to declare pointers, next we will discuss how to make a pointer
point to a memory space and how to manipulate the data stored in these memory
locations.

Because the value of a pointer is a memory address, a pointer can store the address of a
memory space of the designated type. For example, if p is a pointer of type int, p can
store the address of any memory space of type int. C++ provides two operators—the
address of operator (&) and the dereferencing operator (*)—to work with pointers. The
next two sections describe these operators.

Address of Operator (&)
In C++, the ampersand, &, called the address of operator, is a unary operator that
returns the address of its operand. For example, given the statements:

int x;
int *p;

1
3

Address of Operator (&) | 747

the statement:

p = &x;

assigns the address of x to p. That is, x and the value of p refer to the same memory
location.

Dereferencing Operator (*)
Every chapter until now has used the asterisk character, *, as the binary multiplication
operator. C++ also uses * as a unary operator. When used as a unary operator, *, commonly
referred to as the dereferencing operator or indirection operator, refers to the object to
which its operand (that is, the pointer) points. For example, given the statements:

int x = 25;
int *p;
p = &x; //store the address of x in p

the statement:

cout << *p << endl;

prints the value stored in the memory space pointed to by p, which is the value of x. Also,
the statement:

*p = 55;

stores 55 in the memory location pointed to by p—that is, in x.

EXAMPLE 13-1

Let us consider the following statements:

int *p;
int num;

In these statements, p is a pointer variable of type int, and num is a variable of type int.
Let us assume that memory location 1200 is allocated for p, and memory location 1800 is
allocated for num. (See Figure 13-1.)

1200
p

1800
num

.

FIGURE 13-1 Variables p and num

748 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Consider the following statements.

1. num = 78;
2. p = #
3. *p = 24;

The following shows the values of the variables after the execution of each statement.

After

Statement Values of the Variables Explanation

1 The statement num = 78; stores
78 into num.

2 The statement p = # stores
the address of num, which is 1800,
into p.

3
The statement *p = 24; stores 24
into the memory location to which p
points. Because the value of p is
1800, statement 3 stores 24 into
memory location 1800. Note that the
value of num is also changed.

Let us summarize the preceding discussion.

1. A declaration such as int *p; allocates memory for p only, not for *p.
Later, you will learn how to allocate memory for *p.

2. The content of p points only to a memory location of type int.

3. &p, p, and *p all have different meanings.

4. &p means the address of p—that is, 1200 (in Figure 13-1).

5. p means the content of p, which is 1800, after the statement p = #
executes.

6. *p means the content of the memory location to which p points.
Note that after the statement p = # executes, the value
of *p is 78; after the statement *p = 24; executes, the value of
*p is 24.

1
3

1200
p

1800
num

78.

1200
p

1800
num

1800 78.

1200
p

1800
num

1800 24.

Dereferencing Operator (*) | 749

EXAMPLE 13-2

Consider the following statements:

int *p;
int x;

Suppose that we have the memory allocation for p and x as shown in Figure 13-2.

The values of &p, p, *p, &x, and x are as follows:

&p 1400 p ? (unknown) *p Does not exist
(undefined)

&x 1750 x ? (unknown)

Suppose that the following statements are executed in the order given:

x = 50;
p = &x;
*p = 38;

The values of &p, p, *p, &x, and x are shown after each of these statements executes.

After the statement x = 50; executes, the values of &p, p, *p, &x, and x are as follows:

&p 1400 p ? (unknown) *p Does not exist
(undefined)

&x 1750 x 50

After the statement p = &x; executes, the values of &p, p, *p, &x, and x are as follows:

&p 1400 p 1750 *p 50 &x 1750 x 50

After the statement *p = 38; executes, the values of &p, p, *p, &x, and x are as follows.
(Because *p and x refer to the same memory space, the value of x is also changed to 38.)

&p 1400 p 1750 *p 38 &x 1750 x 38

1400
p

1750
x

.

FIGURE 13-2 Main memory, p, and x

750 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

Let us note the following:

1. p is a pointer variable.

2. The content of p points only to a memory location of type int.

3. Memory location x exists and is of type int. Therefore, the assignment
statement:
p = &x;

is legal. After this assignment statement executes, *p is valid and
meaningful.

The program in Example 13-3 further illustrates how a pointer variable works.

EXAMPLE 13-3

The following program illustrates how pointer variables work:

//Chapter 13: Example 13-3

#include <iostream>

using namespace std;

int main()
{

int *p;
int x = 37;

cout << "Line 1: x = " << x << endl; //Line 1

p = &x; //Line 2

cout << "Line 3: *p = " << *p
<< ", x = " << x << endl; //Line 3

*p = 58; //Line 4

cout << "Line 5: *p = " << *p
<< ", x = " << x << endl; //Line 5

cout << "Line 6: Address of p = " << &p << endl; //Line 6

cout << "Line 7: Value of p = " << p << endl; //Line 7

cout << "Line 8: Value of the memory location "
<< "pointed to by *p = " << *p << endl; //Line 8

cout << "Line 9: Address of x = " << &x << endl; //Line 9
cout << "Line 10: Value of x = " << x << endl; //Line 10

return 0;
}

Dereferencing Operator (*) | 751

Sample Run:

Line 1: x = 37
Line 3: *p = 37, x = 37
Line 5: *p = 58, x = 58
Line 6: Address of p = 006BFDF4
Line 7: Value of p = 006BFDF0
Line 8: Value of the memory location pointed to by *p = 58
Line 9: Address of x = 006BFDF0
Line 10: Value of x = 58

The preceding program works as follows. The statement in Line 1 outputs the value of x,
and the statement in Line 2 stores the address of x into p. The statement in Line 3 outputs
the values of *p and x. Because p contains the address of p, the values of *p and x are the
same, as shown by the output of Line 3. The statement in Line 4 changes the value of *p
to 58, and the statement in Line 5 outputs the values of *p and x, which are again the
same. The statements in Lines 6 through 10 output the address of p, the value of p, the
value of *p, the address of x, and the value of x. Note that the value of p and the address
of x are the same because the address of x is stored in p by the statement in Line 2. (Note
that the address of p, the value of p, and the address of x, as shown by the outputs of Lines
6, 7, and 9, respectively, are machine dependent. When you run this program on your
machine, you are likely to get different values. Furthermore, the pointer values, that is,
addresses, are printed in hexadecimal by default.)

Classes, Structs, and Pointer Variables
In the previous section, you learned how to declare and manipulate pointers of simple
data types, such as int and char. You can also declare pointers to other data types, such
as classes. You will now learn how to declare and manipulate pointers to classes and
structs. (Recall that both classes and structs have the same capabilities. The only difference
between classes and structs is that, by default, all members of a class are private, and, by
default, all members of a struct are public. Therefore, the following discussion applies
to both.)

Consider the following declaration of a struct:

struct studentType
{

char name[26];
double gpa;
int sID;
char grade;

};

studentType student;
studentType *studentPtr;

752 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

In the preceding declaration, student is an object of type studentType, and
studentPtr is a pointer variable of type studentType. The following statement stores
the address of student in studentPtr:

studentPtr = &student;

The following statement stores 3.9 in the component gpa of the object student:

(*studentPtr).gpa = 3.9;

The expression (*studentPtr).gpa is a mixture of pointer dereferencing and the class
component selection. In C++, the dot operator, ., has a higher precedence than the
dereferencing operator.

Let us elaborate on this a bit. In the expression (*studentPtr).gpa, the operator *
evaluates first, so the expression *studentPtr evaluates first. Because studentPtr is a
pointer variable of type studentType, *studentPtr refers to a memory space of type
studentType, which is a struct. Therefore, (*studentPtr).gpa refers to the
component gpa of that struct.

Consider the expression *studentPtr.gpa. Let us see how this expression gets evaluated.
Because. (dot) has a higher precedence than *, the expression studentPtr.gpa evaluates
first. The expression studentPtr.gpa would result in a syntax error, as studentPtr is not
a struct variable, so it has no such component as gpa.

As you can see, in the expression (*studentPtr).gpa, the parentheses are important.
However, typos can be problematic. Therefore, to simplify the accessing of class or
struct components via a pointer, C++ provides another operator called the member
access operator arrow, ->. The operator -> consists of two consecutive symbols: a
hyphen and the ‘‘greater than’’ sign.

The syntax for accessing a class (struct) member using the operator -> is:

pointerVariableName->classMemberName

Thus, the statement:

(*studentPtr).gpa = 3.9;

is equivalent to the statement:

studentPtr->gpa = 3.9;

Accessing class (struct) components via pointers using the operator -> thus eliminates
the use of both parentheses and the dereferencing operator. Because typos are unavoid-
able and missing parentheses can result in either an abnormal program termination or
erroneous results, when accessing class (struct) components via pointers, this book
uses the arrow notation.

1
3

Classes, Structs, and Pointer Variables | 753

Example 13-4 illustrates how pointers work with class member functions.

EXAMPLE 13-4

Consider the following class:

class classExample
{
public:

void setX(int a);
//Function to set the value of x
//Postcondition: x = a;

void print() const;
//Function to output the value of x

private:
int x;

};

The definition of the member function is as follows:

void classExample::setX(int a)
{

x = a;
}

void classExample::print() const
{

cout << "x = " << x << endl;
}

Consider the following function main:

int main()
{

classExample *cExpPtr; //Line 1
classExample cExpObject; //Line 2

cExpPtr = &cExpObject; //Line 3

cExpPtr->setX(5); //Line 4
cExpPtr->print(); //Line 5

return 0;
}

Sample Run:

x = 5

In the function main, the statement in Line 1 declares cExpPtr to be a pointer of type
classExample, and the statement in Line 2 declares cExpObject to be an object of type
classExample. The statement in Line 3 stores the address of cExpObject into cExpPtr
(see Figure 13-3).

754 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

In the statement in Line 4, the pointer cExpPtr accesses the member function setX to
set the value of the member variable x (see Figure 13-4).

In the statement in Line 5, the pointer cExpPtr accesses the member function print to
print the value of x, as shown above.

Initializing Pointer Variables
Because C++ does not automatically initialize variables, pointer variables must be
initialized if you do not want them to point to anything. Pointer variables are initialized
using the constant value 0, called the null pointer. Thus, the statement p = 0; stores the
null pointer in p, that is, p points to nothing. Some programmers use the named constant
NULL to initialize pointer variables. The following two statements are equivalent:

p = NULL;
p = 0;

The number 0 is the only number that can be directly assigned to a pointer variable.

Dynamic Variables
In the previous sections, you learned how to declare pointer variables, how to store the
address of a variable into a pointer variable of the same type as the variable, and how to
manipulate data using pointers. However, you learned how to use pointers to manipulate
data only into memory spaces that were created using other variables. In other words, the
pointers manipulated data into existing memory spaces. So what is the benefit to using

cExpObject

cExpPtr x

FIGURE 13-3 cExpObject and cExpPtr after the statement cExpPtr = &cExpObject;
executes

cExpObject

cExpPtr x 5

FIGURE 13-4 cExpObject and cExpPtr after the statement cExpPtr->setX(5); executes

Dynamic Variables | 755

pointers? You can access these memory spaces by working with the variables that were
used to create them. In this section, you will learn about the power behind pointers. In
particular, you will learn how to allocate and deallocate memory during program execu-
tion using pointers.

Variables that are created during program execution are called dynamic variables. With
the help of pointers, C++ creates dynamic variables. C++ provides two operators, new
and delete, to create and destroy dynamic variables, respectively. When a program
requires a new variable, the operator new is used. When a program no longer needs a
dynamic variable, the operator delete is used.

In C++, new and delete are reserved words.

Operator new
The operator new has two forms: one to allocate a single variable and another to allocate
an array of variables. The syntax to use the operator new is:

new dataType; //to allocate a single variable
new dataType[intExp]; //to allocate an array of variables

in which intExp is any expression evaluating to a positive integer.

The operator new allocates memory (a variable) of the designated type and returns a
pointer to it—that is, the address of this allocated memory. Moreover, the allocated
memory is uninitialized.

Consider the following declaration:

int *p;
char *q;
int x;

The statement:

p = &x;

stores the address of x in p. However, no new memory is allocated. On the other hand,
consider the following statement:

p = new int;

This statement creates a variable during program execution somewhere in memory and
stores the address of the allocated memory in p. The allocated memory is accessed via
pointer dereferencing—namely, *p. Similarly, the statement:

q = new char[16];

creates an array of 16 components of type char and stores the base address of the
array in q.

756 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Because a dynamic variable is unnamed, it cannot be accessed directly. It is accessed
indirectly by the pointer returned by new. The following statements illustrate this
concept:

int *p; //p is a pointer of type int
char *name; //name is a pointer of type char
string *str; //str is a pointer of type string

p = new int; //allocates memory of type int
//and stores the address of the
//allocated memory in p

*p = 28; //stores 28 in the allocated memory

name = new char[5]; //allocates memory for an array of
//five components of type char and
//stores the base address of the array
//in name

strcpy(name, "John"); //stores John in name

str = new string; //allocates memory of type string
//and stores the address of the
//allocated memory in str

*str = "Sunny Day"; //stores the string "Sunny Day" in
//the memory pointed to by str

Recall that the operator new allocates memory space of a specific type and
returns the address of the allocated memory space. However, if the operator

new is unable to allocate the required memory space (for example, there is not
enough memory space), then it throws a bad_alloc exception, and if this
exception is not handled, it terminates the program with an error message.

Exceptions are covered in detail in Chapter 15. This chapter also discusses

bad_alloc exception.

Operator delete
Suppose you have the following declaration:

int *p;

This statement declares p to be a pointer variable of type int. Next, consider the
following statements:

p = new int; //Line 1
*p = 54; //Line 2
p = new int; //Line 3
*p = 73; //Line 4

Figure 13-5 shows the effect of these statements.

1
3

Dynamic Variables | 757

(The number 1500 on top of the box indicates the address of the memory space.) The
statement in Line 1 allocates memory space of type int and stores the address of the allocated
memory space into p. Suppose that the address of allocated memory space is 1500. Then, the
value of p after the execution of this statement is 1500 (see Figure 13-5(a)). The statement in
Line 2 stores 54 into the memory space that p points to, which is 1500 (see Figure 13-5(b)).

Next, the statement in Line 3 executes, which allocates a memory space of type int
and stores the address of the allocated memory space into p. Suppose the address of
this allocated memory space is 1800. It follows that the value of p is now 1800 (see
Figure 13-5(c)). The statement in Line 4 stores 73 into the memory space that p points
to, which is 1800. In other words, after the execution of the statement in Line 4, the
value stored into memory space at location 1800 is 73 (see Figure 13-5(d)).

Now the obvious question is what happened to the memory space 1500 that p was
pointing to after execution of the statement in Line 1. After execution of the statement in
Line 3, p points to the new memory space at location 1800. The previous memory space
at location 1500 is now inaccessible. In addition, the memory space 1500 remains as
marked allocated. In other words, it cannot be reallocated. This is called memory leak.
That is, there is an unused memory space that cannot be allocated.

Imagine what would happen if you executed statements, such as Line 3, a few thousand
or a few million times. There would be a good amount of memory leak. The program
might then run out of memory spaces for data manipulation and eventually result in an
abnormal termination of the program.

The question at hand is how to avoid memory leak. When a dynamic variable is no
longer needed, it can be destroyed; that is, its memory can be deallocated. The C++

p 1500
1500

54p 1500
1500

p 1800
1800

54
1500

73p 1800
1800

54
1500

(a) p after the execution of
 p = new int;

(b) p and *p after the
 execution of *p = 54;

(c) p after the execution of
 p = new int;

(d) p and *p after the
 execution of *p = 73;

main

FIGURE 13-5 p after the memory space it points to following the execution of various statements

758 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

operator delete is used to destroy dynamic variables. The syntax to use the operator
delete has two forms:

delete pointerVariable; //to deallocate a single
//dynamic variable

delete [] pointerVariable; //to deallocate a dynamically
//created array

Thus, given the declarations of the previous section, the statements:

delete p;
delete [] name;
delete str;

deallocate the memory spaces that the pointers p, name, and str point to.

Suppose p and name are pointer variables, as declared previously. Notice that an expres-
sion such as:

delete p;

or:

delete [] name;

only marks the memory spaces that these pointer variables point to as deallocated.
Depending on a particular system, after these statements execute, these pointer variables
may still contain the addresses of the deallocated memory spaces. In this case, we say that
these pointers are dangling. Therefore, if later you access the memory spaces via these
pointers without properly initializing them, depending on a particular system, either the
program will access a wrong memory space, which may result in corrupting data, or the
program will terminate with an error message. One way to avoid this pitfall is to set these
pointers to NULL after the delete operation. Also note that for the operator delete to
work properly, the pointer must point to a valid memory space.

Operations on Pointer Variables
The operations that are allowed on pointer variables are the assignment and relational opera-
tions and some limited arithmetic operations. The value of one pointer variable can be assigned
to another pointer variable of the same type. Two pointer variables of the same type can be
compared for equality, and so on. Integer values can be added and subtracted from a pointer
variable. The value of one pointer variable can be subtracted from another pointer variable.

For example, suppose that we have the following statements:

int *p, *q;

The statement:

p = q;

1
3

Operations on Pointer Variables | 759

copies the value of q into p. After this statement executes, both p and q point to the same
memory location. Any changes made to *p automatically change the value of *q, and
vice versa.

The expression:

p == q

evaluates to true if p and q have the same value—that is, if they point to the same
memory location. Similarly, the expression:

p != q

evaluates to true if p and q point to different memory locations.

The arithmetic operations that are allowed differ from the arithmetic operations on
numbers. First, let us use the following statements to explain the increment and decre-
ment operations on pointer variables:

int *p;
double *q;
char *chPtr;
studentType *stdPtr; //studentType is as defined before

Recall that the size of the memory allocated for an int variable is 4 bytes, a double
variable is 8 bytes, and a char variable is 1 byte. The memory allocated for a variable of
type studentType is then 40 bytes.

The statement:

p++; or p = p + 1;

increments the value of p by 4 bytes because p is a pointer of type int. Similarly, the
statements:

q++;
chPtr++;

increment the value of q by 8 bytes and the value of chPtr by 1 byte, respectively. The
statement:

stdPtr++;

increments the value of stdPtr by 40 bytes.

The increment operator increments the value of a pointer variable by the size of the
memory to which it is pointing. Similarly, the decrement operator decrements the value
of a pointer variable by the size of the memory to which it is pointing.

Moreover, the statement:

p = p + 2;

increments the value of p by 8 bytes.

760 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

Thus, when an integer is added to a pointer variable, the value of the pointer variable is
incremented by the integer times the size of the memory that the pointer is pointing to.
Similarly, when an integer is subtracted from a pointer variable, the value of the pointer variable
is decremented by the integer times the size of the memory to which the pointer is pointing.

Pointer arithmetic can be very dangerous. Using pointer arithmetic, the program can

accidentally access the memory locations of other variables and change their content

without warning, leaving the programmer trying to find out what went wrong. If a pointer

variable tries to access either the memory spaces of other variables or an illegal memory

space, some systems might terminate the program with an appropriate error message.

Always exercise extra care when doing pointer arithmetic.

Dynamic Arrays
In Chapter 9, you learned how to declare and process arrays. The arrays discussed in
Chapter 9 are called static arrays because their size was fixed at compile time. One of the
limitations of a static array is that every time you execute the program, the size of the
array is fixed, so it might not be possible to use the same array to process different data sets
of the same type. One way to handle this limitation is to declare an array that is large
enough to process a variety of data sets. However, if the array is very big and the data set
is small, such a declaration would result in memory waste. On the other hand, it would
be helpful if, during program execution, you could prompt the user to enter the size of
the array and then create an array of the appropriate size. This approach is especially
helpful if you cannot even guess the array size. In this section, you will learn how to
create arrays during program execution and process such arrays.

An array created during the execution of a program is called a dynamic array. To create
a dynamic array, we use the second form of the new operator.

The statement:

int *p;

declares p to be a pointer variable of type int. The statement:

p = new int[10];

allocates 10 contiguous memory locations, each of type int, and stores the address of the
first memory location into p. In other words, the operator new creates an array of
10 components of type int, it returns the base address of the array, and the assignment
operator stores the base address of the array into p. Thus, the statement:

*p = 25;

stores 25 into the first memory location, and the statements:

p++; //p points to the next array component
*p = 35;

Dynamic Arrays | 761

store 35 into the second memory location. Thus, by using the increment and decrement
operations, you can access the components of the array. Of course, after performing a few
increment operations, it is possible to lose track of the first array component. C++ allows
us to use array notation to access these memory locations. For example, the statements:

p[0] = 25;
p[1] = 35;

store 25 and 35 into the first and second array components, respectively. That is, p[0]
refers to the first array component, p[1] refers to the second array component, and so on.
In general, p[i] refers to the (i + 1)th array component. After the preceding statements
execute, p still points to the first array component. Moreover, the following for loop
initializes each array component to 0:

for (j = 0; j < 10; j++)
p[j] = 0;

in which j is an int variable.

When the array notation is used to process the array pointed to by p, p stays fixed at
the first memory location. Moreover, p is a dynamic array created during program
execution.

The statement:

int list[5];

declares list to be an array of five components. Recall from Chapter 9 that list itself
is a variable, and the value stored in list is the base address of the array—that is, the

address of the first array component. Suppose the address of the first array component is

1000. Figure 13-6 shows list and the array list.

list[0] 1000

1000list

list[1] 1004

list[2] 1008

list[3] 1012

list[4] 1016

1000

FIGURE 13-6 list and array list

Because the value of list, which is 1000, is a memory address, list is a pointer
variable. However, the value stored in list, which is 1000, cannot be altered during

762 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

program execution. That is, the value of list is constant. Therefore, the increment and

decrement operations cannot be applied to list. In fact, any attempt to use the

increment or decrement operations on list results in a compile-time error.

Notice that here, we are only saying that the value of list cannot be changed. However,
the data into the array list can be manipulated as before. For example, the statement

list[0] = 25; stores 25 into the first array component. Similarly, the statement

list[3] = 78; stores 78 into the fourth component of list (see Figure 13-7).

list[0] 1000

1000list

list[1] 1004

list[2] 1008

list[3] 1012

list[4] 1016

1000

25

78

FIGURE 13-7 Array list after the execution of the statements list[0] = 25; and
list[3] = 78;

If p is a pointer variable of type int, then the statement:

p = list;

copies the value of list, which is 1000, the base address of the array, into p. We are
allowed to perform increment and decrement operations on p.

An array name is a constant pointer.

EXAMPLE 13-5

The following program segment illustrates how to obtain a user’s response to get the array
size and create a dynamic array during program execution. Consider the following
statements:

int *intList; //Line 1
int arraySize; //Line 2

cout << "Enter array size: "; //Line 3
cin >> arraySize; //Line 4
cout << endl; //Line 5

intList = new int[arraySize]; //Line 6

1
3

Dynamic Arrays | 763

The statement in Line 1 declares intList to be a pointer of type int, and the statement
in Line 2 declares arraySize to be an int variable. The statement in Line 3 prompts the
user to enter the size of the array, and the statement in Line 4 inputs the array size into the
variable arraySize. The statement in Line 6 creates an array of the size specified by
arraySize, and the base address of the array is stored in intList. From this point on,
you can treat intList just like any other array. For example, you can use the array
notation to process the elements of intList and pass intList as a parameter to the
function.

Functions and Pointers
A pointer variable can be passed as a parameter to a function either by value or by
reference. To declare a pointer as a value parameter in a function heading, you use the
same mechanism as you use to declare a variable. To make a formal parameter be a
reference parameter, you use & when you declare the formal parameter in the function
heading. Therefore, to declare a formal parameter as a reference pointer parameter,
between the data type name and the identifier name, you must include * to make the
identifier a pointer and & to make it a reference parameter. The obvious question is: In
what order should & and * appear between the data type name and the identifier to
declare a pointer as a reference parameter? In C++, to make a pointer a reference
parameter in a function heading, * appears before the & between the data type name
and the identifier. The following example illustrates this concept.

void pointerParameters(int* &p, double *q)
{

.

.

.
}

In the function pointerParameters, both p and q are pointers. The parameter p is a
reference parameter; the parameter q is a value parameter. Furthermore, the function
pointerParameters can change the value of *q, but not the value of q. However, the
function pointerParameters can change the value of both p and *p.

Pointers and Function Return Values
In C++, the return type of a function can be a pointer. For example, the return type of
the function:

int* testExp(...)
{

.

.

.
}

is a pointer type int.

764 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Dynamic Two-Dimensional Arrays
The beginning of this section discussed how to create dynamic one-dimensional arrays.
You can also create dynamic multidimensional arrays. In this section, we discuss how to
create dynamic two-dimensional arrays. Dynamic multidimensional arrays are created
similarly.

There are various ways you can create dynamic dimensional arrays. One way is as follows.
Consider the statement:

int *board[4];

This statement declares board to be an array of four pointers wherein each pointer is of
type int. Because board[0], board[1], board[2], and board[3] are pointers, you
can now use these pointers to create the rows of board. Suppose that each row of board
has six columns. Then, the following for loop creates the rows of board.

for (int row = 0; row < 4; row++)
board[row] = new int[6];

Note that the expression new int[6] creates an array of six components of type int and
returns the base address of the array. The assignment statement then stores the returned
address into board[row]. It follows that after the execution of the previous for loop,
board is a two-dimensional array of four rows and six columns.

In the previous for loop, if you replace the number 6 with the number 10, then the loop
will create a two-dimensional array of four rows and 10 columns. In other words, the
number of columns of board can be specified during execution. However, the way
board is declared, the number of rows is fixed. So in reality, board is not a true dynamic
two-dimensional array.

Next, consider the following statement:

int **board;

This statement declares board to be a pointer to a pointer. In other words, board and
*board are pointers. Now board can store the address of a pointer or an array of pointers
of type int, and *board can store the address of an int memory space or an array of int
values.

Suppose that you want board to be an array of 10 rows and 15 columns. To accomplish
this, first we create an array of 10 pointers of type int and assign the address of that array
to board. The following statement accomplishes this:

board = new int* [10];

Next, we create the columns of board. The following for loop accomplishes this.

for (int row = 0; row < 10; row++)
board[row] = new int[15];

1
3

Dynamic Arrays | 765

To access the components of board, you can use the array subscripting notation discussed
in Chapter 9.

Note that the number of rows and the number of columns of board can be specified
during program execution. The following program further explains how to create two-
dimensional arrays.

EXAMPLE 13-6

// Dynamic two-dimensional arrays

#include <iostream>
#include <iomanip>

using namespace std;

void fill(int **p, int rowSize, int columnSize);
void print(int **p, int rowSize, int columnSize);

int main()
{

int **board; //Line 1

int rows; //Line 2
int columns; //Line 3

cout << "Line 4: Enter the number of rows "
<<"and columns: "; //Line 4

cin >> rows >> columns; //Line 5
cout << endl; //Line 6

//Create the rows of board
board = new int* [rows]; //Line 7

//Create the columns of board
for (int row = 0; row < rows; row++) //Line 8

board[row] = new int[columns]; //Line 9

//Insert elements into board
fill(board, rows, columns); //Line 10

cout << "Line 11: Board:" << endl; //Line 11

//Output the elements of board
print(board, rows, columns); //Line 12

return 0;
}

766 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

void fill(int **p, int rowSize, int columnSize)
{

for (int row = 0; row < rowSize; row++)
{

cout << "Enter " << columnSize << " number(s) for row "
<< "number " << row << ": ";

for (int col = 0; col < columnSize; col++)
cin >> p[row][col];

cout << endl;
}

}

void print(int **p, int rowSize, int columnSize)
{

for (int row = 0; row < rowSize; row++)
{

for (int col = 0; col < columnSize; col++)
cout << setw(5) << p[row][col];

cout << endl;
}

}

Sample Run: In this sample run, the user input is shaded.

Line 4: Enter the number of rows and columns: 3 4

Enter 4 number(s) for row number 0: 1 2 3 4

Enter 4 number(s) for row number 1: 5 6 7 8

Enter 4 number(s) for row number 2: 9 10 11 12

Line 11: Board:
1 2 3 4
5 6 7 8
9 10 11 12

The preceding program contains the functions fill and print. The function fill
prompts the user to enter the elements of a two-dimensional array of type int. The
function print outputs the elements of a two-dimensional array of type int.

For the most part, the preceding output is self-explanatory. Let us look at the statements
in the function main. The statement in Line 1 declares board to be a pointer to a pointer
of type int. The statements in Lines 2 and 3 declare int variables rows and columns.
The statement in Line 4 prompts the user to input the number of rows and number of
columns. The statement in Line 5 stores the number of rows in the variable rows and the
number of columns in the variable columns. The statement in Line 7 creates the rows of
board, and the for loop in Lines 8 and 9 creates the columns of board. The statement in
Line 10 uses the function fill to fill the array board, and the statement in Line 12 uses
the function print to output the elements of board.

1
3

Dynamic Arrays | 767

Shallow versus Deep Copy and Pointers
In an earlier section, we discussed pointer arithmetic and explained that if we are not careful,
one pointer might access the data of another (completely unrelated) pointer. This event might
result in unsuspected or erroneous results. Here, we discuss another peculiarity of pointers. To
facilitate the discussion, we will use diagrams to show pointers and their related memory.

Consider the following statements:

int *first;
int *second;

first = new int[10];

The first two statements declare first and second pointer variables of type int. The
third statement creates an array of 10 components, and the base address of the array is
stored into first (see Figure 13-8). (Note that first together with the arrow indicates
that first points to the allocated memory.)

Suppose that some meaningful data is stored in the array pointed to by first. To be
specific, suppose that this array is as shown in Figure 13-9.

Next, consider the following statement:

second = first; //Line A

This statement copies the value of first into second. After this statement executes,
both first and second point to the same array, as shown in Figure 13-10.

first

FIGURE 13-8 Pointer first and the array to which it points

10 36 89 29 47 64 28 92 37 73first

second

FIGURE 13-10 first and second after the statement second = first; executes

first 10 36 89 29 47 64 28 92 37 73

FIGURE 13-9 Pointer first and its array

768 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Let us next execute the following statement:

delete [] second;

After this statement executes, the array pointed to by second is deleted. This action
results in Figure 13-11.

Because first and second point to the same array, after the statement:

delete [] second;

executes, first becomes invalid, that is, first (as well as second) are now dangling
pointers. Therefore, if the program later tries to access the memory pointed to by first,
either the program will access the wrong memory or it will terminate in an error. This
case is an example of a shallow copy. More formally, in a shallow copy, two or more
pointers of the same type point to the same memory; that is, they point to the same data.

On the other hand, suppose that instead of the earlier statement, second = first; (in
Line A), we have the following statements:

second = new int[10];

for (int j = 0; j < 10; j++)
second[j] = first[j];

The first statement creates an array of 10 components of type int, and the base address of
the array is stored in second. The second statement copies the array pointed to by first
into the array pointed to by second (see Figure 13-12).

Both first and second now point to their own data. If second deletes its memory,
there is no effect on first. This case is an example of a deep copy. More formally, in a
deep copy, two or more pointers have their own data.

1
3

10first

second

36 89 29 47 64 28 92 37 73

10 36 89 29 47 64 28 92 37 73

FIGURE 13-12 first and second both pointing to their own data

first

second

FIGURE 13-11 first and second after the statement delete [] second; executes

Shallow versus Deep Copy and Pointers | 769

From the preceding discussion, it follows that you must know when to use a shallow
copy and when to use a deep copy.

Classes and Pointers: Some Peculiarities
In the previous section, we discussed how to use the arrow notation to access class
members via the pointer if a pointer variable is of a class type. Because a class can have
pointer member variables, this section discusses some peculiarities of such classes. To
facilitate the discussion, we will use the following class:

class ptrMemberVarType
{
public:

.

.

.
private:

int x;
int lenP;
int *p;

};

Also, consider the following statements (see Figure 13-13):

ptrMemberVarType objectOne;
ptrMemberVarType objectTwo;

Destructor
The object objectOne has a pointer member variable p. Suppose that during program
execution, the pointer p creates a dynamic array. When objectOne goes out of scope, all
of the member variables of objectOne are destroyed. However, p created a dynamic
array, and dynamic memory must be deallocated using the operator delete. Thus, if the
pointer p does not use the delete operator to deallocate the dynamic array, the memory
space of the dynamic array would stay marked as allocated, even though it cannot be
accessed. How do we ensure that when p is destroyed, the dynamic memory created by p
is also destroyed? Suppose that objectOne is as shown in Figure 13-14.

objectTwoobjectOne
x

p

lenP

x

p

lenP

FIGURE 13-13 Objects objectOne and objectTwo

770 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Recall that if a class has a destructor, the destructor automatically executes whenever a
class object goes out of scope (see Chapter 11). Therefore, we can put the necessary code
in the destructor to ensure that when objectOne goes out of scope, the memory created
by the pointer p is deallocated. For example, the definition of the destructor for the
class ptrMemberVarType is:

ptrMemberVarType::~ptrMemberVarType()
{

delete [] p;
}

Of course, you must include the destructor as a member of the class in its definition.
Let us extend the definition of the class ptrMemberVarType by including the
destructor. Moreover, the remainder of this section assumes that the definition of the
destructor is as given previously—that is, the destructor deallocates the memory space
pointed to by p.

class ptrMemberVarType
{
public:

~ptrMemberVarType();
.
.
.

private:
int x;
int lenP;
int *p;

};

For the destructor to work properly, the pointer p must have a valid value. If p is not

properly initialized (that is, if the value of p is garbage) and the destructor executes,
either the program terminates with an error message or the destructor deallocates an

unrelated memory space. For this reason, you should exercise extra caution while working

with pointers.

1
3

objectOne
x

5 36

8

50

24 15 ...

p

lenP

FIGURE 13-14 Object objectOne and its data

Classes and Pointers: Some Peculiarities | 771

Assignment Operator
This section describes the limitations of the built-in assignment operators for classes with
pointer member variables. Suppose that objectOne and objectTwo are as shown in
Figure 13-15.

Recall that one of the built-in operations on classes is the assignment operator. For
example, the statement:

objectTwo = objectOne;

copies the member variables of objectOne into objectTwo. That is, the value of
objectOne.x is copied into objectTwo.x, and the value of objectOne.p is copied
into objectTwo.p. Because p is a pointer, this member-wise copying of the data would
lead to a shallow copying of the data. That is, both objectTwo.p and objectOne.p
would point to the same memory space, as shown in Figure 13-16.

Now, if objectTwo.p deallocates the memory space to which it points, objectOne.p
would become invalid. This situation could very well happen if the class
ptrMemberVarType has a destructor that deallocates the memory space pointed to by p
when an object of type ptrMemberVarType goes out of scope. It suggests that there must be

objectTwoobjectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 13-16 Objects objectOne and objectTwo after the statement objectTwo = objectOne;
executes

objectTwoobjectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

FIGURE 13-15 Objects objectOne and objectTwo

772 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

a way to avoid this pitfall. To avoid this shallow copying of data for classes with a pointer
member variable, C++ allows the programmer to extend the definition of the assignment
operator. This process is called overloading the assignment operator. Chapter 14 explains
how to accomplish this task by using operator overloading. Once the assignment operator is
properly overloaded, both objectOne and objectTwo have their own data, as shown in
Figure 13-17.

Copy Constructor
When declaring a class object, you can initialize it by using the value of an existing object
of the same type. For example, consider the following statement:

ptrMemberVarType objectThree(objectOne);

The object objectThree is being declared and is also being initialized by using the value
of objectOne. That is, the values of the member variables of objectOne are copied into
the corresponding member variables of objectThree. This initialization is called the
default member-wise initialization. The default member-wise initialization is due to the
constructor, called the copy constructor (provided by the compiler). Just as in the case
of the assignment operator, because the class ptrMemberVarType has pointer member
variables, this default initialization would lead to a shallow copying of the data, as shown
in Figure 13-18. (Assume that objectOne is given as before.)

1
3

objectTwoobjectOne
x

5 36

8

50

24 15 ... 5 36 24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 13-17 Objects objectOne and objectTwo

objectThreeobjectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 13-18 Objects objectOne and objectThree

Classes and Pointers: Some Peculiarities | 773

Before describing how to overcome this deficiency, let us describe one more situation that
could also lead to a shallow copying of the data. The solution to both these problems is the same.

Recall that as parameters to a function, class objects can be passed either by reference or
by value. Remember that the class ptrMemberVarType has the destructor, which
deallocates the memory space pointed to by p. Suppose that objectOne is as shown in
Figure 13-19.

Let us consider the following function prototype:

void destroyList(ptrMemberVarType paramObject);

The function destroyList has a formal value parameter, paramObject. Now consider
the following statement:

destroyList(objectOne);

In this statement, objectOne is passed as a parameter to the function destroyList.
Because paramObject is a value parameter, the copy constructor copies the member
variables of objectOne into the corresponding member variables of paramObject. Just
as in the previous case, paramObject.p and objectOne.p would point to the same
memory space, as shown in Figure 13-20.

paramObject

destroyList

objectOne
x

5 36

8

50

24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 13-20 Pointer member variables of objects objectOne and paramObject pointing to the
same array

objectOne
x

5 36

8

50

24 15 ...

p

lenP

FIGURE 13-19 Object objectOne

774 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Because objectOne is passed by value, the member variables of paramObject should
have their own copy of the data. In particular, paramObject.p should have its own
memory space. How do we ensure that this is, in fact, the case?

If a class has pointer member variables:

• During object declaration, the initialization of one object using the value
of another object would lead to a shallow copying of the data if the
default member-wise copying of data is allowed.

• If, as a parameter, an object is passed by value and the default member-wise
copying of data is allowed, it would lead to a shallow copying of the data.

In both cases, to force each object to have its own copy of the data, we must override the
definition of the copy constructor provided by the compiler; that is, we must provide our own
definition of the copy constructor. This is usually done by putting a statement that includes the
copy constructor in the definition of the class and then writing the definition of the copy
constructor. Then, whenever the copy constructor needs to be executed, the system would
execute the definition provided by us, not the one provided by the compiler. Therefore, for the
class ptrMemberVarType, we can overcome this shallow copying problem by including the
copy constructor in the class ptrMemberVarType. Example 13-6 illustrates this.

The copy constructor automatically executes in three situations (the first two are
described previously).

• When an object is declared and initialized by using the value of another object

• When, as a parameter, an object is passed by value

• When the return value of a function is an object

Therefore, once the copy constructor is properly defined for the class
ptrMemberVarType, both objectOne.p and objectThree.p will have their own
copies of the data. Similarly, objectOne.p and paramObject.p will have their own
copies of the data, as shown in Figure 13-21.

1
3

paramObject

destroyList

objectOne
x

5 36

8

50

24 15 ... 5 36 24 15 ...

p

lenP

x

p

lenP

8

50

FIGURE 13-21 Pointer member variables of objects objectOne and paramObject with their
own data

Classes and Pointers: Some Peculiarities | 775

When the function destroyList exits, the formal parameter paramObject goes
out of scope, and the destructor for the object paramObject deallocates the memory space
pointed to by paramObject.p. However, this deallocation has no effect on objectOne.

The general syntax to include the copy constructor in the definition of a class is:

className(const className& otherObject);

Notice that the formal parameter of the copy constructor is a constant reference parameter.

Example 13-7 illustrates how to include the copy constructor in a class and how it works.

EXAMPLE 13-7

Consider the following class:

class ptrMemberVarType
{
public:

void print() const;
//Function to output the data stored in the array p.

void insertAt(int index, int num);
//Function to insert num into the array p at the
//position specified by index.
//If index is out of bounds, the program is terminated.
//If index is within bounds, but greater than the index
//of the last item in the list, num is added at the end
//of the list.

ptrMemberVarType(int size = 10);
//Constructor
//Creates an array of the size specified by the
//parameter size; the default array size is 10.

~ptrMemberVarType();
//Destructor
//deallocates the memory space occupied by the array p.

ptrMemberVarType(const ptrMemberVarType& otherObject);
//Copy constructor

private:
int maxSize; //variable to store the maximum size of p
int length; //variable to store the number elements in p
int *p; //pointer to an int array

};

Suppose that the definitions of the members of the class ptrMemberVarType are as
follows:

776 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

void ptrMemberVarType::print() const
{

for (int i = 0; i < length; i++)
cout << p[i] << " ";

}

void ptrMemberVarType::insertAt(int index, int num)
{

//if index is out of bounds, terminate the program
assert(index >= 0 && index < maxSize);

if (index < length)
p[index] = num;

else
{

p[length] = num;
length++;

}
}

ptrMemberVarType::ptrMemberVarType(int size)
{

if (size <= 0)
{

cout << "The array size must be positive." << endl;
cout << "Creating an array of the size 10." << endl;

maxSize = 10;
}
else

maxSize = size;

length = 0;

p = new int[maxSize];

}

ptrMemberVarType::~ptrMemberVarType()
{

delete [] p;
}

//copy constructor
ptrMemberVarType::ptrMemberVarType

(const ptrMemberVarType& otherObject)
{

maxSize = otherObject.maxSize;
length = otherObject.length;

1
3

Classes and Pointers: Some Peculiarities | 777

p = new int[maxSize];

for (int i = 0; i < length; i++)
p[i] = otherObject.p[i];

}

Consider the following function main. (We assume that the definition of the class
ptrMemberVarType is in the header file ptrMemberVarType.h.)

#include <iostream>
#include "ptrMemberVarType.h"

using namespace std;

void testCopyConst(ptrMemberVarType temp);

int main()
{

ptrMemberVarType listOne; //Line 1

int num; //Line 2
int index; //Line 3

cout << "Line 4: Enter 5 integers." << endl; //Line 4

for (index = 0; index < 5; index++) //Line 5
{

cin >> num; //Line 6
listOne.insertAt(index, num); //Line 7

}

cout << "Line 8: listOne: "; //Line 8
listOne.print(); //Line 9
cout << endl; //Line 10

//Declare listTwo and initialize it using listOne
ptrMemberVarType listTwo(listOne); //Line 11

cout << "Line 12: listTwo: "; //Line 12
listTwo.print(); //Line 13
cout << endl; //Line 14

listTwo.insertAt(5, 34); //Line 15
listTwo.insertAt(2, -76); //Line 16

cout << "Line 17: After modifying listTwo: "; //Line 17
listTwo.print(); //Line 18
cout << endl; //Line 19

cout << "Line 20: After modifying listTwo, "
<< "listOne: "; //Line 20

listOne.print(); //Line 21
cout << endl; //Line 22

778 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

cout << "Line 23: Calling the function testCopyConst"
<< endl; //Line 23

//Call function testCopyConst
testCopyConst(listOne); //Line 24

cout << "Line 25: After a call to the function "
<< "testCopyConst, " << endl
<< " listOne is: "; //Line 25

listOne.print(); //Line 26
cout << endl; //Line 27

return 0; //Line 28
}

void testCopyConst(ptrMemberVarType temp)
{

cout << "Line 29: *** Inside the function "
<< "testCopyConst ***" << endl; //Line 29

cout << "Line 30: Object temp data: "; //Line 30
temp.print(); //Line 31
cout << endl; //Line 32

temp.insertAt(3, -100); //Line 33
cout << "Line 34: After changing temp: "; //Line 34
temp.print(); //Line 35
cout << endl; //Line 36

cout << "Line 37: *** Exiting the function "
<< "testCopyConst ***" << endl; //Line 37

}

Sample Run: In this sample run, the user input is shaded.

Line 4: Enter 5 integers.
14 8 34 2 58
Line 8: listOne: 14 8 34 2 58
Line 12: listTwo: 14 8 34 2 58
Line 17: After modifying listTwo: 14 8 -76 2 58 34
Line 20: After modifying listTwo, listOne: 14 8 34 2 58
Line 23: Calling the function testCopyConst
Line 29: *** Inside the function testCopyConst ***
Line 30: Object temp data: 14 8 34 2 58
Line 34: After changing temp: 14 8 34 -100 58
Line 37: *** Exiting the function testCopyConst ***
Line 25: After a call to the function testCopyConst,

listOne is: 14 8 34 2 58

In the preceding program, the statement in Line 1 declares listOne to be an object of type
ptrMemberVarType. The member variable p of listOne is an array of size 10, which is

Classes and Pointers: Some Peculiarities | 779

the default array size. The for loop in Line 5 reads and stores five integers in listOne.p.
The statement in Line 9 outputs the numbers stored in listOne, that is, the five numbers
stored in p. (See the output of the line marked Line 8 in the sample run.)

The statement in Line 11 declares listTwo to be an object of type ptrMemberVarType and
also initializes listTwo using the values of listOne. The statement in Line 13 outputs the
numbers stored in listTwo. (See the output of the line marked Line 12 in the sample run.)

The statements in Lines 15 and 16 modify listTwo, and the statement in Line 18 outputs
the modified data of listTwo. (See the output of the line marked Line 17 in the sample
run.) The statement in Line 21 outputs the data stored in listOne. Notice that the data
stored in listOne is unchanged, even though listTwo modified its data. It follows that
the copy constructor used to initialize listTwo using listOne (at Line 11) provides
listTwo its own copy of the data.

The statements in Lines 23 through 28 show that when listOne is passed as a parameter by
value to the function testCopyConst (see Line 24), the corresponding formal parameter
temp has its own copy of data. Notice that the function testCopyConst modifies the object
temp; however, the object listOne remains unchanged. See the outputs of the lines marked
Line 23 (before the function testCopyConst is called) and Line 25 (after the function
testCopyConst terminates) in the sample run. Also notice that when the function test-
CopyConst terminates, the destructor of the class ptrMemberVarType deallocates the
memory space occupied by temp.p, which has no effect on listOne.p.

For classes with pointer member variables, three things are normally done:

1. Include the destructor in the class.

2. Overload the assignment operator for the class.

3. Include the copy constructor.

Chapter 15 discusses overloading the assignment operator. Until then, whenever we
discuss classes with pointer member variables, out of the three items in the previous list,
we will implement only the destructor and the copy constructor.

Inheritance, Pointers, and Virtual Functions
Recall that as a parameter, a class object can be passed either by value or by reference.
Earlier chapters also said that the types of the actual and formal parameters must match.
However, in the case of classes, C++ allows the user to pass an object of a derived class to a
formal parameter of the base class type.

First, let us discuss the case in which the formal parameter is either a reference parameter
or a pointer. To be specific, let us consider the following classes:

class petType
{
public:

780 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

void print();
petType(string n = "");

private:
string name;

};

class dogType: public petType
{
public:

void print();
dogType(string n = "", string b = "");

private:
string breed;

};

The class petType has three members. The class dogType is derived from the
class petType and has three members of its own. Both classes have a member
function print. Suppose that the definitions of the member functions of both classes
are as follows:

void petType::print()
{

cout << "Name: " << name;
}

petType::petType(string n)
{

name = n;
}

void dogType::print()
{

petType::print();
cout << ", Breed: " << breed << endl;

}

Consider the following function in a user program (client code):

void callPrint(petType& p)
{

p.print();
}

The function callPrint has a formal reference parameter p of type petType. You can
call the function callPrint by using an object of either type petType or type dogType
as a parameter. Moreover, the body of the function callPrint calls the member
function print. Consider the following function main:

int main()
{

petType pet("Lucky"); //Line 1
dogType dog("Tommy", "German Shepherd"); //Line 2

pet.print(); //Line 3
cout << endl; //Line 4
dog.print(); //Line 5

Inheritance, Pointers, and Virtual Functions | 781

cout << "*** Calling the function callPrint ***"
<< endl; //Line 6

callPrint(pet); //Line 7
cout << endl; //Line 8
callPrint(dog); //Line 9

return 0;
}

Sample Run:

Name = Lucky
Name = Tommy, Breed = German Shepherd
*** Calling the function callPrint ***
Name = Lucky
Name = Tommy

The statements in Lines 1 through 6 are quite straightforward. Let us look at the
statements in Lines 7 and 9. The statement in Line 7 calls the function callPrint and
passes the object pet as the parameter; it generates the fourth line of the output. The
statement in Line 9 also calls the function callPrint but passes the object dog as the
parameter; it generates the fifth line of the output. The output generated by the state-
ments in Lines 7 and 9 shows only the value of name, even though each time a different
class object was passed as a parameter. Because in Line 9, object dog is passed as a
parameter to the function callPrint, one would expect that the output generated by
the statement in Line 9 should be the same as the second line of the output. What actually
occurred is that for both statements (Lines 7 and 9), the member function print of the
class petType was executed. This is due to the fact that the binding of the member
function print in the body of the function callPrint occurred at compile time.
Because the formal parameter p of the function callPrint is of type petType, for the
statement p.print();, the compiler associates the function print of the class
petType. More specifically, in compile-time binding, the necessary code to call a
specific function is generated by the compiler. (Compile-time binding is also known as
static binding or early binding.)

For the statement in Line 9, the actual parameter is of type dogType. Thus, when
the body of the function callPrint executes, logically the print function of object
dog should execute, which is not the case. So, during program execution, how does
C++ correct this problem of making the call to the appropriate function? C++
corrects this problem by providing the mechanism of virtual functions. The binding
of virtual functions occurs at program execution time, not at compile time. This kind
of binding is called run-time binding or late binding. More formally, in run-time
binding, the compiler does not generate the code to call a specific function. Instead,
it generates enough information to enable the run-time system to generate the
specific code for the appropriate function call. Run-time binding is also known as
dynamic binding.

782 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

In C++, virtual functions are declared using the reserved word virtual. Let us redefine
the previous classes using this feature.

class petType
{
public:

virtual void print(); //virtual function
petType(string n = "");

private:
string name;

};

class dogType: public petType
{
public:

void print();
dogType(string n = "", string b = "");

private:
string breed;

};

Note that we need to declare a virtual function only in the base class.

The definition of the member function print is the same as before. If we execute the
previous program with these modifications, the output is as follows.

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy, Breed: German Shepherd

This output shows that for the statement in Line 9, the print function of dogType is
executed (see the last two lines of the output).

The previous discussion also applies when a formal parameter is a pointer to a class, and a
pointer of the derived class is passed as an actual parameter. To illustrate this feature,
suppose we have the preceding classes. (We assume that the definition of the class
petType is in the header file petType.h, and the definition of the class dogType is in
the header file dogType.h.) Consider the following program:

#include <iostream>
#include "petType.h"
#include "dogType.h"

using namespace std;

void callPrint(petType *p);

int main()
{

petType *q; //Line 1
dogType *r; //Line 2

Inheritance, Pointers, and Virtual Functions | 783

q = new petType("Lucky"); //Line 3
r = new dogType("Tommy", "German Shepherd"); //Line 4

q->print(); //Line 5
cout << endl; //Line 6
r->print(); //Line 7

cout << "*** Calling the function callPrint ***"
<< endl; //Line 8

callPrint(q); //Line 9
cout << endl; //Line 10
callPrint(r); //Line 11

return 0;
}

void callPrint(petType *p)
{

p->print();
}

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy, Breed: German Shepherd

The preceding examples show that if a formal parameter, say p of a class type, is either a
reference parameter or a pointer and p uses a virtual function of the base class, we can
effectively pass a derived class object as an actual parameter to p.

However, if p is a value parameter, then this mechanism of passing a derived class object as
an actual parameter to p does not work, even if p uses a virtual function. Recall that, if a
formal parameter is a value parameter, the value of the actual parameter is copied into the
formal parameter. Therefore, if a formal parameter is of a class type, the member
variables of the actual object are copied into the corresponding member variables of the
formal parameter.

Suppose that we have the above classes—that is, petType and dogType. Consider the
following function definition:

void callPrint(petType p) //p is a value parameter
{

p.print();
}

Further suppose that we have the following declaration:

dogType dog;

The object dog has two member variables, name and breed. The member variable name
is inherited from the base class. Consider the following function call:

callPrint(dog);

784 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

In this statement, because the formal parameter p is a value parameter, the member variables
of dog are copied into the member variables of p. However, because p is an object of type
petType, it has only one member variable. Consequently, only the member variable name of
dog will be copied into the member variable name of p. Also, the statement:

p.print();

in the body of the function will result in executing the member function print of the
class petType.

The output of the following program further illustrates this concept. (As before, we
assume that the definition of the class petType is in the header file petType.h, and the
definition of the class dogType is in the header file dogType.h.)

//Chapter 13: Virtual Functions and Value Parameters

#include <iostream>
#include "petType.h"
#include "dogType.h"

using namespace std;

void callPrint(petType p);

int main()
{

petType pet("Lucky"); //Line 1
dogType dog("Tommy", "German Shepherd"); //Line 2

pet.print(); //Line 3
cout << endl; //Line 4
dog.print(); //Line 5

cout << "*** Calling the function callPrint ***"
<< endl; //Line 6

callPrint(pet); //Line 7
cout << endl; //Line 8
callPrint(dog); //Line 9
cout << endl; //Line 10

return 0;
}

void callPrint(petType p) //p is a value parameter
{

p.print();
}

Sample Run:

Name: Lucky
Name: Tommy, Breed: German Shepherd
*** Calling the function callPrint ***
Name: Lucky
Name: Tommy

Inheritance, Pointers, and Virtual Functions | 785

Look closely at the output of the statements in Lines 7 and 9 (the last two lines of
output). In Line 9, because the formal parameter p is a value parameter, the member
variables of dog are copied into the corresponding member variables of p. However,
because p is an object of type petType, it has only one member variable. Conse-
quently, only the member variable name of dog is copied into the member variable
name of p. Moreover, the statement p.print(); in the function callPrint
executes the function print of the class petType, not of the class dogType.
Therefore, the last line of the output shows only the value of name (the member
variable of dog).

An object of the base class type cannot be passed to a formal parameter of the derived

class type.

Before closing this section, we discuss another issue related to virtual functions.

Suppose that the definition of the class petType is as before, and the definition of the
class dogType is modified slightly as follows:

class dogType: public petType
{
public:

void print();
void setBreed(string b = "");
dogType(string n = "", string b = "");

private:
string breed;

};

Consider the following statements:

petType pet("Lucky");
dogType dog("Tommy", "German Shepherd");

pet = dog;

C++ allows this type of assignment, that is, the values of a derived class object can be
copied into a base class object. (Note that the reverse statement, that is, dog = pet;
is not allowed.) Now, because the object pet has only one data member (name)
and the object dog has two data members (name and breed), only the value of
the data member name of dog is copied into the data member name of pet.
This is called the slicing problem. The following statement will result in a
compile-time error.

pet.setBreed("Siberian Husky");

C++ offers a way to treat a dogType object as a petType object without losing the
additional properties of the class dogType by using pointers.

786 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

For example, suppose that you have the following statements:

petType *pet;
dogType *dog;

dog = new dogType("Tommy", "German Shepherd");
dog->setBreed("Siberian Husky ");

pet = dog;

In this case, the output of the statements pet->print();

is: Name: Tommy, Breed: Siberian Husky

Classes and Virtual Destructors
One thing recommended for classes with pointer member variables is that these classes should
have the destructor. The destructor executes automatically when the class object goes out of
scope. Thus, if the object creates dynamic memory space, the destructor can be designed to
deallocate that memory space. If a derived class object is passed to a formal parameter of the
base class type, the destructor of the base class executes regardless of whether the derived class
object is passed by reference or by value. Logically, however, the destructor of the derived
class should be executed when the derived class object goes out of scope.

To correct this problem, the destructor of the base class must be virtual. The virtual
destructor of a base class automatically makes the destructor of a derived class virtual.
When a derived class object is passed to a formal parameter of the base class type, then
when the object goes out of scope, the destructor of the derived class executes. After
executing the destructor of the derived class, the destructor of the base class executes.
Therefore, when the derived class object is destroyed, the base class part (that is, the
members inherited from the base class) of the derived class object is also destroyed.

If a base class contains virtual functions, make the destructor of the base class virtual.

Abstract Classes and Pure Virtual Functions
The preceding sections discussed virtual functions. Other than enforcing run-time bind-
ing of functions, virtual functions also have another use, which is discussed in this section.
Chapter 12 discussed the second principal of OOD—inheritance. Through inheritance
we can derive new classes without designing them from scratch. The derived classes, in
addition to inheriting the existing members of the base class, can add their own members
and also redefine or override public and protected member functions of the base class.
The base class can contain functions that you would want each derived class to imple-
ment. There are many scenarios for which a class is desired to be served as a base class for
a number of derived classes; however, the base class may contain certain functions that
may not have meaningful definitions in the base class.

Let us consider the class shape given in Chapter 12. As noted in that chapter, from the
class shape, you can derive other classes, such as rectangle, circle, ellipse,

1
3

Abstract Classes and Pure Virtual Functions | 787

and so on. Some of the things common to every shape are its center, using the center to
move a shape to a different location, and drawing the shape. We can include these in the
class shape. For example, you could have the definition of the class shape similar to
the following:

class shape
{
public:

virtual void draw();
//Function to draw the shape.

virtual void move(double x, double y);
//Function to move the shape at the position
//(x, y).

.

.

.
};

Because the definitions of the functions draw and move are specific to a particular shape,
each derived class can provide an appropriate definition of these functions. Note that we
have made the functions draw and move virtual to enforce run-time binding of these
functions.

This definition of the class shape requires you to write the definitions of the functions
draw and move. However, at this point, there is no shape to draw or move. Therefore,
these function bodies have no code. One way to handle this is to make the body of these
functions empty. This solution would work, but it has another drawback. Once we write
the definitions of the functions of the class shape, then we could create an object of
this class. Because there is no shape to work with, we would like to prevent the user from
creating objects of the class shape. It follows that we would like to do the following
two things—to not include the definitions of the functions draw and move and to prevent
the user from creating objects of the class shape.

Because we do not want to include the definitions of the functions draw and move of the
class shape, we must convert these functions to pure virtual functions. In this case,
the prototypes of these functions are:

virtual void draw() = 0;
virtual void move(double x, double y) = 0;

Note the expression = 0 before the semicolon. Once you make these functions pure
virtual functions in the class shape, you no longer need to provide the definitions of
these functions for the class shape.

Once a class contains one or more pure virtual functions, then that class is called an
abstract class. Thus, the abstract definition of the class shape is similar to the
following:

788 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

class shape
{
public:

virtual void draw() = 0;
//Function to draw the shape. Note that this is a
//pure virtual function.

virtual void move(double x, double y) = 0;
//Function to move the shape at the position
//(x, y). Note that this is a pure virtual
//function.

.

.

.

};

Because an abstract class is not a complete class, as it (or its implementation file)
does not contain the definitions of certain functions, you cannot create objects of
that class.

Now suppose that we derive the class rectangle from the class shape. To make
rectangle a nonabstract class so that we can create objects of this class, the class (or its
implementation file) must provide the definitions of the pure virtual functions of its
base class, which is the class shape.

Note that in addition to the pure virtual functions, an abstract class can contain instance
variables, constructors, and functions that are not pure virtual. However, the abstract class
must provide the definitions of the constructor and functions that are not pure virtual.
The following example further illustrates how abstract classes work.

EXAMPLE 13-8

In Chapter 12, we defined the class partTimeEmployee, which was derived from the
class personType, to illustrate inheritance. We also noted that there are two types of
employees: full-time and part-time. The base salary of a full-time employee is usually
fixed for a year. In addition, a full-time employee may receive a bonus. On the other
hand, the salary of a part-time employee is usually calculated according to the pay rate per
hour and the number of hours worked. In this example, we first define the class
employeeType, derived from the class personType, to store an employee’s name
and ID. We include functions to set the ID and retrieve the ID. We also include pure
virtual functions print and calculatePay to print an employee’s data, which
includes the employee’s ID, name, and wages.

From the class employeeType, we derive the classes fullTimeEmployee and
partTimeEmployee and provide the definitions of the pure virtual functions of the
class employeeType.

1
3

Abstract Classes and Pure Virtual Functions | 789

The definition of the class employeeType is:

#include "personType.h"

class employeeType: public personType
{
public:

virtual void print() const = 0;
//Function to output employee's data.

virtual double calculatePay() const = 0;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

void setId(long id);
//Function to set the salary.
//Postcondition: personId = id;

long getId() const;
//Function to retrieve the id.
//Postcondition: returns personId

employeeType(string first = "", string last = "",
long id = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and
//hoursWorked according to the parameters. If
//no value is specified, the default values are
//assumed.
//Postcondition: firstName = first;
// lastName = last; personId = id;

private:
long personId; //stores the id

};

The definitions of the constructor and functions of the class employeeType that are
not pure virtual are:

void employeeType::setId(long id)
{

personId = id;
}

long employeeType::getId() const
{

return personId;
}

employeeType::employeeType(string first, string last, long id)
: personType(first, last)

{
personId = id;

}

790 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

The definition of the class fullTimeEmployee is:

#include "employeeType.h"

class fullTimeEmployee: public employeeType
{
public:

void set(string first, string last, long id,
double salary, double bonus);

//Function to set the first name, last name,
//id, and salary according to the parameters.
//Postcondition: firstName = first; lastName = last;
// personId = id; empSalary = salary;
// empBonus = bonus;

void setSalary(double salary);
//Function to set the salary.
//Postcondition: empSalary = salary;

double getSalary();
//Function to retrieve the salary.
//Postcondition: returns empSalary

void setBonus(double bonus);
//Function to set the bonus.
//Postcondition: empBonus = bonus;

double getBonus();
//Function to retrieve the bonus.
//Postcondition: returns empBonus;

void print() const;
//Function to output the first name, last name,
//and the wages.
//Postcondition: Outputs
// Id:
// Name: firstName lastName
// Wages: $$$$.$$

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned

fullTimeEmployee(string first = "", string last = "",
long id = 0, double salary = 0,
double bonus = 0);

//Constructor with default parameters.
//Sets the first name, last name, id, salary, and
//bonus according to the parameters. If
//no value is specified, the default values are
//assumed.
//Postcondition: firstName = first; lastName = last;
// personId = id; empSalary = salary;
// empBonus = bonus;

Abstract Classes and Pure Virtual Functions | 791

private:
double empSalary;
double empBonus;

};

The definitions of the constructor and functions of the class fullTimeEmployee are:

void fullTimeEmployee::set(string first, string last,
long id,
double salary, double bonus)

{
setName(first, last);
setId(id);
empSalary = salary;
empBonus = bonus;

}

void fullTimeEmployee::setSalary(double salary)
{

empSalary = salary;
}

double fullTimeEmployee::getSalary()
{

return empSalary;
}

void fullTimeEmployee::setBonus(double bonus)
{

empBonus = bonus;
}

double fullTimeEmployee::getBonus()
{

return empBonus;
}

void fullTimeEmployee::print() const
{

cout << "Id: " << getId() << endl;
cout << "Name: ";
personType::print();
cout << endl;
cout << "Wages: $" << calculatePay() << endl;

}

double fullTimeEmployee::calculatePay() const
{

return empSalary + empBonus;
}

792 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

fullTimeEmployee::fullTimeEmployee(string first, string last,
long id, double salary,
double bonus)

: employeeType(first, last, id)
{

empSalary = salary;
empBonus = bonus;

}

The definition of the class partTimeEmployee is:

#include "employeeType.h"

class partTimeEmployee: public employeeType
{
public:

void set(string first, string last, long id, double rate,
double hours);

//Function to set the first name, last name, id,
//payRate, and hoursWorked according to the
//parameters.
//Postcondition: firstName = first; lastName = last;
// personId = id;
// payRate = rate; hoursWorked = hours

double calculatePay() const;
//Function to calculate and return the wages.
//Postcondition: Pay is calculated and returned.

void setPayRate(double rate);
//Function to set the salary.
//Postcondition: payRate = rate;

double getPayRate();
//Function to retrieve the salary.
//Postcondition: returns payRate;

void setHoursWorked(double hours);
//Function to set the bonus.
//Postcondition: hoursWorked = hours

double getHoursWorked();
//Function to retrieve the bonus.
//Postcondition: returns empBonus;

void print() const;
//Function to output the id, first name, last name,
//and the wages.
//Postcondition: Outputs
// Id:
// Name: firstName lastName
// Wages: $$$$.$$

1
3

Abstract Classes and Pure Virtual Functions | 793

partTimeEmployee(string first = "", string last = "",
long id = 0,
double rate = 0, double hours = 0);

//Constructor with parameters
//Sets the first name, last name, payRate, and
//hoursWorked according to the parameters. If
//no value is specified, the default values are
//assumed.
//Postcondition: firstName = first; lastName = last;
// personId = id, payRate = rate;
// hoursWorked = hours;

private:
double payRate; //stores the pay rate
double hoursWorked; //stores the hours worked

};

The definitions of the constructor and functions of the class partTimeEmployee are:

void partTimeEmployee::set(string first, string last, long id,
double rate, double hours)

{
setName(first, last);
setId(id);
payRate = rate;
hoursWorked = hours;

}

void partTimeEmployee::setPayRate(double rate)
{

payRate = rate;
}

double partTimeEmployee::getPayRate()
{

return payRate;
}

void partTimeEmployee::setHoursWorked(double hours)
{

hoursWorked = hours;
}

double partTimeEmployee::getHoursWorked()
{

return hoursWorked;
}

void partTimeEmployee::print() const
{

cout << "Id: " << getId() << endl;
cout << "Name: ";

794 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

personType::print();
cout << endl;
cout << "Wages: $" << calculatePay() << endl;

}

double partTimeEmployee::calculatePay() const
{

return (payRate * hoursWorked);
}

//constructor
partTimeEmployee::partTimeEmployee(string first, string last,

long id,
double rate, double hours)

: employeeType(first, last, id)
{

payRate = rate;
hoursWorked = hours;

}

The following function main tests these classes:

#include <iostream>
#include "partTimeEmployee.h"
#include "fullTimeEmployee.h"

int main()
{

fullTimeEmployee newEmp("John", "Smith", 75, 56000, 5700);
partTimeEmployee tempEmp("Bill", "Nielson", 275, 15.50, 57);

newEmp.print();
cout << endl;
tempEmp.print();

return 0;
}

Sample Run:

Id: 75
Name: John Smith
Wages: $61700

Id: 275
Name: Bill Nielson
Wages: $883.5

The preceding output is self-explanatory. We leave the details as an exercise.

Abstract Classes and Pure Virtual Functions | 795

Array Based Lists
A previous section of this chapter discussed how to use pointers to create dynamic arrays.
Chapter 9 briefly explained how loops can be used to process elements stored in an array.
Moreover, the previous sections of this chapter discussed abstract classes. Using these
features, this section discusses how to use arrays to manipulate lists. Let us first make the
following definition.

List: A collection of elements of the same type.

The length of a list is the number of elements in the list. Some of the operations
performed on a list are as follows:

1. Create the list. The list is initialized to an empty state.

2. Determine whether the list is empty.

3. Determine whether the list is full.

4. Find the size of the list.

5. Destroy, or clear, the list.

6. Determine whether an item is the same as a given list element.

7. Insert an item in the list at the specified location.

8. Remove an item from the list at the specified location.

9. Replace an item at the specified location with another item.

10. Retrieve an item from the list at the specified location.

11. Search the list for a given item.

The list we create can be sorted or unsorted. However, the algorithms to implement
certain operations are the same whether the list is sorted or unsorted. For example, a list,
sorted or unsorted, is empty if the length of the list is empty. However, the search
algorithms for sorted and unsorted lists are typically different. Therefore, next we create
the abstract class that implements some of these operations. We will separately describe
the classes to create sorted and unsorted lists. However, we must first decide how to store
the list in the computer’s memory.

Because all the elements of a list are of the same type, an effective, convenient, and a
common way to process a list is to store it in an array. Initially, the size of the array
holding the list elements is usually larger than the number of elements in the list so that, at
a later stage, the list can grow to a specific size. Thus, we must know how full the array is,
that is, we must keep track of the number of list elements stored in the array. Now, C++
allows the programmer to create dynamic arrays. Therefore, we will leave it for the user
to specify the size of the array. The size of the array can be specified when a list object is
declared. It follows that, in order to maintain and process the list in an array, we need the
following three variables:

796 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

1. The array, list, holding the list elements.

2. A variable, length, to store the length of the list (that is, the number of
list elements currently in the array).

3. A variable, maxSize, to store the size of the array (that is, the maximum
number of elements that can be stored in the array).

Now that you know the operations to be performed on a list and ways to store the list
into computer memory, we can define the class implementing the list as an ADT (abstract
data type). For illustration purposes, we assume that the elements of the list are of type
int. We will remove this restriction when we discuss class templates in Chapter 14;
there, we will develop a generic class that can be used to process a variety of lists.

The following class defines array-based int lists as an ADT:

Now that you know the operations to be performed on a list and how to store the list
into the computer’s memory, next we define the abstract class arrayListType
implementing the list as an ADT (abstract data type).

class arrayListType
{
public:

bool isEmpty() const;
//Function to determine whether the list is empty
//Postcondition: Returns true if the list is empty;
// otherwise, returns false.

bool isFull() const;
//Function to determine whether the list is full
//Postcondition: Returns true if the list is full;
// otherwise, returns false.

int listSize() const;
//Function to determine the number of elements in
//the list.
//Postcondition: Returns the value of length.

int maxListSize() const;
//Function to determine the maximum size of the list
//Postcondition: Returns the value of maxSize.

void print() const;
//Function to output the elements of the list
//Postcondition: Elements of the list are output on the
// standard output device.

bool isItemAtEqual(int location, int item) const;
//Function to determine whether item is the same as
//the item in the list at the position specified
//by location.
//Postcondition: Returns true if the list[location]
// is the same as item; otherwise,
// returns false.
// If location is out of range, an
// appropriate message is displayed.

Array Based Lists | 797

virtual void insertAt(int location, int insertItem) = 0;
//Function to insert insertItem in the list at the
//position specified by location.
//Note that this is an abstract function.
//Postcondition: Starting at location, the elements of
// the list are shifted down,
// list[location] = insertItem; length++;
// If the list is full or location is out of
// range, an appropriate message is displayed.

virtual void insertEnd(int insertItem) = 0;
//Function to insert insertItem an item at the end of
//the list. Note that this is an abstract function.
//Postcondition: list[length] = insertItem; and length++;
// If the list is full, an appropriate
// message is displayed.

void removeAt(int location);
//Function to remove the item from the list at the
//position specified by location
//Postcondition: The list element at list[location] is
// removed and length is decremented by 1.
// If location is out of range, an
// appropriate message is displayed.

void retrieveAt(int location, int& retItem) const;
//Function to retrieve the element from the list at the
//position specified by location
//Postcondition: retItem = list[location]
// If location is out of range, an
// appropriate message is displayed.

virtual void replaceAt(int location, int repItem) = 0;
//Function to replace repItem the element in the list
//at the position specified by location.
//Note that this is an abstract function.
//Postcondition: list[location] = repItem
// If location is out of range, an
// appropriate message is displayed.

void clearList();
//Function to remove all the elements from the list
//After this operation, the size of the list is zero.
//Postcondition: length = 0;

virtual int seqSearch(int searchItem) const = 0;
//Function to search the list for searchItem.
//Note that this is an abstract function.
//Postcondition: If the item is found, returns the
// location in the array where the item is
// found; otherwise, returns -1.

virtual void remove(int removeItem) = 0;
//Function to remove removeItem from the list.
//Note that this is an abstract function.
//Postcondition: If removeItem is found in the list,
// it is removed from the list and length
// is decremented by one.

798 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

arrayListType(int size = 100);
//Constructor
//Creates an array of the size specified by the
//parameter size. The default array size is 100.
//Postcondition: The list points to the array, length = 0,
// and maxSize = size;

arrayListType (const arrayListType& otherList);
//Copy constructor

virtual ~arrayListType();
//Destructor
//Deallocate the memory occupied by the array.

protected:
int *list; //array to hold the list elements
int length; //variable to store the length of the list
int maxSize; //variable to store the maximum

//size of the list

};

Figure 13-22 shows the UML class diagram of the class arrayListType. Note that in the
UML class diagram, the name of an abstract class and abstract function is shown in italics.

1
3

arrayListType

#*list: int
#length: int
#maxSize: int

+isEmpty() const: bool
+isFull() const: bool
+listSize() const: int
+maxListSize () const: int
+print() const: void
+isItemAtEqual (int, int) const: bool
+insertAt(int, int) = 0: void
+insertEnd (int) = 0: void
+removeAt(int): void
+retrieveAt (int, int&) const: void
+replaceAt (int, int) = 0: void
+clearList (): void
+seqSearch (int) const = 0: int
+remove(int) = 0: void
+arrayListType (int = 100)
+arrayListType (const arrayListType &)
+~arrayListType ()

FIGURE 13-22 UML diagram of the class arrayListType

Array Based Lists | 799

Notice that the member variables of the class arrayListType are declared as
protected. Moreover notice that the functions insertAt, insertEnd, replaceAt,
seqSearch, insert, and remove are declared as abstract. This is because, as noted
earlier, typically we deal with two types of lists—lists whose elements are arranged
according to some criteria, such as sorted list, and lists whose elements are in no particular
order, unsorted lists. The algorithms to implement the operations, search, insert, and
remove slightly differs for sorted and unsorted lists. Therefore, by using the principle of
inheritance, from the class arrayListType, we in fact, will derive two classes
orderedArrayListType and unorderedArrayListType.

Objects of the class unorderedArrayListType would arrange list elements in no particular
order, that is, these lists are unsorted. On the other hand, objects of the class
orderedArrayListType would arrange elements according to some comparison criteria,
usually, greater than or equal to. That is, these lists will be in ascending order. Moreover, after
inserting an element into or remove an element from an ordered list, the resulting list will be
ordered. We will, therefore, separately describe the algorithm to implement the operations
search, insert, and remove for unsorted and sorted lists. Because each of the classes
orderedArrayListType and unorderedArrayListType will provide separate definitions
of the functions insertAt, insertEnd, replaceAt, seqSearch, insert, and remove, and
because these functions would access the instance variable, to provide direct access to the
instance variables, the instance variables are declared as protected.

Next, we write the definitions of the non abstract functions.

The list is empty ilength is 0; it is full if length is equal to maxSize. Therefore, the
definitions of the functions isEmpty and isFull are

bool arrayListType::isEmpty() const
{

return (length == 0);
} //end isEmpty

bool arrayListType::isFull() const
{

return (length == maxSize);
} //end isFull

The member variable length of the class arrayListType stores the number of
elements currently in the list. Similarly, because the size of the array holding the list
elements is stored in the member variable maxSize, maxSize specifies the maximum size
of the list. Therefore, the definitions of the functions listSize and maxListSize are

int arrayListType::listSize() const
{

return length;
} //end listSize

int arrayListType::maxListSize() const
{

return maxSize;
} //end maxListSize

800 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

The member function print outputs the elements of the list. We assume that the output
is sent to the standard output device.

void arrayListType::print() const
{

for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
} //end print

The definition of the function isItemAt is straightforward. If element at the position
location is the same as item, it returns true. If either location is out of range or
item is not in the list, it returns false. The definition of this function is:

bool arrayListType::isItemAtEqual(int location, int item) const
{

if (location < 0 || location >= length)
{

cout << "The location of the item to be removed "
<< "is out of range." << endl;

return false;
}
else

return (list[location] == item);
} //end isItemAtEqual

The function removeAt removes an item from a specific location in the list. The location
of the item to be removed is passed as a parameter to this function. After removing the
item from the list, the length of the list is reduced by 1. If the item to be removed is
somewhere in the middle of the list, after removing the item we must move certain
elements up one array slot because we cannot leave holes in the portion of the array
containing the list. Figure 13-23 illustrates this concept.

The number of elements currently in the list is 6, so length is 6. Thus, after removing an
element, the length of the list is 5. Suppose that the item to be removed is at, say location 3.
Clearly, we must move list[4] into list[3] and list[5] into list[4], in this order.

The definition of the function removeAt is

void arrayListType::removeAt(int location)
{

if (location < 0 || location >= length)
cout << "The location of the item to be removed "

<< "is out of range." << endl;

35

[0] [1] [3][2] [4] [5] [6]

24 45 17 26 78list

[7] [8] [9]

FIGURE 13-23 Array list

Array Based Lists | 801

else
{

for (int i = location; i < length - 1; i++)
list[i] = list[i+1];

length--;
}

} //end removeAt

The definition of the function retrieveAt is straightforward. The index of the item to
be retrieved, and the location where to retrieve the item, are passed as parameters to this
function. The definition of this function is:

void arrayListType::retrieveAt(int location, int& retItem) const
{

if (location < 0 || location >= length)
cout << "The location of the item to be retrieved is "

<< "out of range" << endl;
else

retItem = list[location];
} //end retrieveAt

The function clearList removes the elements from the list, leaving it empty. Because
the member variable length indicates the number of elements in the list, the elements
are removed by simply setting length to 0. Therefore, the definition of this function is

void arrayListType::clearList()
{

length = 0;
} //end clearList

We now discuss the definition of the constructors and destructor. The constructor creates
an array of the size specified by the user, and initializes the length of the list to 0 and the
maxSize to the size of the array specified by the user. The size of the array is passed as a
parameter to the constructor. The default array size is 100. The destructor deallocates the
memory occupied by the array holding the list elements. The definitions of the con-
structor and the destructor are as follows:

arrayListType::arrayListType(int size)
{

if (size <= 0)
{

cout << "The array size must be positive. Creating "
<< "an array of the size 100." << endl;

maxSize = 100;
}
else

maxSize = size;

length = 0;

list = new int[maxSize];
} //end constructor

arrayListType::~arrayListType()
{

delete [] list;
} //end destructor

802 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Next we describe the copy constructor. Recall that the copy constructor is called when
an object is passed as a (value) parameter to a function, and when an object is declared and
initialized using the value of another object of the same type. It copies the values of the
member variables of the actual object into the corresponding member variables of the
formal parameter and the object being created. Its definition is

arrayListType::arrayListType(const arrayListType& otherList)
{

maxSize = otherList.maxSize;
length = otherList.length;

list = new int[maxSize]; //create the array

for (int j = 0; j < length; j++) //copy otherList
list [j] = otherList.list[j];

}//end copy constructor

Unordered Lists
As described in the preceding section, we derive the class unorderedArrayListType
from the abstract class arrayListType and implement the operations insertAt,
insertEnd, replaceAt, seqSearch, insert, and remove.

The definition of the class unorderedArrayListType is: (To save space, we list the
member functions without documentation. The descriptions of these functions are the
same as the descriptions of the functions of the class arrayListType.)

class unorderedArrayListType: public arrayListType
{
public:

void insertAt(int location, int insertItem);
void insertEnd(int insertItem);
void replaceAt(int location, int repItem);
int seqSearch(int searchItem) const;
void remove(int removeItem);

unorderedArrayListType(int size = 100);
//Constructor.

};

We leave the UML class diagram and its inheritance hierarchy of the class
unorderedArrayListType as an exercise for you.

The function insertAt inserts an item at a specific location in the list. The item to be
inserted and the insert location in the array are passed as parameters to this function. In
order to insert the item somewhere in the middle of the list, we must first make room for
the new item. That is, we need to move certain elements down one array slot. Consider
the list in Figure 13-24.

1
3

Unordered Lists | 803

The number of elements currently in the list is 6, so length is 6. Thus, after inserting a
new element, the length of the list is 7. If the item is to be inserted at, say location 6, we
can easily accomplish this by copying the item in list[6]. On the other hand, if the
item is to be inserted at, say location 3, we first need to move elements list[3],
list[4], and list[5] one array slot left to make room for the new item. Thus, we
must first copy list[5] into list[6], list[4] into list[5], and list[3] into
list[4], in this order. Then we can copy the new item into list[3].

Of course, special cases such as trying to insert in a full list must be handled separately.
Some of these cases can be accomplished by other member functions.

The definition of the function insertAt is as follows:

void unorderedArrayListType::insertAt(int location,
int insertItem)

{
if (location < 0 || location >= maxSize)

cout << "The position of the item to be inserted "
<< "is out of range." << endl;

else if (length >= maxSize) //list is full
cout << "Cannot insert in a full list" << endl;

else
{

for (int i = length; i > location; i--)
list[i] = list[i - 1]; //move the elements down

list[location] = insertItem; //insert the item at
//the specified position

length++; //increment the length
}

} //end insertAt

The function insertEnd can be implemented by using the function insertAt. How-
ever, the function insertEnd does not require the shifting of elements. Therefore, we
give its definition directly.

void unorderedArrayListType::insertEnd(int insertItem)
{

if (length >= maxSize) //the list is full
cout << "Cannot insert in a full list." << endl;

else
{

list[length] = insertItem; //insert the item at the end
length++; //increment the length

}
} //end insertEnd

35

[0] [1] [3][2] [4] [5] [6]

24 45 17 26 78list

[7] [8] [9]

FIGURE 13-24 Array list

804 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

Chapter 9 describes a sequential or linear search. For easy reference and the sake of
completeness, next we give the sequential search algorithm for array-based lists.

int unorderedArrayListType::seqSearch(int searchItem) const
{

int loc;
bool found = false;

loc = 0;

while (loc < length && !found)
if (list[loc] == searchItem)

found = true;
else

loc++;

if (found)
return loc;

else
return -1;

} //end seqSearch

The function remove deletes an item from the list. The item to be deleted is passed as a
parameter to this function. In order to delete the item, the function calls the member
function seqSearch to determine whether or not the item to be deleted is in the list. If
the item to be deleted is found in the list, the item is removed from the list and the length
of the list is decremented by 1. If the item to be removed is found in the list, the function
seqSearch returns the index of the item in the list to be deleted. We can now use the
index returned by the function seqSearch, and use the function removeAt to remove
the item from the list. Therefore, the definition of the function remove is

void unorderedArrayListType::remove(int removeItem)
{

int loc;

if (length == 0)
cout << "Cannot delete from an empty list." << endl;

else
{

loc = seqSearch(removeItem);

if (loc != -1)
removeAt(loc);

else
cout << "The item to be deleted is not in the list."

<< endl;
}

} //end remove

The definition of the function replaceAt is:

void unorderedArrayListType::replaceAt(int location, int repItem)
{

if (location < 0 || location >= length)
cout << "The location of the item to be "

<< "replaced is out of range." << endl;

1
3

Unordered Lists | 805

else
list[location] = repItem;

} //end replaceAt

The definition of the constructor is:

unorderedArrayListType::unorderedArrayListType(int size)
: arrayListType(size)

{
} //end constructor

The following program tests the various operations on an unordered list.

EXAMPLE 13-9

#include <iostream>
#include "unorderedArrayListType.h"

using namespace std;

int main()
{

unorderedArrayListType intList(25); //Line 1

int number; //Line 2

cout << "List 3: Enter 8 integers: "; //Line 3

for (int count = 0; count < 8; count++) //Line 4
{

cin >> number; //Line 5
intList.insertEnd(number); //Line 6

}

cout << endl; //Line 7
cout << "Line 8: intList: "; //Line 8
intList.print(); //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the number to be "
<< "deleted: "; //Line 11

cin >> number; //Line 12
cout << endl; //Line 13

intList.remove(number); //Line 14

cout << "Line 15: After removing " << number
<< " intList: "; //Line 15

intList.print(); //Line 16
cout << endl; //Line 17

cout << "Line 18: Enter the search item: "; //Line 18

cin >> number; //Line 19
cout << endl; //Line 20

806 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

if (intList.seqSearch(number) != -1) //Line 21
cout << "Line 22: " << number

<< " found in intList." << endl; //Line 22
else //Line 23

cout << "Line 24: " << number
<< " is not in intList." << endl; //Line 24

return 0;
}

Sample Run: In this sample run, the user input is shaded.

List 3: Enter 8 integers: 23 89 54 32 56 11 88 39
Line 8: intList: 23 89 54 32 56 11 88 39
Line 11: Enter the number to be deleted: 23
Line 15: After removing 23 intList: 89 54 32 56 11 88 39
Line 18: Enter the search item: 11
Line 22: 11 found in intList.

The preceding program is self-explanatory. We leave the details as an exercise.

The Web site accompanying contains the program testProgUnorderedList_II.cpp,

which illustrates how the copy constructor on an unorderedArrayListType object
works.

(Unordered Set) Recall that a list is a collection of elements of the same type. However, in

a list an element may repeat. That is, the elements of the list need not be distinct. On

the other hand, a set is also a collection of elements of the same type. However, the

elements of a set are distinct. It follows that a set is a list with distinct elements. In this

section we deigned the class unorderedArrayListType to process unordered
lists. Note that the functions insertAt and insertEnd do not check whether the item
to be inserted is already in the list. Similarly, the function replaceAt, also, does not

check if the item to be replaced is already in the list. Just as you can design a class to

manipulate lists, you can also design a class to manipulate sets. Programming Exercise

12, at the end of this chapter asks you to design the class unorderedSetType,
derived from the class unorderedArrayListType, to manipulate sets.

Ordered Lists
As described earlier we derive two classes from the abstract class arrayListType,
which are: unorderedArrayListType and orderedArrayListType. Elements of an
unorderedArrayListType object are in no particular order. However, elements of an
object orderedArrayListType are in ascending order. The preceding section described
the operation of the class unorderedArrayListType. This section describes the
class orderedArrayListType.

Ordered Lists | 807

The class orderedArrayListType also contains the function insert to insert an item
at the proper place in the list. The following class defines ordered array-based int lists as
an ADT. (To save space, we list the member function without any documentation,
which is left as an exercise for you.)

class orderedArrayListType: public arrayListType
{
public:

void insertAt(int location, int insertItem);
void insertEnd(int insertItem);
void replaceAt(int location, int repItem);
int seqSearch(int searchItem) const;
void insert(int insertItem);
void remove(int removeItem);

orderedArrayListType(int size = 100);
//Constructor

};

We leave the UML class diagram and its inheritance hierarchy of the class
orderedArrayListType as an exercise for you.

We give only the definition of the function insert and leave others as an exercise for
you.

The function insert inserts a new item at the proper place in the list and the length of
the list is increased by 1. The definition of this function is:

void orderedArrayListType::insert(int insertItem)
{

if (length == 0) //list is empty
list[length++] = insertItem; //insert insertItem

//and increment length
else if (length == maxSize)

cout << "Cannot insert in a full list." << endl;
else
{

//Find the location in the list where to insert
//insertItem.

int loc;

bool found = false;

for (loc = 0; loc < length; loc++)
{

if (list[loc] >= insertItem)
{

found = true;
break;

}
}

for (int i = length; i > loc; i--)
list[i] = list[i - 1]; //move the elements down

808 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

list[loc] = insertItem; //insert insertItem
length++; //increment the length

}

} //end insert

(Ordered Set) An ordered set is a collection of distinct elements of the same type.

Programming Exercise 13, at the end of this chapter asks you to design the class
orderedSetType, derived from the class orderdArrayListType, to manipulate
ordered sets.

Address of Operator and Classes
This chapter has used the address of operator, &, to store the address of a variable into a
pointer variable. The address of operator is also used to create aliases to an object.
Consider the following statements:

int x;
int &y = x;

The first statement declares x to be an int variable, and the second statement declares y
to be an alias of x. That is, both x and y refer to the same memory location. Thus, y is
like a constant pointer variable. The statement:

y = 25;

sets the value of y and, hence, the value of x to 25. Similarly, the statement:

x = 2 * x + 30;

updates the value of x and, hence, the value of y.

The address of operator can also be used to return the address of a private member
variable of a class. However, if you are not careful, this operation can result in serious
errors in the program. The following example helps illustrate this idea.

Consider the following class definition:

//header file testadd.h

#ifndef H_testAdd
#define H_testAdd

class testAddress
{
public:

void setX(int);
void printX() const;
int& addressOfX(); //this function returns the address

//of the x

Address of Operator and Classes | 809

private:
int x;

};

#endif

The definitions of the functions to implement the member functions are as follows:

//Implementation file testAdd.cpp

#include <iostream>
#include "testAdd.h"

using namespace std;

void testAddress::setX(int inX)
{

x = inX;
}
void testAddress::printX() const
{

cout << x;
}

int& testAddress::addressOfX()
{

return x;
}

Because the return type of the function addressOfX, which is int&, is an address of an
int memory location, the effect of the statement:

return x;

is that the address of x is returned.

Next, let us write a simple program that uses the class testAddress and illustrates
what can go wrong. Later, we will show how to fix the problem.

//Test program.
#include <iostream>
#include "testAdd.h"

using namespace std;

int main()
{

testAddress a;
int &y = a.addressOfX();

a.setX(50);
cout << "x in class testAddress = ";
a.printX();
cout << endl;

y = 25;
cout << "After y = 25, x in class testAddress = ";

810 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

a.printX();
cout << endl;

return 0;
}

Sample Run:

x in class testAddress = 50
After y = 25, x in class testAddress = 25

In the preceding program, after the statement:

int &y = a.addressOfX();

executes, y becomes an alias of the private member variable x of the object a. Thus, the
statement:

y = 25;

changes the value of x.

Chapter 11 said thatprivatemember variables are not accessible outside of the class. However,
by returning their addresses, the programmer can manipulate them. One way to resolve this
problem is to never provide the user of the class with the addresses of the private member
variables. Sometimes, however, it is necessary to return the address of a private member
variable, as we will see in the next chapter. How can we prevent the program from directly
manipulating the private member variables? To fix this problem, we use the word const
before the return type of the function. This way, we can still return the addresses of the private
member variables, but at the same time prevent the programmer from directly manipulating the
private member variables. Let us rewrite the class testAddress using this feature.

#ifndef H_testAdd
#define H_testAdd

class testAddress
{
public:

void setX(int);
void printX() const;
const int& addressOfX(); //this function returns the

//address of the private data
//member

private:
int x;

};

#endif

The definition of the function addressOfX in the implementation file is:

const int& testAddress::addressOfX()
{

return x;
}

The same program will now generate a compile-time error.

Address of Operator and Classes | 811

QUICK REVIEW

1. Pointer variables contain the addresses of other variables as their values.

2. In C++, no name is associated with the pointer data type.

3. A pointer variable is declared using an asterisk, *, between the data type and
the variable. For example, the statements:

int *p;
char *ch;

declare p and ch to be pointer variables. The value of p points to a memory
space of type int, and the value of ch points to a memory space of type
char. Usually, p is called a pointer variable of type int, and ch is called a
pointer variable of type char.

4. In C++, & is called the address of operator.

5. The address of operator returns the address of its operand. For example, if p
is a pointer variable of type int and num is an int variable, the statement:

p = #

sets the value of p to the address of num.

6. When used as a unary operator, * is called the dereferencing operator.

7. The memory location indicated by the value of a pointer variable is
accessed by using the dereferencing operator, *. For example, if p is a
pointer variable of type int, the statement:

*p = 25;

sets the value of the memory location indicated by the value of p to 25.

8. You can use the member access operator arrow, ->, to access the compo-
nent of an object pointed to by a pointer.

9. Pointer variables are initialized using either 0 (the integer zero), NULL, or
the address of a variable of the same type.

10. The only number that can be directly assigned to a pointer variable is 0.

11. The only arithmetic operations allowed on pointer variables are increment
(++), decrement (--), addition of an integer to a pointer variable, subtrac-
tion of an integer from a pointer variable, and subtraction of a pointer from
another pointer.

12. Pointer arithmetic is different than ordinary arithmetic. When an integer is
added to a pointer, the value added to the value of the pointer variable is
the integer times the size of the object to which the pointer is pointing.
Similarly, when an integer is subtracted from a pointer, the value subtracted
from the value of the pointer variable is the integer times the size of the
object to which the pointer is pointing.

13. Pointer variables can be compared using relational operators. (It makes
sense to compare pointers of the same type.)

812 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

14. The value of one pointer variable can be assigned to another pointer
variable of the same type.

15. A variable created during program execution is called a dynamic variable.

16. The operator new is used to create a dynamic variable.

17. The operator delete is used to deallocate the memory occupied by a
dynamic variable.

18. In C++, both new and delete are reserved words.

19. The operator new has two forms: one to create a single dynamic variable
and another to create an array of dynamic variables.

20. If p is a pointer of type int, the statement:
p = new int;

allocates storage of type int somewhere in memory and stores the address
of the allocated storage in p.

21. The operator delete has two forms: one to deallocate the memory
occupied by a single dynamic variable and another to deallocate the
memory occupied by an array of dynamic variables.

22. If p is a pointer of type int, the statement:
delete p;

deallocates the memory pointed to by p.

23. The array name is a constant pointer. It always points to the same memory
location, which is the location of the first array component.

24. To create a dynamic array, the form of the new operator that creates an
array of dynamic variables is used. For example, if p is a pointer of type
int, the statement:

p = new int[10];

creates an array of 10 components of type int. The base address of the
array is stored in p. We call p a dynamic array.

25. Array notation can be used to access the components of a dynamic array.
For example, suppose p is a dynamic array of 10 components. Then, p[0]
refers to the first array component, p[1] refers to the second array
component, and so on. In particular, p[i] refers to the (i + 1)th compo-
nent of the array.

26. An array created during program execution is called a dynamic array.

27. If p is a dynamic array, then the statement:
delete [] p;

deallocates the memory occupied by p—that is, the components of p.

28. C++ allows a program to create dynamic multidimensional arrays.

29. In the statement int **board;, the variable board is a pointer to a
pointer.

1
3

Quick Review | 813

30. In a shallow copy, two or more pointers of the same type point to the same
memory space; that is, they point to the same data.

31. In a deep copy, two or more pointers of the same type have their own
copies of the data.

32. If a class has a destructor, the destructor is automatically executed whenever
a class object goes out of scope.

33. If a class has pointer member variables, the built-in assignment operators
provide a shallow copy of the data.

34. A copy constructor executes when an object is declared and initialized by
using the value of another object and when an object is passed by value as a
parameter.

35. C++ allows a user to pass an object of a derived class to a formal parameter
of the base class type.

36. The binding of virtual functions occurs at execution time, not at compile
time, and is called dynamic, or run-time, binding.

37. In C++, virtual functions are declared using the reserved word virtual.

38. A class is called an abstract class if it contains one or more pure virtual
functions.

39. Because an abstract class is not a complete class—as it (or its implementation
file) does not contain the definitions of certain functions—you cannot
create objects of that class.

40. In addition to the pure virtual functions, an abstract class can contain
instance variables, constructors, and functions that are not pure virtual.
However, the abstract class must provide the definitions of constructors
and functions that are not pure virtual.

41. A list is a collection of elements of the same type.

42. The commonly performed operations on a list are create the list, deter-
mine whether the list is empty, determine whether the list is full, find
the size of the list, destroy or clear the list, determine whether an item
is the same as a given list element, insert an item in the list at the
specified location, remove an item from the list at the specified location,
replace an item at the specified location with another item, retrieve an
item from the list from the specified location, and search the list for a
given item.

43. C++ allows a user to pass an object of a derived class to a formal parameter
of the base class type.

44. The address of operator can be used to return the address of a private
member variable of a class.

814 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

EXERCISES

1. Mark the following statements as true or false.

a. In C++, pointer is a reserved word.

b. In C++, pointer variables are declared using the word pointer.

c. The statement delete p; deallocates the variable pointer p.

d. The statement delete p; deallocates the dynamic variable that is
pointed to by p.

e. Given the declaration:

int list[10];
int *p;

the statement:

p = list;

is valid in C++.

f. Given the declaration:

int *p;

the statement:

p = new int[50];

dynamically allocates an array of 50 components of type int, and p contains
the base address of the array.

g. The address of operator returns the address and value of its operand.

h. If p is a pointer variable, then the statement p = p * 2; is valid in C++.

2. Given the declaration:

int x;
int *p;
int *q;

mark the following statements as valid or invalid. If a statement is invalid, explain why.

a. p = q;

b. *p = 56;

c. p = x;

d. *p = *q;

e. q = &x;

f. *p = q;

3. Explain how the operator * is used to work with pointers.

4. Consider the following statement:

int* p, q;

This statement could lead to what type of misinterpretation?

Exercises | 815

5. What is the output of the following C++ code?

int x;
int y;
int *p = &x;
int *q = &y;
*p = 35;
*q = 98;
*p = *q;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

6. What is the output of the following C++ code?

int x;
int y;
int *p = &x;
int *q = &y;
x = 35;
y = 46;
p = q;
*p = 78;
cout << x << " " << y << endl;
cout << *p << " " << *q << endl;

7. Given the declaration:

int num = 6;
int *p = #

which of the following statements increment(s) the value of num?

a. p++;

b. (*p)++;

c. num++;

d. (*num)++;

8. What is the output of the following code?

int *p;
int *q;
p = new int;
q = p;
*p = 46;
*q = 39;
cout << *p << " " << *q << endl;

9. What is the output of the following code?

int *p;
int *q;
p = new int;
*p = 43;
q = p;
*q = 52;
p = new int;

816 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

*p = 78;
q = new int;
*q = *p;
cout << *p << " " << *q << endl;

10. What is the output of the following C++ code?

int *p;
int *q;
p = new int;
q = new int;
*p = 27;
*q = 35;
cout << *p << " " << *q << endl;
q = p;
*q = 73;
cout << *p << " " << *q << endl;
p = new int;
*p = 36;
*q = 42;
cout << *p << " " << *q << endl;

11. What is the output of the following C++ code?

int *p;
int *q;
p = new int;
q = new int;
*p = 27;
*q = 35;
cout << *p << " " << *q << endl;
*q = *p;
*p = 73;
cout << *p << " " << *q << endl;
p = new int;
*p = 36;
q = p;
cout << *p << " " << *q << endl;

12. What is wrong with the following code?

int *p; //Line 1
int *q; //Line 2

p = new int; //Line 3
*p = 43; //Line 4

q = p; //Line 5
*q = 52; //Line 6

delete q; //Line 7

cout << *p << " " << *q << endl; //Line 8

1
3

Exercises | 817

13. What is the output of the following code?

int x;
int *p;
int *q;
p = new int[10];
q = p;
*p = 4;

for (int j = 0; j < 10; j++)
{

x = *p;
p++;
*p = x + j;

}

for (int k = 0; k < 10; k++)
{

cout << *q << " ";
q++;

}
cout << endl;

14. What does the operator new do?

15. What does the operator delete do?

16. What is the output of the following code?

int *secret;
int j;

secret = new int[10];
secret[0] = 10;
for (j = 1; j < 10; j++)

secret[j] = secret[j - 1] + 5;
for (j = 0; j < 10; j++)

cout << secret[j] << " ";
cout << endl;

17. Consider the following statement:
int *num;

a. Write the C++ statement that dynamically creates an array of 10
components of type int and num contains the base address of the array.

b. Write a C++ code that inputs data into the array num from the standard
input device.

c. Write a C++ statement that deallocates the memory space of array to
which num points.

18. Consider the following C++ code:

int *p;
p = new int[10];

818 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

for (int j = 0; j < 10; j++)
p[i] = 2 * j - 2;

Write the C++ statement that deallocates the memory space occupied by
the array to which p points.

19. Explain the difference between a shallow copy and a deep copy of data.

20. What is wrong with the following code?

int *p; //Line 1
int *q; //Line 2

p = new int[5]; //Line 3
*p = 2; //Line 4

for (int i = 1; i < 5; i++) //Line 5
p[i] = p[i - 1] + i; //Line 6

q = p; //Line 7

delete [] p; //Line 8

for (int j = 0; j < 5; j++) //Line 9
cout << q[j] << " "; //Line 10

cout << endl; //Line 11

21. What is the output of the following code?

int *p;
int *q;
int i;

p = new int[5];
p[0] = 5;

for (i = 1; i < 5; i++)
p[i] = p[i - 1] + 2 * i;

cout << "Array p: ";
for (i = 0; i < 5; i++)

cout << p[i] << " ";
cout << endl;

q = new int[5];

for (i = 0; i < 5; i++)
q[i] = p[4 - i];

cout << "Array q: ";
for (i = 0; i < 5; i++)

cout << q[i] << " ";

cout << endl;

Exercises | 819

22. a. Write a statement that declares sales to be a pointer to a pointer of type
double.

b. Write a C++ code that dynamically creates a two-dimensional array of five
rows and seven columns and sales contains the base address of that array.

c. Write a C++ code that inputs data from the standard input device into
the array sales.

d. Write a C++ code that deallocates the memory space occupied by the
two-dimensional array to which sales points.

23. What is the purpose of a copy constructor?

24. Name two situations in which a copy constructor executes.

25. Name three things that you should do for classes with pointer member variables.

26. Suppose that you have the following classes, classA and classB:

class classA
{
public:

virtual void print() const;
void doubleNum();
classA(int a = 0);

private:
int x;

};

void classA::print() const
{

cout << "ClassA x: " << x << endl;
}

void classA::doubleNum()
{

x = 2 * x;
}

classA::classA(int a)
{

x = a;
}

class classB: public classA
{
public:

void print() const;
void doubleNum();
classB(int a = 0, int b = 0);

private:
int y;

};

void classB::print() const

820 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

1
3

{
classA::print();
cout << "ClassB y: " << y << endl;

}

void classB::doubleNum()
{

classA::doubleNum();

y = 2 * y;
}

classB::classB(int a, int b)
: classA(a)

{
y = b;

}

What is the output of the following function main?

int main()
{

classA *ptrA;
classA objectA(2);

classB objectB(3, 5);

ptrA = &objectA;
ptrA->doubleNum();
ptrA->print();
cout << endl;

ptrA = &objectB;

ptrA->doubleNum();
ptrA->print();
cout << endl;

return 0;
}

27. What is the output of the function main of Exercise 26, if the definition of
classA is replaced by the following definition?

class classA
{
public:

virtual void print() const;
virtual void doubleNum();
classA(int a = 0);

private:
int x;

};

Exercises | 821

28. What is the difference between compile-time binding and run-time binding?

29. Is it legal to have an abstract class with all member functions pure virtual?

30. Consider the following definition of the class studentType:

public studentType: public personType
{
public:

void print();
void calculateGPA();
void setID(long id);
void setCourses(const string c[], int noOfC);
void setGrades(const char cG[], int noOfC);

void getID();
void getCourses(string c[], int noOfC);
void getGrades(char cG[], int noOfC);
void studentType(string fName = "", string lastName = "",

long id, string c[] = NULL,
char cG[] = NULL, int noOfC = 0);

private:
long studentId;
string courses[6];
char coursesGrade[6]
int noOfCourses;

}

Rewrite the definition of the class studentType so that the functions print and
calculateGPA are pure virtual functions.

31. Suppose that the definitions of the classes employeeType,
fullTimeEmployee, and partTimeEmployee are as given in Example
13-8 of this chapter. Which of the following statements is legal?

a. employeeType tempEmp;

b. fullTimeEmployee newEmp();

c. partTimeEmployee pEmp("Molly", "Burton", 101, 0.0, 0);

32. What is the effect of the following statements?

a. unorderedArrayListType intList1(50);

b. unorderedArrayListType intList2(1000);

c. unorderedArrayListType intList3(-10);

PROGRAMMING EXERCISES

1. Redo Programming Exercise 5 of Chapter 9 using dynamic arrays.

2. Redo Programming Exercise 6 of Chapter 9 using dynamic arrays.

822 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

3. Redo Programming Exercise 7 of Chapter 9 using dynamic arrays. You must
ask the user for the number of candidates and then create the appropriate
arrays to hold the data.

4. Programming Exercise 11 in Chapter 9 explains how to add large integers using
arrays. However, in that exercise, the program could add only integers of, at
most, 20 digits. This chapter explains how to work with dynamic integers.
Design a class named largeIntegers such that an object of this class can
store an integer of any number of digits. Add operations to add, subtract,
multiply, and compare integers stored in two objects. Also add constructors to
properly initialize objects and functions to set, retrieve, and print the values
of objects.

5. Banks offer various types of accounts, such as savings, checking, certifi-
cate of deposits, and money market, to attract customers as well as meet
with their specific needs. Two of the most commonly used accounts are
savings and checking. Each of these accounts has various options. For
example, you may have a savings account that requires no minimum
balance but has a lower interest rate. Similarly, you may have a checking
account that limits the number of checks you may write. Another type of
account that is used to save money for the long term is certificate of
deposit (CD).

In this programming exercise, you use abstract classes and pure virtual
functions to design classes to manipulate various types of accounts. For
simplicity, assume that the bank offers three types of accounts: savings,
checking, and certificate of deposit, as described next.

Savings accounts: Suppose that the bank offers two types of savings
accounts: one that has no minimum balance and a lower interest rate and
another that requires a minimum balance and has a higher interest rate.

Checking accounts: Suppose that the bank offers three types of checking
accounts: one with a monthly service charge, limited check writing, no
minimum balance, and no interest; another with no monthly service
charge, a minimum balance requirement, unlimited check writing and
lower interest; and a third with no monthly service charge, a higher
minimum requirement, a higher interest rate, and unlimited check
writing.

Certificate of deposit (CD): In an account of this type, money is left for
some time, and these accounts draw higher interest rates than savings or
checking accounts. Suppose that you purchase a CD for six months. Then
we say that the CD will mature in six months. Penalty for early withdrawal
is stiff.

Figure 13-25 shows the inheritance hierarchy of these bank accounts.

1
3

Programming Exercises | 823

Note that the classes bankAccount and checkingAccount are abstract. That is,
we cannot instantiate objects of these classes. The other classes in Figure 13-25
are not abstract.

bankAccount: Every bank account has an account number, the name of
the owner, and a balance. Therefore, instance variables such as name,
accountNumber, and balance should be declared in the abstract class
bankAccount. Some operations common to all types of accounts are retrieve
account owner’s name, account number, and account balance; make deposits;
withdraw money; and create monthly statement. So include functions to
implement these operations. Some of these functions will be pure virtual.

checkingAccount: A checking account is a bank account. Therefore, it
inherits all the properties of a bank account. Because one of the objectives of
a checking account is to be able to write checks, include the pure virtual
function writeCheck to write a check.

serviceChargeChecking: A service charge checking account is a checking
account. Therefore, it inherits all the properties of a checking account. For
simplicity, assume that this type of account does not pay any interest, allows the
account holder to write a limited number of checks each month, and does not
require any minimum balance. Include appropriate named constants, instance
variables, and functions in this class.

noServiceChargeChecking: A checking account with no monthly service
charge is a checking account. Therefore, it inherits all the properties of a
checking account. Furthermore, this type of account pays interest, allows the
account holder to write checks, and requires a minimum balance.

bankAccount

checkingAccount savingsAccount

highInterestSavingsserviceChargeChecking noServiceChargeChecking

highInterestChecking

certificateOfDeposit

FIGURE 13-25 Inheritance hierarchy of banking accounts

824 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

highInterestChecking: A checking account with high interest is a checking
account with no monthly service charge. Therefore, it inherits all the properties
of a no service charge checking account. Furthermore, this type of account pays
higher interest and requires a higher minimum balance than the no service
charge checking account.

savingsAccount: A savings account is a bank account. Therefore, it inherits
all the properties of a bank account. Furthermore, a savings account also pays
interest.

highInterestSavings: A high-interest savings account is a savings account.
Therefore, it inherits all the properties of a savings account. It also requires a
minimum balance.

certificateOfDeposit: A certificate of deposit account is a bank account.
Therefore, it inherits all the properties of a bank account. In addition, it has
instance variables to store the number of CD maturity months, interest rate, and
the current CD month.

Write the definitions of the classes described in this programming exercise and a
program to test your classes.

6. The function retrieveAt of the class arrayListType is written as a
void function. Rewrite this function so that it is written as a value returning
function, returning the required item. If location of the item to be returned
is out of range, use the assert function to terminate the program. Also, write
a program to test your function. Use the class unorderedArrayListType
to test your function.

7. The function removeAt of the class arrayListType removes an element
from the list by shifting the elements of the list. However, if the element to
be removed is at the beginning of the list and the list is fairly large it could
take a lot of computer time. Because the list elements are in no particular
order, you could simply remove the element by swapping the last element of
the list with the item to be removed and reducing the length of the list.
Rewrite the definition of the function removeAt using this technique. Use
the class unorderedArrayListType to test your function.

8. The function remove of the class arrayListType removes only the first
occurrence of an element. Add the function removeAll, as an abstract
function, to the class arrayListType that would remove all occurrences
of a given element. Also, write the definition of the function removeAll, in
the class unorderedArrayListType, and a program to test this function.

9. Add the function min, as an abstract function, to the class arrayListType
to return the smallest element of the list. Also, write the definition of the
function min, in the class unorderedArrayListType, and a program to
test this function.

1
3

Programming Exercises | 825

10. Add the function max, as an abstract function, to the class arrayListType
to return the largest element of the list. Also, write the definition of the
function max, in the class unorderedArrayListType, and a program to
test this function.

11. Write the definitions of the functions of the class orderedArrayListType,
that are not given in this chapter. Also write a program to test various
operations of this class.

12. (Unordered Sets) As explained in this chapter, a set is a collection of
distinct elements of the same type. Design the class unorderedSetType,
derived from the class unorderedArrayListType, to manipulate sets.
Note that you need to redefine only the functions insertAt, insertEnd,
and replaceAt. If the item to be inserted is already in the list, the functions
insertAt and insertEnd output an appropriate message. Similarly, if the
item to be replaced is already in the list, the function replaceAt outputs an
appropriate message. Also write a program to test your class.

13. (Ordered Sets) Programming Exercise 12 asks you to define the class
unorderedSetType to manipulate sets. The elements of an unorderedSetType
object are distinct, but in no particular order. Design theclassorderedSetType,
derived from the class orderedArrayListType, to manipulate ordered sets.
The elements of an orderedSetType object are distinct and in ascending order.
Note that you need to redefine only the functions insert and replaceAt. If the
item to be inserted is already in the list, the function insert outputs an appropriate
message. Similarly, if the item to be replaced is already in the list, the function
replaceAtoutputs an appropriate message. Also write a program to test your class.

826 | Chapter 13: Pointers, Classes, Virtual Functions, Abstract Classes, and Lists

OVERLOADING AND
TEMPLATES

IN THIS CHAPTER , YOU WILL :

. Learn about overloading

. Become aware of the restrictions on operator overloading

. Examine the pointer this

. Learn about friend functions

. Explore the members and nonmembers of a class

. Discover how to overload various operators

. Learn about templates

. Explore how to construct function templates and class templates

14C H A P T E R

In Chapter 11, you learned how classes in C++ are used to combine data and
operations on that data in a single entity. The ability to combine data and operations
on the data is called encapsulation. It is the first principle of object-oriented design
(OOD). Chapter 11 defined the abstract data type (ADT) and described how classes in
C++ implement ADT. Chapter 12 discussed how new classes can be derived from
existing classes through the mechanism of inheritance. Inheritance, the second principle
of OOD, encourages code reuse.

This chapter covers operator overloading and templates. Templates enable the
programmer to write generic code for related functions and classes. We will also simplify
function overloading (introduced in Chapter 7) through the use of templates, called
function templates.

Why Operator Overloading Is Needed
Chapter 11 defined and implemented the class clockType. It also showed how you
can use the class clockType to represent the time of day in a program. Let us review
some of the characteristics of the class clockType.

Consider the following statements:

clockType myClock(8, 23, 34);
clockType yourClock(4, 5, 30);

The first statement declares myClock to be an object of type clockType and initializes
the member variables hr, min, and sec of myClock to 8, 23, and 34, respectively.
The second statement declares yourClock to be an object of type clockType and
initializes the member variables hr, min, and sec of yourClock to 4, 5, and 30,
respectively.

Now consider the following statements:

myClock.printTime();

myClock.incrementSeconds();

if (myClock.equalTime(yourClock))
.
.
.

The first statement prints the value of myClock in the form hr:min:sec. The second
statement increments the value of myClock by one second. The third statement checks
whether the value of myClock is the same as the value of yourClock.

These statements do their job. However, if we can use the insertion operator << to
output the value of myClock, the increment operator ++ to increment the value of
myClock by one second, and relational operators for comparison, we can enhance the

828 | Chapter 14: Overloading and Templates

flexibility of the class clockType considerably. More specifically, we prefer to use the
following statements instead of the previous statements:

cout << myClock;

myClock++;

if (myClock == yourClock)
.
.
.

Recall that the only built-in operations on classes are the assignment operator and the
member selection operator. Therefore, other operators cannot be directly applied to
class objects. However, C++ allows the programmer to extend the definitions of
most of the operators so that operators—such as relational operators, arithmetic
operators, the insertion operator for data output, and the extraction operator for data
input—can be applied to classes. In C++ terminology, this is called operator
overloading.

Operator Overloading
Recall how the arithmetic operator / works. If both operands of / are integers, the result
is an integer; otherwise, the result is a floating-point number. Similarly, the stream
insertion operator, <<, and the stream extraction operator, >>, are overloaded. The
operator >> is used as both a stream extraction operator and a right shift operator. The
operator << is used as both a stream insertion operator and a left shift operator. These are
examples of operator overloading. (Note that the operators << and >> have also been
overloaded for various data types, such as int, double, and string.)

Other examples of overloaded operators are + and -. The results of + and - are different
for integer arithmetic, floating-point arithmetic, and pointer arithmetic.

C++ allows the user to overload most of the operators so that the operators can
work effectively in a specific application. It does not allow the user to create new
operators. Most of the existing operators can be overloaded to manipulate class
objects.

In order to overload operators, you must write functions (that is, the header and body).
The name of the function that overloads an operator is the reserved word operator
followed by the operator to be overloaded. For example, the name of the function to
overload the operator >= is:

operator>=

Operator function: The function that overloads an operator.

1
4

Operator Overloading | 829

Syntax for Operator Functions
The result of an operation is a value. Therefore, the operator function is a value-returning
function.

The syntax of the heading for an operator function is:

returnType operator operatorSymbol(formal parameter list)

In C++, operator is a reserved word.

Recall that the only built-in operations on classes are assignment (=) and member
selection. To use other operators on class objects, they must be explicitly overloaded.
Operator overloading provides the same concise expressions for user-defined data types as
it does for built-in data types.

To overload an operator for a class:

1. Include the statement to declare the function to overload the operator
(that is, the operator function) prototype in the definition of the class.

2. Write the definition of the operator function.

Certain rules must be followed when you include an operator function in a class
definition. These rules are described in the section, ‘‘Operator Functions as Member
Functions and Nonmember Functions’’ later in this chapter.

Overloading an Operator: Some Restrictions
When overloading an operator, keep the following in mind:

1. You cannot change the precedence of an operator.

2. The associativity cannot be changed. (For example, the associativity of
the arithmetic operator addition is from left to right, and it cannot be
changed.)

3. Default parameters cannot be used with an overloaded operator.

4. You cannot change the number of parameters an operator takes.

5. You cannot create new operators. Only existing operators can be over-
loaded.

6. The operators that cannot be overloaded are:

. .* :: ?: sizeof

7. The meaning of how an operator works with built-in types, such as int,
remains the same.

8. Operators can be overloaded either for objects of the user-defined types,
or for a combination of objects of the user-defined type and objects of
the built-in type.

830 | Chapter 14: Overloading and Templates

Pointer this
A member function of a class can (directly) access the member variables of that class for
a given object. Sometimes, it is necessary for a member function to refer to the object
as a whole, rather than the object’s individual member variables. How do you refer to
the object as a whole (that is, as a single unit) in the definition of the member
function, especially when the object is not passed as a parameter? Every object of a
class maintains a (hidden) pointer to itself, and the name of this pointer is this. In
C++, this is a reserved word. The pointer this (in a member function) is available
for you to use. When an object invokes a member function, the member function
references the pointer this of the object. For example, suppose that test is a class
and has a member function called one. Further suppose that the definition of one
looks like the following:

test test::one()
{

.

.

.
return *this;

}

If x and y are objects of type test, then the statement:

y = x.one();

copies the value of object x into object y. That is, the member variables of x are copied
into the corresponding member variables of y. When object x invokes function one, the
pointer this in the definition of member function one refers to object x, so this means
the address of x and *this means the value of x.

The following example illustrates how the pointer this works.

EXAMPLE 14-1

Consider the following class:

class thisPointerClass
{
public:

void set(int a, int b, int c);
void print() const;

thisPointerClass updateXYZ();
// Postcondition: x = 2 * x; y = y + 2;
// z = z * z;

thisPointerClass(int a = 0, int b = 0, int c = 0);

1
4

Operator Overloading | 831

private:
int x;
int y;
int z;

};

Suppose that the definitions of the member functions of the class thisPointerClass
are as follows:

void thisPointerClass::set(int a, int b, int c)
{

x = a;
y = b;
z = c;

}

void thisPointerClass::print() const
{

cout << "x = " << x
<< ", y = " << y
<< ", z = " << z << endl;

}

thisPointerClass thisPointerClass::updateXYZ()
{

x = 2 * x;
y = y + 2;
z = z * z;

return *this;
}

The definition of the function updateXYZ updates the values of x, y, and z. Using the
pointer this returns the value of the entire object. That is, the values of the member
variables x, y, and z are returned.

thisPointerClass::thisPointerClass(int a, int b, int c)
{

x = a;
y = b;
z = c;

}

Consider the following function main:

//Chapter 14: this pointer illustration

#include <iostream>
#include "thisPointerIllus.h"

using namespace std;

832 | Chapter 14: Overloading and Templates

1
4

int main()
{

thisPointerClass object1(3, 5, 7); //Line 1
thisPointerClass object2; //Line 2

cout << "Object 1: "; //Line 3
object1.print(); //Line 4

object2 = object1.updateXYZ(); //Line 5

cout << "After updating object1: "; //Line 6
object1.print(); //Line 7

cout << "Object 2: "; //Line 8
object2.print(); //Line 9

return 0;
}

Sample Run:

Object 1: x = 3, y = 5, z = 7
After updating object1: x = 6, y = 7, z = 49
Object 2: x = 6, y = 7, z = 49

For the most part, the output is self-explanatory. The statement in Line 5 evaluates the
expression object1.updateXYZ(), which updates the values of the member variables
of object1. The value of object1 is then returned by the pointer this, as shown in
the definition of the function updateXYZ. The assignment operator then copies the
value into object2.

The following example also shows how the pointer this works.

EXAMPLE 14-2

In Example 11-9 in (Chapter 11), we designed a class to implement a person’s name in a
program. Here, we extend the definition of the class personType to individually set a
person’s first name and last name and then return the entire object. The extended
definition of the class personType is:

class personType
{
public:

void print() const;
//Function to output the first name and last name.
//the form firstName lastName

void setName(string first, string last);
//Function to set firstName and lastName according
//to the parameters.
//Postcondition: firstName = first; lastName = last

Operator Overloading | 833

personType& setFirstName(string first);
//Function to set the first name.
//Postcondition: firstName = first
// After setting the first name, a reference
// to the object, that is, the address of the
// object, is returned.

personType& setLastName(string last);
//Function to set the last name.
//Postcondition: lastName = last
// After setting the last name, a reference
// to the object, that is, the address of the
// object, is returned.

string getFirstName() const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType(string first = "", string last = "");
//Constructor
//Sets firstName and lastName according to the parameters.
//Postcondition: firstName = first; lastName = last

private:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

Notice that in this definition of the class personType, we replace the default const-
ructor and the constructor with parameters by one constructor with default parameters.

The definitions of the functions print, setName, getFirstName, getLastName,
and the constructor are the same as before (See Example 11-9). The definitions of the
functions setFirstName and setLastName are as follows:

personType& personType::setLastName(string last)
{

lastName = last;

return *this;
}

personType& personType::setFirstName(string first)
{

firstName = first;

return *this;
}

834 | Chapter 14: Overloading and Templates

1
4

The following program shows how to use the class personType. (We assume that the
definition of this class is in the file personType.h)

//Test Program: class personType

#include <iostream>
#include <string>
#include "personType.h"

using namespace std;

int main()
{

personType student1("Angela", "Smith"); //Line 1

personType student2; //Line 2

personType student3; //Line 3

cout << "Line 4 -- Student 1: "; //Line 4
student1.print(); //Line 5
cout << endl; //Line 6

student2.setFirstName("Shelly").setLastName("Malik"); //Line 7

cout << "Line 8 -- Student 2: "; //Line 8
student2.print(); //Line 9
cout << endl; //Line 10

student3.setFirstName("Chelsea"); //Line 11

cout << "Line 12 -- Student 3: "; //Line 12
student3.print(); //Line 13
cout << endl; //Line 14

student3.setLastName("Tomek"); //Line 15

cout << "Line 16 -- Student 3: "; //Line 16
student3.print(); //Line 17
cout << endl; //Line 18

return 0;
}

Sample Run:

Line 4 -- Student 1: Angela Smith
Line 8 -- Student 2: Shelly Malik
Line 12 -- Student 3: Chelsea
Line 16 -- Student 3: Chelsea Tomek

The statements in Lines 1, 2, and 3 declare and initialize the objects student1, student2,
and student3, respectively. The objects student2 and student3 are initialized to empty
strings. The statement in Line 5 outputs the value of student1 (see Line 4 in the sample

Operator Overloading | 835

run, which contains the output of Lines 4, 5, and 6). The statement in Line 7 works as
follows. In the statement:

student2.setFirstName("Shelly").setLastName("Malik");

first, the expression:

student2.setFirstName("Shelly")

is executed because the associativity of the dot operator is from left to right. This
expression sets the first name to "Shelly" and returns a reference of the object, which
is student2. Thus, the next expression executed is:

student2.setLastName("Malik")

which sets the last name of student2 to "Malik". The statement in Line 9 outputs the
value of student2. The statement in Line 11 sets the first name of the object student3
to "Chelsea" and ignores the value returned. The statement in Line 13 outputs the
value of student3. Notice the output in Line 12. The output shows only the first name,
not the last name, because we have not yet set the last name of student3. The last name
of student3 is still empty, which was set by the statement in Line 3 when student3
was declared. Next, the statement in Line 15 sets the last name of student3, and the
statement in Line 17 outputs the value of student3.

Friend Functions of Classes
A friend function of a class is a nonmember function of the class but has access to all of
the members (public or non-public) of the class. To make a function be a friend to a
class, the reserved word friend precedes the function prototype (in the class definition).
The word friend appears only in the function prototype in the class definition, not in
the definition of the friend function.

Consider the following statements:

class classIllusFriend
{

friend void two(/*parameters*/);
.
.
.

};

In the definition of the class classIllusFriend, two is declared as a friend of the
class classIllusFriend. That is, it is a nonmember function of the class
classIllusFriend. When you write the definition of the function two, any object of
type classIllusFriend—which is either a local variable of two or a formal parameter of
two—can access its private members within the definition of the function two. (Example
14-3 illustrates this concept.) Moreover, because a friend function is not a member of a
class, its declaration can be placed within the private, protected, or public part of the
class. However, they are typically placed before any member function declaration.

836 | Chapter 14: Overloading and Templates

DEFINITION OF A friend FUNCTION

When writing the definition of a friend function, the name of the class and the scope
resolution operator do not precede the name of the friend function in the function
heading. Also, recall that the word friend does not appear in the heading of the
friend function’s definition. Thus, the definition of the function two in the previous
class classIllusFriend is:

void two(/*parameters*/)
{

.

.

.
}

Of course, we will place the definition of the friend function in the implementation file.

The next section illustrates the difference between a member function and a nonmember
function (friend function) when we overload some of the operators for a specific class.

The following example shows how a friend function accesses the private members of
a class.

EXAMPLE 14-3

Consider the following class:

class classIllusFriend
{

friend void two(classIllusFriend cIFObject);

public:
void print();
void setx(int a);

private:
int x;

};

In the definition of the class classIllusFriend, two is declared as a friend function.
Suppose that the definitions of the member functions of the class classIllusFriend
are as follows:

void classIllusFriend::print()
{

cout << "In class classIllusFriend: x = " << x << endl;
}

void classIllusFriend::setx(int a)
{

x = a;
}

1
4

Operator Overloading | 837

Consider the following definition of the function two:

void two(classIllusFriend cIFObject) //Line 1
{

classIllusFriend localTwoObject; //Line 2

localTwoObject.x = 45; //Line 3

localTwoObject.print(); //Line 4

cout << "Line 5: In Friend Function two "
<< "accessing private member variable "
<< "x = " << localTwoObject.x
<< endl; //Line 5

cIFObject.x = 88; //Line 6

cIFObject.print(); //Line 7

cout << "Line 8: In Friend Function two "
<< "accessing private member variable "
<< "x = " << cIFObject.x << endl; //Line 8

}

The function two contains a formal parameter cIFObject and a local variable
localTwoObject, both of type classIllusFriend. In the statement in Line 3,
the object localTwoObject accesses its private member variable x and sets its value
to 45. If two is not declared as a friend function of the class classIllusFriend,
then this statement would result in a syntax error because an object cannot directly
access its private members. Similarly, in the statement in Line 6, the formal parameter
cIFObject accesses its private member variable x and sets its value to 88. Once
again, this statement would result in a syntax error if two is not declared a friend
function of the class classIllusFriend. The statement in Line 5 outputs the
value of the private member variable x of localTwoObject by directly accessing x.
Similarly, the statement in Line 8 outputs the value of x of cIFObject by directly
accessing it. The function two also prints the value of x by using the function print
(see the statements in Lines 4 and 7).

Now consider the definition of the following function main:

int main()
{

classIllusFriend aObject; //Line 9

aObject.setx(32); //Line 10

cout << "Line 11: aObject.x: "; //Line 11
aObject.print(); //Line 12
cout << endl; //Line 13

838 | Chapter 14: Overloading and Templates

1
4

cout << "*~*~*~*~*~* Testing Friend Function "
<< "two *~*~*~*~*~*" << endl << endl; //Line 14

two(aObject); //Line 15

return 0;
}

Sample Run:

Line 11: aObject.x: In class classIllusFriend: x = 32

~~*~*~*~* Testing Friend Function two *~*~*~*~*~*

In class classIllusFriend: x = 45
Line 5: In Friend Function two accessing private member variable x = 45
In class classIllusFriend: x = 88
Line 8: In Friend Function two accessing private member variable x = 88

For the most part, the output is self-explanatory. The statement in Line 15 calls the function
two (a friend function of the class classIllusFriend) and passes the object aObject
as an actual parameter. Notice that the function two generates the last four lines of the output.

Later in this chapter, you will learn that for a class, stream insertion and extraction
operators can be overloaded only as friend functions.

Operator Functions as Member Functions
and Nonmember Functions
The beginning of this chapter stated that certain rules must be followed when you include
an operator function in the definition of a class. This section describes these rules.

Most operator functions can be either member functions or nonmember functions—that
is, friend functions of a class. To make an operator function be a member or non-
member function of a class, keep the following in mind:

1. The function that overloads any of the operators (), [], ->, or = for a
class must be declared as a member of the class.

2. Suppose that an operator op is overloaded for a class—say, opOverClass.
(Here, op stands for an operator that can be overloaded, such as + or >>.)

a. If the far left operand of op is an object of a different type (that is,
not of type opOverClass), the function that overloads the operator
op for opOverClass must be a nonmember—that is, a friend of
the class opOverClass.

b. If the operator function that overloads the operator op for the
class opOverClass is a member of the class opOverClass,
then when applying op on objects of type opOverClass, the far
left operand of op must be of type opOverClass.

Operator Overloading | 839

You must follow these rules when including an operator function in a class definition.

You will see later in this chapter that functions that overload the insertion operator, <<,
and the extraction operator, >>, for a class must be nonmembers—that is, friend
functions of the class.

Except for certain operators noted previously, operators can be overloaded either as
member functions or as nonmember functions. The following discussion shows the
difference between these two types of functions.

To facilitate our discussion of operator overloading, we will use the class rectangleType,
given next. (Although Chapter 12 defines this class, Chapter 12 is not a prerequisite for this
chapter. For easy reference, we reproduce the definition of this class and the definitions of the
member functions.)

class rectangleType
{
public:

void setDimension(double l, double w);
//Function to set the length and width of the rectangle.
//Postcondition: length = l; width = w;

double getLength() const;
//Function to return the length of the rectangle.
//Postcondition: The value of length is returned.

double getWidth() const;
//Function to return the width of the rectangle.
//Postcondition: The value of width is returned.

double area() const;
//Function to return the area of the rectangle.
//Postcondition: The area of the rectangle is
// calculated and returned.

double perimeter() const;
//Function to return the perimeter of the rectangle.
//Postcondition: The perimeter of the rectangle is
// calculated and returned.

void print() const;
//Function to output the length and width of
//the rectangle.

rectangleType();
//Default constructor
//Postcondition: length = 0; width = 0;

rectangleType(double l, double w);
//Constructor with parameters
//Postcondition: length = l; width = w;

840 | Chapter 14: Overloading and Templates

private:
double length;
double width;

};

The definitions of the member functions of the class rectangleType are as follows:

void rectangleType::setDimension(double l, double w)
{

if (l >= 0)
length = l;

else
length = 0;

if (w >= 0)
width = w;

else
width = 0;

}

double rectangleType::getLength() const
{

return length;
}

double rectangleType::getWidth()const
{

return width;
}

double rectangleType::area() const
{

return length * width;
}

double rectangleType::perimeter() const
{

return 2 * (length + width);
}

void rectangleType::print() const
{

cout << "Length = " << length
<< "; Width = " << width;

}

rectangleType::rectangleType(double l, double w)
{

setDimension(l, w);
}

1
4

Operator Overloading | 841

rectangleType::rectangleType()
{

length = 0;
width = 0;

}

The class rectangleType has two private member variables: length and width,
both of type double. We will add operator functions to the class rectangleType as
we overload the operators.

Also, suppose that you have the following statements:

rectangleType myRectangle;
rectangleType yourRectangle;
rectangleType tempRect;

That is, myRectangle, yourRectangle, and tempRect are objects of type
rectangleType.

C++ consists of both binary and unary operators. It also has a ternary operator, which cannot be
overloaded. The next few sections discuss how to overload various binary and unary operators.

Overloading Binary Operators
Suppose that # represents a binary operator (arithmetic, such as +; or relational, such as
==) that is to be overloaded for the class rectangleType. This operator can be
overloaded as either a member function of the class or as a friend function. We will
describe both ways to overload this operator.

OVERLOADING THE BINARY OPERATORS AS MEMBER FUNCTIONS

Suppose that # is overloaded as a member function of the class rectangleType. The
name of the function to overload # for the class rectangleType is:

operator#

Because myRectangle and yourRectangle are objects of type rectangleType, you
can perform the operation:

myRectangle # yourRectangle

The compiler translates this expression into the following expression:

myRectangle.operator#(yourRectangle)

This expression clearly shows that the function operator# has only one parameter,
which is yourRectangle.

Because operator# is a member of the class rectangleType and myRectangle is
an object of type rectangleType, in the previous statement, operator# has direct
access to the private members of the object myRectangle. Thus, the first parameter
of operator# is the object that is invoking the function operator#, and the second
parameter is passed as a parameter to this function.

842 | Chapter 14: Overloading and Templates

1
4

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL)
OPERATORS AS MEMBER FUNCTIONS

This section describes the general form of the functions to overload the binary operators
as member functions of a class.

Function Prototype (to be included in the definition of the class):

returnType operator#(const className&) const;

in which # stands for the binary operator, arithmetic or relational, to be overloaded;
returnType is the type of value returned by the function; and className is the name
of the class for which the operator is being overloaded.

Function Definition:

returnType className::operator#
(const className& otherObject) const

{
//algorithm to perform the operation

return value;
}

The return type of the functions that overload relational operators is bool.

EXAMPLE 14-4

Let us overload +, *, ==, and != for the class rectangleType. These operators are
overloaded as member functions.

class rectangleType
{
public:

void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator*(const rectangleType&) const;
//Overload the operator *

Operator Overloading | 843

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

The definition of the function operator+ is as follows:

rectangleType rectangleType::operator+
(const rectangleType& rectangle) const

{
rectangleType tempRect;

tempRect.length = length + rectangle.length;
tempRect.width = width + rectangle.width;

return tempRect;
}

Notice that operator + adds the corresponding lengths and widths of the two rectan-
gles. The definition of the function operator* is as follows:

rectangleType rectangleType::operator*
(const rectangleType& rectangle) const

{
rectangleType tempRect;

tempRect.length = length * rectangle.length;
tempRect.width = width * rectangle.width;

return tempRect;
}

Notice that operator* multiplies the corresponding lengths and widths of the two rectangles.

Two rectangles are equal if their lengths and widths are equal. Therefore, the definition
of the function to overload the operator == is:

bool rectangleType::operator==
(const rectangleType& rectangle) const

{
return (length == rectangle.length &&

width == rectangle.width);
}

Two rectangles are not equal if either their lengths are not equal or their widths are not
equal. Therefore, the definition of the function to overload the operator != is:

844 | Chapter 14: Overloading and Templates

1
4

bool rectangleType::operator!=
(const rectangleType& rectangle) const

{
return (length != rectangle.length ||

width != rectangle.width);
}

(Note that after writing the definition of the function to overload the operator ==, you
can use it to write the definition of the function to overload the operator !=. We leave
the details as an exercise.)

Consider the following program. (We assume that the definition of the class
rectangleType is in the header file rectangleType.h.)

//This program shows how to use the class rectangleType.

#include <iostream>
#include "rectangleType.h"

using namespace std;

int main()
{

rectangleType rectangle1(23, 45); //Line 1
rectangleType rectangle2(12, 10); //Line 2
rectangleType rectangle3; //Line 3
rectangleType rectangle4; //Line 4

cout << "Line 5: rectangle1: "; //Line 5
rectangle1.print(); //Line 6
cout << endl; //Line 7

cout << "Line 8: rectangle2: "; //Line 8
rectangle2.print(); //Line 9
cout << endl; //Line 10

rectangle3 = rectangle1 + rectangle2; //Line 11

cout << "Line 12: rectangle3: "; //Line 12
rectangle3.print(); //Line 13
cout << endl; //Line 14

rectangle4 = rectangle1 * rectangle2; //Line 15

cout << "Line 16: rectangle4: "; //Line 16
rectangle4.print(); //Line 17
cout << endl; //Line 18

if (rectangle1 == rectangle2) //Line 19
cout << "Line 20: rectangle1 and "

<< "rectangle2 are equal." << endl; //Line 20
else //Line 21

cout << "Line 22: rectangle1 and "
<< "rectangle2 are not equal."
<< endl; //Line 22

Operator Overloading | 845

if (rectangle1 != rectangle3) //Line 23
cout << "Line 24: rectangle1 and "

<< "rectangle3 are not equal."
<< endl; //Line 24

else //Line 25
cout << "Line 25: rectangle1 and "

<< "rectangle3 are equal." << endl; //Line 26

return 0;
}

Sample Run:

Line 5: rectangle1: Length = 23; Width = 45
Line 8: rectangle2: Length = 12; Width = 10
Line 12: rectangle3: Length = 35; Width = 55
Line 16: rectangle4: Length = 276; Width = 450
Line 22: rectangle1 and rectangle2 are not equal.
Line 24: rectangle1 and rectangle3 are not equal.

For the most part, the preceding output is self-explanatory. However, let us look at the
statements in Lines 11, 15, 19, and 23. The statement in Line 11 uses the operator + to
add the lengths and widths of rectangle1 and rectangle2 and stores the result in
rectangle3. (That is, after the execution of this statement, the length of rectangle3
is the sum of the lengths of rectangle1 and rectangle2, and the width of
rectangle3 is the sum of the widths of rectangle1 and rectangle2. The statement
in Line 12 outputs the length and width of rectangle3.) Similarly, the statement in
Line 15 uses the operator * to multiply the lengths and widths of rectangle1 and
rectangle2 and stores the result in rectangle4. (The statement in Line 17 outputs
the length and width of rectangle4.) The statement in Line 19 uses the relational
operator == to determine whether the dimensions of rectangle1 and rectangle2 are
the same. Similarly, the statement in Line 23 uses the relational operator != to determine
whether the dimensions of rectangle1 and rectangle3 are the same.

OVERLOADING THE BINARY OPERATORS (ARITHMETIC OR RELATIONAL) AS
NONMEMBER FUNCTIONS

Suppose that # represents the binary operator (arithmetic or relational) that is to be
overloaded as a nonmember function of the class rectangleType.

Further suppose that the following operation is to be performed:

myRectangle # yourRectangle

In this case, the expression is compiled as:

operator#(myRectangle, yourRectangle)

Here, we see that the function operator# has two parameters. This expression also clearly
shows that the function operator# is neither a member of the object myRectangle

846 | Chapter 14: Overloading and Templates

nor a member of the object yourRectangle. Both of the objects, myRectangle and
yourRectangle, are passed as parameters to the function operator#.

To include the operator function operator# as a nonmember function of the class in
the definition of the class, the reserved word friend must appear before the function
heading. Also, the function operator# must have two parameters.

GENERAL SYNTAX TO OVERLOAD THE BINARY (ARITHMETIC OR RELATIONAL)
OPERATORS AS NONMEMBER FUNCTIONS

This section describes the general form of the functions to overload the binary operators
as nonmember functions of a class.

Function Prototype (to be included in the definition of the class):

friend returnType operator#(const className&,
const className&);

in which # stands for the binary operator to be overloaded; returnType is the type of
value returned by the function; and className is the name of the class for which the
operator is being overloaded.

Function Definition:

returnType operator#(const className& firstObject,
const className& secondObject)

{
//algorithm to perform the operation

return value;
}

EXAMPLE 14-5

This example illustrates how to overload the operators + and == as nonmember functions
of the class rectangleType.

To include the operator function operator+ as a nonmember function of the class
rectangleType, its prototype in the definition of rectangleType is:

friend rectangleType operator+(const rectangleType&,
const rectangleType&);

The definition of the function operator+ is as follows:

rectangleType operator+(const rectangleType& firstRect,
const rectangleType& secondRect)

1
4

Operator Overloading | 847

{
rectangleType tempRect;

tempRect.length = firstRect.length + secondRect.length;
tempRect.width = firstRect.width + secondRect.width;

return tempRect;
}

In the preceding definition, the corresponding member variables of firstRect and
secondRect are added, and the result is stored in tempRect. Recall that the private
members of a class are local to the class and, therefore, cannot be accessed outside of the
class. If we follow this rule, then because operator+ is not a member of the class
rectangleType, its definition expressions such as firstRect.length must be
illegal because length is a private member of firstRect. However, because
operator+, as declared as a friend function of the class rectangleType, an object
of type rectangleType can access its private members in the definition of
operator+. Also, note that in the function heading, the name of the class—that
is, rectangleType—and the scope resolution operator are not included before the name
of the function operator+, because the function operator+ is not a member of the class.

To include the operator function operator== as a nonmember function of the class
rectangleType, its prototype in the definition of rectangleType is:

friend bool operator==(const rectangleType& ,
const rectangleType&);

The definition of the function operator== is as follows:

bool operator==(const rectangleType& firstRect,
const rectangleType& secondRect)

{
return (firstRect.length == secondRect.length &&

firstRect.width == secondRect.width);
}

You can write a program similar to the one in Example 14-4 to test the overloading of
the operators + and == as nonmembers.

Overloading the Stream Insertion (<<) and Extraction (>>)
Operators
The operator function that overloads the insertion operator, <<, or the extraction operator,
>>, for a class must be a nonmember function of that class for the following reason.

Consider the expression:

cout << myRectangle;

In this expression, the far left operand of << (that is, cout) is an ostream object, not an
object of type rectangleType. Because the far left operand of << is not an object of

848 | Chapter 14: Overloading and Templates

1
4

type rectangleType, the operator function that overloads the insertion operator for
rectangleType must be a nonmember function of the class rectangleType.

Similarly, the operator function that overloads the stream extraction operator for
rectangleType must be a nonmember function of the class rectangleType.

OVERLOADING THE STREAM INSERTION OPERATOR (<<)

The general syntax to overload the stream insertion operator, <<, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend ostream& operator<<(ostream&, const className&);

Function Definition:

ostream& operator<<(ostream& osObject, const className& cObject)
{

//local declaration, if any
//Output the members of cObject.
//osObject << . . .

//Return the stream object.
return osObject;

}

In this function definition:

• Both parameters are reference parameters.

• The first parameter—that is, osObject— is a reference to an ostream
object.

• The second parameter is usually a const reference to a particular class,
because (recall from Chapter 11) the most effective way to pass an object
as a parameter to a class is by reference. In this case, the formal parameter
does not need to copy the member variables of the actual parameter. The
word const appears before the class name because we want to print only
the member variables of the object. That is, the function should not
modify the member variables of the object.

• The function return type is a reference to an ostream object.

The return type of the function to overload the operator << must be a reference to an
ostream object for the following reasons.

Suppose that the operator << is overloaded for the class rectangleType. The statement:

cout << myRectangle;

is equivalent to the statement:

operator<<(cout, myRectangle);

Operator Overloading | 849

This is a perfectly legal statement because both of the actual parameters are objects, not
the value of the objects. The first parameter, cout, is of type ostream; the second
parameter, myRectangle, is of type rectangleType.

Now consider the following statement:

cout << myRectangle << yourRectangle;

This statement is equivalent to the statement:

operator<<(operator<<(cout, myRectangle), yourRectangle); //Line A

because the associativity of the operator << is from left to right.

To execute the previous statement, you must first execute the expression:

cout << myRectangle

that is, the expression:

operator<<(cout, myRectangle)

After executing this expression, which outputs the value of myRectangle, whatever is
returned by the function operator << will become the left-side parameter of the
operator << (that is, the first parameter of the function operator<<) in order to output
the value of object yourRectangle (see the statement in Line A). Because the left-side
parameter of the operator << must be an object of the ostream type, the expression:

cout << myRectangle

must return the object cout (not its value) in order to output the value of yourRectangle.

Therefore, the return type of the function operator<< must be a reference to an object
of the ostream type.

OVERLOADING THE STREAM EXTRACTION OPERATOR (>>)

The general syntax to overload the stream extraction operator, >>, for a class is described next.

Function Prototype (to be included in the definition of the class):

friend istream& operator>>(istream&, className&);

Function Definition:

istream& operator>>(istream& isObject, className& cObject)
{

//local declaration, if any
//Read the data into cObject.
//isObject >> . . .

//Return the stream object.
return isObject;

}

850 | Chapter 14: Overloading and Templates

In this function definition:

• Both parameters are reference parameters.

• The first parameter—that is, isObject—is a reference to an istream
object.

• The second parameter is usually a reference to a particular class. The data
read will be stored in the object.

• The function return type is a reference to an istream object.

For the same reasons as explained previously (when we overloaded the insertion operator
<<), the return type of the function operator>> must be a reference to an istream
object. We can then successfully execute statements of the following type:

cin >> myRectangle >> yourRectangle;

Example 14-6 shows how the stream insertion and extraction operators are overloaded
for the class rectangleType.

EXAMPLE 14-6

The definition of the class rectangleType and the definitions of the operator
functions are:

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<< (ostream&, const rectangleType &);
friend istream& operator>> (istream&, rectangleType &);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;
void print() const;

rectangleType operator+(const rectangleType&) const;
//Overload the operator +

rectangleType operator*(const rectangleType&) const;
//Overload the operator *

bool operator==(const rectangleType&) const;
//Overload the operator ==

bool operator!=(const rectangleType&) const;
//Overload the operator !=

1
4

Operator Overloading | 851

rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

Notice that we have removed the member function print because we are overloading
the stream insertion operator <<.

//The definitions of the functions operator+, operator*,
//operator==, and operator!= are the same as in Example 14-5.

ostream& operator<< (ostream& osObject,
const rectangleType& rectangle)

{
osObject << "Length = " << rectangle.length

<< "; Width = " << rectangle.width;

return osObject;
}

istream& operator>> (istream& isObject,
rectangleType& rectangle)

{
isObject >> rectangle.length >> rectangle.width;

return isObject;
}

Consider the following program. (We assume that the definition of the class
rectangleType is in the header file rectangleType.h.)

//This program shows how to use the modified class rectangleType.

#include <iostream>

#include "rectangleType.h"

using namespace std;

int main()
{

rectangleType myRectangle(23, 45); //Line 1
rectangleType yourRectangle; //Line 2

cout << "Line 3: myRectangle: " << myRectangle
<< endl; //Line 3

cout << "Line 4: Enter the length and width "
<<"of a rectangle: "; //Line 4

cin >> yourRectangle; //Line 5
cout << endl; //Line 6

852 | Chapter 14: Overloading and Templates

cout << "Line 7: yourRectangle: "
<< yourRectangle << endl; //Line 7

cout << "Line 8: myRectangle + yourRectangle: "
<< myRectangle + yourRectangle << endl; //Line 8

cout << "Line 9: myRectangle * yourRectangle: "
<< myRectangle * yourRectangle << endl; //Line 9

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 3: myRectangle: Length = 23; Width = 45
Line 4: Enter the length and width of a rectangle: 32 15

Line 7: yourRectangle: Length = 32; Width = 15
Line 8: myRectangle + yourRectangle: Length = 55; Width = 60
Line 9: myRectangle * yourRectangle: Length = 736; Width = 675

The statements in Lines 1 and 2 declare and initialize myRectangle and yourRectangle
to be objects of type rectangleType. The statement in Line 3 outputs the value of
myRectangle using cout and the insertion operator. The statement in Line 5 inputs the
data into yourRectangle using cin and the extraction operator. The statement in Line 7
outputs the value of yourRectangle using cout and the insertion operator. The cout
statement in Line 8 adds the lengths and widths of myRectangle and yourRectangle
and outputs the result. Similarly, the cout statement in Line 9 multiplies the lengths and
widths of myRectangle and yourRectangle and outputs the result. The output shows
that both the stream insertion and stream extraction operators were overloaded successfully.

Overloading the Assignment Operator (=)
One of the built-in operations on classes is the assignment operation. The assignment
operator causes a member-wise copy of the member variables of the class. For example,
the statement:

myRectangle = yourRectangle;

is equivalent to the statements:

myRectangle.length = yourRectangle.length;
myRectangle.width = yourRectangle.width;

From Chapter 13, recall that the built-in assignment operator works well for classes that
do not have pointer member variables, but not for classes with pointer member variables.
Therefore, to avoid the shallow copy of data for classes with pointer member variables,
we must explicitly overload the assignment operator.

Recall that to overload the assignment operator = for a class, the operator function
operator= must be a member of that class.

1
4

Operator Overloading | 853

GENERAL SYNTAX TO OVERLOAD THE ASSIGNMENT OPERATOR = FOR A CLASS

The general syntax to overload the assignment operator = for a class is described next.

Function Prototype (to be included in the definition of the class):

const className& operator=(const className&);

Function Definition:

const className& className::operator=
(const className& rightObject)

{
//local declaration, if any

if (this != &rightObject) //avoid self-assignment
{

//algorithm to copy rightObject into this object
}

//Return the object assigned.
return *this;

}

In the definition of the function operator=:

• There is only one formal parameter.

• The formal parameter is usually a const reference to a particular class.

• The function return type is a const reference to a particular class.

We now explain why the return type of the function operator= should be a reference
of the class type.

Suppose that the assignment operator = is overloaded for the class rectangleType.
The statement:

myRectangle = yourRectangle;

is equivalent to the statement:

myRectangle.operator=(yourRectangle);

That is, the object yourRectangle becomes the actual parameter to the function:

operator=

Now consider the statement:

myRectangle = yourRectangle = tempRect;

Because the associativity of the operator = is from right to left, this statement is equivalent
to the statement:

myRectangle.operator=(yourRectangle.operator=(tempRect)); //Line A

854 | Chapter 14: Overloading and Templates

Clearly, we must first execute the expression:

yourRectangle.operator=(tempRect)

that is, the expression:

yourRectangle = tempRect

The value returned by the expression:

yourRectangle.operator=(tempRect)

will become the parameter to the function operator= in order to assign a value to the
object myRectangle (see the statement in Line A). Because the formal parameter of the
function operator= is a reference parameter, the expression:

yourRectangle.operator=(tempRect)

must return a reference to the object, rather than its value. That is, it must return a
reference to the object yourRectangle, not the value of yourRectangle. For this
reason, the return type of the function to overload the assignment operator = for a class
must be a reference to the class type.

Now consider the statement:

myRectangle = myRectangle; //Line B

Here, we are trying to copy the value of myRectangle into myRectangle; that is, this
statement is a self-assignment. One reason why we must prevent such assignments is
because they waste computer time. First, however, we explain how the body of the
assignment operator prevents such assignments.

As noted above, the body of the function operator= does prevent assignments, such as
the one given in Line B. Let us see how.

Consider the if statement in the body of the operator function operator=:

if (this != &rightObject) //avoid self-assignment
{

//algorithm to copy rightObject into this object
}

The statement:

myRectangle = myRectangle;

is compiled into the statement:

myRectangle.operator=(myRectangle);

Because the function operator= is invoked by the object myRectangle, the pointer
this in the body of the function operator= refers to the object myRectangle.
Furthermore, because myRectangle is also a parameter of the function operator=,

1
4

Operator Overloading | 855

the formal parameter rightObject also refers to the object myRectangle. Therefore,
in the expression:

this != &rightObject

this and &rightObject both mean the address of myRectangle. Thus, the expres-
sion will evaluate to false and, therefore, the body of the if statement will be skipped.

This note illustrates another reason why the body of the operator function must prevent

self-assignments. Let us consider the following class:

class arrayClass
{
public:

const arrayClass& operator= (const& arrayClass);
.
.
.

private:
int *list;
int length;
int maxSize;

};

The class arrayClass has a pointer member variable, list, which is used to
create an array to store integers. Suppose that the definition of the function to overload

the assignment operator for the class arrayClass is written without the if
statement, as follows:

const arrayClass & arrayClass::operator=
(const arrayClass& otherList)

{
delete [] list; //Line 1
maxSize = otherList.maxSize; //Line 2
length = otherList.length; //Line 3

list = new int[maxSize]; //Line 4

for (int i = 0; i < length; i++) //Line 5
list[i] = otherList.list[i]; //Line 6

return *this; //Line 7
}

Suppose that we have the following declaration in a user program:

arrayClass myList;

Consider the following statement:

myList = myList;

856 | Chapter 14: Overloading and Templates

1
4

This is a self-assignment. When this statement executes in the body of the function

operator=:

1. list means myList.list, maxSize means myList.maxSize,
and length means myList.length.

2. otherList is the same as myList.

The statement in Line 1 destroys list, that is, myList.list, so the array
holding the numbers no longer exists. That is, it is not valid. The problem is in

Line 6. Here, the expression list[i] = otherList.list[i] is equivalent to
the statement myList.list[i] = myList.list[i]. Because
myList.list[i] has no valid data (it was destroyed in Line 1), the statement in
Line 6 produces garbage.

It follows that the definition of the function operator= must prevent self-assignments.
The correct definition of operator= for the class arrayClass is:

const arrayClass& arrayClass::operator=
(const arrayClass& otherList)

{
if (this != & otherList) //Line 1
{

delete [] list; //Line 2
maxSize = otherList.maxSize; //Line 3
length = otherList.length; //Line 4

list = new int[maxSize]; //Line 5

for (int i = 0; i < length; i++) //Line 6
list[i] = otherList.list[i]; //Line 7

}

return *this; //Line 8
}

The following example illustrates how to overload the assignment operator.

EXAMPLE 14-7

Consider the following class:

class cAssignmentOprOverload
{
public:

const cAssignmentOprOverload&
operator=(const cAssignmentOprOverload& otherList);

//Overload assignment operator

Operator Overloading | 857

void print() const;
//Function to print the list

void insertEnd(int item);
//Function to insert an item at the end of the list
//Postcondition: if the list is not full,
// length++; list[length] = item;
// if the list is full,
// output an appropriate message

void destroyList();
//Function to destroy the list
//Postcondition: length = 0; maxSize = 0; list = NULL;

cAssignmentOprOverload(int size = 0);
//Constructor
//Postcondition: length = 0; maxSize = size;
// list is an arry of size maxSize

private:
int maxSize;
int length;
int *list;

};

The definitions of the member functions of the class cAssignmentOprOverload are:

void cAssignmentOprOverload::print() const
{

if (length == 0)
cout << "The list is empty." << endl;

else
{

for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
}

}

void cAssignmentOprOverload::insertEnd(int item)
{

if (length == maxSize)
cout << "List is full" << endl;

else
list[length++] = item;

}

void cAssignmentOprOverload::destroyList()
{

delete [] list;
list = NULL;
length = 0;
maxSize = 0;

}

858 | Chapter 14: Overloading and Templates

cAssignmentOprOverload::cAssignmentOprOverload(int size)
{

maxSize = size;
length = 0;

if (maxSize == 0)
list = NULL;

else
list = new int[maxSize];

}

const cAssignmentOprOverload& cAssignmentOprOverload::operator=
(const cAssignmentOprOverload& otherList)

{
if (this != &otherList) //avoid self-assignment; Line 1
{

delete [] list; //Line 2
maxSize = otherList.maxSize; //Line 3
length = otherList.length; //Line 4

list = new int[maxSize]; //Line 5

for (int i = 0; i < length; i++) //Line 6
list[i] = otherList.list[i]; //Line 7

}

return *this; //Line 8
}

The function to overload the assignment operator works as follows. The statement in
Line 1 checks whether an object is copying itself. The statement in Line 2 destroys
list. The statements in Lines 3 and 4 copy the values of the member variables
maxSize and length of otherList into the member variables maxSize and
length of list, respectively. The statement in Line 5 creates the array to store the
numbers. The for loop in Line 6 copies otherList into list. The statement in
Line 8 returns the address of this object, because the return type of the function
operator= is a reference type.

The following program tests the class cAssignmentOprOverload:

#include <iostream>

#include "classAssignmentOverload.h"

using namespace std;
int main()
{

cAssignmentOprOverload intList1(10); //Line 9
cAssignmentOprOverload intList2; //Line 10
cAssignmentOprOverload intList3; //Line 11

1
4

Operator Overloading | 859

int i; //Line 12
int number; //Line 13

cout << "Line 14: Enter 5 integers: "; //Line 14

for (i = 0; i < 5; i++) //Line 15
{

cin >> number; //Line 16
intList1.insertEnd(number); //Line 17

}

cout << endl; //Line 18
cout << "Line 19: intList1: "; //Line 19
intList1.print(); //Line 20

intList3 = intList2 = intList1; //Line 21

cout << "Line 22: intList2: "; //Line 22
intList2.print(); //Line 23

intList2.destroyList(); //Line 24

cout << endl; //Line 25
cout << "Line 26: intList2: "; //Line 26
intList2.print(); //Line 27

cout << "Line 28: After destroying intList2, "
<< "intList1: "; //Line 28

intList1.print(); //Line 29

cout << "Line 30: After destroying intList2, "
<< "intList3: "; //Line 30

intList3.print(); //Line 31
cout << endl; //Line 32

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 14: Enter 5 integers: 8 5 3 7 2

Line 19: intList1: 8 5 3 7 2
Line 22: intList2: 8 5 3 7 2

Line 26: intList2: The list is empty.
Line 28: After destroying intList2, intList1: 8 5 3 7 2
Line 30: After destroying intList2, intList3: 8 5 3 7 2

The statement in Line 9 creates intList1 of size 10; the statements in Lines 10 and 11
create intList2 and intList3 of (default) size 50. The statements in Lines 15 through
17 input the data into intList1, and the statement in Line 20 outputs intList1. The

860 | Chapter 14: Overloading and Templates

statement in Line 21 copies intList1 into intList2 and then copies intList2 into
intList3. The statement in Line 23 outputs intList2 (see Line 22 in the sample run,
which contains the output of Lines 22 and 23). The statement in Line 24 destroys
intList2. The statement in Line 27 outputs intList2, which is empty. (See Line
26 in the sample run, which contains the output of Lines 26 and 27.) After destroying
intList2, the program outputs the contents of intList1 and intList3 (see Lines 28
and 30 in the sample run). The sample run clearly shows that the destruction of
intList2 affects neither intList1 nor intList3, because intList1 and intList3
each have their own data.

Overloading Unary Operators
The process of overloading unary operators is similar to the process of overloading binary
operators. The only difference is that in the case of binary operators, the operator has two
operands. In the case of unary operators, the operator has only one parameter. Therefore,
to overload a unary operator for a class:

1. If the operator function is a member of the class, it has no parameters.

2. If the operator function is a nonmember—that is, a friend function of
the class—it has one parameter.

Next, we describe how to overload the increment and decrement operators.

OVERLOADING THE INCREMENT (++) AND DECREMENT (--) OPERATORS

The increment operator has two forms: pre-increment (++u) and post-increment (u++), in
which u is a variable, say, of type int. In the case of pre-increment, ++u, the value of the
variable, u, is incremented by 1 before the value of u is used in an expression. In the case of
post-increment, the value of u is used in the expression before it is incremented by 1.

Overloading the Pre-Increment Operator. Overloading the pre-increment operator is quite
straightforward. In the function definition, first we increment the value of the object,
and then we use the pointer this to return the object’s value.

For example, suppose that we overload the pre-increment operator for the class
rectangleType to increment the length and width of a rectangle by 1. Also, suppose
that the operator function operator++ is a member of the class rectangleType.
The operator function operator++ then has no parameters. Because the operator
function operator++ has no parameters, we use the pointer this to return the
incremented value of the object:

rectangleType rectangleType::operator++()
{

//increment the length and width
++length;
++width;

1
4

Operator Overloading | 861

return *this; //return the incremented value of the object
}

Because myRectangle is an object of type rectangleType, the statement:

++myRectangle;

increments the values of the length and width of myRectangle by 1. Moreover, the pointer
this associated with myRectangle returns the incremented value of myRectangle,
which is ignored.

Now, yourRectangle is also an object of type rectangleType, so the statement:

yourRectangle = ++myRectangle;

increments the length and width of myRectangle by 1, and the pointer this associated
with myRectangle returns the incremented value of myRectangle, which is copied
into yourRectangle.

GENERAL SYNTAX TO OVERLOAD THE PRE-INCREMENT OPERATOR ++ AS A MEMBER FUNCTION

The general syntax to overload the pre-increment operator ++ as a member function is
described next.

Function Prototype (to be included in the definition of the class):

className operator++();

Function Definition:

className className::operator++()
{

//increment the value of the object by 1
return *this;

}

The operator function to overload the pre-increment operator can also be a nonmember
of the class rectangleType, which we describe next.

Because the operator function operator++ is a nonmember function of the class
rectangleType, it has one parameter, which is an object of type rectangleType. (As
before, we assume that the increment operator increments the length and width of a rectangle
by 1.)

rectangleType operator++(rectangleType& rectangle)
{

//increment the length and width of the rectangle
(rectangle.length)++;
(rectangle.width)++;
return rectangle; //return the incremented

//value of the object
}

862 | Chapter 14: Overloading and Templates

1
4

GENERAL SYNTAX TO OVERLOAD THE PRE-INCREMENT OPERATOR ++ AS A NONMEMBER FUNCTION

The general syntax to overload the pre-increment operator ++ as a nonmember function
is described next.

Function Prototype (to be included in the definition of the class):

friend className operator++(className&);

Function Definition:

className operator++(className& incObj)
{

//increment incObj by 1
return incObj;

}

OVERLOADING THE POST-INCREMENT OPERATOR

We now discuss how to overload the post-increment operator. As in the case of the pre-
increment operator, we first describe the overloading of this operator as a member of a class.

Let us overload the post-increment operator for the class rectangleType. In both cases,
pre- and post-increment, the name of the operator function is the same—operator++. To
distinguish between pre- and post-increment operator overloading, we use a dummy
parameter (of type int) in the function heading of the operator function. Thus, the function
prototype for the post-increment operator of the class rectangleType is:

rectangleType operator++(int);

The statement:

myRectangle++;

is compiled by the compiler in the statement:

myRectangle.operator++(0);

and so the function operator++ with a parameter executes. The parameter 0 is used
merely to distinguish between the pre- and post-increment operator functions.

The post-increment operator first uses the value of the object in the expression and then
increments the value of the object. So the steps required to implement this function are:

1. Save the value of the object—in, say, temp.

2. Increment the value of the object.

3. Return the value that was saved in temp.

The function definition of the post-increment operator for the class rectangleType is:

rectangleType rectangleType::operator++(int u)

Operator Overloading | 863

{
rectangleType temp = *this; //use this pointer to copy

//the value of the object

//increment the length and width
length++;
width++;

return temp; //return the old value of the object
}

GENERAL SYNTAX TO OVERLOAD THE POST-INCREMENT OPERATOR ++ AS A MEMBER FUNCTION

The general syntax to overload the post-increment operator ++ as a member function is
described next.

Function Prototype (to be included in the definition of the class):

className operator++(int);

Function Definition:

className className::operator++(int u)
{

className temp = *this; //use this pointer to copy
//the value of the object

//increment the object

return temp; //return the old value of the object
}

The post-increment operator can also be overloaded as a nonmember function of the
class. In this situation, the operator function operator++ has two parameters. The
definition of the function to overload the post-increment operator for the class
rectangleType as a nonmember is:

rectangleType operator++(rectangleType& rectangle, int u)
{

rectangleType temp = rectangle; //copy rectangle into temp

//increment the length and width of rectangle
(rectangle.length)++;
(rectangle.width)++;

return temp; //return the old value of the object
}

GENERAL SYNTAX TO OVERLOAD THE POST-INCREMENT OPERATOR ++ AS A NONMEMBER FUNCTION

The general syntax to overload the post-increment operator ++ as a nonmember function
is described next.

864 | Chapter 14: Overloading and Templates

1
4

Function Prototype (to be included in the definition of the class):

friend className operator++(className&, int);

Function Definition:

className operator++(className& incObj, int u)
{

className temp = incObj; //copy incObj into temp

//increment incObj

return temp; //return the old value of the object
}

The decrement operators can be overloaded in a similar way, the details of which are left
as an exercise for you.

Let us now write the definition of the class rectangleType and show how the
operator functions appear in the class definition. Because certain operators can be over-
loaded as either member or nonmember functions, we give two equivalent definitions of
the class rectangleType. In the first definition, the increment, decrement, arith-
metic, and relational operators are overloaded as member functions. In the second
definition, the increment, decrement, arithmetic, and relational operators are overloaded
as nonmember functions.

The definition of the class rectangleType is as follows:

//Definition of the class rectangleType
//The increment, decrement, arithmetic, and relational
//operator functions are members of the class.

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const rectangleType &);
friend istream& operator>>(istream&, rectangleType &);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;

//Overload the arithmetic operators
rectangleType operator+(const rectangleType &) const;
rectangleType operator-(const rectangleType &) const;

Operator Overloading | 865

rectangleType operator*(const rectangleType&) const;
rectangleType operator/(const rectangleType&) const;

//Overload the increment and decrement operators
rectangleType operator++(); //pre-increment
rectangleType operator++(int); //post-increment
rectangleType operator--(); //pre-decrement
rectangleType operator--(int); //post-decrement

//Overload the relational operators
bool operator==(const rectangleType&) const;
bool operator!=(const rectangleType&) const;
bool operator<=(const rectangleType&) const;
bool operator<(const rectangleType&) const;
bool operator>=(const rectangleType&) const;
bool operator>(const rectangleType&) const;

//Constructors
rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

Following is the definition of the class rectangleType, in which the increment,
decrement, arithmetic, and relational operators are overloaded as nonmembers.

//Definition of the class rectangleType
//The increment, decrement, arithmetic, and relational
//operator functions are nonmembers of the class.

#include <iostream>

using namespace std;

class rectangleType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const rectangleType&);
friend istream& operator>>(istream&, rectangleType&);

//Overload the arithmetic operators
friend rectangleType operator+(const rectangleType&,

const rectangleType&);
friend rectangleType operator-(const rectangleType&,

const rectangleType&);
friend rectangleType operator*(const rectangleType&,

const rectangleType&);
friend rectangleType operator/(const rectangleType&,

const rectangleType&);

866 | Chapter 14: Overloading and Templates

//Overload the increment and decrement operators
friend rectangleType operator++(rectangleType&);

//pre-increment
friend rectangleType operator++(rectangleType&, int);

//post-increment
friend rectangleType operator--(rectangleType&);

//pre-decrement
friend rectangleType operator--(rectangleType&, int);

//post-decrement

//Overload the relational operators
friend bool operator==(const rectangleType&,

const rectangleType&);
friend bool operator!=(const rectangleType&,

const rectangleType&);
friend bool operator<=(const rectangleType&,

const rectangleType&);
friend bool operator<(const rectangleType&,

const rectangleType&);
friend bool operator>=(const rectangleType&,

const rectangleType&);
friend bool operator>(const rectangleType&,

const rectangleType&);

public:
void setDimension(double l, double w);
double getLength() const;
double getWidth() const;
double area() const;
double perimeter() const;

//Constructors
rectangleType();
rectangleType(double l, double w);

private:
double length;
double width;

};

The definitions of the functions to overload the operators for the class rectangleType
are left as an exercise for you. (See Programming Exercises 1 and 2 at the end of this chapter.)

Operator Overloading: Member versus Nonmember
The preceding sections discussed and illustrated how to overload operators. Certain
operators must be overloaded as member functions of the class, and some must be
overloaded as nonmember (friend) functions. What about the operators that can be
overloaded as either member functions or nonmember functions? For example, the
binary arithmetic operator + can be overloaded as a member function or a nonmember
function. If you overload + as a member function, then the operator + has direct access to
the member variables of one of the objects, and you need to pass only one object as a

1
4

Operator Overloading | 867

parameter. On the other hand, if you overload + as a nonmember function, then you must
pass both objects as parameters. When both objects are passed as parameters, the code may
become somewhat clearer. So it is a matter of preference whether you overload + as a
member or as a nonmember function. In the remainder of this chapter, if we overload an
operator as a member function, we will leave it as an exercise for you to overload it as a
nonmember function.

Classes and Pointer Member Variables (Revisited)
Chapter 13 described the peculiarities of classes with pointer member variables. Now that
we have discussed how to overload various operators, let us review the peculiarities of classes
with pointer member variables, for the sake of completeness, and how to avoid them.

Recall that the only built-in operations on classes are assignment and member selection.
The assignment operator provides a member-wise copy of the data. That is, the member
variables of an object are copied into the corresponding member variables of another
object of the same type. We have seen that this member-wise copy does not work well
for classes with pointer member variables. Other problems that may arise with classes with
pointer member variables relate to deallocating dynamic memory when an object goes
out of scope and passing a class object as a parameter by value. To resolve these problems,
classes with pointer member variables must:

1. Explicitly overload the assignment operator

2. Include the copy constructor

3. Include the destructor

Operator Overloading: One Final Word
Next, we look at three examples that illustrate operator overloading. Before delving into
these examples, you must remember the following: Suppose that an operator op is
overloaded for a class—say, rectangleType. Whenever we use the operator op on
objects of type rectangleType, the body of the function that overloads the operator op
for the class rectangleType executes. Therefore, whatever code you put in the body
of the function executes.

PROGRAMMING EXAMPLE: clockType
Chapter 11 defined a class clockType to implement the time of day in a program.
We implemented the operations to print the time, increment the time, and compare
the two times for equality using functions. This example redefines the class
clockType. It also overloads the stream insertion and extraction operators for easy
input and output, relational operators for comparisons, and the increment operator to
increment the time by one second. The program that uses the class clockType
requires the user to input the time in the form hr:min:sec.

868 | Chapter 14: Overloading and Templates

1
4

The definition of the class clockType is as follows:

//Header file newClock.h

#ifndef H_newClock
#define H_newClock

#include <iostream>

using namespace std;

class clockType
{

friend ostream& operator<<(ostream&, const clockType&);
friend istream& operator>>(istream&, clockType&);

public:
void setTime(int hours, int minutes, int seconds);

//Function to set the member variables hr, min, and sec.
//Postcondition: hr = hours; min = minutes; sec = seconds;

void getTime(int& hours, int& minutes, int& seconds) const;
//Function to return the time.
//Postcondition: hours = hr; minutes = min; seconds = sec;

clockType operator++();
//Overload the pre-increment operator.
//Postcondition: The time is incremented by one second.

bool operator==(const clockType& otherClock) const;
//Overload the equality operator.
//Postcondition: Returns true if the time of this clock
// is equal to the time of otherClock,
// otherwise it returns false.

bool operator!=(const clockType& otherClock) const;
//Overload the not equal operator.
//Postcondition: Returns true if the time of this clock
// is not equal to the time of otherClock,
// otherwise it returns false.

bool operator<=(const clockType& otherClock) const;
//Overload the less than or equal to operator.
//Postcondition: Returns true if the time of this clock
// is less than or equal to the time of
// otherClock, otherwise it returns false.

bool operator<(const clockType& otherClock) const;
//Overload the less than operator.
//Postcondition: Returns true if the time of this clock
// is less than the time of otherClock,
// otherwise it returns false.

Programming Example: clockType | 869

bool operator>=(const clockType& otherClock) const;
//Overload the greater than or equal to operator.
//Postcondition: Returns true if the time of this clock
// is greater than or equal to the time of
// otherClock, otherwise it returns false.

bool operator>(const clockType& otherClock) const;
//Overload the greater than operator.
//Postcondition: Returns true if the time of this clock
// is greater than the time of otherClock,
// otherwise it returns false.

clockType(int hours = 0, int minutes = 0, int seconds = 0);
//Constructor to initialize the object with the values
//specified by the user. If no values are specified,
//the default values are assumed.
//Postcondition: hr = hours; min = minutes;
// sec = seconds;

private:
int hr; //variable to store the hours
int min; //variable to store the minutes
int sec; //variable to store the seconds

};

#endif

Figure 14-1 shows a UML class diagram of the class clockType.

clockType

–hr: int
–min: int
–sec: int

+operator<<(ostream&, const clockType&): ostream&
+operator>>(istream&, clockType&): istream&
+setTime(int, int, int): void
+getTime(int&, int&, int&) const: void
+operator++(): clockType
+operator==(const clockType&) const: bool
+operator!=(const clockType&) const: bool
+operator<=(const clockType&) const: bool
+operator<(const clockType&) const: bool
+operator>=(const clockType&) const: bool
+operator>(const clockType&) const: bool
+clockType(int = 0, int = 0, int = 0)

FIGURE 14-1 UML class diagram of the class clockType

870 | Chapter 14: Overloading and Templates

1
4

Let us now write the definitions of the functions to implement the operations of the
class clockType. Notice that the class clockType overloads only the pre-
increment operator. For consistency, however, the class should also overload the
post-increment operator. This step is left as an exercise for you. (See Programming
Exercise 3 at the end of this chapter.)

First, we write the definition of the function operator++. The algorithm to
increment the time by one second is as follows:

a. Increment the seconds by 1.

b. If seconds > 59,

b.1. Set the seconds to 0.

b.2. Increment the minutes by 1.

b.3. If minutes > 59

b.3.1. Set the minutes to 0.

b.3.2. Increment the hours by 1.

b.3.3. If hours > 23,

b.3.3.1. Set the hours to 0.

c. Return the incremented value of the object.

The definition of the function operator++ is:

//Overload the pre-increment operator.
clockType clockType::operator++()
{

sec++; //Step a

if (sec > 59) //Step b
{

sec = 0; //Step b.1
min++; //Step b.2

if (min > 59) //Step b.3
{

min = 0; //Step b.3.1
hr++; //Step b.3.2

if (hr > 23) //Step b.3.3
hr = 0; //Step b.3.3.1

}
}

return *this; //Step c
}

The definition of the function operator== is quite simple. The two times are the
same if they have the same hours, minutes, and seconds. Therefore, the definition of
the function operator== is:

Programming Example: clockType | 871

//Overload the equality operator.
bool clockType::operator==(const clockType& otherClock) const
{

return (hr == otherClock.hr && min == otherClock.min
&& sec == otherClock.sec);

}

The definition of the function operator<= is given next. The first time is less than
or equal to the second time if:

1. The hours of the first time are less than the hours of the second time, or

2. The hours of the first time and the second time are the same, but the
minutes of the first time are less than the minutes of the second time, or

3. The hours and minutes of the first time and the second time are the
same, but the seconds of the first time are less than or equal to the
seconds of the second time.

The definition of the function operator<= is:

//Overload the less than or equal to operator.
bool clockType::operator<=(const clockType& otherClock) const
{

return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec <= otherClock.sec));

}

In a similar manner, we can write the definitions of the other relational operator
functions as follows:

//Overload the not equal operator.
bool clockType::operator!=(const clockType& otherClock) const
{

return (hr != otherClock.hr || min != otherClock.min
|| sec != otherClock.sec);

}

//Overload the less than operator.
bool clockType::operator<(const clockType& otherClock) const
{

return ((hr < otherClock.hr) ||
(hr == otherClock.hr && min < otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec < otherClock.sec));

}

//Overload the greater than or equal to operator.
bool clockType::operator>=(const clockType& otherClock) const

872 | Chapter 14: Overloading and Templates

1
4

{
return ((hr > otherClock.hr) ||

(hr == otherClock.hr && min > otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec >= otherClock.sec));

}

//Overload the greater than operator.
bool clockType::operator>(const clockType& otherClock) const
{

return ((hr > otherClock.hr) ||
(hr == otherClock.hr && min > otherClock.min) ||
(hr == otherClock.hr && min == otherClock.min &&
sec > otherClock.sec));

}

(Note that after writing the definition of the function to overload the operator ==, you
can use the operator == to write the definition of the function to overload the operator
!=. Similarly, you can use the operators == and < to write the definition of the function
to overload the operator <=, and so on. We leave the details as an exercise.)

The definitions of the functions setTime and getTime are the same as given in
Chapter 11. They are included here for the sake of completeness. Moreover, we have
modified the definition of the constructor so that it uses the function setTime to set
the time. The definitions are as follows:

void clockType::setTime(int hours, int minutes, int seconds)
{

if (0 <= hours && hours < 24)
hr = hours;

else
hr = 0;

if (0 <= minutes && minutes < 60)
min = minutes;

else
min = 0;

if (0 <= seconds && seconds < 60)
sec = seconds;

else
sec = 0;

}

void clockType::getTime(int& hours, int& minutes,
int& seconds) const

{
hours = hr;
minutes = min;
seconds = sec;

}

Programming Example: clockType | 873

//Constructor
clockType::clockType(int hours, int minutes, int seconds)
{

setTime(hours, minutes, seconds);
}

We now discuss the definition of the function operator<<. The time must be
output in the form:

hh:mm:ss

The algorithm to output the time in this format is the same as the body of the
printTime function of clockType given in Chapter 11. Here, after printing
the time in the previous format, we must return the ostream object. Therefore,
the definition of the function operator<< is:

//Overload the stream insertion operator.
ostream& operator<<(ostream& osObject, const clockType& timeOut)
{

if (timeOut.hr < 10)
osObject << '0';

osObject << timeOut.hr << ':';

if (timeOut.min < 10)
osObject << '0';

osObject << timeOut.min << ':';

if (timeOut.sec < 10)
osObject << '0';

osObject << timeOut.sec;

return osObject; //return the ostream object
}

Let us now discuss the definition of the function operator>>. The input to the
program is of the form:

hh:mm:ss

That is, the input is the hours followed by a colon, followed by the minutes, followed by
a colon, followed by the seconds. Clearly, the algorithm to input the time is:

a. Get the input, which is a number, and store it in the member
variable hr. Also check if the input is valid.

b. Get the next input, which is a colon, and discard it.

c. Get the next input, which is a number, and store it in the
member variable min. Also check if the input is valid.

d. Get the next input, which is a colon, and discard it.

e. Get the next input, which is a number, and store it in the
member variable sec. Also check if the input is valid.

f. Return the istream object.

874 | Chapter 14: Overloading and Templates

1
4

Clearly, we need a local variable of type char to read the colon.

The definition of the function operator>> is:

//overload the stream extraction operator
istream& operator>> (istream& is, clockType& timeIn)
{

char ch;

is >> timeIn.hr; //Step a

if (timeIn.hr < 0 || timeIn.hr >= 24) //Step a
timeIn.hr = 0;

is.get(ch); //Read and discard :. Step b

is >> timeIn.min; //Step c

if (timeIn.min < 0 || timeIn.min >= 60) //Step c
timeIn.min = 0;

is.get(ch); //Read and discard :. Step d

is >> timeIn.sec; //Step e

if (timeIn.sec < 0 || timeIn.sec >= 60) //Step e
timeIn.sec = 0;

return is; //Step f
}

The following test program uses the class clockType:

//**
// Author: D.S. Malik
//
// This program shows how to use the class clockType.
//**

#include <iostream>
#include "newClock.h"

using namespace std;

int main()
{

clockType myClock(5, 6, 23); //Line 1
clockType yourClock; //Line 2

cout << "Line 3: myClock = " << myClock
<< endl; //Line 3

Programming Example: clockType | 875

cout << "Line 4: yourClock = " << yourClock
<< endl; //Line 4

cout << "Line 5: Enter the time in the form "
<< "hr:min:sec "; //Line 5

cin >> myClock; //Line 6
cout << endl; //Line 7

cout << "Line 8: The new time of myClock = "
<< myClock << endl; //Line 8

++myClock; //Line 9

cout << "Line 10: After incrementing the time, "
<< "myClock = " << myClock << endl; //Line 10

yourClock.setTime(13, 35, 38); //Line 11

cout << "Line 12: After setting the time, "
<< "yourClock = " << yourClock << endl; //Line 12

if (myClock == yourClock) //Line 13
cout << "Line 14: The times of myClock and "

<< "yourClock are equal." << endl; //Line 14
else //Line 15

cout << "Line 16: The times of myClock and "
<< "yourClock are not equal." << endl; //Line 16

if (myClock <= yourClock) //Line 17
cout << "Line 18: The time of myClock is "

<< "less than or equal to " << endl
<< "the time of yourClock." << endl; //Line 18

else //Line 19
cout << "Line 20: The time of myClock is "

<< "greater than the time of "
<< "yourClock." << endl; //Line 20

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 3: myClock = 05:06:23
Line 4: yourClock = 00:00:00
Line 5: Enter the time in the form hr:min:sec 4:50:59

Line 8: The new time of myClock = 04:50:59
Line 10: After incrementing the time, myClock = 04:51:00
Line 12: After setting the time, yourClock = 13:35:38
Line 16: The times of myClock and yourClock are not equal.
Line 18: The time of myClock is less than or equal to
the time of yourClock.

876 | Chapter 14: Overloading and Templates

1
4

PROGRAMMING EXAMPLE: Complex Numbers
A number of the form a + ib, in which i2 = -1 and a and b are real numbers, is called a
complex number. We call a the real part and b the imaginary part of a + ib.
Complex numbers can also be represented as ordered pairs (a, b). The addition and
multiplication of complex numbers are defined by the following rules:

(a + ib) + (c + id) = (a + c) + i(b + d)

(a + ib) * (c + id) = (ac - bd) + i(ad + bc)

Using the ordered pair notation, these rules are written as:

(a, b) + (c, d) = ((a + c), (b + d))

(a, b) * (c, d) = ((ac - bd), (ad + bc))

C++ has no built-in data type that allows us to manipulate complex numbers. In this
example, we will construct a data type, complexType, that can be used to process
complex numbers. We will overload the stream insertion and stream extraction
operators for easy input and output. We will also overload the operators + and * to
perform addition and multiplication of complex numbers. If x and y are complex
numbers, we can evaluate expressions such as x + y and x * y.

//Specification file complexType.h

#ifndef H_complexNumber
#define H_complexNumber

#include <iostream>
using namespace std;

class complexType
{

//Overload the stream insertion and extraction operators
friend ostream& operator<<(ostream&, const complexType&);
friend istream& operator>>(istream&, complexType&);

public:
void setComplex(const double& real, const double& imag);

//Function to set the complex numbers according to
//the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

void getComplex(double& real, double& imag) const;
//Function to retrieve the complex number.
//Postcondition: real = realPart; imag = imaginaryPart;

Programming Example: Complex Numbers | 877

complexType(double real = 0, double imag = 0);
//Constructor
//Initializes the complex number according to
//the parameters.
//Postcondition: realPart = real; imaginaryPart = imag;

complexType operator+
(const complexType& otherComplex) const;

//Overload the operator +

complexType operator*
(const complexType& otherComplex) const;

//Overload the operator *

bool operator== (const complexType& otherComplex) const;
//Overload the operator ==

private:
double realPart; //variable to store the real part
double imaginaryPart; //variable to store the

//imaginary part
};

#endif

Figure 14-2 shows a UML class diagram of the class complexType.

Next, we write the definitions of the functions to implement various operations of
the class complexType.

The definitions of most of these functions are straightforward. We will discuss only
the definitions of the functions to overload the stream insertion operator, <<, and the
stream extraction operator, >>.

complexType

–realPart: double
–imaginaryPart: double

+operator<<(ostream&, const complexType&): ostream&
+operator>>(istream&, complexType&): istream&
+setComplex(const double&, const double&): void
+getComplex(double& double&) const: void
+operator+(const complexType&) const: complexType
+operator*(const complexType&) const: complexType
+operator==(const complexType&) const: bool
+complexType(double = 0, double = 0)

FIGURE 14-2 UML class diagram of the class complexType

878 | Chapter 14: Overloading and Templates

1
4

To output a complex number in the form:

(a, b)

in which a is the real part and b is the imaginary part, clearly the algorithm is:

a. Output the left parenthesis, (.

b. Output the real part.

c. Output the comma and a space.

d. Output the imaginary part.

e. Output the right parenthesis,).

Therefore, the definition of the function operator<< is:

ostream& operator<<(ostream& osObject,
const complexType& complex)

{
osObject << "("; //Step a
osObject << complex.realPart; //Step b
osObject << ", "; //Step c
osObject << complex.imaginaryPart; //Step d
osObject << ")"; //Step e

return osObject; //return the ostream object
}

Next, we discuss the definition of the function to overload the stream extraction
operator, >>.

The input is of the form:

(3, 5)

In this input, the real part of the complex number is 3, and the imaginary part is 5.
Clearly, the algorithm to read this complex number is:

a. Read and discard the left parenthesis.

b. Read and store the real part.

c. Read and discard the comma.

d. Read and store the imaginary part.

e. Read and discard the right parenthesis.

Following these steps, the definition of the function operator>> is:

istream& operator>>(istream& isObject, complexType& complex)
{

char ch;

isObject >> ch; //Step a
isObject >> complex.realPart; //Step b

Programming Example: Complex Numbers | 879

isObject >> ch; //Step c
isObject >> complex.imaginaryPart; //Step d
isObject >> ch; //Step e

return isObject; //return the istream object
}

The definitions of the other functions are as follows:

bool complexType::operator==
(const complexType& otherComplex) const

{
return (realPart == otherComplex.realPart &&

imaginaryPart == otherComplex.imaginaryPart);
}

//Constructor
complexType::complexType(double real, double imag)
{

realPart = real;
imaginaryPart = imag;

}

//Function to set the complex number after the object
//has been declared.

void complexType::setComplex(const double& real,
const double& imag)

{
realPart = real;
imaginaryPart = imag;

}

void complexType::getComplex(double& real, double& imag) const
{

real = realPart;
imag = imaginaryPart;

}

//overload the operator +
complexType complexType::operator+

(const complexType& otherComplex) const
{

complexType temp;

temp.realPart = realPart + otherComplex.realPart;
temp.imaginaryPart = imaginaryPart

+ otherComplex.imaginaryPart;

return temp;
}

880 | Chapter 14: Overloading and Templates

1
4

//overload the operator *
complexType complexType::operator*

(const complexType& otherComplex) const
{

complexType temp;
temp.realPart = (realPart * otherComplex.realPart) -

(imaginaryPart * otherComplex.imaginaryPart);
temp.imaginaryPart = (realPart * otherComplex.imaginaryPart)

+ (imaginaryPart * otherComplex.realPart);
return temp;

}

The following program illustrates the use of the class complexType:

//**
// Author: D.S. Malik
//
// This program shows how to use the class complexType.
//**

#include <iostream>
#include "complexType.h"

using namespace std;

int main()
{

complexType num1(23, 34); //Line 1
complexType num2; //Line 2
complexType num3; //Line 3

cout << "Line 4: Num1 = " << num1 << endl; //Line 4
cout << "Line 5: Num2 = " << num2 << endl; //Line 5

cout << "Line 6: Enter the complex number "
<< "in the form (a, b) "; //Line 6

cin >> num2; //Line 7
cout << endl; //Line 8

cout << "Line 9: New value of num2 = "
<< num2 << endl; //Line 9

num3 = num1 + num2; //Line 10

cout << "Line 11: Num3 = " << num3 << endl; //Line 11

cout << "Line 12: " << num1 << " + " << num2
<< " = " << num1 + num2 << endl; //Line 12

cout << "Line 13: " << num1 << " * " << num2
<< " = " << num1 * num2 << endl; //Line 13

return 0;
}

Programming Example: Complex Numbers | 881

Next, we will define a class, called newString, and overload the assignment and
relational operators. That is, when we declare a variable of type newString, we will
be able to use the assignment operator to copy one string into another and relational
operators to compare the two strings.

Before discussing the class newString, however, we examine the overloading of the
operator []. Recall that we have used the operator [] to access the components of an
array. To access individual characters in a string of type newString, we have to
overload the operator [] for the class newString.

Overloading the Array Index (Subscript)
Operator ([])
Recall that the function to overload the operator [] for a class must be a member of the
class. Furthermore, because an array can be declared as constant or nonconstant, we need
to overload the operator [] to handle both cases.

The syntax to declare the operator function operator[] as a member of a class for
nonconstant arrays is:

Type& operator[](int index);

The syntax to declare the operator function operator[] as a member of a class for
constant arrays is:

const Type& operator[](int index) const;

in which Type is the data type of the array elements.

Suppose that classTest is a class that has an array member variable. The definition of
classTest to overload the operator [] is:

class classTest
{
public:

Sample Run: In this sample run, the user input is shaded.

Line 4: Num1 = (23, 34)
Line 5: Num2 = (0, 0)
Line 6: Enter the complex number in the form (a, b) (3, 4)
Line 9: New value of num2 = (3, 4)
Line 11: Num3 = (26, 38)
Line 12: (23, 34) + (3, 4) = (26, 38)
Line 13: (23, 34) * (3, 4) = (-67, 194)

You can extend this data type to perform subtraction and division on complex numbers.

882 | Chapter 14: Overloading and Templates

1
4

Type& operator[](int index);
//Overload the operator for nonconstant arrays

const Type& operator[](int index) const;
//Overload the operator for constant arrays
.
.
.

private:
Type *list; //pointer to the array
int arraySize;

};

in which Type is the data type of the array elements.

The definitions of the functions to overload the operator [] for classTest are:

//Overload the operator [] for nonconstant arrays
Type& classTest::operator[](int index)
{

assert(0 <= index && index < arraySize);
return list[index]; //return a pointer of the

//array component
}

//Overload the operator [] for constant arrays
const Type& classTest::operator[](int index) const
{

assert(0 <= index && index < arraySize);
return list[index]; //return a pointer of the

//array component
}

The preceding function definitions use the assert statement. (For an explanation of the

assert statement, see Chapter 4 or the Appendix.)

Consider the following statements:

classTest list1;
classTest list2;
const classTest list3;

In the case of the statement:

list1[2] = list2[3];

the body of the operator function operator[] for nonconstant arrays is executed. In the
case of the statement:

list1[2] = list3[5];

first, the body of the operator function operator[] for constant arrays is executed
because list3 is a constant array. Next, the body of the operator function operator[]
for nonconstant arrays is executed to complete the execution of the assignment statement.

Overloading the Array Index (Subscript) Operator ([]) | 883

PROGRAMMING EXAMPLE: newString
Chapter 9 discussed C-strings. Recall that:

1. A C-string is a sequence of one or more characters.

2. C-strings are enclosed in double quotation marks.

3. C-strings are null terminated.

4. C-strings are stored in character arrays.

The only aggregate operations allowed on C-strings are input and output. To use
other operations, the programmer needs to include the header file cstring, which
contains the specifications of many functions for string manipulation.

Initially, C++ did not provide any built-in data types to handle C-strings. More
recent versions of C++, however, provide a string class to handle C-strings and
operations on C-strings.

Our objective in this example is to define our own class for C-string manipulation
and, at the same time, to further illustrate operator overloading. More specifically,
we overload the assignment operator, the relational operators, and the stream
insertion and extraction operators for easy input and output. Let us call this class
newString. First, we give the definition of the class newString:

//Header file myString.h

#ifndef H_myString
#define H_myString

#include <iostream>

using namespace std;

class newString
{

//Overload the stream insertion and extraction operators.
friend ostream& operator << (ostream&, const newString&);
friend istream& operator >> (istream&, newString&);

public:
const newString& operator=(const newString&);

//overload the assignment operator
newString(const char *);

//constructor; conversion from the char string
newString();

//Default constructor to initialize the string to null
newString(const newString&);

//Copy constructor

884 | Chapter 14: Overloading and Templates

1
4

~newString();
//Destructor

char &operator[] (int);
const char &operator[](int) const;

//overload the relational operators
bool operator==(const newString&) const;
bool operator!=(const newString&) const;
bool operator<=(const newString&) const;
bool operator<(const newString&) const;
bool operator>=(const newString&) const;
bool operator>(const newString&) const;

private:
char *strPtr; //pointer to the char array

//that holds the string
int strLength; //variable to store the length

//of the string
};

#endif

The class newString has two private member variables: one to store the
C-string and one to store the length of the C-string.

Next, we give the definitions of the functions to implement the newString operations.
The implementation file includes the header file cassert because we are using the
function assert. (For an explanation of the function assert, see Chapter 4 or the
header file cassert in the Appendix).

//Implementation file myStringImp.cpp
#include <iostream>
#include <iomanip>
#include <cstring>
#include <cassert>
#include "myString.h"

using namespace std;

//Constructor: conversion from the char string to newString
newString::newString(const char *str)
{

strLength = strlen(str);
strPtr = new char[strLength + 1]; //allocate memory to

//store the char string
strcpy(strPtr, str); //copy string into strPtr

}

Programming Example: newString | 885

//Default constructor to store the null string
newString::newString()
{

strLength = 0;
strPtr = new char[1];
strcpy(strPtr, "");

}

newString::newString(const newString& rightStr) //copy constructor
{

strLength = rightStr.strLength;
strPtr = new char[strLength + 1];
strcpy(strPtr, rightStr.strPtr);

}

newString::~newString() //destructor
{

delete [] strPtr;
}

//overload the assignment operator
const newString& newString::operator=(const newString& rightStr)
{

if (this != &rightStr) //avoid self-copy
{

delete [] strPtr;
strLength = rightStr.strLength;
strPtr = new char[strLength + 1];
strcpy(strPtr, rightStr.strPtr);

}

return *this;
}

char& newString::operator[] (int index)
{

assert(0 <= index && index < strLength);
return strPtr[index];

}

const char& newString::operator[](int index) const
{

assert(0 <= index && index < strLength);
return strPtr[index];

}

//Overload the relational operators.
bool newString::operator==(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) == 0);
}

886 | Chapter 14: Overloading and Templates

1
4

bool newString::operator<(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) < 0);
}

bool newString::operator<=(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) <= 0);
}

bool newString::operator>(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) > 0);
}

bool newString::operator>=(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) >= 0);
}

bool newString::operator!=(const newString& rightStr) const
{

return (strcmp(strPtr, rightStr.strPtr) != 0);
}

//Overload the stream insertion operator <<
ostream& operator << (ostream& osObject, const newString& str)
{

osObject << str.strPtr;

return osObject;
}

//Overload the stream extraction operator >>
istream& operator >> (istream& isObject, newString& str)
{

char temp[81];

isObject >> setw(81) >> temp;
str = temp;
return isObject;

}

Consider the statement:

isObject >> setw(81) >> temp;

in the definition of the function operator>>. Because temp is declared to be an
array of size 81, the largest string that can be stored into temp is of length 80. The
manipulator setw in this statement (that is, in the input statement) ensures that no
more than 80 characters are read into temp.

Programming Example: newString | 887

Most of these functions are quite straightforward. Let us explain the functions that over-
load the conversion constructor, the assignment operator, and the copy constructor.

The conversion constructor is a single-parameter function that converts its argu-
ment to an object of the constructor’s class. In our case, the conversion constructor
converts a string to an object of the newString type.

Note that the assignment operator is explicitly overloaded only for objects of the
newString type. However, the overloaded assignment operator also works if we
want to store a C-string into a newString object. Consider the declaration:

newString str;

and the statement:

str = "Hello there";

The compiler translates this statement into:

str.operator=("Hello there");

1. First, the compiler automatically invokes the conversion constructor
to create an object of the newString type to temporarily store the
string "Hello there".

2. Second, the compiler invokes the overloaded assignment operator to
assign the temporary newString object to the object str.

Hence, it is not necessary to explicitly overload the assignment operator to store a
C-string into an object of type newString.

Next, we write a C++ program that tests some of the operations of the class
newString.

//**
// Author: D.S. Malik
//
// This program shows how to use the class newString.
//**

#include <iostream>
#include "myString.h"

using namespace std;

int main()
{

newString str1 = "Sunny"; //initialize str1 using
//the assignment operator

const newString str2("Warm"); //initialize str2 using the
//conversion constructor

888 | Chapter 14: Overloading and Templates

1
4

newString str3; //initialize str3 to the empty string
newString str4; //initialize str4 to the empty string

cout << "Line 1: " << str1 << " " << str2
<< " ***" << str3 << "###." << endl; //Line 1

if (str1 <= str2) //compare str1 and str2; Line 2
cout << "Line 3: " << str1 << " is less "

<< "than or equal to" << str2 << endl; //Line 3
else //Line 4

cout << "Line 5: " << str2 << " is less "
<< "than " << str1 << endl; //Line 5

cout << "Line 6: Enter a string with a length "
<< "of at least 7: "; //Line 6

cin >> str1; //input str1; Line 7
cout << endl; //Line 8

cout << "Line 9: The new value of "
<< "str1 = " << str1 << endl; //Line 9

str4 = str3 = "Birth Day"; //Line 10

cout << "Line 11: str3 = " << str3
<< ", str4 = " << str4 << endl; //Line 11

str3 = str1; //Line 12
cout << "Line 13: The new value of str3 = "

<< str3 << endl; //Line 13

str1 = "Bright Sky"; //Line 14

str3[1] = str1[5]; //Line 15
cout << "Line 16: After replacing the second "

<< "character of str3 = " << str3 << endl; //Line 16

str3[2] = str2[0]; //Line 17
cout << "Line 18: After replacing the third "

<< "character of str3 = " << str3 << endl; //Line 18

str3[5] = 'g'; //Line 19
cout << "Line 20: After replacing the sixth "

<< "character of str3 = " << str3 << endl; //Line 20

return 0;
}

Sample Run: In this sample run, the user input is shaded.

Line 1: Sunny Warm ***###.
Line 3: Sunny is less than or equal to Warm

Programming Example: newString | 889

Function Overloading
The previous section discussed operator overloading. Operator overloading provides the
programmer with the same concise notation for user-defined data types as the operator
has for built-in types. The types of parameters used with an operator determine the action
to take. Similar to operator overloading, C++ allows the programmer to overload a
function name. Chapter 7 introduced function overloading. For easy reference in the
following discussion, let us review this concept.

Recall that a class can have more than one constructor, but all constructors of a class have
the same name, which is the name of the class. This is an example of overloading a
function. Further recall that overloading a function refers to having several functions
with the same name but different parameter lists. The parameter list determines which
function will execute.

For function overloading to work, we must give the definition of each function. The
next section teaches you how to overload functions with a single code segment and leave
the job of generating code for separate functions for the compiler.

Line 6: Enter a string with a length of at least 7: 123456789
Line 9: The new value of str1 = 123456789
Line 11: str3 = Birth Day, str4 = Birth Day
Line 13: The new value of str3 = 123456789
Line 16: After replacing the second character of str3 = 1t3456789
Line 18: After replacing the third character of str3 = 1tW456789
Line 20: After replacing the sixth character of str3 = 1tW45g789

The preceding program works as follows. The statement in Line 1 outputs the values
of str1, str2, and str3. Notice that the value of str3 is to be printed between
*** and ###. Because str3 is empty, nothing is printed between *** and ###; see
Line 1 in the sample run. The statements in Lines 2 through 5 compare str1 and
str2 and output the result. The statement in Line 7 inputs a string with a length of at
least 7 into str1, and the statement in Line 9 outputs the new value of str1. Note
that in the statement (see Line 10):

str4 = str3 = "Birth Day";

Because the associativity of the assignment operator is from right to left, first the
statement str3 = "Birth Day"; executes, and then the statement str4 = str3;
executes. The statement in Line 11 outputs the values of str3 and str4. The
statements in Lines 15, 17, and 19 use the array subscripting operator [] to indivi-
dually manipulate the characters of str3. The meanings of the remaining statements
are straightforward.

890 | Chapter 14: Overloading and Templates

1
4

Templates
Templates are a very powerful feature of C++. They allow you to write a single code
segment for a set of related functions, called a function template, and for a set of related
classes, called a class template. The syntax we use for templates is:

template <class Type>
declaration;

in which Type is the name of a data type, built-in or user-defined, and declaration is
either a function declaration or a class declaration. In C++, template is a reserved word.
The word class in the heading refers to any user-defined type or built-in type. Type is
referred to as a formal parameter to the template. (Note that in the first line, template
<class Type>, the keyword class can be replaced with the keyword typename.)

Similar to variables being parameters to functions, types (that is, data types) are parameters
to templates.

Function Templates
In Chapter 7, when we introduced function overloading, the function larger was
overloaded to find the larger of two integers, characters, floating-point numbers, or
strings. To implement the function larger, we need to write four function definitions
for the data type: one for int, one for char, one for double, and one for string.
However, the body of each function is similar. C++ simplifies the process of overloading
functions by providing function templates.

The syntax of the function template is:

template <class Type>
function definition;

in which Type is referred to as a formal parameter of the template. It is used to specify the
type of parameters to the function and the return type of the function and to declare
variables within the function.

The statements:

template <class Type>
Type larger(Type x, Type y)
{

if (x >= y)
return x;

else
return y;

}

define a function template larger, which returns the larger of two items. In the function
heading, the type of the formal parameters x and y is Type, which will be specified by the
type of the actual parameters when the function is called. The statement:

Templates | 891

cout << larger(5, 6) << endl;

is a call to the function template larger. Because 5 and 6 are of type int, the data type
int is substituted for Type, and the compiler generates the appropriate code.

Note that the function template larger will work only for those data types for which
the operator >= has been defined.

If we omit the body of the function in the function template definition, the function
template, as usual, is the prototype.

The following example illustrates the use of function templates.

EXAMPLE 14-8

The following program uses the function template larger to determine the larger of the
two items.

// Template larger

#include <iostream>
#include "myString.h"

using namespace std;

template <class Type>
Type larger(Type x, Type y);

int main()
{

cout << "Line 1: Larger of 5 and 6 = "
<< larger(5, 6) << endl; //Line 1

cout << "Line 2: Larger of A and B = "
<< larger('A', 'B') << endl; //Line 2

cout << "Line 3: Larger of 5.6 and 3.2 = "
<< larger(5.6, 3.2) << endl; //Line 3

newString str1 = "Hello"; //Line 4
newString str2 = "Happy"; //Line 5

cout << "Line 6: Larger of " << str1 << " and "
<< str2 << " = " << larger(str1, str2)
<< endl; //Line 6

return 0;
}

template <class Type>
Type larger(Type x, Type y)
{

if (x >= y)

892 | Chapter 14: Overloading and Templates

1
4

return x;
else

return y;
}

Sample Run:

Line 1: Larger of 5 and 6 = 6
Line 2: Larger of A and B = B
Line 3: Larger of 5.6 and 3.2 = 5.6
Line 6: Larger of Hello and Happy = Hello

Class Templates
Like function templates, class templates are used to write a single code segment for a set of
related classes. For example, in Chapter 11, we defined a list as an ADT; our list element
type was int. If the list element type changes from int to, say, char, double, or
string, we need to write separate classes for each element type. For the most part, the
operations on the list and the algorithms to implement those operations remain the same.
Using class templates, we can create a generic class listType, and the compiler can
generate the appropriate source code for a specific implementation.

The syntax we use for a class template is:

template <class Type>
class declaration

Class templates are called parameterized types because, based on the parameter type, a
specific class is generated.

The following statements define listType to be a class template:

template<class elemType>
class listType
{
public:

bool isEmpty() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise it returns false.

bool isFull() const;
//Function to determine whether the list is full.
//Postcondition: Returns true if the list is full,
// otherwise it returns false.

bool search(const elemType& searchItem) const;
//Function to search the list for searchItem.
//Postcondition: Returns true if searchItem
// is found in the list, and
// false otherwise.

Templates | 893

void insert(const elemType& newElement);
//Function to insert newElement in the list.
//Precondition: Prior to insertion, the list must
// not be full.
//Postcondition: The list is the old list plus
// newElement.

void remove(const elemType& removeElement);
//Function to remove removeElement from the list.
//Postcondition: If removeElement is found in the list,
// it is deleted from the list, and the
// list is the old list minus removeElement.
// If the list is empty, output the message
// "Cannot delete from the empty list."

void destroyList();
//Function to destroy the list.
//Postcondition: length = 0;

void printList();
//Function to output the elements of the list.

listType();
//Default constructor
//Sets the length of the list to 0.
//Postcondition: length = 0;

protected:
elemType list[100]; //array to hold the list elements
int length; //variable to store the number of

//elements in the list
};

This definition of the class template listType is a generic definition and includes only
the basic operations on a list. To derive a specific list from this list and to add or rewrite
the operations, we declare the array containing the list elements and the length of the list
as protected.

Next, we describe a specific list. Suppose that you want to create a list to process integer
data. The statement:

listType<int> intList; //Line 1

declares intList to be an object of listType. The protected member list is an array
of 100 components, with each component being of type int. Similarly, the statement:

listType<newString> stringList; //Line 2

declares stringList to be an object of listType. The protected member list is
an array of 100 components, with each component being of type newString.

894 | Chapter 14: Overloading and Templates

1
4

In the statements in Lines 1 and 2, listType<int> and listType<newString> are
referred to as template instantiations or instantiations of the class template listType<elemType>,
in which elemType is the class parameter in the template header. A template instantiation
can be created with either a built-in or user-defined type.

The function members of a class template are considered function templates. Thus, when
giving the definitions of the function members of a class template, we must follow the
definition of the function template. For example, the definition of the member insert
of the class listType is:

template <class elemType>
void listType<elemType>::insert(elemType newElement)
{

.

.

.
}

In the heading of the member function’s definition, the name of the class is specified with
the parameter elemType.

The statement in Line 1 declares intList to be a list of 100 components. When the
compiler generates the code for intList, it replaces the word elemType with int in
the definition of the class listType. The template parameter in the definitions of the
member functions (for example, elemType in the definition of insert) of the class
listType is also replaced by int.

HEADER FILE AND IMPLEMENTATION FILE OF A CLASS TEMPLATE

Until now, we have placed the definition of the class (in the header file) and the definitions
of the member functions (in the implementation file) in separate files. The object code was
generated from the implementation file and linked with the user code. However, this
mechanism of separating the class definition and the definitions of the member functions
does not work with class templates. Passing parameters to a function has an effect at run
time, whereas passing a parameter to a class template has an effect at compile time. Because
the actual parameter to a class is specified in the user code and because the compiler cannot
instantiate a function template without the actual parameter to the template, we can no
longer compile the implementation file independently of the user code.

This problem has several possible solutions. We could put the class definition and the
definitions of the function templates directly in the client code, or we could put the class
definition and the definitions of the function templates together in the same header file.
Another alternative is to put the class definition and the definitions of the functions in
separate files (as usual) but include a directive to the implementation file at the end of the
header file. In either case, the function definitions and the client code are compiled
together. For illustrative purposes, we will put the class definition and the function
definitions in the same header file.

The following example demonstrates the use of class templates.

Templates | 895

Array-Based Lists (Revisited)
In Chapter 13, we designed the classes arrayListType, unorderedArrayListType,
and orderedArrayListType to process lists in an array. However, these classes, as
designed in Chapter 13, process only those lists whose elements are of type int. Now that
we have discussed how to use class templates to create a generic code, in this section, we
redesign these classes so that they can be used to process any type of list. Moreover, in this
chapter, we discussed how to overload the assignment operator. Therefore, in addition to the
operations discussed in Chapter 13, we also overload the assignment operator for the class
arrayListType because it has a pointer member variable.

The following class template defines the abstract class arrayListType as an ADT.
(To save space, we only list the functions. The documentation of these functions is similar
to ones given in Chapter 13. The source code file at the Web site accompanying this
book contains the documentation of these functions.)

template <class elemType>
class arrayListType
{
public:

const arrayListType<elemType>&
operator=(const arrayListType<elemType>&);

//Overloads the assignment operator

bool isEmpty() const;
bool isFull() const;
int listSize() const;
int maxListSize() const;
void print() const;
bool isItemAtEqual(int location, const elemType& item) const;
virtual void insertAt(int location, const elemType& insertItem) = 0;
virtual void insertEnd(const elemType& insertItem) = 0;
void removeAt(int location);
void retrieveAt(int location, elemType& retItem) const;
virtual void replaceAt(int location, const elemType& repItem) = 0;
void clearList();
virtual int seqSearch(const elemType& searchItem) const = 0;
virtual void remove(const elemType& removeItem) = 0;
arrayListType(int size = 100);
arrayListType (const arrayListType<elemType>& otherList);
virtual ~arrayListType();

protected:
elemType *list; //array to hold the list elements
int length; //variable to store the length of the list
int maxSize; //variable to store the maximum

//size of the list
};

896 | Chapter 14: Overloading and Templates

The definitions of the functions to implement the operations of theclassarrayListType are
similar to the ones given in Chapter 13. Here the functions to implement these operations are
function templates. For example, the definitions of the functions print, isItemAtEqual,
removeAt, retrieveAt, the constructor, and the destructor are:

template <class elemType>
void arrayListType<elemType>::print() const
{

for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
}

template <class elemType>
bool arrayListType<elemType>::isItemAtEqual(int location,

const elemType& item) const
{

if (location < 0 || location >= length)
{

cout << "The location of the item to be removed "
<< "is out of range." << endl;

return false;
}
else

return (list[location] == item);
} //end isItemAtEqual

template <class elemType>
void arrayListType<elemType>::removeAt(int location)
{

if (location < 0 || location >= length)
cout << "The location of the item to be removed "

<< "is out of range." << endl;
else
{

for (int i = location; i < length - 1; i++)
list[i] = list[i + 1];

length--;
}

} //end removeAt

template <class elemType>
void arrayListType<elemType>::retrieveAt(int location,

elemType& retItem) const
{

if (location < 0 || location >= length)
cout << "The location of the item to be retrieved is "

<< "out of range" << endl;

1
4

Templates | 897

else
retItem = list[location];

} //end retrieveAt

template <class elemType>
arrayListType<elemType>::arrayListType(int size)
{

if (size <= 0)
{

cout << "The array size must be positive. Creating "
<< "an array of the size 100. " << endl;

maxSize = 100;
}
else

maxSize = size;

length = 0;

list = new elemType[maxSize];
}

template <class elemType>
arrayListType<elemType>::~arrayListType()
{

delete [] list;
}

Next, because we are overloading the assignment for the class arrayListType, we
give the definition of the function template to overload the assignment operator.

template <class elemType>
const arrayListType<elemType>& arrayListType<elemType>::

operator=(const arrayListType<elemType>& otherList)
{

if (this != &otherList) //avoid self-assignment
{

delete [] list;
maxSize = otherList.maxSize;
length = otherList.length;

list = new elemType[maxSize];

for (int i = 0; i < length; i++)
list[i] = otherList.list[i];

}
return *this;

}

898 | Chapter 14: Overloading and Templates

1
4

We leave it as an exercise for you to provide the definitions of the remaining function
templates for the class arrayListType. (See Programming Exercise 18 at the end of
this chapter.)

Recall that the class arrayListType is an abstract class. So its objects cannot be
instantiated. Next we describe the nonabstract class unorderedArrayListType
derived from the class arrayListType.

template <class elemType>
class unorderedArrayListType: public arrayListType <elemType>
{
public:

void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void replaceAt(int location, const elemType& repItem);
int seqSearch(const elemType& searchItem) const;
void remove(const elemType& removeItem);

unorderedArrayListType(int size = 100);
//Constructor

};

As in the case of the class arrayListType, the definitions of the member functions of
the class unorderedArrayListType is simialr to ones given in Chapter 13. For
example, the definitions of the functions insertEnd, seqSearch, replaceAt, and
remove, and constructor are as follows:

template <class elemType>
void unorderedArrayListType<elemType>::insertEnd

(const elemType& insertItem)
{

if (length >= maxSize) //the list is full
cout << "Cannot insert in a full list." << endl;

else
{

list[length] = insertItem; //insert the item at the end
length++; //increment the length

}
} //end insertEnd

template <class elemType>
int unorderedArrayListType<elemType>::seqSearch

(const elemType& searchItem) const
{

int loc;
bool found = false;

for (loc = 0; loc < length; loc++)
if (list[loc] == searchItem)
{

found = true;
break;

}

Templates | 899

if (found)
return loc;

else
return -1;

} //end seqSearch

template <class elemType>
void unorderedArrayListType<elemType>::remove

(const elemType& removeItem)
{

int loc;

if (length == 0)
cout << "Cannot delete from an empty list." << endl;

else
{

loc = seqSearch(removeItem);

if (loc != -1)
removeAt(loc);

else
cout << "The item to be deleted is not in the list."

<< endl;
}

} //end remove

template <class elemType>
void unorderedArrayListType<elemType>::replaceAt(int location,

const elemType& repItem)
{

if (location < 0 || location >= length)
cout << "The location of the item to be "

<< "replaced is out of range." << endl;
else

list[location] = repItem;
} //end replaceAt

template <class elemType>
unorderedArrayListType<elemType>::

unorderedArrayListType(int size)
: arrayListType<elemType>(size)

{
}

We leave it as an exercise for you to provide the definitions of the remaining function
templates for the class unorderedArrayListType. (See Programming Exercise 18 at
the end of this chapter.)

The following example illustrates how to use the class unorderedArrayListType
to process a list of strings.

900 | Chapter 14: Overloading and Templates

1
4

EXAMPLE 14-9

The following program tests the various operations on an array-based list.

#include <iostream>
#include <string>
#include "unorderedArrayListType.h"

using namespace std;

int main()
{

unorderedArrayListType<string> stringList(25); //Line 1

string str; //Line 2

cout << "List 3: Enter 5 strings: "; //Line 3

for (int count = 0; count < 5; count++) //Line 4
{

cin >> str; //Line 5
stringList.insertEnd(str); //Line 6

}

cout << endl; //Line 7
cout << "Line 8: stringList: "; //Line 8
stringList.print(); //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the string to be "
<< "deleted: "; //Line 11

cin >> str; //Line 12
cout << endl; //Line 13

stringList.remove(str); //Line 14
cout << "Line 15: After removing " << str

<< " stringList: "; //Line 15
stringList.print(); //Line 16
cout << endl; //Line 17

cout << "Line 18: Enter the search item: "; //Line 18

cin >> str; //Line 19
cout << endl; //Line 20

if (stringList.seqSearch(str) != -1) //Line 21
cout << "Line 22: " << str

<< " found in stringList." << endl; //Line 22
else //Line 23

cout << "Line 24: " << str
<< " is not in stringList." << endl; //Line 24

return 0;
}

Templates | 901

Sample Run: In this sample run, the user input is shaded.

List 3: Enter 5 strings: hello sunny warm winter summer
Line 8: stringList: hello sunny warm winter summer
Line 11: Enter the string to be deleted: hello
Line 15: After removing hello stringList: sunny warm winter summer
Line 18: Enter the search item: winter
Line 22: winter found in stringList.

The preceding program works as follows. The statement in Line 1 declares stringList
to be an object of the type unorderedArrayListType. The member variable list of
stringList is an array of 25 components and the component type is string. The
statement in Line 2 declares the string variable str. The statement in Line 3 prompts
the user to enter 5 strings. The statement in Line 5 gets the next string from the input
stream. The statement in Line 6 uses the member function insertEnd of stringList
to store the string into stringList. The statement in Line 9 uses the member function
print of stringList to output the elements of stringList. The statement in Line 11
prompts the user to enter the string to be deleted from stringList, and the statement
in Line 12 gets the string to be deleted from the input stream. The statement in Line 14
uses the member function remove of stringList to remove the string from string-
List. The statement in Line 16 outputs the modified stringList.

The statements in Lines 18 through 24 tests the function seqSearch.

The Web site accompanying this book contains additional programs illustrating how to

use the class template unorderedArrayListType to create lists of double
elements and clockType objects.

Just as we can derive the class template unorderedArrayListType, from the
abstact class template arrayListType, to manipulate unordered lists, we can also
derive the class template orderedArrayListType to manipulate ordered lists.
(See Programming Exercise 19 at the end of this chapter.)

QUICK REVIEW

1. An operator that has different meanings with different data types is said to
be overloaded.

2. In C++, >> is used as a stream extraction operator and as a right shift
operator. Similarly, << is used as a stream insertion operator and as a left
shift operator. Both are examples of operator overloading.

3. Any function that overloads an operator is called an operator function.

4. The syntax of the heading of the operator function is:
returnType operator operatorSymbol(parameters)

902 | Chapter 14: Overloading and Templates

5. In C++, operator is a reserved word.

6. Operator functions are value-returning functions.

7. Except for the assignment operator and the member selection operator, to
use an operator on class objects, that operator must be overloaded. The
assignment operator performs a default member-wise copy.

8. For classes with pointer member variables, the assignment operator must be
explicitly overloaded.

9. Operator overloading provides the same concise notation for user-defined
data types as is available for built-in data types.

10. When an operator is overloaded, its precedence cannot be changed, its
associativity cannot be changed, default parameters cannot be used with an
overloaded operator, the number of parameters that the operator takes
cannot be changed, and the meaning of how an operator works with
built-in data types remains the same.

11. It is not possible to create new operators. Only existing operators can be
overloaded.

12. Most C++ operators can be overloaded.

13. The operators that cannot be overloaded are ., .*, ::, ?:, and sizeof.

14. The pointer this refers to the object as a whole.

15. The operator functions that overload the operators (), [], ->, or = for a
class must be members of that class.

16. A friend function is a nonmember of a class.

17. The heading of the prototype of a friend function is preceded by the word
friend.

18. In C++, friend is a reserved word.

19. If an operator function is a member of a class, the far left operand of the
operator must be a class object (or a reference to a class object) of that
operator’s class.

20. The binary operator function as a member of a class has only one para-
meter; as a nonmember of a class, it has two parameters.

21. The operator functions that overload the stream insertion operator, <<, and
the stream extraction operator, >>, for a class must be friend functions of
that class.

22. To overload the pre-increment (++) operator for a class if the operator
function is a member of that class, it must have no parameters. Similarly, to
overload the pre-decrement (--) operator for a class if the operator func-
tion is a member of that class, it must have no parameters.

23. To overload the post-increment (++) operator for a class if the opera-
tor function is a member of that class, it must have one parameter,
of type int. The user does not specify any value for the parameter.

1
4

Quick Review | 903

The dummy parameter in the function heading helps the compiler
generate the correct code. The post-decrement operator has similar
conventions.

24. A conversion constructor is a single-parameter function.

25. A conversion constructor converts its argument to an object of the con-
structor’s class. The compiler implicitly calls such constructors.

26. Classes with pointer member variables must overload the assignment opera-
tor and include both the copy constructor and the destructor.

27. In C++, a function name can be overloaded.

28. In C++, template is a reserved word.

29. Using templates, you can write a single code segment for a set of related
functions—called the function template.

30. Using templates, you can write a single code segment for a set of related
classes—called the class template.

31. The syntax of a template is:
template <class Type>
declaration;

in which Type is a user-defined identifier, which is used to pass types (that
is, data types) as parameters, and declaration is either a function or a
class. The word class in the heading refers to any user-defined data type
or built-in data type.

32. Class templates are called parameterized types.

33. In a class template, the parameter Type specifies how a generic class
template is to be customized to form a specific template class.

34. The parameter Type is mentioned in every class header and member
function definition.

35. Suppose cType is a class template, and func is a member function of
cType. The heading of the function definition of func is:

template <class Type>
funcType cType<Type>::func(parameters)

in which funcType is the type of the function, such as void.

36. Suppose cType is a class template, which can take int as a parameter. The
statement:

cType<int> x;

declares x to be an object of type cType, and the type passed to the class
cType is int.

904 | Chapter 14: Overloading and Templates

EXERCISES

1. Mark the following statements as true or false.

a. In C++, all operators can be overloaded for user-defined data types.

b. In C++, operators cannot be redefined for built-in types.

c. The function that overloads an operator is called the operator function.

d. C++ allows users to create their own operators.

e. The precedence of an operator cannot be changed, but its associativity
can be changed.

f. Every instance of an overloaded function has the same number of
parameters.

g. It is not necessary to overload relational operators for classes that have
only int member variables.

h. The member function of a class template is a function template.

i. When writing the definition of a friend function, the keyword
friend must appear in the function heading.

j. Templates provide the capability for software reuse.

k. The function heading of the operator function to overload the pre-
increment operator (++) and the post-increment operator (++) is the
same because both operators have the same symbols.

2. What is a friend function?

3. What is the difference between a friend function of a class and a member
function of a class?

4. Consider the definition of the class dateType given in Chapter 12.

a. Write the statement that includes a friend function named before
in the class dateType that takes as parameters two objects of type
dateType and returns true if the date represented by the first object
comes before the date represented by the second object; otherwise the
function returns false.

b. Write the definition of the function you defined in part a.

5. Suppose that the operator << is to be overloaded for a user-defined class
mystery. Why must << be overloaded as a friend function?

6. Suppose that the binary operator + is overloaded as a member function for a
class strange. How many parameters does the function operator+ have?

7. When should a class overload the assignment operator and define the copy
constructor?

1
4

Exercises | 905

8. Consider the following declaration:

class strange
{

.

.

.
};

a. Write a statement that shows the declaration in the class strange to
overload the operator >>.

b. Write a statement that shows the declaration in the class strange to
overload the operator =.

c. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a member function.

d. Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

e. Write a statement that shows the declaration in the class strange to
overload the post-increment operator ++ as a member function.

9. Assume the declaration of Exercise 8.

a. Write a statement that shows the declaration in the class strange to
overload the binary operator + as a friend function.

b. Write a statement that shows the declaration in the class strange to
overload the operator == as a friend function.

c. Write a statement that shows the declaration in the class strange to
overload the post-increment operator ++ as a friend function.

10. Find the error(s) in the following code:

class mystery //Line 1
{

.

.

.
bool operator<=(mystery); //Line 2
.
.
.

};

bool mystery::<=(mystery rightObj) //Line 3
{

.

.

.
}

906 | Chapter 14: Overloading and Templates

1
4

11. Find the error(s) in the following code:

class mystery //Line 1
{

.

.

.
bool operator<=(mystery, mystery); //Line 2
.
.
.

};

12. Find the error(s) in the following code:

class mystery //Line 1
{

.

.

.
friend operator+(mystery); //Line 2
//overload binary +

.

.

.
};

13. In a class, why do you include the function that overloads the stream
insertion operator, <<, as a friend function?

14. In a class, why do you include the function that overloads the stream
extraction operator, >>, as a friend function?

15. What is returned by the function that overloads the operator >> for a class?

16. What is returned by the function that overloads the operator << for a class?

17. What is the purpose of a dummy parameter in a function that overloads the
post-increment or post-decrement operator for a class?

18. What type of value should be returned by a function that overloads a
relational operator?

19. How many parameters are required to overload the pre-increment operator
for a class as a member function?

20. How many parameters are required to overload the pre-increment operator
for a class as a friend function?

21. How many parameters are required to overload the post-increment opera-
tor for a class as a member function?

22. How many parameters are required to overload the post-increment opera-
tor for a class as a friend function?

23. Let a + ib be a complex number. The conjugate of a + ib is a – ib, and
the absolute value of a + ib is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

. Extend the definition of the
class complexType of the Programming Example: Complex Numbers

Exercises | 907

by overloading the operators ~ and ! as member functions so that ~ returns
the conjugate of a complex number and ! returns the absolute value. Also,
write the definitions of these operator functions.

24. Redo Exercise 23 so that the operators ~ and ! are overloaded as non-
member functions.

25. Find the error(s) in the following code:

template <class type> //Line 1
class strange //Line 2
{

.

.

.
};

strange<int> s1; //Line 3
strange<type> s2; //Line 4

26. Consider the following declaration:

template <class type>
class strange
{

.

.

.
private:

type a;
type b;

};

a. Write a statement that declares sObj to be an object of type strange
such that the private member variables a and b are of type int.

b. Write a statement that shows the declaration in the class strange to
overload the operator == as a member function.

c. Assume that two objects of type strange are equal if their correspond-
ing member variables are equal. Write the definition of the function
operator== for the class strange, which is overloaded as a
member function.

27. Consider the definition of the following function template:

template <class Type>
Type surprise(Type x, Type y)
{

return x + y;
}

What is the output of the following statements?

a. cout << surprise(5, 7) << endl;

b. string str1 = "Sunny";
string str2 = " Day";
cout << surprise(str1, str2) << endl;

908 | Chapter 14: Overloading and Templates

1
4

28. Consider the definition of the following function template:

template <class Type>
Type funcExp(Type list[], int size)
{

int j;
Type x = list[0];
Type y = list[size - 1];

for (j = 1; j < (size - 1)/2; j++)
{

if (x < list[j])
x = list[j];

if (y > list[size – 1 – j])
y = list[size – 1 – j];

}

return x + y;
}

Further suppose that you have the following declarations:

int list[10] = {5, 3, 2, 10, 4, 19, 45, 13, 61, 11};
string strList[] = {"One", "Hello", "Four", "Three",

"How", "Six"};

What is the output of the following statements?

a. cout << funExp(list, 10);

b. cout << funExp(strList, 6) << endl;

29. Write the definition of the function template that swaps the contents of two
variables.

30. a. Overload the operator + for the class newString to perform string
concatenation. For example, if s1 is "Hello " and s2 is "there", the
statement:

s3 = s1 + s2;

should assign "Hello there" to s3, in which s1, s2, and s3 are
newString objects.

b. Overload the operator += for the class newString to perform the
following string concatenation. Suppose that s1 is "Hello " and s2 is
"there". Then, the statement:

s1 += s2;

should assign "Hello there" to s1, in which s1 and s2 are
newString objects.

Exercises | 909

PROGRAMMING EXERCISES

1. a. Write the definitions of the functions to overload the increment, decre-
ment, arithmetic, and relational operators as members of the class
rectangleType.

b. Write a test program that tests various operations on the class
rectangleType.

2. a. Write the definitions of the functions to overload the increment, decre-
ment, arithmetic, and relational operators as nonmembers of the class
rectangleType.

b. Write a test program that tests various operations on the class
rectangleType.

3. a. Extend the definition of the class clockType by overloading
the post-increment operator function as a member of the class
clockType.

b. Write the definition of the function to overload the post-increment
operator for the class clockType as defined in part a.

4. a. The increment and relational operators in the class clockType are
overloaded as member functions. Rewrite the definition of the class
clockType so that these operators are overloaded as nonmember func-
tions. Also, overload the post-increment operator for the class
clockType as a nonmember.

b. Write the definitions of the member functions of the class clockType
as designed in part a.

c. Write a test program that tests various operations on the class as designed
in parts a and b.

5. a. Extend the definition of the class complexType so that it performs
the subtraction and division operations. Overload the operators subtrac-
tion and division for this class as member functions.

If (a, b) and (c, d) are complex numbers:

(a, b) - (c, d) = (a - c, b - d).

If (c, d) is nonzero:

(a, b) / (c, d) = ((ac + bd) / (c2 + d 2), (-ad + bc) / (c2 + d 2)).

b. Write the definitions of the functions to overload the operators - and / as
defined in part a.

c. Write a test program that tests various operations on the class
complexType. Format your answer with two decimal places.

6. a. Rewrite the definition of the class complexType so that the arith-
metic and relational operators are overloaded as nonmember functions.

910 | Chapter 14: Overloading and Templates

b. Write the definitions of the member functions of the class complexType
as designed in part a.

c. Write a test program that tests various operations on the class
complexType as designed in parts a and b. Format your answer with
two decimal places.

7. a. Extend the definition of the class newString as follows:

i. Overload the operators + and += to perform the string concatena-
tion operations.

ii. Add the function length to return the length of the string.

b. Write the definition of the function to implement the operations defined
in part a.

c. Write a test program to test various operations on the newString objects.

8. a. Rewrite the definition of the class newString as defined and
extended in Programming Exercise 7 so that the relational operators
are overloaded as nonmember functions.

b. Write the definition of the class newString as designed in part a.

c. Write a test program that tests various operations on the class
newString.

9. Rational fractions are of the form a / b, in which a and b are integers and
b 6¼ 0. In this exercise, by ‘‘fractions’’ we mean rational fractions. Suppose
a / b and c / d are fractions. Arithmetic operations on fractions are defined
by the following rules:

a=bþ c=d ¼ ðad þ bcÞ=bd

a=b� c=d ¼ ðad � bcÞ=bd

a=b� c=d ¼ ac=bd

ða=bÞ=ðc=dÞ ¼ ad=bc; in which c=d 6¼ 0:

Fractions are compared as follows: a / b op c / d if ad op bc, in which op is
any of the relational operations. For example, a / b < c / d if ad < bc.

Design a class—say, fractionType—that performs the arithmetic and
relational operations on fractions. Overload the arithmetic and relational
operators so that the appropriate symbols can be used to perform the
operation. Also, overload the stream insertion and stream extraction opera-
tors for easy input and output.

Write a C++ program that, using the class fractionType, performs
operations on fractions.

1
4

Programming Exercises | 911

Among other things, test the following: Suppose x, y, and z are objects
of type fractionType. If the input is 2/3, the statement:

cin >> x;

should store 2/3 in x. The statement:

cout << x + y << endl;

should output the value of x + y in fraction form. The statement:

z = x + y;

should store the sum of x and y in z in fraction form. Your answer need
not be in the lowest terms.

10. Recall that in C++, there is no check on an array index out of bounds.
However, during program execution, an array index out of bounds can
cause serious problems. Also, in C++, the array index starts at 0.

Design and implement the class myArray that solves the array index out
of bounds problem and also allows the user to begin the array index starting
at any integer, positive or negative. Every object of type myArray is an
array of type int. During execution, when accessing an array component,
if the index is out of bounds, the program must terminate with an appro-
priate error message. Consider the following statements:

myArray<int> list(5); //Line 1
myArray<int> myList(2, 13); //Line 2
myArray<int> yourList(-5, 9); //Line 3

The statement in Line 1 declares list to be an array of 5 components, the
component type is int, and the components are: list[0], list[1], ...,
list[4]; the statement in Line 2 declares myList to be an array of 11 com-
ponents, the component type is int, and the components are: myList[2],
myList[3], ..., myList[12]; the statement in Line 3 declares yourList
to be an array of 14 components, the component type is int, and the
components are: yourList[-5], yourList[-4], ..., yourList[0],
..., yourList[8]. Write a program to test the class myArray.

11. Programming Exercise 10 processes only int arrays. Redesign the class
myArray using class templates so that the class can be used in any
application that requires arrays to process data.

12. Design a class to perform various matrix operations. A matrix is a set of
numbers arranged in rows and columns. Therefore, every element of a
matrix has a row position and a column position. If A is a matrix of five
rows and six columns, we say that the matrix A is of the size 5 � 6 and
sometimes denote it as A5�6. Clearly, a convenient place to store a matrix is
in a two-dimensional array. Two matrices can be added and subtracted if
they have the same size. Suppose A = [aij] and B = [bij] are two matrices of

912 | Chapter 14: Overloading and Templates

1
4

the size m � n, in which aij denotes the element of A in the ith row and the
jth column, and so on. The sum and difference of A and B are given by:

Aþ B ¼ ½aij þ bij�

A� B ¼ ½aij � bij�

The multiplication of A and B (A * B) is defined only if the number
of columns of A is the same as the number of rows of B. If A is of the size
m � n and B is of the size n � t, then A *B = [cik] is of the size m � t and
the element cik is given by the formula:

cik ¼ ai1b1k þ ai2b2k þ � � � þ ainbnk

Design and implement aclass matrixType that can store a matrix of any size.
Overload the operators +, -, and * to perform the addition, subtraction, and
multiplication operations, respectively, and overload the operator << to output a
matrix. Also, write a test program to test various operations on the matrices.

13. a. In Programming Exercise 1 in Chapter 11, we defined a class
romanType to implement Roman numbers in a program. In that
exercise, we also implemented a function, romanToDecimal, to con-
vert a Roman number into its equivalent decimal number.

Modify the definition of the class romanType so that the member
variables are declared as protected. Use the class newString, as
designed in Programming Exercise 7, to manipulate strings. Further-
more, overload the stream insertion and stream extraction operators for
easy input and output. The stream insertion operator outputs the
Roman number in the Roman format.

Also, include a member function, decimalToRoman, that converts the
decimal number (the decimal number must be a positive integer) to an
equivalent Roman number format. Write the definition of the member
function decimalToRoman.

For simplicity, we assume that only the letter I can appear in front of
another letter and that it appears only in front of the letters V and X. For
example, 4 is represented as IV, 9 is represented as IX, 39 is represented
as XXXIX, and 49 is represented as XXXXIX. Also, 40 will be repre-
sented as XXXX, 190 will be represented as CLXXXX, and so on.

b. Derive a class extRomanType from the class romanType to do
the following: In the class extRomanType, overload the arithmetic
operators +, -, *, and / so that arithmetic operations can be performed on
Roman numbers. Also, overload the pre- and post-increment and decre-
ment operators as member functions of the class extRomanType.

Programming Exercises | 913

To add (subtract, multiply, or divide) Roman numbers, add (subtract,
multiply, or divide, respectively) their decimal representations and then
convert the result to the Roman number format. For subtraction, if the
first number is smaller than the second number, output a message saying
that, ‘‘Because the first number is smaller than the second,
the numbers cannot be subtracted’’. Similarly, for division, the
numerator must be larger than the denominator. Use similar conventions
for the increment and decrement operators.

c. Write the definitions of the functions to overload the operators
described in part b.

d. Test your class extRomanType on the following program. (Include
the appropriate header files.)

int main()
{

extRomanType num1("XXXIV");
extRomanType num2("XV");
extRomanType num3;

cout << "Num1 = " << num1 << endl;
cout << "Num2 = " << num2 << endl;
cout << "Num1 + Num2 = " << num1 + num2 << endl;
cout << "Num1 * Num2 = " << num1 * num2 << endl;

cout << "Enter two numbers in Roman format: ";
cin >> num1 >> num2;
cout << endl;

cout << "Num1 = " << num1 << endl;
cout << "Num2 = " << num2 << endl;

num3 = num2 * num1;
cout << "Num3 = " << num3 << endl;

cout << "--num3: " << --num3 << endl;
cout << "++num3: " << ++num3 << endl;

return 0;
}

14. Consider the class dateType given in Chapter 12. In this class, add the
functions to overload the increment and decrement operators to increase
the date by a day and decrease the date by a day, respectively; relational
operators to compare two dates; and stream operators for easy input and
output. (Assume that the date is input and output in the form MM-DD-YYYY.)
Also write a program to test your class.

15. Programming Exercise 12, Chapter 11, describes how to design the class
lineType to implement a line. Redo this programming exercise so that
the class lineType:

914 | Chapter 14: Overloading and Templates

1
4

a. Overloads the stream insertion operator, <<, for easy output.

b. Overloads the stream extraction operator, >>, for easy intput. (The line
ax + by ¼ c is input as (a, b, c).)

c. Overloads the assignment operator to copy a line into another line.

d. Overloads the unary operator +, as a member function, so that it returns
true if a line is vertical; false otherwise.

e. Overloads the unary operator -, as a member function, so that it returns
true if a line is horizontal; false otherwise.

f. Overloads the operator ==, as a member function, so that it returns
true if two lines are equal; false otherwise.

g. Overloads the operator ||, as a member function, so that it returns
true if two lines are parallel; false otherwise.

h. Overloads the operator &&, as a member function, so that it returns
true if two lines are perpendicular; false otherwise.

Write a program to test your class.

16. Consider the classes class cashRegister and dispenserType given in
the programming example in Chapter 11.

a. In the class class cashRegister, add the functions to overload the
binary operators + and – to add and subtract an amount in a cash
register; the relational operators to compare the amount in two cash
registers; and the stream insertion operator for easy output.

b. The class dispenserType, in the programming example in
Chapter 11, is designed to implement a dispenser to hold and release
products. In this class, add the functions to overload the increment
and decrement operators to increment and decrement the number of
items by one, respectively, and the stream insertion operator for easy
output.

Write a program to test the classes designed in parts a and b.

17. (Stock Market) Write a program to help a local stock trading company
automate its systems. The company invests only in the stock market. At the
end of each trading day, the company would like to generate and post the
listing of its stocks so that investors can see how their holdings performed
that day. We assume that the company invests in, say, 10 different stocks.
The desired output is to produce two listings, one sorted by stock symbol
and another sorted by percent gain from highest to lowest.

The input data is provided in a file in the following format:

symbol openingPrice closingPrice todayHigh todayLow
prevClose volume

Programming Exercises | 915

For example, the sample data is:

MSMT 112.50 115.75 116.50 111.75 113.50 6723823
CBA 67.50 75.50 78.75 67.50 65.75 378233
.
.
.

The first line indicates that the stock symbol is MSMT, today’s opening price was
112.50, the closing price was 115.75, today’s high price was 116.50, today’s low
price was 111.75, yesterday’s closing price was 113.50, and the number of shares
currently being held is 6723823.

The listing sorted by stock symbols must be of the following form:

********* First Investor's Heaven **********
********* Financial Report **********
Stock Today Previous Percent
Symbol Open Close High Low Close Gain Volume
------ ----- ----- ----- ----- -------- ------- ------

ABC 123.45 130.95 132.00 125.00 120.50 8.67% 10000
AOLK 80.00 75.00 82.00 74.00 83.00 -9.64% 5000
CSCO 100.00 102.00 105.00 98.00 101.00 0.99% 25000
IBD 68.00 71.00 72.00 67.00 75.00 -5.33% 15000

MSET 120.00 140.00 145.00 140.00 115.00 21.74% 30920
Closing Assets: $9628300.00
-*

Develop this programming exercise in two steps. In the first step (part a), design and
implement a stock object. In the second step (part b), design and implement an
object to maintain a list of stocks.

a. (Stock Object) Design and implement the stock object. Call the class
that captures the various characteristics of a stock object stockType.

The main components of a stock are the stock symbol, stock price, and
number of shares. Moreover, we need to output the opening price,
closing price, high price, low price, previous price, and the percent
gain/loss for the day. These are also all the characteristics of a stock.
Therefore, the stock object should store all this information.

Perform the following operations on each stock object:

i. Set the stock information.

ii. Print the stock information.

iii. Show the different prices.

iv. Calculate and print the percent gain/loss.

v. Show the number of shares.

916 | Chapter 14: Overloading and Templates

a.1. The natural ordering of the stock list is by stock symbol.
Overload the relational operators to compare two stock
objects by their symbols.

a.2. Overload the insertion operator, <<, for easy output.

a.3. Because the data is stored in a file, overload the stream
extraction operator, >>, for easy input.

For example, suppose infile is an ifstream object and the input file
was opened using the object infile. Further suppose that myStock is
a stock object. Then, the statement:

infile >> myStock;

reads the data from the input file and stores it in the object myStock.
(Note that this statement reads and stores the data in the relevant
components of myStock.)

b. Now that you have designed and implemented the class stockType
to implement a stock object in a program, it is time to create a list of
stock objects.

Let us call the class to implement a list of stock objects stockListType.

The class stockListType must be derived from the class list-
Type, which you designed and implemented in the previous exercise.
However, the class stockListType is a very specific class, designed
to create a list of stock objects. Therefore, the class stockList-
Type is no longer a template.

Add and/or overwrite the operations of the class listType to
implement the necessary operations on a stock list.

The following statement derives the class stockListType from the
class listType.

class stockListType: public listType<stockType>
{

member list

};

The member variables to hold the list elements, the length of the list,
and the max listSize were declared as protected in the class
listType. Therefore, these members can be directly accessed in the
class stockListType.

Because the company also requires you to produce the list ordered by the
percent gain/loss, youneed to sort the stock list by this component.However,
you are not to physically sort the list by the component percent gain/loss.
Instead, you will provide a logical ordering with respect to this component.

1
4

Programming Exercises | 917

To do so, add a member variable, an array, to hold the indices of the
stock list ordered by the component percent gain/loss. Call this array
sortIndicesGainLoss. When printing the list ordered by the com-
ponent percent gain/loss, use the array sortIndicesGainLoss to
print the list. The elements of the array sortIndicesGainLoss will
tell which component of the stock list to print next.

c. Write a program that uses these two classes to automate the company’s
analysis of stock data.

18. Write the definitions of the member functions of the classes
arrayListType and unorderedArrayListType that are not given
in this chapter. Also write a program to test your function.

19. Write the definition of the class template orderedArrayList,
derived from the class arrayListType, to implement an ordered list.
As in Chapter 13, add the function insert in this class. Provide the
definitions of the nonabstract functions. Also write a program to test your
class.

20. (Unordered Sets) Redo Programming Exercise 12 of Chapter 13 using
templates.

21. (Ordered Sets) Redo Programming Exercise 13 of Chapter 13 using
templates.

918 | Chapter 14: Overloading and Templates

EXCEPTION HANDLING
IN THIS CHAPTER , YOU WILL :

. Learn what an exception is

. Learn how to handle exceptions within a program

. See how a try/catch block is used to handle exceptions

. Become familiar with C++ exception classes

. Learn how to create your own exception classes

. Discover how to throw and rethrow an exception

. Explore stack unwinding

15C H A P T E R

An exception is an occurrence of an undesirable situation that can be detected during
program execution. For example, division by zero is an exception. Similarly, trying to open
an input file that does not exist is an exception, as is an array index that goes out of bounds.

Until now, we have dealt with certain exceptions by using either an if statement or
the assert function. For instance, in Examples 5-3 and 5-4, before dividing sum by
counter or count, we checked whether counter or count was nonzero. Similarly,
in the Programming Example newString (Chapter 14), we used the assert function to
determine whether the array index is within bounds.

On the other hand, there were places where we simply ignored the exception. For
instance, while determining a substring in a string (Chapter 8), we never checked
whether the starting position of the substring was within range. Also, we did not handle
the array index out-of-bounds exception. However, in all of these cases, if exceptions
occurred during program execution, either we included code to terminate the program
or the program terminated with an appropriate error message. For instance, if we opened
an input file in the function main and the input file did not exist, we terminated the
function main, so the program was terminated.

There are situations when an exception occurs, but you don’t want the program to
simply ignore the exception and terminate. For example, a program that monitors
stock performance should not automatically sell if the account balance goes below a
certain level. It should inform the stockholder and request an appropriate action.
Similarly, a program that monitors a patient’s heartbeat cannot be terminated if the
blood pressure goes very high. A program that monitors a satellite in space cannot be
terminated if there is a temporary power failure in some section of the satellite.

The code to handle exceptions depends on the type of application you develop. One
common way to provide exception-handling code is to add exception-handling code at
the point where an error can occur. This technique allows the programmer reading the
code to see the exception-handling code together with the actual code and to determine
whether the error-checking code is properly implemented. The disadvantage of this approach
is that the program can become cluttered with exception-handling code, which can make
understanding and maintaining the program difficult. This can distract the programmer from
ensuring that the program functions correctly.

Handling Exceptions within a Program
In Chapter 3, we noted that if you try to input invalid data into a variable, the input
stream enters the fail state, so an exception occurs. This occurs, for example, if you try
to input a letter into an int variable. Chapter 3 also showed how to clear and restore
the input stream. Chapter 4 introduced the assert function and explained how to use
it to avoid certain unforeseeable errors, such as division by zero. Even though the
function assert can check whether an expression meets the required condition(s), if
the conditions are not met, it terminates the program. As indicated in the previous
section, situations occur in which, if something goes wrong, the program should not be
simply terminated.

920 | Chapter 15: Exception Handling

1
5

This section discusses how to handle exceptions. However, first we offer some examples
that show what can happen if an exception is not handled. We also review some of the
ways to handle exceptions.

The program in Example 15-1 shows what happens when division by zero occurs and the
problem is not addressed.

EXAMPLE 15-1

// Division by zero.

#include <iostream>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

cout << "Line 2: Enter the dividend: "; //Line 2
cin >> dividend; //Line 3
cout << endl; //Line 4

cout << "Line 5: Enter the divisor: "; //Line 5
cin >> divisor; //Line 6
cout << endl; //Line 7

quotient = dividend / divisor; //Line 8
cout << "Line 9: Quotient = " << quotient

<< endl; //Line 9

return 0; //Line 10
}

Sample Run 1:

Line 2: Enter the dividend: 12

Line 5: Enter the divisor: 5

Line 9: Quotient = 2

Sample Run 2:

Line 2: Enter the dividend: 24

Line 5: Enter the divisor: 0

CPP_Proj1.exe has encountered a problem and needs to close. We are
sorry for the inconvenience.

In Sample Run 1, the value of divisor is nonzero, so no exception occurs. The program
calculates and outputs the quotient and terminates normally.

Handling Exceptions within a Program | 921

In Sample Run 2, the value entered for divisor is 0. The statement in Line 8 divides
dividend by the divisor. However, the program does not check whether divisor is 0
before dividing dividend by divisor. So the program crashes with the message shown.
Notice that the error message is platform independent, that is, IDE dependent. Some
IDEs might not give this error message and might simply hang.

Next, consider Example 15-2. This is the same program as in Example 15-1, except that
in Line 8, the program checks whether divisor is zero.

EXAMPLE 15-2

// Checking division by zero.

#include <iostream>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

cout << "Line 2: Enter the dividend: "; //Line 2
cin >> dividend; //Line 3
cout << endl; //Line 4

cout << "Line 5: Enter the divisor: "; //Line 5
cin >> divisor; //Line 6
cout << endl; //Line 7

if (divisor != 0) //Line 8
{

quotient = dividend / divisor; //Line 9
cout << "Line 10: Quotient = " << quotient

<< endl; //Line 10
}
else //Line 11

cout << "Line 12: Cannot divide by zero."
<< endl; //Line 12

return 0; //Line 13
}

Sample Run 1:

Line 2: Enter the dividend: 12

Line 5: Enter the divisor: 5

Line 10: Quotient = 2

922 | Chapter 15: Exception Handling

1
5

Sample Run 2:

Line 2: Enter the dividend: 24

Line 5: Enter the divisor: 0

Line 12: Cannot divide by zero.

In Sample Run 1, the value of divisor is nonzero, so no exception occurs. The program
calculates and outputs the quotient and terminates normally.

In Sample Run 2, the value entered for divisor is 0. In Line 8, the program checks
whether divisor is 0. Because divisor is 0, the expression in the if statement fails, so
the else part executes, which outputs the third line of the sample run.

The program in Example 15-3 uses the function assert to determine whether the divisor is
zero. If the divisor is zero, the function assert terminates the program with an error message.

EXAMPLE 15-3

// Division by zero and the assert function.

#include <iostream>
#include <cassert>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

cout << "Line 2: Enter the dividend: "; //Line 2
cin >> dividend; //Line 3
cout << endl; //Line 4

cout << "Line 5: Enter the divisor: "; //Line 5
cin >> divisor; //Line 6
cout << endl; //Line 7

assert(divisor != 0); //Line 8
quotient = dividend / divisor; //Line 9

cout << "Line 10: Quotient = " << quotient
<< endl; //Line 10

return 0; //Line 11
}

Sample Run 1:

Line 2: Enter the dividend: 26

Line 5: Enter the divisor: 7

Line 10: Quotient = 3

Handling Exceptions within a Program | 923

Sample Run 2:

Line 2: Enter the dividend: 24

Line 5: Enter the divisor: 0

Assertion failed: divisor!= 0, file c:\chapter15 sourcecode\ch15_exp3.cpp,
line 20

In Sample Run 1, the value of divisor is nonzero, so no exception occurs. The program
calculates and outputs the quotient and terminates normally.

In Sample Run 2, the value entered for divisor is 0. In Line 8, the function assert
checks whether divisor is nonzero. Because divisor is 0, the expression in the
assert statement evaluates to false, and the function assert terminates the program
with the error message shown in the third line of the output.

C++ Mechanisms of Exception Handling
Examples 15-1 through 15-3 show what happens when an exception occurs in a program
and is not processed. This section describes how to include the necessary code to handle
exceptions within a program.

try/catch Block
The statements that may generate an exception are placed in a try block. The try block
also contains statements that should not be executed if an exception occurs. The try
block is followed by one or more catch blocks. A catch block specifies the type of
exception it can catch and contains an exception handler.

The general syntax of the try/catch block is:

try
{

//statements
}
catch (dataType1 identifier)
{

//exception-handling code
}
.
.
.
catch (dataTypen identifier)
{

//exception-handling code
}
.
.
.
catch (...)
{

//exception-handling code
}

924 | Chapter 15: Exception Handling

1
5

Suppose there is a statement that can generate an exception, for example, division by 0.
Usually, before executing such a statement, we check whether certain conditions are met.
For example, before performing the division, we check whether the divisor is nonzero. If
the conditions are not met, we typically generate an exception, which in C++ terminology
is called throwing an exception. This is typically done using the throw statement, which
we will explain shortly. We will show what is typically thrown to generate an exception.

Let us now note the following about try/catch blocks.

• If no exception is thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

• If an exception is thrown in a try block, the remaining statements in that
try block are ignored. The program searches the catch blocks in the
order they appear after the try block and looks for an appropriate excep-
tion handler. If the type of thrown exception matches the parameter type
in one of the catch blocks, the code of that catch block executes, and
the remaining catch blocks after this catch block are ignored.

• The last catch block that has an ellipses (three dots) is designed to catch
any type of exception.

Consider the following catch block:

catch (int x)
{

//exception-handling code
}

In this catch block:

• The identifier x acts as a parameter. In fact, it is called a catch block parameter.

• The data type int specifies that this catch block can catch an exception
of type int.

• A catch block can have at most one catch block parameter.

Essentially, the catch block parameter becomes a placeholder for the value thrown. In
this case, x becomes a placeholder for any thrown value that is of type int. In other
words, if the thrown value is caught by this catch block, then the thrown value is stored
in the catch block parameter. This way, if the exception-handling code wants to do
something with that value, it can be accessed via the catch block parameter.

Suppose in a catch block heading only the data type is specified, that is, there is no
catch block parameter. The thrown value then may not be accessible in the catch block
exception-handling code.

THROWING AN EXCEPTION

In order for an exception to occur in a try block and be caught by a catch block, the
exception must be thrown in the try block. The general syntax to throw an exception is:

throw expression;

Handling Exceptions within a Program | 925

in which expression is a constant value, variable, or object. The object being thrown
can be either a specific object or an anonymous object. It follows that in C++, an
exception is a value.

In C++, throw is a reserved word.

Example 15-4 illustrates how to use a throw statement.

EXAMPLE 15-4

Suppose we have the following declaration:

int num = 5;
string str = "Something is wrong!!!";

throw expression Effect

throw 4; The constant value 4 is thrown.
throw x; The value of the variable x is thrown.
throw str; The object str is thrown.
throw string("Exception found!"); An anonymous string object with

the string "Exception found!"
is thrown.

ORDER OF catch BLOCKS

A catch block can catch either all exceptions of a specific type or all types of exceptions.
The heading of a catch block specifies the type of exception it handles. As noted
previously, the catch block that has an ellipses (three dots) is designed to catch any type
of exception. Therefore, if we put this catch block first, then this catch block can catch
all types of exceptions.

Suppose that an exception occurs in a try block and is caught by a catch block. The
remaining catch blocks associated with that try block are then ignored. Therefore, you
should be careful about the order in which you list catch blocks following a try block.
For example, consider the following sequence of try/catch blocks:

try //Line 1
{

//statements
}
catch (...) //Line 2
{

//statements
}
catch (int x) //Line 3
{

//statements
}

926 | Chapter 15: Exception Handling

1
5

Suppose that an exception is thrown in the try block. Because the catch block in Line 2
can catch exceptions of all types, the catch block in Line 3 cannot be reached. For this
sequence of try/catch blocks, some compilers might, in fact, give a syntax error (check
your compiler’s documentation).

In a sequence of try/catch blocks, if the catch block with an ellipses (in the heading) is
needed, then it should be the last catch block of that sequence.

USING try/catch BLOCKS IN A PROGRAM

Next, we provide examples that illustrate how a try/catch block might appear in a program.

A common error that might occur when performing numeric calculations is division by
zero with integer values. If, during program execution, division by zero occurs with integer
values and is not addressed by the program, the program might terminate with an error message
or might simply hang. Example 15-5 shows how to handle division by zero exceptions.

EXAMPLE 15-5

This example illustrates how to catch and handle division by zero exceptions. It also
shows how a try/catch block might appear in a program.

// Handling division by zero exception.

#include <iostream>

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw 0; //Line 10

quotient = dividend / divisor; //Line 11

cout << "Line 12: Quotient = " << quotient
<< endl; //Line 12

}
catch (int) //Line 13

Handling Exceptions within a Program | 927

{
cout << "Line 14: Division by 0." << endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 17

Line 6: Enter the divisor: 8

Line 12: Quotient = 2

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 0

Line 14: Division by 0.

This program works as follows. The statement in Line 1 declares the int variables dividend,
divisor, and quotient. The try block starts at Line 2. The statement in Line 3 prompts the
user to enter the value for the dividend; the statement in Line 4 stores this number in the
variable dividend. The statement in Line 6 prompts the user to enter the value for the divisor,
and the statement in Line 7 stores this number in the variable divisor. The statement in
Line 9 checks whether the value of divisor is 0. If the value of divisor is 0, the statement
in Line 10 throws the constant value 0. The statement in Line 11 calculates the quotient
and stores it in quotient. The statement in Line 12 outputs the value of quotient.

The catch block starts in Line 13 and catches an exception of type int.

In Sample Run 1, the program does not throw any exception.

In Sample Run 2, the entered value of divisor is 0. Therefore, the statement in Line 10
throws 0, which is caught by the catch block starting in Line 13. The statement in Line
14 outputs the appropriate message.

The program in Example 15-6 is the same as the program in Example 15-5, except that
the throw statement throws the value of the variable divisor.

EXAMPLE 15-6

// Handling division by zero exception.

#include <iostream>

using namespace std;

928 | Chapter 15: Exception Handling

1
5

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divisor; //Line 10

quotient = dividend / divisor; //Line 11

cout << "Line 12: Quotient = " << quotient
<< endl; //Line 12

}
catch (int x) //Line 13
{

cout << "Line 14: Division by " << x
<< endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 14

Line 6: Enter the divisor: 5

Line 12: Quotient = 2

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 23

Line 6: Enter the divisor: 0

Line 14: Division by 0

This program works the same way as the program in Example 15-5.

The program in Example 15-7 illustrates how to handle division by zero, division by a
negative integer, and input failure exceptions. It also shows how to throw and catch an
object. This program is similar to the programs in Examples 15-5 and 15-6.

Handling Exceptions within a Program | 929

EXAMPLE 15-7

// Handle division by zero, division by a negative integer,
// and input failure exceptions.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int dividend, divisor = 1, quotient; //Line 1

string inpStr
= "The input stream is in the fail state."; //Line 2

try //Line 3
{

cout << "Line 4: Enter the dividend: "; //Line 4
cin >> dividend; //Line 5
cout << endl; //Line 6

cout << "Line 7: Enter the divisor: "; //Line 7
cin >> divisor; //Line 8
cout << endl; //Line 9

if (divisor == 0) //Line 10
throw divisor; //Line 11

else if (divisor < 0) //Line 12
throw string("Negative divisor."); //Line 13

else if (!cin) //Line 14
throw inpStr; //Line 15

quotient = dividend / divisor; //Line 16

cout << "Line 17: Quotient = " << quotient
<< endl; //Line 17

}
catch (int x) //Line 18
{

cout << "Line 19: Division by " << x
<< endl; //Line 19

}
catch (string s) //Line 20
{

cout << "Line 21: " << s << endl; //Line 21
}

return 0; //Line 22
}

930 | Chapter 15: Exception Handling

1
5

Sample Run 1: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 23

Line 7: Enter the divisor: 6

Line 17: Quotient = 3

Sample Run 2: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: -6

Line 21: Negative divisor.

Sample Run 3: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: g

Line 21: The input stream is in the fail state.

In this program, the statements in Lines 1 and 2 declare the variables used in the program.
Notice that the string object inpStr is also initialized.

The statements in Lines 4 through 9 input the data into the variables dividend and
divisor. The statement in Line 10 checks whether divisor is 0; the statement in Line
12 checks whether divisor is negative; and the statement in Line 14 checks whether the
standard input stream is in the fail state.

The statement in Line 11 throws the variable divisor; the statement in Line 13 throws
an anonymous string object with the string "Negative divisor."; and the statement in
Line 15 throws the object inpStr.

The catch block in Line 18 catches an exception of type int, and the catch block in Line
20 catches an exception of type string. If the exception is thrown by the statement in Line
11, it is caught and processed by the catch block in Line 18. If the exception is thrown by
the statements in Lines 13 or 15, it is caught and processed by the catch block in Line 20.

In Sample Run 1, the program does not encounter any problems. In Sample Run 2, division
by a negative number occurs. In Sample Run 3, the standard input stream enters the fail state.

Using C++ Exception Classes
C++ provides support to handle exceptions via a hierarchy of classes. The class
exception is the base of the classes designed to handle exceptions. Among others, this
class contains the function what. The function what returns a string containing an

Handling Exceptions within a Program | 931

appropriate message. All derived classes of the class exception override the function
what to issue their own error messages.

Two classes are immediately derived from the class exception: logic_error and
runtime_error. Both of these classes are defined in the header file stdexcept.

To deal with logical errors in a program, such as a string subscript out of range or an invalid
argument to a function call, several classes are derived from the class logic_error. For
example, the class invalid_argument is designed to deal with illegal arguments used in
a function call. The class out_of_range deals with the string subscript out of range
error. If a length greater than the maximum allowed for a string object is used, the class
length_error deals with this error. For example, recall that every string object has a
maximum length (see Chapter 8). If a length larger then the maximum length allowed for a
string is used, then the length_error exception is generated. If the operator new cannot
allocate memory space, this operator throws a bad_alloc exception.

The class runtime_error is designed to deal with errors that can be detected only
during program execution. For example, to deal with arithmetic overflow and underflow
exceptions, the classes overflow_error and underflow_error are derived from the
class runtime_error.

Examples 15-8 and 15-9 illustrate how C++’s exception classes are used to handle
exceptions in a program.

The program in Example 15-8 shows how to handle the exceptions out_of_range and
length_error. Notice that in this program, these exceptions are thrown by the string
functions substr and the string concatenation operator +. Because the exceptions are
thrown by these functions, we do not include any throw statement in the try block.

EXAMPLE 15-8

// Handling out_of_range and length_error exceptions.

#include <iostream>
#include <string>

using namespace std;

int main()
{

string sentence; //Line 1
string str1, str2, str3; //Line 2

try //Line 3
{

sentence = "Testing string exceptions!"; //Line 4
cout << "Line 5: sentence = " << sentence

<< endl; //Line 5

932 | Chapter 15: Exception Handling

1
5

cout << "Line 6: sentence.length() = "
<< static_cast<int>(sentence.length())
<< endl; //Line 6

str1 = sentence.substr(8, 20); //Line 7
cout << "Line 8: str1 = " << str1

<< endl; //Line 8

str2 = sentence.substr(28, 10); //Line 9
cout << "Line 10: str2 = " << str2

<< endl; //Line 10

str3 = "Exception handling. " + sentence; //Line 11
cout << "Line 12: str3 = " << str3

<< endl; //Line 12

}
catch (out_of_range re) //Line 13
{

cout << "Line 14: In the out_of_range "
<< "catch block: " << re.what()
<< endl; //Line 14

}
catch (length_error le) //Line 15
{

cout << "Line 16: In the length_error "
<< "catch block: " << le.what()
<< endl; //Line 16

}

return 0; //Line 17
}

Sample Run:

Line 5: sentence = Testing string exceptions!
Line 6: sentence.length() = 26
Line 8: str1 = string exceptions!
Line 14: In the out_of_range catch block: invalid string position

In this program, the statement in Line 7 uses the function substr to determine a
substring in the string object sentence. The length of the string sentence is 26. Because
the starting position of the substring is 8, which is less than 26, no exception is thrown.
However, in the statement in Line 9, the starting position of the substring is 28, which is
greater than 26 (the length of sentence). Therefore, the function substr throws an
out_of_range exception, which is caught and processed by the catch block in Line 13.
Notice that in the statement in Line 14, the object re uses the function what to return
the error message, invalid string position.

The program in Example 15-9 illustrates how to handle the exception bad_alloc
thrown by the operator new.

Handling Exceptions within a Program | 933

EXAMPLE 15-9

// Handling bad_alloc exception thrown by the operator new.

#include <iostream>

using namespace std;

int main()
{

int *list[100]; //Line 1

try //Line 2
{

for (int i = 0; i < 100; i++) //Line 3
{

list[i] = new int[50000000]; //Line 4
cout << "Line 4: Created list[" << i

<< "] of 50000000 components."
<< endl; //Line 5

}
}
catch (bad_alloc be) //Line 6
{

cout << "Line 7: In the bad_alloc catch "
<< "block: " << be.what() << "."
<< endl; //Line 7

}

return 0; //Line 8
}

Sample Run:

Line 4: Created list[0] of 50000000 components.
Line 4: Created list[1] of 50000000 components.
Line 4: Created list[2] of 50000000 components.
Line 4: Created list[3] of 50000000 components.
Line 4: Created list[4] of 50000000 components.
Line 4: Created list[5] of 50000000 components.
Line 4: Created list[6] of 50000000 components.
Line 4: Created list[7] of 50000000 components.
Line 7: In the bad_alloc catch block: bad allocation.

The preceding program works as follows. The statement in Line 1 declares list to be an
array of 100 pointers. The body of the for loop in Line 3 is designed to execute 100
times. For each iteration of the for loop, the statement in Line 4 uses the operator new to
allocate an array of 50000000 components of type int. As shown in the sample run, the
operator new is able to create eight arrays of 50000000 components each. In the ninth
iteration, the operator new is unable to create the array and throws a bad_alloc

934 | Chapter 15: Exception Handling

1
5

exception. This exception is caught and processed by the catch block in Line 6. Notice
that the expression be.what() returns the string bad allocation. (Moreover, the
string returned by be.what() is IDE dependent. Some IDEs might return the string
bad_alloc.) After the statement in Line 7 executes, control exits the try/catch block,
and the statement in Line 8 terminates the program.

Creating Your Own Exception Classes
Whenever you create your own classes or write programs, exceptions are likely to occur.
As you have seen, C++ provides numerous exception classes to deal with these situations.
However, it does not provide all of the exception classes you will ever need. Therefore,
C++ enables programmers to create their own exception classes to handle both the
exceptions not covered by C++’s exception classes and their own exceptions. This
section describes how to create your own exception classes.

C++ uses the same mechanism to process the exceptions that you define as it uses for built-in
exceptions. However, you must throw your own exceptions using the throw statement.

In C++, any class can be considered an exception class. Therefore, an exception class is
simply a class. It need not be inherited from the class exception. What makes a class
an exception is how you use it.

The exception class that you define can be very simple in the sense that it does not contain
any members. For example, the following code can be considered an exception class.

class dummyExceptionClass
{
};

The program in Example 15-10 uses a user-defined class (with no members) to throw an
exception.

EXAMPLE 15-10

// Using a user-defined exception class.

#include <iostream>

using namespace std;

class divByZero
{};

int main()
{

int dividend, divisor, quotient; //Line 1

Creating Your Own Exception Classes | 935

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divByZero(); //Line 10

quotient = dividend / divisor; //Line 11
cout << "Line 12: Quotient = " << quotient

<< endl; //Line 12
}
catch (divByZero) //Line 13
{

cout << "Line 14: Division by zero!"
<< endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 5

Line 12: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 56

Line 6: Enter the divisor: 0

Line 14: Division by zero!

The preceding program works as follows. If the user enters 0 for the divisor, the
state-ment in Line 10 throws an anonymous object of the class divByZero.
The class divByZero has no members, so we cannot really do anything with
the thrown object. Therefore, in the catch block in Line 13, we specify only the data type
name without the parameter name. The statement in Line 14 outputs the appropriate error
message.

Let us again consider the statement throw divByZero(); in Line 10. Notice that in this
statement, divByZero is the name of the class, the expression divByZero() creates an
anonymous object of this class, and the throw statement throws the object.

936 | Chapter 15: Exception Handling

The exception class divByZero designed and used in Example 15-10 has no members.
Next, we illustrate how to create exception classes with members.

If you want to include members in your exception class, you typically include constructors
and the function what. Consider the following definition of the class divisionByZero.

// User-defined exception class.

#include <iostream>
#include <string>

using namespace std;

class divisionByZero //Line 1
{ //Line 2
public: //Line 3

divisionByZero() //Line 4
{

message = "Division by zero"; //Line 5
} //Line 6

divisionByZero(string str) //Line 7
{ //Line 8

message = str; //Line 9
} //Line 10

string what() //Line 11
{ //Line 12

return message; //Line 13
} //Line 14

private: //Line 15
string message; //Line 16

}; //Line 17

The definition of the class divisionByZero contains two constructors: the default
constructor and the constructor with parameters. The default constructor stores the
string "Division by zero" in an object. The constructor with parameters allows users
to create their own error messages. The function what is used to return the string stored
in the object.

In the definition of the class divisionByZero, the constructors can also be
written as:

divisionByZero() : message("Division by zero"){}
divisionByZero(string str) : message(str){}

The program in Example 15-11 uses the preceding class to throw an exception.

1
5

Creating Your Own Exception Classes | 937

EXAMPLE 15-11

// Using user-defined exception class divisionByZero with
// default error message.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divisionByZero(); //Line 10

quotient = dividend / divisor; //Line 11
cout << "Line 12: Quotient = " << quotient

<< endl; //Line 12
}
catch (divisionByZero divByZeroObj) //Line 13
{

cout << "Line 14: In the divisionByZero "
<< "catch block: "
<< divByZeroObj.what() << endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 5

Line 12: Quotient = 6

938 | Chapter 15: Exception Handling

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 56

Line 6: Enter the divisor: 0

Line 14: In the divisionByZero catch block: Division by zero

In this program, the statement in Line 10 throws an object (exception) of the class
divisionByZero if the user enters 0 for the divisor. This thrown exception is caught
and processed by the catch block in Line 13. The parameter divByZeroObj in the
catch block catches the value of the thrown object and then uses the function what to
return the string stored in the object. The statement in Line 14 outputs the appropriate
error message.

The program in Example 15-12 is similar to the program in Example 15-11. Here, the
thrown object is still an anonymous object, but the error message is specified by the user
(see the statement in Line 10).

EXAMPLE 15-12

// Using user-defined exception class divisionByZero with a
// specific error message.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

int main()
{

int dividend, divisor, quotient; //Line 1

try //Line 2
{

cout << "Line 3: Enter the dividend: "; //Line 3
cin >> dividend; //Line 4
cout << endl; //Line 5

cout << "Line 6: Enter the divisor: "; //Line 6
cin >> divisor; //Line 7
cout << endl; //Line 8

if (divisor == 0) //Line 9
throw divisionByZero("Found division by zero"); //Line 10

quotient = dividend / divisor; //Line 11
cout << "Line 12: Quotient = " << quotient

<< endl; //Line 12
}

1
5

Creating Your Own Exception Classes | 939

catch(divisionByZero divByZeroObj) //Line 13
{

cout << "Line 14: In the divisionByZero "
<< "catch block: "
<< divByZeroObj.what() << endl; //Line 14

}

return 0; //Line 15
}

Sample Run 1: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 34

Line 6: Enter the divisor: 5

Line 12: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 3: Enter the dividend: 56

Line 6: Enter the divisor: 0

Line 14: In the divisionByZero catch block: Found division by zero

This program works the same way as the program in Example 15-11. The details are left
as an exercise for you.

In the programs in Examples 15-11 and 15-12, the data manipulation is done in the
function main. Therefore, the exception is thrown, caught, and processed in the function
main. The program in Example 15-13 uses the user-defined function doDivision to
manipulate the data. Therefore, the exception is thrown, caught, and processed in the
function doDivision.

EXAMPLE 15-13

// Handling an exception thrown by a function.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

void doDivision();

int main()
{

doDivision(); //Line 1

return 0; //Line 2
}

940 | Chapter 15: Exception Handling

1
5

void doDivision()
{

int dividend, divisor, quotient; //Line 3

try
{

cout << "Line 4: Enter the dividend: "; //Line 4
cin >> dividend; //Line 5
cout << endl; //Line 6

cout << "Line 7: Enter the divisor: "; //Line 7
cin >> divisor; //Line 8
cout << endl; //Line 9

if (divisor == 0) //Line 10
throw divisionByZero(); //Line 11

quotient = dividend / divisor; //Line 12
cout << "Line 13: Quotient = " << quotient

<< endl; //Line 13
}
catch (divisionByZero divByZeroObj) //Line 14
{

cout << "Line 15: In the function "
<< "doDivision: "
<< divByZeroObj.what() << endl; //Line 15

}
}

Sample Run 1: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 34

Line 7: Enter the divisor: 5

Line 13: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 4: Enter the dividend: 56

Line 7: Enter the divisor: 0

Line 15: In the function doDivision: Division by zero

Rethrowing and Throwing an Exception
When an exception occurs in a try block, control immediately passes to one of the
catch blocks. Typically, a catch block either handles the exception or partially processes
the exception and then rethrows the same exception, or it rethrows another exception in
order for the calling environment to handle the exception. The catch block in Examples
15-4 through 15-13 handles the exception. The mechanism of rethrowing or throwing
an exception is quite useful in cases in which a catch block catches the exception but
cannot handle the exception, or if the catch block decides that the exception should be

Creating Your Own Exception Classes | 941

handled by the calling block or environment. This allows the programmer to provide the
exception-handling code all in one place.

To rethrow or throw an exception, we use the throw statement. The general syntax to
rethrow an exception caught by a catch block is:

throw;

(in this case, the same exception is rethrown) or:

throw expression;

in which expression is a constant value, variable, or object. The object being thrown
can be either a specific object or an anonymous object.

A function specifies the exceptions it throws (to be handled somewhere) in its heading
using the throw clause. For example, the following function specifies that it throws
exceptions of type int, string, and divisionByZero, in which divisionByZero is
the class, as defined previously.

void exmpThrowExcep(int x) throw (int, string, divisionByZero)
{

.

.

.
//include the appropriate throw statements
.
.
.

}

The program in Example 15-14 further explains how a function specifies the exception it
throws.

EXAMPLE 15-14

// Handling an exception, in the main function, thrown by another
// function. The function throws the same exception object.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

void doDivision() throw (divisionByZero);

942 | Chapter 15: Exception Handling

1
5

int main()
{

try //Line 1
{

doDivision(); //Line 2
}
catch (divisionByZero divByZeroObj) //Line 3
{

cout << "Line 4: In main: "
<< divByZeroObj.what() << endl; //Line 4

}

return 0; //Line 5
}

void doDivision() throw (divisionByZero)
{

int dividend, divisor, quotient; //Line 6

try //Line 7
{

cout << "Line 8: Enter the dividend: "; //Line 8
cin >> dividend; //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the divisor: "; //Line 11
cin >> divisor; //Line 12
cout << endl; //Line 13

if (divisor == 0) //Line 14
throw divisionByZero("Found division by 0!"); //Line 15

quotient = dividend / divisor; //Line 16
cout << "Line 17: Quotient = " << quotient

<< endl; //Line 17
}
catch (divisionByZero) //Line 18
{

throw; //Line 19
}

}

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 34

Line 11: Enter the divisor: 5

Line 17: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 56

Line 11: Enter the divisor: 0

Line 4: In main: Found division by 0!

Creating Your Own Exception Classes | 943

In this program, if the value of divisor is 0, the statement in Line 15 throws an
exception of type divisionByZero, which is an anonymous object of this class, with
the message string:

"Found division by 0!"

The statement in Line 19, in the catch block, throws the same exception value, which in
this case is an object.

In Sample Run 1, no exception is thrown.

Let us see what happens in Sample Run 2. The function main calls the function
doDivision in the try block. In the function doDivision, the value of divisor is
0, so the statement in Line 15 throws an exception. The exception is caught by the
catch block in Line 18. The statement in Line 19 rethrows the same exception. In other
words, the catch block catches and rethrows the same exception. Therefore, the
function call statement in Line 2 results in throwing an exception. This exception is
caught and processed by the catch block in Line 3.

EXAMPLE 15-15

// Handling exception, in the main function, thrown by another
// function. The function throws a different exception object.

#include <iostream>
#include "divisionByZero.h"

using namespace std;

void doDivision() throw (divisionByZero);

int main()
{

try //Line 1
{

doDivision(); //Line 2
}
catch (divisionByZero divByZeroObj) //Line 3
{

cout << "Line 4: In main: "
<< divByZeroObj.what() << endl; //Line 4

}

return 0; //Line 5
}

944 | Chapter 15: Exception Handling

1
5

void doDivision() throw (divisionByZero)
{

int dividend, divisor, quotient; //Line 6

try //Line 7
{

cout << "Line 8: Enter the dividend: "; //Line 8
cin >> dividend; //Line 9
cout << endl; //Line 10

cout << "Line 11: Enter the divisor: "; //Line 11
cin >> divisor; //Line 12
cout << endl; //Line 13

if (divisor == 0) //Line 14
throw divisionByZero(); //Line 15

quotient = dividend / divisor; //Line 16
cout << "Line 17: Quotient = " << quotient

<< endl; //Line 17
}
catch (divisionByZero) //Line 18
{

throw
divisionByZero("Division by zero found!"); //Line 19

}
}

Sample Run 1: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 34

Line 11: Enter the divisor: 5

Line 17: Quotient = 6

Sample Run 2: In this sample run, the user input is shaded.

Line 8: Enter the dividend: 56

Line 11: Enter the divisor: 0

Line 4: In main: Division by zero found!

This program works the same way as the program in Example 15-14. The only difference is
that here, the catch block in Line 18 rethrows a different exception value, that is, object.

The programs in Examples 15-14 and 15-15 illustrate how a function can rethrow the
same exception or throw another exception for the calling function to handle. This
mechanism is quite useful because it allows a program to handle all of the exceptions in
one location, rather than spread the exception-handling code throughout the program.

Creating Your Own Exception Classes | 945

Exception-Handling Techniques
When an exception occurs in a program, the programmer usually has three choices:
terminate the program, include code in the program to recover from the exception, or
log the error and continue. The following sections discuss each of these situations.

Terminate the Program
In some cases, it is best to let the program terminate when an exception occurs. Suppose
you have written a program that inputs data from a file. If the input file does not exist
when the program executes, then there is no point in continuing with the program. In
this case, the program can output an appropriate error message and terminate.

Fix the Error and Continue
In other cases, you will want to handle the exception and let the program continue.
Suppose that you have a program that takes as input an integer. If a user inputs a letter in
place of a number, the input stream will enter the fail state. This is a situation in which
you can include the necessary code to keep prompting the user to input a number until
the entry is valid. The program in Example 15-16 illustrates this situation.

EXAMPLE 15-16

// Handle exceptions by fixing the errors. The program continues to
// prompt the user until a valid input is entered.

#include <iostream>
#include <string>

using namespace std;

int main()
{

int number; //Line 1
bool done = false; //Line 2

string str =
"The input stream is in the fail state."; //Line 3

do //Line 4
{ //Line 5

try //Line 6
{ //Line 7

cout << "Line 8: Enter an integer: "; //Line 8
cin >> number; //Line 9

946 | Chapter 15: Exception Handling

1
5

cout << endl; //Line 10

if (!cin) //Line 11
throw str; //Line 12

done = true; //Line 13
cout << "Line 14: Number = " << number

<< endl; //Line 14
} //Line 15
catch (string messageStr) //Line 16
{ //Line 17

cout << "Line 18: " << messageStr
<< endl; //Line 18

cout << "Line 19: Restoring the "
<< "input stream." << endl; //Line 19

cin.clear(); //Line 20
cin.ignore(100, '\n'); //Line 21

} //Line 22
}
while (!done); //Line 23

return 0; //Line 24
}

Sample Run: In this sample run, the user input is shaded.

Line 8: Enter an integer: r5

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: d45

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: hw3

Line 18: The input stream is in the fail state.
Line 19: Restoring the input stream.
Line 8: Enter an integer: 48

Line 14: Number = 48

This program prompts the user to enter an integer. If the input is invalid, the standard
input stream enters the fail state. In the try block, the statement in Line 12 throws an
exception, which is a string object. Control passes to the catch block, and the
exception is caught and processed. The statement in Line 20 restores the input stream
to its good state, and the statement in Line 21 clears the rest of the input from the line.
The do. . .while loop continues to prompt the user until the user inputs a valid
number.

Exception-Handling Techniques | 947

Log the Error and Continue
The program that terminates when an exception occurs usually assumes that this
termination is reasonably safe. However, if your program is designed to run a nuclear
reactor or continuously monitor a satellite, it cannot be terminated if an exception
occurs. These programs should report the exception, but the program must continue
to run.

For example, consider a program that analyzes an airline’s ticketing transactions. Because
numerous ticketing transactions occur each day, a program is run at the end of each day
to validate that day’s transactions. This type of program would take an enormous amount
of time to process the transactions and use exceptions to identify any erroneous entries.
Instead, when an exception occurs, the program should write the exception into a file
and continue to analyze the transactions.

Stack Unwinding
The examples given in this chapter show how to catch and process an exception. In
particular, you learned how to catch and process an exception in the same block, as well
as process the caught exception in the calling environment.

When an exception is thrown in, say, a function, the function can do the following:

• Do nothing.

• Partially process the exception and throw the same exception or a new
exception.

• Throw a new exception.

In each of these cases, the function-call stack is unwound so that the exception can be
caught in the next try/catch block. When the function call stack is unwound, the
function in which the exception was not caught and/or rethrown terminates, and the
memory for its local variables is destroyed. The stack unwinding continues until either a
try/catch handles the exception or the program does not handle the exception. If the
program does not handle the exception, then the function terminate is called to
terminate the program.

Examples 15-17 and 15-18 illustrate how the exceptions are propagated. For this, let us
define the following exception class:

// User-defined myException class.

#include <string>

using namespace std;

948 | Chapter 15: Exception Handling

1
5

class myException
{
public:

myException()
{

message = "Something is wrong!";
}

myException(string str)
{

message = str;
}

string what()
{

return message;
}

private:
string message;

};

In the definition of the class myException, the constructors can also be written
as follows:

myException() : message("Something is wrong!"){}
myException(string str) : message(str){}

The program in Example 15-17 illustrates how exceptions thrown in a function get
processed in the calling environment.

EXAMPLE 15-17

// Processing exceptions thrown by a function in the calling
// environment.

#include <iostream>
#include "myException.h"

using namespace std;

void functionA() throw (myException);
void functionB() throw (myException);
void functionC() throw (myException);

int main()
{

try
{

functionA();
}

Stack Unwinding | 949

catch (myException me)
{

cout << me.what() << " Caught in main." << endl;
}

return 0;
}

void functionA() throw (myException)
{

functionB();
}

void functionB() throw (myException)
{

functionC();
}

void functionC() throw (myException)
{

throw myException("Exception generated in function C.");
}

Sample Run:

Exception generated in function C. Caught in main.

In this program, the function main calls functionA, functionA calls functionB, and
functionB calls functionC. The function functionC creates and throws an exception
of type myException. The functions functionA and functionB do not process the
exception thrown by functionC.

The function main calls functionA in the try block and catches the exception
thrown by functionC. The parameter me in the catch block heading catches
the value of the exception and then uses the function what to return the string
stored in that object. The output statement in the catch block outputs the appro-
priate message.

The program in Example 15-18 is similar to the program in Example 15-17. Here, the
exception is caught and processed by the immediate calling environment.

EXAMPLE 15-18

// Processing exceptions, thrown by a function, in the
// immediate calling environment.

#include <iostream>
#include "myException.h"

950 | Chapter 15: Exception Handling

using namespace std;

void functionA();
void functionB();
void functionC() throw (myException);

int main()
{

try
{

functionA();
}
catch (myException e)
{

cout << e.what() << " Caught in main." << endl;
}

return 0;
}

void functionA()
{

functionB();
}

void functionB()
{

try
{

functionC();
}
catch (myException me)
{

cout << me.what() << " Caught in functionB." << endl;
}

}

void functionC() throw (myException)
{

throw myException("Exception generated in functionC.");
}

Sample Run:

Exception generated in functionC. Caught in functionB.

In this program, the exception is caught and processed by functionB. Even though the
function main contains the try/catch block, the try block does not throw any
exceptions because the exception thrown by functionC is caught and processed by
functionB.

1
5

Stack Unwinding | 951

QUICK REVIEW

1. An exception is an occurrence of an undesirable situation that can be
detected during program execution.

2. Some typical ways of dealing with exceptions are to use an if statement or
the assert function.

3. The function assert can check whether an expression meets the required
condition(s). If the conditions are not met, it terminates the program.

4. The try/catch block is used to handle exceptions within a program.

5. Statements that may generate an exception are placed in a try block. The
try block also contains statements that should not be executed if an
exception occurs.

6. The try block is followed by one or more catch blocks.

7. A catch block specifies the type of exception it can catch and contains an
exception handler.

8. If the heading of a catch block contains...(ellipses) in place of parameters,
then this catch block can catch exceptions of all types.

9. If no exceptions are thrown in a try block, all catch blocks associated
with that try block are ignored and program execution resumes after the
last catch block.

10. If an exception is thrown in a try block, the remaining statements in the try
block are ignored. The program searches the catch blocks, in the order they
appear after the try block, and looks for an appropriate exception handler. If
the type of the thrown exception matches the parameter type in one of the
catch blocks, then the code in that catch block executes and the remaining
catch blocks after this catch block are ignored.

11. The data type of the catch block parameter specifies the type of exception
that the catch block can catch.

12. A catch block can have, at most, one catch block parameter.

13. If only the data type is specified in a catch block heading, that is, if there is
no catch block parameter, then the thrown value may not be accessible in
the catch block exception-handling code.

14. In order for an exception to occur in a try block and be caught by a catch
block, the exception must be thrown in the try block.

15. The general syntax to throw an exception is:
throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

16. C++ provides support to handle exceptions via a hierarchy of classes.

952 | Chapter 15: Exception Handling

1
5

17. The class exception is the base class of the exception classes provided by
C++.

18. The function what returns the string containing the exception object
thrown by C++’s built-in exception classes.

19. The class exception is contained in the header file exception.

20. The two classes that are immediately derived from the class exception
are logic_error and runtime_error. Both of these classes are defined in
the header file stdexcept.

21. The class invalid_argument is designed to deal with illegal arguments
used in a function call.

22. The class out_of_range deals with the string subscript out_of_range
error.

23. If a length greater than the maximum allowed for a string object is used, the
class length_error deals with the error that occurs when a length
greater than the maximum size allowed for the object being manipulated
is used.

24. If the operator new cannot allocate memory space, this operator throws a
bad_alloc exception.

25. The class runtime_error is designed to deal with errors that can be
detected only during program execution. For example, to deal with arith-
metic overflow and underflow exceptions, the classes overflow_error
and underflow_error are derived from the class runtime_error.

26. A catch block typically handles the exception or partially processes the
exception and then either rethrows the same exception or rethrows another
exception in order for the calling environment to handle the exception.

27. C++ enables programmers to create their own exception classes to handle
both the exceptions not covered by C++’s exception classes and their own
exceptions.

28. C++ uses the same mechanism to process the exceptions you define as it
uses for built-in exceptions. However, you must throw your own excep-
tions using the throw statement.

29. In C++, any class can be considered an exception class. It need not be
inherited from the class exception. What makes a class an exception is
how it is used.

30. The general syntax to rethrow an exception caught by a catch block is:
throw;

(in this case, the same exception is rethrown) or:

throw expression;

in which expression is a constant value, variable, or object. The object
being thrown can be either a specific object or an anonymous object.

Quick Review | 953

31. A function specifies the exceptions it throws in its heading using the throw
clause.

32. When an exception is thrown in a function, the function can do the
following: do nothing; partially process the exception and throw the same
exception or a new exception; or throw a new exception. In each of these
cases, the function-call stack is unwound so that the exception can be
caught in the next try/catch block. The stack unwinding continues until
a try/catch handles the exception or the program does not handle the
exception.

33. If the program does not handle the exception, then the function terminate
is called to terminate the program.

EXERCISES

1. Mark the following statements as true or false.

a. The order in which catch blocks are listed is not important.

b. An exception can be caught either in the function where it occurred or
in any of the functions that led to the invocation of this method.

c. One way to handle an exception is to print an error message and exit the
program.

d. All exceptions need to be reported to avoid compilation errors.

2. What is the difference between a try block and a catch block?

3. What will happen if an exception is thrown but not caught?

4. What happens if no exception is thrown in a try block?

5. What happens if an exception is thrown in a try block?

6. Consider the following C++ code:

double balance;

try
{

cout << "Enter the balance: ";
cin >> balance;
cout << endl;

if (balance < 1000.00)
throw balance;

cout << "Leaving the try block." << endl;
}
catch (double x)
{

cout << "Current balance: " << x << endl
<< "Balance must be greater than 1000.00" << endl;

}

954 | Chapter 15: Exception Handling

a. In this code, identify the try block.

b. In this code, identify the catch block.

c. In this code, identify the catch block parameter and its type.

d. In this code, identify the throw statement.

7. Assume the code given in Exercise 6.

a. What is the output if the input is 1200?

b. What is the output if the input is 975?

c. What is the output if the input is -2000?

8. Consider the following C++ code:

int lowerLimit;
.
.
.
try
{

cout << "Entering the try block." << endl;

if (lowerLimit < 100)
throw exception("Lower limit violation.");

cout << "Exiting the try block." << endl;
}
catch (exception eObj)
{

cout << "Exception: " << eObj.what() << endl;
}
cout << "After the catch block" << endl;

What is the output if:

a. The value of lowerLimit is 50?

b. The value of lowerLimit is 150?

9. Consider the following C++ code:

int lowerLimit;
int divisor;
int result;

try
{

cout << "Entering the try block." << endl;

if (divisor == 0)
throw 0;

if (lowerLimit < 100)
throw string("Lower limit violation.");

result = lowerLimit / divisor;

1
5

Exercises | 955

cout << "Exiting the try block." << endl;
}
catch (int x)
{

cout << "Exception: " << x << endl;
result = 120;

}
catch (string str)
{

cout << "Exception: " << str << endl;
}

cout << "After the catch block" << endl;

What is the output if:

a. The value of lowerLimit is 50, and the value of divisor is 10?

b. The value of lowerLimit is 50, and the value of divisor is 0?

c. The value of lowerLimit is 150, and the value of divisor is 10?

d. The value of lowerLimit is 150, and the value of divisor is 0?

10. If you define your own exception class, what typically is included in that
class?

11. What type of statement is used to rethrow an exception?

12. Define an exception class called tornadoException. The class should
have two constructors, including the default constructor. If the exception is
thrown with the default constructor, the method what should return
"Tornado: Take cover immediately!". The other constructor has a
single parameter, say, m, of the int type. If the exception is thrown with
this constructor, the method what should return "Tornado: m miles
away; and approaching!"

13. Write a C++ program to test the class tornadoException specified in
Exercise 12.

14. Suppose the exception class myException is defined as follows:

class myException
{
public:

myException()
{

message = "myException thrown!";
cout << "Immediate attention required!"

<< endl;
}

myException(string msg)
{

message = msg;
cout << "Attention required!" << endl;

}

956 | Chapter 15: Exception Handling

string what()
{

return message;
}

private:
string message;

}

Suppose that in a user program, the catch block has the following form:

catch (myException mE)
{

cout << mE.what() << endl;
}

What output will be produced if the exception is thrown with the default con-
structor? Also, what output will be produced if the exception is thrown with the
constructor with parameters with the following actual parameter?

"May Day, May Day"

15. If a function throws an exception, how does it specify that exception?

16. Name three exception-handling techniques.

PROGRAMMING EXERCISES

1. Write a program that prompts the user to enter a length in feet and inches
and outputs the equivalent length in centimeters. If the user enters a
negative number or a nondigit number, throw and handle an appropriate
exception and prompt the user to enter another set of numbers.

2. Redo Programming Exercise 7 of Chapter 8 so that your program handles
exceptions such as division by zero and invalid input.

3. Write a program that prompts the user to enter time in 12-hour notation.
The program then outputs the time in 24-hour notation. Your program
must contain three exception classes: invalidHr, invalidMin, and
invalidSec. If the user enters an invalid value for hours, then the program
should throw and catch an invalidHr object. Similar conventions for the
invalid values of minutes and seconds.

4. Write a program that prompts the user to enter a person’s date of birth in
numeric form such as 8-27-1980. The program then outputs the date of
birth in the form: August 27, 1980. Your program must contain at least two
exception classes: invalidDay and invalidMonth. If the user enters
an invalid value for day, then the program should throw and catch an
invalidDay object. Similar conventions for the invalid values of month
and year. (Note that your program must handle a leap year.)

1
5

Programming Exercises | 957

This page intentionally left blank

RECURSION
IN THIS CHAPTER , YOU WILL :

. Learn about recursive definitions

. Explore the base case and the general case of a recursive definition

. Discover what is a recursive algorithm

. Learn about recursive functions

. Explore how to use recursive functions to implement recursive algorithms

16C H A P T E R

In previous chapters, to devise solutions to problems, we used the most common
technique called iteration. For certain problems, however, using the iterative technique
to obtain the solution is quite complicated. This chapter introduces another problem-
solving technique called recursion and provides several examples demonstrating how
recursion works.

Recursive Definitions
The process of solving a problem by reducing it to smaller versions of itself is called
recursion. Recursion is a very powerful way to solve certain problems for which the
solution would otherwise be very complicated. Let us consider a problem that is familiar
to most everyone.

In mathematics, the factorial of a nonnegative integer is defined as follows:

0! ¼ 1 ð16-1Þ
n! ¼ n� ðn� 1Þ! if n > 0 ð16-2Þ
In this definition, 0! is defined to be 1, and if n is an integer greater than 0, first we find
(n � 1)! and then multiply it by n. To find (n � 1)!, we apply the definition again. If
(n � 1) > 0, then we use Equation 16-2; otherwise, we use Equation 16-1. Thus, for an
integer n greater than 0, n! is obtained by first finding (n � 1)! (that is, n! is reduced to a
smaller version of itself) and then multiplying (n � 1)! by n.
Let us apply this definition to find 3!. Here, n = 3. Because n > 0, we use Equation 16-2
to obtain:

3! ¼ 3� 2!
Next, we find 2! Here, n = 2. Because n > 0, we use Equation 16-2 to obtain:

2! ¼ 2� 1!
Now, to find 1!, we again use Equation 16-2 because n = 1 > 0. Thus:

1! ¼ 1� 0!
Finally, we use Equation 16-1 to find 0!, which is 1. Substituting 0! into 1! gives 1! = 1.
This gives 2! = 2 � 1! = 2 � 1 = 2, which, in turn, gives 3! = 3 � 2! = 3 � 2 = 6.
The solution in Equation 16-1 is direct—that is, the right side of the equation
contains no factorial notation. The solution in Equation 16-2 is given in terms of a
smaller version of itself. The definition of the factorial given in Equations 16-1 and
16-2 is called a recursive definition. Equation 16-1 is called the base case (that is,
the case for which the solution is obtained directly); Equation 16-2 is called the
general case.

Recursive definition: A definition in which something is defined in terms of a smaller
version of itself.

960 | Chapter 16: Recursion

From the previous example (factorial), it is clear that:

1. Every recursive definition must have one (or more) base cases.

2. The general case must eventually be reduced to a base case.

3. The base case stops the recursion.

The concept of recursion in computer science works similarly. Here, we talk about
recursive algorithms and recursive functions. An algorithm that finds the solution to a
given problem by reducing the problem to smaller versions of itself is called a recursive
algorithm. The recursive algorithm must have one or more base cases, and the general
solution must eventually be reduced to a base case.

A function that calls itself is called a recursive function. That is, the body of the
recursive function contains a statement that causes the same function to execute again
before completing the current call. Recursive algorithms are implemented using recursive
functions.

Next, let us write the recursive function that implements the factorial function.

int fact(int num)
{

if (num == 0)
return 1;

else
return num * fact(num - 1);

}

Figure 16-1 traces the execution of the following statement:

cout << fact(4) << endl;

1
6

Recursive Definitions | 961

The output of the previous cout statement is:

24

In Figure 16-1, the down arrow represents the successive calls to the function fact,
and the upward arrows represent the values returned to the caller, that is, the calling
function.

Let us note the following from the preceding example, involving the factorial function.

• Logically, you can think of a recursive function as having an unlimited
number of copies of itself.

• Every call to a recursive function—that is, every recursive call—has its
own code and its own set of parameters and local variables.

because num != 0
 return 4 * fact(3);

fact(4)

because num != 0
 return 3 * fact(2);

fact(3)

because num != 0
 return 2 * fact(1);

fact(2)

because num != 0
 return 1 * fact(0);

fact(1)

because num is 0
 return 1;

fact(0)

return 1

fact(0) = 1

return 1 * 1

fact(1) = 1

return 2 * 1

fact(2) = 2

return 3 * 2

fact(3) = 6

return 4 * 6

fact(4) = 24

24

4num

3num

2num

1num

0num

FIGURE 16-1 Execution of fact(4)

962 | Chapter 16: Recursion

• After completing a particular recursive call, control goes back to the
calling environment, which is the previous call. The current (recursive)
call must execute completely before control goes back to the previous
call. The execution in the previous call begins from the point immedi-
ately following the recursive call.

Direct and Indirect Recursion
A function is called directly recursive if it calls itself. A function that calls another
function and eventually results in the original function call is said to be indirectly
recursive. For example, if a function A calls a function B and function B calls function
A, then function A is indirectly recursive. Indirect recursion can be several layers deep. For
example, suppose that function A calls function B, function B calls function C, function C
calls function D, and function D calls function A. Function A is then indirectly recursive.

Indirect recursion requires the same careful analysis as direct recursion. The base cases
must be identified, and appropriate solutions to them must be provided. However,
tracing through indirect recursion can be tedious. You must, therefore, exercise extra
care when designing indirect recursive functions. For simplicity, the problems in this
book involve only direct recursion.

A recursive function in which the last statement executed is the recursive call is called a
tail recursive function. The function fact is an example of a tail recursive function.

Infinite Recursion
Figure 16-1 shows that the sequence of recursive calls eventually reached a call that made
no further recursive calls. That is, the sequence of recursive calls eventually reached a base
case. On the other hand, if every recursive call results in another recursive call, then the
recursive function (algorithm) is said to have infinite recursion. In theory, infinite
recursion executes forever. Every call to a recursive function requires the system to
allocate memory for the local variables and formal parameters. The system also saves this
information so that after completing a call, control can be transferred back to the right
caller. Therefore, because computer memory is finite, if you execute an infinite recursive
function on a computer, the function executes until the system runs out of memory and
results in an abnormal termination of the program.

Recursive functions (algorithms) must be carefully designed and analyzed. You must make
sure that every recursive call eventually reduces to a base case. This chapter provides several
examples that illustrate how to design and implement recursive algorithms.

To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list, the
limiting condition is the number of elements in the list.

1
6

Recursive Definitions | 963

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case
in terms of smaller versions of itself.

Problem Solving Using Recursion
Examples 16-1 through 16-3 illustrate how recursive algorithms are developed and
implemented in C++ using recursive functions.

EXAMPLE 16-1: LARGEST ELEMENT IN AN ARRAY

In Chapter 9, we used a loop to find the largest element in an array. In this example, we
use a recursive algorithm to find the largest element in an array. Consider the list given in
Figure 16-2.

The largest element in the list in Figure 16-2 is 10.

Suppose list is the name of the array containing the list elements. Also, suppose that
list[a]...list[b] stands for the array elements list[a], list[a + 1], ..., and
list[b]. For example, list[0]...list[5] represents the array elements
list[0], list[1], list[2], list[3], list[4], and list[5]. Similarly,
list[1]...list[5] represents the array elements list[1], list[2], list[3],
list[4], and list[5]. To write a recursive algorithm to find the largest element
in list, let us think in terms of recursion.

If list is of length 1, then list has only one element, which is the largest element. Suppose
the length of list is greater than 1. To find the largest element in list[a]... list[b],
we first find the largest element in list[a + 1]...list[b] and then compare this largest
element with list[a]. That is, the largest element in list[a]...list[b] is given by:

maximum(list[a], largest(list[a + 1]...list[b]))

Let us apply this formula to find the largest element in the list shown in Figure 16-2. This
list has six elements, given by list[0]...list[5]. Now, the largest element in list is:

maximum(list[0], largest(list[1]...list[5]))

[0] [1] [2] [3] [4]

list

[5] [6]

5 8 2 10 9 4

FIGURE 16-2 list with six elements

964 | Chapter 16: Recursion

That is, the largest element in list is the maximum of list[0] and the largest element
in list[1]...list[5]. To find the largest element in list[1]...list[5], we use
the same formula again because the length of this list is greater than 1. The largest element
in list[1]...list[5] is then:

maximum(list[1], largest(list[2]...list[5]))

and so on. We see that every time we use the preceding formula to find the largest
element in a sublist, the length of the sublist in the next call is reduced by one.
Eventually, the sublist is of length 1, in which case the sublist contains only one element,
which is the largest element in the sublist. From this point onward, we backtrack through
the recursive calls. This discussion translates into the following recursive algorithm, which
is presented in pseudocode.

Base Case: The size of the list is 1
The only element in the list is the largest element

General Case: The size of the list is greater than 1
To find the largest element in list[a]...list[b]

a. Find the largest element in list[a + 1]...list[b]
and call it max

b. Compare the elements list[a] and max
if (list[a] >= max)

the largest element in list[a]...list[b] is list[a]
otherwise

the largest element in list[a]...list[b] is max

This algorithm translates into the following C++ function to find the largest element in
an array:

int largest(const int list[], int lowerIndex, int upperIndex)
{

int max;

if (lowerIndex == upperIndex) //size of the sublist is one
return list[lowerIndex];

else
{

max = largest(list, lowerIndex + 1, upperIndex);

if (list[lowerIndex] >= max)
return list[lowerIndex];

else
return max;

}
}

Consider the list given in Figure 16-3.

1
6

Problem Solving Using Recursion | 965

Let us trace the execution of the following statement:

cout << largest(list, 0, 3) << endl;

Here, upperIndex = 3 and the list have four elements. Figure 16-4 traces the execution
of largest(list, 0, 3).

The value returned by the expression largest(list, 0, 3) is 12, which is the largest
element in list.

The following C++ program uses the function largest to determine the largest element
in a list.

[0] [1] [2] [3]

list 5 10 12 8

FIGURE 16-3 list with four elements

because list[2] > max
 return list[2]

because list[1] < max
 return max

because lowerIndex != upperIndex
 max = largest(list,1,3)

largest(list,0,3)

largest(list,1,3)

largest(list,2,3)

return 8

because list[0] < max
 return max

return 12

return 12

return 12

0lowerIndex 3upperIndex max
12max

12max

8max

because lowerIndex != upperIndex
 max = largest(list,2,3)

1lowerIndex 3upperIndex max

because lowerIndex != upperIndex
 max = largest(list,3,3)

2lowerIndex 3upperIndex max

because lowerIndex == upperIndex
 return list[3]

largest(list,3,3)

3lowerIndex 3upperIndex max

FIGURE 16-4 Execution of largest(list, 0, 3)

966 | Chapter 16: Recursion

//Largest Element in an Array

#include <iostream>

using namespace std;

int largest(const int list[], int lowerIndex, int upperIndex);

int main()
{

int intArray[10] = {23, 43, 35, 38, 67, 12, 76, 10, 34, 8};

cout << "The largest element in intArray: "
<< largest(intArray, 0, 9);

cout << endl;

return 0;
}

int largest(const int list[], int lowerIndex, int upperIndex)
{

int max;

if (lowerIndex == upperIndex) //size of the sublist is one
return list[lowerIndex];

else
{

max = largest(list, lowerIndex + 1, upperIndex);

if (list[lowerIndex] >= max)
return list[lowerIndex];

else
return max;

}
}

Sample Run:

The largest element in intArray: 76

EXAMPLE 16-2: F IBONACCI NUMBER

In Chapter 5, we designed a program to determine the desired Fibonacci number. In this
example, we write a recursive function, rFibNum, to determine the desired Fibonacci
number. The function rFibNum takes as parameters three numbers representing the first
two numbers of the Fibonacci sequence and a number n, the desired nth Fibonacci
number. The function rFibNum returns the nth Fibonacci number in the sequence.

1
6

Problem Solving Using Recursion | 967

Recall that the third Fibonacci number is the sum of the first two Fibonacci numbers.
The fourth Fibonacci number in a sequence is the sum of the second and third Fibonacci
numbers. Therefore, to calculate the fourth Fibonacci number, we add the second
Fibonacci number and the third Fibonacci number (which is itself the sum of the first
two Fibonacci numbers). The following recursive algorithm calculates the nth Fibonacci
number, in which a denotes the first Fibonacci number, b the second Fibonacci number,
and n the nth Fibonacci number.

rFibNumða;b;nÞ ¼
a if n ¼ 1
b if n ¼ 2
rFibNumða;b;n� 1Þ þ rFibNumða;b;n� 2Þ if n > 2:

8
<

:
ð16-3Þ

Suppose that we want to determine:

rFibNum(2, 5, 4)

Here, a = 2, b = 5, and n = 4. That is, we want to determine the fourth Fibonacci number of
the sequence whose first number is 2 and whose second number is 5. Because n is 4 > 2:

1. rFibNum(2, 5, 4) = rFibNum(2, 5, 3) + rFibNum(2, 5, 2)

Next, we determine rFibNum(2, 5, 3) and rFibNum(2, 5, 2). Let us
first determine rFibNum(2, 5, 3). Here, a = 2, b = 5, and n is 3.
Because n is 3:

1.a. rFibNum(2, 5, 3) = rFibNum(2, 5, 2) + rFibNum(2, 5, 1)

This statement requires us to determine rFibNum(2, 5, 2) and
rFibNum(2, 5, 1). In rFibNum(2, 5, 2), a = 2, b = 5, and n = 2.
Therefore, from the definition given in Equation 16-3, it follows
that:

1.a.1. rFibNum(2, 5, 2) = 5

To find rFibNum(2, 5, 1), note that a = 2, b = 5, and n = 1.
Therefore, by the definition given in Equation 16-3:

1.a.2. rFibNum(2, 5, 1) = 2

We substitute the values of rFibNum(2, 5, 2) and
rFibNum(2, 5, 1) into (1.a) to get:

rFibNum(2, 5, 3) = 5 + 2 = 7

Next, we determine rFibNum(2, 5, 2). As in (1.a.1), rFibNum(2,
5, 2) = 5. We can substitute the values of rFibNum(2, 5, 3) and
rFibNum(2, 5, 2) into (1) to get:

rFibNum(2, 5, 4) = 7 + 5 = 12

968 | Chapter 16: Recursion

The following recursive function implements this algorithm.

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Let us trace the execution of the following statement:

cout << rFibNum(2, 3, 5) << endl;

In this statement, the first number is 2, the second number is 3, and we want to determine
the fifth Fibonacci number of the sequence. Figure 16-5 traces the execution of the
expression rFibNum(2,3,5). The value returned is 13, which is the fifth Fibonacci
number of the sequence whose first number is 2 and second number is 3.

1
6

return rFibNum(2,3,4) + rFibNum(2,3,3)

rFibNum(2,3,5)

return rFibNum(2,3,3) + rFibNum(2,3,2)

rFibNum(2,3,4)

return rFibNum(2,3,2) + rFibNum(2,3,1)

rFibNum(2,3,3)

return b

rFibNum(2,3,2)

return a

rFibNum(2,3,1)

return rFibNum(2,3,2) + rFibNum(2,3,1)

return b

rFibNum(2,3,2)

return a

rFibNum(2,3,1)

return b

rFibNum(2,3,2)rFibNum(2,3,3)

return 3 return 2

return 5
return 3 return 3 return 2

return 5
return 8

return 13

2a 3b 5n

2a 3b 4n 2a 3b 3n

2a 3b 3n 2a 3b 2n 2a 3b 2n 2a 3b 1n

2a 3b 2n 2a 3b 1n

FIGURE 16-5 Execution of rFibNum(2, 3, 5)

Problem Solving Using Recursion | 969

The following C++ program uses the function rFibNum:

//Chapter 16: Fibonacci Number

#include <iostream>

using namespace std;

int rFibNum(int a, int b, int n);

int main()
{

int firstFibNum;
int secondFibNum;
int nth;

cout << "Enter the first Fibonacci number: ";
cin >> firstFibNum;
cout << endl;

cout << "Enter the second Fibonacci number: ";
cin >> secondFibNum;
cout << endl;

cout << "Enter the position of the desired Fibonacci number: ";
cin >> nth;
cout << endl;

cout << "The Fibonacci number at position " << nth
<< " is: " << rFibNum(firstFibNum, secondFibNum, nth)
<< endl;

return 0;
}

int rFibNum(int a, int b, int n)
{

if (n == 1)
return a;

else if (n == 2)
return b;

else
return rFibNum(a, b, n - 1) + rFibNum(a, b, n - 2);

}

Sample Runs: In these sample runs, the user input is shaded.

Sample Run 1

Enter the first Fibonacci number: 2

Enter the second Fibonacci number: 5

970 | Chapter 16: Recursion

Enter the position of the desired Fibonacci number: 6

The Fibonacci number at position 6 is: 31

Sample Run 2

Enter the first Fibonacci number: 12

Enter the second Fibonacci number: 18

Enter the position of the desired Fibonacci number: 15

The Fibonacci number at position 15 is: 9582

EXAMPLE 16-3: TOWER OF HANOI

In the nineteenth century, a game called the Tower of Hanoi became popular in Europe.
This game represents work that is underway in the temple of Brahma. At the creation of
the universe, priests in the temple of Brahma were supposedly given three diamond
needles, with one needle containing 64 golden disks. Each golden disk is slightly smaller
than the disk below it. The priests’ task is to move all 64 disks from the first needle to the
third needle. The rules for moving the disks are as follows:

1. Only one disk can be moved at a time.

2. The removed disk must be placed on one of the needles.

3. A larger disk cannot be placed on top of a smaller disk.

The priests were told that once they had moved all of the disks from the first needle to the
third needle, the universe would come to an end.

Our objective is to write a program that prints the sequence of moves needed to transfer
the disks from the first needle to the third needle. Figure 16-6 shows the Tower of Hanoi
problem with three disks.

1
6

3
2
1

FIGURE 16-6 Tower of Hanoi problem with three disks

Problem Solving Using Recursion | 971

As before, we think in terms of recursion. Let us first consider the case in which the first
needle contains only one disk. In this case, the disk can be moved directly from needle 1
to needle 3. So let us consider the case in which the first needle contains only two disks.
In this case, first we move the first disk from needle 1 to needle 2, and then we move the
second disk from needle 1 to needle 3. Finally, we move the first disk from needle 2 to
needle 3. Next, we consider the case in which the first needle contains three disks and
then generalize this to the case of 64 disks (in fact, to an arbitrary number of disks).

Suppose that needle 1 contains three disks. To move disk number 3 to needle 3, the top
two disks must first be moved to needle 2. Disk number 3 can then be moved from
needle 1 to needle 3. To move the top two disks from needle 2 to needle 3, we use the
same strategy as before. This time, we use needle 1 as the intermediate needle. Figure 16-7
shows a solution to the Tower of Hanoi problem with three disks.

Move disk 1 from needle 1 to needle 3

3
2
1

3
2

1

Move 1

Move disk 2 from needle 1 to needle 2

3
2

3 2 11

Move 2

Move disk 1 from needle 3 to needle 2

3 2 3 2
1

1

Move 3

Move disk 3 from needle 1 to needle 3

3 2 32
11

Move 4

Move disk 1 from needle 2 to needle 1

32 321
1

Move 5

Move disk 2 from needle 2 to needle 3

32 3
2

11

Move 6

Move disk 1 from needle 1 to needle 3

3
2

3
2
1

1

Move 7

FIGURE 16-7 Solution to Tower of Hanoi problem with three disks

972 | Chapter 16: Recursion

1
6

Let us now generalize this problem to the case of 64 disks. To begin, the first needle
contains all 64 disks. Disk number 64 cannot be moved from needle 1 to needle 3 unless
the top 63 disks are on the second needle. So first, we move the top 63 disks from needle
1 to needle 2, and then we move disk number 64 from needle 1 to needle 3. Now the top
63 disks are all on needle 2. To move disk number 63 from needle 2 to needle 3, we first
move the top 62 disks from needle 2 to needle 1, and then we move disk number 63
from needle 2 to needle 3. To move the remaining 62 disks, we use a similar procedure.
This discussion translates into the following recursive algorithm given in pseudocode.
Suppose that needle 1 contains n disks, in which n � 1.

1. Move the top n � 1 disks from needle 1 to needle 2, using needle 3 as
the intermediate needle.

2. Move disk number n from needle 1 to needle 3.

3. Move the top n � 1 disks from needle 2 to needle 3, using needle 1 as
the intermediate needle.

This recursive algorithm translates into the following C++ function:

void moveDisks(int count, int needle1, int needle3, int needle2)
{

if (count > 0)
{

moveDisks(count - 1, needle1, needle2, needle3);

cout << "Move disk " << count << " from " << needle1
<< " to " << needle3 << "." << endl;

moveDisks(count - 1, needle2, needle3, needle1);
}

}

Tower of Hanoi: Analysis
Let us determine how long it would take to move all 64 disks from needle 1 to needle 3.
If needle 1 contains three disks, then the number of moves required to move all three
disks from needle 1 to needle 3 is 23 � 1 = 7. Similarly, if needle 1 contains 64 disks, then
the number of moves required to move all 64 disks from needle 1 to needle 3 is 264 � 1.
Because 210 ¼ 1024 � 1000 ¼ 103, we have:
264 ¼ 24 � 260 � 24 � 1018 ¼ 1:6� 1019

The number of seconds in one year is approximately 3.2 � 107. Suppose the priests move
one disk per second and they do not rest. Now:

1:6� 1019 ¼ 5� 3:2� 1018 ¼ 5� ð3:2� 107Þ � 1011 ¼ ð3:2� 107Þ � ð5� 1011Þ
The time required to move all 64 disks from needle 1 to needle 3 is roughly 5 � 1011
years. It is estimated that our universe is about 15 billion years old (1.5 � 1010). Also,
5 � 1011 = 50 � 1010 � 33 � (1.5 � 1010). This calculation shows that our universe
would last about 33 times as long as it already has.

Problem Solving Using Recursion | 973

Assume that a computer can generate 1 billion (109) moves per second. Then the number
of moves that the computer can generate in one year is:

ð3:2� 107Þ � 109 ¼ 3:2� 1016

So the computer time required to generate 264 moves is:

264 � 1:6� 1019 ¼ 1:6� 1016 � 103 ¼ ð3:2� 1016Þ � 500
Thus, it would take about 500 years for the computer to generate 264 moves at the rate of
1 billion moves per second.

Recursion or Iteration?
In Chapter 5, we designed a program to determine a desired Fibonacci number. That
program used a loop to perform the calculation. In other words, the programs in Chapter
5 used an iterative control structure to repeat a set of statements. More formally, iterative
control structures use a looping structure, such as while, for, or do. . .while, to
repeat a set of statements. In Example 16-2, we designed a recursive function to calculate
a Fibonacci number. From the examples here, it follows that in recursion, a set of
statements is repeated by having the function call itself. Moreover, a selection control
structure is used to control the repeated calls in recursion.

Similarly, in Chapter 9, we used an iterative control structure (a for loop) to determine
the largest element in a list. In this chapter, we use recursion to determine the largest
element in a list. In addition, this chapter began by designing a recursive function to find
the factorial of a nonnegative integer. Using an iterative control structure, we can also
write an algorithm to find the factorial of a nonnegative integer. The only reason to give a
recursive solution to a factorial problem is to illustrate how recursion works.

We thus see that there are usually two ways to solve a particular problem—iteration and
recursion. The obvious question is which method is better—iteration or recursion? There
is no simple answer. In addition to the nature of the problem, the other key factor in
determining the best solution method is efficiency.

Example 6-7 (Chapter 7), while tracing the execution of the problem, showed us that
whenever a function is called, memory space for its formal parameters and (automatic) local
variables is allocated. When the function terminates, that memory space is then deallocated.

This chapter, while tracing the execution of recursive functions, also shows us that every
(recursive) call has its own set of parameters and (automatic) local variables. That is, every
(recursive) call requires the system to allocate memory space for its formal parameters and
(automatic) local variables and then deallocate the memory space when the function exits.
Thus, there is overhead associated with executing a (recursive) function both in terms of
memory space and computer time. Therefore, a recursive function executes more slowly
than its iterative counterpart. On slower computers, especially those with limited mem-
ory space, the (slow) execution of a recursive function would be visible.

Today’s computers, however, are fast and have inexpensive memory. Therefore, the
execution of a recursion function is not noticeable. Keeping the power of today’s computers

974 | Chapter 16: Recursion

in mind, the choice between the two alternatives—iteration or recursion—depends on the
nature of the problem. Of course, for problems such as mission control systems, efficiency is
absolutely critical and, therefore, the efficiency factor would dictate the solution method.

As a general rule, if you think that an iterative solution is more obvious and easier to
understand than a recursive solution, use the iterative solution, which would be more
efficient. On the other hand, problems exist for which the recursive solution is more
obvious or easier to construct, such as the Tower of Hanoi problem. (In fact, it turns out
that it is difficult to construct an iterative solution for the Tower of Hanoi problem.)
Keeping the power of recursion in mind, if the definition of a problem is inherently
recursive, then you should consider a recursive solution.

1
6

PROGRAMMING EXAMPLE: Converting a Number from Binary to
Decimal

In Chapter 1, we explained that the language of a computer, called machine
language, is a sequence of 0s and 1s. When you press the key A on the keyboard,
01000001 is stored in the computer. Also, you know that the collating sequence of A
in the ASCII character set is 65. In fact, the binary representation of A is 01000001,
and the decimal representation of A is 65.

The numbering system we use is called the decimal system, or base 10 system. The
numbering system that the computer uses is called the binary system, or base 2
system. In this and the next programming example, we discuss how to convert a
number from base 2 to base 10 and from base 10 to base 2.

Binary to

Decimal

To convert a number from base 2 to base 10, we first find the weight of each bit in
the binary number. The weight of each bit in the binary number is assigned from
right to left. The weight of the rightmost bit is 0. The weight of the bit immediately
to the left of the rightmost bit is 1, the weight of the bit immediately to the left of it is
2, and so on. Consider the binary number 1001101. The weight of each bit is as
follows:

Weight 6 5 4 3 2 1 0

1 0 0 1 1 0 1

We use the weight of each bit to find the equivalent decimal number. For each bit,
we multiply the bit by 2 to the power of its weight and then we add all of the
numbers. For the above binary number, the equivalent decimal number is:

1� 26 þ 0� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 0� 21 þ 1� 20

¼ 64þ 0þ 0þ 8þ 4þ 0þ 1
¼ 77

Programming Example: Converting a Number from Binary to Decimal | 975

To write a program that converts a binary number into the equivalent decimal
number, we note two things: (1) the weight of each bit in the binary number must be
known, and (2) the weight is assigned from right to left. Because we do not know in
advance how many bits are in the binary number, we must process the bits from right
to left. After processing a bit, we can add 1 to its weight, giving the weight of the bit
immediately to the left of it. Also, each bit must be extracted from the binary number
and multiplied by 2 to the power of its weight. To extract a bit, we can use the mod
operator. Consider the following recursive algorithm, which is given in pseudocode.

if (binaryNumber > 0)
{

bit = binaryNumber % 10; //extract the rightmost bit
decimal = decimal + bit * power(2, weight);
binaryNumber = binaryNumber / 10; //remove the rightmost

//bit
weight++;
convert the binaryNumber into decimal

}

This algorithm assumes that the memory locations decimal and weight have been
initialized to 0 before using the algorithm. This algorithm translates to the following
C++ recursive function:

void binToDec(int binaryNumber, int& decimal, int& weight)
{

int bit;

if (binaryNumber > 0)
{

bit = binaryNumber % 10;
decimal = decimal

+ bit * static_cast<int>(pow(2.0, weight));
binaryNumber = binaryNumber / 10;
weight++;
binToDec(binaryNumber, decimal, weight);

}
}

In this function, both decimal and weight are reference parameters. The actual
parameters corresponding to these parameters are initialized to 0. After extracting the
rightmost bit, this function updates the decimal number and the weight of the next
bit. Suppose decimalNumber and bitWeight are int variables. Consider the
following statements:

decimalNumber = 0;
bitWeight = 0;
binToDec(1101, decimalNumber, bitWeight);

Figure 16-8 traces the execution of the last statement, that is, binToDec(1101,
decimalNumber, bitWeight);. It shows the content of the variables
decimalNumber and bitWeight next to each function call.

976 | Chapter 16: Recursion

1
6

In Figure 16-8, each down arrow represents the successive function call. Because the
last statement of the function binToDec is a function call, after this statement
executes, nothing happens. After the statement:

before call
decimalNumber
 bitWeight

binToDec(1101,decimalNumber,bitWeight)

because binaryNumber > 0
 bit = 1101 % 10 = 1;
 decimal = 0 + 1 * 20 = 1;
 weight = 1;
 binaryNumber = 1101 / 10 = 110;
 binToDec(110,decimal,weight);

binaryNumber bit

binToDec(110,decimal,weight)

because binaryNumber > 0
 bit = 110 % 10 = 0;
 decimal = 1 + 0 * 21 = 1;
 weight = 2;
 binaryNumber = 110 / 10 = 11;
 binToDec(11,decimal,weight);

binToDec(11,decimal,weight)

because binaryNumber > 0
 bit = 11 % 10 = 1;
 decimal = 1 + 1 * 22 = 5;
 weight = 3;
 binaryNumber = 11 / 10 = 1;
 binToDec(1,decimal,weight);

binToDec(1,decimal,weight)

because binaryNumber > 0
 bit = 1 % 10 = 1;
 decimal = 5 + 1 * 23 = 13;
 weight = 4;
 binaryNumber = 1 / 10 = 0;
 binToDec(0,decimal,weight);

binToDec(0,decimal,weight)

because binaryNumber is 0
 the if statement fails and this
 call exits

1101
0

0

before call
decimalNumber
 bitWeight

1

1

before call
decimalNumber
 bitWeight

1

2

before call
decimalNumber
 bitWeight

5

3

before call
decimalNumber
 bitWeight

13

4

binaryNumber bit 110

binaryNumber bit 11

binaryNumber bit 1

binaryNumber bit 0

FIGURE 16-8 Execution of binToDec(1101, decimalNumber, bitWeight);

Programming Example: Converting a Number from Binary to Decimal | 977

binToDec(1101, decimalNumber, bitWeight);

executes, the value of the variable decimalNumber is 13.

The following C++ program tests the function binToDec:

//**
// Author: D. S. Malik
//
// Program: Binary to decimal
// This program uses recursion to find the decimal
// representation of a binary number.
//**

#include <iostream>
#include <cmath>

using namespace std;

void binToDec(int binaryNumber, int& decimal, int& weight);

int main()
{

int decimalNum;
int bitWeight;
int binaryNum;

decimalNum = 0;
bitWeight = 0;

cout << "Enter number in binary: ";
cin >> binaryNum;
cout << endl;

binToDec(binaryNum, decimalNum, bitWeight);
cout << "Binary " << binaryNum << " = " << decimalNum

<< " decimal" << endl;

return 0;
}

void binToDec(int binaryNumber, int& decimal, int& weight)
{

int bit;

if (binaryNumber > 0)
{

bit = binaryNumber % 10;
decimal = decimal

+ bit * static_cast<int>(pow(2.0, weight));
binaryNumber = binaryNumber / 10;

978 | Chapter 16: Recursion

1
6

weight++;
binToDec(binaryNumber, decimal, weight);

}
}

Sample Run: In this sample run, the user input is shaded.

Enter a number in binary: 11010110

Binary 11010110 = 214 decimal

PROGRAMMING EXAMPLE: Converting a Number from Decimal to
Binary

The previous programming example discussed and designed a program to convert a
number from a binary representation to a decimal format—that is, from base 2 to base
10. This programming example discusses and designs a program that uses recursion to
convert a nonnegative integer in decimal format—that is, base 10—into the equiva-
lent binary number—that is, base 2. First, we define some terms.

Let x be an integer. We call the remainder of x after division by 2 the rightmost bit of x.

Thus, the rightmost bit of 33 is 1 because 33 % 2 is 1, and the rightmost bit of 28 is 0
because 28 % 2 is 0.

We first illustrate the algorithm to convert an integer in base 10 to the equivalent
number in binary format, with the help of an example.

Suppose we want to find the binary representation of 35. First, we divide 35 by 2. The
quotient is 17, and the remainder—that is, the rightmost bit of 35—is 1. Next, we
divide 17 by 2. The quotient is 8, and the remainder—that is, the rightmost bit of 17—
is 1. Next, we divide 8 by 2. The quotient is 4, and the remainder—that is, the
rightmost bit of 8—is 0. We continue this process until the quotient becomes 0.

The rightmost bit of 35 cannot be printed until we have printed the rightmost bit of
17. The rightmost bit of 17 cannot be printed until we have printed the rightmost bit
of 8, and so on. Thus, the binary representation of 35 is the binary representation of
17 (that is, the quotient of 35 after division by 2), followed by the rightmost bit of 35.

Thus, to convert an integer num in base 10 into the equivalent binary number, we
first convert the quotient num / 2 into an equivalent binary number and then append
the rightmost bit of num to the binary representation of num / 2.

This discussion translates into the following recursive algorithm, in which binary(num)
denotes the binary representation of num.

Programming Example: Converting a Number from Decimal to Binary | 979

1. binary(num) = num if num = 0.

2. binary(num) = binary(num / 2) followed by num % 2 if num > 0.

The following recursive function implements this algorithm:

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

Figure 16-9 traces the execution of the following statement:

decToBin(13, 2);

in which num is 13 and base is 2.

execute
 cout << 1 % 2;

Output: 1

decToBin(13,2)

because num > 0
 decToBin(13/2,2);

decToBin(6,2)

decToBin(3,2)

decToBin(1,2)

decToBin(0,2)

Call 1

Call 2

Call 3

Call 4

Call 5

execute
 cout << 3 % 2;

Output: 1

execute
 cout << 6 % 2;

Output: 0

execute
 cout << 13 % 2;

Output: 1

13 2num base

because num > 0
 decToBin(6/2,2);

6 2num base

because num > 0
 decToBin(3/2,2);

3 2num base

because num > 0
 decToBin(1/2,2);

1 2num base

because num is 0
 exit this call

0 2num base

FIGURE 16-9 Execution of decToBin(13, 2)

980 | Chapter 16: Recursion

1
6

Because the if statement in call 5 fails, this call does not print anything. The first
output is produced by call 4, which prints 1; the second output is produced by call 3,
which prints 1; the third output is produced by call 2, which prints 0; and the fourth
output is produced by call 1, which prints 1. Thus, the output of the statement:

decToBin(13, 2);

is:

1101

The following C++ program tests the function decToBin.

//**
// Author: D. S. Malik
//
// Program: Decimal to binary
// This program uses recursion to find the binary
// representation of a nonnegative integer.
//**

#include <iostream>

using namespace std;

void decToBin(int num, int base);

int main()
{

int decimalNum;
int base;

base = 2;

cout << "Enter number in decimal: ";
cin >> decimalNum;
cout << endl;

cout << "Decimal " << decimalNum << " = ";
decToBin(decimalNum, base);
cout << " binary" << endl;

return 0;
}

void decToBin(int num, int base)
{

if (num > 0)
{

decToBin(num / base, base);
cout << num % base;

}
}

Programming Example: Converting a Number from Decimal to Binary | 981

QUICK REVIEW

1. The process of solving a problem by reducing it to smaller versions of itself
is called recursion.

2. A recursive definition defines a problem in terms of smaller versions of itself.

3. Every recursive definition has one or more base cases.

4. A recursive algorithm solves a problem by reducing it to smaller versions of
itself.

5. Every recursive algorithm has one or more base cases.

6. The solution to the problem in a base case is obtained directly.

7. A function is called recursive if it calls itself.
8. Recursive algorithms are implemented using recursive functions.
9. Every recursive function must have one or more base cases.

10. The general solution breaks the problem into smaller versions of itself.

11. The general case must eventually be reduced to a base case.

12. The base case stops the recursion.

13. While tracing a recursive function:

• Logically, you can think of a recursive function as having an unlimited
number of copies of itself.

• Every call to a recursive function—that is, every recursive call—has its
own code and its own set of parameters and local variables.

• After completing a particular recursive call, control goes back to the
calling environment, which is the previous call. The current (recursive)
call must execute completely before control goes back to the previous
call. The execution in the previous call begins from the point imme-
diately following the recursive call.

14. A function is called directly recursive if it calls itself.

15. A function that calls another function and eventually results in the original
function call is said to be indirectly recursive.

16. A recursive function in which the last statement executed is the recursive
call is called a tail recursive function.

Sample Run: In this sample run, the user input is shaded.

Enter a number in decimal: 57

Decimal 57 = 111001 binary

982 | Chapter 16: Recursion

1
6

17. To design a recursive function, you must do the following:

a. Understand the problem requirements.

b. Determine the limiting conditions. For example, for a list, the limiting
condition is the number of elements in the list.

c. Identify the base cases and provide a direct solution to each base case.

d. Identify the general cases and provide a solution to each general case in
terms of smaller versions of itself.

EXERCISES

1. Mark the following statements as true or false.

a. Every recursive definition must have one or more base cases.

b. Every recursive function must have one or more base cases.

c. The general case stops the recursion.

d. In the general case, the solution to the problem is obtained directly.

e. A recursive function always returns a value.

2. What is a base case?

3. What is a recursive case?

4. What is direct recursion?

5. What is indirect recursion?

6. What is tail recursion?

7. Consider the following recursive function:

int mystery(int number) //Line 1
{

if (number == 0) //Line 2
return number; //Line 3

else //Line 4
return(number + mystery(number – 1)); //Line 5

}

a. Identify the base case.

b. Identify the general case.

c. What valid values can be passed as parameters to the function mystery?

d. If mystery(0) is a valid call, what is its value? If not, explain why.

e. If mystery(5) is a valid call, what is its value? If not, explain why.

f. If mystery(-3) is a valid call, what is its value? If not, explain why.

8. Consider the following recursive function:

void funcRec(int u, char v) //Line 1
{

if (u == 0) //Line 2
cout << v; //Line 3

Exercises | 983

else if (u == 1) //Line 4
cout << static_cast<char>

(static_cast<int>(v) + 1); //Line 5
else //Line 6

funcRec(u - 1, v); //Line 7
}

Answer the following questions:

a. Identify the base case.

b. Identify the general case.

c. What is the output of the following statement?

funcRec(5, 'A');

9. Consider the following recursive function:

void recFun(int x)
{

if (x > 10)
{

recFun(x / 10);
cout << x % 10 << endl;

}
else

cout << x << endl;
}

What is the output of the following statements?

a. recFun(258); b. recFun(7); c. recFun(36); d. recFun(-85);

10. Consider the following recursive function:

void recFun(int u)
{

if (u == 1)
cout << "Stop! ";

else
{

cout << "Go ";
recFun(u - 1);;

}
}

What is the output, if any, of the following statements?

a. recFun(7); b. recFun(3); c. recFun(-6);

11. Consider the following recursive function:

void exercise(int x)
{

if (x > 0 && x < 10)

984 | Chapter 16: Recursion

{
cout << x << " ";
exercise(x + 1);

}
}

What is the output of the following statements?

a. exercise(0); b. exercise(5); c. exercise(10); d. exercise(-5);

12. Consider the following function:

int test(int x, int y)
{

if (x == y)
return x;

else if (x > y)
return (x + y);

else
return test(x + 1, y - 1);

}

What is the output of the following statements?

a. cout << test(5, 10) << endl;

b. cout << test(3, 9) << endl;

13. Consider the following function:

int func(int x)
{

if (x == 0)
return 2;

else if (x == 1)
return 3;

else
return (func(x - 1) + func(x - 2));

}

What is the output of the following statements?

a. cout << func(0) << endl;

b. cout << func(1) << endl;

c. cout << func(2) << endl;

d. cout << func(5) << endl;

14. Suppose that intArray is an array of integers, and length specifies the
number of elements in intArray. Also, suppose that low and high are two
integers such that 0 <= low < length, 0 <= high < length, and low < high.
That is, low and high are two indices in intArray. Write a recursive
definition that reverses the elements in intArray between low and high.

15. Write a recursive algorithm to multiply two positive integers m and n using
repeated addition. Specify the base case and the recursive case.

1
6

Exercises | 985

16. Consider the following problem: How many ways can a committee of four
people be selected from a group of 10 people? There are many other similar
problems in which you are asked to find the number of ways to select a set
of items from a given set of items. The general problem can be stated as
follows: Find the number of ways r different things can be chosen from a set
of n items, in which r and n are nonnegative integers and r � n. Suppose
C(n, r) denotes the number of ways r different things can be chosen from a
set of n items. Then, C(n, r) is given by the following formula:

Cðn;rÞ ¼ n!
r!ðn� rÞ!

in which the exclamation point denotes the factorial function. Moreover,
C(n, 0) = C(n, n) = 1. It is also known that C(n, r) = C(n – 1, r – 1) +
C(n – 1, r).

a. Write a recursive algorithm to determine C(n, r). Identify the base
case(s) and the general case(s).

b. Using your recursive algorithm, determine C(5, 3) and C(9, 4).

PROGRAMMING EXERCISES

1. Write a recursive function that takes as a parameter a nonnegative integer
and generates the following pattern of stars. If the nonnegative integer is 4,
then the pattern generated is:

**
*
*
**

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the above pattern.

2. Write a recursive function to generate a pattern of stars, such as the following:

*
**

**
*

986 | Chapter 16: Recursion

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the above pattern.

3. Write a recursive function to generate the following pattern of stars:

*
* *

* * *
* * * *
* * *
* *
*

Also, write a program that prompts the user to enter the number of lines in
the pattern and uses the recursive function to generate the pattern. For
example, specifying 4 as the number of lines generates the above pattern.

4. Write a recursive function, vowels, that returns the number of vowels in a
string. Also, write a program to test your function.

5. Write a recursive function named sumSquares that returns the sum of the
squares of the numbers from 0 to num, in which num is a nonnegative int
variable. Do not use global variables; use the appropriate parameters. Also
write a program to test your function.

6. Write a recursive function that finds and returns the sum of the elements of
an int array. Also, write a program to test your function.

7. A palindrome is a string that reads the same both forward and backward. For
example, the string "madam" is a palindrome. Write a program that uses a
recursive function to check whether a string is a palindrome. Your program
must contain a value-returning recursive function that returns true if the
string is a palindrome and false otherwise. Do not use any global variables;
use the appropriate parameters.

8. Write a program that uses a recursive function to print a string backward. Do
not use any global variables; use the appropriate parameters.

9. Write a recursive function, reverseDigits, that takes an integer as a
parameter and returns the number with the digits reversed. Also, write a
program to test your function.

10. Write a recursive function, power, that takes as parameters two integers x
and y such that x is nonzero and returns xy. You can use the following
recursive definition to calculate xy. If y � 0:

powerðx; yÞ ¼
1 if y ¼ 0
x if y ¼ 1
x� powerðx; y� 1Þ if y > 1:

8
<

:

1
6

Programming Exercises | 987

If y < 0:

powerðx; yÞ ¼ 1
powerðx;�yÞ :

Also, write a program to test your function.

11. (Greatest Common Divisor) Given two integers x and y, the following
recursive definition determines the greatest common divisor of x and y,
written gcd(x,y).

gcdðx; yÞ ¼ x if y ¼ 0
gcdðy; x%yÞ if y 6¼ 0

�

Note: In this definition, % is the mod operator.

Write a recursive function, gcd, that takes as parameters two integers and
returns the greatest common divisor of the numbers. Also, write a program
to test your function.

12. (Ackermann’s Function) The Ackermann’s function is defined as follows:

Aðm; nÞ ¼
nþ 1; if m ¼ 0
Aðm� 1; 1Þ; if n ¼ 0
Aðm� 1;Aðm; n� 1ÞÞ; otherwise;

8
<

:

in which m and n are nonnegative integers. Write a recursive function to
implement Ackermann’s function. Also write a program to test your func-
tion. What happens when you call the function with m ¼ 4 and n ¼ 3?

13. Write a recursive function to implement the recursive algorithm of Exercise
12 (reversing the elements of an array between two indices). Also, write a
program to test your function.

14. Write a recursive function to implement the recursive algorithm of Exercise
15 (multiplying two positive integers using repeated addition). Also, write a
program to test your function.

15. Write a recursive function to implement the recursive algorithm of Exercise
16 (determining the number of ways to select a set of things from a given set
of things). Also, write a program to test your function.

16. (Recursive Sequential Search) The sequential search algorithm given in
Chapter 9 is nonrecursive. Write and implement a recursive version of the
sequential search algorithm.

17. In the Programming Example, Converting a Number from Decimal to Binary,
given in this chapter, you learned how to convert a decimal number into the
equivalent binary number. Two more number systems, octal (base 8) and
hexadecimal (base 16), are of interest to computer scientists. In fact, in C++,
you can instruct the computer to store a number in octal or hexadecimal.

988 | Chapter 16: Recursion

1
6

The digits in the octal number system are 0, 1, 2, 3, 4, 5, 6, and 7. The
digits in the hexadecimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, and F. So A in hexadecimal is 10 in decimal, B in hexadecimal is
11 in decimal, and so on.

The algorithm to convert a positive decimal number into an equivalent
number in octal (or hexadecimal) is the same as discussed for binary
numbers. Here, we divide the decimal number by 8 (for octal) and by 16
(for hexadecimal). Suppose ab represents the number a to the base b. For
example, 7510 means 75 to the base 10 (that is decimal), and 8316 means 83
to the base 16 (that is, hexadecimal). Then:

75310 = 13618

75310 = 2F116

The method of converting a decimal number to base 2, 8, or 16 can be
extended to any arbitrary base. Suppose you want to convert a decimal
number n into an equivalent number in base b, in which b is between 2 and
36. You then divide the decimal number n by b as in the algorithm for
converting decimal to binary.

Note that the digits in, say, base 20, are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C,
D, E, F, G, H, I, and J.

Write a program that uses a recursive function to convert a number in decimal
to a given base b, in which b is between 2 and 36. Your program should
prompt the user to enter the number in decimal and in the desired base.

Test your program on the following data:

9098 and base 20
692 and base 2
753 and base 16

18. The function sqrt from the header file cmath can be used to find the
square root of a nonnegative real number. Using Newton’s method, you
can also write an algorithm to find the square root of a nonnegative real
number within a given tolerance as follows: Suppose x is a nonnegative real
number, a is the approximate square root of x, and epsilon is the tolerance.
Start with a = x.

a. If |a2 � x| � epsilon, then a is the square root of x within the tolerance;
otherwise:

b. Replace a with (a2 + x) / (2a) and repeat Step a
in which |a2 � x| denotes the absolute value of a2 � x.

Write a recursive function to implement this algorithm to find the square root of
a nonnegative real number. Also, write a program to test your function.

Programming Exercises | 989

This page intentionally left blank

LINKED LISTS
IN THIS CHAPTER , YOU WILL :

. Learn about linked lists

. Become aware of the basic properties of linked lists

. Explore the insertion and deletion operations on linked lists

. Discover how to build and manipulate a linked list

. Learn how to construct a doubly linked list

17C H A P T E R

You have already seen how data is organized and processed sequentially using an array
called a sequential list. You have performed several operations on sequential lists, such as
sorting, inserting, deleting, and searching. You also found that if data is not sorted, then
searching for an item in the list can be very time consuming especially with large lists.
Once the data is sorted, you can use a binary search and improve the search algorithm.
However, in this case, insertion and deletion become time consuming especially with
large lists, because these operations require data movement. Also, because the array size
must be fixed during execution, new items can be added only if there is room. Thus,
there are limitations on when you organize data in an array.

This chapter helps you to overcome some of these problems. Chapter 13 showed how
memory (variables) can be dynamically allocated and deallocated using pointers. This
chapter uses pointers to organize and process data in lists called linked lists. Recall that
when data is stored in an array, memory for the components of the array is contiguous—
that is, the blocks are allocated one after the other. However, as we will see, the
components (called nodes) of a linked list need not be contiguous.

Linked Lists
A linked list is a collection of components called nodes. Every node (except the last node)
contains the address of the next node. Thus, every node in a linked list has two components:
one to store the relevant information (that is, data) and one to store the address, called the
link, of the next node in the list. The address of the first node in the list is stored in a separate
location called the head or first. Figure 17-1 is a pictorial representation of a node.

Linked list: A list of items, called nodes, in which the order of the nodes is determined
by the address, called the link, stored in each node.

The list in Figure 17-2 is an example of a linked list.

The arrow in each node indicates that the address of the node to which it is pointing is
stored in that node. The down arrow in the last node indicates that this link field is NULL.

data link

FIGURE 17-1 Structure of a node

head 45 65 34 76

FIGURE 17-2 Linked list

992 | Chapter 17: Linked Lists

For a better understanding of this notation, suppose that the first node is at memory location
1200, and the second node is at memory location 1575. We thus have Figure 17-3.

The value of the head is 1200, the data part of the first node is 45, and the link component
of the first node contains 1575, the address of the second node. If no confusion arises, then
we will use the arrow notation whenever we draw the figure of a linked list.

For simplicity and for the ease of understanding and clarity, Figures 17-3 through 17-6
use decimal integers as the values of memory addresses. However, in computer memory,
the memory addresses are in binary.

Because each node of a linked list has two components, we need to declare each node as a
class or struct. The data type of each node depends on the specific application—that
is, what kind of data is being processed. However, the link component of each node is a
pointer. The data type of this pointer variable is the node type itself. For the previous
linked list, the definition of the node is as follows. (Suppose that the data type is int.)

struct nodeType
{

int info;
nodeType *link;

};

The variable declaration is:

nodeType *head;

Linked Lists: Some Properties
To help you better understand the concept of a linked list and a node, some important
properties of linked lists are described next.

Consider the linked list in Figure 17-4.

1
7

head 1200 45 1575

15751200

65

FIGURE 17-3 Linked list and values of the links

head
2000 17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 17-4 Linked list with four nodes

Linked Lists | 993

This linked list has four nodes. The address of the first node is stored in the pointer head.
Each node has two components: info, to store the info, and link, to store the address of
the next node. For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800,
the third node is at location 1500, and the fourth node is at location 3600. Therefore,
the value of head is 2000, the value of the component link of the first node is 2800,
the value of the component link of the second node is 1500, and so on. Also, the
value 0 in the component link of the last node means that this value is NULL, which
we indicate by drawing a down arrow. The number at the top of each node is the
address of that node. The following table shows the values of head and some other
nodes in the list shown in Figure 17-4.

Suppose that current is a pointer of the same type as the pointer head. Then, the
statement:

current = head;

copies the value of head into current (see Figure 17-5).

Clearly, in Figure 17-5:

Value Explanation

head 2000

head->info 17 Because head is 2000 and the info of
the node at location 2000 is 17

head->link 2800

head->link->info 92 Because head->link is 2800 and theinfo of the node at location 2800 is 92

head
2000

current 2000

17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 17-5 Linked list after the statement current = head; executes

Value

current 2000
current->info 17

current->link 2800

current->link->info 92

994 | Chapter 17: Linked Lists

1
7

Now consider the statement:

current = current->link;

This statement copies the value of current->link, which is 2800, into current.
Therefore, after this statement executes, current points to the second node in the list.
(When working with linked lists, we typically use these types of statements to advance a
pointer to the next node in the list.) See Figure 17-6.

In Figure 17-6:

Finally, note that in Figure 17-6:

From now on, when working with linked lists, we will use only the arrow notation.

TRAVERSING A LINKED LIST

The basic operations of a linked list are as follows: search the list to determine whether a
particular item is in the list, insert an item in the list, and delete an item from the list.

Value
head->link->link 1500
head->link->link->info 63

head->link->link->link 3600

head->link->link->link->info 45
current->link->link 3600

current->link->link->info 45

current->link->link->link 0 (that is, NULL)

current->link->link->link->info Does not exist

Value
current 2800

current->info 92

current->link 1500
current->link->info 63

head
2000

current 2800

17

info link info link info link info link

2000 2800 1500 3600

2800 92 1500 63 45 03600

FIGURE 17-6 List after the statement current = current->link; executes

Linked Lists | 995

These operations require the list to be traversed. That is, given a pointer to the first node
of the list, we must step through the nodes of the list.

Suppose that the pointer head points to the first node in the list, and the link of the last
node is NULL. We cannot use the pointer head to traverse the list because if we use
head to traverse the list, we would lose the nodes of the list. This problem occurs because
the links are in only one direction. The pointer head contains the address of the first
node, the first node contains the address of the second node, the second node contains the
address of the third node, and so on. If we move head to the second node, the first node
is lost (unless we save a pointer to this node). If we keep advancing head to the next
node, we will lose all of the nodes of the list (unless we save a pointer to each node before
advancing head, which is impractical because it would require additional computer time
and memory space to maintain the list).

Therefore, we always want head to point to the first node. It now follows that we must
traverse the list using another pointer of the same type. Suppose that current is a pointer
of the same type as head. The following code traverses the list:

current = head;

while (current != NULL)
{

//Process the current node
current = current->link;

}

For example, suppose that head points to a linked list of numbers. The following code
outputs the data stored in each node:

current = head;

while (current != NULL)
{

cout << current->info << " ";
current = current->link;

}

ITEM INSERTION AND DELETION

This section discusses how to insert an item into, and delete an item from, a linked list.
Consider the following definition of a node. (For simplicity, we assume that the info
type is int. The next section, which discusses linked lists as an abstract data type (ADT)
using templates, uses the generic definition of a node.)

struct nodeType
{

int info;
nodeType *link;

};

We will use the following variable declaration:

nodeType *head, *p, *q, *newNode;

996 | Chapter 17: Linked Lists

INSERTION

Consider the linked list shown in Figure 17-7.

Suppose that p points to the node with info 65, and a new node with info 50 is to be
created and inserted after p. Consider the following statements:

newNode = new nodeType; //create newNode
newNode->info = 50; //store 50 in the new node
newNode->link = p->link;
p->link = newNode;

Table 17-1 shows the effect of these statements.

1
7

p

45 7665 34head

FIGURE 17-7 Linked list before item insertion

TABLE 17-1 Inserting a Node in a Linked List

Statement Effect

newNode = new nodeType;

newNode->info = 50;

newNode->link = p->link;

p->link = newNode;

7634

newNode
p

45 65head

50newNode
p

45 7665 34head

p
45 7665 34head

50newNode

p
45 7665 34head

50newNode

Linked Lists | 997

Note that the sequence of statements to insert the node is very important because to insert
newNode in the list, we use only one pointer, p, to adjust the links of the node of the
linked list. Suppose that we reverse the sequence of the statements and execute the
statements in the following order:

p->link = newNode;
newNode->link = p->link;

Figure 17-8 shows the resulting list after these statements execute.

From Figure 17-8, it is clear that newNode points back to itself and the remainder of the
list is lost.

Using two pointers, we can simplify the insertion code somewhat. Suppose q points to
the node with info 34 (see Figure 17-9).

The following statements insert newNode between p and q.

newNode->link = q;
p->link = newNode;

The order in which these statements execute does not matter. To illustrate this, suppose
that we execute the statements in the following order:

p->link = newNode;
newNode->link = q;

Table 17-2 shows the effect of these statements.

p

45 7665 34head

50newNode

FIGURE 17-8 List after the execution of the statement p->link = newNode; followed by the
execution of the statement newNode->link = p->link;

p

45 7665 34

50

head

newNode

q

FIGURE 17-9 List with pointers p and q

998 | Chapter 17: Linked Lists

Deletion
Consider the linked list shown in Figure 17-10.

Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list.

p->link = p->link->link;

Figure 17-11 shows the resulting list after the preceding statement executes.

From Figure 17-11, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node, and this memory is inaccessible; that
is, this node is dangling. To deallocate the memory, we need a pointer to this node. The

1
7

TABLE 17-2 Inserting a Node in a Linked List Using Two Pointers

Statement Effect

p->link = newNode;

newNode->link = q;

p

45 7665 34head

50newNode

q

p

45 7665 34head

50newNode
q

p

45 65 34 76head

FIGURE 17-10 Node to be deleted is with info 34

p

45 7665 34 head

FIGURE 17-11 List after the statement newNode->link = q; executes

Linked Lists | 999

following statements delete the node from the list and deallocate the memory occupied
by this node.

q = p->link;
p->link = q->link;
delete q;

Table 17-3 shows the effect of these statements.

Building a Linked List
Now that we know how to insert a node in a linked list, let us see how to build a linked
list. First, we consider a linked list in general. If the data we read is unsorted, the linked
list will be unsorted. Such a list can be built in two ways: forward and backward. In the
forward manner, a new node is always inserted at the end of the linked list. In the
backward manner, a new node is always inserted at the beginning of the list. We will
consider both cases.

BUILDING A LINKED LIST FORWARD

Suppose that the nodes are in the usual info-link form, and info is of type int. Let us
assume that we process the following data:

2 15 8 24 34

We need three pointers to build the list: one to point to the first node in the list, which
cannot be moved; one to point to the last node in the list; and one to create the new
node. Consider the following variable declaration:

nodeType *first, *last, *newNode;
int num;

TABLE 17-3 Deleting a Node from a Linked List

Statement Effect

q = p->link;

p->link = q->link;

delete q;

3465

p

45 76head

q

p

45 7665 34head

q

p

45 65 76head

1000 | Chapter 17: Linked Lists

Suppose that first points to the first node in the list. Initially, the list is empty, so both
first and last are NULL. Thus, we must have the statements:

first = NULL;
last = NULL;

to initialize first and last to NULL.

Next, consider the following statements:

1 cin >> num; //read and store a number in num
2 newNode = new nodeType; //allocate memory of type nodeType

//and store the address of the
//allocated memory in newNode

3 newNode->info = num; //copy the value of num into the
//info field of newNode

4 newNode->link = NULL; //initialize the link field of
//newNode to NULL

5 if (first == NULL) //if first is NULL, the list is empty;
//make first and last point to newNode

{
5a first = newNode;
5b last = newNode;

}
6 else //list is not empty

{
6a last->link = newNode; //insert newNode at the end of the list
6b last = newNode; //set last so that it points to the

//actual last node in the list
}

Let us now execute these statements. Initially, both first and last are NULL.
Therefore, we have the list as shown in Figure 17-12.

After statement 1 executes, num is 2. Statement 2 creates a node and stores the address of
that node in newNode. Statement 3 stores 2 in the info field of newNode, and statement
4 stores NULL in the link field of newNode (see Figure 17-13).

1
7

first

last

FIGURE 17-12 Empty list

newNode 2

FIGURE 17-13 newNode with info 2

Linked Lists | 1001

Because first is NULL, we execute statements 5a and 5b. Figure 17-14 shows the
resulting list.

We now repeat statements 1 through 6b. After statement 1 executes, num is 15. Statement
2 creates a node and stores the address of this node in newNode. Statement 3 stores 15 in
the info field of newNode, and statement 4 stores NULL in the link field of newNode (see
Figure 17-15).

Because first is not NULL, we execute statements 6a and 6b. Figure 17-16 shows the
resulting list.

We now repeat statements 1 through 6b three more times. Figure 17-17 shows the
resulting list.

newNode
2

last

first

FIGURE 17-14 List after inserting newNode in it

first 2

newNodelast

15

FIGURE 17-16 List after inserting newNode at the end

first
2

last

newNode 15

FIGURE 17-15 List and newNode with info 15

1002 | Chapter 17: Linked Lists

To build the linked list, we can put the previous statements in a loop and execute the
loop until certain conditions are met. We can, in fact, write a C++ function to build a
linked list.

Suppose that we read a list of integers ending with -999. The following function,
buildListForward, builds a linked list (in a forward manner) and returns the pointer
of the built list.

nodeType* buildListForward()
{

nodeType *first, *newNode, *last;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;
first = NULL;

while (num != -999)
{

newNode = new nodeType;
newNode->info = num;
newNode->link = NULL;

if (first == NULL)
{

first = newNode;
last = newNode;

}
else
{

last->link = newNode;
last = newNode;

}
cin >> num;

} //end while

return first;
} //end buildListForward

1
7

first 2 15 8 24 34

newNodelast

FIGURE 17-17 List after inserting 8, 24, and 34

Linked Lists | 1003

BUILDING A LINKED LIST BACKWARD

Now we consider the case of building a linked list backward. For the previously given
data—2, 15, 8, 24, and 34—the linked list is as shown in Figure 17-18.

Because the new node is always inserted at the beginning of the list, we do not need to
know the end of the list, so the pointer last is not needed. Also, after inserting the new
node at the beginning, the new node becomes the first node in the list. Thus, we need to
update the value of the pointer first to correctly point to the first node in the list. We
see, then, that we need only two pointers to build the linked list: one to point to the list
and one to create the new node. Because initially the list is empty, the pointer first
must be initialized to NULL. In pseudocode, the algorithm is:

1. Initialize first to NULL.

2. For each item in the list,

a. Create the new node, newNode.

b. Store the item in newNode.

c. Insert newNode before first.

d. Update the value of the pointer first.

The following C++ function builds the linked list backward and returns the pointer of
the built list.

nodeType* buildListBackward()
{

nodeType *first, *newNode;
int num;

cout << "Enter a list of integers ending with -999."
<< endl;

cin >> num;
first = NULL;

while (num != -999)
{

newNode = new nodeType; //create a node
newNode->info = num; //store the data in newNode
newNode->link = first; //put newNode at the beginning

first 34 24 8 15 2

newNode

FIGURE 17-18 List after building it backward

1004 | Chapter 17: Linked Lists

//of the list
first = newNode; //update the head pointer of

//the list, that is, first
cin >> num; //read the next number

}

return first;
} //end buildListBackward

Linked List as an ADT
The previous sections taught you the basic properties of linked lists and how to construct
and manipulate them. Because a linked list is a very important data structure, rather than
discuss specific lists such as a list of integers or a list of strings, this section discusses linked
lists as an abstract data type (ADT). Using templates, this section gives a generic definition
of linked lists, which is then used in the next section and later in this book. The
programming example at the end of this chapter also uses this generic definition of
linked lists.

The basic operations on linked lists are:

1. Initialize the list.

2. Determine whether the list is empty.

3. Print the list.

4. Find the length of the list.

5. Destroy the list.

6. Retrieve the info contained in the first node.

7. Retrieve the info contained in the last node.

8. Search the list for a given item.

9. Insert an item in the list.

10. Delete an item from the list.

11. Make a copy of the linked list.

In general, there are two types of linked lists—sorted lists, whose elements are arranged
according to some criteria, and unsorted lists, whose elements are in no particular order.
The algorithms to implement the operations search, insert, and remove slightly differ for
sorted and unsorted lists. Therefore, we will define the class linkedListType to
implement the basic operations on a linked list as an abstract class. Using the principle
of inheritance, we, in fact, will derive two classes—unorderedLinkedList and
orderedLinkedList—from the class linkedListType.

Objects of the class unorderedLinkedList would arrange list elements in no parti-
cular order, that is, these lists may not be sorted. On the other hand, objects of the class
orderedLinkedList would arrange elements according to some comparison criteria,
usually less than or equal to. That is, these lists will be in ascending order. Moreover, after

1
7

Linked List as an ADT | 1005

inserting an element into or removing an element from an ordered list, the resulting list
will be ordered.

If a linked list is unordered, we can insert a new item at either the end or the
beginning. Furthermore, you can build such a list in either a forward manner or a
backward manner. The function buildListForward inserts the new item at the end,
whereas the function buildListBackward inserts the new item at the beginning. To
accommodate both operations, we will write two functions: insertFirst to insert
the new item at the beginning of the list and insertLast to insert the new item at
the end of the list. Also, to make the algorithms more efficient, we will use two
pointers in the list: first, which points to the first node in the list, and last, which
points to the last node in the list.

Structure of Linked List Nodes
Recall that each node of a linked list must store the data as well as the address for the next
node in the list (except the last node of the list). Therefore, the node has two member
variables. To simplify operations such as insert and delete, we define the class to imple-
ment the node of a linked list as a struct. The definition of the struct nodeType is:

//Definition of the node

template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

The class to implement the node of a linked list is declared as a struct. Programming
Exercise 9, at the end of this chapter, asks you to redefine the class to implement the nodes

of a linked list so that the member variables of the class nodeType are private.

Member Variables of the class linkedListType
To maintain a linked list, we use two pointers: first and last. The pointer first points
to the first node in the list, and last points to the last node in the list. We also keep a count
of the number of nodes in the list. Therefore, the class linkedListType has three
member variables, as follows:

protected:
int count; //variable to store the number of

//elements in the list
nodeType<Type> *first; //pointer to the first node

//of the list
nodeType<Type> *last; //pointer to the last node

//of the list

1006 | Chapter 17: Linked Lists

Linked List Iterators
One of the basic operations performed on a list is to process each node of the list. This
requires the list to be traversed, starting at the first node. Moreover, a specific application
requires each node to be processed in a very specific way. A common technique to
accomplish this is to provide an iterator. So what is an iterator? An iterator is an object
that produces each element of a container, such as a linked list, one element at a time.
The two most common operations on iterators are ++ (the increment operator) and * (the
dereferenceing operator). The increment operator advances the iterator to the next node
in the list, and the dereferencing operator returns the info of the current node.

Note that an iterator is an object. So we need to define a class, which we will call
linkedListIterator, to create iterators to objects of the class linkedListType.
The iterator class would have one member variable pointing to (the current) node.

template <class Type>
class linkedListIterator
{
public:

linkedListIterator();
//Default constructor.
//Postcondition: current = NULL;

linkedListIterator(nodeType<Type> *ptr);
//Constructor with a parameter.
//Postcondition: current = ptr;

Type operator*();
//Function to overload the dereferencing operator *.
//Postcondition: Returns the info contained in the node.

linkedListIterator<Type> operator++();
//Overload the pre-increment operator.
//Postcondition: The iterator is advanced to the next
// node.

bool operator==(const linkedListIterator<Type>& right) const;
//Overload the equality operator.
//Postcondition: Returns true if this iterator is equal to
// the iterator specified by right,
// otherwise it returns false.

bool operator!=(const linkedListIterator<Type>& right) const;
//Overload the not equal to operator.
//Postcondition: Returns true if this iterator is not equal
// to the iterator specified by right,
// otherwise it returns false.

private:
nodeType<Type> *current; //pointer to point to the current

//node in the linked list
};

1
7

Linked List as an ADT | 1007

Figure 17-19 shows the UML class diagram of the class linkedListIterator.

The definitions of the functions of the class linkedListIterator are:

template <class Type>
linkedListIterator<Type>::linkedListIterator()
{

current = NULL;
}

template <class Type>
linkedListIterator<Type>::

linkedListIterator(nodeType<Type> *ptr)
{

current = ptr;
}

template <class Type>
Type linkedListIterator<Type>::operator*()
{

return current->info;
}

template <class Type>
linkedListIterator<Type> linkedListIterator<Type>::operator++()
{

current = current->link;

return *this;
}

template <class Type>
bool linkedListIterator<Type>::operator==

(const linkedListIterator<Type>& right) const
{

return (current == right.current);
}

linkedListIterator<Type>

-*current: nodeType<Type>

+linkedListIterator()
+linkedListIterator(nodeType<Type>)
+operator*(): Type
+operator++(): linkedListIterator<Type>
+operator==(const linkedListIterator<Type>&) const: bool
+operator!=(const linkedListIterator<Type>&) const: bool

FIGURE 17-19 UML class diagram of the class linkedListIterator

1008 | Chapter 17: Linked Lists

1
7

template <class Type>
bool linkedListIterator<Type>::operator!=

(const linkedListIterator<Type>& right) const
{

return (current != right.current);
}

Now that we have defined the classes to implement the node of a linked list and an
iterator to a linked list, next we describe the class linkedListType to implement the
basic properties of a linked list.

The following abstract class defines the basic properties of a linked list as an ADT.

template <class Type>
class linkedListType
{
public:

const linkedListType<Type>& operator=
(const linkedListType<Type>&);

//Overload the assignment operator.

void initializeList();
//Initialize the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise it returns false.

void print() const;
//Function to output the data contained in each node.
//Postcondition: none

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

void destroyList();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL, last = NULL, count = 0;

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be
// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be
// empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

Linked List as an ADT | 1009

virtual bool search(const Type& searchItem) const = 0;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the
// list, otherwise the value false is
// returned.

virtual void insertFirst(const Type& newItem) = 0;
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list,
// last points to the last node in the list,
// and count is incremented by 1.

virtual void insertLast(const Type& newItem) = 0;
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem
// is inserted at the end of the list,
// last points to the last node in the list,
// and count is incremented by 1.

virtual void deleteNode(const Type& deleteItem) = 0;
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list.
// first points to the first node, last
// points to the last node of the updated
// list, and count is decremented by 1.

linkedListIterator<Type> begin();
//Function to return an iterator at the begining of the
//linked list.
//Postcondition: Returns an iterator such that current is
// set to first.

linkedListIterator<Type> end();
//Function to return an iterator one element past the
//last element of the linked list.
//Postcondition: Returns an iterator such that current is
// set to NULL.

linkedListType();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL, last = NULL, count = 0;

linkedListType(const linkedListType<Type>& otherList);
//copy constructor

�linkedListType();
//destructor
//Deletes all the nodes from the list.
//Postcondition: The list object is destroyed.

protected:
int count; //variable to store the number of

//elements in the list

1010 | Chapter 17: Linked Lists

nodeType<Type> *first; //pointer to the first node of the list
nodeType<Type> *last; //pointer to the last node of the list

private:
void copyList(const linkedListType<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and
// assigned to this list.

};

Figure 17-20 shows the UML class diagram of the class linkedListType.

Note that typically, in the UML diagram, the name of an abstract class and abstract
function is shown in italics.

The instance variables first and last, as defined earlier, of the class
linkedListType are protected, not private, because as noted previously, we will
derive the classes unorderedLinkedList and orderedLinkedList from the
class linkedListType. Because each of the classes unorderedLinkedList

1
7

linkedListType<Type>

#count: int
#*first: nodeType<Type>
#*last: nodeType<Type>

+operator=(const linkedListType<Type>&):
const linkedListType<Type>&

+initializeList(): void
+isEmptyList() const: bool
+print() const: void
+length() const: int
+destroyList(): void
+front() const: Type
+back() const: Type
+search(const Type&) const = 0: bool
+insertFirst(const Type&) = 0: void
+insertLast(const Type&) = 0: void
+deleteNode(const Type&) = 0: void
+begin(): linkedListIterator<Type>
+end(): linkedListIterator<Type>
+linkedListType()
+linkedListType(const linkedListType<Type>&)
+~linkedListType()
-copyList(const linkedListType<Type>&): void

FIGURE 17-20 UML class diagram of the class linkedListType

Linked List as an ADT | 1011

and orderedLinkedList will provide separate definitions of the functions search,
insertFirst, insertLast, and deleteNode and because these functions would access
the instance variable, to provide direct access to the instance variables, the instance variables
are declared as protected.

The definition of the class linkedListType includes a member function to overload
the assignment operator. For classes that include pointer data members, the assignment
operator must be explicitly overloaded (see Chapters 13 and 14). For the same reason, the
definition of the class also includes a copy constructor.

Notice that the definition of the class linkedListType contains the member function
copyList, which is declared as a private member. This is due to the fact that this
function is used only to implement the copy constructor and overload the assignment
operator.

Next, we write the definitions of the nonabstract functions of the class LinkedListClass.

The list is empty if first is NULL. Therefore, the definition of the function isEmptyList
to implement this operation is as follows:

template <class Type>
bool linkedListType<Type>::isEmptyList() const
{

return (first == NULL);
}

DEFAULT CONSTRUCTOR

The default constructor, linkedListType, is quite straightforward. It simply initializes
the list to an empty state. Recall that when an object of the linkedListType type is
declared and no value is passed, the default constructor is executed automatically.

template <class Type>
linkedListType<Type>::linkedListType() //default constructor
{

first = NULL;
last = NULL;
count = 0;

}

DESTROY THE LIST

The function destroyList deallocates the memory occupied by each node. We traverse
the list starting from the first node and deallocate the memory by calling the operator
delete. We need a temporary pointer to deallocate the memory. Once the entire list is
destroyed, we must set the pointers first and last to NULL and count to 0.

template <class Type>
void linkedListType<Type>::destroyList()
{

nodeType<Type> *temp; //pointer to deallocate the memory
//occupied by the node

1012 | Chapter 17: Linked Lists

1
7

while (first != NULL) //while there are nodes in the list
{

temp = first; //set temp to the current node
first = first->link; //advance first to the next node
delete temp; //deallocate the memory occupied by temp

}

last = NULL; //initialize last to NULL; first has already
//been set to NULL by the while loop

count = 0;
}

INITIALIZE THE LIST

The function initializeList initializes the list to an empty state. Note that the
default constructor or the copy constructor has already initialized the list when the list
object was declared. This operation, in fact, reinitializes the list to an empty state, so it
must delete the nodes (if any) from the list. This task can be accomplished by using the
destroyList operation, which also resets the pointers first and last to NULL and
sets count to 0.

template <class Type>
void linkedListType<Type>::initializeList()
{

destroyList(); //if the list has any nodes, delete them
}

Print the List
The member function print prints the data contained in each node. To do so, we must
traverse the list, starting at the first node. Because the pointer first always points to the
first node in the list, we need another pointer to traverse the list. (If we use first to
traverse the list, the entire list will be lost.)

template <class Type>
void linkedListType<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current so that it points to
//the first node

while (current != NULL) //while more data to print
{

cout << current->info << " ";
current = current->link;

}
}//end print

Length of a List
The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable:

Linked List as an ADT | 1013

template <class Type>
int linkedListType<Type>::length() const
{

return count;
}

Retrieve the Data of the First Node
The function front returns the info contained in the first node, and its definition is
straightforward:

template <class Type>
Type linkedListType<Type>::front() const
{

assert(first != NULL);

return first->info; //return the info of the first node
}//end front

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function, check to see whether the list is nonempty.

Retrieve the Data of the Last Node
The function back returns the info contained in the last node, and its definition is
straightforward:

template <class Type>
Type linkedListType<Type>::back() const
{

assert(last != NULL);

return last->info; //return the info of the last node
}//end back

Notice that if the list is empty, the assert statement terminates the program. Therefore,
before calling this function, check to see whether the list is nonempty.

Begin and End
The function begin returns an iterator to the first node in the linked list, and the
function end returns an iterator to one past the last node in the linked list. Their
definitions are:

template <class Type>
linkedListIterator<Type> linkedListType<Type>::begin()
{

linkedListIterator<Type> temp(first);

return temp;
}

1014 | Chapter 17: Linked Lists

1
7

template <class Type>
linkedListIterator<Type> linkedListType<Type>::end()
{

linkedListIterator<Type> temp(NULL);

return temp;
}

Copy the List
The function copyList makes an identical copy of a linked list. Therefore, we traverse
the list to be copied, starting at the first node. Corresponding to each node in the original
list, we:

a. Create a node, and call it newNode.

b. Copy the info of the node (in the original list) into newNode.

c. Insert newNode at the end of the list being created.

The definition of the function copyList is:

template <class Type>
void linkedListType<Type>::copyList

(const linkedListType<Type>& otherList)
{

nodeType<Type> *newNode; //pointer to create a node
nodeType<Type> *current; //pointer to traverse the list

if (first != NULL) //if the list is nonempty, make it empty
destroyList();

if (otherList.first == NULL) //otherList is empty
{

first = NULL;
last = NULL;
count = 0;

}
else
{

current = otherList.first; //current points to the
//list to be copied

count = otherList.count;

//copy the first node
first = new nodeType<Type>; //create the node
first->info = current->info; //copy the info
first->link = NULL; //set the link field of

//the node to NULL
last = first; //make last point to the

//first node
current = current->link; //make current point to

//the next node

Linked List as an ADT | 1015

//copy the remaining list
while (current != NULL)
{

newNode = new nodeType<Type>; //create a node
newNode->info = current->info; //copy the info
newNode->link = NULL; //set the link of

//newNode to NULL
last->link = newNode; //attach newNode after last
last = newNode; //make last point to

//the actual last node
current = current->link; //make current point

//to the next node
}//end while

}//end else
}//end copyList

Destructor
The destructor deallocates the memory occupied by the nodes of a list when the class object
goes out of scope. Because memory is allocated dynamically, resetting the pointers first and
last does not deallocate the memory occupied by the nodes in the list. We must traverse the
list, starting at the first node, and delete each node in the list. The list can be destroyed by
calling the function destroyList. Therefore, the definition of the destructor is:

template <class Type>
linkedListType<Type>::~linkedListType() //destructor
{

destroyList();
}

Copy Constructor
Because the class linkedListType contains pointer data members, the definition of
this class contains the copy constructor. Recall that if a formal parameter is a value
parameter, the copy constructor provides the formal parameter with its own copy of the
data. The copy constructor also executes when an object is declared and initialized using
another object. (For more information, see Chapter 13.)

The copy constructor makes an identical copy of the linked list. This can be done by
calling the function copyList. Because the function copyList checks whether the
original is empty by checking the value of first, we must first initialize the pointer
first to NULL before calling the function copyList.

The definition of the copy constructor is:

template <class Type>
linkedListType<Type>::linkedListType

(const linkedListType<Type>& otherList)
{

first = NULL;
copyList(otherList);

}//end copy constructor

1016 | Chapter 17: Linked Lists

Overloading the Assignment Operator
The definition of the function to overload the assignment operator for the class
linkedListType is similar to the definition of the copy constructor. We give its
definition for the sake of completeness.

//overload the assignment operator
template <class Type>
const linkedListType<Type>& linkedListType<Type>::operator=

(const linkedListType<Type>& otherList)
{

if (this != &otherList) //avoid self-copy
{

copyList(otherList);
}//end else

return *this;
}

Unordered Linked Lists
As described in the preceding section, we derive the class unorderedLinkedList
from the abstract class linkedListType and implement the operations search,
insertFirst, insertLast, and deleteNode.

The following class defines an unordered linked list as an ADT.

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the
// list, otherwise the value false is
// returned.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem
// is inserted at the end of the list,
// last points to the last node in the
// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing

1
7

Unordered Linked Lists | 1017

// deleteItem is deleted from the list.
// first points to the first node, last
// points to the last node of the updated
// list, and count is decremented by 1.

};

Figure 17-21 shows a UML class diagram of the class unorderedLinkedList and the
inheritance hierarchy.

Next, we give the definitions of the member functions of the class
unorderedLinkedList.

Search the List
The member function search searches the list for a given item. If the item is found, it
returns true; otherwise, it returns false. Because a linked list is not a random-access
data structure, we must sequentially search the list, starting from the first node.

This function has the following steps:

1. Compare the search item with the current node in the list. If the info of
the current node is the same as the search item, stop the search; other-
wise, make the next node the current node.

2. Repeat Step 1 until either the item is found or no more data is left in the
list to compare with the search item.

template <class Type>
bool unorderedLinkedList<Type>::

search(const Type& searchItem) const
{

nodeType<Type> *current; //pointer to traverse the list
bool found = false;
current = first; //set current to point to the first

//node in the list

unorderedLinkedList<Type>

+search(const Type&) const: bool
+insertFirst(const Type&): void
+insertLast(const Type&): void
+deleteNode(const Type&): void

linkedListType

unorderedLinkedList

FIGURE 17-21 UML class diagram of the class unorderedLinkedList and inheritance
hierarchy

1018 | Chapter 17: Linked Lists

while (current != NULL && !found) //search the list
if (current->info == searchItem) //searchItem is found

found = true;
else

current = current->link; //make current point to
//the next node

return found;
}//end search

The function search can also be written as:

template <class Type>
bool unorderedLinkedList<Type>::search(const Type& searchItem)

const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first
//node in the list

while (current != NULL) //search the list
if (current->info == searchItem) //searchItem is found

return true;
else

current = current->link; //make current point to
//the next node

return false; //searchItem is not in the list, return false
}//end search

Insert the First Node
The function insertFirst inserts the new item at the beginning of the list—that is,
before the node pointed to by first. The steps needed to implement this function are as
follows:

1. Create a new node.

2. Store the new item in the new node.

3. Insert the node before first.

4. Increment count by 1.

template <class Type>
void unorderedLinkedList<Type>::insertFirst(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node
newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node

1
7

Unordered Linked Lists | 1019

newNode->link = first; //insert newNode before first
first = newNode; //make first point to the

//actual first node
count++; //increment count

if (last == NULL) //if the list was empty, newNode is also
//the last node in the list

last = newNode;
}//end insertFirst

Insert the Last Node
The definition of the member function insertLast is similar to the definition of the
member function insertFirst. Here, we insert the new node after last. Essentially,
the function insertLast is:

template <class Type>
void unorderedLinkedList<Type>::insertLast(const Type& newItem)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the new node
newNode->info = newItem; //store the new item in the node
newNode->link = NULL; //set the link field of newNode

//to NULL

if (first == NULL) //if the list is empty, newNode is
//both the first and last node

{
first = newNode;
last = newNode;
count++; //increment count

}
else //the list is not empty, insert newNode after last
{

last->link = newNode; //insert newNode after last
last = newNode; //make last point to the actual

//last node in the list
count++; //increment count

}
}//end insertLast

DELETE A NODE

Next, we discuss the implementation of the member function deleteNode,
which deletes a node from the list with a given info. We need to consider several
cases:

Case 1: The list is empty.

Case 2: The first node is the node with the given info. In this case, we need to adjust
the pointer first.

1020 | Chapter 17: Linked Lists

Case 3: The node with the given info is somewhere in the list. If the node to be
deleted is the last node, then we must adjust the pointer last.

Case 4: The list does not contain the node with the given info.

If list is empty, we can simply print a message indicating that the list is empty. If list is
not empty, we search the list for the node with the given info and, if such a node is
found, we delete this node. After deleting the node, count is decremented by 1. In
pseudocode, the algorithm is:

if list is empty
Output(cannot delete from an empty list);

else
{

if the first node is the node with the given info
adjust the head pointer, that is, first, and deallocate
the memory;

else
{

search the list for the node with the given info
if such a node is found, delete it and adjust the
values of last (if necessary) and count.

}
}

Case 1: The list is empty.

If the list is empty, output an error message as shown in the pseudocode.

Case 2: The list is not empty. The node to be deleted is the first node.

This case has two scenarios: list has only one node, and list has more than one node.
Consider the list with one node, as shown in Figure 17-22.

Suppose that we want to delete 37. After deletion, the list becomes empty. Therefore,
after deletion, both first and last are set to NULL, and count is set to 0.

Now consider the list of more than one node, as shown in Figure 17-23.

1
7

first

list

37
last

1count

FIGURE 17-22 list with one node

Unordered Linked Lists | 1021

Suppose that the node to be deleted is 28. After deleting this node, the second node
becomes the first node. Therefore, after deleting this node, the value of the pointer first
changes; that is, after deletion, first contains the address of the node with info 17, and
count is decremented by 1. Figure 17-24 shows the list after deleting 28.

Case 3: The node to be deleted is not the first node but is somewhere in the list.

This case has two subcases: (a) the node to be deleted is not the last node, and (b) the
node to be deleted is the last node. Let us illustrate both cases.

Case 3a: The node to be deleted is not the last node.

Consider the list shown in Figure 17-25.

Suppose that the node to be deleted is 37. After deleting this node, the resulting list is as
shown in Figure 17-26. (Notice that the deletion of 37 does not require us to change the

28 17 37 24 54first

list

last

5count

FIGURE 17-23 list with more than one node

17 37 24 54first

list

last

4count

FIGURE 17-24 list after deleting node with info 28

28 17 37 24 54first

list

last

5count

FIGURE 17-25 list before deleting 37

1022 | Chapter 17: Linked Lists

1
7

values of first and last. The link field of the previous node—that is, 17—changes.
After deletion, the node with info 17 contains the address of the node with 24.)

Case 3b: The node to be deleted is the last node.

Consider the list shown in Figure 17-27. Suppose that the node to be deleted is 54.

After deleting 54, the node with info 24 becomes the last node. Therefore, the
deletion of 54 requires us to change the value of the pointer last. After deleting 54,
last contains the address of the node with info 24. Also, count is decremented
by 1. Figure 17-28 shows the resulting list.

Case 4: The node to be deleted is not in the list. In this case, the list requires no
adjustment. We simply output an error message, indicating that the item to be
deleted is not in the list.

28 17 37 24first

list

last

4count

FIGURE 17-28 list after deleting 54

28 17 37 24 54first

list

last

5count

FIGURE 17-27 list before deleting 54

28 17 24 54first

list

last

4count

FIGURE 17-26 list after deleting 37

Unordered Linked Lists | 1023

From Cases 2, 3, and 4, it follows that the deletion of a node requires us to traverse
the list. Because a linked list is not a random-access data structure, we must sequen-
tially search the list. We handle Case 1 separately, because it does not require us to
traverse the list. We sequentially search the list, starting at the second node. If the node
to be deleted is in the middle of the list, we need to adjust the link field of the node just
before the node to be deleted. Thus, we need a pointer to the previous node. When we
search the list for the given info, we use two pointers: one to check the info of the
current node and one to keep track of the node just before the current node. If the node to
be deleted is the last node, we must adjust the pointer last.

The definition of the function deleteNode is:

template <class Type>
void unorderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

if (first == NULL) //Case 1; the list is empty
cout << "Cannot delete from an empty list."

<< endl;
else
{

if (first->info == deleteItem) //Case 2
{

current = first;
first = first->link;
count--;

if (first == NULL) //the list has only one node
last = NULL;

delete current;
}
else //search the list for the node with the given info
{

found = false;
trailCurrent = first; //set trailCurrent to point

//to the first node
current = first->link; //set current to point to

//the second node

while (current != NULL && !found)
{

if (current->info != deleteItem)
{

trailCurrent = current;
current = current-> link;

}
else

found = true;
}//end while

1024 | Chapter 17: Linked Lists

1
7

if (found) //Case 3; if found, delete the node
{

trailCurrent->link = current->link;
count--;

if (last == current) //node to be deleted
//was the last node

last = trailCurrent; //update the value
//of last

delete current; //delete the node from the list
}
else

cout << "The item to be deleted is not in "
<< "the list." << endl;

}//end else
}//end else

}//end deleteNode

Header File of the Unordered Linked List
For the sake of completeness, we will show how to create the header file that defines the
class unorderedListType and the operations on such lists. (We assume that the
definition of the class linkedListType and the definitions of the functions to imple-
ment the operations are in the header file linkedlist.h.)

#ifndef H_UnorderedLinkedList
#define H_UnorderedLinkedList

#include "linkedList.h"

using namespace std;

template <class Type>
class unorderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the
// list, otherwise the value false is
// returned.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the beginning of the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem
// is inserted at the end of the list,
// last points to the last node in the
// list, and count is incremented by 1.

Unordered Linked Lists | 1025

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list.
// first points to the first node, last
// points to the last node of the updated
// list, and count is decremented by 1.

};

//Place the definitions of the functions search,
//insertFirst, insertLast, and deleteNode here.
.
.
.
#endif

The Web site accompanying this book contains several programs illustrating how to use

the class unorderedLinkedList.

Ordered Linked Lists
The preceding section described the operations on an unordered linked list. This section deals
with ordered linked lists. As noted earlier, we derive the class orderedLinkedList
from the class linkedListType and provide the definitions of the abstract functions
insertFirst, insertLast, search, and deleteNode to take advantage of the fact
that the elements of an ordered linked list are arranged using some ordering criteria. For
simplicity, we assume that elements of an ordered linked list are arranged in ascending order.

Because the elements of an ordered linked list are in order, we include the function
insert to insert an element in an ordered list at the proper place.

The following class defines an ordered linked list as an ADT:

template <class Type>
class orderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert(const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem
// is inserted at the proper place in the
// list, and count is incremented by 1.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is

1026 | Chapter 17: Linked Lists

// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list;
// first points to the first node of the
// new list, and count is decremented by 1.
// If deleteItem is not in the list, an
// appropriate message is printed.

};

Figure 17-29 shows a UML class diagram of the class orderedLinkedList and the
inheritance hierarchy.

Next, we give the definitions of the member functions of the class orderedLinkedList.

Search the List
First, we discuss the search operation. The algorithm to implement the search opera-
tion is similar to the search algorithm for general lists discussed earlier. Here, because
the list is sorted, we can improve the search algorithm somewhat. As before, we start the
search at the first node in the list. We stop the search as soon as we find a node in
the list with info greater than or equal to the search item or when we have searched
the entire list.

1
7

+search(const Type&) const: bool
+insert(const Type&): void
+insertFirst(const Type&): void
+insertLast(const Type&): void
+deleteNode(const Type&): void orderedLinkedList

orderedLinkedList<Type>

linkedListType

FIGURE 17-29 UML class diagram of the classorderedLinkedList and the inheritance hierarchy

Ordered Linked Lists | 1027

The following steps describe this algorithm:

1. Compare the search item with the current node in the list. If the info of
the current node is greater than or equal to the search item, stop the
search; otherwise, make the next node the current node.

2. Repeat Step 1 until either an item in the list that is greater than or equal
to the search item is found or no more data is left in the list to compare
with the search item.

Note that the loop does not explicitly check whether the search item is equal to an item
in the list. Thus, after the loop executes, we must check whether the search item is equal
to the item in the list.

template <class Type>
bool orderedLinkedList<Type>::

search(const Type& searchItem) const
{

bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first; //start the search at the first node

while (current != NULL && !found)
if (current->info >= searchItem)

found = true;
else

current = current->link;

if (found)
found = (current->info == searchItem); //test for equality

return found;
}//end search

Insert a Node
To insert an item in an ordered linked list, we first find the place where the new item is
supposed to go, and then we insert the item in the list. To find the place for the new item,
as before, we search the list. Here, we use two pointers, current and trailCurrent, to
search the list. The pointer current points to the node whose info is being compared
with the item to be inserted, and trailCurrent points to the node just before current.
Because the list is in order, the search algorithm is the same as before. The following cases
arise:

Case 1: The list is initially empty. The node containing the new item is the only node
and thus the first node in the list.

Case 2: The new item is smaller than the smallest item in the list. The new item goes at
the beginning of the list. In this case, we need to adjust the list’s head pointer—
that is, first. Also, count is incremented by 1.

Case 3: The item is to be inserted somewhere in the list.

1028 | Chapter 17: Linked Lists

3a: The new item is larger than all of the items in the list. In this case, the new item
is inserted at the end of the list. Thus, the value of current is NULL, and the
new item is inserted after trailCurrent. Also, count is incremented by 1.

3b: The new item is to be inserted somewhere in the middle of the list. In this case,
the new item is inserted between trailCurrent and current. Also, count is
incremented by 1.

The following statements can accomplish both Cases 3a and 3b. Assume newNode points
to the new node.

trailCurrent->link = newNode;
newNode->link = current;

Let us next illustrate these cases.

Case 1: The list is empty.

Consider the list shown in Figure 17-30(a).

Suppose that we want to insert 27 in the list. To accomplish this task, we create a node,
copy 27 into the node, set the link of the node to NULL, and make first point to the node.
Figure 17-30(b) shows the resulting list. Notice that, after inserting 27, the values of both
first and count change.

Case 2: The list is not empty, and the item to be inserted is smaller than the smallest item
in the list. Consider the list shown in Figure 17-31.

1
7

first

 last

list

0count

first

 last

list

27

1count

(a) Empty list (b) After inserting 27

FIGURE 17-30 list

17 27 38 54first

list

last

4count

FIGURE 17-31 Nonempty list before inserting 10

Ordered Linked Lists | 1029

Suppose that 10 is to be inserted. After inserting 10 in the list, the node with info 10
becomes the first node of list. This requires us to change the value of first. Also,
count is incremented by 1. Figure 17-32 shows the resulting list.

Case 3: The list is not empty, and the item to be inserted is larger than the first item in
the list. As indicated previously, this case has two scenarios.

Case 3a: The item to be inserted is larger than the largest item in the list; that is, it goes at
the end of the list. Consider the list shown in Figure 17-33.

Suppose that we want to insert 65 in the list. After inserting 65, the resulting list is as
shown in Figure 17-34.

17 27 38 54 65first

list

last

5count

FIGURE 17-34 list after inserting 65

10 17 27 38 54first

list

last

5count

FIGURE 17-32 list after inserting 10

17 27 38 54first

list

last

4count

FIGURE 17-33 list before inserting 65

1030 | Chapter 17: Linked Lists

Case 3b: The item to be inserted goes somewhere in the middle of the list. Consider the
list shown in Figure 17-35.

Suppose that we want to insert 27 in this list. Clearly, 27 goes between 17 and 38, which
would require the link of the node with info 17 to be changed. After inserting 27, the
resulting list is as shown in Figure 17-36.

From Case 3, it follows that we must first traverse the list to find the place where the new
item is to be inserted. It also follows that we should traverse the list with two pointers—
say, current and trailCurrent. The pointer current is used to traverse the list and
compare the info of the node in the list with the item to be inserted. The pointer
trailCurrent points to the node just before current. For example, in Case 3b, when
the search stops, trailCurrent points to node 17 and current points to node 38. The
item is inserted after trailCurrent. In Case 3a, after searching the list to find the place
for 65, trailCurrent points to node 54 and current is NULL.

Essentially, the function insert is as follows:

template <class Type>
void orderedLinkedList<Type>::insert(const Type& newItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node

1
7

17 38 45 54first

list

last

4count

FIGURE 17-35 list before inserting 27

17 27 38 45 54first

list

last

5count

FIGURE 17-36 list after inserting 27

Ordered Linked Lists | 1031

bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = newItem; //store newItem in the node
newNode->link = NULL; //set the link field of the node

//to NULL

if (first == NULL) //Case 1
{

first = newNode;
last = newNode;
count++;

}
else
{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= newItem)

found = true;
else
{

trailCurrent = current;
current = current->link;

}

if (current == first) //Case 2
{

newNode->link = first;
first = newNode;
count++;

}
else //Case 3
{

trailCurrent->link = newNode;
newNode->link = current;

if (current == NULL)
last = newNode;

count++;
}

}//end else
}//end insert

Insert First and Insert Last
The function insertFirst inserts the new item at the beginning of the list. However,
because the resulting list must be sorted, the new item must be inserted at the proper
place. Similarly, the function insertLast must insert the new item at the proper place.

1032 | Chapter 17: Linked Lists

Therefore, we use the function insertNode to insert the new item at its proper place.
The definitions of these functions are:

template <class Type>
void orderedLinkedList<Type>::insertFirst(const Type& newItem)
{

insert(newItem);
}//end insertFirst

template <class Type>
void orderedLinkedList<Type>::insertLast(const Type& newItem)
{

insert(newItem);
}//end insertLast

Note that in reality, the functions insertFirst and insertLast do not apply to
ordered linked lists because the new item must be inserted at the proper place in the list.
However, you must provide its definition as these functions are declared as abstract in the
parent class.

Delete a Node
To delete a given item from an ordered linked list, first we search the list to see whether
the item to be deleted is in the list. The function to implement this operation is the same
as the delete operation on general linked lists. Here, because the list is sorted, we can
somewhat improve the algorithm for ordered linked lists.

As in the case of insertNode, we search the list with two pointers, current and
trailCurrent. Similar to the operation insertNode, several cases arise:

Case 1: The list is initially empty. We have an error. We cannot delete from an empty list.

Case 2: The item to be deleted is contained in the first node of the list. We must adjust
the head pointer of the list—that is, first.

Case 3: The item to be deleted is somewhere in the list. In this case, current points to
the node containing the item to be deleted, and trailCurrent points to the
node just before the node pointed to by current.

Case 4: The list is not empty, but the item to be deleted is not in the list.

After deleting a node, count is decremented by 1. The definition of the function
deleteNode is:

template <class Type>
void orderedLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
bool found;

1
7

Ordered Linked Lists | 1033

if (first == NULL) //Case 1
cout << "Cannot delete from an empty list." << endl;

else
{

current = first;
found = false;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)

found = true;
else
{

trailCurrent = current;
current = current->link;

}

if (current == NULL) //Case 4
cout << "The item to be deleted is not in the "

<< "list." << endl;
else

if (current->info == deleteItem) //the item to be
//deleted is in the list

{
if (first == current) //Case 2
{

first = first->link;

if (first == NULL)
last = NULL;

delete current;
}
else //Case 3
{

trailCurrent->link = current->link;

if (current == last)
last = trailCurrent;

delete current;
}
count--;

}
else //Case 4

cout << "The item to be deleted is not in the "
<< "list." << endl;

}
}//end deleteNode

Header File of the Ordered Linked List
For the sake of completeness, we will show how to create the header file that defines the
class orderedListType, as well as the operations on such lists. (We assume that the

1034 | Chapter 17: Linked Lists

1
7

definition of the class linkedListType and the definitions of the functions to imple-
ment the operations are in the header file linkedlist.h.)

#ifndef H_orderedListType
#define H_orderedListType

#include "linkedList.h"

using namespace std;

template <class Type>
class orderedLinkedList: public linkedListType<Type>
{
public:

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is in the list,
// otherwise the value false is returned.

void insert(const Type& newItem);
//Function to insert newItem in the list.
//Postcondition: first points to the new list, newItem
// is inserted at the proper place in the
// list, and count is incremented by 1.

void insertFirst(const Type& newItem);
//Function to insert newItem at the beginning of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void insertLast(const Type& newItem);
//Function to insert newItem at the end of the list.
//Postcondition: first points to the new list, newItem is
// inserted at the proper place in the list,
// last points to the last node in the
// list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing
// deleteItem is deleted from the list;
// first points to the first node of the
// new list, and count is decremented by 1.
// If deleteItem is not in the list, an
// appropriate message is printed.

};

//Place the definitions of the functions search, insert,
//insertFirst, insertLast, and deleteNode here.
.
.
.
#endif

Ordered Linked Lists | 1035

The following program tests various operations on an ordered linked list.

//Program to test the various operations on an ordered linked list

#include <iostream>
#include "orderedLinkedList.h"

using namespace std;

int main()
{

orderedLinkedList<int> list1, list2; //Line 1
int num; //Line 2

cout << "Line 3: Enter numbers ending "
<< "with -999." << endl; //Line 3

cin >> num; //Line 4
while (num != -999) //Line 5
{

list1.insert(num); //Line 6
cin >> num; //Line 7

}

cout << endl; //Line 8

cout << "Line 9: list1: "; //Line 9
list1.print(); //Line 10
cout << endl; //Line 11

list2 = list1; //test the assignment operator Line 12

cout << "Line 13: list2: "; //Line 13
list2.print(); //Line 14
cout << endl; //Line 15

cout << "Line 16: Enter the number to be "
<< "deleted: "; //Line 16

cin >> num; //Line 17
cout << endl; //Line 18

list2.deleteNode(num); //Line 19

cout << "Line 20: After deleting "
<< num << ", list2: " << endl; //Line 20

list2.print(); //Line 21
cout<<endl; //Line 22

return 0;
}

1036 | Chapter 17: Linked Lists

Sample Run: In this sample run, the user input is shaded.

Line 3: Enter numbers ending with -999.
23 65 34 72 12 82 36 55 29 -999

Line 9: list1: 12 23 29 34 36 55 65 72 82
Line 13: list2: 12 23 29 34 36 55 65 72 82
Line 16: Enter the number to be deleted: 34

Line 20: After deleting 34, list2:
12 23 29 36 55 65 72 82

The preceding output is self-explanatory. The details are left as an exercise for you.

Notice that the function insert does not check whether the item to be inserted is
already in the list, that is, it does not check for duplicates. Programming Exercise 8 at

the end of this chapter asks you to revise the definition of the function insert so

that before inserting the item, it checks whether it is already in the list. If the item to

be inserted is already in the list, the function outputs an appropriate error message. In

other words, duplicates are not allowed.

Print a Linked List in Reverse Order
(Recursion Revisited)
The nodes of an ordered list (as constructed previously) are in ascending order. Certain
applications, however, might require the data to be printed in descending order, which
means that we must print the list backward. We now discuss the function reversePrint.
Given a pointer to a list, this function prints the elements of the list in reverse order.

Consider the linked list shown in Figure 17-37.

For the list in Figure 17-37, the output should be in the following form:

20 15 10 5

Because the links are in only one direction, we cannot traverse the list backward starting
from the last node. Let us see how we can effectively use recursion to print the list in
reverse order.

1
7

first 5 10 15 20

FIGURE 17-37 Linked list

Print a Linked List in Reverse Order (Recursion Revisited) | 1037

Let us think in terms of recursion. We cannot print the info of the first node until we
have printed the remainder of the list (that is, the tail of the first node). Similarly, we
cannot print the info of the second node until we have printed the tail of the second
node, and so on. Every time we consider the tail of a node, we reduce the size of the list
by 1. Eventually, the size of the list will be reduced to zero, in which case the recursion
will stop. Let us first write the algorithm in pseudocode. (Suppose that current is a
pointer to a linked list.)

if (current != NULL)
{

reversePrint(current->link); //print the tail
cout << current->info << endl; //print the node

}

Here, we do not see the base case; it is hidden. The list is printed only if the pointer to
the list is not NULL. Also, in the body of the if statement, the recursive call is on the
tail of the list. Because eventually the tail of the list will be empty, the if statement in
the next call will fail, and the recursion will stop. Also, note that statements (for
example, printing the info of the node) appear after the recursive call; thus, when the
transfer comes back to the calling function, we must execute the remaining statements.
Recall that the function exits only after the last statement executes. (By the ‘‘last
statement,’’ we do not mean the physical last statement, but rather the logical last
statement.)

Let us write the previous function in C++ and then apply it to a list.

template <class Type>
void linkedListType<Type>::reversePrint

(nodeType<Type> *current) const
{

if (current != NULL)
{

reversePrint(current->link); //print the tail
cout << current->info << " "; //print the node

}
}

Consider the statement:

reversePrint(first);

in which first is a pointer of type nodeType<Type>.

Let us trace the execution of this statement, which is a function call, for the list shown in
Figure 17-37. Because the formal parameter is a value parameter, the value of the actual
parameter is passed to the formal parameter. See Figure 17-38.

1038 | Chapter 17: Linked Lists

printListReverse

Now that we have written the function reversePrint, we can write the definition of
the function printListReverse. Its definition is:

template <class Type>
void linkedListType<Type>::printListReverse() const
{

reversePrint(first);
cout << endl;

}

1
7

current->5

because(current != NULL)
 reversePrint(current->link)

reversePrint(first)

execute the statement
 cout << current->info;
 Print 20
 Now control goes back
 to the caller

reversePrint(current->link)

current->10

because(current != NULL)
 reversePrint(current->link)

reversePrint(current->link)

current->15

because(current != NULL)
 reversePrint(current->link)

reversePrint(current->link)

current->20

because(current != NULL)
 reversePrint(current->link)

reversePrint(current->link)
current is NULL

because (current is NULL)
 the if statement fails
 control goes back to the caller

execute the statement
 cout << current->info;
 Print 15
 Now control goes back
 to the caller

execute the statement
 cout << current->info;
 Print 10
 Now control goes back
 to the caller

execute the statement
 cout << current->info;
 Print 5
 Now control goes back
 to the caller

FIGURE 17-38 Execution of the statement reversePrint(first);

Print a Linked List in Reverse Order (Recursion Revisited) | 1039

Doubly Linked Lists
A doubly linked list is a linked list in which every node has a next pointer and a back
pointer. In other words, every node contains the address of the next node (except the last
node), and every node contains the address of the previous node (except the first node)
(see Figure 17-39).

A doubly linked list can be traversed in either direction. That is, we can traverse the list
starting at the first node or, if a pointer to the last node is given, we can traverse the list
starting at the last node.

As before, the typical operations on a doubly linked list are:

1. Initialize the list.

2. Destroy the list.

3. Determine whether the list is empty.

4. Search the list for a given item.

5. Retrieve the first element of the list.

6. Retrieve the last element of the list.

7. Insert an item in the list.

8. Delete an item from the list.

9. Find the length of the list.

10. Print the list.

11. Make a copy of the doubly linked list.

Next, we describe these operations for an ordered doubly linked list. The following class
defines a doubly linked list as an ADT.

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *next;
nodeType<Type> *back;

};

first

last

FIGURE 17-39 Doubly linked list

1040 | Chapter 17: Linked Lists

template <class Type>
class doublyLinkedList
{
public:

const doublyLinkedList<Type>& operator=
(const doublyLinkedList<Type> &);

//Overload the assignment operator.

void initializeList();
//Function to initialize the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

bool isEmptyList() const;
//Function to determine whether the list is empty.
//Postcondition: Returns true if the list is empty,
// otherwise returns false.

void destroy();
//Function to delete all the nodes from the list.
//Postcondition: first = NULL; last = NULL; count = 0;

void print() const;
//Function to output the info contained in each node.

void reversePrint() const;
//Function to output the info contained in each node
//in reverse order.

int length() const;
//Function to return the number of nodes in the list.
//Postcondition: The value of count is returned.

Type front() const;
//Function to return the first element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the first
// element of the list is returned.

Type back() const;
//Function to return the last element of the list.
//Precondition: The list must exist and must not be empty.
//Postcondition: If the list is empty, the program
// terminates; otherwise, the last
// element of the list is returned.

bool search(const Type& searchItem) const;
//Function to determine whether searchItem is in the list.
//Postcondition: Returns true if searchItem is found in
// the list, otherwise returns false.

1
7

Doubly Linked Lists | 1041

void insert(const Type& insertItem);
//Function to insert insertItem in the list.
//Precondition: If the list is nonempty, it must be in
// order.
//Postcondition: insertItem is inserted at the proper place
// in the list, first points to the first
// node, last points to the last node of the
// new list, and count is incremented by 1.

void deleteNode(const Type& deleteItem);
//Function to delete deleteItem from the list.
//Postcondition: If found, the node containing deleteItem
// is deleted from the list; first points
// to the first node of the new list, last
// points to the last node of the new list,
// and count is decremented by 1; otherwise
// an appropriate message is printed.

doublyLinkedList();
//default constructor
//Initializes the list to an empty state.
//Postcondition: first = NULL; last = NULL; count = 0;

doublyLinkedList(const doublyLinkedList<Type>& otherList);
//copy constructor

�doublyLinkedList();
//destructor
//Postcondition: The list object is destroyed.

protected:
int count;
nodeType<Type> *first; //pointer to the first node
nodeType<Type> *last; //pointer to the last node

private:
void copyList(const doublyLinkedList<Type>& otherList);

//Function to make a copy of otherList.
//Postcondition: A copy of otherList is created and
// assigned to this list.

};

We leave the UML class diagram of the class doublyLinkedList as an exercise for
you.

The functions to implement the operations of a doubly linked list are similar to the ones
discussed earlier. Here, because every node has two pointers, back and next, some of the
operations require the adjustment of two pointers in each node. For the insert and delete
operations, because we can traverse the list in either direction, we use only one pointer to
traverse the list. Let us call this pointer current. We can set the value of trailCurrent
by using both the current pointer and the back pointer of the node pointed to by
current. We give the definition of each function here, with four exceptions. Definitions

1042 | Chapter 17: Linked Lists

of the functions copyList, the copy constructor, overloading the assignment operator,
and the destructor are left as exercises for you. (See Programming Exercise 11 at the end
of this chapter.) Moreover, the function copyList is used only to implement the copy
constructor and overload the assignment operator.

Default Constructor
The default constructor initializes the doubly linked list to an empty state. It sets first
and last to NULL and count to 0.

template <class Type>
doublyLinkedList<Type>::doublyLinkedList()
{

first= NULL;
last = NULL;
count = 0;

}

isEmptyList

This operation returns true if the list is empty; otherwise, it returns false. The list is
empty if the pointer first is NULL.

template <class Type>
bool doublyLinkedList<Type>::isEmptyList() const
{

return (first == NULL);
}

Destroy the List
This operation deletes all of the nodes in the list, leaving the list in an empty state. We
traverse the list starting at the first node and then delete each node. Furthermore, count
is set to 0.

template <class Type>
void doublyLinkedList<Type>::destroy()
{

nodeType<Type> *temp; //pointer to delete the node

while (first != NULL)
{

temp = first;
first = first->next;
delete temp;

}

last = NULL;
count = 0;

}

1
7

Doubly Linked Lists | 1043

Initialize the List
This operation reinitializes the doubly linked list to an empty state. This task can be done
by using the operation destroy. The definition of the function initializeList is:

template <class Type>
void doublyLinkedList<Type>::initializeList()
{

destroy();
}

Length of the List
The length of a linked list (that is, how many nodes are in the list) is stored in the variable
count. Therefore, this function returns the value of this variable.

template <class Type>
int doublyLinkedList<Type>::length() const
{

return count;
}

Print the List
The function print outputs the info contained in each node. We traverse the list,
starting from the first node.

template <class Type>
void doublyLinkedList<Type>::print() const
{

nodeType<Type> *current; //pointer to traverse the list

current = first; //set current to point to the first node

while (current != NULL)
{

cout << current->info << " "; //output info
current = current->next;

}//end while
}//end print

Reverse Print the List
This function outputs the info contained in each node in reverse order. We traverse the
list in reverse order, starting from the last node. Its definition is:

template <class Type>
void doublyLinkedList<Type>::reversePrint() const
{

nodeType<Type> *current; //pointer to traverse
//the list

1044 | Chapter 17: Linked Lists

current = last; //set current to point to the
//last node

while (current != NULL)
{

cout << current->info << " ";
current = current->back;

}//end while
}//end reversePrint

Search the List
The function search returns true if searchItem is found in the list; otherwise, it
returns false. The search algorithm is exactly the same as the search algorithm for an
ordered linked list.

template <class Type>
bool doublyLinkedList<Type>::

search(const Type& searchItem) const
{

bool found = false;
nodeType<Type> *current; //pointer to traverse the list

current = first;

while (current != NULL && !found)
if (current->info >= searchItem)

found = true;
else

current = current->next;

if (found)
found = (current->info == searchItem); //test for

//equality

return found;
}//end search

First and Last Elements
The function front returns the first element of the list, and the function back returns
the last element of the list. If the list is empty, both functions terminate the program.
Their definitions are:

template <class Type>
Type doublyLinkedList<Type>::front() const
{

assert(first != NULL);

return first->info;
}

1
7

Doubly Linked Lists | 1045

template <class Type>
Type doublyLinkedList<Type>::back() const
{

assert(last != NULL);

return last->info;
}

INSERT A NODE

Because we are inserting an item in a doubly linked list, the insertion of a node in the list
requires the adjustment of two pointers in certain nodes. As before, we find the place
where the new item is supposed to be inserted, create the node, store the new item, and
adjust the link fields of the new node and other particular nodes in the list. There are four
cases:

Case 1: Insertion in an empty list

Case 2: Insertion at the beginning of a nonempty list

Case 3: Insertion at the end of a nonempty list

Case 4: Insertion somewhere in a nonempty list

Both Cases 1 and 2 require us to change the value of the pointer first. Cases 3 and
4 are similar. After inserting an item, count is incremented by 1. Next, we show
Case 4.

Consider the doubly linked list shown in Figure 17-40.

Suppose that 20 is to be inserted in the list. After inserting 20, the resulting list is as
shown in Figure 17-41.

first

last

count 4

8 15 24 40

FIGURE 17-40 Doubly linked list before inserting 20

1046 | Chapter 17: Linked Lists

1
7

From Figure 17-41, it follows that the next pointer of node 15, the back pointer of
node 24, and both the next and back pointers of node 20 need to be adjusted.

The definition of the function insert is:

template <class Type>
void doublyLinkedList<Type>::insert(const Type& insertItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current
nodeType<Type> *newNode; //pointer to create a node
bool found;

newNode = new nodeType<Type>; //create the node
newNode->info = insertItem; //store the new item in the node
newNode->next = NULL;
newNode->back = NULL;

if (first == NULL) //if the list is empty, newNode is
//the only node

{
first = newNode;
last = newNode;
count++;

}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= insertItem)

found = true;
else
{

trailCurrent = current;
current = current->next;

}

first

last

count 5

8 15

20

24 40

FIGURE 17-41 Doubly linked list after inserting 20

Doubly Linked Lists | 1047

if (current == first) //insert newNode before first
{

first->back = newNode;
newNode->next = first;
first = newNode;
count++;

}
else
{

//insert newNode between trailCurrent and current
if (current != NULL)
{

trailCurrent->next = newNode;
newNode->back = trailCurrent;
newNode->next = current;
current->back = newNode;

}
else
{

trailCurrent->next = newNode;
newNode->back = trailCurrent;
last = newNode;

}

count++;
}//end else

}//end else
}//end insert

DELETE A NODE

This operation deletes a given item (if found) from the doubly linked list. As before, we
first search the list to see whether the item to be deleted is in the list. The search
algorithm is the same as before. Similar to the insertNode operation, this operation
(if the item to be deleted is in the list) requires the adjustment of two pointers in certain
nodes. The delete operation has several cases:

Case 1: The list is empty.

Case 2: The item to be deleted is in the first node of the list, which would require us to
change the value of the pointer first.

Case 3: The item to be deleted is somewhere in the list.

Case 4: The item to be deleted is not in the list.

After deleting a node, count is decremented by 1. Let us demonstrate Case 3. Consider
the list shown in Figure 17-42.

1048 | Chapter 17: Linked Lists

Suppose that the item to be deleted is 17. First, we search the list with two pointers
and find the node with info 17 and then adjust the link field of the affected nodes (see
Figure 17-43).

Next, we delete the node pointed to by current (see Figure 17-44).

1
7

first

last

count 3

5 44 52

FIGURE 17-44 List after deleting the node with info 17

first

last

count 4

5 17 44 52

FIGURE 17-42 Doubly linked list before deleting 17

first

current
trailCurrent

last

count 4

5 17 44 52

FIGURE 17-43 List after adjusting the links of the nodes before and after the node with info 17

Doubly Linked Lists | 1049

The definition of the function deleteNode is:

template <class Type>
void doublyLinkedList<Type>::deleteNode(const Type& deleteItem)
{

nodeType<Type> *current; //pointer to traverse the list
nodeType<Type> *trailCurrent; //pointer just before current

bool found;

if (first == NULL)
cout << "Cannot delete from an empty list." << endl;

else if (first->info == deleteItem) //node to be deleted is
//the first node

{
current = first;
first = first->next;

if (first != NULL)
first->back = NULL;

else
last = NULL;

count--;

delete current;
}
else
{

found = false;
current = first;

while (current != NULL && !found) //search the list
if (current->info >= deleteItem)

found = true;
else

current = current->next;

if (current == NULL)
cout << "The item to be deleted is not in "

<< "the list." << endl;
else if (current->info == deleteItem) //check for

//equality
{

trailCurrent = current->back;
trailCurrent->next = current->next;

if (current->next != NULL)
current->next->back = trailCurrent;

if (current == last)
last = trailCurrent;

count--;
delete current;

}

1050 | Chapter 17: Linked Lists

1
7

else
cout << "The item to be deleted is not in list."

<< endl;
}//end else

}//end deleteNode

Circular Linked Lists
A linked list in which the last node points to the first node is called a circular linked list.
Figure 17-45 show various circular linked lists.

In a circular linked list with more than one node, as in Figure 17-45(c), it is convenient to
make the pointer first point to the last node of the list. Then, by using first, you can
access both the first and the last nodes of the list. For example, first points to the last
node, and first->link points to the first node.

As before, the usual operations on a circular list are:

1. Initialize the list (to an empty state).

2. Determine if the list is empty.

3. Destroy the list.

4. Print the list.

5. Find the length of the list.

6. Search the list for a given item.

7. Insert an item in the list.

8. Delete an item from the list.

9. Copy the list.

We leave it as an exercise for you to design a class to implement a sorted circular linked
list. (See Programming Exercise 13 at the end of this chapter.)

first
first

first

(a) Empty circular list (b) Circular linked list with one node

(c) Circular linked list with more than one node

FIGURE 17-45 Circular linked lists

Circular Linked Lists | 1051

PROGRAMMING EXAMPLE: Video Store
For a family or an individual, a favorite place to go on weekends or holidays is to a
video store to rent movies. A new video store in your neighborhood is about to open.
However, it does not have a program to keep track of its videos and customers. The
store managers want someone to write a program for their system so that the video
store can function. The program should be able to perform the following operations:

1. Rent a video; that is, check out a video.

2. Return, or check in, a video.

3. Create a list of videos owned by the store.

4. Show the details of a particular video.

5. Print a list of all of the videos in the store.

6. Check whether a particular video is in the store.

7. Maintain a customer database.

8. Print a list of all of the videos rented by each customer.

Let us write a program for the video store. This example further illustrates the object-
oriented design methodology and, in particular, inheritance and overloading.

The programming requirement tells us that the video store has two major compo-
nents: videos and customers. We will describe these two components in detail. We
also need to maintain the following lists:

• A list of all of the videos in the store

• A list of all of the store’s customers

• Lists of the videos currently rented by the customers

We will develop the program in two parts. In Part 1, we design, implement, and test
the video component. In Part 2, we design and implement the customer component,
which is then added to the video component developed in Part 1. That is, after
completing Parts 1 and 2, we can perform all of the operations listed previously.

PART 1: VIDEO

COMPONENT

Video Object This is the first stage, wherein we discuss the video component. The common things
associated with a video are:

• Name of the movie

• Names of the stars

• Name of the producer

• Name of the director

1052 | Chapter 17: Linked Lists

1
7

• Name of the production company

• Number of copies in the store

From this list, we see that some of the operations to be performed on a video object are:
1. Set the video information—that is, the title, stars, production com-

pany, and so on.

2. Show the details of a particular video.

3. Check the number of copies in the store.

4. Check out (that is, rent) the video. In other words, if the number of
copies is greater than zero, decrement the number of copies by one.

5. Check in (that is, return) the video. To check in a video, first we
must check whether the store owns such a video and, if it does,
increment the number of copies by one.

6. Check whether a particular video is available—that is, check whether
the number of copies currently in the store is greater than zero.

The deletion of a video from the video list requires that the list be searched for the
video to be deleted. Thus, we need to check the title of a video to find out which
video is to be deleted from the list. For simplicity, we assume that two videos are the
same if they have the same title.

The following class defines the video object as an ADT.

//**
// Author: D.S. Malik
//
// class videoType
// This class specifies the members to implement a video.
//**

#include <iostream>
#include <string>

using namespace std;

class videoType
{

friend ostream& operator<< (ostream&, const videoType&);

public:
void setVideoInfo(string title, string star1,

string star2, string producer,
string director, string productionCo,
int setInStock);

//Function to set the details of a video.
//The member variables are set according to the
//parameters.

Programming Example: Video Store | 1053

//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2; movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

int getNoOfCopiesInStock() const;
//Function to check the number of copies in stock.
//Postcondition: The value of copiesInStock is returned.

void checkOut();
//Function to rent a video.
//Postcondition: The number of copies in stock is
// decremented by one.

void checkIn();
//Function to check in a video.
//Postcondition: The number of copies in stock is
// incremented by one.

void printTitle() const;
//Function to print the title of a movie.

void printInfo() const;
//Function to print the details of a video.
//Postcondition: The title of the movie, stars,
// director, and so on are displayed
// on the screen.

bool checkTitle(string title);
//Function to check whether the title is the same as the
//title of the video.
//Postcondition: Returns the value true if the title
// is the same as the title of the video;
// false otherwise.

void updateInStock(int num);
//Function to increment the number of copies in stock by
//adding the value of the parameter num.
//Postcondition: copiesInStock = copiesInStock + num;

void setCopiesInStock(int num);
//Function to set the number of copies in stock.
//Postcondition: copiesInStock = num;

string getTitle() const;
//Function to return the title of the video.
//Postcondition: The title of the video is returned.

videoType(string title = "", string star1 = "",
string star2 = "", string producer = "",

1054 | Chapter 17: Linked Lists

1
7

string director = "", string productionCo = "",
int setInStock = 0);

//constructor
//The member variables are set according to the
//incoming parameters. If no values are specified, the
//default values are assigned.
//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2;
// movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

//Overload the relational operators.
bool operator==(const videoType&) const;
bool operator!=(const videoType&) const;

private:
string videoTitle; //variable to store the name

//of the movie
string movieStar1; //variable to store the name

//of the star
string movieStar2; //variable to store the name

//of the star
string movieProducer; //variable to store the name

//of the producer
string movieDirector; //variable to store the name

//of the director
string movieProductionCo; //variable to store the name

//of the production company
int copiesInStock; //variable to store the number of

//copies in stock
};

We leave the UML diagram of the class videoType as an exercise for you.

For easy output, we will overload the output stream insertion operator, <<, for the
class videoType.

Next, we write the definitions of each function in the class videoType. The
definitions of these functions, as given below, are quite straightforward and easy to
follow.

void videoType::setVideoInfo(string title, string star1,
string star2, string producer,
string director,
string productionCo,
int setInStock)

{
videoTitle = title;
movieStar1 = star1;

Programming Example: Video Store | 1055

movieStar2 = star2;
movieProducer = producer;
movieDirector = director;
movieProductionCo = productionCo;
copiesInStock = setInStock;

}

void videoType::checkOut()
{

if (getNoOfCopiesInStock() > 0)
copiesInStock--;

else
cout << "Currently out of stock" << endl;

}

void videoType::checkIn()
{

copiesInStock++;
}

int videoType::getNoOfCopiesInStock() const
{

return copiesInStock;
}

void videoType::printTitle() const
{

cout << "Video Title: " << videoTitle << endl;
}

void videoType::printInfo() const
{

cout << "Video Title: " << videoTitle << endl;
cout << "Stars: " << movieStar1 << " and "

<< movieStar2 << endl;
cout << "Producer: " << movieProducer << endl;
cout << "Director: " << movieDirector << endl;
cout << "Production Company: " << movieProductionCo

<< endl;
cout << "Copies in stock: " << copiesInStock

<< endl;
}

bool videoType::checkTitle(string title)
{

return(videoTitle == title);
}

void videoType::updateInStock(int num)
{

copiesInStock += num;
}

1056 | Chapter 17: Linked Lists

1
7

void videoType::setCopiesInStock(int num)
{

copiesInStock = num;
}

string videoType::getTitle() const
{

return videoTitle;
}

videoType::videoType(string title, string star1,
string star2, string producer,
string director,
string productionCo, int setInStock)

{
setVideoInfo(title, star1, star2, producer, director,

productionCo, setInStock);
}

bool videoType::operator==(const videoType& other) const
{

return (videoTitle == other.videoTitle);
}

bool videoType::operator!=(const videoType& other) const
{

return (videoTitle != other.videoTitle);
}

ostream& operator<< (ostream& osObject, const videoType& video)
{

osObject << endl;
osObject << "Video Title: " << video.videoTitle << endl;
osObject << "Stars: " << video.movieStar1 << " and "

<< video.movieStar2 << endl;
osObject << "Producer: " << video.movieProducer << endl;
osObject << "Director: " << video.movieDirector << endl;
osObject << "Production Company: "

<< video.movieProductionCo << endl;
osObject << "Copies in stock: " << video.copiesInStock

<< endl;
osObject << "_____________________________________"

<< endl;

return osObject;
}

Video List This program requires us to maintain a list of all of the videos in the store. We also
should be able to add a new video to our list. In general, we would not know how
many videos are in the store, and adding or deleting a video from the store would
change the number of videos in the store. Therefore, we will use a linked list to
create a list of videos (see Figure 17-46).

Programming Example: Video Store | 1057

Earlier in this chapter, we defined the class unorderedLinkedList to
create a linked list of objects. We also defined the basic operations such as insertion
and deletion of a video in the list. However, some operations are very specific to
the video list, such as check out a video, check in a video, set the number of
copies of a video, and so on. These operations are not available in the class
unorderedLinkedList. We will, therefore, derive a class videoListType from
the class unorderedLinkedList and add these operations.

The definition of the class videoListType is:

//***
// Author: D.S. Malik
//
// class videoListType
// This class specifies the members to implement a list of
// videos.
//**

#include <string>
#include "unorderedLinkedList.h"
#include "videoType.h"

using namespace std;

class videoListType:public unorderedLinkedList<videoType>
{
public:

bool videoSearch(string title) const;
//Function to search the list to see whether a
//particular title, specified by the parameter title,
//is in the store.
//Postcondition: Returns true if the title is found,
// and false otherwise.

bool isVideoAvailable(string title) const;
//Function to determine whether a copy of a particular
//video is in the store.
//Postcondition: Returns true if at least one copy of the
// video specified by title is in the store,
// and false otherwise.

video
infofirst

last

video
info

... video
info

FIGURE 17-46 videoList

1058 | Chapter 17: Linked Lists

1
7

void videoCheckOut(string title);
//Function to check out a video, that is, rent a video.
//Postcondition: copiesInStock is decremented by one.

void videoCheckIn(string title);
//Function to check in a video returned by a customer.
//Postcondition: copiesInStock is incremented by one.

bool videoCheckTitle(string title) const;
//Function to determine whether a particular video is in
//the store.
//Postcondition: Returns true if the video’s title is
// the same as title, and false otherwise.

void videoUpdateInStock(string title, int num);
//Function to update the number of copies of a video
//by adding the value of the parameter num. The
//parameter title specifies the name of the video for
//which the number of copies is to be updated.
//Postcondition: copiesInStock = copiesInStock + num;

void videoSetCopiesInStock(string title, int num);
//Function to reset the number of copies of a video.
//The parameter title specifies the name of the video
//for which the number of copies is to be reset, and the
//parameter num specifies the number of copies.
//Postcondition: copiesInStock = num;

void videoPrintTitle() const;
//Function to print the titles of all the videos in
//the store.

private:
void searchVideoList(string title, bool& found,

nodeType<videoType>* ¤t) const;
//This function searches the video list for a
//particular video, specified by the parameter title.
//Postcondition: If the video is found, the parameter
// found is set to true, otherwise it is set
// to false. The parameter current points
// to the node containing the video.

};

Note that the class videoListType is derived from the class
unorderedLinkedList via a public inheritance. Furthermore,
unorderedLinkedList is a class template, and we have passed the class
videoType as a parameter to this class. That is, the class videoListType is

Programming Example: Video Store | 1059

not a template. Because we are now dealing with a very specific data type,
the class videoListType is no longer required to be a template. Thus,
the info type of each node in the linked list is now videoType. Through
the member functions of the class videoType, certain members—such as
videoTitle and copiesInStock of an object of type videoType—can now be
accessed.

The definitions of the functions to implement the operations of the class
videoListType are given next.

The primary operations on the video list are to check in a video and to check out a
video. Both operations require the list to be searched and the location of the video
being checked in or checked out to be found in the video list. Other operations, such
as determining whether a particular video is in the store, updating the number of
copies of a video, and so on, also require the list to be searched. To simplify the
search process, we will write a function that searches the video list for a particular
video. If the video is found, it sets a parameter found to true and returns a pointer
to the video so that check-in, check-out, and other operations on the video object
can be performed. Note that the function searchVideoList is a private data
member of the class videoListType because it is used only for internal manip-
ulation. First, we describe the search procedure.

Consider the node of the video list shown in Figure 17-47.

The component info is of type videoType and contains the necessary information
about a video. In fact, the component info of the node has seven members:
videoTitle, movieStar1, movieStar2, movieProducer, movieDirector,
movieProductionCo, and copiesInStock. (See the definition of the
class videoType.) Therefore, the node of a video list has the form shown in
Figure 17-48.

video
info

FIGURE 17-47 Node of a video list

1060 | Chapter 17: Linked Lists

1
7

These member variables are all private and cannot be accessed directly. The
member functions of the class videoType will help us in checking and/or setting
the value of a particular component.

Suppose a pointer—say, current—points to a node in the video list (see Figure 17-49).

videoTitle

movieStar1

movieStar2current

movieProducer

movieDirector

movieProductionCo

copiesInStock

info link

FIGURE 17-49 Pointer current and video list node

videoTitle

movieStar1

movieStar2

movieProducer

movieDirector

movieProductionCo

copiesInStock

info link

FIGURE 17-48 Video list node showing components of info

Programming Example: Video Store | 1061

Now:

current->info

refers to the info part of the node. Suppose that we want to know whether the title
of the video stored in this node is the same as the title specified by the variable
title. The expression:

current->info.checkTitle(title)

is true if the title of the video stored in this node is the same as the title specified by the
parameter title, and false otherwise. (Note that the member function checkTitle
is a value-returning function. See its declaration in the class videoType.)

As another example, suppose that we want to set copiesInStock of this node to 10.
Because copiesInStock is a private member, it cannot be accessed directly.
Therefore, the statement:

current->info.copiesInStock = 10; //illegal

is incorrect and will generate a compile-time error. We have to use the member
function setCopiesInStock as follows:

current->info.setCopiesInStock(10);

Now that we know how to access a member variable of a video stored in a node, let
us describe the algorithm to search the video list.

while (not found)
if the title of the current video is the same as the desired

title, stop the search
else

check the next node

The following function definition performs the desired search.

void videoListType::searchVideoList(string title, bool& found,
nodeType<videoType>* ¤t) const

{
found = false; //set found to false

current = first; //set current to point to the first node
//in the list

while (current != NULL && !found) //search the list
if (current->info.checkTitle(title)) //the item is found

found = true;
else

current = current->link; //advance current to
//the next node

}//end searchVideoList

1062 | Chapter 17: Linked Lists

1
7

If the search is successful, the parameter found is set to true and the parameter
current points to the node containing the video info. If it is unsuccessful, found is
set to false and current will be NULL.

The definitions of the other functions of the class videoListType follow:

bool videoListType::isVideoAvailable(string title) const
{

bool found;
nodeType<videoType> *location;

searchVideoList(title, found, location);

if (found)
found = (location->info.getNoOfCopiesInStock() > 0);

else
found = false;

return found;
}

void videoListType::videoCheckIn(string title)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

if (found)
location->info.checkIn();

else
cout << "The store does not carry " << title

<< endl;
}

void videoListType::videoCheckOut(string title)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

if (found)
location->info.checkOut();

else
cout << "The store does not carry " << title

<< endl;
}

Programming Example: Video Store | 1063

bool videoListType::videoCheckTitle(string title) const
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

return found;
}

void videoListType::videoUpdateInStock(string title, int num)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location); //search the list

if (found)
location->info.updateInStock(num);

else
cout << "The store does not carry " << title

<< endl;
}

void videoListType::videoSetCopiesInStock(string title, int num)
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location);

if (found)
location->info.setCopiesInStock(num);

else
cout << "The store does not carry " << title

<< endl;
}

bool videoListType::videoSearch(string title) const
{

bool found = false;
nodeType<videoType> *location;

searchVideoList(title, found, location);

return found;
}

1064 | Chapter 17: Linked Lists

1
7

void videoListType::videoPrintTitle() const
{

nodeType<videoType>* current;

current = first;
while (current != NULL)
{

current->info.printTitle();
current = current->link;

}
}

PART 2: CUSTOMER

COMPONENT

Customer

Object

The customer object stores information about a customer, such as the first name, last
name, account number, and a list of videos rented by the customer.

Every customer is a person. We have already designed the class personType in
Example 11-9 (Chapter 11) and described the necessary operations on the name of a
person. Therefore, we can derive the class customerType from the class per-
sonType and add the additional members that we need. First, however, we must
redefine the class personType to take advantage of the new features of object-
oriented design that you have learned, such as operator overloading, and then derive
the class customerType.

Recall that the basic operations on an object of type personType are:

1. Print the name.

2. Set the name.

3. Show the first name.

4. Show the last name.

Similarly, the basic operations on an object of type customerType are:

1. Print the name, account number, and the list of rented videos.

2. Set the name and the account number.

3. Rent a video; that is, add the rented video to the list.

4. Return a video; that is, delete the rented video from the list.

5. Show the account number.

The details of implementing the customer component are left as an exercise for you.
(See Programming Exercise 14 at the end of this chapter.)

Main Program We will now write the main program to test the video object. We assume that the
necessary data for the videos are stored in a file. We will open the file and create the

Programming Example: Video Store | 1065

list of videos owned by the video store. The data in the input file is in the following
form:

video title (that is, the name of the movie)
movie star1
movie star2
movie producer
movie director
movie production co.
number of copies
.
.
.

We will write a function, createVideoList, to read the data from the input file
and create the list of videos. We will also write a function, displayMenu, to show
the different choices—such as check in a movie or check out a movie—that the user
can make. The algorithm of the function main is:

1. Open the input file.
If the input file does not exist, exit the program.

2. Create the list of videos (createVideoList).

3. Show the menu (displayMenu).

4. While not done
Perform various operations.

Opening the input file is straightforward. Let us describe Steps 2 and 3, which
are accomplished by writing two separate functions: createVideoList and
displayMenu.

createVideoList This function reads the data from the input file and creates a linked list of videos.
Because the data will be read from a file and the input file was opened in the function
main, we pass the input file pointer to this function. We also pass the video list pointer,
declared in the function main, to this function. Both parameters are reference
parameters. Next, we read the data for each video and then insert the video in the
list. The general algorithm is:

a. Read the data and store it in a video object.

b. Insert the video in the list.

c. Repeat steps a and b for each video’s data in the file.

displayMenu This function informs the user what to do. It contains the following output statements:

Select one of the following:

1. To check whether the store carries a particular video

2. To check out a video

1066 | Chapter 17: Linked Lists

1
7

3. To check in a video

4. To check whether a particular video is in stock

5. To print only the titles of all the videos

6. To print a list of all the videos

9. To exit

In pseudocode, Step 4 (of the main program) is:

a. get choice
b.

while (choice != 9)
{

switch (choice)
{
case 1:

a. get the movie name
b. search the video list
c. if found, report success

else report "failure"
break;

case 2:
a. get the movie name
b. search the video list
c. if found, check out the video

else report "failure"
break;

case 3:
a. get the movie name
b. search the video list
c. if found, check in video

else report "failure"
break;

case 4:
a. get the movie name
b. search the video list
c. if found

if number of copies > 0
report "success"

else
report "currently out of stock"

else report "failure"
break;

case 5:
print the titles of the videos
break;

case 6:
print all the videos in the store
break;

default: bad selection
} //end switch

Programming Example: Video Store | 1067

displayMenu();
get choice;

}//end while

PROGRAM

LISTING

/***
// Author: D.S. Malik
//
// This program uses the classes videoType and videoListType to
// create a list of videos for a video store. It also performs
// basic operations such as check in and check out videos.
//***

#include <iostream>
#include <fstream>
#include <string>
#include "videoType.h"
#include "videoListType.h"

using namespace std;

void createVideoList(ifstream& infile,
videoListType& videoList);

void displayMenu();

int main()
{

videoListType videoList;
int choice;
char ch;
string title;

ifstream infile;

//open the input file
infile.open("videoDat.txt");
if (!infile)
{

cout << "The input file does not exist. "
<< "The program terminates!!!" << endl;

return 1;
}

//create the video list
createVideoList(infile, videoList);
infile.close();

//show the menu
displayMenu();
cout << "Enter your choice: ";
cin >> choice; //get the request
cin.get(ch);
cout << endl;

1068 | Chapter 17: Linked Lists

1
7

//process the requests
while (choice != 9)
{

switch (choice)
{
case 1:

cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
cout << "The store carries " << title

<< endl;
else

cout << "The store does not carry "
<< title << endl;

break;

case 2:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
{

videoList.videoCheckOut(title);
cout << "Enjoy your movie: "

<< title << endl;
}
else

cout << "Currently " << title
<< " is out of stock." << endl;

}
else

cout << "The store does not carry "
<< title << endl;

break;

case 3:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

videoList.videoCheckIn(title);
cout << "Thanks for returning "

<< title << endl;
}

Programming Example: Video Store | 1069

else
cout << "The store does not carry "

<< title << endl;
break;

case 4:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
cout << title << " is currently in "

<< "stock." << endl;
else

cout << title << " is currently out "
<< "of stock." << endl;

}
else

cout << "The store does not carry "
<< title << endl;

break;

case 5:
videoList.videoPrintTitle();
break;

case 6:
videoList.print();
break;

default:
cout << "Invalid selection." << endl;

}//end switch

displayMenu(); //display menu

cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.get(ch);
cout << endl;

}//end while

return 0;
}

1070 | Chapter 17: Linked Lists

1
7

void createVideoList(ifstream& infile,
videoListType& videoList)

{
string title;
string star1;
string star2;
string producer;
string director;
string productionCo;

char ch;
int inStock;

videoType newVideo;

getline(infile, title);

while (infile)
{

getline(infile, star1);
getline(infile, star2);
getline(infile, producer);
getline(infile, director);
getline(infile, productionCo);
infile >> inStock;
infile.get(ch);
newVideo.setVideoInfo(title, star1, star2, producer,

director, productionCo, inStock);
videoList.insertFirst(newVideo);

getline(infile, title);
}//end while

}//end createVideoList

void displayMenu()
{

cout << "Select one of the following:" << endl;
cout << "1: To check whether the store carries a "

<< "particular video." << endl;
cout << "2: To check out a video." << endl;
cout << "3: To check in a video." << endl;
cout << "4: To check whether a particular video is "

<< "in stock." << endl;
cout << "5: To print only the titles of all the videos."

<< endl;
cout << "6: To print a list of all the videos." << endl;
cout << "9: To exit" << endl;

}//end displayMenu

Programming Example: Video Store | 1071

QUICK REVIEW

1. A linked list is a list of items, called nodes, in which the order of the nodes
is determined by the address, called a link, stored in each node.

2. The pointer to a linked list—that is, the pointer to the first node in the
list—is stored in a separate location called the head or first.

3. A linked list is a dynamic data structure.
4. The length of a linked list is the number of nodes in the list.
5. Item insertion and deletion from a linked list do not require data

movement; only the pointers are adjusted.

6. A (single) linked list is traversed in only one direction.
7. The search on a linked list is sequential.
8. The first (or head) pointer of a linked list is always fixed, pointing to the

first node in the list.

9. To traverse a linked list, the program must use a pointer different than the
head pointer of the list, initialized to the first node in the list.

10. In a doubly linked list, every node has two links: one points to the next
node, and one points to the previous node.

11. A doubly linked list can be traversed in either direction.

12. In a doubly linked list, item insertion and deletion require the adjustment of
two pointers in a node.

13. A linked list in which the last node points to the first node is called a
circular linked list.

EXERCISES

1. Mark the following statements as true or false.

a. In a linked list, the order of the elements is determined by the order in
which the nodes were created to store the elements.

b. In a linked list, memory allocated for the nodes is sequential.

c. A single linked list can be traversed in either direction.

d. In a linked list, nodes are always inserted either at the beginning or the
end because a linked link is not a random-access data structure.

2. Describe the two typical components of a single linked list node.

3. What is the stored in the link field of the last node of a nonempty single linked list?

4. Suppose that first is a pointer to a linked list. What is stored in first?

5. Suppose that the fourth node of a linked list is to be deleted, and p points to the fourth
node? Why do you need a pointer to the third node of the linked list?

1072 | Chapter 17: Linked Lists

Consider the linked list shown in Figure 17-50. Assume that the nodes are in the
usual info-link form. Use this list to answer Exercises 6 through 12. If
necessary, declare additional variables. (Assume that list, p, s, A, and B are
pointers of type nodeType.)

6. What is the output of each of the following C++ statements?

a. cout << list->info;

b. cout << A->info;

c. cout << B->link->info;

d. cout << list->link->link->info;

7. What is the value of each of the following relational expressions?

a. list->info >= 18

b. list->link == A

c. A->link->info == 16

d. B->link == NULL

e. list->info == 18

8. Mark each of the following statements as valid or invalid. If a statement is
invalid, explain why.

a. A = B;

b. list->link = A->link;

c. list->link->info = 45;

d. *list = B;

e. *A = *B;

f. B = A->link->info;

g. A->info = B->info;

h. list = B->link->link;

i. B = B->link->link->link;

1
7

list

A

18 32 23 16

B

43 87 25 44

FIGURE 17-50 Linked list for exercises 6 through 12

Exercises | 1073

9. Write C++ statements to do the following.

a. Make A point to the node containing info 23.

b. Make list point to the node containing 16.

c. Make B point to the last node in the list.

d. Make list point to an empty list.

e. Set the value of the node containing 25 to 35.

f. Create and insert the node with info 10 after the node pointed to by A.

g. Delete the node with info 23. Also, deallocate the memory occupied
by this node.

10. What is the output of the following C++ code?

p = list;

while (p != NULL)
cout << p->info << " ";
p = p->link;

cout << endl;

11. If the following C++ code is valid, show the output. If it is invalid, explain
why.

s = A;
p = B;
s->info = B;
p = p->link;
cout << s->info << " " << p->info << endl;

12. If the following C++ code is valid, show the output. If it is invalid, explain
why.

p = A;
p = p->link;
s = p;
p->link = NULL;
s = s->link;
cout << p->info << " " << s->info << endl;

13. Show what is produced by the following C++ code. Assume the node is in
the usual info-link form with the info of type int. (list and ptr are
pointers of type nodeType.)

list = new nodeType;
list->info = 10;
ptr = new nodeType;
ptr->info = 13;
ptr->link = NULL;
list->link = ptr;
ptr = new nodeType;
ptr->info = 18;
ptr->link = list->link;
list->link = ptr;

1074 | Chapter 17: Linked Lists

cout << list->info << " " << ptr->info << " ";
ptr = ptr->link;
cout << ptr->info << endl;

14. Show what is produced by the following C++ code. Assume the node is in
the usual info-link form with the info of type int. (list and ptr are
pointers of type nodeType.)

list = new nodeType;
list->info = 20;
ptr = new nodeType;
ptr->info = 28;
ptr->link = NULL;
list->link = ptr;
ptr = new nodeType;
ptr->info = 30;
ptr->link = list;
list = ptr;
ptr = new nodeType;
ptr->info = 42;
ptr->link = list->link;
list->link = ptr;
ptr = list;
while (ptr != NULL)
{

cout << ptr->info << endl;
ptr = ptr->link;

}

15. Assume that the node of a linked list is in the usual info-link form with
the info of type int. The following data, as described in parts (a) to (d), is
to be inserted into an initially linked list: 72, 43, 8, 12. Suppose that head is
a pointer of type nodeType. After the linked list is created, head should
point to the first node of the list. Declare additional variables as you need
them. Write the C++ code to create the linked list. After the linked list is
created, write a code to print the list. What is the output of your code?

a. Insert 72 into an empty linked list.

b. Insert 43 before 72.

c. Insert 8 at the end of the list.

d. Insert 12 after 43.

16. Assume that the node of a linked list is in the usual info-link form with
the info of type int. (list and ptr are pointers of type nodeType.) The
following code creates a linked list.

ptr = new nodeType;
ptr->info = 16;
list = new nodeType;
list->info = 25;
list->link = ptr;
ptr = new nodeType;

1
7

Exercises | 1075

ptr->info = 12;
ptr->link = NULL;
list->link->link = ptr;

Use the linked list created by this code to answer the following questions.
(These questions are independent of each other.) Declare additional poin-
ters if you need them.

a. Which pointer points to the first node of the linked list?

b. Determine the order of the nodes of the linked list.

c. Write a C++ code that creates and inserts a node with info 45 after
the node with info 16.

d. Write a C++ code that creates and inserts a node with info 58 before
the node with info 25. Does this require you to the change the value
of the pointer that was pointing to the first node of the linked list?

e. Write a C++ code that deletes the node with info 25. Does this
require you to the change the value of the pointer that was pointing to
the first node of the linked list?

17. Consider the followingC++statements. (TheclassunorderedLinkedList is
as defined in this chapter.)

unorderedLinkedList<int> list;

list.insertFirst(15);
list.insertLast(28);
list.insertFirst(30);
list.insertFirst(2);
list.insertLast(45);
list.insertFirst(38);
list.insertLast(25);
list.deleteNode(30);
list.insertFirst(18);
list.deleteNode(28);
list.deleteNode(12);
list.print();

What is the output of this program segment?

18. Suppose the input is:

18 30 4 32 45 36 78 19 48 75 -999

What is the output of the following C++ code? (The class
unorderedLinkedList is as defined in this chapter.)

unorderedLinkedList<int> list;
unorderedLinkedList<int> copyList;
int num;

cin >> num;
while (num != -999)

1076 | Chapter 17: Linked Lists

{
if (num % 5 == 0 || num % 5 == 3)

list.insertFirst(num);
else

list.insertLast(num);
cin >> num;

}

list.print();
cout << endl;

copyList = list;

copyList.deleteNode(78);
copyList.deleteNode(35);

cout << "Copy List = ";
copyList.print();
cout << endl;

19. Draw the UML diagram of the class doublyLinkedList as discussed in
this chapter.

20. Draw the UML diagram of the class videoType of the Video Store
programming example.

21. Draw the UML diagram of the class videoListType of the Video Store
programming example.

PROGRAMMING EXERCISES

1. (Online Address Book revisited) Programming Exercise 6 in Chapter 12
could handle a maximum of only 500 entries. Using linked lists, redo the
program to handle as many entries as required. Add the following operations
to your program:

a. Add or delete a new entry to the address book.

b. Allow the user to save the data in the address book.

2. Extend the class linkedListType by adding the following operations:

a. Find and delete the node with the smallest info in the list. (Delete only
the first occurrence and traverse the list only once.)

b. Find and delete all occurrences of a given info from the list. (Traverse
the list only once.)

Add these as abstract functions in the class linkedListType and provide
the definitions of these functions in the class unorderedLinkedList.
Also, write a program to test these functions.

1
7

Programming Exercises | 1077

3. Extend the class linkedListType by adding the following operations:

a. Write a function that returns the info of the kth element of the linked
list. If no such element exists, terminate the program.

b. Write a function that deletes the kth element of the linked list. If no such
element exists, terminate the program.

Provide the definitions of these functions in the class linkedListType.
Also, write a program to test these functions. (Use either the class
unorderedLinkedList or the class orderedLinkedList to test your
function.)

4. (Printing a single linked list backward) Include the functions
reversePrint and recursiveReversePrint, as discussed in this chapter,
in the class linkedListType. Also, write a program function to print a
(single) linked list backward. (Use either the class unorderedLinkedList or
the class orderedLinkedList to test your function.)

5. (Dividing a linked list into two sublists of almost equal sizes)

a. Add the operation divideMid to the class linkedListType as
follows:

void divideMid(linkedListType<Type> &sublist);
//This operation divides the given list into two sublists
//of (almost) equal sizes.
//Postcondition: first points to the first node and last
// points to the last node of the first
// sublist.
// sublist.first points to the first node
// and sublist.last points to the last node
// of the second sublist.

Consider the following statements:

unorderedLinkedList<int> myList;
unorderedLinkedList<int> subList;

Suppose myList points to the list with elements 34 65 27 89 12 (in this
order). The statement:

myList.divideMid(subList);

divides myList into two sublists: myList points to the list with the
elements 34 65 27, and subList points to the sublist with the elements
89 12.

b. Write the definition of the function template to implement the operation
divideMid. Also, write a program to test your function.

6. (Splitting a linked list, at a given node, into two sublists)

1078 | Chapter 17: Linked Lists

a. Add the following operation to the class linkedListType:

void divideAt(linkedListType<Type> &secondList,
const Type& item);

//Divide the list at the node with the info item into two
//sublists.
//Postcondition: first and last point to the first and

// last nodes of the first sublist.
// secondList.first and secondList.last
// point to the first and last nodes of the
// second sublist.

Consider the following statements:

unorderedLinkedList<int> myList;
unorderedLinkedList<int> otherList;

Suppose myList points to the list with the elements 34 65 18 39 27 89 12
(in this order). The statement:

myList.divideAt(otherList, 18);

divides myList into two sublists: myList points to the list with the
elements 34 65, and otherList points to the sublist with the elements
18 39 27 89 12.

b. Write the definition of the function template to implement the opera-
tion divideAt. Also, write a program to test your function.

7. a. Add the following operation to the class orderedLinkedList:

void mergeLists(orderedLinkedList<Type> &list1,
orderedLinkedList<Type> &list2);

//This function creates a new list by merging the
//elements of list1 and list2.
//Postcondition: first points to the merged list
// list1 and list2 are empty

Consider the following statements:

orderedLinkedList<int> newList;
orderedLinkedList<int> list1;
orderedLinkedList<int> list2;

Suppose list1 points to the list with the elements 2 6 7, and list2
points to the list with the elements 3 5 8. The statement:

newList.mergeLists(list1, list2);

1
7

Programming Exercises | 1079

creates a new linked list with the elements in the order 2 3 5 6 7 8, and
the object newList points to this list. Also, after the preceding statement
executes, list1 and list2 are empty.

b. Write the definition of the function template mergeLists to imple-
ment the operation mergeLists.

8. The function insert of the class orderedLinkedList does not check if
the item to be inserted is already in the list; that is, it does not check for
duplicates. Rewrite the definition of the function insert so that before
inserting the item, it checks whether the item to be inserted is already in the
list. If the item to be inserted is already in the list, the function outputs an
appropriate error message. Also, write a program to test your function.

9. In this chapter, the class to implement the nodes of a linked list is defined as a
struct. The following rewrites the definition of the struct nodeType so
that it is declared as a class and the member variables are private.

template <class Type>
class nodeType
{
public:

const nodeType<Type>& operator=(const nodeType<Type>&);
//Overload the assignment operator.

void setInfo(const Type& elem);
//Function to set the info of the node.
//Postcondition: info = elem;

Type getInfo() const;
//Function to return the info of the node.
//Postcondition: The value of info is returned.

void setLink(nodeType<Type> *ptr);
//Function to set the link of the node.
//Postcondition: link = ptr;

nodeType<Type>* getLink() const;
//Function to return the link of the node.
//Postcondition: The value of link is returned.

nodeType();
//Default constructor
//Postcondition: link = NULL;

nodeType(const Type& elem, nodeType<Type> *ptr);
//Constructor with parameters
//Sets info to point to the object elem points to, and
//link is set to point to the object ptr points to.
//Postcondition: info = elem; link = ptr

1080 | Chapter 17: Linked Lists

nodeType(const nodeType<Type> &otherNode);
//Copy constructor

�nodeType();
//Destructor

private:
Type info;
nodeType<Type> *link;

};

Write the definitions of the member functions of the class nodeType.
Also, write a program to test your class.

10. Programming Exercise 9 asks you to redefine the class to implement the nodes
of a linked list so that the instance variables are private. Therefore, the class
linkedListType and its derived classes unorderedLinkedList and
orderedLinkedList can no longer directly access the instance variables of
the class nodeType. Rewrite the definitions of these classes so that they use
the member functions of the class nodeType to access the info and link
fields of a node. Also, write programs to test various operations of the classes
unorderedLinkedList and orderedLinkeList.

11. Write the definitions of the function copyList, the copy constructor,
and the function to overload the assignment operator for the class
doublyLinkedList.

12. Write a program to test various operations of the class doublyLinkedList.

13. (Circular linked lists) This chapter defined and identified various
operations on a circular linked list.

a. Write the definitions of the class circularLinkedList and its
member functions. (You may assume that the elements of the circular
linked list are in ascending order.)

b. Write a program to test various operations of the class defined in (a).

14. (Video Store programming example)

a. Complete the design and implementation of the class customerType
defined in the Video Store programming example.

b. Design and implement the class customerListType to create and
maintain a list of customers for the video store.

15. (Video Store programming example) Complete the design and imple-
mentation of the video store program. In other words, write a program that
uses the classes designed in the Video Store programming example and in
Programming Exercise 14 to make a video store operational.

1
7

Programming Exercises | 1081

16. Extend the class linkedListType by adding the following function:
void rotate();
//Function to remove the first node of a linked list and put it
//at the end of the linked list.

Also write a program to test your function. Use the class
unorderedLinkedList to create a linked list.

17. Write a program that prompts the user to input a string and then outputs the
string in the pig Latin form. The rules for converting a string into pig Latin
form are described in Programming Example: Pig Latin Strings of Chapter 8.
Your program must store the characters of a string into a linked and use
the function rotate, as described in Programming Exercise 16, to rotate
the string.

1082 | Chapter 17: Linked Lists

STACKS AND QUEUES
IN THIS CHAPTER , YOU WILL :

. Learn about stacks

. Examine various stack operations

. Learn how to implement a stack as an array

. Learn how to implement a stack as a linked list

. Discover stack applications

. Learn how to use a stack to remove recursion

. Learn about queues

. Examine various queue operations

. Learn how to implement a queue as an array

. Learn how to implement a queue as a linked list

. Discover queue applications

18C H A P T E R

This chapter discusses two very useful data structures, stacks and queues. Both stacks and
queues have numerous applications in computer science.

Stacks
Suppose that you have a program with several functions. To be specific, suppose that you
have functions A, B, C, and D in your program. Now suppose that function A calls
function B, function B calls function C, and function C calls function D. When function
D terminates, control goes back to function C; when function C terminates, control goes
back to function B; and when function B terminates, control goes back to function A.
During program execution, how do you think the computer keeps track of the function
calls? What about recursive functions? How does the computer keep track of the
recursive calls? In Chapter 17, we designed a recursive function to print a linked list
backward. What if you want to write a nonrecursive algorithm to print a linked list
backward?

This section discusses the data structure called the stack, which the computer uses to
implement function calls. You can also use stacks to convert recursive algorithms into
nonrecursive algorithms, especially recursive algorithms that are not tail recursive. Stacks
have numerous applications in computer science. After developing the tools necessary to
implement a stack, we will examine some applications of stacks.

A stack is a list of homogeneous elements in which the addition and deletion of elements
occur only at one end, called the top of the stack. For example, in a cafeteria, the second
tray in a stack of trays can be removed only if the first tray has been removed. For another
example, to get to your favorite computer science book, which is underneath your math
and history books, you must first remove the math and history books. After removing
these books, the computer science book becomes the top book—that is, the top element
of the stack. Figure 18-1 shows some examples of stacks.

Stack of
coins

Stack of
trays

Stack of
boxes

Stack of
books

5

Chemistry
English

C++ Programming
World History

Applied Math

FIGURE 18-1 Various types of stacks

1084 | Chapter 18: Stacks and Queues

The elements at the bottom of the stack have been in the stack the longest. The top element
of the stack is the last element added to the stack. Because the elements are added and
removed from one end (that is, the top), it follows that the item that is added last will be
removed first. For this reason, a stack is also called a Last In First Out (LIFO) data structure.

Stack: A data structure in which the elements are added and removed from one end
only; a Last In First Out (LIFO) data structure.

Now that you know what a stack is, let us see what kinds of operations can be performed on
a stack. Because new items can be added to the stack, we can perform the add operation,
called push, to add an element onto the stack. Similarly, because the top item can be
retrieved and/or removed from the stack, we can perform the operation top to retrieve the
top element of the stack and the operation pop to remove the top element from the stack.

The push, top, and pop operations work as follows: Suppose there are boxes lying on
the floor that need to be stacked on a table. Initially, all of the boxes are on the floor, and
the stack is empty (see Figure 18-2).

First, we push box A onto the stack. After the push operation, the stack is as shown in
Figure 18-3(a).

1
8

Empty stack

A

B
D

C
E

FIGURE 18-2 Empty stack

Push Box A

A

Push Box CPush Box B

B C

Peek at the
top element

Push Box D Pop stack

(a) (b) (c)

(d) (e) (f)

C CD

FIGURE 18-3 Stack operations

Stacks | 1085

We then push box B onto the stack. After this push operation, the stack is as shown in
Figure 18-3(b). Next, we push box C onto the stack. After this push operation, the stack is
as shown in Figure 18-3(c). Next, we look, that is, peek, at the top element of the stack.
After this operation, the stack is unchanged and shown in Figure 18-3(d). We then push
box D onto the stack. After this push operation, the stack is as shown in Figure 18-3(e).
Next, we pop the stack. After the pop operation, the stack is as shown in Figure 18-3(f).

An element can be removed from the stack only if there is something in the stack, and an
element can be added to the stack only if there is room. The two operations that
immediately follow from push, top, and pop are isFullStack (checks whether the
stack is full) and isEmptyStack (checks whether the stack is empty). Because a stack
keeps changing as we add and remove elements, the stack must be empty before we first
start using it. Thus, we need another operation, called initializeStack, which
initializes the stack to an empty state. Therefore, to successfully implement a stack, we
need at least these six operations, which are described in the next section. We might also
need other operations on a stack, depending on the specific implementation.

Stack Operations

• initializeStack: Initializes the stack to an empty state.

• isEmptyStack: Determines whether the stack is empty. If the stack is
empty, it returns the value true; otherwise, it returns the value false.

• isFullStack: Determines whether the stack is full. If the stack is full, it
returns the value true; otherwise, it returns the value false.

• push: Adds a new element to the top of the stack. The input to this
operation consists of the stack and the new element. Prior to this opera-
tion, the stack must exist and must not be full.

• top: Returns the top element of the stack. Prior to this operation, the
stack must exist and must not be full.

• pop: Removes the top element of the stack. Prior to this operation, the
stack must exist and must not be empty.

The following abstract class stackADT defines these operations as an ADT.

template <class Type>
class stackADT
{
public:

virtual void initializeStack() = 0;
//Method to initialize the stack to an empty state.
//Postcondition: Stack is empty.

virtual bool isEmptyStack() const = 0;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

1086 | Chapter 18: Stacks and Queues

virtual bool isFullStack() const = 0;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

virtual void push(const Type& newItem) = 0;
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

virtual Type top() const = 0;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element
// of the stack is returned.

virtual void pop() = 0;
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

};

Figure 18-4 shows the UML class diagram of the class stackADT.

We now consider the implementation of our abstract stack data structure. Because all
of the elements of a stack are of the same type, a stack can be implemented as either an
array or a linked structure. Both implementations are useful and are discussed in this
chapter.

1
8

stackADT<Type>

+initializeStack(): void
+isEmptyStack(): boolean
+isFullStack(): boolean
+push(Type): void
+top(): Type
+pop(): void

FIGURE 18-4 UML class diagram of the class stackADT

Stacks | 1087

Implementation of Stacks as Arrays
Because all of the elements of a stack are of the same type, you can use an array to
implement a stack. The first element of the stack can be put in the first array slot, the
second element of the stack in the second array slot, and so on. The top of the stack is the
index of the last element added to the stack.

In this implementation of a stack, stack elements are stored in an array, and an array is a
random access data structure; that is, you can directly access any element of the array.
However, by definition, a stack is a data structure in which the elements are accessed
(popped or pushed) at only one end—that is, a Last In First Out data structure. Thus, a
stack element is accessed only through the top, not through the bottom or middle. This
feature of a stack is extremely important and must be recognized in the beginning.

To keep track of the top position of the array, we can simply declare another variable
called stackTop.

The following class, stackType, implements the functions of the abstract class
stackADT. By using a pointer, we can dynamically allocate arrays, so we will leave it
for the user to specify the size of the array (that is, the stack size). We assume that the
default stack size is 100. Because the class stackType has a pointer member variable
(the pointer to the array to store the stack elements), we must overload the assignment
operator and include the copy constructor and destructor. Moreover, we give a generic
definition of the stack. Depending on the specific application, we can pass the stack
element type when we declare a stack object.

template <class Type>
class stackType: public stackADT<Type>
{
public:

const stackType<Type>& operator=(const stackType<Type>&);
//Overload the assignment operator.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: stackTop = 0;

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty,
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns true if the stack is full,
// otherwise returns false.

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

1088 | Chapter 18: Stacks and Queues

Type top() const;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top element
// of the stack is returned.

void pop();
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

stackType(int stackSize = 100);
//Constructor
//Create an array of the size stackSize to hold
//the stack elements. The default stack size is 100.
//Postcondition: The variable list contains the base
// address of the array, stackTop = 0, and
// maxStackSize = stackSize.

stackType(const stackType<Type>& otherStack);
//Copy constructor

~stackType();
//Destructor
//Remove all the elements from the stack.
//Postcondition: The array (list) holding the stack
// elements is deleted.

private:
int maxStackSize; //variable to store the maximum stack size
int stackTop; //variable to point to the top of the stack
Type *list; //pointer to the array that holds the

//stack elements

void copyStack(const stackType<Type>& otherStack);
//Function to make a copy of otherStack.
//Postcondition: A copy of otherStack is created and
// assigned to this stack.

};

Figure 18-5 shows the UML class diagram of the class stackType.

1
8

Implementation of Stacks as Arrays | 1089

Because C++ arrays begin with the index 0, we need to distinguish between the value of

stackTop and the array position indicated by stackTop. If stackTop is 0, the stack

is empty; if stackTop is nonzero, then the stack is nonempty and the top element of the

stack is given by stackTop - 1.

Notice that the function copyStack is included as a private member. This is
because we want to use this function only to implement the copy constructor and overload

the assignment operator. To copy a stack into another stack, the program can use the

assignment operator.

Figure 18-6 shows this data structure, wherein stack is an object of type stackType.
Note that stackTop can range from 0 to maxStackSize. If stackTop is nonzero,
then stackTop - 1 is the index of the stackTop element of the stack. Suppose that
maxStackSize = 100.

stackType<Type>
-maxStackSize: int
-stackTop: int
-*list: Type
+operator=(const stackType<Type>&):

const stackType<Type>&
+initializeStack(): void
+isEmptyStack() const: bool
+isFullStack() const: bool
+push(const Type&): void
+top() const: Type
+pop(): void
-copyStack(const stackType<Type>&): void
+stackType(int = 100)
+stackType(const stackType<Type>&)
+~stackType()

FIGURE 18-5 UML class diagram of the class stackType

1090 | Chapter 18: Stacks and Queues

Note that the pointer list contains the base address of the array (holding the stack
elements)—that is, the address of the first array component. Next, we discuss how to
implement the member functions of the class stackType.

Initialize Stack
Let us consider the initializeStack operation. Because the value of stackTop
indicates whether the stack is empty, we can simply set stackTop to 0 to initialize the
stack (see Figure 18-7).

1
8maxStackSize 100

stackTop 4
list

stack

A
B
C

.

.

.

.

.

[0]
[1]
[2]

[99]

stack
elements

[3] D

FIGURE 18-6 Example of a stack

maxStackSize 100
stackTop 0

list

stack

A
B
C

.

.

.

.

.

[0]
[1]
[2]

[99]

unused
stack

[3] D

FIGURE 18-7 Empty stack

Implementation of Stacks as Arrays | 1091

The definition of the function initializeStack is:

template <class Type>
void stackType<Type>::initializeStack()
{

stackTop = 0;
}//end initializeStack

Empty Stack
We have seen that the value of stackTop indicates whether the stack is empty. If
stackTop is 0, the stack is empty; otherwise, the stack is not empty. The definition of
the function isEmptyStack is:

template <class Type>
bool stackType<Type>::isEmptyStack() const
{

return(stackTop == 0);
}//end isEmptyStack

Full Stack
Next, we consider the operation isFullStack. It follows that the stack is full if stackTop
is equal to maxStackSize. The definition of the function isFullStack is:

template <class Type>
bool stackType<Type>::isFullStack() const
{

return (stackTop == maxStackSize);
} //end isFullStack

Push
Adding, or pushing, an element onto the stack is a two-step process. Recall that the value
of stackTop indicates the number of elements in the stack, and stackTop - 1 gives the
position of the top element of the stack. Therefore, the push operation is as follows:

1. Store the newItem in the array component indicated by stackTop.

2. Increment stackTop.

Figures 18-8 and 18-9 illustrate the push operation.

Suppose that before the push operation, the stack is as shown in Figure 18-8.

1092 | Chapter 18: Stacks and Queues

Assume newItem is 'y'. After the push operation, the stack is as shown in Figure 18-9.

1
8maxStackSize 100

stackTop 4
list

stack

S
u
n
n

.

.

.

.

.

[0]
[1]
[2]

[99]

stack
elements

[3]

FIGURE 18-8 Stack before pushing y

maxStackSize 100
5

list

stack

S
u
n
n

.

.

.

.

[0]
[1]
[2]

[99]

stack
elements

[3]
y [4]

stackTop

FIGURE 18-9 Stack after pushing y

Implementation of Stacks as Arrays | 1093

Using the previous algorithm, the definition of the function push is:

template <class Type>
void stackType<Type>::push(const Type& newItem)
{

if (!isFullStack())
{

list[stackTop] = newItem; //add newItem to the
//top of the stack

stackTop++; //increment stackTop
}
else

cout << "Cannot add to a full stack." << endl;
}//end push

If we try to add a new item to a full stack, the resulting condition is called an overflow.
Error checking for an overflow can be handled in different ways. One way is as shown
previously. Or, we can check for an overflow before calling the function push, as shown
next (assuming stack is an object of type stackType).

if (!stack.isFullStack())
stack.push(newItem);

Return the Top Element
The operation top returns the top element of the stack. Its definition is:

template <class Type>
Type stackType<Type>::top() const
{

assert(stackTop != 0); //if stack is empty,
//terminate the program

return list[stackTop - 1]; //return the element of the
//stack indicated by
//stackTop - 1

}//end top

Pop
To remove, or pop, an element from the stack, we simply decrement stackTop by 1.

Figures 18-10 and 18-11 illustrate the pop operation.

Suppose that before the pop operation, the stack is as shown in Figure 18-10.

1094 | Chapter 18: Stacks and Queues

After the pop operation, the stack is as shown in Figure 18-11.

1
8

maxStackSize 100
3

list

stack

B
O
L
D

.

.

.

.

.

[0]
[1]
[2]

[99]

stack
elements

[3]

stackTop

FIGURE 18-11 Stack after popping D

maxStackSize 100
4

list

stack

B
O
L
D

.

.

.

.

.

[0]
[1]
[2]

[99]

stack
elements

[3]

stackTop

FIGURE 18-10 Stack before popping D

Implementation of Stacks as Arrays | 1095

The definition of the function pop is:

template <class Type>
void stackType<Type>::pop()
{

if (!isEmptyStack())
stackTop--; //decrement stackTop

else
cout << "Cannot remove from an empty stack." << endl;

}//end pop

If we try to remove an item from an empty stack, the resulting condition is called an
underflow. Error checking for an underflow can be handled in different ways. One way
is as shown in the definition of the function pop. Or, we can check for an underflow
before calling the function pop, as shown next (assuming stack is an object of type
stackType).

if (!stack.isEmptyStack())
stack.pop();

Copy Stack
The function copyStack makes a copy of a stack. The stack to be copied is passed as a
parameter to the function copyStack. We will, in fact, use this function to implement
the copy constructor and overload the assignment operator. The definition of this
function is:

template <class Type>
void stackType<Type>::copyStack(const stackType<Type>& otherStack)
{

delete [] list;
maxStackSize = otherStack.maxStackSize;
stackTop = otherStack.stackTop;

list = new Type[maxStackSize];

//copy otherStack into this stack
for (int j = 0; j < stackTop; j++)

list[j] = otherStack.list[j];
} //end copyStack

Constructor and Destructor
The functions to implement the constructor and the destructor are straightforward. The
constructor with parameters sets the stack size to the size specified by the user, sets
stackTop to 0, and creates an appropriate array in which to store the stack elements. If
the user does not specify the size of the array in which to store the stack elements, the
constructor uses the default value, which is 100, to create an array of size 100. The
destructor simply deallocates the memory occupied by the array (that is, the stack) and
sets stackTop to 0. The definitions of the constructor and destructor are:

1096 | Chapter 18: Stacks and Queues

template <class Type>
stackType<Type>::stackType(int stackSize)
{

if (stackSize <= 0)
{

cout << "Size of the array to hold the stack must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxStackSize = 100;
}
else

maxStackSize = stackSize; //set the stack size to
//the value specified by
//the parameter stackSize

stackTop = 0; //set stackTop to 0
list = new Type[maxStackSize]; //create the array to

//hold the stack elements
}//end constructor

template <class Type>
stackType<Type>::~stackType() //destructor
{

delete [] list; //deallocate the memory occupied
//by the array

}//end destructor

Copy Constructor
The copy constructor is called when a stack object is passed as a (value) parameter to a
function. It copies the values of the member variables of the actual parameter into the
corresponding member variables of the formal parameter. Its definition is:

template <class Type>
stackType<Type>::stackType(const stackType<Type>& otherStack)
{

list = NULL;

copyStack(otherStack);
}//end copy constructor

Overloading the Assignment Operator (=)
Recall that for classes with pointer member variables, the assignment operator must be
explicitly overloaded. The definition of the function to overload the assignment operator
for the class stackType is:

template <class Type>
const stackType<Type>& stackType<Type>::operator=

(const stackType<Type>& otherStack)

1
8

Implementation of Stacks as Arrays | 1097

{
if (this != &otherStack) //avoid self-copy

copyStack(otherStack);

return *this;
} //end operator=

Stack Header File
Now that you know how to implement the stack operations, you can put the definitions
of the class and the functions to implement the stack operations together to create the
stack header file. For the sake of completeness, we next describe the header file. (To save
space, only the definition of the class is shown; no documentation is provided.) Suppose
that the name of the header file containing the definition of the class stackType is
myStack.h. We will refer to this header file in any program that uses a stack.

//Header file: myStack.h

#ifndef H_StackType
#define H_StackType

#include <iostream>
#include <cassert>

#include "stackADT.h"

using namespace std;

template <class Type>
class stackType: public stackADT<Type>
{
public:

const stackType<Type>& operator=(const stackType<Type>&);

void initializeStack();

bool isEmptyStack() const;

bool isFullStack() const;

void push(const Type& newItem);

Type top() const;

void pop();

stackType(int stackSize = 100);

stackType(const stackType<Type>& otherStack);

~stackType();

1098 | Chapter 18: Stacks and Queues

private:
int maxStackSize; //variable to store the maximum stack size
int stackTop; //variable to point to the top of the stack
Type *list; //pointer to the array that holds the

//stack elements

void copyStack(const stackType<Type>& otherStack);
};

template <class Type>
void stackType<Type>::initializeStack()
{

stackTop = 0;
}//end initializeStack

template <class Type>
bool stackType<Type>::isEmptyStack() const
{

return (stackTop == 0);
}//end isEmptyStack

template <class Type>
bool stackType<Type>::isFullStack() const
{

return (stackTop == maxStackSize);
} //end isFullStack

template <class Type>
void stackType<Type>::push(const Type& newItem)
{

if (!isFullStack())
{

list[stackTop] = newItem; //add newItem to the
//top of the stack

stackTop++; //increment stackTop
}
else

cout << "Cannot add to a full stack." << endl;
}//end push

template <class Type>
Type stackType<Type>::top() const
{

assert(stackTop != 0); //if stack is empty,
//terminate the program

return list[stackTop - 1]; //return the element of the
//stack indicated by
//stackTop - 1

}//end top

template <class Type>
void stackType<Type>::pop()
{

if (!isEmptyStack())
stackTop--; //decrement stackTop

else
cout << "Cannot remove from an empty stack." << endl;

}//end pop

1
8

Implementation of Stacks as Arrays | 1099

template <class Type>
stackType<Type>::stackType(int stackSize)
{

if (stackSize <= 0)
{

cout << "Size of the array to hold the stack must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxStackSize = 100;
}
else

maxStackSize = stackSize; //set the stack size to
//the value specified by
//the parameter stackSize

stackTop = 0; //set stackTop to 0
list = new Type[maxStackSize]; //create the array to

//hold the stack elements
}//end constructor

template <class Type>
stackType<Type>::~stackType() //destructor
{

delete [] list; //deallocate the memory occupied
//by the array

}//end destructor

template <class Type>
void stackType<Type>::copyStack(const stackType<Type>& otherStack)
{

delete [] list;
maxStackSize = otherStack.maxStackSize;
stackTop = otherStack.stackTop;

list = new Type[maxStackSize];

//copy otherStack into this stack
for (int j = 0; j < stackTop; j++)

list[j] = otherStack.list[j];
} //end copyStack

template <class Type>
stackType<Type>::stackType(const stackType<Type>& otherStack)
{

list = NULL;

copyStack(otherStack);
}//end copy constructor

template <class Type>
const stackType<Type>& stackType<Type>::operator=

(const stackType<Type>& otherStack)
{

if (this != &otherStack) //avoid self-copy
copyStack(otherStack);

1100 | Chapter 18: Stacks and Queues

return *this;
} //end operator=

#endif

EXAMPLE 18-1

Before we give a programming example, let us first write a simple program that uses the
class stackType and tests some of the stack operations. Among others, we will test the
assignment operator and the copy constructor. The program and its output are as follows:

//Program to test the various operations of a stack

#include <iostream>
#include "myStack.h"

using namespace std;

void testCopyConstructor(stackType<int> otherStack);

int main()
{

stackType<int> stack(50);
stackType<int> copyStack(50);
stackType<int> dummyStack(100);

stack.initializeStack();
stack.push(23);
stack.push(45);
stack.push(38);
copyStack = stack; //copy stack into copyStack

cout << "The elements of copyStack: ";

while (!copyStack.isEmptyStack()) //print copyStack
{

cout << copyStack.top() << " ";
copyStack.pop();

}
cout << endl;

copyStack = stack;
testCopyConstructor(stack); //test the copy constructor

if (!stack.isEmptyStack())
cout << "The original stack is not empty." << endl

<< "The top element of the original stack: "
<< copyStack.top() << endl;

dummyStack = stack; //copy stack into dummyStack
cout << "The elements of dummyStack: ";

1
8

Implementation of Stacks as Arrays | 1101

while (!dummyStack.isEmptyStack()) //print dummyStack
{

cout << dummyStack.top() << " ";
dummyStack.pop();

}
cout << endl;

return 0;
}

void testCopyConstructor(stackType<int> otherStack)
{

if (!otherStack.isEmptyStack())
cout << "otherStack is not empty." << endl

<< "The top element of otherStack: "
<< otherStack.top() << endl;

}

Sample Run:

The elements of copyStack: 38 45 23
otherStack is not empty.
The top element of otherStack: 38
The original stack is not empty.
The top element of the original stack: 38
The elements of dummyStack: 38 45 23

It is recommended that you do a walk-through of this program.

PROGRAMMING EXAMPLE: Highest GPA
In this example, we write a C++ program that reads a data file consisting of each
student’s GPA followed by the student’s name. The program then prints the highest
GPA and the names of all of the students who received that GPA. The program
scans the input file only once. Moreover, we assume that there is a maximum of
100 students in the class.

Input The program reads an input file consisting of each student’s GPA, followed
by the student’s name. Sample data is:

3.5 Bill
3.6 John
2.7 Lisa
3.9 Kathy
3.4 Jason
3.9 David
3.4 Jack

1102 | Chapter 18: Stacks and Queues

1
8

Output The highest GPA and all of the names associated with the highest GPA.
For example, for the above data, the highest GPA is 3.9, and the students
with that GPA are Kathy and David.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

We read the first GPA and the name of the student. Because this data is the first item
read, it is the highest GPA so far. Next, we read the second GPA and the name of the
student. We then compare this (second) GPA with the highest GPA so far. Three
cases arise:

1. The new GPA is greater than the highest GPA so far. In this case, we:

a. Update the value of the highest GPA so far.

b. Initialize the stack—that is, remove the names of the students
from the stack.

c. Save the name of the student having the highest GPA so far in
the stack.

2. The new GPA is equal to the highest GPA so far. In this case, we
add the name of the new student to the stack.

3. The new GPA is smaller than the highest GPA so far. In this case,
we discard the name of the student having this grade.

We then read the next GPA and the name of the student and repeat Steps 1 through 3.
We continue this process until we reach the end of the input file.

From this discussion, it is clear that we need the following variables:

double GPA; //variable to hold the current GPA
double highestGPA; //variable to hold the highest GPA
string name; //variable to hold the name of the student
stackType<string> stack(100); //object to implement the stack

The preceding discussion translates into the following algorithm:

1. Declare the variables and initialize stack.

2. Open the input file.

3. If the input file does not exist, exit the program.

4. Set the output of the floating-point numbers to a fixed decimal
format with a decimal point and trailing zeroes. Also, set the
precision to two decimal places.

5. Read the GPA and the student name.

6. highestGPA = GPA;

Programming Example: Highest GPA | 1103

7. while (not end of file)

{

7.1. if (GPA > highestGPA)

{

7.1.1. clearstack(stack);

7.1.2. push(stack, student name);

7.1.3. highestGPA = GPA;
}

7.2. else
if (GPA is equal to highestGPA)

push(stack, student name);

7.3. Read GPA and student name;
}

8. Output the highest GPA.

9. Output the names of the students having the highest GPA.

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// This program uses the class myStack to determine the
// highest GPA from a list of students with their GPA.
// The program also outputs the names of the students
// who received the highest GPA.
//***

#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>

#include "myStack.h"

using namespace std;

int main()
{

//Step 1
double GPA;
double highestGPA;
string name;

stackType<string> stack(100);

ifstream infile;

1104 | Chapter 18: Stacks and Queues

1
8

infile.open("HighestGPAData.txt"); //Step 2

if (!infile) //Step 3
{

cout << "The input file does not "
<< "exist. Program terminates!"
<< endl;

return 1;
}

cout << fixed << showpoint; //Step 4
cout << setprecision(2); //Step 4

infile >> GPA >> name; //Step 5

highestGPA = GPA; //Step 6

while (infile) //Step 7
{

if (GPA > highestGPA) //Step 7.1
{

stack.initializeStack(); //Step 7.1.1

if (!stack.isFullStack()) //Step 7.1.2
stack.push(name);

highestGPA = GPA; //Step 7.1.3
}
else if (GPA == highestGPA) //Step 7.2

if (!stack.isFullStack())
stack.push(name);

else
{

cout << "Stack overflows. "
<< "Program terminates!"
<< endl;

return 1; //exit program
}

infile >> GPA >> name; //Step 7.3
}

cout << "Highest GPA = " << highestGPA
<< endl; //Step 8

cout << "The students holding the "
<< "highest GPA are:" << endl;

while (!stack.isEmptyStack()) //Step 9
{

cout << stack.top() << endl;
stack.pop();

}

Programming Example: Highest GPA | 1105

Linked Implementation of Stacks
Because an array size is fixed, in the array (linear) representation of a stack, only a fixed
number of elements can be pushed onto the stack. If in a program the number of
elements to be pushed exceeds the size of the array, the program may terminate in an
error. We must overcome these problems.

We have seen that by using pointer variables, we can dynamically allocate and deallocate
memory, and by using linked lists, we can dynamically organize data (such as an ordered
list). Next, we will use these concepts to implement a stack dynamically.

cout << endl;

return 0;
}

Sample Run:

Input File (HighestGPAData.txt)

3.4 Randy
3.2 Kathy
2.5 Colt
3.4 Tom
3.8 Ron
3.8 Mickey
3.6 Peter
3.5 Donald
3.8 Cindy
3.7 Dome
3.9 Andy
3.8 Fox
3.9 Minnie
2.7 Gilda
3.9 Vinay
3.4 Danny

Output

Highest GPA = 3.90
The students holding the highest GPA are:
Vinay
Minnie
Andy

Note that the names of the students with the highest GPA are output in the reverse
order, relative to the order they appear in the input, due to the fact that the top
element of the stack is the last element added to the stack.

1106 | Chapter 18: Stacks and Queues

Recall that in the linear representation of a stack, the value of stackTop indicates the
number of elements in the stack, and the value of stackTop - 1 points to the top item in
the stack. With the help of stackTop, we can do several things: find the top element,
check whether the stack is empty, and so on.

Similar to the linear representation, in a linked representation, stackTop is used to locate
the top element in the stack. However, there is a slight difference. In the former case,
stackTop gives the index of the array. In the latter case, stackTop gives the address
(memory location) of the top element of the stack.

The following class implements the functions of the abstract class stackADT.

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

template <class Type>
class linkedStackType: public stackADT<Type>
{
public:

const linkedStackType<Type>& operator=
(const linkedStackType<Type>&);

//Overload the assignment operator.

bool isEmptyStack() const;
//Function to determine whether the stack is empty.
//Postcondition: Returns true if the stack is empty;
// otherwise returns false.

bool isFullStack() const;
//Function to determine whether the stack is full.
//Postcondition: Returns false.

void initializeStack();
//Function to initialize the stack to an empty state.
//Postcondition: The stack elements are removed;
// stackTop = NULL;

void push(const Type& newItem);
//Function to add newItem to the stack.
//Precondition: The stack exists and is not full.
//Postcondition: The stack is changed and newItem
// is added to the top of the stack.

1
8

Linked Implementation of Stacks | 1107

Type top() const;
//Function to return the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: If the stack is empty, the program
// terminates; otherwise, the top
// element of the stack is returned.

void pop();
//Function to remove the top element of the stack.
//Precondition: The stack exists and is not empty.
//Postcondition: The stack is changed and the top
// element is removed from the stack.

linkedStackType();
//Default constructor
//Postcondition: stackTop = NULL;

linkedStackType(const linkedStackType<Type>& otherStack);
//Copy constructor

~linkedStackType();
//Destructor
//Postcondition: All the elements of the stack are
// removed from the stack.

private:
nodeType<Type> *stackTop; //pointer to the stack

void copyStack(const linkedStackType<Type>& otherStack);
//Function to make a copy of otherStack.
//Postcondition: A copy of otherStack is created and
// assigned to this stack.

};

In this linked implementation of stacks, the memory to store the stack elements is

allocated dynamically. Logically, the stack is never full. The stack is full only if we run out

of memory space. Therefore, in reality, the function isFullStack does not apply to

linked implementation of stacks. However, the class linkedStackType must pro-
vide the definition of the function isFullStack, because it is defined in the parent

abstract class stackADT.

We leave the UML class diagram of the class linkedStackType as an exercise for you.
(See Exercise 26 at the end of this chapter.)

EXAMPLE 18-2

Suppose that stack is an object of type linkedStackType. Figure 18-12(a) shows an
empty stack, and Figure 18-12(b) shows a nonempty stack.

1108 | Chapter 18: Stacks and Queues

1
8

In Figure 18-12(b), the top element of the stack is C; that is, the last element pushed onto
the stack is C.

Next, we discuss the definitions of the functions to implement the operations of a linked
stack.

Default Constructor
The first operation that we consider is the default constructor. The default constructor
initializes the stack to an empty state when a stack object is declared. Thus, this function
sets stackTop to NULL. The definition of this function is:

template <class Type>
linkedStackType<Type>::linkedStackType()
{

stackTop = NULL;
}

Empty Stack and Full Stack
The operations isEmptyStack and isFullStack are quite straightforward. The stack is
empty if stackTop is NULL. Also, because the memory for a stack element is allocated
and deallocated dynamically, the stack is never full. (The stack is full only if we run out of
memory.) Thus, the function isFullStack always returns the value false. The
definitions of the functions to implement these operations are:

template <class Type>
bool linkedStackType<Type>::isEmptyStack() const

stackTop
stack

stackTop
stack

C

B

A

(a) Empty stack

(b) Nonempty stack

FIGURE 18-12 Empty and nonempty linked stack

Linked Implementation of Stacks | 1109

{
return (stackTop == NULL);

} //end isEmptyStack

template <class Type>
bool linkedStackType<Type>:: isFullStack() const
{

return false;
} //end isFullStack

Recall that in the linked implementation of stacks, the function isFullStack does not
apply because, logically, the stack is never full. However, you must provide its definition
because it is included as an abstract function in the parent class stackADT.

Initialize Stack
The operation initializeStack reinitializes the stack to an empty state. Because the
stack may contain some elements and we are using a linked implementation of a stack, we
must deallocate the memory occupied by the stack elements and set stackTop to NULL.
The definition of this function is:

template <class Type>
void linkedStackType<Type>:: initializeStack()
{

nodeType<Type> *temp; //pointer to delete the node

while (stackTop != NULL) //while there are elements in
//the stack

{
temp = stackTop; //set temp to point to the

//current node
stackTop = stackTop->link; //advance stackTop to the

//next node
delete temp; //deallocate memory occupied by temp

}
} //end initializeStack

Next, we consider the push, top, and pop operations. From Figure 18-12(b), it is clear
that the newElement will be added (in the case of push) at the beginning of the linked
list pointed to by stackTop. In the case of pop, the node pointed to by stackTop will
be removed. In both cases, the value of the pointer stackTop is updated. The operation
top returns the info of the node that stackTop is pointing to.

Push
Consider the stack shown in Figure 18-13.

1110 | Chapter 18: Stacks and Queues

Figure 18-14 shows the steps of the push operation. (Assume that the new element to be
pushed is 'D'.)

The statements:

newNode = new nodeType<Type>; //create the new node
newNode->info = newElement;

1
8

stackTop

stack

C

B

A

FIGURE 18-13 Stack before the push operation

D

stackTop
stack

C

B

A

D

C

B

A

newNode

(a) Create newNode
and store D (b) Put newNode onthe top of stack

(c) Make stackTop point
to the top element

stackTop
stack

stackTop
stack

newNode newNode

D

C

B

A

FIGURE 18-14 Push operation

Linked Implementation of Stacks | 1111

create a node, store the address of the node into the variable newNode, and store
newElement into the info field of newNode. See Figure 18-14(a).

The statement:

newNode->link = stackTop;

inserts newNode at the top of the stack, as shown in Figure 18-14(b).

Finally, the statement:

stackTop = newNode;

updates the value of stackTop, which results in Figure 18-14(c).

The definition of the function push is:

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

nodeType<Type> *newNode; //pointer to create the new node

newNode = new nodeType<Type>; //create the node

newNode->info = newElement; //store newElement in the node
newNode->link = stackTop; //insert newNode before stackTop
stackTop = newNode; //set stackTop to point to the

//top node
} //end push

We do not need to check whether the stack is full before we push an element onto the
stack because in this implementation, logically, the stack is never full.

Return the Top Element
The operation to return the top element of the stack is quite straightforward. Its
definition is:

template <class Type>
Type linkedStackType<Type>::top() const
{

assert(stackTop != NULL); //if stack is empty,
//terminate the program

return stackTop->info; //return the top element
}//end top

Pop
Now we consider the pop operation, which removes the top element of the stack.
Consider the stack shown in Figure 18-15.

1112 | Chapter 18: Stacks and Queues

Figure 18-16 shows the pop operation.

The statement:

temp = stackTop;

makes temp point to the top of the stack. See Figure 18-16(a). Next, the statement:

stackTop = stackTop->link;

makes the second element of the stack become the top element of the stack. See Figure
18-16(b).

1
8

stackTop

stack

C

B

A

FIGURE 18-15 Stack before the pop operation

temp C

B

A

stackTop

stack
C

B

A

B

A

stackTop

stack

stackTop

temp

(a) Make temp point to the
top element

(b) Make stackTop point to
the next element

(c) Delete temp

FIGURE 18-16 Pop operation

Linked Implementation of Stacks | 1113

Finally, the statement:

delete temp;

deallocates the memory pointed to by temp. See Figure 18-16(c).

The definition of the function pop is:

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp; //pointer to deallocate memory

if (stackTop != NULL)
{

temp = stackTop; //set temp to point to the top node

stackTop = stackTop->link; //advance stackTop to the
//next node

delete temp; //delete the top node
}
else

cout << "Cannot remove from an empty stack." << endl;
}//end pop

Copy Stack
The function copyStack makes an identical copy of a stack. Its definition is similar to the
definition of copyList for linked lists, given in Chapter 17. The definition of the
function copyStack is:

template <class Type>
void linkedStackType<Type>::copyStack

(const linkedStackType<Type>& otherStack)
{

nodeType<Type> *newNode, *current, *last;

if (stackTop != NULL) //if stack is nonempty, make it empty
initializeStack();

if (otherStack.stackTop == NULL)
stackTop = NULL;

else
{

current = otherStack.stackTop; //set current to point
//to the stack to be copied

//copy the stackTop element of the stack
stackTop = new nodeType<Type>; //create the node

stackTop->info = current->info; //copy the info

1114 | Chapter 18: Stacks and Queues

stackTop->link = NULL; //set the link field of the
//node to NULL

last = stackTop; //set last to point to the node
current = current->link; //set current to point to

//the next node

//copy the remaining stack
while (current != NULL)
{

newNode = new nodeType<Type>;

newNode->info = current->info;
newNode->link = NULL;
last->link = newNode;
last = newNode;
current = current->link;

}//end while
}//end else

} //end copyStack

Constructors and Destructors
We have already discussed the default constructor. To complete the implementation of
the stack operations, next we give the definitions of the functions to implement the copy
constructor and the destructor and to overload the assignment operator. (These functions
are similar to those discussed for linked lists in Chapter 17.)

//copy constructor
template <class Type>
linkedStackType<Type>::linkedStackType(

const linkedStackType<Type>& otherStack)
{

stackTop = NULL;
copyStack(otherStack);

}//end copy constructor

//destructor
template <class Type>
linkedStackType<Type>::~linkedStackType()
{

initializeStack();
}//end destructor

Overloading the Assignment Operator (=)
The definition of the function to overload the assignment operator for the class
linkedStackType is:

template <class Type>
const linkedStackType<Type>& linkedStackType<Type>::operator=

(const linkedStackType<Type>& otherStack)

1
8

Linked Implementation of Stacks | 1115

{
if (this != &otherStack) //avoid self-copy

copyStack(otherStack);

return *this;
}//end operator=

The definition of a stack and the functions to implement the stack operations discussed
previously are generic. Also, as in the case of an array representation of a stack, in the
linked representation of a stack, we must put the definition of the stack and the functions
to implement the stack operations together in a (header) file. A client’s program can
include this header file via the include statement.

Example 18-3 illustrates how a linkedStack object is used in a program.

EXAMPLE 18-3

We assume that the definition of the class linkedStackType and the functions to
implement the stack operations are included in the header file "linkedStack.h".

//This program tests various operations of a linked stack

#include <iostream>
#include "linkedStack.h"

using namespace std;

void testCopy(linkedStackType<int> OStack);

int main()
{

linkedStackType<int> stack;
linkedStackType<int> otherStack;
linkedStackType<int> newStack;

//Add elements into stack
stack.push(34);
stack.push(43);
stack.push(27);

//Use the assignment operator to copy the elements
//of stack into newStack

newStack = stack;

cout << "After the assignment operator, newStack: "
<< endl;

//Output the elements of newStack
while (!newStack.isEmptyStack())
{

cout << newStack.top() << endl;
newStack.pop();

}

1116 | Chapter 18: Stacks and Queues

//Use the assignment operator to copy the elements
//of stack into otherStack

otherStack = stack;

cout << "Testing the copy constructor." << endl;

testCopy(otherStack);

cout << "After the copy constructor, otherStack: " << endl;

while (!otherStack.isEmptyStack())
{

cout << otherStack.top() << endl;
otherStack.pop();

}

return 0;
}

//Function to test the copy constructor
void testCopy(linkedStackType<int> OStack)
{

cout << "Stack in the function testCopy:" << endl;

while (!OStack.isEmptyStack())
{

cout << OStack.top() << endl;
OStack.pop();

}
}

Sample Run:

After the assignment operator, newStack:
27
43
34
Testing the copy constructor.
Stack in the function testCopy:
27
43
34
After the copy constructor, otherStack:
27
43
34

1
8

Linked Implementation of Stacks | 1117

Stack as Derived from the class unorderedLinkedList
If we compare the push function of the stack with the insertFirst function
discussed for general lists in Chapter 17, we see that the algorithms to implement these
operations are similar. A comparison of other functions—such as initializeStack and
initializeList, isEmptyList and isEmptyStack, and so on—suggests that the
class linkedStackType can be derived from the class linkedListType. More-
over, the functions pop and isFullStack can be implemented as in the previous section.
Note that the class linkedListType is an abstract and does not implement all of the
operations. However, the class unorderedLinkedListType is derived from the
class linkedListType and provides the definitions of the abstract functions of
the class linkedListType. Therefore, we can derive the class linkedStackType
from the class unorderedLinkedListType.

Next, we define the class linkedStackType that is derived from the class
unorderedLinkedList. The definitions of the functions to implement the stack opera-
tions are also given.

#include <iostream>
#include "unorderedLinkedList.h"

using namespace std;

template <class Type>
class linkedStackType: public unorderedLinkedList<Type>
{
public:

void initializeStack();
bool isEmptyStack() const;
bool isFullStack() const;
void push(const Type& newItem);
Type top() const;
void pop();

};

template <class Type>
void linkedStackType<Type>::initializeStack()
{

unorderedLinkedList<Type>::initializeList();
}

template <class Type>
bool linkedStackType<Type>::isEmptyStack() const
{

return unorderedLinkedList<Type>::isEmptyList();
}
template <class Type>
bool linkedStackType<Type>::isFullStack() const
{

return false;
}

1118 | Chapter 18: Stacks and Queues

1
8

template <class Type>
void linkedStackType<Type>::push(const Type& newElement)
{

unorderedLinkedList<Type>::insertFirst(newElement);
}

template <class Type>
Type linkedStackType<Type>::top() const
{

return unorderedLinkedList<Type>::front();
}

template <class Type>
void linkedStackType<Type>::pop()
{

nodeType<Type> *temp;

temp = first;
first = first->link;
delete temp;

}

Application of Stacks: Postfix Expressions
Calculator
The usual notation for writing arithmetic expressions (the notation we learned in elemen-
tary school) is called infix notation, in which the operator is written between the operands.
For example, in the expression a + b, the operator + is between the operands a and b. In
infix notation, the operators have precedence. That is, we must evaluate expressions from
left to right, and multiplication and division have higher precedence than do addition and
subtraction. If we want to evaluate the expression in a different order, we must include
parentheses. For example, in the expression a + b * c, we first evaluate * using the operands
b and c, and then we evaluate + using the operand a and the result of b * c.

In the early 1920s, the Polish mathematician Jan Lukasiewicz discovered that if operators
were written before the operands (prefix or Polish notation; for example, + a b), the
parentheses could be omitted. In the late 1950s, the Australian philosopher and early
computer scientist Charles L. Hamblin proposed a scheme in which the operators follow
the operands (postfix operators), resulting in the Reverse Polish notation. This has the
advantage that the operators appear in the order required for computation.

For example, the expression:

a + b * c

in a postfix expression is:

a b c * +

The following example shows various infix expressions and their equivalent postfix
expressions.

Application of Stacks: Postfix Expressions Calculator | 1119

EXAMPLE 18-4

Shortly after Lukasiewicz’s discovery, it was realized that postfix notation had important
applications in computer science. In fact, many compilers now first translate arithmetic
expressions into some form of postfix notation and then translate this postfix expression
into machine code. Postfix expressions can be evaluated using the following algorithm:

Scan the expression from left to right. When an operator is found, back up to get the
required number of operands, perform the operation, and continue.

Consider the following postfix expression:

6 3 + 2 * =

Let us evaluate this expression using a stack and the previous algorithm. Figure 18-17
shows how this expression gets evaluated.

Infix Expression Equivalent Postfix Expression

a + b a b +

a + b * c a b c * +

a * b + c a b * c +

(a + b) * c a b + c *

(a � b) * (c + d) a b � c d + *
(a + b) * (c � d / e) + f a b + c d e / � * f +

96

Push
6
into
stack

(a)

3
6

(b)

+
Pop
stack
twice
op2 = 3;
op1 = 6;

(c)

op1 + op2
= 9
Push 9
into
stack

(d)

Expression: 6 3 + 2 * =

Push
3
into
stack

2
9

(e)

Push
2
into
stack

*
Pop
stack
twice
op2 = 2;
op1 = 9;

(f)

op1 * op2
= 18
Push 18
into
stack 18

(g)

=
Pop
stack
and
print:
18

(h)

FIGURE 18-17 Evaluating the postfix expression: 6 3 + 2 * ¼

1120 | Chapter 18: Stacks and Queues

Read the first symbol, 6, which is a number. Push the number onto the stack (see
Figure 18-17(a)). Read the next symbol, 3, which is a number. Push the number onto the
stack (see Figure 18-17(b)). Read the next symbol, +, which is an operator. Because an
operator requires two operands to be evaluated, pop the stack twice (see Figure 18-17(c)).
Perform the operation and put the result back onto the stack (see Figure 18-17(d)).

Read the next symbol, 2, which is a number. Push the number onto the stack (see
Figure 18-17(e)). Read the next symbol, *, which is an operator. Because an operator
requires two operands to be evaluated, pop the stack twice (see Figure 18-17(f)). Perform
the operation, and put the result back onto the stack (see Figure 18-17(g)).

Scan the next symbol, =, which is the equal sign, indicating the end of the expression. Therefore,
print the result. The result of the expression is in the stack, so pop and print (see Figure 18-17(h)).

The value of the expression 6 3 + 2 * = 18.

From this discussion, it is clear that when we read a symbol other than a number, the
following cases arise:

1. The symbol we read is one of the following: +, -, *, /, or =.

a. If the symbol is +, -, *, or /, the symbol is an operator, so we must
evaluate it. Because an operator requires two operands, the stack must
have at least two elements; otherwise, the expression has an error.

b. If the symbol is = (an equal sign), the expression ends and we must
print the answer. At this step, the stack must contain exactly one
element; otherwise, the expression has an error.

2. The symbol we read is something other than +, -, *, /, or =. In this
case, the expression contains an illegal operator.

It is also clear that when an operand (number) is encountered in an expression, it is
pushed onto the stack because the operator comes after the operands.

Consider the following expressions:

a. 7 6 + 3 ; 6 - =

b. 14 + 2 3 * =

c. 14 2 3 + =

Expression (a) has an illegal operator, expression (b) does not have enough operands for +,
and expression (c) has too many operands. In the case of expression (c), when we
encounter the equal sign (=), the stack will have two elements, and this error cannot be
discovered until we are ready to print the value of the expression.

To make the input easier to read, we assume that the postfix expressions are in the
following form:

#6 #3 + #2 * =

1
8

Application of Stacks: Postfix Expressions Calculator | 1121

The symbol # precedes each number in the expression. If the symbol scanned is #, then
the next input is a number (that is, an operand). If the symbol scanned is not #, then it is
either an operator (may be illegal) or an equal sign (indicating the end of the expression).
Furthermore, we assume that each expression contains only the +, -, *, and / operators.

This program outputs the entire postfix expression together with the answer. If the
expression has an error, the expression is discarded. In this case, the program outputs
the expression together with an appropriate error message. Because an expression may
contain an error, we must clear the stack before processing the next expression. Also, the
stack must be initialized; that is, the stack must be empty.

Main Algorithm
Following the previous discussion, the main algorithm in pseudocode is:

Read the first character
while not the end of input data
{

a. initialize the stack
b. process the expression
c. output result
d. get the next expression

}

To simplify the complexity of the function main, we write four functions:
evaluateExpression, evaluateOpr, discardExp, and printResult. The function
evaluateExpression, if possible, evaluates the expression and leaves the result in the
stack. If the postfix expression is error free, the function printResult outputs the result.
The function evaluateOpr evaluates an operator, and the function discardExp discards
the current expression if there is any error in the expression.

Function evaluateExpression
The function evaluateExpression evaluates each postfix expression. Each expression
ends with the symbol =. The general algorithm is:

while (ch is not = '=') //process each expression
//= marks the end of an expression

{
switch (ch)
{
case '#':

read a number
output the number;
push the number onto the stack;
break;

default:
assume that ch is an operation
evaluate the operation;

} //end switch

1122 | Chapter 18: Stacks and Queues

if no error was found, then
{

read next ch;
output ch;

}
else

Discard the expression
} //end while

From this algorithm, it follows that this method has five parameters—one to access the input file,
one to access the output file, one to access the stack, one to pass a character of the expression,
and one to indicate whether there is an error in the expression. The definition of this function is:

void evaluateExpression(ifstream& inpF, ofstream& outF,
stackType<double>& stack,
char& ch, bool& isExpOk)

{
double num;

while (ch != '=')
{

switch (ch)
{
case '#':

inpF >> num;
outF << num << " ";
if (!stack.isFullStack())

stack.push(num);
else
{

cout << "Stack overflow. "
<< "Program terminates!" << endl;

exit(0); //terminate the program
}

break;
default:

evaluateOpr(outF, stack, ch, isExpOk);
}//end switch

if (isExpOk) //if no error
{

inpF >> ch;
outF << ch;

if (ch != '#')
outF << " ";

}
else

discardExp(inpF, outF, ch);
} //end while (!= '=')

}

1
8

Application of Stacks: Postfix Expressions Calculator | 1123

Note that the function exit terminates the program.

Function evaluateOpr
This function (if possible) evaluates an expression. Two operands are needed to evaluate an
operation, and operands are saved in the stack. Therefore, the stack must contain at least two
numbers. If the stack contains fewer than two numbers, then the expression has an error. In
this case, the entire expression is discarded, and an appropriate message is printed. This
function also checks for any illegal operations. In pseudocode, this function is:

if stack is empty
{

error in the expression
set expressionOk to false

}
else
{

retrieve the top element of stack into op2
pop stack
if stack is empty
{

error in the expression
set expressionOk to false

}
else
{

retrieve the top element of stack into op1
pop stack

//If the operation is legal, perform the
//operation and push the result onto the stack.

switch (ch)
{
case '+':

//Perform the operation and push the result
//onto the stack.

stack.push(op1 + op2);
break;

case '-':
//Perform the operation and push the result
//onto the stack.

stack.push(op1 – op2);
break;

case '*':
//Perform the operation and push the
//result onto the stack.

stack.push(op1 * op2);
break;

case '/':
//If (op2 != 0), perform the operation and
//push the result onto the stack.

stack.push(op1 / op2);

1124 | Chapter 18: Stacks and Queues

//Otherwise, report the error.
//Set expressionOk to false.

break;
otherwise operation is illegal

{
output an appropriate message;
set expressionOk to false

}
} //end switch

}

Following this pseudocode, the definition of the function evaluateOpr is:

void evaluateOpr(ofstream& out, stackType<double>& stack,
char& ch, bool& isExpOk)

{
double op1, op2;

if (stack.isEmptyStack())
{

out << " (Not enough operands)";
isExpOk = false;

}
else
{

op2 = stack.top();
stack.pop();

if (stack.isEmptyStack())
{

out << " (Not enough operands)";
isExpOk = false;

}
else
{

op1 = stack.top();
stack.pop();

switch (ch)
{
case '+':

stack.push(op1 + op2);
break;

case '-':
stack.push(op1 - op2);
break;

case '*':
stack.push(op1 * op2);
break;

case '/':
if (op2 != 0)

stack.push(op1 / op2);

1
8

Application of Stacks: Postfix Expressions Calculator | 1125

else
{

out << " (Division by 0)";
isExpOk = false;

}
break;

default:
out << " (Illegal operator)";
isExpOk = false;

}//end switch
} //end else

} //end else
} //end evaluateOpr

Function discardExp
This function is called whenever an error is discovered in the expression. It reads and
writes the input data only until the input is '=', the end of the expression. The definiton
of this function is:

void discardExp(ifstream& in, ofstream& out, char& ch)
{

while (ch != '=')
{

in.get(ch);
out << ch;

}
} //end discardExp

Function printResult
If the postfix expression contains no errors, the function printResult prints the
result; otherwise, it outputs an appropriate message. The result of the expression is in
the stack, and the output is sent to a file. Therefore, this function must have access to
the stack and the output file. Suppose that no errors were encountered by the
method evaluateExpression. If the stack has only one element, then the expres-
sion is error free and the top element of the stack is printed. If either the stack is
empty or it has more than one element, then there is an error in the postfix
expression. In this case, this method outputs an appropriate error message. The
definition of this method is:

void printResult(ofstream& outF, stackType<double>& stack,
bool isExpOk)

{
double result;

if (isExpOk) //if no error, print the result

1126 | Chapter 18: Stacks and Queues

{
if (!stack.isEmptyStack())
{

result = stack.top();
stack.pop();

if (stack.isEmptyStack())
outF << result << endl;

else
outF << " (Error: Too many operands)" << endl;

} //end if
else

outF << " (Error in the expression)" << endl;
}
else

outF << " (Error in the expression)" << endl;

outF << "_________________________________"
<< endl << endl;

} //end printResult

PROGRAM LISTING

//***
// Author: D.S. Malik
//
// Program: Postfix Calculator
// This program evaluates postfix expressions.
//***

#include <iostream>
#include <iomanip>
#include <fstream>
#include "mystack.h"

using namespace std;

void evaluateExpression(ifstream& inpF, ofstream& outF,
stackType<double>& stack,
char& ch, bool& isExpOk);

void evaluateOpr(ofstream& out, stackType<double>& stack,
char& ch, bool& isExpOk);

void discardExp(ifstream& in, ofstream& out, char& ch);
void printResult(ofstream& outF, stackType<double>& stack,

bool isExpOk);

int main()
{

bool expressionOk;
char ch;

1
8

Application of Stacks: Postfix Expressions Calculator | 1127

stackType<double> stack(100);
ifstream infile;
ofstream outfile;

infile.open("RpnData.txt");

if (!infile)
{

cout << "Cannot open the input file. "
<< "Program terminates!" << endl;

return 1;
}

outfile.open("RpnOutput.txt");

outfile << fixed << showpoint;
outfile << setprecision(2);

infile >> ch;
while (infile)
{

stack.initializeStack();
expressionOk = true;
outfile << ch;

evaluateExpression(infile, outfile, stack, ch,
expressionOk);

printResult(outfile, stack, expressionOk);
infile >> ch; //begin processing the next expression

} //end while

infile.close();
outfile.close();

return 0;

} //end main
//Place the definitions of the function evaluateExpression,
//evaluateOpr, discardExp, and printResult as described
//previously here.

Sample Run:

Input File

#35 #27 + #3 * =
#26 #28 + #32 #2 ; - #5 / =
#23 #30 #15 * / =
#2 #3 #4 + =
#20 #29 #9 * ; =
#25 #23 - + =
#34 #24 #12 #7 / * + #23 - =

1128 | Chapter 18: Stacks and Queues

Output

#35.00 #27.00 + #3.00 * = 186.00

#26.00 #28.00 + #32.00 #2.00 ; (Illegal operator) - #5 / = (Error in the expression)

#23.00 #30.00 #15.00 * / = 0.05

#2.00 #3.00 #4.00 + = (Error: Too many operands)

#20.00 #29.00 #9.00 * ; (Illegal operator) = (Error in the expression)

#25.00 #23.00 - + (Not enough operands) = (Error in the expression)

#34.00 #24.00 #12.00 #7.00 / * + #23.00 - = 52.14

Removing Recursion: Nonrecursive Algorithm
to Print a Linked List Backward
In Chapter 17, we used recursion to print a linked list backward. In this section, you will
learn how a stack can be used to design a nonrecursive algorithm to print a linked list
backward.

Consider the linked list shown in Figure 18-18.

To print the list backward, first we need to get to the last node of the list, which we can do by
traversing the linked list starting at the first node. However, once we are at the last node, how
do we get back to the previous node, especially given that links go in only one direction?
You can again traverse the linked list with the appropriate loop termination condition, but
this approach might waste a considerable amount of computer time, especially if the list is
very large. Moreover, if we do this for every node in the list, the program might execute very
slowly. Next, we show how to use a stack effectively to print the list backward.

After printing the info of a particular node, we need to move to the node immediately
behind this node. For example, after printing 15, we need to move to the node with

1
8

5first 10 15

FIGURE 18-18 Linked list

Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward | 1129

info 10. Thus, while initially traversing the list to move to the last node, we must save a
pointer to each node. For example, for the list in Figure 18-18, we must save a pointer to
each of the nodes with info 5 and 10. After printing 15, we go back to the node with
info 10; after printing 10, we go back to the node with info 5. From this, it follows
that we must save pointers to each node in a stack, so as to implement the Last In First
Out principle.

Because the number of nodes in a linked list is usually not known, we will use the linked
implementation of a stack. Suppose that stack is an object of type linkedListType,
and current is a pointer of the same type as the pointer first. Consider the following
statements:

current = first; //Line 1

while (current != NULL) //Line 2
{

stack.push(current); //Line 3
current = current->link; //Line 4

}

After the statement in Line 1 executes, current points to the first node. (See Figure 18-19.)

Because current is not NULL, the statements in Lines 3 and 4 execute. (See Figure 18-20.)

current

stack

stackTop5first 10 15

FIGURE 18-19 List after the statement current ¼ first; executes

 5current

stack

stackTop5first 10 15

FIGURE 18-20 List and stack after the statements stack.push(current); and current ¼
current->link; execute

1130 | Chapter 18: Stacks and Queues

After the statement in Line 4 executes, the loop condition in Line 2 is re-evaluated.
Because current is not NULL, the loop condition evaluates to true, so the statements in
Lines 3 and 4 execute. (See Figure 18-21.)

After the statement in Line 4 executes, the loop condition, in Line 2, is evaluated again.
Because current is not NULL, the loop condition evaluates to true, so the statements in
Lines 3 and 4 execute. (See Figure 18-22.)

After the statement in Line 4 executes, the loop condition in Line 2 is evaluated again.
Because current is NULL, the loop condition evaluates to false, and the while loop in

1
8 5

stack

stackTop
5first 10 15

 10current

FIGURE 18-21 List and stack after the statements stack.push(current); and current =
current->link; execute

 5

current

stack

stackTop5first 10 15 15

 10

FIGURE 18-22 List and stack after the statements stack.push(current); and current =
current->link; execute

Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward | 1131

Line 2 terminates. From Figure 18-22, it follows that a pointer to each node in the linked
list is saved in the stack. The top element of the stack contains a pointer to the last node in
the list, and so on. Let us now execute the following statements:

while (!stack.isEmptyStack()) //Line 5
{

current = stack.top(); //Line 6
stack.pop(); //Line 7
cout << current->info << " "; //Line 8

}

The loop condition in Line 5 evaluates to true because the stack is nonempty. There-
fore, the statements in Lines 6, 7, and 8 execute. After the statement in Line 6 executes,
current points to the last node. The statement in Line 7 removes the top element of the
stack. (See Figure 18-23.)

The statement in Line 8 outputs current->info, which is 15. Next, the loop condition in
Line 5 is evaluated. Because the loop condition evaluates to true, the statements in Lines 6,
7, and 8 execute. After the statements in Lines 6 and 7 execute, Figure 18-24 results.

 5

stack

stackTop
5first 10 15

 10current

FIGURE 18-23 List and stack after the statements current = stack.top(); and stack. pop();
execute

 5current

stack

stackTop5first 10 15

FIGURE 18-24 List and stack after the statements current = stack.top(); and stack. pop();
execute

1132 | Chapter 18: Stacks and Queues

The statement in Line 8 outputs current->info, which is 10. Next, the loop condition in
Line 5 is evaluated. Because the loop condition evaluates to true, the statements in Lines 6,
7, and 8 execute. After the statements in Lines 6 and 7 execute, Figure 18-25 results.

The statement in Line 8 outputs current->info, which is 5. Next, the loop condition
in Line 5 is evaluated. Because the loop condition evaluates to false, the while loop
terminates. The while loop in Line 5 produces the following output:

15 10 5

Queues
This section discusses another important data structure called a queue. The notion of a
queue in computer science is the same as the notion of the queues to which you are
accustomed in everyday life. There are queues of customers in a bank or in a grocery store
and queues of cars waiting to pass through a tollbooth. Similarly, because a computer can
send a print request faster than a printer can print, a queue of documents is often waiting to
be printed at a printer. The general rule to process elements in a queue is that the customer
at the front of the queue is served next, and when a new customer arrives, he or she stands
at the end of the queue. That is, a queue is a First In First Out data structure.

Queues have numerous applications in computer science. Whenever a system is modeled
on the First In First Out principle, queues are used. At the end of this section, we will
discuss one of the most widely used applications of queues, computer simulation. First,
however, we need to develop the tools necessary to implement a queue. The next few
sections discuss how to design classes to implement queues as an ADT.

A queue is a set of elements of the same type in which the elements are added at one end,
called the back or rear, and deleted from the other end, called the front. For example,
consider a line of customers in a bank, wherein the customers are waiting to withdraw/
deposit money or to conduct some other business. Each new customer gets in the line at
the rear. Whenever a teller is ready for a new customer, the customer at the front of the
line is served.

The rear of the queue is accessed whenever a new element is added to the queue, and the
front of the queue is accessed whenever an element is deleted from the queue. As in a

1
8

current

stack

stackTop5first 10 15

FIGURE 18-25 List and stack after the statements current = stack.top(); and stack. pop();
execute

Queues | 1133

stack, the middle elements of the queue are inaccessible, even if the queue elements are
stored in an array.

Queue: A data structure in which the elements are added at one end, called the rear, and
deleted from the other end, called the front; a First In First Out (FIFO) data structure.

Queue Operations
From the definition of queues, we see that the two key operations are add and delete. We
call the add operation addQueue and the delete operation deleteQueue. Because
elements can be neither deleted from an empty queue nor added to a full queue, we
need two more operations to successfully implement the addQueue and deleteQueue
operations: isEmptyQueue (checks whether the queue is empty) and isFullQueue
(checks whether a queue is full).

We also need an operation, initializeQueue, to initialize the queue to an empty state.
Moreover, to retrieve the first and last elements of the queue, we include the operations
front and back, as described in the following list. Some of the queue operations are:

• initializeQueue: Initializes the queue to an empty state.

• isEmptyQueue: Determines whether the queue is empty. If the queue is
empty, it returns the value true; otherwise, it returns the value false.

• isFullQueue: Determines whether the queue is full. If the queue is full,
it returns the value true; otherwise, it returns the value false.

• front: Returns the front, that is, the first element of the queue. Input to
this operation consists of the queue. Prior to this operation, the queue
must exist and must not be empty.

• back: Returns the last element of the queue. Input to this operation
consists of the queue. Prior to this operation, the queue must exist and
must not be empty.

• addQueue: Adds a new element to the rear of the queue. Input to this
operation consists of the queue and the new element. Prior to this
operation, the queue must exist and must not be full.

• deleteQueue: Removes the front element from the queue. Input to this
operation consists of the queue. Prior to this operation, the queue must
exist and must not be empty.

As in the case of a stack, a queue can be stored in an array or in a linked structure. We will
consider both implementations. Because elements are added at one end and removed
from the other end, we need two pointers to keep track of the front and rear of the
queue, called queueFront and queueRear.

1134 | Chapter 18: Stacks and Queues

The following abstract class queueADT defines these operations as an ADT.

template <class Type>
class queueADT
{
public:

virtual bool isEmptyQueue() const = 0;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

virtual bool isFullQueue() const = 0;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

virtual void initializeQueue() = 0;
//Function to initialize the queue to an empty state.
//Postcondition: The queue is empty.

virtual Type front() const = 0;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

virtual Type back() const = 0;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

virtual void addQueue(const Type& queueElement) = 0;
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

virtual void deleteQueue() = 0;
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

};

We leave it as an exercise for you to draw the UML class diagram of the class
queueADT.

1
8

Queues | 1135

Implementation of Queues as Arrays
Before giving the definition of the class to implement a queue as an ADT, we need to
decide how many member variables are needed to implement the queue. Of course, we
need an array to store the queue elements, the variables queueFront and queueRear to
keep track of the first and last elements of the queue and the variable maxQueueSize to
specify the maximum size of the queue. Thus, we need at least four member variables.

Before writing the algorithms to implement the queue operations, we need to decide
how to use queueFront and queueRear to access the queue elements. How do
queueFront and queueRear indicate that the queue is empty or full? Suppose that
queueFront gives the index of the first element of the queue, and queueRear gives the
index of the last element of the queue. To add an element to the queue, first we advance
queueRear to the next array position, and then we add the element to the position that
queueRear is pointing to. To delete an element from the queue, first we retrieve the
element that queueFront is pointing to, and then we advance queueFront to the next
element of the queue. Thus, queueFront changes after each deleteQueue operation,
and queueRear changes after each addQueue operation.

Let us see what happens when queueFront changes after a deleteQueue operation and
queueRear changes after an addQueue operation. Assume that the array to hold the
queue elements is of size 100.

Initially, the queue is empty. After the operation:

addQueue(Queue,'A');

the array is as shown in Figure 18-26.

After two more addQueue operations:

addQueue(Queue,'B');
addQueue(Queue,'C');

the array is as shown in Figure 18-27.

queueFront 0

queueRear 0

[0] [1] [2] [3] [97]

A

[98] [99]

......

FIGURE 18-26 Queue after the first addQueue operation

1136 | Chapter 18: Stacks and Queues

Now consider the deleteQueue operation:

deleteQueue();

After this operation, the array containing the queue is as shown in Figure 18-28.

Will this queue design work? Suppose A stands for adding (that is, addQueue) an element
to the queue, and D stands for deleting (that is, deleteQueue) an element from the
queue. Consider the following sequence of operations:

AAADADADADADADADA...

This sequence of operations would eventually set the index queueRear to point to the
last array position, giving the impression that the queue is full. However, the queue has
only two or three elements, and the front of the array is empty (see Figure 18-29).

1
8

queueFront 0

queueRear 2

[0] [1] [2] [3] [97]

A B C

[98] [99]

......

FIGURE 18-27 Queue after two more addQueue operations

queueFront 1

queueRear 2

[0] [1] [2] [3] [97]

A B C

[98] [99]

......

FIGURE 18-28 Queue after the deleteQueue operation

queueFront 97

queueRear 99

[0] [1] [2] [3] [97] [98] [99]

......

FIGURE 18-29 Queue after the sequence of operations AAADADADADADA...

Queues | 1137

One solution to this problem is that when the queue overflows to the rear (that is, queueRear
points to the last array position), we can check the value of the index queueFront. If the value
of queueFront indicates that there is room in the front of the array, then when queueRear
gets to the last array position, we can slide all of the queue elements toward the first array
position. This solution is good if the queue size is very small; otherwise, the program may
execute more slowly.

Another solution to this problem is to assume that the array is circular—that is, the first
array position immediately follows the last array position (see Figure 18-30).

We will consider the array containing the queue to be circular, although we will draw the
figures of the array holding the queue elements as before.

Suppose that we have the queue as shown in Figure 18-31(a).

After the operation addQueue(Queue,'Z');, the queue is as shown in Figure 18-31(b).

FIGURE 18-30 Circular queue

[0]

queueFront queueRear

[1]
..... X Y

[98][99]

98 99

[0]

queueFront queueRear

Z
[1]

..... X Y
[98][99]

98 0

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

FIGURE 18-31 Queue before and after the add operation

1138 | Chapter 18: Stacks and Queues

Because the array containing the queue is circular, we can use the following statement to
advance queueRear (queueFront) to the next array position.

queueRear = (queueRear + 1) % maxQueueSize;

If queueRear < maxQueueSize - 1, then queueRear + 1 <= maxQueueSize - 1,
so (queueRear + 1) % maxQueueSize = queueRear + 1. If queueRear == maxQueueSize
- 1 (that is, queueRear points to the last array position), queueRear + 1 == maxQueueSize,
so (queueRear + 1) % maxQueueSize = 0. In this case, queueRear will be set to 0, which is
the first array position.

This queue design seems to work well. Before we write the algorithms to implement the
queue operations, consider the following two cases.

Case 1: Suppose that after certain operations, the array containing the queue is as shown
in Figure 18-32(a).

After the operation deleteQueue();, the resulting array is as shown in Figure 18-32(b).

Case 2: Let us now consider the queue shown in Figure 18-33(a).

After the operation addQueue(Queue,'Z');, the resulting array is as shown in
Figure 18-33(b).

1
8

[0]

queueFront queueRear

[97]
..... X

[98][99]

98 98 queueFront queueRear99 98

(b) After deleteQueue();

[0] [97]
.....

[98][99]

(a) Before deleteQueue();

FIGURE 18-32 Queue before and after the delete operation

[0]

queueFront queueRear

[97]
.....

[98][99]

99 97 queueFront queueRear99 98

(a) Before addQueue(Queue,'Z'); (b) After addQueue(Queue,'Z');

queue
elements

[0] [97]
..... Z

[98][99]

queue elements

FIGURE 18-33 Queue before and after the add operation

Queues | 1139

The arrays in Figures 18-32(b) and 18-33(b) have identical values for queueFront and
queueRear. However, the resulting array in Figure 18-32(b) represents an empty queue,
whereas the resulting array in Figure 18-33(b) represents a full queue. This latest queue
design has brought up another problem of distinguishing between an empty and a full queue.

This problem has several solutions. One solution is to keep a count. In addition to the
member variables queueFront and queueRear, we need another variable, count, to
implement the queue. The value of count is incremented whenever a new element is
added to the queue, and it is decremented whenever an element is removed from the
queue. In this case, the function initializeQueue initializes count to 0. This solution
is very useful if the user of the queue frequently needs to know the number of elements in
the queue.

Another solution is to let queueFront indicate the index of the array position preceding
the first element of the queue, rather than the index of the (actual) first element itself. In
this case, assuming queueRear still indicates the index of the last element in the queue,
the queue is empty if queueFront == queueRear. In this solution, the slot indicated by
the index queueFront (that is, the slot preceding the first true element) is reserved. The
queue will be full if the next available space is the special reserved slot indicated by
queueFront. Finally, because the array position indicated by queueFront is to be kept
empty, if the array size is, say, 100, then 99 elements can be stored in the queue (see
Figure 18-34).

Let us implement the queue using the first solution. That is, we use the variable count to
indicate whether the queue is empty or full.The following class implements the functions
of the abstract class queueADT. Because arrays can be allocated dynamically, we will
leave it for the user to specify the size of the array to implement the queue. The default
size of the array is 100.

template <class Type>
class queueType: public queueADT<Type>
{
public:

const queueType<Type>& operator=(const queueType<Type>&);
//Overload the assignment operator.

queueFront queueRear1 97

[2] [97]
.....

[98][99]

queue
elements

[0] [1]
reserved slot

FIGURE 18-34 Array to store the queue elements with a reserved slot

1140 | Chapter 18: Stacks and Queues

1
8

bool isEmptyQueue() const;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

bool isFullQueue() const;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: The queue is empty.

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

queueType(int queueSize = 100);
//Constructor

queueType(const queueType<Type>& otherQueue);
//Copy constructor

�queueType();
//Destructor

private:
int maxQueueSize; //variable to store the maximum queue size
int count; //variable to store the number of

//elements in the queue
int queueFront; //variable to point to the first

//element of the queue
int queueRear; //variable to point to the last

//element of the queue
Type *list; //pointer to the array that holds

//the queue elements
};

Queues | 1141

We leave the UML class diagram of the class queueType as an exercise for you. (See
Exercise 28 at the end of this chapter.)

Next, we consider the implementation of the queue operations.

EMPTY QUEUE AND FULL QUEUE

As discussed earlier, the queue is empty if count == 0, and the queue is full if count ==
maxQueueSize. So the functions to implement these operations are:

template <class Type>
bool queueType<Type>::isEmptyQueue() const
{

return (count == 0);
} //end isEmptyQueue

template <class Type>
bool queueType<Type>::isFullQueue() const
{

return (count == maxQueueSize);
} //end isFullQueue

INITIALIZE QUEUE

This operation initializes a queue to an empty state. The first element is added
at the first array position. Therefore, we initialize queueFront to 0, queueRear to
maxQueueSize - 1, and count to 0. See Figure 18-35.

The definition of the function initializeQueue is:

template <class Type>
void queueType<Type>::initializeQueue()
{

queueFront = 0;
queueRear = maxQueueSize - 1;
count = 0;

} //end initializeQueue

FRONT

This operation returns the first element of the queue. If the queue is nonempty, the
element of the queue indicated by the index queueFront is returned; otherwise, the
program terminates.

[0]

queueFront queueRear

[1]
.....

[97]

0 99

[2]

count 0

[98][99]

FIGURE 18-35 Empty queue

1142 | Chapter 18: Stacks and Queues

template <class Type>
Type queueType<Type>::front() const
{

assert(!isEmptyQueue());
return list[queueFront];

} //end front

BACK

This operation returns the last element of the queue. If the queue is nonempty, the
element of the queue indicated by the index queueRear is returned; otherwise the
program terminates.

template <class Type>
Type queueType<Type>::back() const
{

assert(!isEmptyQueue());
return list[queueRear];

} //end back

addQueue

Next, we implement the addQueue operation. Because queueRear points to the last
element of the queue, to add a new element to the queue, we first advance
queueRear to the next array position and then add the new element to the array
position indicated by queueRear. We also increment count by 1. So the function
addQueue is:

template <class Type>
void queueType<Type>::addQueue(const Type& newElement)
{

if (!isFullQueue())
{

queueRear = (queueRear + 1) % maxQueueSize; //use the
//mod operator to advance queueRear
//because the array is circular

count++;
list[queueRear] = newElement;

}
else

cout << "Cannot add to a full queue." << endl;
} //end addQueue

deleteQueue

To implement the deleteQueue operation, we access the index queueFront. Because
queueFront points to the array position containing the first element of the queue, in
order to remove the first queue element, we decrement count by 1 and advance
queueFront to the next queue element. So the function deleteQueue is:

1
8

Queues | 1143

template <class Type>
void queueType<Type>::deleteQueue()
{

if (!isEmptyQueue())
{

count--;
queueFront = (queueFront + 1) % maxQueueSize; //use the

//mod operator to advance queueFront
//because the array is circular

}
else

cout << "Cannot remove from an empty queue." << endl;
} //end deleteQueue

CONSTRUCTORS AND DESTRUCTORS

To complete the implementation of the queue operations, we next consider the
implementation of the constructor and the destructor. The constructor gets the
maxQueueSize from the user, sets the variable maxQueueSize to the value specified
by the user, and creates an array of size maxQueueSize. If the user does not specify
the queue size, the constructor uses the default value, which is 100, to create an array
of size 100. The constructor also initializes queueFront and queueRear to indicate
that the queue is empty. The definition of the function to implement the constructor
is:

template <class Type>
queueType<Type>::queueType(int queueSize)
{

if (queueSize <= 0)
{

cout << "Size of the array to hold the queue must "
<< "be positive." << endl;

cout << "Creating an array of size 100." << endl;

maxQueueSize = 100;
}
else

maxQueueSize = queueSize; //set maxQueueSize to
//queueSize

queueFront = 0; //initialize queueFront
queueRear = maxQueueSize - 1; //initialize queueRear
count = 0;
list = new Type[maxQueueSize]; //create the array to

//hold the queue elements
} //end constructor

The array to store the queue elements is created dynamically. Therefore, when the queue
object goes out of scope, the destructor simply deallocates the memory occupied by the
array that stores the queue elements. The definition of the function to implement the
destructor is:

1144 | Chapter 18: Stacks and Queues

template <class Type>
queueType<Type>::~queueType()
{

delete [] list;
}

The implementation of the copy constructor and overloading the assignment operator are
left as exercises for you. (The definitions of these functions are similar to those discussed
for linked lists and stacks.)

Linked Implementation of Queues
Because the size of the array to store the queue elements is fixed, only a finite number of
queue elements can be stored in the array. Also, the array implementation of the queue
requires the array to be treated in a special way together with the values of the indices
queueFront and queueRear. The linked implementation of a queue simplifies many of
the special cases of the array implementation and, because the memory to store a queue
element is allocated dynamically, the queue is never full. This section discusses the linked
implementation of a queue.

Because elements are added at one end and removed from the other end, we need to
know the front of the queue and the rear of the queue. Thus, we need two pointers,
queueFront and queueRear, to maintain the queue. The following class implements
the functions of the abstract class queueADT.

//Definition of the node
template <class Type>
struct nodeType
{

Type info;
nodeType<Type> *link;

};

template <class Type>
class linkedQueueType: public queueADT<Type>
{
public:

const linkedQueueType<Type>& operator=
(const linkedQueueType<Type>&);

//Overload the assignment operator.

bool isEmptyQueue() const;
//Function to determine whether the queue is empty.
//Postcondition: Returns true if the queue is empty,
// otherwise returns false.

bool isFullQueue() const;
//Function to determine whether the queue is full.
//Postcondition: Returns true if the queue is full,
// otherwise returns false.

1
8

Queues | 1145

void initializeQueue();
//Function to initialize the queue to an empty state.
//Postcondition: queueFront = NULL; queueRear = NULL

Type front() const;
//Function to return the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the first
// element of the queue is returned.

Type back() const;
//Function to return the last element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: If the queue is empty, the program
// terminates; otherwise, the last
// element of the queue is returned.

void addQueue(const Type& queueElement);
//Function to add queueElement to the queue.
//Precondition: The queue exists and is not full.
//Postcondition: The queue is changed and queueElement
// is added to the queue.

void deleteQueue();
//Function to remove the first element of the queue.
//Precondition: The queue exists and is not empty.
//Postcondition: The queue is changed and the first
// element is removed from the queue.

linkedQueueType();
//Default constructor

linkedQueueType(const linkedQueueType<Type>& otherQueue);
//Copy constructor

~linkedQueueType();
//Destructor

private:
nodeType<Type> *queueFront; //pointer to the front of

//the queue
nodeType<Type> *queueRear; //pointer to the rear of

//the queue
};

The UML class diagram of the class linkedQueueType is left as an exercise for you.
(See Exercise 29 at the end of this chapter.)

Next, we write the definitions of the functions of the class linkedQueueType.

EMPTY AND FULL QUEUE

The queue is empty if queueFront is NULL. Memory to store the queue elements
is allocated dynamically. Therefore, the queue is never full, so the function to implement

1146 | Chapter 18: Stacks and Queues

the isFullQueue operation returns the value false. (The queue is full only if we run
out of memory.)

template <class Type>
bool linkedQueueType<Type>::isEmptyQueue() const
{

return (queueFront == NULL);
} //end

template <class Type>
bool linkedQueueType<Type>::isFullQueue() const
{

return false;
} //end isFullQueue

Note that in reality, in the linked implementation of queues, the function isFullQueue
does not apply because, logically, the queue is never full. However, you must provide its
definition because it is included as an abstract function in the parent class queueADT.

INITIALIZE QUEUE

The operation initializeQueue initializes the queue to an empty state. The queue is
empty if there are no elements in the queue. Note that the constructor initializes the
queue when the queue object is declared. So this operation must remove all of the
elements, if any, from the queue. Therefore, this operation traverses the list containing
the queue starting at the first node, and it deallocates the memory occupied by the queue
elements. The definition of this function is:

template <class Type>
void linkedQueueType<Type>::initializeQueue()
{

nodeType<Type> *temp;

while (queueFront!= NULL) //while there are elements left
//in the queue

{
temp = queueFront; //set temp to point to the

//current node
queueFront = queueFront->link; //advance first to

//the next node
delete temp; //deallocate memory occupied by temp

}

queueRear = NULL; //set rear to NULL
} //end initializeQueue

addQueue, front, back, AND deleteQueue OPERATIONS

The addQueue operation adds a new element at the end of the queue. To implement this
operation, we access the pointer queueRear.

1
8

Queues | 1147

If the queue is nonempty, the operation front returns the first element of the queue, and
so the element of the queue indicated by the pointer queueFront is returned. If the
queue is empty, the function front terminates the program.

If the queue is nonempty, the operation back returns the last element of the queue, so
the element of the queue indicated by the pointer queueRear is returned. If the queue is
empty, the function back terminates the program. Similarly, if the queue is nonempty,
the operation deleteQueue removes the first element of the queue, so we access the
pointer queueFront.

The definitions of the functions to implement these operations are:

template <class Type>
void linkedQueueType<Type>::addQueue(const Type& newElement)
{

nodeType<Type> *newNode;

newNode = new nodeType<Type>; //create the node

newNode->info = newElement; //store the info
newNode->link = NULL; //initialize the link field to NULL

if (queueFront == NULL) //if initially the queue is empty
{

queueFront = newNode;
queueRear = newNode;

}
else //add newNode at the end
{

queueRear->link = newNode;
queueRear = queueRear->link;

}
}//end addQueue

template <class Type>
Type linkedQueueType<Type>::front() const
{

assert(queueFront != NULL);
return queueFront->info;

} //end front

template <class Type>
Type linkedQueueType<Type>::back() const
{

assert(queueRear!= NULL);
return queueRear->info;

} //end back

1148 | Chapter 18: Stacks and Queues

template <class Type>
void linkedQueueType<Type>::deleteQueue()
{

nodeType<Type> *temp;

if (!isEmptyQueue())
{

temp = queueFront; //make temp point to the
//first node

queueFront = queueFront->link; //advance queueFront

delete temp; //delete the first node

if (queueFront == NULL) //if after deletion the
//queue is empty

queueRear = NULL; //set queueRear to NULL
}
else

cout << "Cannot remove from an empty queue" << endl;
}//end deleteQueue

The definition of the default constructor is:

template<class Type>
linkedQueueType<Type>::linkedQueueType()
{

queueFront = NULL; //set front to null
queueRear = NULL; //set rear to null

} //end default constructor

When the queue object goes out of scope, the destructor destroys the queue; that is, it
deallocates the memory occupied by the elements of the queue. The definition of
the function to implement the destructor is similar to the definition of the function
initializeQueue. Also, the functions to implement the copy constructor and overload
the assignment operators are similar to the corresponding functions for stacks. Imple-
menting these operations is left as an exercise for you.

EXAMPLE 18-5

The following program tests various operations on a queue. It uses the class
linkedQueueType to implement a queue.

//Test Program linked queue

#include <iostream>
#include "linkedQueue.h"

using namespace std;
int main()

1
8

Queues | 1149

{
linkedQueueType<int> queue;
int x, y;

queue.initializeQueue();
x = 4;
y = 5;
queue.addQueue(x);
queue.addQueue(y);
x = queue.front();
queue.deleteQueue();
queue.addQueue(x + 5);
queue.addQueue(16);
queue.addQueue(x);
queue.addQueue(y - 3);

cout << "Queue Elements: ";

while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}

cout << endl;

return 0;
}

Sample Run:

Queue Elements: 5 9 16 4 2

Queue Derived from the class unorderedLinkedListType
From the definitions of the functions to implement the queue operations, it is clear that the
linked implementation of a queue is similar to the implementation of a linked list created in a
forward manner (see Chapter 17). The addQueue operation is similar to the operation
insertFirst. Likewise, the operations initializeQueue and initializeList and
isEmptyQueue and isEmptyList are similar. The deleteQueue operation can be imple-
mented as before. The pointer queueFront is the same as the pointer first, and the
pointer queueRear is the same as the pointer last. This correspondence suggests that
we can derive the class to implement the queue from the class linkedListType (see
Chapter 17). Note that the class linkedListType is an abstract class and does not imple-
ment all of the operations. However, the class unorderedLinkedListType is derived from
the class linkedListType and provides the definitions of the abstract functions of the
class linkedListType. Therefore, we can derive the class linkedQueueType from the
class unorderedLinkedListType.

1150 | Chapter 18: Stacks and Queues

We leave it as an exercise for you to write the definition of the class linkedQueueType
that is derived from the class unorderedLinkedListType. See Programming Exer-
cise 17 at the end of this chapter.

Application of Queues: Simulation
A technique in which one system models the behavior of another system is called
simulation. For example, physical simulators include wind tunnels used to experiment
with the design of car bodies and flight simulators used to train airline pilots. Simulation
techniques are used when it is too expensive or dangerous to experiment with real
systems. You can also design computer models to study the behavior of real systems.
(We will describe some real systems modeled by computers shortly.)

Simulating the behavior of an expensive or dangerous experiment using a computer
model is usually less expensive than using the real system and is a good way to gain insight
without putting human life in danger. Moreover, computer simulations are particularly
useful for complex systems when it is difficult to construct a mathematical model. For
such systems, computer models can retain descriptive accuracy. In computer simulations,
the steps of a program are used to model the behavior of a real system. Let us consider one
such problem.

The manager of a local movie theater is hearing complaints from customers about the
length of time they have to wait in line to buy tickets. The theater currently has only one
cashier. Another theater is preparing to open in the neighborhood, and the manager is
afraid of losing customers. The manager wants to hire enough cashiers so that a customer
does not have to wait too long to buy a ticket but does not want to hire extra cashiers on
a trial basis and potentially waste time and money. One thing that the manager would like
to know is the average time a customer has to wait for service. The manager wants
someone to write a program to simulate the behavior of the theater.

In computer simulation, the objects being studied are usually represented as data. For the
theater problem, some of the objects are the customers and the cashier. The cashier serves
the customers, and we want to determine a customer’s average waiting time. Actions are
implemented by writing algorithms, which in a programming language are implemented
with the help of functions. Thus, functions are used to implement the actions of the
objects. In C++, we can combine the data and the operations on that data into a single
unit with the help of classes. Thus, objects can be represented as classes. The member
variables of the class describe the properties of the objects, and the function members
describe the actions on that data. This change in simulation results can also occur if we
change the values of the data or modify the definitions of the functions (that is, modify
the algorithms implementing the actions). The main goal of a computer simulation is to
either generate results showing the performance of an existing system or predict the
performance of a proposed system.

In the theater problem, when the cashier is serving a customer, the other customers must
wait. Because customers are served on a first come, first served basis and queues are an

1
8

Application of Queues: Simulation | 1151

effective way to implement a First In First Out system, queues are important data
structures for use in computer simulations. This section examines computer simulations
in which queues are the basic data structure. These simulations model the behavior of
systems, called queuing systems, in which queues of objects are waiting to be served by
various servers. In other words, a queuing system consists of servers and queues of objects
waiting to be served. We deal with a variety of queuing systems on a daily basis. For
example, a grocery store and a banking system are both queuing systems. Furthermore,
when you send a print request to a networked printer that is shared by many people, your
print request goes in a queue. Print requests that arrived before your print request are
usually completed before yours. Thus, the printer acts as the server when a queue of
documents is waiting to be printed.

Designing a Queuing System
In this section, we describe a queuing system that can be used in a variety of applications,
such as a bank, grocery store, movie theater, printer, or a mainframe environment in
which several people are trying to use the same processors to execute their programs. To
describe a queuing system, we use the term server for the object that provides the
service. For example, in a bank, a teller is a server; in a grocery store or movie theater, a
cashier is a server. We will call the object receiving the service the customer, and the
service time—the time it takes to serve a customer—the transaction time.

Because a queuing system consists of servers and a queue of waiting objects, we will
model a system that consists of a list of servers and a waiting queue holding the customers
to be served. The customer at the front of the queue waits for the next available server.
When a server becomes free, the customer at the front of the queue moves to the free
server to be served.

When the first customer arrives, all servers are free and the customer moves to the first
server. When the next customer arrives, if a server is available, the customer immediately
moves to the available server; otherwise, the customer waits in the queue. To model a
queuing system, we need to know the number of servers, the expected arrival time of a
customer, the time between the arrivals of customers, and the number of events affecting
the system.

Let us again consider the movie theater system. The performance of the system depends
on how many servers are available, how long it takes to serve a customer, and how often a
customer arrives. If it takes too long to serve a customer and customers arrive frequently,
then more servers are needed. This system can be modeled as a time-driven simulation. In
a time-driven simulation, the clock is implemented as a counter, and the passage of,
say, one minute can be implemented by incrementing the counter by 1. The simulation is
run for a fixed amount of time. If the simulation needs to be run for 100 minutes, the
counter starts at 1 and goes up to 100, which can be implemented by using a loop.

For the simulation described in this section, we want to determine the average wait time for
a customer. To calculate the average wait time for a customer, we need to add the waiting

1152 | Chapter 18: Stacks and Queues

time of each customer and then divide the sum by the number of customers who have
arrived. When a customer arrives, he or she goes to the end of the queue and the
customer’s waiting time begins. If the queue is empty and a server is free, the customer
is served immediately, so this customer’s waiting time is zero. On the other hand, if a
customer arrives and either the queue is nonempty or all of the servers are busy, the customer
must wait for the next available server and, therefore, this customer’s waiting time begins.
We can keep track of the customer’s waiting time by using a timer for each customer. When
a customer arrives, the timer is set to 0, which is incremented after each time unit.

Suppose that, on average, it takes five minutes for a server to serve a customer. When a
server becomes free and the waiting customer’s queue is nonempty, the customer at the
front of the queue proceeds to begin the transaction. Thus, we must keep track of the
time a customer is with a server. When the customer arrives at a server, the transaction
time is set to five and is decremented after each time unit. When the transaction time
becomes zero, the server is marked free. Hence, the two objects needed to implement a
time-driven computer simulation of a queuing system are the customer and the server.

Next, before designing the main algorithm to implement the simulation, we design classes
to implement each of the two objects: customer and server.

Customer
Every customer has a customer number, arrival time, waiting time, transaction time, and
departure time. If we know the arrival time, waiting time, and transaction time, we can
determine the departure time by adding these three times. Let us call the class to
implement the customer object customerType. It follows that the class
customerType has four member variables: the customerNumber, arrivalTime,
waitingTime, and transactionTime, each of the data type int. The basic operations
that must be performed on an object of type customerType are as follows: set the
customer’s number, arrival time, and waiting time; increment the waiting time by one
time unit; return the waiting time; return the arrival time; return the transaction time;
and return the customer number. The following class, customerType, implements the
customer as an ADT.

class customerType
{
public:

customerType(int cN = 0, int arrvTime = 0, int wTime = 0,
int tTime = 0);

//Constructor to initialize the instance variables
//according to the parameters.
//If no value is specified in the object declaration,
//the default values are assigned.
//Postcondition: customerNumber = cN;
// arrivalTime = arrvTime;
// waitingTime = wTime;
// transactionTime = tTime

1
8

Application of Queues: Simulation | 1153

void setCustomerInfo(int customerN = 0, int inTime = 0,
int wTime = 0, int tTime = 0);

//Function to initialize the instance variables.
//Instance variables are set according to the parameters.
//Postcondition: customerNumber = customerN;
// arrivalTime = arrvTime;
// waitingTime = wTime;
// transactionTime = tTime;

int getWaitingTime() const;
//Function to return the waiting time of a customer.
//Postcondition: The value of waitingTime is returned.

void setWaitingTime(int time);
//Function to set the waiting time of a customer.
//Postcondition: waitingTime = time;

void incrementWaitingTime();
//Function to increment the waiting time by one time unit.
//Postcondition: waitingTime++;

int getArrivalTime() const;
//Function to return the arrival time of a customer.
//Postcondition: The value of arrivalTime is returned.

int getTransactionTime() const;
//Function to return the transaction time of a customer.
//Postcondition: The value of transactionTime is returned.

int getCustomerNumber() const;
//Function to return the customer number.
//Postcondition: The value of customerNumber is returned.

private:
int customerNumber;
int arrivalTime;
int waitingTime;
int transactionTime;

};

Figure 18-36 shows the UML class diagram of the class customerType.

1154 | Chapter 18: Stacks and Queues

The definitions of the member functions of the class customerType follow easily from
their descriptions. Next, we give the definitions of the member functions of the class
customerType.

The function setCustomerInfo uses the values of the parameters to initialize
customerNumber, arrivalTime, waitingTime, and transactionTime. The defi-
nition of setCustomerInfo is:

void customerType::setCustomerInfo(int customerN, int arrvTime,
int wTime, int tTime)

{
customerNumber = customerN;
arrivalTime = arrvTime;
waitingTime = wTime;
transactionTime = tTime;

}

The definition of the constructor is similar to the definition of the function
setCustomerInfo. It uses the values of the parameters to initialize customerNumber,
arrivalTime, waitingTime, and transactionTime. To make debugging easier, we
use the function setCustomerInfo to write the definition of the constructor, which is
given next, as follows:

1
8

customerType

-customerNumber: int
-arrivalTime: int
-waitingTime: int
-transactionTime: int

+setCustomerInfo(int = 0, int = 0, int = 0,
int = 0): void

+getWaitingTime() const: int
+setWaitingTime(int): void
+incrementWaitingTime(): void
+getArrivalTime() const: int
+getTransactionTime() const: int
+getCustomerNumber() const: int
+customerType(int = 0, int = 0, int = 0,

int = 0)

FIGURE 18-36 UML class diagram of the class customerType

Application of Queues: Simulation | 1155

customerType::customerType(int customerN, int arrvTime,
int wTime, int tTime)

{
setCustomerInfo(customerN, arrvTime, wTime, tTime);

}

The function getWaitingTime returns the current waiting time. The definition of the
function getWaitingTime is:

int customerType::getWaitingTime() const
{

return waitingTime;
}

The function incrementWaitingTime increments the value of waitingTime. Its
definition is:

void customerType::incrementWaitingTime()
{

waitingTime++;
}

The definitions of the functions setWaitingTime, getArrivalTime,
getTransactionTime, and getCustomerNumber are left as an exercise for you.

Server
At any given time unit, the server is either busy serving a customer or is free. We use
a string variable to set the status of the server. Every server has a timer and,
because the program might need to know which customer is served by which server,
the server also stores the information of the customer being served. Thus, three
member variables are associated with a server: the status, the transactionTime,
and the currentCustomer. Some of the basic operations that must be performed on
a server are as follows: check whether the server is free; set the server as free; set the
server as busy; set the transaction time (that is, how long it takes to serve the
customer); return the remaining transaction time (to determine whether the server
should be set to free); if the server is busy after each time unit, decrement the
transaction time by one time unit; and so on. The following class, serverType,
implements the server as an ADT.

class serverType
{
public:

serverType();
//Default constructor
//Sets the values of the instance variables to their default
//values.
//Postcondition: currentCustomer is initialized by its
// default constructor; status = "free"; and
// the transaction time is initialized to 0.

1156 | Chapter 18: Stacks and Queues

bool isFree() const;
//Function to determine if the server is free.
//Postcondition: Returns true if the server is free,
// otherwise returns false.

void setBusy();
//Function to set the status of the server to busy.
//Postcondition: status = "busy";

void setFree();
//Function to set the status of the server to "free".
//Postcondition: status = "free";

void setTransactionTime(int t);
//Function to set the transaction time according to the
//parameter t.
//Postcondition: transactionTime = t;

void setTransactionTime();
//Function to set the transaction time according to
//the transaction time of the current customer.
//Postcondition:
// transactionTime = currentCustomer.transactionTime;

int getRemainingTransactionTime() const;
//Function to return the remaining transaction time.
//Postcondition: The value of transactionTime is returned.

void decreaseTransactionTime();
//Function to decrease the transactionTime by one unit.
//Postcondition: transactionTime--;

void setCurrentCustomer(customerType cCustomer);
//Function to set the info of the current customer
//according to the parameter cCustomer.
//Postcondition: currentCustomer = cCustomer;

int getCurrentCustomerNumber() const;
//Function to return the customer number of the current
//customer.
//Postcondition: The value of customerNumber of the
// current customer is returned.

int getCurrentCustomerArrivalTime() const;
//Function to return the arrival time of the current
//customer.
//Postcondition: The value of arrivalTime of the current
// customer is returned.

int getCurrentCustomerWaitingTime() const;
//Function to return the current waiting time of the
//current customer.

1
8

Application of Queues: Simulation | 1157

//Postcondition: The value of transactionTime is
// returned.

int getCurrentCustomerTransactionTime() const;
//Function to return the transaction time of the
//current customer.
//Postcondition: The value of transactionTime of the
// current customer is returned.

private:
customerType currentCustomer;
string status;
int transactionTime;

};

Figure 18-37 shows the UML class diagram of the class serverType.

The definitions of some of the member functions of the class serverType are:

serverType::serverType()
{

status = "free";
transactionTime = 0;

}

serverType

-currentCustomer: customerType
-status: string
-transactionTime: int

+isFree() const: bool
+setBusy(): void
+setFree(): void
+setTransactionTime(int): void
+setTransactionTime(): void
+getRemainingTransactionTime() const: int
+decreaseTransactionTime(): void
+setCurrentCustomer(customerType): void
+getCurrentCustomerNumber() const: int
+getCurrentCustomerArrivalTime() const: int
+getCurrentCustomerWaitingTime() const: int
+getCurrentCustomerTransactionTime() const: int
+serverType()

FIGURE 18-37 UML class diagram of the class serverType

1158 | Chapter 18: Stacks and Queues

bool serverType::isFree() const
{

return (status == "free");
}

void serverType::setBusy()
{

status = "busy";
}

void serverType::setFree()
{

status = "free";
}

void serverType::setTransactionTime(int t)
{

transactionTime = t;
}

void serverType::setTransactionTime()
{

int time;

time = currentCustomer.getTransactionTime();

transactionTime = time;
}

void serverType::decreaseTransactionTime()
{

transactionTime--;
}

We leave the definitions of the functions getRemainingTransactionTime,
setCurrentCustomer, getCurrentCustomerNumber, getCurrentCustomerArrivalTime,
getCurrentCustomerWaitingTime, and getCurrentCustomerTransactionTime as an
exercise for you.

Because we are designing a simulation program that can be used in a variety of applica-
tions, we need to design two more classes: one to create and process a list of servers and
one to create and process a queue of waiting customers. The next two sections describe
each of these classes.

Server List
A server list is a set of servers. At any given time, a server is either free or busy. For the
customer at the front of the queue, we need to find a server in the list that is free. If all of
the servers are busy, then the customer must wait until one of the servers becomes free.
Thus, the class that implements a list of servers has two member variables: one to store the

1
8

Application of Queues: Simulation | 1159

number of servers and one to maintain a list of servers. Using dynamic arrays, depending
on the number of servers specified by the user, a list of servers is created during
program execution. Some of the operations that must be performed on a server list are
as follows: return the server number of a free server; when a customer gets ready to do
business and a server is available, set the server to busy; when the simulation ends, some of
the servers might still be busy, so return the number of busy servers; after each time
unit, reduce the transactionTime of each busy server by one time unit; and if the
transactionTime of a server becomes zero, set the server to free. The following
class, serverListType, implements the list of servers as an ADT.

class serverListType
{
public:

serverListType(int num = 1);
//Constructor to initialize a list of servers
//Postcondition: numOfServers = num
// A list of servers, specified by num,
// is created and each server is
// initialized to "free".

~serverListType();
//Destructor
//Postcondition: The list of servers is destroyed.

int getFreeServerID() const;
//Function to search the list of servers.
//Postcondition: If a free server is found, returns
// its ID; otherwise, returns -1.

int getNumberOfBusyServers() const;
//Function to return the number of busy servers.
//Postcondition: The number of busy servers is returned.

void setServerBusy(int serverID, customerType cCustomer,
int tTime);

//Function to set a server as busy.
//Postcondition: The server specified by serverID is set
// to "busy", to serve the customer
// specified by cCustomer, and the
// transaction time is set according to the
// parameter tTime.

void setServerBusy(int serverID, customerType cCustomer);
//Function to set a server as busy.
//Postcondition: The server specified by serverID is set
// to "busy", to serve the customer
// specified by cCustomer.

void updateServers(ostream& outFile);
//Function to update the status of a server.
//Postcondition: The transaction time of each busy

1160 | Chapter 18: Stacks and Queues

// server is decremented by one unit. If
// the transaction time of a busy server
// is reduced to zero, the server is set
// to "free". Moreover, if the actual
// parameter corresponding to outFile is
// cout, a message indicating which customer
// has been served is printed on the screen,
// together with the customer's departing
// time. Otherwise, the output is sent to
// a file specified by the user.

private:
int numOfServers;
serverType *servers;

};

Figure 18-38 shows the UML class diagram of the class serverListType.

Following are the definitions of the member functions of the class serverListType.
The definitions of the constructor and destructor are straightforward.

serverListType::serverListType(int num)
{

numOfServers = num;
servers = new serverType[num];

}

serverListType::~serverListType()
{

delete [] servers;
}

1
8

serverListType

-numOfServers: int
-*servers: serverType

+getFreeServerID() const: int
+getNumberOfBusyServers() const: int
+setServerBusy(int, customerType, int): void
+setServerBusy(int, customerType): void
+updateServers(ostream&): void
+serverListType(int = 1)
+~serverListType()

FIGURE 18-38 UML class diagram of the class serverListType

Application of Queues: Simulation | 1161

The function getFreeServerID searches the list of servers. If a free server is found, it
returns the server’s ID; otherwise, the value -1 is returned, which indicates that all of the
servers are busy. The definition of this function is:

int serverListType::getFreeServerID() const
{

int serverID = -1;

int i;

for (i = 0; i < numOfServers; i++)
if (servers[i].isFree())
{

serverID = i;
break;

}

return serverID;
}

The function getNumberOfBusyServers searches the list of servers and determines and
returns the number of busy servers. The definition of this function is:

int serverListType::getNumberOfBusyServers() const
{

int busyServers = 0;

int i;

for (i = 0; i < numOfServers; i++)
if (!servers[i].isFree())

busyServers++;

return busyServers;
}

The function setServerBusy sets a server to busy. This function is overloaded. The
serverID of the server that is set to busy is passed as a parameter to this function. One
function sets the server’s transaction time according to the parameter tTime; the other
function sets it by using the transaction time stored in the object cCustomer. The
transaction time is later needed to determine the average wait time. The definitions of
these functions are:

void serverListType::setServerBusy(int serverID,
customerType cCustomer,
int tTime)

{
servers[serverID].setBusy();
servers[serverID].setTransactionTime(tTime);
servers[serverID].setCurrentCustomer(cCustomer);

}

1162 | Chapter 18: Stacks and Queues

void serverListType::setServerBusy(int serverID,
customerType cCustomer)

{
int time;

time = cCustomer.getTransactionTime();

servers[serverID].setBusy();
servers[serverID].setTransactionTime(time);
servers[serverID].setCurrentCustomer(cCustomer);

}

The definition of the function updateServers is quite straightforward. Starting at the
first server, it searches the list of servers for busy servers. When a busy server is found, its
transactionTime is decremented by 1. If the transactionTime reduces to zero, the
server is set to free. If the transactionTime of a busy server reduces to zero, then the
transaction of the customer being served by the server is complete. If the actual parameter
corresponding to outFile is cout, a message indicating which customer has been served
is printed on the screen, together with the customer’s departing time. Otherwise, the
output is sent to a file specified by the user. The definition of this function is as follows:

void serverListType::updateServers(ostream& outFile)
{

int i;

for (i = 0; i < numOfServers; i++)
if (!servers[i].isFree())
{

servers[i].decreaseTransactionTime();

if (servers[i].getRemainingTransactionTime() == 0)
{

outFile << "From server number " << (i + 1)
<< " customer number "
<< servers[i].getCurrentCustomerNumber()
<< "\n departed at time unit "
<< servers[i].

getCurrentCustomerArrivalTime()
+ servers[i].

getCurrentCustomerWaitingTime()
+ servers[i].

getCurrentCustomerTransactionTime()
<< endl;

servers[i].setFree();
}

}
}

1
8

Application of Queues: Simulation | 1163

Waiting Customers Queue
When a customer arrives, he or she goes to the end of the queue. When a server
becomes available, the customer at the front of the queue leaves to conduct the
transaction. After each time unit, the waiting time of each customer in the queue is
incremented by 1. The ADT queueType designed in this chapter has all the
operations needed to implement a queue, except the operation of incrementing the
waiting time of each customer in the queue by one time unit. We will derive a
class, waitingCustomerQueueType, from the class queueType and add the
additional operations to implement the customer queue. The definition of the class
waitingCustomerQueueType is as follows:

class waitingCustomerQueueType: public queueType<customerType>
{
public:

waitingCustomerQueueType(int size = 100);
//Constructor
//Postcondition: The queue is initialized according to
// the parameter size. The value of size
// is passed to the constructor of queueType.

void updateWaitingQueue();
//Function to increment the waiting time of each
//customer in the queue by one time unit.

};

Notice that the class waitingCustomerQueueType is derived from the class
queueType, which implements the queue in an array. You can also derive it from the

class linkedQueueType, which implements the queue in a linked list. We leave the
details as an exercise for you.

The definitions of the member functions are given next. The definition of the constructor
is as follows:

waitingCustomerQueueType::waitingCustomerQueueType(int size)
:queueType<customerType>(size)

{
}

The function updateWaitingQueue increments the waiting time of each customer in
the queue by one time unit. The class waitingCustomerQueueType is derived from
the class queueType. Because the member variables of queueType are private, the
function updateWaitingQueue cannot directly access the elements of the queue. The
only way to access the elements of the queue is to use the deleteQueue operation. After
incrementing the waiting time, the element can be put back into the queue by using the
addQueue operation.

1164 | Chapter 18: Stacks and Queues

The addQueue operation inserts the element at the end of the queue. If we perform the
deleteQueue operation followed by the addQueue operation for each element of the
queue, then eventually the front element again becomes the front element. Given that
each deleteQueue operation is followed by an addQueue operation, how do we
determine that all of the elements of the queue have been processed? We cannot use
the isEmptyQueue or isFullQueue operations on the queue, because the queue will
never be empty or full.

One solution to this problem is to create a temporary queue. Every element of the
original queue is removed, processed, and inserted into the temporary queue. When the
original queue becomes empty, all of the elements in the queue are processed. We can
then copy the elements from the temporary queue back into the original queue.
However, this solution requires us to use extra memory space, which could be significant.
Also, if the queue is large, extra computer time is needed to copy the elements from the
temporary queue back into the original queue. Let us look into another solution.

In the second solution, before starting to update the elements of the queue, we can insert
a dummy customer with a wait time of, say, -1. During the update process, when we
arrive at the customer with the wait time of -1, we can stop the update process without
processing the customer with the wait time of -1. If we do not process the customer with
the wait time of -1, this customer is removed from the queue and, after processing all of
the elements of the queue, the queue will contain no extra elements. This solution does
not require us to create a temporary queue, so we do not need extra computer time to
copy the elements back into the original queue. We will use this solution to update the
queue. Therefore, the definition of the function updateWaitingQueue is:

void waitingCustomerQueueType::updateWaitingQueue()
{

customerType cust;

cust.setWaitingTime(-1);
int wTime = 0;

addQueue(cust);

while (wTime != -1)
{

cust = front();
deleteQueue();

wTime = cust.getWaitingTime();
if (wTime == -1)

break;
cust.incrementWaitingTime();
addQueue(cust);

}
}

1
8

Application of Queues: Simulation | 1165

Main Program
To run the simulation, we first need to get the following information:

• The number of time units the simulation should run. Assume that each
time unit is one minute.

• The number of servers.

• The amount of time it takes to serve a customer—that is, the transaction time.

• The approximate time between customer arrivals.

These pieces of information are called simulation parameters. By changing the values of
these parameters, we can observe the changes in the performance of the system. We can
write a function, setSimulationParameters, to prompt the user to specify these
values. The definition of this function is:

void setSimulationParameters(int& sTime, int& numOfServers,
int& transTime,
int& tBetweenCArrival)

{
cout << "Enter the simulation time: ";
cin >> sTime;
cout << endl;

cout << "Enter the number of servers: ";
cin >> numOfServers;
cout << endl;

cout << "Enter the transaction time: ";
cin >> transTime;
cout << endl;

cout << "Enter the time between customer arrivals: ";
cin >> tBetweenCArrival;
cout << endl;

}

When a server becomes free and the customer queue is nonempty, we can move the
customer at the front of the queue to the free server to be served. Moreover, when a
customer starts the transaction, the waiting time ends. The waiting time of the customer
is added to the total waiting time. The general algorithm to start the transaction
(supposing that serverID denotes the ID of the free server) is:

1. Remove the customer from the front of the queue.

customer = customerQueue.front();
customerQueue.deleteQueue();

2. Update the total wait time by adding the current customer’s wait time to
the previous total wait time.

totalWait = totalWait + customer.getWaitingTime();

1166 | Chapter 18: Stacks and Queues

3. Set the free server to begin the transaction.

serverList.setServerBusy(serverID, customer, transTime);

To run the simulation, we need to know the number of customers arriving at a given
time unit and how long it takes to serve the customer. We use the Poisson distribution
from statistics, which says that the probability of y events occurring at a given time is
given by the formula:

PðyÞ ¼ �
ye��

y!
; y ¼ 0; 1; 2; . . . ;

in which l is the expected value that y events occur at that time. Suppose that, on
average, a customer arrives every four minutes. During this four-minute period, the
customer can arrive at any one of the four minutes. Assuming an equal likelihood of each
of the four minutes, the expected value that a customer arrives in each of the four minutes
is, therefore, 1 / 4 = .25. Next, we need to determine whether or not the customer
actually arrives at a given minute.

Now, P(0) = e-l is the probability that no event occurs at a given time. One of the basic
assumptions of the Poisson distribution is that the probability of more than one outcome
occurring in a short time interval is negligible. For simplicity, we assume that only one
customer arrives at a given time unit. Thus, we use e-l as the cutoff point to determine
whether a customer arrives at a given time unit. Suppose that, on average, a customer arrives
every four minutes. Then, l = 0.25. We can use an algorithm to generate a number between
0 and 1. If the value of the number generated is > e-0.25, we can assume that the customer
arrived at a particular time unit. For example, suppose that rNum is a random number such
that 0 � rNum � 1. If rNum> e-0.25, the customer arrived at the given time unit.
We now describe the function runSimulation to implement the simulation. Suppose
that we run the simulation for 100 time units and customers arrive at time units 93, 96, and
100. The average transaction time is five minutes—that is, five time units. For simplicity,
assume that we have only one server and that the server becomes free at time unit 97, and
that all customers arriving before time unit 93 have been served. When the server becomes
free at time unit 97, the customer arriving at time unit 93 starts the transaction. Because the
transaction of the customer arriving at time unit 93 starts at time unit 97 and it takes five
minutes to complete a transaction, when the simulation loop ends, the customer arriving at
time unit 93 is still at the server. Moreover, customers arriving at time units 96 and 100 are
in the queue. For simplicity, we assume that when the simulation loop ends, the customers
at the servers are considered served. The general algorithm for this function is:

1. Declare and initialize the variables, such as the simulation parameters,
customer number, clock, total and average waiting times, number of
customers arrived, number of customers served, number of customers
left in the waiting queue, number of customers left with the servers,
waitingCustomersQueue, and a list of servers.

1
8

Application of Queues: Simulation | 1167

2. The main loop is:
for (clock = 1; clock <= simulationTime; clock++)
{

2.1. Update the server list to decrement the transaction time of each busy server
by one time unit.

2.2. If the customer’s queue is nonempty, increment the waiting time of each
customer by one time unit.

2.3. If a customer arrives, increment the number of customers by 1 and add the
new customer to the queue.

2.4. If a server is free and the customer’s queue is nonempty, remove a
customer from the front of the queue and send the customer to
the free server.

}

3. Print the appropriate results. Your results must include the number of
customers left in the queue, the number of customers still with servers,
the number of customers arrived, and the number of customers who
actually completed a transaction.

Once you have designed the function runSimulation, the definition of the function
main is simple and straightforward because the function main calls only the function
runSimulation.

When we tested our version of the simulation program, we generated the following
results. (The program was executed two times.) We assumed that the average transaction
time is five minutes and that, on average, a customer arrives every four minutes, and we
used a random number generator to generate a number between 0 and 1 to decide
whether a customer arrived at a given time unit.

Sample Runs:

Sample Run 1:

Customer number 1 arrived at time unit 4
Customer number 2 arrived at time unit 8
From server number 1 customer number 1

departed at time unit 9
Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit 12
From server number 1 customer number 2

departed at time unit 14
From server number 1 customer number 3

departed at time unit 19
Customer number 5 arrived at time unit 21
From server number 1 customer number 4

departed at time unit 24
From server number 1 customer number 5

departed at time unit 29

1168 | Chapter 18: Stacks and Queues

Customer number 6 arrived at time unit 37
Customer number 7 arrived at time unit 38
Customer number 8 arrived at time unit 41
From server number 1 customer number 6

departed at time unit 42
Customer number 9 arrived at time unit 43
Customer number 10 arrived at time unit 44
From server number 1 customer number 7

departed at time unit 47
Customer number 11 arrived at time unit 49
Customer number 12 arrived at time unit 51
From server number 1 customer number 8

departed at time unit 52
Customer number 13 arrived at time unit 52
Customer number 14 arrived at time unit 53
Customer number 15 arrived at time unit 54
From server number 1 customer number 9

departed at time unit 57
Customer number 16 arrived at time unit 59
From server number 1 customer number 10

departed at time unit 62
Customer number 17 arrived at time unit 66
From server number 1 customer number 11

departed at time unit 67
Customer number 18 arrived at time unit 71
From server number 1 customer number 12

departed at time unit 72
From server number 1 customer number 13

departed at time unit 77
Customer number 19 arrived at time unit 78
From server number 1 customer number 14

departed at time unit 82
From server number 1 customer number 15

departed at time unit 87
Customer number 20 arrived at time unit 90
From server number 1 customer number 16

departed at time unit 92
Customer number 21 arrived at time unit 92
From server number 1 customer number 17

departed at time unit 97

The simulation ran for 100 time units
Number of servers: 1
Average transaction time: 5
Average arrival time difference between customers: 4
Total waiting time: 269
Number of customers that completed a transaction: 17
Number of customers left in the servers: 1
The number of customers left in queue: 3
Average waiting time: 12.81
************** END SIMULATION *************

Sample Run 2:
Customer number 1 arrived at time unit 4
Customer number 2 arrived at time unit 8
From server number 1 customer number 1

departed at time unit 9

1
8

Application of Queues: Simulation | 1169

Customer number 3 arrived at time unit 9
Customer number 4 arrived at time unit 12
From server number 2 customer number 2

departed at time unit 13
From server number 1 customer number 3

departed at time unit 14
From server number 2 customer number 4

departed at time unit 18
Customer number 5 arrived at time unit 21
From server number 1 customer number 5

departed at time unit 26
Customer number 6 arrived at time unit 37
Customer number 7 arrived at time unit 38
Customer number 8 arrived at time unit 41
From server number 1 customer number 6

departed at time unit 42
From server number 2 customer number 7

departed at time unit 43
Customer number 9 arrived at time unit 43
Customer number 10 arrived at time unit 44
From server number 1 customer number 8

departed at time unit 47
From server number 2 customer number 9

departed at time unit 48
Customer number 11 arrived at time unit 49
Customer number 12 arrived at time unit 51
From server number 1 customer number 10

departed at time unit 52
Customer number 13 arrived at time unit 52
Customer number 14 arrived at time unit 53
From server number 2 customer number 11

departed at time unit 54
Customer number 15 arrived at time unit 54
From server number 1 customer number 12

departed at time unit 57
From server number 2 customer number 13

departed at time unit 59
Customer number 16 arrived at time unit 59
From server number 1 customer number 14

departed at time unit 62
From server number 2 customer number 15

departed at time unit 64
Customer number 17 arrived at time unit 66
From server number 1 customer number 16

departed at time unit 67
From server number 2 customer number 17

departed at time unit 71
Customer number 18 arrived at time unit 71
From server number 1 customer number 18

departed at time unit 76
Customer number 19 arrived at time unit 78
From server number 1 customer number 19

departed at time unit 83
Customer number 20 arrived at time unit 90
Customer number 21 arrived at time unit 92
From server number 1 customer number 20

departed at time unit 95

1170 | Chapter 18: Stacks and Queues

From server number 2 customer number 21
departed at time unit 97

The simulation ran for 100 time units
Number of servers: 2
Average transaction time: 5
Average arrival time difference between customers: 4
Total waiting time: 20
Number of customers that completed a transaction: 21
Number of customers left in the servers: 0
The number of customers left in queue: 0
Average waiting time: 0.95
************** END SIMULATION *************

QUICK REVIEW

1. A stack is a data structure in which the items are added and deleted from
one end only.

2. A stack is a Last In First Out (LIFO) data structure.

3. The basic operations on a stack are as follows: push an item onto the stack,
pop an item from the stack, retrieve the top element of the stack, initialize
the stack, check whether the stack is empty, and check whether the stack is
full.

4. A stack can be implemented as an array or a linked list.

5. The middle elements of a stack should not be accessed directly.

6. Stacks are restricted versions of arrays and linked lists.

7. Postfix notation does not require the use of parentheses to enforce operator
precedence.

8. In postfix notation, the operators are written after the operands.

9. Postfix expressions are evaluated according to the following rules:

a. Scan the expression from left to right.

b. If an operator is found, back up to get the required number of
operands, evaluate the operator, and continue.

10. A queue is a data structure in which the items are added at one end and
removed from the other end.

11. A queue is a First In First Out (FIFO) data structure.

12. The basic operations on a queue are as follows: add an item to the queue,
remove an item from the queue, retrieve the first or last element of the
queue, initialize the queue, check whether the queue is empty, and check
whether the queue is full.

13. A queue can be implemented as an array or a linked list.

14. The middle elements of a queue should not be accessed directly.

15. Queues are restricted versions of arrays and linked lists.

1
8

Quick Review | 1171

EXERCISES

1. Describe the two basic operations on a stack.

2. Suppose that stack is an object of type stackType<int>. What is the
difference between stack.top and stack.top - 1?

3. Consider the following statements:

stackType<int> stack;
int x, y;

Show what is output by the following segment of code:

x = 4;
y = 0;
stack.push(7);
stack.push(x);
stack.push(x + 5);
y = stack.top();
stack.pop();
stack.push(x + y);
stack.push(y - 2);
stack.push(3);
x = stack.top();
stack.pop();

cout << "x = " << x << endl;
cout << "y = " << y << endl;

while (!stack.isEmptyStack())
{

cout << stack.top() << endl;
stack.pop();

}

4. Consider the following statements:

stackType<int> stack;
int x;
Suppose that the input is:

14 45 34 23 10 5 -999

Show what is output by the following segment of code:

stack.push(5);

cin >> x;

while (x != -999)
{

if (x % 2 == 0)
{

if (!stack.isFullStack())
stack.push(x);

}

1172 | Chapter 18: Stacks and Queues

1
8

else
cout << "x = " << x << endl;

cin >> x;
}

cout << "Stack Elements: ";

while (!stack.isEmptyStack())
{

cout << " " << stack.top();
stack.pop();

}
cout << endl;

5. Evaluate the following postfix expressions:

a. 8 2 + 3 * 16 4 / - =

b. 12 25 5 1 / / * 8 7 + - =

c. 70 14 4 5 15 3 / * - - / 6 + =

d. 3 5 6 * + 13 - 18 2 / + =

6. Convert the following infix expressions to postfix notations.

a. (A + B) * (C + D) - E

b. A - (B + C) * D + E / F

c. ((A + B) / (C - D) + E) * F - G

d. A + B * (C + D) - E / F * G + H

7. Write the equivalent infix expression for the following postfix expressions.

a. A B * C +

b. A B + C D - *

c. A B – C – D *

8. What is the output of the following program?

#include <iostream>
#include <string>
#include "myStack.h"

using namespace std;

template <class type>
void mystery(stackType<type>& s, stackType<type>& t);

int main()
{

stackType<string> s1;
stackType<string> s2;

string list[] = {"Winter", "Spring", "Summer", "Fall",
"Cold", "Warm", "Hot"};

Exercises | 1173

for (int i = 0; i < 7; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

template <class type>
void mystery(stackType<type>& s, stackType<type>& t)
{

while (!s.isEmptyStack())
{

t.push(s.top());
s.pop();

}
}

9. What is the output of the following program?

#include <iostream>
#include <string>
#include "myStack.h"

using namespace std;

void mystery(stackType<int>& s, stackType<int>& t);

int main()
{

int list[] = {5, 10, 15, 20, 25};

stackType<int> s1;
stackType<int> s2;

for (int i = 0; i < 5; i++)
s1.push(list[i]);

mystery(s1, s2);

while (!s2.isEmptyStack())
{

cout << s2.top() << " ";
s2.pop();

}
cout << endl;

}

1174 | Chapter 18: Stacks and Queues

void mystery(stackType<int>& s, stackType<int>& t)
{

while (!s.isEmptyStack())
{

t.push(2 * s.top());
s.pop();

}
}

10. Explain why, in the linked implementation of a stack, it is not necessary to
implement the operation to determine whether the stack is full.

11. Suppose that stack is an object of type linkedStackType<int>. What is
the difference between the statements stack.top(); and stack.pop();?

12. Write the definition of the function template printListReverse that uses
a stack to print a linked list in reverse order. Assume that this function is a
member of the class linkedListType, designed in Chapter 17.

13. Write the definition of the method second that takes as a parameter a stack
object and returns the second element of the stack. The original stack
remains unchanged.

14. Consider the following statements:

queueType<int> queue;
int x, y;

Show what is output by the following segment of code:

x = 4;
y = 5;
queue.addQueue(x);
queue.addQueue(y);
x = queue.front();
queue.deleteQueue();
queue.addQueue(x + 5);
queue.addQueue(16);
queue.addQueue(x);
queue.addQueue(y - 3);

cout << "Queue Elements: ";
while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
cout << endl;

15. Consider the following statements:

stackType<int> stack;
queueType<int> queue;
int x;

1
8

Exercises | 1175

Suppose the input is:

15 28 14 22 64 35 19 32 7 11 13 30 -999

Show what is written by the following segment of code:

stack.push(0);
queue.addQueue(0);
cin >> x;

while (x != -999)
{

switch (x % 4)
{
case 0:

stack.push(x);
break;

case 1:
if (!stack.isEmptyStack())
{

cout << "Stack Element = " << stack.top()
<< endl;

stack.pop();
}
else

cout << "Sorry, the stack is empty." << endl;
break;

case 2:
queue.addQueue(x);
break;

case 3:
if (!queue.isEmptyQueue())
{

cout << "Queue Element = " << queue.front()
<< endl;

queue.deleteQueue();
}
else

cout << "Sorry, the queue is empty." << endl;
break;

} //end switch

cin >> x;
} //end while

cout << "Stack Elements: ";
while (!stack.isEmptyStack())
{

cout << stack.top() << " ";
stack.pop();

}

cout << endl;

1176 | Chapter 18: Stacks and Queues

cout << "Queue Elements: ";
while (!queue.isEmptyQueue())
{

cout << queue.front() << " ";
queue.deleteQueue();

}
cout << endl;

16. What does the following function do?

void mystery(queueType<int>& q)
{

stackType<int> s;

while (!q.isEmptyQueue())
{

s.push(q.front());
q.deleteQueue();

}

while (!s.isEmptyStack())
{

q.addQueue(2 * s.top());
s.pop();

}
}

17. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 50 and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

18. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 99 and the value of queueRear is 25.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

19. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 25 and the value of queueRear is 75.

a. What are the values of queueFront and queueRear after adding an
element to queue?

1
8

Exercises | 1177

b. What are the values of queueFront and queueRear after removing an
element from queue?

20. Suppose that queue is a queueType object and the size of the array
implementing queue is 100. Also, suppose that the value of queueFront
is 99 and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element from queue?

21. Suppose that queue is implemented as an array with the special reserved
slot, as described in this chapter. Also, suppose that the size of the array
implementing queue is 100. If the value of queueFront is 50, what is the
position of the first queue element?

22. Suppose that queue is implemented as an array with the special reserved
slot, as described in this chapter. Suppose that the size of the array imple-
menting queue is 100. Also, suppose that the value of queueFront is 74
and the value of queueRear is 99.

a. What are the values of queueFront and queueRear after adding an
element to queue?

b. What are the values of queueFront and queueRear after removing an
element fromqueue?Also,what is thepositionof the removedqueue ele-
ment?

23. Write a function template, reverseStack, that takes as a parameter a
stack object and uses a queue object to reverse the elements of the stack.

24. Write a function template, reverseQueue, that takes as a parameter a
queue object and uses a stack object to reverse the elements of the queue.

25. Add the operation queueCount to the class queueType (the array imple-
mentation of queues), which returns the number of elements in the queue.
Write the definition of the function template to implement this operation.

26. Draw the UML class diagram of the class linkedStackType.

27. Draw the UML class diagram of the class queueADT.

28. Draw the UML class diagram of the class queueType.

29. Draw the UML class diagram of the class linkedQueueType

PROGRAMMING EXERCISES

1. Two stacks of the same type are the same if they have the same number of
elements and their elements at the corresponding positions are the same.
Overload the relational operator == for the class stackType that returns

1178 | Chapter 18: Stacks and Queues

true if two stacks of the same type are the same; it returns false otherwise.
Also, write the definition of the function template to overload this operator.

2. Repeat Exercise 1 for the class linkedStackType.

3. a. Add the following operation to the class stackType.

void reverseStack(stackType<Type> &otherStack);

This operation copies the elements of a stack in reverse order onto
another stack.

Consider the following statements:

stackType<int> stack1;
stackType<int> stack2;

The statement:

stack1.reverseStack(stack2);

copies the elements of stack1 onto stack2 in reverse order. That is,
the top element of stack1 is the bottom element of stack2, and so on.
The old contents of stack2 are destroyed, and stack1 is unchanged.

b. Write the definition of the function template to implement the opera-
tion reverseStack.

4. Repeat Exercises 3a and 3b for the class linkedStackType.

5. Write a program that takes as input an arithmetic expression. The program
outputs whether the expression contains matching grouping symbols. For
example, the arithmetic expressions {25 + (3 – 6) * 8} and 7 + 8 * 2 contain
matching grouping symbols. However, the expression 5 + {(13 + 7) / 8 - 2 *
9 does not contain matching grouping symbols.

6. Write a program that uses a stack to print the prime factors of a positive
integer in descending order.

7. The Programming Example, Converting a Number from Binary to Decimal,
in Chapter 16, uses recursion to convert a binary number into an equivalent
decimal number. Write a program that uses a stack to convert a binary
number into an equivalent decimal number.

8. The Programming Example, Converting a Number from Decimal to Binary,
in Chapter 16, contains a program that uses recursion to convert a decimal
number into an equivalent binary number. Write a program that uses a stack
to convert a decimal number into an equivalent binary number.

9. Write a program that reads a string consisting of a positive integer or a
positive decimal number and converts the number to the numeric format. If
the string consists of a decimal number, the program must use a stack to
convert the decimal number to the numeric format.

1
8

Programming Exercises | 1179

10. (Infix to Postfix) Write a program that converts an infix expression into
an equivalent postfix expression.

The rules to convert an infix expression into an equivalent postfix expres-
sion are as follows:

Suppose infx represents the infix expression and pfx represents the postfix
expression. The rules to convert infx into pfx are as follows:

a. Initialize pfx to an empty expression and also initialize the stack.

b. Get the next symbol, sym, from infx.

b.1. If sym is an operand, append sym to pfx.

b.2. If sym is (, push sym into the stack.

b.3. If sym is), pop and append all of the symbols from the stack
until the most recent left parentheses. Pop and discard the left
parentheses.

b.4. If sym is an operator:

b.4.1. Pop and append all of the operators from the stack to pfx
that are above the most recent left parentheses and have
precedence greater than or equal to sym.

b.4.2. Push sym onto the stack.

c. After processing infx, some operators might be left in the stack. Pop
and append to pfx everything from the stack.

In this program, you will consider the following (binary) arithmetic opera-
tors: +, -, *, and /. You may assume that the expressions you will process
are error free.

Design a class that stores the infix and postfix strings. The class must include
the following operations:

• getInfix: Stores the infix expression.

• showInfix: Outputs the infix expression.

• showPostfix: Outputs the postfix expression.

Some other operations that you might need are:

• convertToPostfix: Converts the infix expression into a postfix
expression. The resulting postfix expression is stored in pfx.

• precedence: Determines the precedence between two operators. If the
first operator is of higher or equal precedence than the second operator, it
returns the value true; otherwise, it returns the value false.

Include the constructors and destructors for automatic initialization and
dynamic memory deallocation.

Test your program on the following expressions:

1180 | Chapter 18: Stacks and Queues

a. A + B - C;

b. (A + B) * C;

c. (A + B) * (C - D);

d. A + ((B + C) * (E - F) - G) / (H - I);

e. A + B * (C + D) - E / F * G + H;

For each expression, your answer must be in the following form:

Infix Expression: A + B - C;
Postfix Expression: A B + C -

11. Write the definitions of the functions to overload the assignment operator
and copy constructor for the class queueType. Also, write a program to
test these operations.

12. Write the definitions of the functions to overload the assignment operator
and copy constructor for the class linkedQueueType. Also, write a
program to test these operations.

13. This chapter describes the array implementation of queues that use a special
array slot, called the reserved slot, to distinguish between an empty and a
full queue. Write the definition of the class and the definitions of the
function members of this queue design. Also, write a test program to test
various operations on a queue.

14. Write the definition of the function moveNthFront that takes as a para-
meter a positive integer, n. The function moves the nth element of the
queue to the front. The order of the remaining elements remains
unchanged. For example, suppose:

queue = {5, 11, 34, 67, 43, 55} and n = 3.

After a call to the function moveNthFront:

queue = {34, 5, 11, 67, 43, 55}.

Add this function to the class queueType. Also, write a program to test
your method.

15. Write a program that reads a line of text, changes each uppercase letter to
lowercase, and places each letter both in a queue and onto a stack. The
program should then verify whether the line of text is a palindrome (a set of
letters or numbers that is the same whether read forward or backward).

16. The implementation of a queue in an array, as given in this chapter, uses the
variable count to determine whether the queue is empty or full. You can
also use the variable count to return the number of elements in the queue.
On the other hand, class linkedQueueType does not use such a variable
to keep track of the number of elements in the queue. Redefine the class
linkedQueueType by adding the variable count to keep track of the
number of elements in the queue. Modify the definitions of the functions

1
8

Programming Exercises | 1181

addQueue and deleteQueue as necessary. Add the function queueCount to
return the number of elements in the queue. Also, write a program to test
various operations of the class you defined.

17. Write the definition of the class linkedQueueType, which is derived
from the class unorderedLinkedList, as explained in this chapter. Also,
write a program to test various operations of this class.

18. a. Write the definitions of the functions setWaitingTime, getArrivalTime,
getTransactionTime, and getCustomerNumber of the class
customerType defined in the section Application of Queues: Simulation.

b. Write the definitions of the functions getRemainingTransactionTime,
setCurrentCustomer, getCurrentCustomerNumber,
getCurrentCustomerArrivalTime, getCurrentCustomerWaitingTime,
and getCurrentCustomerTransactionTime of the class serverType
defined in the section Application of Queues: Simulation.

c. Write the definition of the function runSimulation to complete the
design of the computer simulation program (see the section Application
of Queues: Simulation). Test run your program for a variety of data.
Moreover, use a random number generator to decide whether a cus-
tomer arrived at a given time unit.

1182 | Chapter 18: Stacks and Queues

SEARCHING AND SORTING
ALGORITHMS

IN THIS CHAPTER , YOU WILL :

. Learn the various search algorithms

. Explore how to implement the sequential and binary search algorithms

. Discover how the sequential and binary search algorithms perform

. Become aware of the lower bound on comparison-based search algorithms

. Learn the various sorting algorithms

. Explore how to implement the bubble, selection, insertion, quick, and merge sorting algorithms

. Discover how the sorting algorithms discussed in this chapter perform

19C H A P T E R

Chapters 13 and 14 described how to organize data into computer memory using
an array and how to perform basic operations on that data. Chapter 17 described
how to organize data using linked lists. The most important operation that can be
performed on a list is the search algorithm. Using the search algorithm, you can do
the following:

• Determine whether a particular item is in the list.

• If the data is specially organized (e.g., sorted), find the location in the list
where a new item can be inserted.

• Find the location of an item to be deleted.

The search algorithm’s performance, therefore, is crucial. If the search is slow, it takes a
large amount of computer time to accomplish your task; if the search is fast, you can
accomplish your task quickly.

In the first part of this chapter, we describe the search algorithms: sequential search and
binary search. Certain search algorithms work only on sorted data. Therefore, the second
half of this chapter discusses various sorting algorithms.

Searching and Sorting Algorithms
The searching and sorting algorithms that we describe are generic. Because searching
and sorting require comparisons of data, the algorithms should work on the type of data
that provides appropriate functions to compare data items. Now data can be organized
with the help of an array or a linked list. You can create an array of data items, or you can
use the class unorderedLinkedList to organize data. The algorithms that we
describe should work on either organization. Consequently, we will write the function
templates to implement a particular algorithm. All algorithms described in this chapter,
with the exception of the merge sort algorithms, are for array-based lists. Because of
storage issues and some other overheads, merge sort works better for linked lists. There-
fore, after describing the merge sort algorithm, we will add it as a function to the
class unorderedLinkedList. We will also show how to use the searching and
sorting algorithms on objects of the class unorderedArrayListType. Moreover,
we will place all of the array-based searching and sorting functions in the header file
searchSortAlgorithms.h. Therefore, if you need to use a particular searching and/
or sorting function designed in this chapter, your program can include this header file
and use that function.

Search Algorithms
Chapters 13, 14, and 17 described how to implement the sequential search algorithm.
This chapter discusses other search algorithms and analyzes them. Analysis of the algo-
rithms enables programmers to decide which algorithm to use for a specific application.
Before exploring these algorithms, let us make the following observations.

1184 | Chapter 19: Searching and Sorting Algorithms

Associated with each item in a data set is a special member that uniquely identifies the
item in the data set. For example, if you have a data set consisting of student records, then
the student ID uniquely identifies each student in a particular school. This unique
member of the item is called the key of the item. The keys of the items in the data set
are used in such operations as searching, sorting, inserting, and deleting. For instance,
when we search the data set for a particular item, we compare the key of the item for
which we are searching with the keys of the items in the data set.

When analyzing searching and sorting algorithms, the key comparisons refer to compar-
ing the key of the search item with the key of an item in the list. The number of key
comparisons refers to the number of times the key of the search item (in algorithms such
as searching and sorting) is compared with the keys of the items in the list.

Sequential Search
The sequential search (also called a linear search) on array-based lists was described in
Chapters 13 and 14, and the sequential search on linked lists was covered in Chapter 17.
The sequential search works the same for both array-based and linked lists. The search
always starts at the first element in the list and continues until either the item is found in
the list or the entire list is searched.

Because we are interested in the performance of the sequential search (that is, the analysis
of this type of search), for easy reference and the sake of completeness, we provide the
sequential search algorithm for array-based lists (as described in Chapters 13 and 14). If
the search item is found, its index (that is, its location in the array) is returned. If the
search is unsuccessful, -1 is returned. Note that the following sequential search does not
require the list elements to be in any particular order.

template <class elemType>
int seqSearch(const elemType list[], int length,

const elemType& item)
{

int loc;
bool found = false;

loc = 0;

while (loc < length && !found)
if (list[loc] == item)

found = true;
else

loc++;

if (found)
return loc;

else
return -1;

} //end seqSearch

1
9

Search Algorithms | 1185

The sequential search algorithm, as given here, uses an iterative control structure

(the while loop) to compare the search item with the list elements. You can also write
a recursive algorithm to implement the sequential search algorithm. (See Programming

Exercise 1 at the end of this chapter.)

SEQUENTIAL SEARCH ANALYSIS

This section analyzes the performance of the sequential search algorithm in both the
worst case and the average case.

The statements before and after the loop are executed only once and hence require very
little computer time. The statements in the while loop are the ones that are repeated
several times. For each iteration of the loop, the search item is compared with an element
in the list, and a few other statements are executed, including some other comparisons.
Clearly, the loop terminates as soon as the search item is found in the list. Therefore,
execution of the other statements in the loop is directly related to the outcome of the key
comparison. Also, different programmers might implement the same algorithm differ-
ently, although the number of key comparisons would typically be the same. The speed
of a computer can also easily affect the time an algorithm takes to perform, but it, of
course, does not affect the number of key comparisons required.

Therefore, when analyzing a search algorithm, we count the number of key comparisons
because this number gives us the most useful information. Furthermore, the criteria for
counting the number of key comparisons can be applied equally well to other search
algorithms.

Suppose that L is a list of length n. We want to determine the number of key comparisons
made by the sequential search when the list L is searched for a given item.

If the search item is not in the list, we then compare the search item with every element
in the list, making n comparisons. This is an unsuccessful case.

Suppose that the search item is in the list. Then, the number of key comparisons depends
on where in the list the search item is located. If the search item is the first element of L,
we make only one key comparison. This is the best case. On the other hand, if the search
item is the last element in the list, the algorithm makes n comparisons. This is the worst
case. The best and worst cases are not likely to occur every time we apply the sequential
search on L, so it would be more helpful if we could determine the average behavior of
the algorithm. That is, we need to determine the average number of key comparisons the
sequential search algorithm makes in the successful case.

To determine the average number of comparisons in the successful case of the sequential
search algorithm:

1. Consider all possible cases.

2. Find the number of comparisons for each case.

3. Add the number of comparisons and divide by the number of cases.

1186 | Chapter 19: Searching and Sorting Algorithms

If the search item, called the target, is the first element in the list, one comparison is
required. If the target is the second element in the list, two comparisons are required.
Similarly, if the target is the kth element in the list, k comparisons are required. We
assume that the target can be any element in the list; that is, all list elements are equally
likely to be the target. Suppose that there are n elements in the list. The following
expression gives the average number of comparisons.

1þ 2þ � � � þ n
n

It is known that:

1þ 2þ � � � þ n ¼ nðnþ 1Þ
2

Therefore, the following expression gives the average number of comparisons made by
the sequential search in the successful case.

1þ 2þ � � � þ n
n

¼ 1
n

nðnþ 1Þ
2

¼ nþ 1
2

This expression shows that, on average, a successful sequential search searches half of
the list. It thus follows that if the list size is 1,000,000, on average, the sequential search
makes 500,000 comparisons. As a result, the sequential search is not efficient for large
lists.

Binary Search
As you can see, the sequential search is not efficient for large lists because, on average, it
searches half the list. We, therefore, describe another search algorithm called the binary
search, which is very fast. However, a binary search can be performed only on sorted
lists. We, therefore, assume that the list is sorted. Later in this chapter, we describe several
sorting algorithms.

The binary search algorithm uses the ‘‘divide and conquer’’ technique to search the list.
First, the search item is compared with the middle element of the list. If the search item is
less than the middle element of the list, we restrict the search to the first half of the list;
otherwise, we search the second half of the list.

Consider the sorted list of length = 12 in Figure 19-1.

1
9

Search Algorithms | 1187

Suppose that we want to determine whether 75 is in the list. Initially, the entire list is the
search list (see Figure 19-2).

First, we compare 75 with the middle element in this list, list[5] (which is 39).
Because 75 6¼ list[5] and 75 > list[5], we then restrict our search to the list
list[6]...list[11], as shown in Figure 19-3.

This process is now repeated on the list list[6]...list[11], which is a list of
length = 6.

Because we need to determine the middle element of the list frequently, the binary search
algorithm is typically implemented for array-based lists. To determine the middle element
of the list, we add the starting index, first, and the ending index, last, of the search
list and then divide by 2 to calculate its index. That is:

mid ¼ firstþ last
2

.

4list 8 19 25 34 39 45 48 66 75 89 95

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10][11]

FIGURE 19-1 List of length 12

4list 8 19 25 34 39 45 48 66 75 89 95

[0] [1] [2] [3] [4] [5]

mid

search list

[6] [7] [8] [9][10][11]

FIGURE 19-2 Search list, list[0]...list[11]

4list 8 19 25 34 39 45 48 66 75 89 95

[0] [1] [2] [3] [4] [5]

search list

[6] [7] [8] [9][10][11]

FIGURE 19-3 Search list, list[6]...list[11]

1188 | Chapter 19: Searching and Sorting Algorithms

Initially, first = 0 and last = length – 1 (this is because an array index in C++ starts
at 0, and length denotes the number of elements in the list).

The following C++ function implements the binary search algorithm. If the item is
found in the list, its location is returned; if the search item is not in the list, -1 is returned.

template <class elemType>
int binarySearch(const elemType list[], int length,

const elemType& item)
{

int first = 0;
int last = length - 1;
int mid;

bool found = false;

while (first <= last && !found)
{

mid = (first + last) / 2;

if (list[mid] == item)
found = true;

else if (list[mid] > item)
last = mid - 1;

else
first = mid + 1;

}

if (found)
return mid;

else
return -1;

} //end binarySearch

In the binary search algorithm, each time through the loop, we make two key compar-
isons. The only exception is in the successful case; the last time through the loop, only
one key comparison is made.

The binary search algorithm, as given in this chapter, uses an iterative control structure

(the while loop) to compare the search item with the list elements. You can also write
a recursive algorithm to implement the binary search algorithm. (See Programming

Exercise 2 at the end of this chapter.)

Example 19-1 further illustrates how the binary search algorithm works.

1
9

Search Algorithms | 1189

EXAMPLE 19-1

Consider the list given in Figure 19-4.

The size of this list is 12; that is, the length is 12. Suppose that we are searching for
item 89. Table 19-1 shows the values of first, last, and mid each time through the
loop. It also shows the number of times the item is compared with an element in the list
each time through the loop.

The item is found at location 10, and the total number of comparisons is 5.

Next, let us search the list for item 34. Table 19-2 shows the values of first, last, and
mid each time through the loop. It also shows the number of times the item is compared
with an element in the list each time through the loop.

4list 8 19 25 34 39 45 48 66 75 89 95

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9][10][11]

FIGURE 19-4 Sorted list for a binary search

TABLE 19-1 Values of first, last, and mid and the Number of Comparisons for Search
Item 89

Iteration first last mid list[mid]
Number of
comparisons

1 0 11 5 39 2

2 6 11 8 66 2

3 9 11 10 89 1 (found is true)

1190 | Chapter 19: Searching and Sorting Algorithms

The item is found at location 4, and the total number of comparisons is 7.

Let us now search for item 22, as shown in Table 19-3.

This is an unsuccessful search. The total number of comparisons is 6.

Example 19-2 illustrates how to use the binary search algorithm in a program.

EXAMPLE 19-2

#include <iostream>
#include "searchSortAlgorithms.h"

using namespace std;

int main()

1
9

TABLE 19-3 Values of first, last, and mid and the Number of Comparisons for Search
Item 22

Iteration first last mid list[mid]
Number of
comparisons

1 0 11 5 39 2

2 0 4 2 19 2

3 3 4 3 25 2

4 3 2 the loop stops (because first > last)

TABLE 19-2 Values of first, last, and mid and the Number of Comparisons for Search
Item 34

Iteration first last mid list[mid]
Number of
comparisons

1 0 11 5 39 2

2 0 4 2 19 2

3 3 4 3 25 2

4 4 4 4 34 1 (found is true)

Search Algorithms | 1191

{
int intList[] = {2, 16, 34, 45, 53,

56, 69, 70, 75, 96}; //Line 1

int pos; //Line 2

pos = binarySearch(intList, 10, 45); //Line 3

if (pos != -1) //Line 4
cout << "Line 5: " << 45

<< " found at position "
<< pos << endl; //Line 5

else //Line 6
cout << "Line 7: " << 45

<< " is not in intList " << endl; //Line 7
return 0;

}

Sample Run:

Line 5: 45 found at position 3

The preceding program works as follows. The statement in Line 1 creates the array
intList. (Note that the array intList is sorted.) The statement in Line 2 declares pos
to be an int variable. The statement in Line 3 uses the binary search algorithm to
determine whether 45 is in intList. Note that the array intList, its lengths, and the
search item, which is 45, are passed as parameters to the function binarySearch. The
statements in Lines 4 to 7 output the result of the search, which is successful.

Performance of Binary Search
Suppose that L is a sorted list of size 1024 and we want to determine if an item x is in L.
From the binary search algorithm, it follows that every iteration of the while loop cuts
the size of the search list by half. (For example, see Figures 19-2 and 19-3.) Because
1024 ¼ 210, the while loop will have, at most, 11 iterations to determine whether x is in
L. Because every iteration of the while loop makes two item (key) comparisons, that is,
x is compared twice with the elements of L, the binary search will make, at most, 22
comparisons to determine whether x is in L. On the other hand, recall that a sequential
search on average will make 512 comparisons to determine whether x is in L.

To better understand how fast binary search is compared to sequential search, suppose
that L is of size 1048576. Because 1048576 ¼ 220, it follows that the while loop in a
binary search will have, at most, 21 iterations to determine whether an element is in
L. Every iteration of the while loop makes two key (that is, item) comparisons.
Therefore, to determine whether an element is in L, a binary search makes, at most,
42 item comparisons.

Note that 40 ¼ 2 * 20 ¼ 2 * log2220 ¼ 2 * log2(1048576).

1192 | Chapter 19: Searching and Sorting Algorithms

In general, suppose that L is a sorted list of size n. Moreover, suppose that n is a power of
2, that is, n ¼ 2m, for some nonnegative integer m. After each iteration of the while
loop, about half of the elements are left to search, that is, the search sublist for the next
iteration is half the size of the current sublist. For example, after the first iteration, the
search sublist size is about n=2 ¼ 2m�1. It is easy to see that the maximum number of the
iteration of the while loop is about m + 1. Also, m ¼ log2n. Each iteration makes two
key comparisons. Thus, the maximum number of comparisons to determine whether an
element x is in L is 2(m + 1) ¼ 2(log2n + 1) ¼ 2log2n + 2.
In the case of a successful search, it can be shown that for a list of length n, on average, a
binary search makes 2log2n – 3 key comparisons. In the case of an unsuccessful search, it
can be shown that for a list of length n, a binary search makes approximately 2log2n key
comparisons.

Binary Search Algorithm and the class
orderedArrayListType
The class orderedArrayListType, designed in Chapter 14, does not contain the
binary search algorithm. Now that you know how to implement the binary search
algorithm, you can learn how to use it in the class orderedArrayListType.

To use the binary search algorithm within the class orderedArrayListType, we
add the function binSearch to this class and call the functions binarySearch with the
appropriate parameters.

#include "arrayListType.h"
#include "searchSortAlgorithms.h"

template <class elemType>
class orderedArrayListType: public arrayListType<elemType>
{
public:

void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void replaceAt(int location, const elemType& repItem);
int seqSearch(const elemType& searchItem) const;
void insert(const elemType& insertItem);
void remove(const elemType& removeItem);

int binSearch(const elemType& removeItem);

orderedArrayListType(int size = 100);
//Constructor

};

The definition of the member function binSearch is:

template <class elemType>
int orderedArrayListType<elemType>::

binSearch(const elemType& item) const

1
9

Search Algorithms | 1193

{
return binarySearch(list, length, item);

}

Asymptotic Notation: Big-O Notation
Just as a problem is analyzed before writing the algorithm and the computer program, after an
algorithm is designed, it should also be analyzed. Usually, there are various ways to design a
particular algorithm. Certain algorithms take very little computer time to execute, while
others take a considerable amount of time. Consider the following examples.

EXAMPLE 19-3

Consider the following algorithm (assume that all variables are properly declared):

cout << "Enter the first number: "; //Line 1
cin >> num1; //Line 2
cout << endl; //Line 3

cout << "Enter the second number: "; //Line 4
cin >> num2; //Line 5
cout << endl; //Line 6

if (num1 >= num2) //Line 7
max = num1; //Line 8

else //Line 9
max = num2; //Line 10

cout << "The maximum number is: " << max << endl; //Line 11

Lines 1 to 6 each have one operation, << or >>. Line 7 has one operation, >¼.
Either Line 8 or Line 9 executes; each has one operation. There are three operations,
<<, in Line 11. Therefore, the total number of operations executed in the preceding code
is 6 þ 1 þ 1 þ 3 ¼ 11. In this algorithm, the number of operations executed is fixed.

EXAMPLE 19-4

Consider the following algorithm (assume that all variables are properly declared):

cout << "Enter positive integers ending with -1"
<< endl; //Line 1

count = 0; //Line 2
sum = 0; //Line 3

cin >> num; //Line 4

1194 | Chapter 19: Searching and Sorting Algorithms

while (num != -1) //Line 5
{

sum = sum + num; //Line 6
count++; //Line 7
cin >> num; //Line 8

}

cout << "The sum of the numbers is: " << sum
<< endl; //Line 9

if (count != 0) //Line 10
average = sum / count; //Line 11

else //Line 12
average = 0; //Line 13

cout << "The average is: " << average << endl; //Line 14

This algorithm has five operations (Lines 1 through 4) before the while loop. Similarly,
there are nine or eight operations after the while loop, depending on whether Line 11
or Line 13 executes.

Line 5 has one operation, and there are four operations within the while loop (Lines 6
through 8). Thus, Lines 5 through 8 have five operations. If the while loop executes 10
times, these five operations execute 10 times, plus one extra operation is executed at Line
5 to terminate the loop. Therefore, the number of operations executed from Lines 5
through 8 is 51.

If the while loop executes 10 times, the total number of operations executed is:

5� 10þ 1þ 5þ 9 or 5� 10þ 1þ 5þ 8

That is:

5� 10þ 15 or 5� 10þ 14
We can generalize it to the case when the while loop executes n times. If the while
loop executes n times, the number of operations executed is:

5nþ 15 or 5nþ 14
In these expressions, for very large values of n, the term 5n becomes the dominating term,
and the terms 15 and 14 become negligible.

Usually, in an algorithm, certain operations are dominant. For example, in the algorithm
in Example 19-4, to add numbers, the dominant operation is in Line 6. Similarly, in a
search algorithm, because the search item is compared with the items in the list, the
dominant operations would be comparison, that is, the relational operation. Therefore, in
the case of a search algorithm, we count the number of comparisons.

1
9

Asymptotic Notation: Big-O Notation | 1195

Suppose that an algorithm performs f(n) basic operations to accomplish a task, in which n is
the size of the problem. Suppose that you want to determine whether an item is in a list and
that the size of the list is n. To determine whether the item is in the list, there are various
algorithms. However, the basic method is to compare the item with the items in the list.
Therefore, the performance of the algorithm depends on the number of comparisons.

Thus, in the case of a search, n is the size of the list and f(n) becomes the count function;
that is, f(n) gives the number of comparisons done by the search algorithm. Suppose that
on a particular computer, it takes c units of computer time to execute one operation.
Thus, the computer time it would take to execute f (n) operations is cf (n). Clearly, the
constant c depends on the speed of the computer and, therefore, varies from computer to
computer. However, f (n), the number of basic operations, is the same on each computer.
If we know how the function f (n) grows as the size of the problem grows, we can
determine the efficiency of the algorithm. Consider Table 19-4.

Table 19-4 shows how certain functions grow as the parameter n (the problem size)
grows. Suppose that the problem size is doubled. From Table 19-4, it follows that if the
number of basic operations is a function of f (n) ¼ n2, the number of basic operations is
quadrupled. If the number of basic operations is a function of f(n) ¼ 2n, then the number
of basic operations is squared. However, if the number of operations is a function of
f (n) ¼ log2n, the change in the number of basic operations is insignificant.
Suppose that a computer can execute 1 billion steps per second. Table 19-5 shows the
time that the computer takes to execute f(n) steps.

TABLE 19-4 Growth Rate of Various Functions

n log2n nlog2n n
2 2n

1 0 0 1 2

2 1 2 2 4

4 2 8 16 16

8 3 24 64 256

16 4 64 256 65536

32 5 160 1024 4294967296

1196 | Chapter 19: Searching and Sorting Algorithms

In Table 19-5, 1ms ¼ 10-6 seconds and 1ms ¼ 10-3 seconds.

Figure 19-5 shows the growth rate of functions in Table 19-5.

1
9

TABLE 19-5 Time for f (n) Instructions on a Computer That Executes 1 Billion Instructions
per Second

n f(n) = n f (n) = log2n f (n) = nlog2n f (n) = n
2 f (n) = 2n

10 0.01ms 0.003ms 0.033ms 0.1ms 1ms

20 0.02ms 0.004ms 0.086ms 0.4ms 1ms

30 0.03ms 0.005ms 0.147ms 0.9ms 1s

40 0.04ms 0.005ms 0.213ms 1.6ms 18.3min

50 0.05ms 0.006ms 0.282ms 2.5ms 13 days

100 0.10ms 0.007ms 0.664ms 10ms
4�1013
years

1000 1.00ms 0.010ms 9.966ms 1ms

10000 10ms 0.013ms 130ms 100ms

100000 0.10ms 0.017ms 1.67ms 10s

1000000 1 ms 0.020ms 19.93ms 16.7m

10000000 0.01s 0.023ms 0.23s 1.16 days

100000000 0.10s 0.027ms 2.66s 115.7 days

Asymptotic Notation: Big-O Notation | 1197

The remainder of this section develops a notation that shows how a function f (n) grows as
n increases without bound. That is, we develop a notation that is useful in describing the
behavior of the algorithm, which gives us the most useful information about the algo-
rithm. First, we define the term ‘‘asymptotic.’’

Let f be a function of n. By the term asymptotic, we mean the study of the function f as
n becomes larger and larger without bound.

Consider the functions g(n) ¼ n2 and f(n) ¼ n2 + 4n + 20. Clearly, the function g does not
contain any linear term; that is, the coefficient of n in g is zero. Consider Table 19-6.

f (n) = n

f (n) = log2n

f (n) = nlog2n
f (n) = n 2

f (n) = 2n

n
0

0

2

4

6

8

10

2 4 6 8 10

f (n)

FIGURE 19-5 Growth rate of various functions

TABLE 19-6 Growth Rate of n2 and n2 + 4n + 20

n g(n) = n2 f (n) = n2 + 4n + 20

10 100 160

50 2500 2720

100 10000 10420

1000 1000000 1004020

10000 100000000 100040020

1198 | Chapter 19: Searching and Sorting Algorithms

Clearly, as n becomes larger and larger, the term 4n + 20 in f(n) becomes insignificant,
and the term n2 becomes the dominant term. For large values of n, we can predict the
behavior of f(n) by looking at the behavior of g(n). In the algorithm analysis, if the
complexity of a function can be described by the complexity of a quadratic function
without the linear term, we say that the function is of O(n2), called Big-O of n2.

Let f and g be real-valued functions. Assume that f and g are nonnegative; that is, for all
real numbers n, f (n) � 0 and g(n) � 0.
Definition: We say that f(n) is Big-O of g(n), written f(n) ¼ O(g(n)), if there exist positive
constants c and n0 such that:

f (n) � cg(n) for all n � n0.

EXAMPLE 19-5

Let f (n) ¼ a, wherein a is a nonnegative real number and n � 0. Note that f is a constant
function.

Now:

f ðnÞ ¼ a � a � 1 for all n � a:
Let c ¼ a, n0 ¼ a, and g(n) ¼ 1. Then, f (n) � cg(n) for all n � n0. It now follows that
f (n) ¼ O(g(n)) ¼ O(1).

From Example 19-5, it follows that if f is a nonnegative constant function, then f
is O(1).

EXAMPLE 19-6

Let f (n) ¼ 2n + 5, n � 0. Note that:
f (n) ¼ 2n + 5 � 2n + n ¼ 3n for all n � 5.
Let c ¼ 3, n0 ¼ 5, and g(n) ¼ n. Then, f(n) � cg(n) for all n � 5. It now follows that f(n) ¼
O(g(n)) ¼ O(n).

EXAMPLE 19-7

Let f (n) = n2 + 3n + 2, g(n) = n2, n � 0. Note that:
3n + 2 � n2 for all n � 4.

1
9

Asymptotic Notation: Big-O Notation | 1199

This implies that:

f (n) ¼ n2+ 3n + 2 � n2+ n2 � 2n2 ¼ 2g(n) for all n � 4.
Let c ¼ 2 and n0 ¼ 4. Then, f (n) � cg(n) for all n � 4. It now follows that f (n) ¼
O(g(n)) ¼ O(n2).

In general, we can prove the following theorem. We state the theorem without proof.

Theorem: Let f (n) be a nonnegative real-valued function such that:

f (n) = amn
m + am�1n

m�1 + � � � +a1n + a0,
in which ai’s are real numbers, am 6¼ 0, n � 0, and m is a nonnegative integer. Then:
f (n) = O(nm).

In Example 19-8, we use the preceding theorem to establish the Big-O of certain functions.

EXAMPLE 19-8

In the following, f (n) is a nonnegative real-valued function.

EXAMPLE 19-9

Suppose that f(n) ¼ 2log2n + a, in which a is a real number. It can be shown that
f (n) ¼ O(log2n).

Function Big-O

f (n) = an + b, in which a and b are real numbers and a is nonzero f (n) = O(n)

f (n) = n2 + 5n + 1 f (n) = O(n2)

f (n) = 4n6 + 3n3 + 1 f (n) = O(n6)

f (n) = 10n7 + 23 f (n) = O(n7)

f (n) = 6n15 f (n) = O(n15)

1200 | Chapter 19: Searching and Sorting Algorithms

EXAMPLE 19-10

Consider the following code, in which m and n are int variables and their values are
nonnegative.

for (int i = 0; i < m; i++) //Line 1
for (int j = 0; j < n; j++) //Line 2

cout << i * j << endl; //Line 3

This code contains nested for loops. The outer for loop, at Line 1, executes m times.
For each iteration of the outer loop, the inner loop at Line 2 executes n times. For each
iteration of the inner loop, the output statement in Line 3 executes. It follows that the
total number of iterations of the nested for loop is mn. So the number of times the
statement in Line 3 executes is mn. It follows that this algorithm is O(mn). Note that if
m ¼ n, then this algorithm is O(n2).

Table 19-7 shows some common Big-O functions that appear in the algorithm analysis.
Let f (n) ¼ O(g(n)), wherein n is the problem size.

It can be shown that:

Oð1Þ � Oðlog2nÞ � OðnÞ � Oðnlog2nÞ � Oðn2Þ � Oð2nÞ:

1
9

TABLE 19-7 Some Big-O Functions That Appear in Algorithm Analysis

Function g (n) Growth rate of f (n)

g(n) = 1
The growth rate is constant, so it does not depend on n, the size of
the problem.

g(n) = log2n
The growth rate is a function of log2n. Because a logarithm function
grows slowly, the growth rate of the function f is also slow.

g(n) = n
The growth rate is linear. The growth rate of f is directly proportional
to the size of the problem.

g(n) = nlog2n The growth rate is faster than the linear algorithm.

g(n) = n2
The growth rate of such functions increases rapidly with the size of
the problem. The growth rate is quadrupled when the problem size is
doubled.

g(n) = 2n
The growth rate is exponential. The growth rate is squared when the
problem size is doubled.

Asymptotic Notation: Big-O Notation | 1201

Using the notations developed in this section, we can conclude that the algorithm
in Example 19-3 is of order O(1), and the algorithm in Example 19-4 is of O(n).
Table 19-8 summarizes the algorithm analysis of the search algorithms discussed earlier.

Lower Bound on Comparison-Based Search Algorithms
Sequential and binary search algorithms search the list by comparing the target element
with the list elements. For this reason, these algorithms are called comparison-based
search algorithms. Earlier sections of this chapter showed that a sequential search is of
the order n, and a binary search is of the order log2n, where n is the size of the list. The
obvious question is: Can we devise a search algorithm that has an order less than log2n?
Before we answer this question, first we obtain the lower bound on the number of
comparisons for the comparison-based search algorithms.

Theorem: Let L be a list of size n > 1. Suppose that the elements of L are sorted. If
SRH(n) denotes the minimum number of comparisons needed, in the worst case, by
using a comparison-based algorithm to recognize whether an element x is in L, then
SRH(n) � log2(n + 1).
Corollary: The binary search algorithm is an optimal worst-case algorithm for solving
search problems by the comparison method.

From these results, it follows that if we want to design a search algorithm that is of an
order less than log2n, then it cannot be comparison based.

Sorting Algorithms
There are several sorting algorithms in the literature. In this chapter, we discuss some of
the commonly used sorting algorithms. To compare their performance, we also provide
some analysis of these algorithms. These sorting algorithms can be applied to either array-
based lists or linked lists. We will specify whether the algorithm being developed is for
array-based lists or linked lists.

Sorting a List: Bubble Sort
Many sorting algorithms are available in the literature. This section describes using the sorting
algorithm called the bubble sort to sort a list.

TABLE 19-8 Number of Comparisons for a List of Length n

Algorithm Successful Search Unsuccessful Search

Sequential search
n þ 1

2
=

1

2
n þ 1

2
=O(n) n = O(n)

Binary search 2log2n – 3 = O(log2n) 2log2n = O(log2n)

1202 | Chapter 19: Searching and Sorting Algorithms

1
9

Suppose list[0...n - 1] is a list of n elements, indexed 0 to n - 1. We want to
rearrange, that is, sort, the elements of list in increasing order. The bubble sort
algorithm works as follows.

In a series of n - 1 iterations, the successive elements list[index] and list[index + 1]
of the list are compared. If list[index] is greater than list[index + 1], then the
elements list[index] and list[index + 1] are swapped.

It follows that the smaller elements move toward the top, and the larger elements move
toward the bottom.

In the first iteration, we consider the list[0...n - 1]. As you will see after the first
iteration, the largest element of the list is moved to the last position, which is position
n – 1, in the list. In the second iteration, we consider the list[0...n - 2]. After the
second iteration, the second largest element in the list is moved to the position n – 2,
which is second to the last position in the list. In the third iteration, we consider the
list[0...n - 3], and so on. As you will see, after each iteration, the size of the
unsorted portion of the list shrinks.

Consider the list[0...4] of five elements, as shown in Figure 19-6.

Iteration 1: Sort list[0...4]. Figure 19-7 shows how the elements of
list get rearranged in the first iteration.

list[0]

list

list[1]

list[2]

list[3]

list[4]

10

7

19

5

16

FIGURE 19-6 List of five elements

compare
and

swap compare
unsorted

list

10

7

19

5

16

7

10

19

5

16

7

10

19

5

16

7

10

5

19

16

7

10

5

16

19

compare
and

swap
compare

and
swap

FIGURE 19-7 Elements of list during the first iteration

Sorting a List: Bubble Sort | 1203

Notice that in the first diagram of Figure 19-7, list[0] >
list[1]. Therefore, list[0] and list[1] are swapped. In
the second diagram, list[1] and list[2] are compared.
Because list[1] < list[2], they do not get swapped. The
third diagram of Figure 19-7 compares list[2] with list[3];
because list[2] > list[3], list[2] is swapped with
list[3]. Then, in the fourth diagram, we compare list[3]
with list[4]. Because list[3] > list[4], list[3] and
list[4] are swapped.

After the first iteration, the largest element is at the last position.
Therefore, in the next iteration, we consider the list[0...3].

Iteration 2: Sort list[0...3]. Figure 19-8 shows how the elements of
list get rearranged in the second iteration.

The elements are compared and swapped as in the first iteration.
Here, only the list elements list[0] through list[3] are
considered. After the second iteration, the last two elements
are in the right place. Therefore, in the next iteration, we
consider list[0...2].

Iteration 3: Sort list[0...2]. Figure 19-9 shows how the elements of
list get rearranged in the third iteration.

compare

compare

compare
and

swap
unsorted

list

7

10

5

16

19

7

10

5

16

19

7

5

10

16

19

7

5

10

16

19

FIGURE 19-8 Elements of list during the second iteration

compare

compare
and

swap
unsorted

list

7

5

10

16

19

5

7

10

16

19

5

7

10

16

19

FIGURE 19-9 Elements of list during the third iteration

1204 | Chapter 19: Searching and Sorting Algorithms

1
9

After the third iteration, the last three elements are in the right
place. Therefore, in the next iteration, we consider list[0...1].

Iteration 4: Sort list[0...1]. Figure 19-10 shows how the elements of
list get rearranged in the fourth iteration.

After the fourth iteration, list is sorted.

The following C++ function implements the bubble sort algorithm.

template <class elemType>
void bubbleSort(elemType list[], int length)
{

for (int iteration = 1; iteration < length; iteration++)
{

for (int index = 0; index < length - iteration;
index++)

{
if (list[index] > list[index + 1])
{

elemType temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;

}
}

}
} //end bubbleSort

Example 19-11 illustrates how to use the bubble sort algorithm in a program.

EXAMPLE 19-11 (BUBBLE SORT)

#include <iostream>
#include "searchSortAlgorithms.h"

using namespace std;

template <class elemType>
void print(elemType list[], int length);

compare
unsorted

list
5

7

10

16

19

5

7

10

16

19

FIGURE 19-10 Elements of list during the fourth iteration

Sorting a List: Bubble Sort | 1205

int main()
{

int intList[] = {2, 56, 34, 25, 73,
46, 89, 10, 5, 16}; //Line 1

cout << "Line 2: Before sorting, intList: "; //Line 2

print(intList, 10); //Line 3

cout << endl; //Line 4

bubbleSort(intList, 10); //Line 5

cout << "Line 6: After sorting, intList: "; //Line 6

print(intList, 10); //Line 7

return 0;
}

template <class elemType>
void print(elemType list[], int length)
{

for (int i = 0; i < length; i++)
cout << list[i] << " ";

cout << endl;
}

Sample Run:

Line 2: Before sorting, intList: 2 56 34 25 73 46 89 10 5 16

Line 6: After sorting, intList: 2 5 10 16 25 34 46 56 73 89

The statement in Line 1 declares and initializes intList to be an array of 10 compo-
nents of type int. The statement in Line 3 outputs the values of the array intList
before sorting this array. The statement in Line 5 uses the function bubbleSort to sort
list. Notice that both intList and its length (the number of elements) are passed as
parameters to the function bubbleSort. The statement in Line 7 outputs the sorted
intList.

Analysis: Bubble Sort
In the case of search algorithms, our only concern was with the number of key (item)
comparisons. A sorting algorithm makes key comparisons and also moves the data.
Therefore, in analyzing the sorting algorithm, we look at the number of key comparisons
as well as the number of data movements.

1206 | Chapter 19: Searching and Sorting Algorithms

Suppose a list L of length n is to be sorted using bubble sort. Consider the function
bubbleSort as given in this chapter. This function contains nested for loops. Because
L is of length n, the outer loop executes n – 1 times. For each iteration of the outer loop,
the inner loop executes a certain number of times. Let us consider the first iteration of the
outer loop. During the first iteration of the outer loop, the number of iterations of the
inner loop is n – 1. So there are n – 1 comparisons. Similarly, during the second iteration
of the outer loop, the number of iterations of the inner loop is n – 2, and so on. Thus, the
total number of comparisons is:

ðn� 1Þ þ ðn� 2Þ þ � � � þ 2þ 1 ¼ nðn� 1Þ
2

¼ 1
2

n2 � 1
2

n ¼ Oðn2Þ:

In the worst case, the body of the if statement always executes. So in the worst case, the
number of assignments is:

3
nðn� 1Þ

2
¼ 3

2
n2 � 3

2
n ¼ Oðn2Þ:

If the list is already sorted, which is the best case, the number of assignments is 0. It can be

shown that, on average, bubble sort makes about
nðn� 1Þ

4 item assignments. However, the

number of comparisons for the bubble sort, as given in this chapter, is always
nðn� 1Þ

2 .

Therefore, to sort a list of size 1000, bubble sort makes about 500,000 key comparisons
and about 250,000 item assignments. The next section presents the selection sort algo-
rithm that reduces the number of item assignments.

Exercise 7 at the end of this chapter gives a version of the bubble sort algorithm in which

the number of comparisons in the best case is O (n).

Bubble Sort Algorithm and the class
unorderedArrayListType
The class unorderedArrayListType, designed in Chapter 14, does not contain any
sorting algorithm. Now that you know how to implement the bubble sort algorithm, you
can learn how to use it in the class unorderedArrayListType.

To use the binary search algorithm within the class unorderedArrayListType, we
add the function sort to this class and call the functions bubbleSort with the
appropriate parameters. (Note that we have also added the function to use the binary
search algorithm.)

template <class elemType>
class unorderedArrayListType: public arrayListType<elemType>

1
9

Sorting a List: Bubble Sort | 1207

{
public:

void insertAt(int location, const elemType& insertItem);
void insertEnd(const elemType& insertItem);
void replaceAt(int location, const elemType& repItem);
int seqSearch(const elemType& searchItem) const;
void remove(const elemType& removeItem);

void sort();
int binSearch(const elemType& item) const;

unorderedArrayListType(int size = 100);
//Constructor

};

The definitions of the member functions binSearch and sort are:

template <class elemType>
int unorderedArrayListType<elemType>::

binSearch(const elemType& item) const
{

return binarySearch(list, length, item);
}

template <class elemType>
void unorderedArrayListType<elemType>::sort()
{

selectionSort(list, length);
}

We leave it as an exercise for you to write a program to test the member functions sort
and binSearch.

Selection Sort: Array-Based Lists
The selection sort algorithm sorts a list by selecting the smallest element in the unsorted
portion of the list and then moving this smallest element to the top of the unsorted list.
The first time, we locate the smallest item in the entire list; the second time, we locate the
smallest item in the list starting from the second element in the list, and so on. The
selection sort algorithm described here is designed for array-based lists.

Suppose you have the list shown in Figure 19-11.

16

[0] [1] [3][2] [4] [5] [7][6]

30 24 7 62 45 5 55list

FIGURE 19-11 List of 8 elements

1208 | Chapter 19: Searching and Sorting Algorithms

1
9

Figure 19-12 shows the elements of list in the first iteration.

Initially, the entire list is unsorted. So we find smallest item in the list. The smallest item is
at position 6, as shown in Figure 19-12(a). Because this is the smallest item, it must be moved
to position 0. So we swap 16 (that is, list[0]) with 5 (that is, list[6]), as shown in
Figure 19-12(b). After swapping these elements, the resulting list is as shown in Figure 19-12(c).

Figure 19-13 shows the elements of list during the second iteration.

Now the unsorted list is list[1]...list[7]. So we find the smallest element in the
unsorted list. The smallest element is at position 3, as shown in Figure 19-13(a). Because the
smallest element in the unsorted list is at position 3, it must be moved to position 1. So we
swap 7 (that is, list[3]) with 30 (that is, list[1]), as shown in Figure 19-13(b). After
swapping list[1] with list[3], the resulting list is as shown in Figure 19-13(c).

[0]

[1]

[3]

[2]

[4]

[5]

[7]

[6]

smallest

list

5

30

24

7

62

45

16

55

unsorted
list

(a) (b) (c)

5

30

24

7

62

45

16

55

swap

5

7

24

30

62

45

16

55

unsorted
list

FIGURE 19-13 Elements of list during the second iteration

16[0]

[1]

[3]

[2]

[4]

[5]

[7]

[6]

30

24

7

62

45

5

55
smallest

unsorted
list

list

16

30

24

7

62

45

5

55

swap

5

30

24

7

62

45

16

55

unsorted
list

(a) (b) (c)

FIGURE 19-12 Elements of list during the first iteration

Selection Sort: Array-Based Lists | 1209

Now the unsorted list is list[2]...list[7]. So we repeat the preceding process of
finding the (position of the) smallest element in the unsorted portion of the list and
moving it to the beginning of the unsorted portion of the list. Selection sort thus involves
the following steps:

a. Find the location of the smallest element.

b. Move the smallest element to the beginning of the
unsorted list.

Initially, the entire list, list[0]...list[length - 1], is the unsorted list. After exe-
cuting steps a and b once, the unsorted list is list[1]...list[length - 1]. After
executing steps a and b a second time, the unsorted list is list[2]...list[length - 1],
and so on. We can keep track of the unsorted portion of the list and repeat steps a and b, with
the help of a for loop, as follows:

for (int index = 0; index < length – 1; index++)
{

a. Find the location, smallestIndex, of the smallest element in
list[index]...list[length - 1].

b. Swap the smallest element with list[index]. That is, swap
list[smallestIndex] with list[index].

}

The first time through the loop, we locate the smallest element in list[0]...
list[length - 1] and swap this smallest element with list[0]. The second time
through the loop, we locate the smallest element in list[1]...list[length - 1]
and swap this smallest element with list[1], and so on. This process continues until
the length of the unsorted list is 1. (Note that a list of length 1 is sorted.) It, therefore,
follows that to implement the selection sort algorithm, we need to implement steps a and
b within a loop.

Given the starting index, first, and the ending index, last, of the list, the following
C++ function returns the index of the smallest element in list[first]...
list[last].

template <class elemType>
int minLocation(elemType list[], int first, int last)
{

int loc, minIndex;

minIndex = first;
for (loc = first + 1; loc <= last; loc++)

if (list[loc] < list[minIndex])
minIndex = loc;

return minIndex;
} //end minLocation

Given the locations in the list of the elements to be swapped, the following C++
function, swap, swaps those elements.

1210 | Chapter 19: Searching and Sorting Algorithms

template <class elemType>
void swap(elemType list[], int first, int second)
{

elemType temp;

temp = list[first];
list[first] = list[second];
list[second] = temp;

} //end swap

We can now complete the definition of the function selectionSort.

template <class elemType>
void selectionSort(elemType list[], int length)
{

int loc, minIndex;

for (loc = 0; loc < length; loc++)
{

minIndex = minLocation(list, loc, length - 1);
swap(list, loc, minIndex);

}
} //end selectionSort

We leave it as an exercise for you to write a program to test the selection sort algorithm.
(See Programming Exercise 6 at the end of this chapter.)

1. A selection sort can also be implemented by selecting the largest element in

the unsorted portion of the list and moving it to the bottom of the list. You can easily

implement this form of selection sort by altering the if statement in the function
minLocation and passing the appropriate parameters to both the corresponding
function and the function swap (when these functions are called in the function
selectionSort).

2. A selection sort can also be applied to linked lists. The general algorithm is the same,

and the details are left as an exercise for you. See Programming Exercise 7 at the

end of this chapter.

Analysis: Selection Sort
Suppose that a list L of length n is to be sorted using the selection sort algorithm. The
function swap does three item assignments and is executed n � 1 times. Hence, the
number of item assignments is 3(n � 1) ¼ O(n).
The key comparisons are made by the function minLocation. For a list of length k, the
function minLocation makes k � 1 key comparisons. Also, the function minLocation
is executed n � 1 times (by the function selectionSort). The first time, the function
minLocation finds the index of the smallest key item in the entire list and, therefore,
makes n � 1 comparisons. The second time, the function minLocation finds the index

1
9

Selection Sort: Array-Based Lists | 1211

of the smallest element in the sublist of length n � 1 and so makes n � 2 comparisons, and
so on. Hence, the number of key comparisons is as follows:

ðn� 1Þ þ ðn� 2Þ þ � � � þ 2þ 1 ¼ nðn� 1Þ
2

¼ 1
2

n2 � 1
2

n

¼ 1
2

n2 þOðnÞ

¼ Oðn2Þ:

It thus follows that if n ¼ 1000, the number of key comparisons the selection sort
algorithm makes is:

1

2
ð1000Þ2 � 1

2
ð1000Þ ¼ 499500 � 500000:

Note that the selection sort algorithm does not depend on the initial arrangement of the
data. The number of comparisons is always O(n2) and the number of assignments is O(n).
In general, this algorithm is good only for small lists because O(n2) grows rapidly as n
grows. However, if data movement is expensive and the number of comparisons is not,
then this algorithm could be a better choice over other algorithms.

Insertion Sort: Array-Based Lists
The previous section described and analyzed the selection sort algorithm. It was shown
that if n ¼ 1000, the number of key comparisons is approximately 500,000, which is quite
high. This section describes the sorting algorithm called the insertion sort, which tries to
improve—that is, reduce—the number of key comparisons.

The insertion sort algorithm sorts the list by moving each element to its proper place in
the sorted portion of the list. Consider the list given in Figure 19-14.

The length of the list is 8. In this list, the elements list[0], list[1], list[2], and
list[3] are in order. That is, list[0]...list[3] is sorted (see Figure 19-15).

list

[0]

10 18 25 30 23 17 45 35

[1] [2] [3] [4] [5] [6] [7]

FIGURE 19-14 list

1212 | Chapter 19: Searching and Sorting Algorithms

Next, we consider the element list[4], the first element of the unsorted list. Because
list[4] < list[3], we need to move the element list[4] to its proper location. It
thus follows that element list[4] should be moved to list[2] (see Figure 19-16).

To move list[4] into list[2], first we copy list[4] into temp, a temporary
memory space (see Figure 19-17).

Next, we copy list[3] into list[4] and then list[2] into list[3] (see Figure 19-18).

1
9

list

[0]

10 18 25 30 23 17 45 35

[1] [2] [3] [4] [5] [6] [7]

sorted list unsorted list

FIGURE 19-15 Sorted and unsorted portion of list

list

[0]

10 18 25 30 23 17 45 35

[1] [2] [3] [4] [5] [6] [7]

sorted list unsorted list

move

FIGURE 19-16 Move list[4] into list[2]

list

temp

[0]

10 18

23

30 23

copy

25 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 19-17 Copy list[4] into temp

Insertion Sort: Array-Based Lists | 1213

After copying list[3] into list[4] and list[2] into list[3], the list is as shown
in Figure 19-19.

We now copy temp into list[2]. Figure 19-20 shows the resulting list.

Now list[0]...list[4] is sorted, and list[5]...list[7] is unsorted. We repeat
this process on the resulting list by moving the first element of the unsorted list into the
sorted list in the proper place.

list

[0]

10 18 25 30 23 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

temp 23

copy copy

FIGURE 19-18 List before copying list[3] into list[4] and then list[2] into list[3]

list

temp

[0]

10 18

23

25 3025 17 45 35

[1]

sorted list unsorted list

[2] [3] [4] [5] [6] [7]

FIGURE 19-19 List after copying list[3] into list[4] and then list[2] into list[3]

list

temp

[0]

10 18

23

25 30

copy

23 17 45 35

[1]

sorted
list

unsorted
list

[2] [3] [4] [5] [6] [7]

FIGURE 19-20 List after copying temp into list[2]

1214 | Chapter 19: Searching and Sorting Algorithms

From this discussion, we see that during the sorting phase, the array containing the list is
divided into two sublists, sorted and unsorted. Elements in the sorted sublist are in order;
elements in the unsorted sublist are to be moved one at a time to their proper places in the
sorted sublist. We use an index—say, firstOutOfOrder—to point to the first element in
the unsorted sublist; that is, firstOutOfOrder gives the index of the first element in the
unsorted portion of the array. Initially, firstOutOfOrder is initialized to 1.

This discussion translates into the following pseudocode algorithm.

for (firstOutOfOrder = 1; firstOutOfOrder < length; firstOutOfOrder++)
if (list[firstOutOfOrder] is less than list[firstOutOfOrder – 1])
{

copy list[firstOutOfOrder] into temp

initialize location to firstOutOfOrder

do
{

a. copy list[location – 1] into list[location]
b. decrement location by 1 to consider the next element

of the sorted portion of the array
}
while (location > 0 && the list element at location - 1 is

greater than temp)
}

copy temp into list[location]

The following C++ function implements the previous algorithm.

template <class elemType>
void insertionSort(elemType list[], int length)
{

for (int firstOutOfOrder = 1; firstOutOfOrder < length;
firstOutOfOrder++)

if (list[firstOutOfOrder] < list[firstOutOfOrder - 1])
{

elemType temp = list[firstOutOfOrder];
int location = firstOutOfOrder;

do
{

list[location] = list[location - 1];
location--;

}
while (location > 0 && list[location - 1] > temp);

list[location] = temp;
}

} //end insertionSort

We leave it as an exercise for you to write a program to test the insertion sort algorithm.
(See Programming Exercise 8 at the end of this chapter.)

1
9

Insertion Sort: Array-Based Lists | 1215

An insertion sort can also be applied to linked lists. The general algorithm is the same,

and the details are left as an exercise for you. See Programming Exercise 9 at the end of

this chapter.

Analysis: Insertion Sort
Let L be a list of length n. Suppose L is to be sorted using insertion sort. The for loop
executes n � 1 times. In the best case, when the list is already sorted, for each iteration of
the for loop, the if statement evaluates to false, so there are n � 1 key comparisons.
Thus, in the best case, the number of key comparisons is n – 1 ¼ O(n). Let us consider the
worst case. In this case, for each iteration of the for loop, the if statement evaluates to
true. Moreover, in the worst case, for each iteration of the for loop, the do. . .while
loop executes firstOutOfOrder - 1 times. It follows that in the worst case, the number
of key comparisons is:

1þ 2þ � � � þ ðn� 1Þ ¼ nðn� 1Þ=2 ¼ Oðn2Þ:

It can be shown that the average number of key comparisons and the average number of
item assignments in an insertion sort algorithm are:

1

4
n2 þOðnÞ ¼ Oðn2Þ

Table 19-9 summarizes the behavior of the bubble sort, selection sort, and insertion sort
algorithms.

Lower Bound on Comparison-Based Sort
Algorithms
In the previous sections, we discussed the selection and insertion sort algorithms and noted
that the average-case behavior of these algorithms is O(n2). Both of these algorithms are
comparison based; that is, the lists are sorted by comparing their respective keys. Before

TABLE 19-9 Average Case Behavior of the Bubble Sort, Selection Sort, and Insertion Sort
Algorithms for a List of Length n

Algorithm Number of Comparisons Number of Swaps

Bubble sort
nðn � 1Þ

2
= O(n2)

nðn � 1Þ
4

= O(n2)

Selection sort
nðn � 1Þ

2
= O(n2) 3(n � 1) =O(n)

Insertion sort
1

4
n2 þ O(n) = O(n2) 1

4
n2 þ O(n) = O(n2)

1216 | Chapter 19: Searching and Sorting Algorithms

1
9

discussing any additional sorting algorithms, let us discuss the best-case scenario for compar-
ison-based sorting algorithms.

We can trace the execution of a comparison-based algorithm by using a graph called a
comparison tree. Let L be a list of n distinct elements, wherein n > 0. For any j and k,
wherein 1 � j � n and 1 � k � n, either L[j] < L[k] or L[j] > L[k]. Because each
comparison of the keys has two outcomes, the comparison tree is a binary tree. While
drawing this figure, we draw each comparison as a circle called a node. The node is labeled
as j:k, representing the comparison of L[j] with L[k]. If L[j] < L[k], follow the left branch;
otherwise, follow the right branch. Figure 19-21 shows the comparison tree for a list of
length 3. (In Figure 19-21, the rectangle, called a leaf, represents the final ordering of the
nodes.)

We call the top node in the figure the root node. The straight line that connects the two
nodes is called a branch. A sequence of branches from a node, x, to another node, y, is
called a path from x to y.

Associated with each path from the root to a leaf is a unique permutation of the elements
of L. This uniqueness follows because the sort algorithm only moves the data and makes
comparisons. Furthermore, the data movement on any path from the root to a leaf is the
same regardless of the initial inputs. For a list of n elements, n > 0, there are n! different
permutations. Any one of these n! permutations might be the correct ordering of L. Thus,
the comparison tree must have at least n! leaves.

Now let us consider the worst case for all comparison-based sorting algorithms. We state
the following result without proof.

Theorem: Let L be a list of n distinct elements. Any sorting algorithm that sorts L by
comparison of the keys only, in its worst case, makes at least O(nlog2n) key comparisons.

1:2

2:3 2:3

1:3 1:31,2,3

1,3,2 3,1,2 2,1,3 2,3,1

3,2,1

L[1] < L[2]

L[2] < L[3] L[2] > L[3]

L[1] > L[2]

L[1] < L[3] L[1] < L[3]
L[1] > L[3]

L[1] > L[3]

L[2]<L[3] L[2]>L[3]

FIGURE 19-21 Comparison tree for sorting three items

Lower Bound on Comparison-Based Sort Algorithms | 1217

As analyzed in the previous sections, both the selection and insertion sort algorithms are
of the order O(n2). The remainder of this chapter discusses sorting algorithms that, on
average, are of the order O(nlog2n).

Quick Sort: Array-Based Lists
In the previous section, we noted that the lower bound on comparison-based algorithms is
O(nlog2n). The sorting algorithms bubble sort, selection sort, and insertion sort, discussed earlier
in this chapter, are of the order O(n2). In this and the next two sections, we discuss sorting
algorithms that are of the order O(nlog2n). The first algorithm is the quick sort algorithm.

The quick sort algorithm uses the divide-and-conquer technique to sort a list. The list is
partitioned into two sublists, which are then sorted and combined into one list in such a
way so that the combined list is sorted. Thus, the general algorithm is:

if (the list size is greater than 1)
{

a. Partition the list into two sublists, say lowerSublist and
upperSublist.

b. Quick sort lowerSublist.
c. Quick sort upperSublist.
d. Combine the sorted lowerSublist and sorted upperSublist.

}

After partitioning the list into two sublists called lowerSublist and upperSublist,
the sublists are sorted using the quick sort algorithm. In other words, we use recursion to
implement the quick sort algorithm.

The quick sort algorithm described here is for array-based lists. The algorithm for linked
lists can be developed in a similar manner and is left as an exercise for you.

In the quick sort algorithm, the list is partitioned in such way that combining the sorted
lowerSublist and upperSublist is trivial. Therefore, in a quick sort, all of the
sorting work is done in partitioning the list. Because all of the sorting work occurs during
the partitioning of the list, we first describe the partition procedure in detail.

To partition the list into two sublists, first we choose an element of the list called pivot. The
pivot is used to divide the list into two sublists: lowerSublist and upperSublist. The
elements in lowerSublist are smaller than pivot, and the elements in upperSublist
are greater than or equal to pivot. For example, consider the list in Figure 19-22.

list

[0]

45 82 25 94 50 60 78 32

[1] [2] [3] [4] [5] [6] [7]

92

[8]

FIGURE 19-22 list before the partition

1218 | Chapter 19: Searching and Sorting Algorithms

There are several ways to determine pivot. However, pivot is chosen so that, it is
hoped, lowerSublist and upperSublist are of nearly equal size. For illustration
purposes, let us choose the middle element of the list as pivot. The partition procedure
that we describe partitions this list using pivot as the middle element, in our case 50, as
shown in Figure 19-23.

From Figure 19-23, it follows that after partitioning list into lowerSublist and
upperSublist, pivot is in the right place. Thus, after sorting lowerSublist and
upperSublist, combining the two sorted sublists is trivial.

The partition algorithm is as follows (we assume that pivot is chosen as the middle
element of the list).

1. Determine pivot, and swap pivot with the first element of
the list.

Suppose that the index smallIndex points to the last element less than
pivot. The index smallIndex is initialized to the first element of
the list.

2. For the remaining elements in the list (starting at the second element):

If the current element is less than pivot,

a. Increment smallIndex.

b. Swap the current element with the array element pointed to by
smallIndex.

3. Swap the first element, that is, pivot, with the array element pointed to
by smallIndex.

Step 2 can be implemented using a for loop, with the loop starting at the second element
of the list.

Step 1 determines the pivot and moves pivot to the first array position. During the
execution of Step 2, the list elements get arranged as shown in Figure 19-24. (Suppose
the name of the array containing the list elements is list.)

1
9

lowerSublist upperSublist

list

[0]

32 25 45 50 82 60 78 94 92

[1] [2] [3] [4] [5] [6] [7] [8]

FIGURE 19-23 list after the partition

Quick Sort: Array-Based Lists | 1219

As shown in Figure 19-24, pivot is in the first array position. Elements in the lower sublist
are less than pivot; elements in the upper sublist are greater than or equal to pivot. The
variable smallIndex contains the index of the last element of the lower sublist; the
variable index contains the index of the next element that needs to be moved, either in
the lower sublist or in the upper sublist. As explained in Step 2, if the next element of the
list (that is, list[index]) is less than pivot, we advance smallIndex to the next array
position and swap list[index] with list[smallIndex]. Next, we illustrate Step 2.

Suppose that the list is as given in Figure 19-25.

Step 1 requires us to determine the pivot and swap it with the first array element. For
the list in Figure 19-25, the middle element is at the position (0 + 13) / 2 = 6. That is,
pivot is at position 6. Therefore, after swapping pivot with the first array element, the
list is as shown in Figure 19-26. (Notice that in Figure 19-26, 52 is swapped with 32.)

Suppose that after executing Step 2 a few times, the list is as shown in Figure 19-27.

< pivot pivot >= pivot

smallIndex index

lower
sublist

upper
sublist

elements to be
moved in a
sublist

FIGURE 19-24 List during the execution of Step 2

[1]

55

[0]

32 87 13 78 96 52 48 22

[2] [3] [4] [5] [6] [7] [8]

11 58 66 88 45

[9] [10] [11] [12] [13]

FIGURE 19-25 List before sorting

[1]

55

[0]

52

pivot

87 13 78 96 32 48 22

[2] [3] [4] [5] [6] [7] [8]

11 58 66 88 45

[9] [10] [11] [12] [13]

FIGURE 19-26 List after moving pivot to the first array position

1220 | Chapter 19: Searching and Sorting Algorithms

As shown in Figure 19-27, the next element of the list that needs to be moved into a
sublist is indicated by index. Because list[index] < pivot, we need to move the
element list[index] into the lower sublist. To do so, we first advance smallIndex
to the next array position and then swap list[smallIndex] with list[index]. The
resulting list is as shown in Figure 19-28. (Notice that 11 is swapped with 96.)

Now consider the list in Figure 19-29.

For the list in Figure 19-29, list[index] is 58, which is greater than pivot. Therefore,
list[index] is to be moved into the upper sublist. This is accomplished by leaving 58 at
its position and increasing the size of the upper sublist by one, to the next array position.
After moving 58 into the upper sublist, the list is as shown in Figure 19-30.

1
9

1352

pivot

32 48 22 96 87 55 78 11 58 66 88 45

smallIndex index

lower
sublist

upper
sublist

FIGURE 19-27 List after a few iterations of Step 2

1352

pivot

32 48 22 11 87 55 78 96 58 66 88 45

smallIndex index

lower sublist upper sublist

FIGURE 19-28 List after moving 11 into the lower sublist

1352

pivot

32 48 22 11 87 55 78 96 58 66 88 45

smallIndex index

lower sublist upper sublist

FIGURE 19-29 List before moving 58 into a sublist

Quick Sort: Array-Based Lists | 1221

After moving the elements that are less than pivot into the lower sublist and elements that
are greater than pivot into the upper sublist (that is, after completely executing Step 2),
the resulting list is as shown in Figure 19-31.

Next, we execute Step 3 and move 52, pivot, to the proper position in the list. This is
accomplished by swapping 52 with 45. The resulting list is as shown in Figure 19-32.

As shown in Figure 19-32, Steps 1, 2, and 3 in the preceding algorithm partition the list
into two sublists. The elements less than pivot are in the lower sublist; the elements
greater than or equal to pivot are in the upper sublist.

To partition the list into the lower and upper sublists, we need to keep track of only the
last element of the lower sublist and the next element of the list that needs to be moved

1352

pivot

32 48 22 11 87 55 78 96 58 66 88 45

smallIndex index

lower sublist upper sublist

FIGURE 19-30 List after moving 58 into the upper sublist

1352

pivot

32 48 22 11 45 55 78 96 58 66 88 87

smallIndex

lower sublist upper sublist

FIGURE 19-31 List elements after arranging into the lower sublist and upper sublist

1345 32 48 22 11 52 55 78 96 58 66 88 87

pivot

lower sublist upper sublist

FIGURE 19-32 List after swapping 52 with 45

1222 | Chapter 19: Searching and Sorting Algorithms

into either the lower sublist or the upper sublist. In fact, the upper sublist is between the
two indices smallIndex and index.

We now write the function, partition, to implement the preceding partition algo-
rithm. After rearranging the elements of the list, the function partition returns the
location of pivot so that we can determine the starting and ending locations of the
sublists. The definition of the function partition is:

template <class elemType>
int partition(elemType list[], int first, int last)
{

elemType pivot;

int index, smallIndex;

swap(list, first, (first + last) / 2);

pivot = list[first];
smallIndex = first;

for (index = first + 1; index <= last; index++)
if (list[index] < pivot)
{

smallIndex++;
swap(list, smallIndex, index);

}

swap(list, first, smallIndex);

return smallIndex;
} //end partition

Note that the formal parameters first and last specify the starting and ending
indices, respectively, of the sublist of the list to be partitioned. If first = 0 and
last ¼ length – 1, the entire list is partitioned.
As you can see from the definition of the function partition, certain elements of the list need
to be swapped. The following function, swap, accomplishes this task. (Notice that this swap
function is the same as the one given earlier in this chapter for the selection sort algorithm.)

template <class elemType>
void swap(elemType list[], int first, int second)
{

elemType temp;

temp = list[first];
list[first] = list[second];
list[second] = temp;

} //end swap

Once the list is partitioned into lowerSublist and upperSublist, we again apply the
quick sort function to sort the two sublists. Because both sublists are sorted using the same

1
9

Quick Sort: Array-Based Lists | 1223

quick sort algorithm, the easiest way to implement this algorithm is to use recursion.
Therefore, this section gives the recursive version of the quick sort algorithm. As explained
previously, after rearranging the elements of the list, the function partition returns the
index of pivot so that the starting and ending indices of the sublists can be determined.

Given the starting and ending indices of a list, the following function, recQuickSort,
implements the recursive version of the quick sort algorithm.

template <class elemType>
void recQuickSort(elemType list[], int first, int last)
{

int pivotLocation;

if (first < last)
{

pivotLocation = partition(list, first, last);
recQuickSort(list, first, pivotLocation - 1);
recQuickSort(list, pivotLocation + 1, last);

}
} //end recQuickSort

Finally, we write the quick sort function, quickSort, that calls the function
recQuickSort on the original list.

template <class elemType>
void quickSort(elemType list[], int length)
{

recQuickSort(list, 0, length - 1);
} //end quickSort

We leave it as an exercise for you to write a program to test the quick sort algorithm. See
Programming Exercise 10 at the end of this chapter.

Analysis: Quick Sort
The general analysis of the quick sort algorithm is beyond the scope of this book. However,
let us determine the number of comparisons in the worst case. Suppose that L is a list of n
elements, n � 0. In quick sort, all of the sorting work is done by the function partition.
From the definition of the function partition, it follows that to partition a list of length
k, the function partition makes k – 1 key comparisons. Also, in the worst case, after
partition, one sublist is of length k – 1, and the other sublist is of length 0.

It follows that in the worst case, the first call of the function partition makes n – 1 key
comparisons. In the second call, the function partition partitions a list of length n – 1,
so it makes n – 2 key comparisons, and so on. We can now conclude that to sort a list of
length n, in the worst case, the total number of key comparisons made by quick sort is:

ðn� 1Þ þ ðn� 2Þ þ � � � þ 2þ 1 ¼ nðn� 1Þ=2 ¼ Oðn2Þ:

Table 19-10 summarizes the behavior of the quick sort algorithm for a list of length n.

1224 | Chapter 19: Searching and Sorting Algorithms

Merge Sort: Linked List-Based Lists
In the previous section, we described the quick sort algorithm and stated that the average-
case behavior of a quick sort is O(nlog2n). However, the worst-case behavior of a quick
sort is O(n2). This section describes the sorting algorithm whose behavior is always
O(nlog2n).

Like the quick sort algorithm, the merge sort algorithm uses the divide-and-conquer
technique to sort a list. A merge sort algorithm also partitions the list into two sublists,
sorts the sublists, and then combines the sorted sublists into one sorted list. This section
describes the merge sort algorithm for linked list-based lists. We leave it for you to
develop the merge sort algorithm for array-based lists, which can be done by using the
techniques described for linked lists.

The merge sort and the quick sort algorithms differ in how they partition the list. As
discussed earlier, a quick sort first selects an element in the list, called pivot, and then
partitions the list so that the elements in one sublist are less than pivot and the elements
in the other sublist are greater than or equal to pivot. By contrast, a merge sort divides
the list into two sublists of nearly equal size. For example, consider the list whose
elements are as follows:

list: 35 28 18 45 62 48 30 38

The merge sort algorithm partitions this list into two sublists as follows:

first sublist: 35 28 18 45
second sublist: 62 48 30 38

The two sublists are sorted using the same algorithm (that is, a merge sort) used on the
original list. Suppose that we have sorted the two sublists. That is, suppose that the lists
are now as follows:

first sublist: 18 28 35 45
second sublist: 30 38 48 62

Next, the merge sort algorithm combines, that is, merges, the two sorted sublists into one
sorted list.

Figure 19-33 further illustrates the merge sort process.

1
9

TABLE 19-10 Analysis of the Quick Sort Algorithm for a List of Length n

Number of Comparisons Number of Swaps

Average case (1.39)nlog2 n þ O(n) = O(nlog2 n) (0.69)nlog2 n þ O(n) = O(nlog2 n)

Worst case
n2

2
� n

2
= O(n2)

n2

2
þ 3n

2
�2 = O(n2)

Merge Sort: Linked List-Based Lists | 1225

From Figure 19-33, it is clear that in the merge sort algorithm, most of the sorting work is
done in merging the sorted sublists.

The general algorithm for the merge sort is as follows:

if the list is of a size greater than 1
{

a. Divide the list into two sublists.
b. Merge sort the first sublist.
c. Merge sort the second sublist.
d. Merge the first sublist and the second sublist.

}

As remarked previously, after dividing the list into two sublists—the first sublist and the
second sublist—the two sublists are sorted using the merge sort algorithm. In other
words, we use recursion to implement the merge sort algorithm.

35 28 18 45 62 48 30 38

divide

35 28 18 45 62 48 30 38

divide

35 28 18 45

divide

62 48 30 38

divide

35 28

divide

18 45

divide

62 48

divide

30 38

merge

28 35

merge

18 45

merge

48 62

merge

30 38

merge

18 28 35 45

merge

30 38 48 62

merge

18 28 30 35 38 45 48 62

FIGURE 19-33 Merge sort algorithm

1226 | Chapter 19: Searching and Sorting Algorithms

We next describe the necessary algorithm to:

• Divide the list into two sublists of nearly equal size.

• Merge sort both sublists.

• Merge the sorted sublists.

Divide
Because data is stored in a linked list, we do not know the length of the list. Furthermore,
a linked list is not a random access data structure. Therefore, to divide the list into two
sublists, we need to find the middle node of the list.

Consider the list in Figure 19-34.

To find the middle of the list, we traverse the list with two pointers—say, middle and
current. The pointer middle is initialized to the first node of the list. Because this list
has more than two nodes, we initialize current to the third node. (Recall that we sort
the list only if it has more than one element because a list of size 1 is already sorted. Also,
if the list has only two nodes, we set current to NULL.) Consider the list shown in
Figure 19-35.

Every time we advance middle by one node, we advance current by one node.
After advancing current by one node, if current is not NULL, we again advance
current by one node. That is, for the most part, every time middle advances by one
node, current advances by two nodes. Eventually, current becomes NULL
and middle points to the last node of the first sublist. For example, for the list in
Figure 19-35, when current becomes NULL, middle points to the node with info
25 (see Figure 19-36).

1
9

head

middle current

65 18 85 95 25 20 45 75 30

FIGURE 19-35 middle and current before traversing the list

head

65 18 85 95 25 20 45 75 30

FIGURE 19-34 Unsorted linked list

Merge Sort: Linked List-Based Lists | 1227

It is now easy to divide the list into two sublists. First, using the link of middle, we assign
a pointer to the node following middle. Then, we set the link of middle to NULL.
Figure 19-37 shows the resulting sublists.

This discussion translates into the following C++ function, divideList.

template <class Type>
void unorderedLinkedList<Type>::

divideList(nodeType<Type>* first1,
nodeType<Type>* &first2)

{
nodeType<Type>* middle;
nodeType<Type>* current;

if (first1 == NULL) //list is empty
first2 = NULL;

else if (first1->link == NULL) //list has only one node
first2 = NULL;

else
{

middle = first1;
current = first1->link;

if (current != NULL) //list has more than two nodes
current = current->link;

while (current != NULL)

head

middle

65 18 85 95

otherhead

25

20 45 75 30

FIGURE 19-37 List after dividing it into two lists

head

middle

65 18 85 95 25 20 45 75 30

FIGURE 19-36 middle after traversing the list

1228 | Chapter 19: Searching and Sorting Algorithms

{
middle = middle->link;
current = current->link;
if (current != NULL)

current = current->link;
} //end while

first2 = middle->link; //first2 points to the first
//node of the second sublist

middle->link = NULL; //set the link of the last node
//of the first sublist to NULL

} //end else
} //end divideList

Now that we know how to divide a list into two sublists of nearly equal size, next we
focus on merging the sorted sublists. Recall that in a merge sort, most of the sorting work
is done in merging the sorted sublists.

Merge
Once the sublists are sorted, the next step in the merge sort algorithm is to merge the
sorted sublists. Sorted sublists are merged into a sorted list by comparing the elements of
the sublists and then adjusting the pointers of the nodes with the smaller info. Let us
illustrate this procedure on the sublists shown in Figure 19-38. Suppose that first1
points to the first node of the first sublist, and first2 points to the first node of the
second sublist.

We first compare the info of the first node of each sublist to determine the first node of
the merged list. We set newHead to point to the first node of the merged list. We also use
the pointer lastMerged to keep track of the last node of the merged list. The pointer of
the first node of the sublist with the smaller node then advances to the next node of that
sublist. Figure 19-39 shows the sublist of Figure 19-38 after setting newHead and
lastMerged and advancing first1.

1
9

first1

18 25 65 85

first2

95

20 30 45 75

FIGURE 19-38 Sublists before merging

Merge Sort: Linked List-Based Lists | 1229

In Figure 19-39, first1 points to the first node of the first sublist that is yet to be
merged with the second sublist. So, we again compare the nodes pointed to by first1
and first2, and adjust the link of the smaller node and the last node of the merged list
so as to move the smaller node to the end of the merged list. For the sublists shown in
Figure 19-39, after adjusting the necessary links, we have Figure 19-40.

We continue this process for the remaining elements of both sublists. Every time we move a
node to the merged list, we advance either first1 or first2 to the next node. Eventually,
either first1 or first2 becomes NULL. If first1 becomes NULL, the first sublist is
exhausted first, so we attach the remaining nodes of the second sublist at the end of the
partially merged list. If first2 becomes NULL, the second sublist is exhausted first, so we
attach the remaining nodes of the first sublist at the end of the partially merged list.

Following this discussion, we can now write the C++ function mergeList to merge the
two sorted sublists. The pointers of the first nodes of the sublists are passed as parameters
to the function mergeList.

template <class Type>
nodeType<Type>* unorderedLinkedList<Type>::

mergeList(nodeType<Type>* first1,
nodeType<Type>* first2)

newHead
first1

18 25 65 85 95

20 30 45 75

lastMerged

first2

FIGURE 19-40 Merged list after putting the node with info 20 at the end of the merged list

newHead
first1

18 25 65 85

first2

95

20 30 45 75

lastMerged

FIGURE 19-39 Sublists after setting newHead and lastMerged and advancing first1

1230 | Chapter 19: Searching and Sorting Algorithms

1
9

{
nodeType<Type> *lastSmall; //pointer to the last node of

//the merged list
nodeType<Type> *newHead; //pointer to the merged list

if (first1 == NULL) //the first sublist is empty
return first2;

else if (first2 == NULL) //the second sublist is empty
return first1;

else
{

if (first1->info < first2->info) //compare the
//first nodes

{
newHead = first1;
first1 = first1->link;
lastSmall = newHead;

}
else
{

newHead = first2;
first2 = first2->link;
lastSmall = newHead;

}

while (first1 != NULL && first2 != NULL)
{

if (first1->info < first2->info)
{

lastSmall->link = first1;
lastSmall = lastSmall->link;
first1 = first1->link;

}
else
{

lastSmall->link = first2;
lastSmall = lastSmall->link;
first2 = first2->link;

}
} //end while

if (first1 == NULL) //first sublist is exhausted first
lastSmall->link = first2;

else //second sublist is exhausted first
lastSmall->link = first1;

return newHead;
}

}//end mergeList

Finally, we write the recursive merge sort function, recMergeSort, which uses the
divideList and mergeList functions to sort a list. The pointer of the first node of the
list to be sorted is passed as a parameter to the function recMergeSort.

Merge Sort: Linked List-Based Lists | 1231

template <class Type>
void unorderedLinkedList<Type>::recMergeSort(

nodeType<Type>* &head)
{

nodeType<Type> *otherHead;

if (head != NULL) //if the list is not empty
if (head->link != NULL) //if the list has more than

//one node
{

divideList(head, otherHead);
recMergeSort(head);
recMergeSort(otherHead);
head = mergeList(head, otherHead);

}
} //end recMergeSort

We can now give the definition of the function mergeSort, which should be included
as a public member of the class unorderedLinkedList. (Note that the functions
divideList, merge, and recMergeSort can be included as private members of the
class unorderedLinkedList because these functions are used only to implement the
function mergeSort.) The function mergeSort calls the function recMergeSort and
passes first to this function. It also sets last to point to the last node of the list. The
definition of the function mergeSort is:

template <class Type>
void unorderedLinkedList<Type>::mergeSort()
{

recMergeSort(first);

if (first == NULL)
last = NULL;

else
{

last = first;
while (last->link != NULL)

last = last->link;
}

} //end mergeSort

We leave it as an exercise for you to write a program to test the merge sort algorithm. See
Programming Exercise 13 at the end of this chapter.

Analysis: Merge Sort
Suppose that L is a list of n elements, in which n> 0. Suppose that n is a power of 2, that is, n¼
2m for some nonnegative integer m, so that we can divide the list into two sublists, each of size:

n

2
¼ 2

m

2
¼ 2m�1

Moreover, each sublist can also be divided into two sublists of the same size. Each call to the
function recMergeSort makes two recursive calls to the function recMergeSort, and each

1232 | Chapter 19: Searching and Sorting Algorithms

1
9

call divides the sublist into two sublists of the same size. Suppose that m¼ 3, that is, n¼ 23¼ 8.
So, the length of the original list is 8. The first call to the function recMergeSort divides the
original list into two sublists, each of size 4. The first call then makes two recursive calls to the
function recMergeSort. Each of these recursive calls divides each sublist, of size 4, into two
sublists, each of size 2. We now have four sublists, each of size 2. The next set of recursive calls
divides each sublist, of size 2, into sublists of size 1. So, we now have eight sublists, each of size
1. It follows that the exponent 3 in 23 indicates the level of the recursion (see Figure 19-41).

Let us consider the general case when n = 2m. Note that the number of recursion levels
is m. Also, note that to merge a sorted list of size s with a sorted list of size t, the maximum
number of comparisons is s + t � 1.
Consider the function mergeList, which merges two sorted lists into a sorted list. Note
that this is where the actual work (comparisons and assignments) is done. The initial call to
the function recMergeSort, at level 0, produces two sublists, each of the size n/2. To
merge these two lists, after they are sorted, the maximum number of comparisons is:

n

2
þ n

2
� 1 ¼ n� 1 ¼ OðnÞ:

At level 1, we merge two sets of sorted lists, in which each sublist is of the size n/4. To merge
two sorted sublists, each of the size n/4, we need, at most:

n

4
þ n

4
� 1 ¼ n

2
� 1

8

44

22 2

1

2

Recursion Level: 0
Number of calls to recMergeSort: 1
Each call: recMergeSort 8 elements

Recursion Level: 1
Number of calls to recMergeSort: 2
Each call: recMergeSort 4 elements

Recursion Level: 2
Number of calls to recMergeSort: 4
Each call: recMergeSort 2 elements

Recursion Level: 3
Number of calls to recMergeSort: 8
Each call: recMergeSort 1 element1 1 11 1 1 1

FIGURE 19-41 Levels of recursion to recMergeSort for a list of length 8

Merge Sort: Linked List-Based Lists | 1233

comparisons. Thus, at level 1 of the recursion, the number of comparisons is 2(n / 2 – 1) ¼
n – 2¼O(n). In general, at level k of the recursion, there are a total of 2k calls to the function
mergeList. Each of these calls merges two sublists, each of the size n / 2k + 1, which
requires a maximum of n / 2k � 1 comparisons. Thus, at level k of the recursion, the
maximum number of comparisons is:

2k
n

2k
� 1

� �
¼ n� 2k ¼ OðnÞ:

It now follows that the maximum number of comparisons at each level of the recursion is O(n).
Because the number of levels of the recursion is m, the maximum number of comparisons
made by the merge sort algorithms is O(nm). Now n¼ 2m implies that m¼ log2n. Hence, the
maximum number of comparisons made by the merge sort algorithm is O(n log2n).

If W(n) denotes the number of key comparisons in the worst case to sort L, then
W(n) ¼ O(n log2n).
Let A(n) denote the number of key comparisons in the average case. In the average case,
during merge, one of the sublists will exhaust before the other list. From this, it follows that,
on average, when merging two sorted sublists of combined size n, the number of comparisons
will be less than n � 1. On average, it can be shown that the number of comparisons for
merge sort is given by the following equation: If n is a power of 2, A(n) ¼ n log2n � 1.25n ¼
O(n log2n). This is also a good approximation when n is not a power of 2.

We can also obtain an analysis of the merge sort algorithm by constructing and solving

certain equations as follows. As noted before, in merge sort, all of the comparisons are

made in the procedure mergeList, which merges two sorted sublists. If one sublist is
of size s and the other sublist is of size t, then merging these lists would require, at most,

s þ t � 1 comparisons in the worst case. Hence:

W ðnÞ ¼ W ðsÞ þW ðtÞ þ s þ t � 1

Note that s = n / 2 and t = n / 2. Suppose that n = 2m. Then, s = 2m�1 and t = 2m�1. It

follows that s þ t = n. Hence:

W ðnÞ ¼ W ðn=2Þ þW ðn=2Þ þ n � 1 ¼ 2W ðn=2Þ þ n � 1; n > 0

Also:

W ð1Þ ¼ 0

It is known that when n is a power of 2, W(n) is given by the following equation:

W ðnÞ ¼ n log2n � ðn � 1Þ ¼ Oðn log2nÞ

1234 | Chapter 19: Searching and Sorting Algorithms

(Heap Sort) This chapter also discusses the heap sort algorithm. This algorithm and

its related exercises are available at the Web site, www.course.com/malik/cpp,

accompanying this book.

1
9

PROGRAMMING EXAMPLE: Election Results
The presidential election for the student council of your local university is about to
be held. The chair of the election committee wants to computerize the voting and
has asked you to write a program to analyze the data and report the winner.

The university has four major divisions, and each division has several departments.
For the election, the four divisions are labeled as region 1, region 2, region 3, and
region 4. Each department in each division handles its own voting and reports the
votes received by each candidate to the election committee. The voting is reported in
the following form:

firstName lastName regionNumber numberOfVotes

The election committee wants the output in the following tabular form:

--------------------Election Results--------------------

Votes
Candidate Name Region1 Region2 Region3 Region4 Total

------------------ ------- ------- ------- ------- ------
Sheila Bower 23 70 133 267 493
Danny Dillion 25 71 156 97 349
Lisa Fisher 110 158 0 0 268
Greg Goldy 75 34 134 0 243
Peter Lamba 285 56 0 46 387
Mickey Miller 112 141 156 67 476

Winner: Sheila Bower, Votes Received: 493

Total votes polled: 2216

The names of the candidates must be in alphabetical order in the output.

For this program, we assume that six candidates are seeking the student council’s
president post. This program can be enhanced to handle any number of candidates.

The data are provided in two files. One file, candData.txt, consists of the names
of the candidates seeking the president’s post. The names of the candidates in this file
are in no particular order. In the second file, voteData.txt, each line consists of
the voting results in the following form:

Programming Example: Election Results | 1235

www.course.com/malik/cpp

firstName lastName regionNumber numberOfVotes

Each line in the file voteData.txt consists of the candidate’s name, the region number,
and the number of votes received by the candidate in that region. There is one entry per
line. For example, the input file containing the voting data looks like the following:

Greg Goldy 2 34
Mickey Miller 1 56
Lisa Fisher 2 56
Peter Lamba 1 78
Danny Dillion 4 29
Sheila Bower 4 78
.
.
.

The first line indicates that Greg Goldy received 34 votes from region 2.

Input Two files: One containing the candidates’ names and the other containing the
voting data, as described previously.

Output The election results in a tabular form, as described previously, and the winner’s name.

PROBLEM

ANALYSIS

AND

ALGORITHM

DESIGN

From the output, it is clear that the program must organize the voting data by region
and calculate the total votes received by each candidate and polled for the election
overall. Furthermore, the names of the candidates must appear in alphabetical order.

The main component of this program is a candidate. Therefore, first we will design the
class candidateType to implement a candidate object. Moreover, in this program,
we use an array of candidateType object to implement the list of candidates.

Every candidate has a name and receives votes. Because there are four regions, we
can use an array of four components. In Example 11-9 (Chapter 11), we designed the
class personType to implement the name of a person. Recall that an object of
type personType can store the first name and the last name. Now that we have
discussed operator overloading, we redesign the class personType and define the
relational operators so that the names of two people can be compared. We will also
overload the assignment operator for easy assignment and use the stream extraction
and insertion operators for input/output. Because every candidate is a person, we will
derive the class candidateType from the class personType.

personType The class personType implements the first name and last name of a person.
Therefore, the class personType has two member variables: firstName to store
the first name and lastName to store the last name. We declare these as protected so
that the definition of the class personType can be easily extended to accom-
modate the requirements of a specific application needed to implement a person’s
name. The definition of the class personType is given next.

1236 | Chapter 19: Searching and Sorting Algorithms

1
9

//**
// Author: D.S. Malik
//
// class personType
// This class specifies the members to implement a person's
// name. It overloads the stream insertion and extraction
// operators and relational operators for comparison.
//**

#include <string>

using namespace std;

class personType
{

friend istream& operator>>(istream&, personType&);
friend ostream& operator<<(ostream&, const personType&);

public:
void setName(string first, string last);

//Function to set firstName and lastName according
//to the parameters.
//Postcondition: firstName = first; lastName = last

string getFirstName() const;
//Function to return the first name.
//Postcondition: The value of firstName is returned.

string getLastName() const;
//Function to return the last name.
//Postcondition: The value of lastName is returned.

personType(string first = "", string last = "");
//Constructor
//Sets firstName and lastName according to the
//parameters. The default values of the parameters are
//empty strings.
//Postcondition: firstName = first; lastName = last

//overload the relational operators
bool operator==(const personType& right) const;
bool operator!=(const personType& right) const;
bool operator<=(const personType& right) const;
bool operator<(const personType& right) const;
bool operator>=(const personType& right) const;
bool operator>(const personType& right) const;

protected:
string firstName; //variable to store the first name
string lastName; //variable to store the last name

};

Programming Example: Election Results | 1237

We now give the definitions of the functions to implement the various operations of
the class personType.

The definitions of the member functions setName, getFirstName, getLastName,
and the constructors are the same as those given in Chapter 11. We, therefore, consider
the definitions of the functions to overload the relational and stream operators.

The names of two people are the same if their first and last names are the same.
Therefore, the definition of the function to overload the equality operator is:

bool personType::operator==(const personType& right) const
{

return (firstName == right.firstName
&& lastName == right.lastName);

}

The names of two people are different if either their first or last names are different.
Therefore, the definition of the function to overload the not equal to operator is:

bool personType::operator!=(const personType& right) const
{

return (firstName != right.firstName
|| lastName != right.lastName);

}

Similarly, the definitions of the functions to overload the remaining relational
operators are:

bool personType::operator<=(const personType& right) const
{

return (lastName <= right.lastName ||
(lastName == right.lastName &&
firstName <= right.firstName));

}

bool personType::operator<(const personType& right) const
{

return (lastName < right.lastName ||
(lastName == right.lastName &&
firstName < right.firstName));

}

bool personType::operator>=(const personType& right) const
{

return (lastName >= right.lastName ||
(lastName == right.lastName &&
firstName >= right.firstName));

}

1238 | Chapter 19: Searching and Sorting Algorithms

1
9

bool personType::operator>(const personType& right) const
{

return (lastName > right.lastName ||
(lastName == right.lastName &&
firstName > right.firstName));

}

The definitions of the functions to overload the stream extraction and insertion
operators are given next.

istream& operator>>(istream& isObject, personType& pName)
{

isObject >> pName.firstName >> pName.lastName;

return isObject;
}

ostream& operator<<(ostream& osObject, const personType& pName)
{

osObject << pName.firstName << " " << pName.lastName;

return osObject;
}

Candidate As remarked previously, the main component of this program is candidate. Every
candidate has a name and can receive votes. Because there are four regions, we can
use an array of four components to store the votes received.

There are six candidates. Therefore, we declare a list of six candidates of type
candidateType. This chapter extended the class unorderedArrayListType
by illustrating how to include the searching and sorting algorithms developed in
this chapter. We will use this class to maintain the list of candidates. This list of
candidates will be sorted and searched. Therefore, we must define (that is, overload)
the assignment and relational operators for the class candidateType because these
operators are used by the searching and sorting algorithms.

Data in the file containing the candidates’ data consists of only the names of the
candidates. Therefore, in addition to overloading the assignment operator so that
the value of one object can be assigned to another object, we also overload the
assignment operator for the class candidateType so that only the name (of
the personType) of the candidate can be assigned to a candidate object. That is, we
overload the assignment operator twice: once for objects of type candidateType
and once for objects of types candidateType and personType.

//***
// Author: D.S. Malik
//
// class candidateType
// This class specifies the members to implement the properties

Programming Example: Election Results | 1239

// of a candidate. It overloads the assignment operator
// and relational operators for comparison.
//***

#include <string>
#include "personType.h"

const int NO_OF_REGIONS = 4;

class candidateType: public personType
{
public:

const candidateType& operator=(const candidateType&);
//Overload the assignment operator for objects of the
//type candidateType.

const candidateType& operator=(const personType&);
//Overload the assignment operator for objects so that
//the value of an object of type personType can be
//assigned to an object of type candidateType.

void updateVotesByRegion(int region, int votes);
//Function to update the votes of a candidate for a
//particular region.
//Postcondition: Votes for the region specified by
// the parameter are updated by adding
// the votes specified by the parameter
// votes.

void setVotes(int region, int votes);
//Function to set the votes of a candidate for a
//particular region.
//Postcondition: Votes for the region specified by
// the parameter region are set to the votes
// specified by the parameter votes.

void calculateTotalVotes();
//Function to calculate the total votes received by a
//candidate.
//Postcondition: The votes in each region are added
// and assigned to totalVotes.

int getTotalVotes() const;
//Function to return the total votes received by a
//candidate.
//Postcondition: The value of totalVotes is returned.

void printData() const;
//Function to output the candidate's name, the votes
//received in each region, and the total votes received.

1240 | Chapter 19: Searching and Sorting Algorithms

1
9

candidateType();
//Default constructor.
//Postcondition: Candidate's name is initialized to
// blanks, the number of votes in each
// region, and the total votes are
// initialized to 0.

//Overload the relational operators.
bool operator==(const candidateType& right) const;
bool operator!=(const candidateType& right) const;
bool operator<=(const candidateType& right) const;
bool operator<(const candidateType& right) const;
bool operator>=(const candidateType& right) const;
bool operator>(const candidateType& right) const;

private:
int votesByRegion[NO_OF_REGIONS]; //array to store the

//votes received in
//each region

int totalVotes; //variable to store the total votes
};

Figure 19-42 shows the UML diagram of the class candidateType.

candidateType

personType

candidateType

-votesByRegion[NO_OF_REGIONS]:int
-totalVotes: int

+operator=(const candidateType&):
 const candidateType&
+operator=(const personType&):
 const candidateType&
+updateVotesByRegion(int, int): void
+setVotes(int, int): void
+calculateTotalVotes(): void
+getTotalVotes() const: int
+printData() const: void
+candidateType()
+operator==(const candidateType&) const: bool
+operator!=(const candidateType&) const: bool
+operator<=(const candidateType&) const: bool
+operator<(const candidateType&) const: bool
+operator>=(const candidateType&) const: bool
+operator>(const candidateType&) const: bool

FIGURE 19-42 UML class diagram of class candidateType

Programming Example: Election Results | 1241

The definitions of the functions of the class candidateType are given next.

To set the votes of a particular region, the region number and the number of votes
are passed as parameters to the function setVotes. Because an array index starts at 0,
region 1 corresponds to the array component at position 0, and so on. Therefore, to
set the value of the correct array component, 1 is subtracted from the region. The
definition of the function setVotes is:

void candidateType::setVotes(int region, int votes)
{

votesByRegion[region - 1] = votes;
}

To update the votes for a particular region, the region number and the number of
votes for that region are passed as parameters. The votes are then added to the
region’s previous value. The definition of the function updateVotesByRegion is:

void candidateType::updateVotesByRegion(int region, int votes)
{

votesByRegion[region - 1] = votesByRegion[region - 1]
+ votes;

}

The definitions of the functions calculateTotalVotes, getTotalVotes,
printData, and the default constructor are quite straightforward and are given next.

void candidateType::calculateTotalVotes()
{

int i;

totalVotes = 0;

for (i = 0; i < NO_OF_REGIONS; i++)
totalVotes += votesByRegion[i];

}

int candidateType::getTotalVotes() const
{

return totalVotes;
}

void candidateType::printData() const
{

cout << left
<< setw(8) << firstName << " "
<< setw(8) << lastName << " ";

cout << right;
for (int i = 0; i < NO_OF_REGIONS; i++)

cout << setw(8) << votesByRegion[i] << " ";
cout << setw(7) << totalVotes << endl;

}

1242 | Chapter 19: Searching and Sorting Algorithms

1
9

candidateType::candidateType()
{

for (int i = 0; i < NO_OF_REGIONS; i++)
votesByRegion[i] = 0;

totalVotes = 0;
}

To overload the relational operators for the class candidateType, the names of the
candidates are compared. For example, two candidates are the same if they have the same
name. The definitions of these functions are similar to the definitions of the functions to
overload the relational operators for the class personType and are given next.

bool candidateType::operator==(const candidateType& right) const
{

return (firstName == right.firstName
&& lastName == right.lastName);

}
bool candidateType::operator!=(const candidateType& right) const
{

return (firstName != right.firstName
|| lastName != right.lastName);

}

bool candidateType::operator<=(const candidateType& right) const
{

return (lastName <= right.lastName ||
(lastName == right.lastName &&
firstName <= right.firstName));

}

bool candidateType::operator<(const candidateType& right) const
{

return (lastName < right.lastName ||
(lastName == right.lastName &&
firstName < right.firstName));

}

bool candidateType::operator>=(const candidateType& right) const
{

return (lastName >= right.lastName ||
(lastName == right.lastName &&
firstName >= right.firstName));

}

bool candidateType::operator>(const candidateType& right) const
{

return (lastName > right.lastName ||
(lastName == right.lastName &&
firstName > right.firstName));

}

const candidateType& candidateType::operator=
(const candidateType& right)

Programming Example: Election Results | 1243

{
if (this != &right) // avoid self-assignment
{

firstName = right.firstName;
lastName = right.lastName;

for (int i = 0; i < NO_OF_REGIONS; i++)
votesByRegion[i] = right.votesByRegion[i];

totalVotes = right.totalVotes;
}

return *this;
}

const candidateType& candidateType::operator=
(const personType& right)

{
firstName = right.getFirstName();
lastName = right.getLastName();

return *this;
}

MAIN PROGRAM Now that the class candidateType has been designed and implemented, we
focus on designing the main program.

Because there are six candidates, we create a list, candidateList, containing six
components of type candidateType. The first thing that the program should do is
read each candidate’s name from the file candData.txt into the list candidateList.
Then, we sort candidateList.

The next step is to process the voting data from the file voteData.txt, which holds
the voting data. After processing the voting data, the program should calculate the
total votes received by each candidate and print the data, as shown previously. Thus,
the general algorithm is:

1. Read each candidate’s name into candidateList.

2. Sort candidateList.

3. Process the voting data.

4. Calculate the total votes received by each candidate.

5. Print the results.

The following statement creates the object candidateList.

unorderedArrayListType<candidateType> candidateList(NO_OF_CANDIDATES);

Figure 19-43 shows the object candidateList. Every component of the array
list is an object of type candidateType.

1244 | Chapter 19: Searching and Sorting Algorithms

1
9

In Figure 19-43, the array votesByRegion and the variable totalVotes are initialized
to 0 by the default constructor of the class candidateType. To save space, whenever
needed, we will draw the object candidateList, as shown in Figure 19-44.

candidateList

length

maxSize

6

6

list

firstName

lastName

votesByRegion 0 0

totalVotes 0

list[0]

0 0

list[1]

list[2]

list[3]

list[4]

list[5]

list[0]

FIGURE 19-43 candidateList

candidateList

length

maxSize

6

6

list

list[0] 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

list[1]

list[2]

list[3]

list[4]

list[5]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

FIGURE 19-44 candidateList

Programming Example: Election Results | 1245

fillNames The first thing that the program must do is read the candidates’ names into
candidateList. Therefore, we write a function to accomplish this task. The
file candData.txt is opened in the function main. The names of the input file
and candidateList are, therefore, passed as parameters to the function
fillNames. Because the member variable list of the object candidateList is
protected, it cannot be accessed directly. We, therefore, create an object temp
of type candidateType to store the candidates’ names and use the function
insertEnd (of list) to store each candidate’s name in the object candidateList.
The definition of the function fillNames follows.

void fillNames(ifstream& inFile,
unorderedArrayListType<candidateType>& cList)

{
string firstN;
string lastN;
int i;
candidateType temp;

for (i = 0; i < NO_OF_CANDIDATES; i++)
{

inFile >> firstN >> lastN;
temp.setName(firstN, lastN);
cList.insertEnd(temp);

}
}

Figure 19-45 shows the object candidateList after a call to the function fillNames.

1246 | Chapter 19: Searching and Sorting Algorithms

1
9

Sort Names After reading the candidates’ names, we next sort the array list of the object
candidateList using any of the (array-based) sorting algorithms discussed in this
chapter. Because candidateList is an object of type unorderedArrayListType,
we use the member function sort to sort candidateList. (For illustration purposes,
we use selection sort in the function sort. In fact, you can use any array-based sorting
algorithm discussed in this chapter.) The following statement accomplishes this task.

candidateList.sort();

After this statement executes, candidateList is as shown in Figure 19-46.

candidateList

length

maxSize

6

6

list

list[0] 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

list[1]

list[2]

list[3]

list[4]

list[5]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Greg Goldy

Mickey Miller

Lisa Fisher

Peter Lamba

Danny Dillion

Sheila Bower

FIGURE 19-45 Object candidateList after a call to the function fillNames

Programming Example: Election Results | 1247

Process

Voting Data

Processing the voting data is quite straightforward. Each entry in the file
voteData.txt is of the form:

firstName lastName regionNumber numberOfVotes

After reading an entry from the file voteData.txt, we locate the row in the array
list (of the object candidateList) corresponding to the specific candidate and
update the entry specified by regionNumber.

The component votesByRegion is a private member of each component of the
array list. Moreover, list is a private member of candidateList. The only
way we can update the votes of a candidate is to make a copy of that candidate’s
record into a temporary object, update the object, and then copy the temporary
object back into list by replacing the old value with the new value of the
temporary object. We can use the member function retrieveAt to make a copy of
the candidate whose votes need to be updated. After updating the temporary object,
we can use the member function replaceAt to copy the temporary object back into
the list. Suppose the next entry read is:

Lisa Fisher 2 35

This entry says that Lisa Fisher received 35 votes from region 2. Suppose that
before processing this entry, candidateList is as shown in Figure 19-47.

candidateList

length

maxSize

6

6

list

list[0] 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

list[1]

list[2]

list[3]

list[4]

list[5]

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Sheila Bower

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

FIGURE 19-46 Object candidateList after the statement candidateList.sort(); executes

1248 | Chapter 19: Searching and Sorting Algorithms

1
9

We make a copy of the row corresponding to Lisa Fisher (see Figure 19-48).

Next, the following statement updates the voting data for region 2. (Here, region = 2
and votes = 35.)

temp.updateVotesByRegion(region, votes);

After this statement executes, the object temp is as shown in Figure 19-49.

candidateList

length

maxSize

6

6

list

list[0] 0 0 50 0 0

80 0 0 0 0

100 0 0 20 0

list[1]

list[2]

list[3]

list[4]

list[5]

10 0 56 0 0

76 13 0 0 0

0 45 0 0 0

Sheila Bower

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

FIGURE 19-47 Object candidateList before processing entry Lisa Fisher 2 35

temp

region

76 13 0 0 0Lisa Fisher

FIGURE 19-48 Object temp

Programming Example: Election Results | 1249

Now we copy the object temp into list (see Figure 19-50).

Because the member list of candidateList is sorted, we can use the binary search
algorithm to find the row position in list corresponding to the candidate whose votes
need to be updated. Essentially, the definition of the function processVotes is:

void processVotes(ifstream& inFile,
unorderedArrayListType<candidateType>& cList)

{
string firstN;
string lastN;
int region;

candidateList

length

maxSize

6

6

list

list[0] 0 0 50 0 0

80 0 0 0 0

100 0 0 20 0

list[1]

list[2]

list[3]

list[4]

list[5]

10 0 56 0 0

76 48 0 0 0

0 45 0 0 0

Sheila Bower

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

FIGURE 19-50 candidateList after copying temp

temp

region

76 48 0 0 0Lisa Fisher

FIGURE 19-49 Object temp after temp.updateVotesByRegion(region,votes); executes

1250 | Chapter 19: Searching and Sorting Algorithms

1
9

int votes;
int candLocation;

candidateType temp;

inFile >> firstN >> lastN >> region >> votes;

temp.setName(firstN, lastN);
temp.setVotes(region, votes);

while (inFile)
{

candLocation = cList.binSearch(temp);

if (candLocation != -1)
{

cList.retrieveAt(candLocation, temp);
temp.updateVotesByRegion(region, votes);
cList.replaceAt(candLocation, temp);

}

inFile >> firstN >> lastN >> region >> votes;

temp.setName(firstN, lastN);
temp.setVotes(region, votes);

}
}

Add Votes After processing the voting data, the next step is to find the total votes received by
each candidate. This is done by adding the votes received in each region.

Now votesByRegion is a private member of candidateType, and list is a
protected member of candidateList. Therefore, to add the votes for each
candidate, we use the function retrieveAt to make a temporary copy of each
candidate’s data, add the votes in the temporary object, and then copy the temporary
object back into candidateList. The following function does this.

void addVotes(unorderedArrayListType<candidateType>& cList)
{

int i;

candidateType temp;

for (i = 0; i < NO_OF_CANDIDATES; i++)
{

cList.retrieveAt(i, temp);
temp.calculateTotalVotes();
cList.replaceAt(i, temp);

}
}

Programming Example: Election Results | 1251

Figure 19-51 shows candidateList after adding the votes for each candidate—that
is, after a call to the function addVotes.

Print

Heading and

Print Results

To complete the program, we include a function to print the heading, which
outputs the first four lines of the output. The following function accomplishes this
task.

void printHeading()
{

cout << " --------------------Election Results---------"
<< "-----------" << endl << endl;

cout << " Votes" << endl;
cout << " Candidate Name Region1 Region2 Region3 "

<< "Region4 Total"<<endl;
cout << "------------------ ------- ------- "

<< "------- ------- ------" << endl;
}

We now describe the function printResults, which prints the results. Suppose
that the variable sumVotes holds the total votes polled for the election, the variable
largestVotes holds the largest number of votes received by a candidate, and the
variable winLoc holds the index of the winning candidate in the array list. Further

candidateList

length

maxSize

6

6

list

list[0] 23 70 133 267 493

285 56 0 46 387

112 141 156 67 476

list[1]

list[2]

list[3]

list[4]

list[5]

25 71 156 97 349

110 158 0 0 268

75 34 134 0 243

Sheila Bower

Danny Dillion

Lisa Fisher

Greg Goldy

Peter Lamba

Mickey Miller

FIGURE 19-51 candidateList after a call to the function addVotes

1252 | Chapter 19: Searching and Sorting Algorithms

1
9

suppose that temp is an object of type candidateType. The algorithm for this
function is:

1. Initialize sumVotes, largestVotes, and winLoc to zero.

2. For each candidate,

a. Retrieve the candidate’s data into temp.

b. Print the candidate’s name and relevant data.

c. Retrieve the total votes received by the candidate and update
sumVotes.

d. if (largestVotes < temp.getTotalVotes())
{

largestVotes = temp.getTotalVotes();
winLoc = i;

}

3. Output the final lines of output.

We leave the definition of the function printResults as an exercise. (See Pro-
gramming Exercise 18.)

PROGRAM LISTING (MAIN PROGRAM)

//***
// Author: D.S. Malik
//
// This program processes voting data for student council
// president’s post. It outputs each candidate's name and the
// votes they received. The name of the winner is also printed.
//***

#include <iostream>
#include <string>
#include <fstream>
#include "candidateType.h"
#include "unorderedArrayListType.h"

using namespace std;

const int NO_OF_CANDIDATES = 6;

void fillNames(ifstream& inFile,
unorderedArrayListType<candidateType>& cList);

void processVotes(ifstream& inFile,
unorderedArrayListType<candidateType>& cList);

void addVotes(unorderedArrayListType<candidateType>& cList);

void printHeading();
void printResults

(const unorderedArrayListType<candidateType>& cList);

Programming Example: Election Results | 1253

int main()
{

unorderedArrayListType<candidateType>
candidateList(NO_OF_CANDIDATES);

candidateType temp;

ifstream inFile;

inFile.open("candData.txt");
if (!inFile)
{

cout << "Input file (candData.txt) does not exist. "
<< "Program terminates!!" << endl;

return 1;
}

fillNames(inFile, candidateList);

candidateList.sort();

inFile.close();
inFile.clear();

inFile.open("voteData.txt");
if (!inFile)
{

cout << "Input file (voteData.txt) does not exist. "
<< "Program terminates!!" << endl;

return 1;
}

processVotes(inFile, candidateList);

addVotes(candidateList);

printHeading();
printResults(candidateList);

return 0;
}

//Place the definitions of the functions fillNames,
//addVotes, processVotes, and printHeading here. Also, write and place
//the definition of the function printResults here.

Sample Run: After you have written the definitions of the functions of the class
candidateType and of the function printResults and then run your program, it
should produce the following output. See Programming Exercise 18.

1254 | Chapter 19: Searching and Sorting Algorithms

1
9

--------------------Election Results--------------------

Votes
Candidate Name Region1 Region2 Region3 Region4 Total

------------------ ------- ------- ------- ------- ------
Sheila Bower 23 70 133 267 493
Danny Dillion 25 71 156 97 349
Lisa Fisher 110 158 0 0 268
Greg Goldy 75 34 134 0 243
Peter Lamba 285 56 0 46 387
Mickey Miller 112 141 156 67 476

Winner: Sheila Bower, Votes Received: 493

Total votes polled: 2216

Input Files candData.txt

Greg Goldy
Mickey Miller
Lisa Fisher
Peter Lamba
Danny Dillion
Sheila Bower

voteData.txt

Greg Goldy 2 34
Mickey Miller 1 56
Lisa Fisher 2 56
Peter Lamba 1 78
Danny Dillion 4 29
Sheila Bower 4 78
Mickey Miller 2 63
Lisa Fisher 1 23
Peter Lamba 2 56
Danny Dillion 1 25
Sheila Bower 2 70
Peter Lamba 4 23
Danny Dillion 4 12
Greg Goldy 3 134
Sheila Bower 4 100
Mickey Miller 3 67
Lisa Fisher 2 67
Danny Dillion 3 67
Sheila Bower 1 23
Mickey Miller 1 56
Lisa Fisher 2 35
Sheila Bower 3 78
Peter Lamba 1 27
Danny Dillion 2 34

Programming Example: Election Results | 1255

QUICK REVIEW

1. The sequential search algorithm searches the list for a given item, starting
with the first element in the list. It continues to compare the search item
with the elements in the list until either the item is found or no more
elements are left in the list with which it can be compared.

2. On average, the sequential search algorithm searches half of the list.

3. For a list of length n, in a successful search, on average, the sequential search

makes
nþ 1

2
¼ OðnÞ comparisons.

4. A sequential search is not efficient for large lists.

5. A binary search is much faster than a sequential search.

6. A binary search requires the list elements to be in order, that is, sorted.

7. To search for an item in a list of length 1024, a binary search requires no
more than 11 iterations of the loop, and so no more than 22 comparisons.

8. For a list of length n, in a successful search, on average, the binary search
makes 2log2n � 3 key comparisons.

9. Let f be a function of n. By the term asymptotic, we mean the study of the
function f as n becomes larger and larger without bound.

10. Let f and g be real-valued functions. Assume that f and g are nonnegative,
that is, for all real numbers n, f (n) � 0 and g(n) � 0. We say that f (n) is
Big-O of g(n), written f (n) = O(g(n)), if there exist positive constants c and
n0 such that f (n) � cg(n) for all n � n0.

11. Let f (n) be a nonnegative, real-valued function such that f (n) = amn
m þ

am�1n
m�1 þ � � � þa1n þ a0, wherein ai’s are real numbers, am 6¼ 0, n � 0,

and m is a nonnegative integer. Then, f (n) = O(nm).

Greg Goldy 1 75
Peter Lamba 4 23
Sheila Bower 3 55
Mickey Miller 4 67
Peter Lamba 1 23
Danny Dillion 3 89
Mickey Miller 3 89
Peter Lamba 1 67
Danny Dillion 2 37
Sheila Bower 4 89
Mickey Miller 2 78
Lisa Fisher 1 87
Peter Lamba 1 90
Danny Dillion 4 56

1256 | Chapter 19: Searching and Sorting Algorithms

12. Let L be a list of size n > 1. Suppose that the elements of L are sorted. If
SRH(n) is the minimum number of comparisons needed, in the worst case,
by using a comparison-based algorithm to recognize whether an element x
is in L, then SRH(n) � log2(n + 1).

13. The binary search algorithm is the optimal worst-case algorithm for solving
search problems by using the comparison method.

14. To construct a search algorithm of the order less than log2n, it cannot be
comparison based.

15. For a list of length n, on average, bubble sort makes
nðn� 1Þ

2
key compar-

isons and about
nðn� 1Þ

4
item assignments.

16. The selection sort algorithm sorts a list by finding the smallest (or equiva-
lently largest) element in the list and then moving it to the beginning (or
end) of the list.

17. For a list of length n, in which n > 0, the selection sort algorithm makes
1

2
n2� 1

2
n key comparisons and 3(n � 1) item assignments.

18. For a list of length n, in which n > 0, on average, the insertion sort algorithm

makes
1

4
n2 + O(n) key comparisons and

1

4
n2 þ O(n) item assignments.

19. Let L be a list of n distinct elements. Any sorting algorithm that sorts L by
comparison of the keys only, in its worst case, makes at least O(nlog2n) key
comparisons.

20. Both the quick sort and merge sort algorithms sort a list by partitioning it.

21. To partition a list, the quick sort algorithm first selects an item from the list
called pivot. The algorithm then rearranges the elements so that the
elements in one of the sublists are less than pivot and the elements in
the other sublist are greater than or equal to pivot.

22. In a quick sort, the sorting work is done in partitioning the list.

23. On average, the number of key comparisons in a quick sort is O(nlog2n). In
the worst case, the number of key comparisons in a quick sort is O(n2).

24. The merge sort algorithm partitions the list by dividing it in the middle.

25. In a merge sort, the sorting work is done in merging the list.

26. The number of key comparisons in a merge sort is O(nlog2n).

EXERCISES

1. Mark the following statements as true or false.

a. A sequential search of a list assumes that the list is in ascending order.

b. A binary search of a list assumes that the list is sorted.

1
9

Exercises | 1257

c. A binary search is faster on ordered lists and slower on unordered lists.

d. A binary search is faster on large lists, but a sequential search is faster on
small lists.

2. Consider the following list:

63, 45, 32, 98, 46, 57, 28, 100

Using the sequential search as described in this chapter, how many compar-
isons are required to find whether the following items are in the list? (Recall
that by comparisons we mean item comparisons, not index comparisons.)

a. 90 b. 57 c. 63 d. 120

3. a. Write a version of the sequential search algorithm that can be used to
search a sorted list.

b. Consider the following list:

5 12 17 35 46 65 78 85 93 110 115

Using a sequential search on ordered lists, which you designed in (a), how
many comparisons are required to determine whether the following items
are in the list? (Recall that comparisons mean item comparisons, not index
comparisons.)

i. 35 ii. 60 iii. 78 iv. 120

4. Consider the following list:

2, 10, 17, 45, 49, 55, 68, 85, 92, 98, 110

Using the binary search as described in this chapter, how many comparisons
are required to find whether the following items are in the list? Show the
values of first, last, and middle and the number of comparisons after
each iteration of the loop.

a. 15 b. 49 c. 98 d. 99

5. Suppose that L is sorted list of 4096 elements. What is the maximum number
of comparisons made by binary search to determine if an item is in L?

6. Sort the following list using the bubble sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

26, 45, 17, 65, 33, 55, 12, 18

7. a. The number of comparisons in the best case of a bubble sort algorithm, as
given in this chapter, is O(n2). Show that the following version of the
bubble sort algorithm reduces the number of comparisons in the best
case of the bubble sort algorithm to O(n).

1258 | Chapter 19: Searching and Sorting Algorithms

1
9

//list – list to be sorted
//elemType – type of the list elements
//length – length of the list

bool isSorted = false;

for (int iteration = 1; (iteration < length) && !isSorted;
iteration++)

{
isSorted = true; //assume that the sublist is sorted

for (int index = 0; index < length - iteration; index++)
{

if (list[index] > list[index + 1])
{

elemType temp = list[index];
list[index] = list[index + 1];
list[index + 1] = temp;
isSorted = false;

}
}

}

b. Using the algorithm given in part (a), find the number of iterations
that are needed to sort the following list:

65, 14, 52, 43, 75, 25, 80, 90, 95.

8. Sort the following list using the selection sort algorithm as discussed in this
chapter. Show the list after each iteration of the outer for loop.

36, 55, 17, 35, 63, 85, 12, 48, 3, 66

9. Assume the following list of keys:

5, 18, 21, 10, 55, 20

The first three keys are in order. To move 10 to its proper position using
the insertion sort algorithm as described in this chapter, exactly how many
key comparisons are executed?

10. Assume the following list of keys:

7, 28, 31, 40, 5, 20

The first four keys are in order. To move 5 to its proper position using the
insertion sort algorithm as described in this chapter, exactly how many key
comparisons are executed?

11. Assume the following list of keys:

28, 18, 21, 10, 25, 30, 12, 71, 32, 58, 15

This list is to be sorted using the insertion sort algorithm as described in this
chapter for array-based lists. Show the resulting list after six passes of the
sorting phase—that is, after six iterations of the for loop.

Exercises | 1259

12. Recall the insertion sort algorithm (contiguous version) as discussed in this
chapter. Assume the following list of keys:

18, 8, 11, 9, 15, 20, 32, 61, 22, 48, 75, 83, 35, 3

Exactly how many key comparisons are executed to sort this list using the
insertion sort algorithm?

13. Both the merge sort and quick sort algorithms sort a list by partitioning it.
Explain how the merge sort algorithm differs from the quick sort algorithm
in partitioning the list.

14. Assume the following list of keys:

16, 38, 54, 80, 22, 65, 55, 48, 64, 95, 5, 100, 58, 25, 36

This list is to be sorted using the quick sort algorithm as discussed in this
chapter. Use pivot as the middle element of the list.

a. Give the resulting list after one call to the partition procedure.

b. Give the resulting list after two calls to the partition procedure.

15. Assume the following list of keys:

18, 40, 16, 82, 64, 67, 57, 50, 37, 47, 72, 14, 17, 27, 35

This list is to be sorted using the quick sort algorithm as discussed in this
chapter. Use pivot as the median of the first, last, and middle
elements of the list.

a. What is the pivot?

b. Give the resulting list after one call to the partition procedure.

16. Suppose that L is a list of 10,000 elements. Find the average number of
comparisons made by bubble sort, selection sort, and insertion sort to sort L.

17. Suppose that L is a list of 10,000 elements. Find the average number of
comparisons made by quick sort and merge sort to sort L.

18. Suppose that the elements of a list are in descending order and they need to
be put in ascending order. Write a C++ function that takes as input an array
of items in descending order and the number or elements in the array. The
function rearranges the element of the array in ascending order. Your
function must not incorporate any sorting algorithms, that is, no item
comparisons should take place.

PROGRAMMING EXERCISES

1. (Recursive sequential search) The sequential search algorithm given in
this chapter is nonrecursive. Write and implement a recursive version of the
sequential search algorithm.

1260 | Chapter 19: Searching and Sorting Algorithms

2. (Recursive binary search) The binary search algorithm given in this
chapter is nonrecursive. Write and implement a recursive version of the
binary search algorithm. Also, write a program to test your algorithm.

3. Write a program to test the function you designed in Exercise 3.

4. Write a program to find the number of comparisons using binarySearch
and the sequential search algorithm as follows:

Suppose list is an array of 1000 elements.

a. Use a random number generator to fill list.

b. Use any sorting algorithm to sort list.

c. Search list for some items as follows:

i. Use the binary search algorithm to search the list. (You may
need to modify the algorithm given in this chapter to count the
number of comparisons.)

ii. Use the binary search algorithm to search the list, switching to a
sequential search when the size of the search list reduces to less
than 15. (Use the sequential search algorithm for a sorted list.)

d. Print the number of comparisons for Steps c.i and c.ii. If the item is
found in the list, then print its position.

5. (Modified Bubble Sort) Write a complete C++ function template to
implement the modified bubble sort algorithm given in Exercise 7 of this
chapter. Call this function modifiedBubbleSort. Also, write a program
to test your function.

6. Write a program to test the selection sort algorithm for array-based lists as
given in this chapter.

7. Write and test a version of the selection sort algorithm for linked lists.

8. Write a program to test the insertion sort algorithm for array-based lists as
given in this chapter.

9. Write and test a version of the insertion sort algorithm for linked lists.

10. Write a program to test the quick sort algorithm for array-based lists as
given in this chapter.

11. (C. A. R. Hoare) Let L be a list of size n. The quick sort algorithm can be used
to find the kth smallest item in L, wherein 0� k� n� 1, without completely
sorting L. Write and implement a C++ function, kThSmallestItem, that
uses a version of the quick sort algorithm to determine the kth smallest item in
L without completely sorting L.

12. Sort an array of 10,000 elements using the quick sort algorithm as follows:

a. Sort the array using pivot as the middle element of the array.

b. Sort the array using pivot as the median of the first, last, and middle
elements of the array.

1
9

Programming Exercises | 1261

c. Sort the array using pivot as the middle element of the array. How-
ever, when the size of any sublist reduces to less than 20, sort the sublist
using an insertion sort.

d. Sort the array using pivot as the median of the first, last, and middle
elements of the array. When the size of any sublist reduces to less than
20, sort the sublist using an insertion sort.

e. Calculate and print the CPU time for each of the preceding four steps.

To find the current CPU time, declare a variable, say, x, of type clock_t.
The statement x = clock(); stores the current CPU time in x. You can
check the CPU time before and after a particular phase of a program. Then,
to find the CPU time for that particular phase of the program, subtract the
before time from the after time. Moreover, you must include the header file
ctime to use the data type clock_t and the function clock. Use a random
number generator to initially fill the array.

13. Write a program to test the merge sort algorithm for linked lists as given in
this chapter.

14. Write and test a version of the merge sort algorithm for array-based lists.

15. Write a program that creates three identical arrays, list1, list2, and
list3, of 5000 elements. The program then sorts list1 using bubble sort,
list2 using selection sort, and list3 using insertion sort and outputs
the number of comparisons and item assignments made by each sorting
algorithm.

16. Write a program that creates three identical lists, list1, list2, and
list3, of 5000 elements. The program then sorts list1 using quick sort,
list2 using insertion sort, and list3 using merge sort and outputs the
number of comparisons and item assignments made by quick sort and
insertion sort and the number of comparisons made by merge sort.

17. Write a program to test the function you designed in Exercise 18.

18. Write the definitions of the function printResults of the Election
Results programming example. Also, write a program to produce the out-
put shown in the sample run of this programming example.

19. In the Election Results programming example, the class candidateType
contains a function calculateTotalVotes, which calculates the total
number of votes received by a candidate. After processing the voting data,
this function calculates the total number of votes for a candidate. The
function updateVotesByRegion (of the class candidateType) updates
only the number of votes for a particular region. Modify the definition of this
function so that it also updates the total number of votes received by the
candidate. By doing so, the function addVotes in the main program is no
longer needed. Modify and run your program with the modified definition of
the function updateVotesByRegion.

1262 | Chapter 19: Searching and Sorting Algorithms

20. In the Election Results programming example, the object candidateList
of type unorderedArrayListType is declared to process the voting data.
The operations of inserting a candidate’s data and updating and retrieving
the votes were somewhat complicated. The member variable list is a
protected member of candidateList, and each component of list is
a private member. To update the candidates’ votes, copy each candidate’s data
from candidateList into a temporary object of type candidateType,
update the temporary object, and then replace the candidate’s data
with the temporary object. In this exercise, you are to modify the Election
Results programming example to simplify the accessing of a candidate’s
data. Derive the class candidateListType from the class
unorderedArrayListType as follows:

class candidateListType:
public unorderedArrayListType<candidateType>

{
public:

candidateListType(int size = 0);
//constructor

void processVotes(string fName, string lName, int region,
int votes);

//Function to update the number of votes for
//a particular candidate for a particular region.
//The name of the candidate, the region number, and
//the number of votes are passed as parameters.

void addVotes();
//Function to find the total number of votes
//received by each candidate.

void printResult();
//Function to output the voting data.

};

Because the class candidateListType is derived from the class
unorderedArrayListType, and list is a protected member of the
class unorderedArrayListType (inherited from the class
arrayListType), list can be directly accessed by a member of the
class candidateListType.

Write the definitions of the member functions of the class
candidateListType. Rewrite and run your program using the class
candidateListType.

1
9

Programming Exercises | 1263

This page intentionally left blank

BINARY TREES
IN THIS CHAPTER , YOU WILL :

. Learn about binary trees

. Explore various binary tree traversal algorithms

. Learn how to organize data in a binary search tree

. Learn how to insert and delete items in a binary search tree

. Explore nonrecursive binary tree traversal algorithms

20C H A P T E R

When data is being organized, a programmer’s highest priority is to organize it in such a
way that item insertion, deletion, and lookups (searches) are fast. You have already seen
how to store and process data in an array. Because an array is a random-access data
structure, if the data is properly organized (say, sorted), then we can use a search
algorithm, such as a binary search, to effectively find and retrieve an item from the list.
However, we know that storing data in an array has its limitations. For example, item
insertion (especially if the array is sorted) and item deletion can be very time consuming,
especially if the list size is very large, because each of these operations requires data
movement. To speed up item insertion and deletion, we used linked lists. Item insertion
and deletion in a linked list do not require any data movement; we simply adjust some of
the links in the list. However, one of the drawbacks of linked lists is that they must
be processed sequentially. That is, to insert or delete an item, or simply to search the list
for a particular item, we must begin our search at the first node in the list. As you know, a
sequential search is good only for very small lists because the average search length of
a sequential search is half the size of the list.

Binary Trees
This chapter discusses how to organize data dynamically so that item insertion, deletion,
and lookups are more efficient.

We first introduce some definitions to facilitate our discussion.

Definition: A binary tree, T, is either empty or such that:

i. T has a special node called the root node;

ii. T has two sets of nodes, LT and RT, called the left subtree and right
subtree of T, respectively; and

iii. LT and RT are binary trees.

Suppose that T is a binary tree with the root node A. Let LA denote the left subtree of A
and RA denote the right subtree of A. Now LA and RA are binary trees. Suppose that B is
the root node of LA and C is the root node of RA. B is called the left child of A; C is
called the right child of A. Moreover, A is called the parent of B and C.

A binary tree can be shown pictorially. In the diagram of a binary tree, each node of the
binary tree is represented as a circle, and the circle is labeled by the node. The root node
of the binary tree is drawn at the top. The left child of the root node (if any) is drawn
below and to the left of the root node. Similarly, the right child of the root node (if any)
is drawn below and to the right of the root node. Children are connected to the parent by
an arrow from the parent to the child. An arrow is usually called a directed edge or a
directed branch (or simply a branch) (see Figure 20-1). Because the root node, B, of
LA is already drawn, we apply the same (recursive) procedure to draw the remaining parts
of LA. RA is drawn similarly. If a node has no left child, for example, we draw an arrow
from the node to the left, ending with three stacked lines. That is, three lines at the end of
an arrow indicate that the subtree is empty.

1266 | Chapter 20: Binary Trees

In Figure 20-1, the root node of this binary tree is A. The left subtree of the root node,
which we denote by LA, is the set LA ¼ {B, D, E, G}, and the right subtree of the root
node, which we denote by RA, is the set RA ¼ {C, F, H}. The root node of the left
subtree of A—that is, the root node of LA—is node B. The root node of RA is C, and so
on. Clearly, LA and RA are binary trees. Because three lines at the end of an arrow mean
that the subtree is empty, it follows that the left subtree of D is empty. Also, note that for
node F, the left child is H and node F has no right child.

Example 20-1 shows nonempty binary trees.

EXAMPLE 20-1

Figure 20-2 shows binary trees with one, two, or three nodes.

In the binary tree of Figure 20-2(a), the root node is A, LA ¼ empty, and RA ¼ empty.

2
0

A

B C

D E

G

F

H

FIGURE 20-1 Binary tree

A A A A

BB CC

(a) Binary tree
with one node

(b) Binary tree
with two nodes

(c) Binary tree
with two nodes

(d) Binary tree
with three nodes

FIGURE 20-2 Binary tree with one, two, or three nodes

Binary Trees | 1267

In the binary tree of Figure 20-2(b), the root node is A, LA ¼ {B}, and RA ¼ empty. The
root node of LA ¼ B, LB ¼ empty, and RB ¼ empty.
In the binary tree of Figure 20-2(c), the root node is A, LA ¼ empty, and RA ¼ {C}. The
root node of RA ¼ C, LC ¼ empty, and RC ¼ empty.
In the binary tree of Figure 20-2(d), the root node is A, LA ¼ {B}, and RA ¼ {C}. The
root node of LA ¼ B, LB ¼ empty, and RB ¼ empty. The root node of RA ¼ C, LC ¼
empty, and RC ¼ empty.

EXAMPLE 20-2

Figure 20-3 shows other cases of nonempty binary trees with three nodes.

As you can see from the preceding examples, every node in a binary tree has, at
most, two children. Thus, every node, other than storing its own information, must
keep track of its left subtree and right subtree. This implies that every node has two
pointers, say, lLink and rLink. The pointer lLink points to the root node of the
left subtree of the node; the pointer rLink points to the root node of the right
subtree of the node.

The following struct defines the node of a binary tree.

template <class elemType>
struct nodeType
{

elemType info;
nodeType<elemType> *lLink;
nodeType<elemType> *rLink;

};

A

B

D

A

B

E

A

C

G

A

C

F

(i) (ii) (iii) (iv)

FIGURE 20-3 Various binary trees with three nodes

1268 | Chapter 20: Binary Trees

2
0

From the definition of the node, it is clear that for each node:

1. The data is stored in info.

2. A pointer to the left child is stored in lLink.

3. A pointer to the right child is stored in rLink.

Furthermore, a pointer to the root node of the binary tree is stored outside of the binary
tree in a pointer variable, usually called the root, of type nodeType. Thus, in general, a
binary tree looks like the diagram in Figure 20-4.

For simplicity, we will continue to draw binary trees as before. That is, we will use circles
to represent nodes and left and right arrows to represent links. As before, three lines at the
end of an arrow mean that the subtree is empty.

Before we leave this section, let us define a few terms.

A node in a binary tree is called a leaf if it has no left and right children. Let U and V be two
nodes in the binary tree T. U is called the parent of V if there is a branch from U to V. A path
from a node X to a node Y in a binary tree is a sequence of nodes X0, X1, . . ., Xn such that:

i. X ¼ X0, Xn ¼ Y
ii. Xi�1 is the parent of Xi for all i ¼ 1, 2, . . ., n. That is, there is a branch

from X0 to X1, X1 to X2, . . ., Xi�1 to Xi, . . ., Xn�1 to Xn.

If X0, X1, . . ., Xn is a path from node X to node Y, sometimes we denote it by X ¼ X0 �
X1 � � � � � Xn�1 � Xn ¼ Y or simply X � X1 � � � � � Xn�1 � Y.
Because the branches go only from a parent to its children, from the previous discussion it
is clear that in a binary tree, there is a unique path from the root to every node in the
binary tree.

root

A

B C

D FE

G H

FIGURE 20-4 Binary tree

Binary Trees | 1269

Definition: The length of a path in a binary tree is the number of branches on that path.

Definition: The level of a node in a binary tree is the number of branches on the path
from the root to the node.

Clearly, the level of the root node of a binary tree is 0, and the level of the children of the
root node is 1.

Definition: The height of a binary tree is the number of nodes on the longest path from
the root to a leaf.

EXAMPLE 20-3

Consider the binary tree of Figure 20-5. In this example, the terms such as node A and
(node with info A) mean the same thing.

In this binary tree, the nodes I, E, and H have no left and right children. So, the nodes I,
E, and H are leaves.

There is a branch from node A to node B. So, node A is the parent of node B. Similarly,
node A is the parent of node C, node B is the parent of nodes D and E, node C is the parent
of node F, node D is the parent of node G, and so on.

A–B–D–G is a path from node A to node G. Because there are three branches on this path,
the length of this path is 3. Similarly, B–D–G–I is a path from node B to node I.

A

B C

D E

G

I

F

H

root

FIGURE 20-5 Binary tree

1270 | Chapter 20: Binary Trees

There are three leaves in this binary tree, which are I, E, and H. Also, the paths from root
to these leaves are: A–B–D–G-I, A–B–E and A–C–F–H. Clearly, the longest path from
root to a leaf is A–B–D–G-I. The number of nodes on this path is 5. Hence, the height of
the binary tree is 5.

Suppose that a pointer, p, to the root node of a binary tree is given. We next describe a
C++ function, height, to find the height of the binary tree. The pointer to the root
node is passed as a parameter to the function height.

If the binary tree is empty, then the height is 0. Suppose that the binary tree is nonempty.
To find the height of the binary tree, we first find the height of the left subtree and the
height of the right subtree. We then take the maximum of these two heights and add 1 to
find the height of the binary tree. To find the height of the left (right) subtree, we apply
the same procedure because the left (right) subtree is a binary tree. Therefore, the general
algorithm to find the height of a binary tree is as follows. Suppose height(p) denotes
the height of the binary tree with root p.

if (p is NULL)
height(p) = 0

else
height(p) = 1 + max(height(p->lLink), height(p->rLink))

Clearly, this is a recursive algorithm. The following function implements this algorithm.

template <class elemType>
int height(nodeType<elemType> *p)
{

if (p == NULL)
return 0;

else
return 1 + max(height(p->lLink), height(p->rLink));

}

The definition of the function height uses the function max to determine the larger of
two integers. The function max can be easily implemented.

Similarly, we can implement algorithms to find the number of nodes and number of
leaves in a binary tree.

Copy Tree
One useful operation on binary trees is to make an identical copy of a binary tree. A
binary tree is a dynamic data structure; that is, memory for the nodes of a binary tree is
allocated and deallocated during program execution. Therefore, if we use just the value of
the pointer of the root node to make a copy of a binary tree, we get a shallow copy of the
data. To make an identical copy of a binary tree, we need to create as many nodes as there
are in the binary tree to be copied. Moreover, in the copied tree, these nodes must appear
in the same order as they are in the original binary tree.

2
0

Binary Trees | 1271

Given a pointer to the root node of a binary tree, we next describe a function that makes
a copy of a given binary tree. This function is also quite useful in implementing the copy
constructor and overloading the assignment operator, as described later in this chapter
(see ‘‘Implementing Binary Trees’’).

template <class elemType>
void copyTree(nodeType<elemType>* &copiedTreeRoot,

nodeType<elemType>* otherTreeRoot)
{

if (otherTreeRoot == NULL)
copiedTreeRoot = NULL;

else
{

copiedTreeRoot = new nodeType<elemType>;
copiedTreeRoot->info = otherTreeRoot->info;
copyTree(copiedTreeRoot->lLink, otherTreeRoot->lLink);
copyTree(copiedTreeRoot->rLink, otherTreeRoot->rLink);

}
} //end copyTree

We will use the function copyTree when we overload the assignment operator and
implement the copy constructor.

Binary Tree Traversal
The item insertion, deletion, and lookup operations require that the binary tree be
traversed. Thus, the most common operation performed on a binary tree is to traverse
the binary tree, or visit each node of the binary tree. As you can see from the diagram of a
binary tree, the traversal must start at the root node because there is a pointer to the root
node of the binary tree. For each node, we have two choices:

• Visit the node first.

• Visit the subtrees first.

These choices lead to three commonly used traversals of a binary tree:

• Inorder traversal

• Preorder traversal

• Postorder traversal

INORDER TRAVERSAL

In an inorder traversal, the binary tree is traversed as follows:

1. Traverse the left subtree.

2. Visit the node.

3. Traverse the right subtree.

1272 | Chapter 20: Binary Trees

PREORDER TRAVERSAL

In a preorder traversal, the binary tree is traversed as follows:

1. Visit the node.

2. Traverse the left subtree.

3. Traverse the right subtree.

POSTORDER TRAVERSAL

In a postorder traversal, the binary tree is traversed as follows:

1. Traverse the left subtree.

2. Traverse the right subtree.

3. Visit the node.

Clearly, each of these traversal algorithms is recursive.

The listing of the nodes produced by the inorder traversal of a binary tree is called the
inorder sequence. The listing of the nodes produced by the preorder traversal is called
the preorder sequence, and the listing of the nodes produced by the postorder traversal
is called the postorder sequence.

Before giving the C++ code for each of these traversals, let us illustrate the inorder
traversal of the binary tree in Figure 20-6. For simplicity, we assume that visiting a node
means to output the data stored in the node. In the section ‘‘Binary Tree Traversal and
Functions as Parameters,’’ we explain how to modify the binary tree traversal algorithms
so that by using a function, the user can specify the action to be performed on a node
when the node is visited.

A pointer to the binary tree in Figure 20-6 is stored in the pointer variable root (which
points to the node with info A). Therefore, we start the traversal at A.

2
0

A

B

D

C

FIGURE 20-6 Binary tree for an inorder traversal

Binary Trees | 1273

1. Traverse the left subtree of A; that is, traverse LA = {B, D}.

2. Visit A.

3. Traverse the right subtree of A; that is, traverse RA = {C}.

Now we cannot do Step 2 until we have finished Step 1.

1. Traverse the left subtree of A; that is, traverse LA = {B, D}. Now LA is a
binary tree with the root node B. Because LA is a binary tree, we apply
the inorder traversal criteria to LA.

1.1. Traverse the left subtree of B; that is, traverse LB = empty.

1.2. Visit B.

1.3. Traverse the right subtree of B; that is, traverse RB = {D}.

As before, first we complete Step 1.1 before going to Step 1.2.

1.1. Because the left subtree of B is empty, there is nothing to traverse.
Step 1.1 is completed, so we proceed to Step 1.2.

1.2. Visit B. That is, output B on an output device. Clearly, the first node
printed is B. This completes Step 1.2, so we proceed to Step 1.3.

1.3. Traverse the right subtree of B; that is, traverse RB = {D}. Now RB is
a binary tree with the root node D. Because RB is a binary tree, we
apply the inorder traversal criteria to RB.

1.3.1. Traverse the left subtree of D; that is, traverse LD = empty.

1.3.2. Visit D.

1.3.3. Traverse the right subtree of D; that is, traverse RD = empty.

1.3.1. Because the left subtree of D is empty, there is nothing to
traverse. Step 1.3.1 is completed, so we proceed to Step 1.3.2.

1.3.2. Visit D. That is, output D on an output device. This completes
Step 1.3.2, so we proceed to Step 1.3.3.

1.3.3. Because the right subtree of D is empty, there is nothing to
traverse. Step 1.3.3 is completed.

This completes Step 1.3. Because Steps 1.1, 1.2, and 1.3 are completed,
Step 1 is completed, so we go to Step 2.

2. Visit A; that is, output A on an output device. This completes Step 2, so
we proceed to Step 3.

3. Traverse the right subtree of A; that is, traverse RA = {C}. Now RA is a
binary tree with the root node C. Because RA is a binary tree, we apply
the inorder traversal criteria to RA.

3.1. Traverse the left subtree of C; that is, traverse LC = empty.

3.2. Visit C.

3.3. Traverse the right subtree of C; that is, traverse RC = empty.

1274 | Chapter 20: Binary Trees

3.1. Because the left subtree of C is empty, there is nothing to traverse.
Step 3.1 is completed.

3.2. Visit C. That is, output C on an output device. This completes Step
3.2, so we proceed to Step 3.3.

3.3. Because the right subtree of C is empty, there is nothing to traverse.
Step 3.3 is completed.

This completes Step 3, which, in turn, completes the traversal of the binary tree.

Clearly, the inorder traversal of the previous binary tree outputs the nodes in the
following order:

Inorder sequence: B D A C

Similarly, the preorder and postorder traversals output the nodes in the following
order:

Preorder sequence: A B D C

Postorder sequence: D B C A

As you can see from the walk-through of the inorder traversal, after visiting the left
subtree of a node, we must come back to the node itself. The links are only in one
direction; that is, the parent node points to the left and right children, but there is no
pointer from each child to the parent. Therefore, before going to a child, we must
somehow save a pointer to the parent node. A convenient way to do this is to write a
recursive inorder function because in a recursive call, after completing a particular call,
the control goes back to the caller. (Later, we will discuss how to write nonrecursive
traversal functions.) The recursive definition of the function to implement the inorder
traversal algorithms is:

template <class elemType>
void inorder(nodeType<elemType> *p) const
{

if (p != NULL)
{

inorder(p->lLink);
cout << p->info << " ";
inorder(p->rLink);

}
}

To do the inorder traversal of a binary tree, the root node of the binary tree is passed as a
parameter to the function inorder. For example, if root points to the root node of the
binary tree, a call to the function inorder is:

inorder(root);

Similarly, we can write the functions to implement the preorder and postorder traversals.
The definitions of these functions are given next.

2
0

Binary Trees | 1275

template <class elemType>
void preorder(nodeType<elemType> *p) const
{

if (p != NULL)
{

cout << p->info << " ";
preorder(p->lLink);
preorder(p->rLink);

}
}

template <class elemType>
void postorder(nodeType<elemType> *p) const
{

if (p != NULL)
{

postorder(p->lLink);
postorder(p->rLink);
cout << p->info << " ";

}
}

This section described the binary tree traversal algorithms inorder, preorder, and post-

order. If you want to make a copy of a binary tree while preserving the structure of the

binary tree, you can use preorder traversal. To delete all of the nodes of a binary tree, you

can use the postorder traversal. Later in this chapter, we discuss binary search trees. The

inorder traversal of a binary search tree visits the nodes in sorted order.

In addition to the inorder, preorder, and postorder traversals, a binary tree can also be

traversed level-by-level, also known as breadth-first traversal. In Chapter 21, we discuss

graphs. A binary tree is also a graph. We discuss how to implement breadth-first traversal

algorithms for graphs. You can modify that algorithm to do a breadth-first traversal of

binary trees.

Implementing Binary Trees
The preceding sections described various operations that can be performed on a binary
tree, as well as the functions to implement these operations. This section describes binary
trees as an abstract data type (ADT). Before designing the class to implement a binary tree
as an ADT, let us list the various operations that are typically performed on a binary tree.

1. Determine whether the binary tree is empty.

2. Search the binary tree for a particular item.

3. Insert an item in the binary tree.

4. Delete an item from the binary tree.

1276 | Chapter 20: Binary Trees

5. Find the height of the binary tree.

6. Find the number of nodes in the binary tree.

7. Find the number of leaves in the binary tree.

8. Traverse the binary tree.

9. Copy the binary tree.

The item search, insertion, and deletion operations all require the binary tree to be
traversed. However, because the nodes of a binary tree are in no particular order, these
algorithms are not very efficient on arbitrary binary trees. That is, no criteria exist to
guide the search on these binary trees, as we will see in the next section. Therefore, we
will discuss these algorithms when we discuss special binary trees.

The following class defines binary trees as an ADT. The definition of the node is the same
as before. However, for the sake of completeness and easy reference, we give the
definition of the node followed by the definition of the class.

//Definition of the Node
template <class elemType>
struct nodeType
{

elemType info;
nodeType<elemType> *lLink;
nodeType<elemType> *rLink;

};

//Definition of the class
template <class elemType>
class binaryTreeType
{
public:

const binaryTreeType<elemType>& operator=
(const binaryTreeType<elemType>&);

//Overload the assignment operator.

bool isEmpty() const;
//Function to determine whether the binary tree is empty.
//Postcondition: Returns true if the binary tree is empty;
// otherwise, returns false.

void inorderTraversal() const;
//Function to do an inorder traversal of the binary tree.
//Postcondition: Nodes are printed in inorder sequence.

void preorderTraversal() const;
//Function to do a preorder traversal of the binary tree.
//Postcondition: Nodes are printed in preorder sequence.

void postorderTraversal() const;
//Function to do a postorder traversal of the binary tree.
//Postcondition: Nodes are printed in postorder sequence.

2
0

Implementing Binary Trees | 1277

int treeHeight() const;
//Function to determine the height of a binary tree.
//Postcondition: Returns the height of the binary tree.

int treeNodeCount() const;
//Function to determine the number of nodes in a
//binary tree.
//Postcondition: Returns the number of nodes in the
// binary tree.

int treeLeavesCount() const;
//Function to determine the number of leaves in a
//binary tree.
//Postcondition: Returns the number of leaves in the
// binary tree.

void destroyTree();
//Function to destroy the binary tree.
//Postcondition: Memory space occupied by each node
// is deallocated.
// root = NULL;

virtual bool search(const elemType& searchItem) const = 0;
//Function to determine if searchItem is in the binary
//tree.
//Postcondition: Returns true if searchItem is found in
// the binary tree; otherwise, returns
// false.

virtual void insert(const elemType& insertItem) = 0;
//Function to insert insertItem in the binary tree.
//Postcondition: If there is no node in the binary tree
// that has the same info as insertItem, a
// node with the info insertItem is created
// and inserted in the binary search tree.

virtual void deleteNode(const elemType& deleteItem) = 0;
//Function to delete deleteItem from the binary tree.
//Postcondition: If a node with the same info as
// deleteItem is found, it is deleted from
// the binary tree.
// If the binary tree is empty or
// deleteItem is not in the binary tree,
// an appropriate message is printed.

binaryTreeType(const binaryTreeType<elemType>& otherTree);
//Copy constructor

binaryTreeType();
//Default constructor

~binaryTreeType();
//Destructor

1278 | Chapter 20: Binary Trees

2
0

protected:
nodeType<elemType> *root;

private:
void copyTree(nodeType<elemType>* &copiedTreeRoot,

nodeType<elemType>* otherTreeRoot);
//Makes a copy of the binary tree to which
//otherTreeRoot points.
//Postcondition: The pointer copiedTreeRoot points to
// the root of the copied binary tree.

void destroy(nodeType<elemType>* &p);
//Function to destroy the binary tree to which p points.
//Postcondition: Memory space occupied by each node, in
// the binary tree to which p points, is
// deallocated.
// p = NULL;

void inorder(nodeType<elemType> *p) const;
//Function to do an inorder traversal of the binary
//tree to which p points.
//Postcondition: Nodes of the binary tree, to which p
// points, are printed in inorder sequence.

void preorder(nodeType<elemType> *p) const;
//Function to do a preorder traversal of the binary
//tree to which p points.
//Postcondition: Nodes of the binary tree, to which p
// points, are printed in preorder
// sequence.

void postorder(nodeType<elemType> *p) const;
//Function to do a postorder traversal of the binary
//tree to which p points.
//Postcondition: Nodes of the binary tree, to which p
// points, are printed in postorder
// sequence.

int height(nodeType<elemType> *p) const;
//Function to determine the height of the binary tree
//to which p points.
//Postcondition: Height of the binary tree to which
// p points is returned.

int max(int x, int y) const;
//Function to determine the larger of x and y.
//Postcondition: Returns the larger of x and y.

int nodeCount(nodeType<elemType> *p) const;
//Function to determine the number of nodes in
//the binary tree to which p points.
//Postcondition: The number of nodes in the binary
// tree to which p points is returned.

Implementing Binary Trees | 1279

int leavesCount(nodeType<elemType> *p) const;
//Function to determine the number of leaves in
//the binary tree to which p points.
//Postcondition: The number of leaves in the binary
// tree to which p points is returned.

};

We leave the UML class diagram of the class binaryTreeType as an exercise for
you. See Exercise 21 at the end of this chapter.

The functions search, insert, and deleteNode are declared as abstract in the
definition of the class binaryTreeType. This is because, in this section, we are
discussing arbitrary binary trees. Implementing these operations for arbitrary binary trees
is inefficient, if not impossible, as we will discuss in the section ‘‘Binary Search Trees.’’
Because the class binaryTreeType contains abstract functions, this class is an
abstract class. So, you cannot create objects of this class. In the section ‘‘Binary Search
Tree,’’ we will derive a class from the class binaryTreeType and provide the
definitions of these functions.

Note that the definition of the class binaryTreeType contains the statement to
overload the assignment operator, copy constructor, and destructor. This is because the
class binaryTreeType contains pointer member variables. Recall that for classes with
pointer member variables, we must explicitly overload the assignment operator, include
the copy constructor, and include the destructor.

The definition of the class binaryTreeType contains several member functions that
are private members of the class. These functions are used to implement the public
member functions of the class. For example, to do an inorder traversal, the function
inorderTraversal calls the function inorder and passes the pointer root as a
parameter to this function. Moreover, the pointer root is declared as a protected
member so that we can later derive special binary trees.

Next, we give the definitions of the nonabstract member functions of the class
binaryTreeType.

The binary tree is empty if root is NULL. So the definition of the function isEmpty is:

template <class elemType>
bool binaryTreeType<elemType>::isEmpty() const
{

return (root == NULL);
}

The default constructor initializes the binary tree to an empty state; that is, it sets the
pointer root to NULL. Therefore, the definition of the default constructor is:

template <class elemType>
binaryTreeType<elemType>::binaryTreeType()
{

root = NULL;
}

1280 | Chapter 20: Binary Trees

The definitions of the other functions are:

template <class elemType>
void binaryTreeType<elemType>::inorderTraversal() const
{

inorder(root);
}

template <class elemType>
void binaryTreeType<elemType>::preorderTraversal() const
{

preorder(root);
}

template <class elemType>
void binaryTreeType<elemType>::postorderTraversal() const
{

postorder(root);
}

template <class elemType>
int binaryTreeType<elemType>::treeHeight() const
{

return height(root);
}

template <class elemType>
int binaryTreeType<elemType>::treeNodeCount() const
{

return nodeCount(root);
}

template <class elemType>
int binaryTreeType<elemType>::treeLeavesCount() const
{

return leavesCount(root);
}

template <class elemType>
void binaryTreeType<elemType>::inorder

(nodeType<elemType> *p) const
{

if (p != NULL)
{

inorder(p->lLink);
cout << p->info << " ";
inorder(p->rLink);

}
}

2
0

Implementing Binary Trees | 1281

template <class elemType>
void binaryTreeType<elemType>::preorder

(nodeType<elemType> *p) const
{

if (p != NULL)
{

cout << p->info << " ";
preorder(p->lLink);
preorder(p->rLink);

}
}

template <class elemType>
void binaryTreeType<elemType>::postorder

(nodeType<elemType> *p) const
{

if (p != NULL)
{

postorder(p->lLink);
postorder(p->rLink);
cout << p->info << " ";

}
}

template<class elemType>
int binaryTreeType<elemType>::height

(nodeType<elemType> *p) const
{

if (p == NULL)
return 0;

else
return 1 + max(height(p->lLink), height(p->rLink));

}

template <class elemType>
int binaryTreeType<elemType>::max(int x, int y) const
{

if (x >= y)
return x;

else
return y;

}

The definitions of the functions nodeCount and leavesCount are left as exercises for
you. See Programming Exercises 1 and 2 at the end of this chapter.

Next, we give the definitions of the functions copyTree, destroy, and destroyTree,
the copy constructor, and the destructor. We also overload the assignment operator.

The definition of the function copyTree is the same as before; here, this function is a
member of the class binaryTreeType.

1282 | Chapter 20: Binary Trees

template <class elemType>
void binaryTreeType<elemType>::copyTree

(nodeType<elemType>* &copiedTreeRoot,
nodeType<elemType>* otherTreeRoot)

{
if (otherTreeRoot == NULL)

copiedTreeRoot = NULL;
else
{

copiedTreeRoot = new nodeType<elemType>;
copiedTreeRoot->info = otherTreeRoot->info;
copyTree(copiedTreeRoot->lLink, otherTreeRoot->lLink);
copyTree(copiedTreeRoot->rLink, otherTreeRoot->rLink);

}
} //end copyTree

To destroy a binary tree, for each node, first we destroy its left subtree, then its right
subtree, and then the node itself. We must use the operator delete to deallocate the
memory occupied by the node. The definition of the function destroy is:

template <class elemType>
void binaryTreeType<elemType>::destroy(nodeType<elemType>* &p)
{

if (p != NULL)
{

destroy(p->lLink);
destroy(p->rLink);
delete p;
p = NULL;

}
}

To implement the function destroyTree, we use the function destroy and pass the
root node of the binary tree to the function destroy. The definition of the function
destroyTree is:

template <class elemType>
void binaryTreeType<elemType>::destroyTree()
{

destroy(root);
}

Recall that when a class object is passed by value, the copy constructor copies the value of
the actual parameters into the formal parameters. Because the class binaryTreeType
has pointer member variables and a pointer is used to create dynamic memory, we must
provide the definition of the copy constructor to avoid the shallow copying of data. The
definition of the copy constructor, given next, uses the function copyTree to make an
identical copy of the binary tree that is passed as a parameter.

2
0

Implementing Binary Trees | 1283

//copy constructor
template <class elemType>
binaryTreeType<elemType>::binaryTreeType

(const binaryTreeType<elemType>& otherTree)
{

if (otherTree.root == NULL) //otherTree is empty
root = NULL;

else
copyTree(root, otherTree.root);

}

The definition of the destructor is quite straightforward. When the object of type
binaryTreeType goes out of scope, the destructor deallocates the memory occupied
by the nodes of the binary tree. The definition of the destructor uses the function
destroy to accomplish this task.

//Destructor
template <class elemType>
binaryTreeType<elemType>::~binaryTreeType()
{

destroy(root);
}

Next, we discuss the definition of the function to overload the assignment operator. To
assign the value of one binary tree to another binary tree, we make an identical copy of
the binary tree to be assigned by using the function copyTree. The definition of the
function to overload the assignment operator is:

//Overload the assignment operator
template <class elemType>
const binaryTreeType<elemType>& binaryTreeType<elemType>::

operator=(const binaryTreeType<elemType>& otherTree)
{

if (this != &otherTree) //avoid self-copy
{

if (root != NULL) //if the binary tree is not empty,
//destroy the binary tree

destroy(root);

if (otherTree.root == NULL) //otherTree is empty
root = NULL;

else
copyTree(root, otherTree.root);

}//end else

return *this;
}

1284 | Chapter 20: Binary Trees

Binary Search Trees
Now that you know the basic operations on a binary tree, this section discusses a special
type of binary tree called the binary search tree.

Consider the binary tree in Figure 20-7.

Suppose that we want to determine whether 53 is in the binary tree. To do so, we can
use any of the previous traversal algorithms to visit each node and compare the search
item with the data stored in the node. However, this could require us to traverse a large
part of the binary tree, so the search will be slow. The reason that we need to visit each
node in the binary tree until either the item is found or we have traversed the entire
binary tree is that no criteria exist to guide our search. This case is like an arbitrary linked
list, in which we must start our search at the first node and continue looking at each node
until either the item is found or the entire list is searched.

On the other hand, consider the binary tree in Figure 20-8.

2
0

78

32 60

89 46

28

98

53

root

FIGURE 20-7 Arbitrary binary tree

Binary Search Trees | 1285

In the binary tree in Figure 20-8, the data in each node is:

• Larger than the data in its left child

• Smaller than the data in its right child

The binary tree in Figure 20-8 has some order to its nodes. Suppose that we want to
determine whether 58 is in this binary tree. As before, we must start our search at
the root node. We compare 58 with the data in the root node; that is, we compare
58 with 60. Because 58 6¼ 60 and 58 < 60, it is guaranteed that 58 will not be in
the right subtree of the root node. Therefore, if 58 is in the binary tree, then it must
be in the left subtree of the root node. We follow the left pointer of the root node
and go to the node with info 50. We now apply the same criteria at this node.
Because 58 > 50, we must follow the right pointer of this node and go to the node
with info 58. At this node, we find 58.

This example shows that every time we move down to a child, we eliminate one of the
subtrees of the node from our search. If the binary tree is nicely constructed, then the
search is very similar to the binary search on arrays.

The binary tree given in Figure 20-8 is a special type of binary tree called a binary search
tree. (In the following definition, by the term key of the node, we mean the key of the
data item that uniquely identifies the item.)

Definition: A binary search tree, T, is either empty or:

i. T has a special node called the root node;

ii. T has two sets of nodes, LT and RT, called the left subtree and right
subtree of T, respectively;

60

50 70

30 58

46

80

77

root

FIGURE 20-8 Binary search tree

1286 | Chapter 20: Binary Trees

iii. The key in the root node is larger than every key in the left subtree and
smaller than every key in the right subtree; and

iv. LT and RT are binary search trees.

The following operations are typically performed on a binary search tree.

1. Determine whether the binary search tree is empty.

2. Search the binary search tree for a particular item.

3. Insert an item in the binary search tree.

4. Delete an item from the binary search tree.

5. Find the height of the binary search tree.

6. Find the number of nodes in the binary search tree.

7. Find the number of leaves in the binary search tree.

8. Traverse the binary search tree.

9. Copy the binary search tree.

Clearly, every binary search tree is a binary tree. The height of a binary search tree is
determined in the same way as the height of a binary tree. Similarly, the operations to
find the number of nodes, to find the number of leaves, and to do inorder, preorder, and
postorder traversals of a binary search tree are the same as those for a binary tree.
Therefore, we can inherit all of these operations from the binary tree. That is, we can
extend the definition of the binary tree by using the principle of inheritance and hence
define the binary search tree.

The following class defines a binary search tree as an ADT by extending the definition of
the binary tree.

template <class elemType>
class bSearchTreeType: public binaryTreeType<elemType>
{
public:

bool search(const elemType& searchItem) const;
//Function to determine if searchItem is in the binary
//search tree.
//Postcondition: Returns true if searchItem is found in
// the binary search tree; otherwise,
// returns false.

void insert(const elemType& insertItem);
//Function to insert insertItem in the binary search tree.
//Postcondition: If there is no node in the binary search
// tree that has the same info as
// insertItem, a node with the info
// insertItem is created and inserted in the
// binary search tree.

2
0

Binary Search Trees | 1287

void deleteNode(const elemType& deleteItem);
//Function to delete deleteItem from the binary search tree.
//Postcondition: If a node with the same info as deleteItem
// is found, it is deleted from the binary
// search tree.
// If the binary tree is empty or deleteItem
// is not in the binary tree, an appropriate
// message is printed.

private:
void deleteFromTree(nodeType<elemType>* &p);

//Function to delete the node to which p points is
//deleted from the binary search tree.
//Postcondition: The node to which p points is deleted
// from the binary search tree.

};

We leave it as an exercise for you to draw the UML class diagram of the class
bSearchTreeType and the inheritance hierarchy. See Exercise 22 at the end of this
chapter.

Next, we describe each of these operations.

SEARCH

The function search searches the binary search tree for a given item. If the item is found in
the binary search tree, it returns true; otherwise, it returns false. Because the pointer root
points to the root node of the binary search tree, we must begin our search at the root node.
Furthermore, because root must always point to the root node, we need a pointer—say,
current—to traverse the binary search tree. The pointer current is initialized to root.

If the binary search tree is nonempty, we first compare the search item with the info in
the root node. If they are the same, we stop the search and return true. Otherwise, if the
search item is smaller than the info in the node, we follow lLink to go to the left subtree;
otherwise, we follow rLink to go to the right subtree. We repeat this process for the next
node. If the search item is in the binary search tree, our search ends at the node containing the
search item; otherwise, the search ends at an empty subtree. Thus, the general algorithm is:

if root is NULL
Cannot search an empty tree, returns false.

else
{

current = root;
while (current is not NULL and not found)

if (current->info is the same as the search item)
set found to true;

else
if (current->info is greater than the search item)

follow the lLink of current
else

follow the rLink of current
}

1288 | Chapter 20: Binary Trees

This pseudocode algorithm translates into the following C++ function:

template <class elemType>
bool bSearchTreeType<elemType>::search

(const elemType& searchItem) const
{

nodeType<elemType> *current;
bool found = false;

if (root == NULL)
cout << "Cannot search an empty tree." << endl;

else
{

current = root;

while (current != NULL && !found)
{

if (current->info == searchItem)
found = true;

else if (current->info > searchItem)
current = current->lLink;

else
current = current->rLink;

}//end while
}//end else

return found;
}//end search

INSERT

After inserting an item in a binary search tree, the resulting binary tree must be a binary
search tree. To insert a new item, first we search the binary search tree and find the place
where the new item is to be inserted. The search algorithm is similar to the search algorithm
of the function search. Here, we traverse the binary search tree with two pointers—a pointer,
say, current, to check the current node and a pointer, say, trailCurrent, pointing to
the parent of current. Because duplicate items are not allowed, our search must end at an
empty subtree. We can then use the pointer trailCurrent to insert the new item at the
proper place. The item to be inserted, insertItem, is passed as a parameter to the function
insert. The general algorithm is:

a. Create a new node and copy insertItem into the new node. Also set lLink
and rLink of the new node to NULL.

b. if the root is NULL, the tree is empty, so make root point to
the new node.
else
{

current = root;
while (current is not NULL) //search the binary tree

2
0

Binary Search Trees | 1289

{
trailCurrent = current;
if (current->info is the same as the insertItem)

Error: Cannot insert duplicate
exit

else
if (current->info > insertItem)

Follow lLink of current
else

Follow rLink of current
}

//insert the new node in the binary tree

if (trailCurrent->info > insertItem)
make the new node the left child of trailCurrent

else
make the new node the right child of trailCurrent

}

This pseudocode algorithm translates into the following C++ function:

template <class elemType>
void bSearchTreeType<elemType>::insert

(const elemType& insertItem)
{

nodeType<elemType> *current; //pointer to traverse the tree
nodeType<elemType> *trailCurrent; //pointer behind current
nodeType<elemType> *newNode; //pointer to create the node

newNode = new nodeType<elemType>;
newNode->info = insertItem;
newNode->lLink = NULL;
newNode->rLink = NULL;

if (root == NULL)
root = newNode;

else
{

current = root;

while (current != NULL)
{

trailCurrent = current;

if (current->info == insertItem)
{

cout << "The item to be inserted is already ";
cout << "in the tree -- duplicates are not "

<< "allowed." << endl;
return;

}
else if (current->info > insertItem)

current = current->lLink;
else

current = current->rLink;
}//end while

1290 | Chapter 20: Binary Trees

2
0

if (trailCurrent->info > insertItem)
trailCurrent->lLink = newNode;

else
trailCurrent->rLink = newNode;

}
}//end insert

DELETE

As before, first we search the binary search tree to find the node to be deleted. To help
you better understand the delete operation, before describing the function to delete an
item from the binary search tree, let us consider the binary search tree in Figure 20-9.

After deleting the desired item (if it exists in the binary search tree), the resulting tree
must be a binary search tree. The delete operation has four cases, as follows:

Case 1: The node to be deleted has no left and right subtrees; that is, the node to be
deleted is a leaf. For example, the node with info 45 is a leaf.

Case 2: The node to be deleted has no left subtree; that is, the left subtree is empty, but it
has a nonempty right subtree. For example, the left subtree of node with info 40 is
empty, and its right subtree is nonempty.

60

50 70

30 53

57

35

32 40

48

45

80

75

77

root

FIGURE 20-9 Binary search tree before deleting a node

Binary Search Trees | 1291

Case 3: The node to be deleted has no right subtree; that is, the right subtree is empty,
but it has a nonempty left subtree. For example, the left subtree of node with info 80 is
empty, and its right subtree is nonempty.

Case 4: The node to be deleted has nonempty left and right subtrees. For example, the
left and the right subtrees of node with info 50 are nonempty.

Figure 20-10 illustrates these four cases.

60

50 70

30 53
80

7535

root

4032 77

57

48

60

50 70

53 80

75

root

77

57

35

4032

48

45

(a) Delete 45 (b) Delete 30

60

50 70

30 53 75

35

root

4032

7757

48

45

60

48 70

30 53 80

7535

root

4032 77

57

45

(c) Delete 80 (d) Delete 50

FIGURE 20-10 Binary trees of Figure 20-9 after deleting various items

1292 | Chapter 20: Binary Trees

2
0

Case 1: Suppose that we want to delete 45 from the binary search tree in Figure 20-9. We
search the binary tree and arrive at the node containing 45. Because this node is a leaf and is
the left child of its parent, we can simply set the lLink of the parent node to NULL and
deallocate the memory occupied by this node. After deleting this node, Figure 20-10(a)
shows the resulting binary search tree.

Case 2: Suppose that we want to delete 30 from the binary search tree in Figure 20-9. In
this case, the node to be deleted has no left subtree. Because 30 is the left child of its parent
node, we make the lLink of the parent node point to the right child of 30 and then
deallocate the memory occupied by 30. Figure 20-10(b) shows the resulting binary tree.

Case 3: Suppose that we want to delete 80 from the binary search tree of Figure 20-9.
The node containing 80 has no right child and is the right child of its parent. Thus,
we make the rLink of the parent of 80—that is, 70—point to the left child of 80.
Figure 20-10(c) shows the resulting binary tree.

Case 4: Suppose that we want to delete 50 from the binary search tree in Figure 20-9. The
node with info 50 has a nonempty left subtree and a nonempty right subtree. Here, we first
reduce this case to either case 2 or case 3 as follows. To be specific, suppose that we reduce it to
case 3—that is, the node to be deleted has no right subtree. For this case, we find the immediate
predecessor of 50 in this binary tree, which is 48. This is done by first going to the left child of
50 and then locating the rightmost node of the left subtree of 50. To do so, we follow the
rLink of the nodes. Because the binary search tree is finite, we eventually arrive at a node that
has no right subtree. Next, we swap the info in the node to be deleted with the info of its
immediate predecessor. In this case, we swap 48 with 50. This reduces to the case wherein the
node to be deleted has no right subtree. We now apply case 3 to delete the node. (Note that
because we will delete the immediate predecessor from the binary tree, we, in fact, copy only
the info of the immediate predecessor into the node to be deleted.) After deleting 50 from the
binary search tree in Figure 20-9, the resulting binary tree is as shown in Figure 20-10(d).

In each case, we clearly see that the resulting binary tree is again a binary search tree.
From this discussion, it follows that to delete an item from the binary search tree, we must
do the following:

1. Find the node containing the item (if any) to be deleted.

2. Delete the node.

We accomplish the second step by a separate function, which we will call deleteFromTree.
Given a pointer to the node to be deleted, this function deletes the node by taking into
account the previous four cases.

From the preceding examples, it is clear that whenever we delete a node from the binary
tree, we adjust one of the pointers of the parent node. Because the adjustment has to be
made in the parent node, we must call the function deleteFromTree by using an
appropriate pointer of the parent node. For example, suppose that the node to be deleted
is 35, which is the right child of its parent node. Suppose that trailCurrent points to the
node containing 30, the parent node of 35. A call to the function deleteFromTree is:

deleteFromTree(trailCurrent->rLink);

Binary Search Trees | 1293

Of course, if the node to be deleted is the root node, then the call to the function
deleteFromTree is:

deleteFromTree(root);

We now define the C++ function deleteFromTree.

template <class elemType>
void bSearchTreeType<elemType>::deleteFromTree

(nodeType<elemType>* &p)
{

nodeType<elemType> *current; //pointer to traverse the tree
nodeType<elemType> *trailCurrent; //pointer behind current
nodeType<elemType> *temp; //pointer to delete the node

if (p == NULL)
cout << "Error: The node to be deleted is NULL."

<< endl;
else if (p->lLink == NULL && p->rLink == NULL)
{

temp = p;
p = NULL;
delete temp;

}
else if (p->lLink == NULL)
{

temp = p;
p = temp->rLink;
delete temp;

}
else if (p->rLink == NULL)
{

temp = p;
p = temp->lLink;
delete temp;

}
else
{

current = p->lLink;
trailCurrent = NULL;

while (current->rLink != NULL)
{

trailCurrent = current;
current = current->rLink;

}//end while

p->info = current->info;

if (trailCurrent == NULL) //current did not move;
//current == p->lLink; adjust p

p->lLink = current->lLink;

1294 | Chapter 20: Binary Trees

else
trailCurrent->rLink = current->lLink;

delete current;
}//end else

} //end deleteFromTree

Next, we describe the function deleteNode. The function deleteNode first searches
the binary search tree to find the node containing the item to be deleted. The item to be
deleted, deleteItem, is passed as a parameter to the function. If the node containing
deleteItem is found in the binary search tree, the function deleteNode calls
the function deletefromTree to delete the node. The definition of the function
deleteNode is given next.

template <class elemType>
void bSearchTreeType<elemType>::deleteNode

(const elemType& deleteItem)
{

nodeType<elemType> *current; //pointer to traverse the tree
nodeType<elemType> *trailCurrent; //pointer behind current
bool found = false;

if (root == NULL)
cout << "Cannot delete from an empty tree."

<< endl;
else
{

current = root;
trailCurrent = root;

while (current != NULL && !found)
{

if (current->info == deleteItem)
found = true;

else
{

trailCurrent = current;

if (current->info > deleteItem)
current = current->lLink;

else
current = current->rLink;

}
}//end while

if (current == NULL)
cout << "The item to be deleted is not in the tree."

<< endl;
else if (found)
{

if (current == root)
deleteFromTree(root);

2
0

Binary Search Trees | 1295

else if (trailCurrent->info > deleteItem)
deleteFromTree(trailCurrent->lLink);

else
deleteFromTree(trailCurrent->rLink);

}
else

cout << "The item to be deleted is not in the tree."
<< endl;

}
} //end deleteNode

Binary Search Tree: Analysis
Let T be a binary search tree with n nodes, in which n > 0. Suppose that we want to
determine whether an item, x, is in T. The performance of the search algorithm depends
on the shape of T. Let us first consider the worst case. In the worst case, T is linear. That
is, the T is one of the forms shown in Figure 20-11.

Because T is linear, the performance of the search algorithm on T is the same as its performance
on a linear list. Therefore, in the successful case, on average, the search algorithm makes
nþ 1

2
¼ OðnÞ key comparisons. In the unsuccessful case, it makes n comparisons.

Let us now consider the average-case behavior. In the successful case, the search would
end at a node. Because there are n items, there are n! possible orderings of the keys. We
assume that all n! orderings of the keys are possible. Let S(n) denote the number of
comparisons in the average successful case, and let U(n) denote the number of compar-
isons in the average unsuccessful case.

The number of comparisons required to determine whether x is in T is one more than
the number of comparisons required to insert x in T. Furthermore, the number of

(a) (b)

.
.

.

a1

a2

an

.
.

.

a1

a2

an

FIGURE 20-11 Linear binary search trees

1296 | Chapter 20: Binary Trees

comparisons required to insert x in T is the same as the number of comparisons made in
the unsuccessful search, reflecting that x is not in T. From this, it follows that:

SðnÞ ¼ 1þ Uð0Þ þ Uð1Þ þ :::þ Uðn� 1Þ
n

ð20-1Þ

It is also known that:

SðnÞ ¼ 1þ 1
n

� �
UðnÞ � 3 ð20-2Þ

Solving equations (20-1) and (20-2), it can be shown that:

UðnÞ � 2:77log
2
n ¼ Oðlog

2
nÞ

and:

SðnÞ � 2:77log
2
n ¼ Oðlog

2
nÞ

We can now formulate the following result.

Theorem: Let T be a binary search tree with n nodes, in which n > 0. The average
number of nodes visited in a search of T is approximately 1.39log2n ¼ O(log2n), and the
number of key comparisons is approximately 2.77log2n ¼ O(log2n).

Nonrecursive Binary Tree Traversal Algorithms
The previous sections described how to do the following:

• Traverse a binary tree using the inorder, preorder, and postorder methods.

• Construct a binary tree.

• Insert an item in the binary tree.

• Delete an item from the binary tree.

The traversal algorithms—inorder, preorder, and postorder—discussed earlier are recur-
sive. Because traversing a binary tree is a fundamental operation, this section discusses the
nonrecursive inorder, preorder, and postorder traversal algorithms.

Nonrecursive Inorder Traversal
In the inorder traversal of a binary tree, for each node, the left subtree is visited first,
then the node, and then the right subtree. It follows that in an inorder traversal, the first
node visited is the leftmost node of the binary tree. For example, in the binary tree in
Figure 20-12, the leftmost node is the node with info 28.

2
0

Nonrecursive Binary Tree Traversal Algorithms | 1297

To get to the leftmost node of the binary tree, we start by traversing the binary tree at the
root node and then follow the left link of each node until the left link of a node becomes
null. From this point, we back up to the parent node, visit the node, and then move to
the right node. Because links go in only one direction, to get back to a node, we must
save a pointer to the node before moving to the child node. Moreover, the nodes must be
backtracked in the order they were traversed. It follows that while backtracking, the
nodes must be visited in a last-in first-out manner. This can be done by using a stack. We,
therefore, save a pointer to a node in a stack. The general algorithm is as follows:

1. current = root; //start traversing the binary tree at the root node

2. while (current is not NULL or stack is nonempty)
if (current is not NULL)
{

push current onto stack;
current = current->lLink;

}
else
{

current = stack.top();
pop stack;
visit current; //visit the node
current = current->rLink; //move to the right child

}

The following function implements the nonrecursive inorder traversal of a binary tree.

template <class elemType>
void binaryTreeType<elemType>::nonRecursiveInTraversal() const
{

stackType<nodeType<elemType>*> stack;
nodeType<elemType> *current;
current = root;

60

70 90

20 55

28

88

FIGURE 20-12 Binary tree; the leftmost node is 28

1298 | Chapter 20: Binary Trees

while ((current != NULL) || (!stack.isEmptyStack()))
if (current != NULL)
{

stack.push(current);
current = current->lLink;

}
else
{

current = stack.top();
stack.pop();
cout << current->info << " ";
current = current->rLink;

}

cout << endl;
} //end nonRecursiveInTraversal

Nonrecursive Preorder Traversal
In a preorder traversal of a binary tree, for each node, first the node is visited, then the left
subtree is visited, and then the right subtree is visited. As in the case of an inorder
traversal, after visiting a node and before moving to the left subtree, we must save a
pointer to the node so that after visiting the left subtree, we can visit the right subtree.
The general algorithm is as follows:

1. current = root; //start the traversal at the root node

2. while (current is not NULL or stack is nonempty)
if (current is not NULL)
{

visit current node;
push current onto stack;
current = current->lLink;

}
else
{

current = stack.top();
pop stack;
current = current->rLink; //move to the right child

}

The following function implements the nonrecursive preorder traversal algorithm.

template <class elemType>
void binaryTreeType<elemType>::nonRecursivePreTraversal() const
{

stackType<nodeType<elemType>*> stack;
nodeType<elemType> *current;

current = root;

2
0

Nonrecursive Binary Tree Traversal Algorithms | 1299

while ((current != NULL) || (!stack.isEmptyStack()))
if (current != NULL)
{

cout << current->info << " ";
stack.push(current);
current = current->lLink;

}
else
{

current = stack.top();
stack.pop();
current = current->rLink;

}

cout << endl;
} //end nonRecursivePreTraversal

Nonrecursive Postorder Traversal
In a postorder traversal of a binary tree, for each node, first the left subtree is visited, then
the right subtree is visited, and then the node is visited. As in the case of an inorder
traversal, in a postorder traversal, the first node visited is the leftmost node of the binary
tree. Because—for each node—the left and right subtrees are visited before visiting the
node, we must indicate to the node whether the left and right subtrees have been visited.
After visiting the left subtree of a node and before visiting the node, we must visit its right
subtree. Therefore, after returning from a left subtree, we must tell the node that the right
subtree needs to be visited, and after visiting the right subtree, we must tell the node that
it can now be visited. To do this, other than saving a pointer to the node (to get back to
the right subtree and to the node itself), we also save an integer value of 1 before moving
to the left subtree and an integer value of 2 before moving to the right subtree. Whenever
the stack is popped, the integer value associated with that pointer is popped as well. This
integer value tells whether the left and right subtrees of a node have been visited.

The general algorithm is:

1. current = root; //start the traversal at the root node

2. v = 0;

3. if current is NULL
The binary tree is empty

4. if current is not NULL

a. push current onto stack;

b. push 1 onto stack;

c. current = current->lLink;

d. while (stack is not empty)
if (current is not NULL and v is 0)

1300 | Chapter 20: Binary Trees

2
0

{
push current and 1 onto stack;
current = current->lLink;

}
else
{

assign the top element of stack to current and v;
pop stack;
if (v == 1)
{

push current and 2 onto stack;
current = current->rLink;
v = 0;

}
else

visit current;
}

We will use two (parallel) stacks: one to save a pointer to a node and another to save the
integer value (1 or 2) associated with this pointer. We leave it as an exercise for you to
write the definition of a C++ function to implement the preceding postorder traversal
algorithm. See Programming Exercise 6 at the end of this chapter.

Binary Tree Traversal and Functions
as Parameters
Suppose that you have stored employee data in a binary search tree, and at the end of the
year pay increases or bonuses are to be awarded to each employee. This task requires that
each node in the binary search tree be visited and that the salary of each employee be
updated. The preceding sections discussed various ways to traverse a binary tree. However,
in these traversal algorithms—inorder, preorder, and postorder—whenever we visited a
node, for simplicity and for illustration purposes, we output only the data contained in each
node. How do we use a traversal algorithm to visit each node and update the data in each
node? One way to do so is to first create another binary search tree in which the data in
each node is the updated data of the original binary search tree and then destroy the old
binary search tree. This would require extra computer time and perhaps extra memory
and, therefore, is not efficient. Another solution is to write separate traversal algorithms to
update the data. This solution requires you to frequently modify the definition of the class
implementing the binary search tree. However, if the user can write an appropriate
function to update the data of each employee and then pass the function as a parameter
to the traversal algorithms, we can considerably enhance the program’s flexibility. This
section describes how to pass functions as parameters to other functions.

In C++, a function name without any parentheses is considered a pointer to the function.
To specify a function as a formal parameter to another function, we specify the function
type, followed by the function name as a pointer, followed by the parameter types of the
function. For example, consider the following statements:

void fParamFunc1(void (*visit) (int)); //Line 1
void fParamFunc2(void (*visit) (elemType&)); //Line 2

Binary Tree Traversal and Functions as Parameters | 1301

The statement in Line 1 declares fParamFunc1 to be a function that takes as a parameter
any void function that has one value parameter of type int. The statement in Line 2
declares fParamFunc2 to be a function that takes as a parameter any void function that
has one reference parameter of type elemType.

We can now rewrite, say, the inorder traversal function of the class binaryTreeType.
Alternately, we can overload the existing inorder traversal functions. To further illustrate
function overloading, we will overload the inorder traversal functions. Therefore, we
include the following statements in the definition of the class binaryTreeType.

void inorderTraversal(void (*visit) (elemType&)) const;
//Function to do an inorder traversal of the binary tree.
//The parameter visit, which is a function, specifies
//the action to be taken at each node.
//Postcondition: The action specified by the function
// visit is applied to each node of the
// binary tree.

void inorder(nodeType<elemType> *p,
void (*visit) (elemType&)) const;

//Function to do an inorder traversal of the binary tree
//starting at the node specified by the parameter p.
//The parameter visit, which is a function, specifies the
//action to be taken at each node.
//Postcondition: The action specified by the function visit
// is applied to each node of the binary tree
// to which p points.

The definitions of these functions are as follows:

template <class elemType>
void binaryTreeType<elemType>::inorderTraversal

(void (*visit) (elemType& item)) const
{

inorder(root, *visit);
}

template <class elemType>
void binaryTreeType<elemType>::inorder(nodeType<elemType>* p,

void (*visit) (elemType& item)) const
{

if (p != NULL)
{

inorder(p->lLink, *visit);
(*visit)(p->info);
inorder(p->rLink, *visit);

}
}

The statement:

(*visit)(p->info);

in the definition of the function inorder makes a call to the function with one reference
parameter of type elemType pointed to by the pointer visit.

1302 | Chapter 20: Binary Trees

2
0

Example 20-4 further illustrates how functions are passed as parameters to other functions.

EXAMPLE 20-4

This example shows how to pass a user-defined function as a parameter to the binary tree
traversal algorithms. For illustration purposes, we show how to use only the inorder
traversal function.

The following program uses the class bSearchTreeType, which is derived from
the class binaryTreeType, to build the binary tree. The traversal functions are
included in the class binaryTreeType, which are then inherited by the class
bSearchTreeType.

#include <iostream>
#include "binarySearchTree.h"

using namespace std;

void print(int& x);
void update(int& x);

int main()
{

bSearchTreeType<int> treeRoot; //Line 1

int num; //Line 2

cout << "Line 3: Enter numbers ending "
<< "with -999." << endl; //Line 3

cin >> num; //Line 4

while (num != -999) //Line 5
{

treeRoot.insert(num); //Line 6
cin >> num; //Line 7

}

cout << endl
<< "Line 8: Tree nodes in inorder: "; //Line 8

treeRoot.inorderTraversal(print); //Line 9
cout << endl << "Line 10: Tree Height: "

<< treeRoot.treeHeight()
<< endl << endl; //Line 10

cout << "Line 11: ******* Update Nodes "
<< "*******" << endl; //Line 11

treeRoot.inorderTraversal(update); //Line 12

cout << "Line 13: Tree nodes in inorder "
<< "after the update: " << endl
<< " "; //Line 13

treeRoot.inorderTraversal(print); //Line 14

Binary Tree Traversal and Functions as Parameters | 1303

cout << endl << "Line 15: Tree Height: "
<< treeRoot.treeHeight() << endl; //Line 15

return 0; //Line 16
}

void print(int& x) //Line 17
{

cout << x << " "; //Line 18
}

void update(int& x) //Line 19
{

x = 2 * x; //Line 20
}

Sample Run: In this sample run, the user input is shaded.

Line 3: Enter numbers ending with -999.

56 87 23 65 34 45 12 90 66 -999

Line 8: Tree nodes in inorder: 12 23 34 45 56 65 66 87 90

Line 10: Tree Height: 4

Line 11: ******* Update Nodes *******

Line 13: Tree nodes in inorder after the update:

24 46 68 90 112 130 132 174 180
Line 15: Tree Height: 4

This program works as follows. The statement in Line 1 declares treeRoot to be a binary
search tree object, in which the data in each node is of type int. The statements in Lines 4
through 7 build the binary search tree. The statement in Line 9 uses the member function
inorderTraversal of treeRoot to traverse the binary search tree treeRoot. The
parameter to the function inorderTraversal, in Line 9, is the function print (defined
at Line 17). Because the function print outputs the value of its argument, the statement in
Line 9 outputs the data of the nodes of the binary search tree treeRoot. The statement in
Line 10 outputs the height of the binary search tree.

The statement in Line 12 uses the member function inorderTraversal to traverse
the binary search tree treeRoot. In Line 12, the actual parameter of the function
inorderTraversal is the function update (defined at Line 19). The function
update doubles the value of its argument. Therefore, the statement in Line 12 updates
the data of each node of the binary search tree by doubling the value. The statements in
Lines 14 and 15 output the nodes and the height of the binary search tree.

(AVL trees) This chapter also discusses AVL trees. The necessary material is in the file

AVL Trees.pdf. This file is on the Web site, www.course.com/malik/cpp,

accompanying this book.

1304 | Chapter 20: Binary Trees

www.course.com/malik/cpp

2
0

PROGRAMMING EXAMPLE: Video Store (Revisited)
In Chapter 17, we designed a program to help a video store automate its video rental
process. That program used an (unordered) linked list to keep track of the video
inventory in the store. Because the search algorithm on a linked list is sequential and
the list is fairly large, the search could be time consuming. In this chapter, you learned
how to organize data into a binary tree. If the binary tree is nicely constructed (that is,
it is not linear), then the search algorithm can be improved considerably. Moreover,
in general, item insertion and deletion in a binary search tree are faster than in a
linked list. We will, therefore, redesign the video store program so that the video
inventory can be maintained in a binary tree. As in Chapter 17, we leave the design
of the customer list in a binary tree as exercises for you.

Video Object In Chapter 17, a linked list was used to maintain a list of videos in the store. Because
the linked list was unordered, to see whether a particular video was in stock, the
sequential search algorithm used the equality operator for comparison. However, in
the case of a binary tree, we need other relational operators for the search, insertion,
and deletion operations. We will, therefore, overload all of the relational operators.
Other than this difference, the class videoType is the same as before. However,
we give its definition for the sake of completeness.

//**
// Author: D.S. Malik
//
// class videoType
// This class specifies the members to implement a video. It
// overloads the stream insertion operator and relational
// operators.
//**

class videoType
{

friend ostream& operator<< (ostream&, const videoType&);

public:
void setVideoInfo(string title, string star1,

string star2, string producer,
string director, string productionCo,
int setInStock);

//Function to set the details of a video.
//The member variables are set according to the
//parameters.
//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2;
// movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

Programming Example: Video Store (Revisited) | 1305

int getNoOfCopiesInStock() const;
//Function to check the number of copies in stock.
//Postcondition: The value of copiesInStock is returned.

void checkOut();
//Function to rent a video.
//The number of copies in stock is decremented by one.
//Postcondition: copiesInStock--;

void checkIn();
//Function to check in a video.
//The number of copies in stock is incremented by one.
//Postcondition: copiesInStock++;

void printTitle() const;
//Function to print the title of a movie.

void printInfo() const;
//Function to print the details of a video.
//Postcondition: The title of the movie, stars, director,
// and so on are output on the screen.

bool checkTitle(string title);
//Function to check whether the title is the same as the
//title of the video.
//Postcondition: Returns the value true if the title is
// the same as the title of the video, and
// false otherwise.

void updateInStock(int num);
//Function to increment the number of copies in stock by
//adding the value of the parameter num.
//Postcondition: copiesInStock = copiesInStock + num;

void setCopiesInStock(int num);
//Function to set the number of copies in stock.
//Postcondition: copiesInStock = num;

string getTitle() const;
//Function to return the title of the video.
//Postcondition: The title of the video is returned.

videoType(string title = "", string star1 = "",
string star2 = "", string producer = "",
string director = "", string productionCo = "",
int setInStock = 0);

//Constructor
//The member variables are set according to the incoming
//parameters. If no values are specified, the default
//values are assigned.

1306 | Chapter 20: Binary Trees

2
0

//Postcondition: videoTitle = title; movieStar1 = star1;
// movieStar2 = star2;
// movieProducer = producer;
// movieDirector = director;
// movieProductionCo = productionCo;
// copiesInStock = setInStock;

//Overload relational operators
bool operator==(const videoType&) const;
bool operator!=(const videoType&) const;
bool operator<(const videoType&) const;
bool operator<=(const videoType&) const;
bool operator>(const videoType&) const;
bool operator>=(const videoType&) const;

private:
string videoTitle; //variable to store the name

//of the movie
string movieStar1; //variable to store the name

//of the star
string movieStar2; //variable to store the name

//of the star
string movieProducer; //variable to store the name

//of the producer
string movieDirector; //variable to store the name

//of the director
string movieProductionCo; //variable to store the name

//of the production company
int copiesInStock; //variable to store the number of

//copies in stock
};

The definitions of the member functions of the class videoType are the same as in
Chapter 17. Because here we are overloading all of the relational operators, we give
only the definitions of these member functions.

//Overload the relational operators
bool videoType::operator==(const videoType& right) const
{

return (videoTitle == right.videoTitle);
}

bool videoType::operator!=(const videoType& right) const
{

return (videoTitle != right.videoTitle);
}

bool videoType::operator<(const videoType& right) const
{

return (videoTitle < right.videoTitle);
}

Programming Example: Video Store (Revisited) | 1307

bool videoType::operator<=(const videoType& right) const
{

return (videoTitle <= right.videoTitle);
}

bool videoType::operator>(const videoType& right) const
{

return (videoTitle > right.videoTitle);
}

bool videoType::operator>=(const videoType& right) const
{

return (videoTitle >= right.videoTitle);
}

Video List The video list is maintained in a binary search tree. Therefore, we derive the class
videoListType from the class bSearchTreeType. The definition of the
class videoListType is as follows:

//***
// Author: D.S. Malik
//
// class videoBinaryTree
// This class extends the class bSearchTreeType to create
// a video list.
//***

class videoBinaryTree: public bSearchTreeType<videoType>
{
public:

bool videoSearch(string title);
//Function to search the list to see whether a
//particular title, specified by the parameter title,
//is in the store.
//Postcondition: Returns true if the title is found,
// and false otherwise.

bool isVideoAvailable(string title);
//Function to determine whether a copy of a particular
//video is in the store.
//Postcondition: Returns true if at least one copy of
// the video specified by title is in the
// store, and false otherwise.

void videoCheckIn(string title);
//Function to check in a video returned by a customer.
//Postcondition: copiesInStock is incremented by one.

void videoCheckOut(string title);
//Function to check out a video, that is, rent a video.
//Postcondition: copiesInStock is decremented by one.

1308 | Chapter 20: Binary Trees

2
0

bool videoCheckTitle(string title) const;
//Function to determine whether a particular video is in
//the store.
//Postcondition: Returns true if the video’s title is
// the same as title, and false otherwise.

void videoUpdateInStock(string title, int num);
//Function to update the number of copies of a video
//by adding the value of the parameter num. The
//parameter title specifies the name of the video for
//which the number of copies is to be updated.
//Postcondition: copiesInStock = copiesInStock + num;

void videoSetCopiesInStock(string title, int num);
//Function to reset the number of copies of a video.
//The parameter title specifies the name of the video
//for which the number of copies is to be reset, and
//the parameter num specifies the number of copies.
//Postcondition: copiesInStock = num;

void videoPrintTitle() const;
//Function to print the titles of all the videos in
//the store.

private:
void searchVideoList(string title, bool& found,

nodeType<videoType>* ¤t) const;
//This function searches the video list for a
//particular video, specified by the parameter title.
//If the video is found, the parameter found is set to
//true, otherwise false; the parameter current points
//to the node containing the video.

void inorderTitle(nodeType<videoType> *p) const;
//This function prints the titles of all the videos
//in stock.

};

The definitions of the member functions isVideoAvailable, videoCheckIn,
videoCheckOut, videoCheckTitle, videoUpdateInStock,
videoSetCopiesInStock, and videoSearch of the class videoBinaryTree
are similar to the definitions of these functions given in Chapter 17. The only
difference is that, here, these are members of the class videoBinaryTree.
You can find the complete definitions of these functions on the Web site that
accompanies this book. Next, we discuss the definitions of the remaining
functions of the class videoBinaryTree.

The function searchVideoList uses a search algorithm similar to the search
algorithm for a binary search tree given earlier in this chapter. It returns true if the
search item is found in the list. It also returns a pointer to the node containing the
search item. The definition of this function is as follows:

Programming Example: Video Store (Revisited) | 1309

void videoBinaryTree::searchVideoList(string title,
bool& found,
nodeType<videoType>* ¤t) const

{
found = false;

videoType temp;

temp.setVideoInfo(title, "", "", "", "", "", 0);

if (root == NULL) //tree is empty
cout << "Cannot search an empty list. " << endl;

else
{

current = root; //set current point to the root node
//of the binary tree

found = false; //set found to false

while (current != NULL && !found) //search the tree
if (current->info == temp) //item is found

found = true;
else if (current->info > temp)

current = current->lLink;
else

current = current->rLink;
} //end else

} //end searchVideoList

Given a pointer to the root node of the binary tree containing the videos, the
function inorderTitle uses the inorder traversal algorithm to print the titles of the
videos. Notice that this function outputs only the video titles. The definition of this
function is as follows:

void videoBinaryTree::inorderTitle
(nodeType<videoType> *p) const

{
if (p != NULL)
{

inorderTitle(p->lLink);
p->info.printTitle();
inorderTitle(p->rLink);

}
}

The function videoPrintTitle uses the function inorderTitle to print the
titles of all videos in the store. The definition of this function is:

void videoBinaryTree::videoPrintTitle() const
{

inorderTitle(root);
}

1310 | Chapter 20: Binary Trees

2
0

MAIN

PROGRAM

The main program is the same as before. Here, we give only the listing of this
program. We assume that the name of the header file containing the definition of the
class videoBinaryTree is videoBinaryTree.h, and so on.

//***
// Author: D.S. Malik
//
// This program uses the classes videoType and videoBinaryTree
// to create a list of videos for a video store. It performs
// basic operations such as check in and check out videos.
//***

#include <iostream>
#include <fstream>
#include <string>
#include "binarySearchTree.h"
#include "videoType.h"
#include "videoBinaryTree.h"

using namespace std;

void createVideoList(ifstream& infile,
videoBinaryTree& videoList);

void displayMenu();

int main()
{

videoBinaryTree videoList;
int choice;
string title;

ifstream infile;

infile.open("videoDat.txt");
if (!infile)
{

cout << "The input file does not exist. "
<< "Program terminates!!"<< endl;

return 1;
}

createVideoList(infile, videoList);
infile.close();

displayMenu(); //show the menu
cout << "Enter your choice: ";
cin >> choice; //get the request
cin.ignore(100, '\n'); //ignore the remaining

//characters in the line
cout << endl;

while (choice != 9)

Programming Example: Video Store (Revisited) | 1311

{
switch (choice)
{
case 1:

cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
cout << "The store carries " << title << endl;

else
cout << "The store does not carry " << title

<< endl;
break;

case 2:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
{

videoList.videoCheckOut(title);
cout << "Enjoy your movie: " << title

<< endl;
}
else

cout << "Currently " << title
<< " is out of stock." << endl;

}
else

cout << "The store does not carry " << title
<< endl;

break;

case 3:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

videoList.videoCheckIn(title);
cout << "Thanks for returning " << title

<< endl;
}
else

cout << "The store does not carry " << title
<< endl;

break;

1312 | Chapter 20: Binary Trees

2
0

case 4:
cout << "Enter the title: ";
getline(cin, title);
cout << endl;

if (videoList.videoSearch(title))
{

if (videoList.isVideoAvailable(title))
cout << title << " is currently in "

<< "stock." << endl;
else

cout << title << " is currently out "
<< "of stock." << endl;

}
else

cout << "The store does not carry " << title
<< endl;

break;

case 5:
videoList.videoPrintTitle();
break;

case 6:
videoList.inorderTraversal();
break;

default: cout << "Invalid selection." << endl;
}//end switch

displayMenu(); //display the menu
cout << "Enter your choice: ";
cin >> choice; //get the next request
cin.ignore(100, '\n'); //ignore the remaining

//characters in the line
cout << endl;

}//end while

return 0;
}

void createVideoList(ifstream& infile,
videoBinaryTree& videoList)

{
string title;
string star1;
string star2;
string producer;
string director;
string productionCo;
int inStock;

Programming Example: Video Store (Revisited) | 1313

QUICK REVIEW

1. A binary tree is either empty or it has a special node called the root node.
If the tree is nonempty, the root node has two sets of nodes, called the
left and right subtrees, such that the left and right subtrees are also binary
trees.

2. The node of a binary tree has two links in it.

3. A node in the binary tree is called a leaf if it has no left and right children.

4. A node U is called the parent of a node V if there is a branch from U to V.

videoType newVideo;

getline(infile, title);

while (infile)
{

getline(infile, star1);
getline(infile, star2);
getline(infile, producer);
getline(infile, director);
getline(infile, productionCo);
infile >> inStock;
infile.ignore(100, '\n');
newVideo.setVideoInfo(title, star1, star2, producer,

director, productionCo, inStock);
videoList.insert(newVideo);

getline(infile, title);
}//end while

}//end createVideoList

void displayMenu()
{

cout << "Select one of the following:" << endl;
cout << "1: To check whether the store carries a "

<< "particular video." << endl;
cout << "2: To check out a video." << endl;
cout << "3: To check in a video." << endl;
cout << "4: To check whether a particular video is "

<< "in stock." << endl;
cout << "5: To print only the titles of all the videos."

<< endl;
cout << "6: To print a list of all the videos." << endl;
cout << "9: To exit" << endl;

}

1314 | Chapter 20: Binary Trees

5. A path from a node X to a node Y in a binary tree is a sequence of nodes
X0, X1, . . ., Xn such that (a) X ¼ X0, Xn ¼ Y, and (b) Xi�1 is the parent of
Xi for all i ¼ 1, 2, . . ., n. That is, there is a branch from X0 to X1, X1 to X2,
. . ., Xi�1 to Xi, . . ., Xn�1 to Xn.

6. The length of a path in a binary tree is the number of branches on
that path.

7. The level of a node in a binary tree is the number of branches on the path
from the root to the node.

8. The level of the root node of a binary tree is 0, and the level of the children
of the root node is 1.

9. The height of a binary tree is the number of nodes on the longest path from
the root to a leaf.

10. In an inorder traversal, the binary tree is traversed as follows:

a. Traverse the left subtree.

b. Visit the node.

c. Traverse the right subtree.

11. In a preorder traversal, the binary tree is traversed as follows:

a. Visit the node.

b. Traverse the left subtree.

c. Traverse the right subtree.

12. In a postorder traversal, the binary tree is traversed as follows:

a. Traverse the left subtree.

b. Traverse the right subtree.

c. Visit the node.

13. A binary search tree T is either empty or:

i. T has a special node called the root node;

ii. T has two sets of nodes, LT and RT, called the left subtree and the right
subtree of T, respectively;

iii. The key in the root node is larger than every key in the left subtree
and smaller than every key in the right subtree; and

iv. LT and RT are binary search trees.

14. To delete a node from a binary search tree that has both left and right
nonempty subtrees, first its immediate predecessor is located, then the
predecessor’s info is copied into the node, and finally the predecessor is
deleted.

2
0

Quick Review | 1315

EXERCISES

1. Mark the following statements as true or false.

a. A binary tree must be nonempty.

b. The level of the root node is 0.

c. If a tree has only one node, the height of this tree is 0 because the
number of levels is 0.

d. The inorder traversal of a binary tree always outputs the data in ascend-
ing order.

2. There are 14 different binary trees with four nodes. Draw all of them.

The binary tree of Figure 20-13 is to be used for Exercises 3 through 8.

3. Find LA, the node in the left subtree of A.

4. Find RA, the node in the right subtree of A.

5. Find RB, the node in the right subtree of B.

6. List the nodes of this binary tree in an inorder sequence.

7. List the nodes of this binary tree in a preorder sequence.

8. List the nodes of this binary tree in a postorder sequence.

The binary tree of Figure 20-14 is to be used for Exercises 9 through 13.

A

B F

C E

D

G

FIGURE 20-13 Figure for Exercises 3 to 8

1316 | Chapter 20: Binary Trees

9. List the path from the node with info 80 to the node with info 79.

10. A node with info 35 is to be inserted in the tree. List the nodes that are visited
by the function insert to insert 35. Redraw the tree after inserting 35.

11. Delete node 52 and redraw the binary tree.

12. Delete node 40 and redraw the binary tree.

13. Delete nodes 80 and 58 in that order. Redraw the binary tree after each
deletion.

14. Insert 28, 25, 26, 42, 47, 30, 45, 29, 5 into an initially empty binary
search tree. Draw the final binary search tree.

15. Prove that a binary tree with n nodes has exactly n + 1 empty subtree (NULL
pointers).

2
0

50

30 80

25 40 98

85 11048

45

75

55

52 58

70

65 79

90

FIGURE 20-14 Figure for Exercises 9 to 13

Exercises | 1317

16. Suppose that you are given two sequences of elements corresponding to the
inorder sequence and the preorder sequence. Prove that it is possible to
reconstruct a unique binary tree.

17. The following lists the nodes in a binary tree in two different orders.

preorder: ABCDEFGHIJKLM
inorder: CEDFBAHJIKGML

Draw the binary tree.

18. Given the nodes of a binary tree in the preorder sequence and the postorder
sequence, show that it may not be possible to reconstruct a unique binary tree.

The binary tree of Figure 20-15 is to be used for Exercises 19 and 20.

19. Recall the nonrecursive inorder traversal algorithm for a binary tree given
in this chapter. Do an inorder traversal of the binary tree in Figure 20-15.
Show the stack contents after each push and pop operation.

20. Recall the nonrecursive preorder traversal algorithm for a binary tree given
in this chapter. Do a preorder traversal of the binary tree in Figure 20-15.
Show the stack contents after each push and pop operation.

21. Draw the UML class diagram of the class binaryTreeType.

22. Draw the UML class diagram of the class bSearchTreeType. Also,
show the inheritance hierarchy.

PROGRAMMING EXERCISES

1. Write the definition of the function, nodeCount, that returns the number of
nodes in the binary tree. Add this function to the class binaryTreeType
and create a program to test this function.

a

b c

d e f

hg

root

FIGURE 20-15 Figure for Exercises 19 and 20

1318 | Chapter 20: Binary Trees

2
0

2. Write the definition of the function, leavesCount, that takes as a parameter
a pointer to the root node of a binary tree and returns the number of leaves in
a binary tree. Add this function to the class binaryTreeType and create a
program to test this function.

3. Write a function, swapSubtrees, that swaps all of the left and right subtrees
of a binary tree. Add this function to the class binaryTreeType
and create a program to test this function.

4. Write a function, singleParent, that returns the number of nodes in a
binary tree that have only one child. Add this function to the class
binaryTreeType and create a program to test this function. (Note: first,
create a binary search tree.)

5. Write a program to test various operations on a binary search tree.

6. a. Write the definition of the function to implement the nonrecursive
postorder traversal algorithm.

b. Write a program to test the nonrecursive inorder, preorder, and post-
order traversal algorithms. (Note: first, create a binary search tree.)

7. Write a version of the preorder traversal algorithm in which a user-defined
function can be passed as a parameter to specify the visiting criteria at a node.
Also, write a program to test your function.

8. Write a version of the postorder traversal algorithm in which a user-defined
function can be passed as a parameter to specify the visiting criteria at a node.
Also, write a program to test your function.

9. Write a function that inserts the nodes of a binary tree into an ordered
linked list. Also write a program to test your function.

10. Write a program to do the following:

a. Build a binary search tree, T1.

b. Do a postorder traversal of T1 and, while doing the postorder traversal,
insert the nodes into a second binary search tree T2.

c. Do a preorder traversal of T2 and, while doing the preorder traversal,
insert the node into a third binary search tree T3.

d. Do an inorder traversal of T3.

e. Output the heights and the number of leafs in each of the three binary
search trees.

11. (Video Store Program) In Programming Exercise 14 in Chapter 17, you
were asked to design and implement a class to maintain customer data in a
linked list. Because the search on a linked list is sequential and, therefore, can
be time consuming, design and implement the class customerBTreeType
so that this customer data can be stored in a binary search tree. The class
customerBTreeTypemust be derived from the class bSearchTreeType,
as designed in this chapter. (To output the number of videos rented by a
customer, write the definition of the function nodeCount, as in Programming
Exercise 1, of the class binaryTreeType.)

Programming Exercises | 1319

12. (Video Store Program) Using classes to implement the video data, video
list data, customer data, and customer list data, as designed in this chapter
and in Programming Exercise 11, design and complete the program to put
the video store into operation. (To output the number of videos rented by a
customer, write the definition of the function nodeCount, as in Program-
ming Exercise 1, of the class binaryTreeType.)

1320 | Chapter 20: Binary Trees

GRAPHS
IN THIS CHAPTER , YOU WILL :

. Learn about graphs

. Become familiar with the basic terminology of graph theory

. Discover how to represent graphs in computer memory

. Explore graphs as ADTs

. Examine and implement various graph traversal algorithms

. Learn how to implement the shortest path algorithm

. Examine and implement the minimal spanning tree algorithm

21C H A P T E R

In previous chapters, you learned various ways to represent and manipulate data. This
chapter discusses how to implement and manipulate graphs, which have numerous
applications in computer science.

Introduction
In 1736, the following problem was posed. In the town of Königsberg (now called
Kaliningrad), the river Pregel (Pregolya) flows around the island Kneiphof and then
divides into two branches (see Figure 21-1).

The river has four land areas (A, B, C, D), as shown in the figure. These land areas are
connected using seven bridges, as shown in Figure 21-1. The bridges are labeled a, b, c, d, e,
f, and g. The Königsberg bridge problem is as follows: Starting at one land area, is it possible
to walk across all of the bridges exactly once and return to the starting land area? In 1736,
Euler represented the Königsberg bridge problem as a graph, as shown in Figure 21-2, and
answered the question in the negative. This marked (as recorded) the birth of graph theory.

B

C

D

a
b

c d

e

f

g

A
Königsberg

FIGURE 21-1 Königsberg bridge problem

C

A D

B

a b

c d

e

f

g

FIGURE 21-2 Graph representation of Königsberg bridge problem

1322 | Chapter 21: Graphs

A solution of the Königsberg bridge problem is given in the book Discrete Mathematics:

Theory and Applications (Revised Edition) listed in Appendix H.

Over the past 200 years, graph theory has been applied to a variety of applications. Graphs
are used to model electrical circuits, chemical compounds, highway maps, and so on.
They are also used in the analysis of electrical circuits, finding the shortest route, project
planning, linguistics, genetics, social science, and so forth. In this chapter, you learn about
graphs and their applications in computer science.

Graph Definitions and Notations
To facilitate and simplify our discussion, we borrow a few definitions and terminology
from set theory. Let X be a set. If a is an element of X, then we write a 2 X. (The symbol
‘‘2’’ means ‘‘belongs to.’’) A set Y is called a subset of X if every element of Y is also an
element of X. If Y is a subset of X, we write Y � X. (The symbol ‘‘�’’ means ‘‘is a subset
of.’’) The intersection of sets A and B, written A \ B, is the set of all of the elements that
are in A and B; that is, A \ B ¼ {x | x 2 A and x 2 B}. (The symbol ‘‘\’’ means
‘‘intersection.’’) The union of sets A and B, written A [B, is the set of all of the elements
that are in A or in B; that is, A [B ¼ {x | x 2 A or x 2 B}. (The symbol ‘‘[’’ means
‘‘union.’’ Moreover, note that x 2A [B means x is in A or x is in B or x is in both A and B.
Also, the symbol ‘‘|’’ is read as ‘‘such that.’’)

For sets A and B, the set A � B is the set of all of the ordered pairs of elements of A and
B; that is, A � B ¼ {(a, b) | a 2 A, b 2 B}.
A graph G is a pair, G ¼ (V, E), in which V is a finite nonempty set, called the set of
vertices of G, and E � V � V. That is, the elements of E are the pair of elements of V.
E is called the set of edges.

Let V(G) denote the set of vertices and E(G) denote the set of edges of a graph G. If the
elements of E(G) are ordered pairs, G is called a directed graph or digraph; otherwise,
G is called an undirected graph. In an undirected graph, the pairs (u, v) and (v, u)
represent the same edge. If (u, v) is an edge in a directed graph, then sometimes the vertex
u is called the origin of the edge, and the vertex v is called the destination.

Let G be a graph. A graph H is called a subgraph of G if V(H)� V(G) and E(H)� E(G);
that is, every vertex of H is a vertex of G, and every edge in H is an edge in G.

To learn more about sets and graph terminology, the interested reader is referred to the book

Discrete Mathematics: Theory and Applications (Revised Edition), listed in Appendix H.

2
1

Graph Definitions and Notations | 1323

A graph can be shown pictorially. The vertices are drawn as circles, and a label inside of
the circle represents the vertex. In an undirected graph, the edges are drawn using lines.
In a directed graph, the edges are drawn using arrows. Moreover, in a directed graph, the
tail of a pictorial directed edge is the origin, and the head is the destination.

EXAMPLE 21-1

Figure 21-3 shows some examples of undirected graphs.

1

2 3

4 5 6

1 2

3 4

5

LA NY

MiamiOmaha

Chicago

FIGURE 21-3 Various undirected graphs

1324 | Chapter 21: Graphs

EXAMPLE 21-2

Figure 21-4 shows some examples of directed graphs.

For the graphs of Figure 21-4, we have:

Let G be an undirected graph. Let u and v be two vertices in G. Then, u and v are called
adjacent if there is an edge from one to the other; that is, (u, v) 2 E(G). Let e ¼ (u, v) be
an edge in G. We then say that edge e is incident on the vertices u and v. An edge
incident on a single vertex is called a loop. If two edges, e1 and e2, are associated with the
same pair of vertices, then e1 and e2 are called parallel edges. A graph is called a simple
graph if it has no loops and no parallel edges. There is a path from u to v if there is a
sequence of vertices u1, u2, . . ., un such that u ¼ u1, un ¼ v, and (ui, ui + 1) is an edge for all
i ¼ 1, 2, . . ., n � 1. Vertices u and v are called connected if there is a path from u to v. A
simple path is a path in which all of the vertices, except possibly the first and last vertices,

2
1

V(G1) ¼ {1, 2, 3, 4, 5} E(G1) ¼ {(1, 2), (1, 4), (2, 5), (3, 1), (3, 4), (4, 5)}
V(G2) ¼ {0, 1, 2, 3, 4} E(G2) ¼ {(0, 1), (0, 3), (1, 2), (1, 4), (2, 1), (2, 4),

(4, 3)}

V(G3) ¼ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} E(G3) ¼ {(0, 1), (0, 5), (1, 2), (1, 3), (1, 5), (2, 4),
(4, 3), (5, 6), (6, 8), (7, 3), (7, 8), (8, 10), (9, 4),
(9, 7), (9, 10)}

0 1

3 4

2

0 1 2

3

4

6

7

8

9

10

5

G1 G2

G3

1 2

3 4

5

FIGURE 21-4 Various directed graphs

Graph Definitions and Notations | 1325

are distinct. A cycle in G is a simple path in which the first and last vertices are the same.
G is called connected if there is a path from any vertex to any other vertex. A maximal
subset of connected vertices is called a component of G.

Let G be a directed graph, and let u and v be two vertices in G. If there is an edge from u
to v, that is, (u, v) 2 E(G), then we say that u is adjacent to v and v is adjacent from u.
The definitions of the paths and cycles in G are similar to those for undirected graphs. G
is called strongly connected if any two vertices in G are connected.

Consider the directed graphs of Figure 21-4. In G1, 1–4–5 is a path from vertex 1 to
vertex 5. There are no cycles in G1. In G2, 1–2–1 is a cycle. In G3, 0–1–2–4–3 is a path
from vertex 0 to vertex 3; 1–5–6–8–10 is a path from vertex 1 to vertex 10. There are
no cycles in G3.

Graph Representation
To write programs that process and manipulate graphs, the graphs must be stored—that
is, represented—in computer memory. A graph can be represented (in computer mem-
ory) in several ways. We now discuss two commonly used methods: adjacency matrices
and adjacency lists.

Adjacency Matrix
Let G be a graph with n vertices, in which n > 0. Let V(G) ¼ {v1, v2, . . ., vn}. The
adjacency matrix AG of G is a two-dimensional n � n matrix such that the (i, j)th entry
of AG is 1 if there is an edge from vi to vj; otherwise, the (i, j)th entry is zero. That is:

AGði; jÞ ¼
1 if ð�i; �jÞ 2 EðGÞ
0 otherwise

�

In an undirected graph, if (vi, vj) 2 E(G), then (vj, vi) 2 E(G), so AG(i, j) ¼ 1 ¼ AG(j, i).
It follows that the adjacency matrix of an undirected graph is symmetric.

EXAMPLE 21-3

Consider the directed graphs of Figure 21-4. The adjacency matrices of the directed
graphs G1, G2, and G3 are as follows:

AG1 ¼

0 1 0 1 0

0 0 0 0 1

1 0 0 1 0

0 0 0 0 1

0 0 0 0 0

2

66664

3

77775

1326 | Chapter 21: Graphs

AG2 ¼

0 1 0 1 0

0 0 1 0 1

0 1 0 0 1

0 0 0 0 0

0 0 0 1 0

2

66664

3

77775

AG3 ¼

0

1

2

3

4

5

6

7

8

9

10

0 1 0 0 0 1 0 0 0 0 0

0 0 1 1 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0

2

66666666666666664

3

77777777777777775

Adjacency Lists
Let G be a graph with n vertices, in which n > 0. Let V(G) ¼ {v1, v2, . . ., vn}. In the
adjacency list representation, corresponding to each vertex, v, there is a linked list such
that each node of the linked list contains the vertex, u, such that (v, u) 2 E(G). Because
there are n nodes, we use an array, A, of size n, such that A[i] is a reference variable
pointing to the first node of the linked list containing the vertices to which vi is adjacent.
Clearly, each node has two components, say vertex and link. The component
vertex contains the index of the vertex adjacent to vertex i.

EXAMPLE 21-4

Consider the directed graphs of Figure 21-4. Figure 21-5 shows the adjacency list of the
directed graph G2.

2
1

Graph Representation | 1327

Figure 21-6 shows the adjacency list of the directed graph G3.

Operations on Graphs
Now that you know how to represent graphs in computer memory, the next obvious
step is to learn the basic operations on a graph. The operations commonly performed on a
graph are as follows:

1. Create the graph. That is, store the graph in computer memory using a
particular graph representation.

2. Clear the graph. This operation makes the graph empty.

3. Determine whether the graph is empty.

1

1

4

3

4

2

3

[0]

[1]

[2]

[3]

[4]

FIGURE 21-5 Adjacency list of graph G2 of Figure 21-4

1 5

2

3

3

8

8

53

4

4

6

10

7 10

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[10]

[9]

[8]

FIGURE 21-6 Adjacency list of graph G3 of Figure 21-4

1328 | Chapter 21: Graphs

2
1

4. Traverse the graph.

5. Print the graph.

We will add more operations on a graph when we discuss a specific application or a
particular graph later in this chapter.

How a graph is represented in computer memory depends on the specific application. For
illustration purposes, we use the adjacency list (linked list) representation of graphs.
Therefore, for each vertex, v, the vertices adjacent to v (in a directed graph, also called
the immediate successors) are stored in the linked list associated with v.

To manage the data in a linked list, we use the class unorderedLinkedList,
discussed in Chapter 17.

The labeling of the vertices of a graph depends on a specific application. If you are dealing
with the graph of cities, you could label the vertices by the names of the cities. However,
to write algorithms to manipulate a graph as well as to simplify the algorithm, there must
be some ordering to the vertices. That is, we must specify the first vertex, the second
vertex, and so on. Therefore, for simplicity, throughout this chapter, we assume that the
n vertices of the graphs are numbered 0, 1, . . ., n � 1. Moreover, it follows that the class
that we will design to implement the graph algorithm will not be a template.

Graphs as ADTs
In this section, we describe the class to implement graphs as an abstract data type (ADT)
and provide the definitions of the functions to implement the operations on a graph.

The following class defines a graph as an ADT.

class graphType
{
public:

bool isEmpty() const;
//Function to determine whether the graph is empty.
//Postcondition: Returns true if the graph is empty;
// otherwise, returns false.

void createGraph();
//Function to create a graph.
//Postcondition: The graph is created using the
// adjacency list representation.

void clearGraph();
//Function to clear graph.
//Postcondition: The memory occupied by each vertex
// is deallocated.

void printGraph() const;
//Function to print graph.
//Postcondition: The graph is printed.

Graphs as ADTs | 1329

void depthFirstTraversal();
//Function to perform the depth first traversal of
//the entire graph.
//Postcondition: The vertices of the graph are printed
// using depth first traversal algorithm.

void dftAtVertex(int vertex);
//Function to perform the depth first traversal of
//the graph at a node specified by the parameter vertex.
//Postcondition: Starting at vertex, the vertices are
// printed using depth first traversal
// algorithm.

void breadthFirstTraversal();
//Function to perform the breadth first traversal of
//the entire graph.
//Postcondition: The vertices of the graph are printed
// using breadth first traversal algorithm.

graphType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked
// lists.

~graphType();
//Destructor
//The storage occupied by the vertices is deallocated.

protected:
int maxSize; //maximum number of vertices
int gSize; //current number of vertices
unorderedLinkedList<int> *graph; //array to create

//adjacency lists

private:
void dft(int v, bool visited[]);

//Function to perform the depth first traversal of
//the graph at a node specified by the parameter vertex.
//This function is used by the public member functions
//depthFirstTraversal and dftAtVertex.
//Postcondition: Starting at vertex, the vertices are
// printed using depth first traversal
// algorithm.

};

We leave the UML class diagram of the class graphType as an exercise.

The definitions of the functions of the class graphType are discussed next.

A graph is empty if the number of vertices is zero—that is, if gSize is 0. Therefore, the
definition of the function isEmpty is:

1330 | Chapter 21: Graphs

bool graphType::isEmpty() const
{

return (gSize ¼¼ 0);
}

The definition of the function createGraph depends on how the data is input into the
program. For illustration purposes, we assume that the data to the program is input from a
file. The user is prompted for the input file. The data in the file appears in the following
form:

5
0 2 4 ... –999
1 3 6 8 ... –999
...

The first line of input specifies the number of vertices in the graph. The first entry in the
remaining lines specifies the vertex, and all of the remaining entries in the line (except the last)
specify the vertices that are adjacent to the vertex. Each line ends with the number -999.

Using these conventions, the definition of the function createGraph is:

void graphType::createGraph()
{

ifstream infile;
char fileName[50];

int index;
int vertex;
int adjacentVertex;

if (gSize != 0) //if the graph is not empty, make it empty
clearGraph();

cout << "Enter input file name: ";
cin >> fileName;
cout << endl;

infile.open(fileName);

if (!infile)
{

cout << "Cannot open input file." << endl;
return;

}

infile >> gSize; //get the number of vertices

for (index = 0; index < gSize; index++)
{

infile >> vertex;
infile >> adjacentVertex;

2
1

Graphs as ADTs | 1331

while (adjacentVertex != -999)
{

graph[vertex].insertLast(adjacentVertex);
infile >> adjacentVertex;

} //end while
} // end for

infile.close();
} //end createGraph

The function clearGraph empties the graph by deallocating the storage occupied by
each linked list and then setting the number of vertices to zero.

void graphType::clearGraph()
{

int index;

for (index = 0; index < gSize; index++)
graph[index].destroyList();

gSize = 0;
} //end clearGraph

The definition of the function printGraph is given next.

void graphType::printGraph() const
{

int index;

for (index = 0; index < gSize; index++)
{

cout << index << " ";
graph[index].print();
cout << endl;

}

cout << endl;
} //end printGraph

The definitions of the constructor and the destructor are:

//Constructor
graphType::graphType(int size)
{

maxSize = size;
gSize = 0;
graph = new unorderedLinkedList<int>[size];

}

//Destructor
graphType::~graphType()
{

clearGraph();
}

1332 | Chapter 21: Graphs

Graph Traversals
Processing a graph requires the ability to traverse the graph. This section discusses the
graph traversal algorithms.

Traversing a graph is similar to traversing a binary tree, except that traversing a graph is a
bit more complicated. Recall that a binary tree has no cycles. Also, starting at the root
node, we can traverse the entire tree. On the other hand, a graph might have cycles, and
we might not be able to traverse the entire graph from a single vertex (for example, if the
graph is not connected). Therefore, we must keep track of the vertices that have been
visited. We must also traverse the graph from each vertex (that has not been visited) of the
graph. This ensures that the entire graph is traversed.

The two most common graph traversal algorithms are the depth first traversal and
breadth first traversal, which are described next. For simplicity, we assume that when a
vertex is visited, its index is output. Moreover, each vertex is visited only once. We use
the bool array visited to keep track of the visited vertices.

Depth First Traversal
The depth first traversal is similar to the preorder traversal of a binary tree. The general
algorithm is:

for each vertex, v, in the graph
if v is not visited

start the depth first traversal at v

Consider the graph G3 of Figure 21-4. It is shown here again as Figure 21-7 for easy
reference.

A depth first ordering of the vertices of the graph G3 in Figure 21-7 is:

0 1 2 4 3 5 6 8 10 7 9

2
1

0 1 2

3

4

6

7

8

9

10

5

FIGURE 21-7 Directed graph G3

Graph Traversals | 1333

For the graph of Figure 21-7, the depth first search starts at the vertex 0. After visiting all
of the vertices that can be reached starting at the vertex 0, the depth first search starts at
the next vertex that is not visited. There is a path from the vertex 0 to every other vertex
except the vertices 7 and 9. Therefore, when the depth first search starts at the vertex 0,
all of the vertices except 7 and 9 are visited before these vertices. After completing the
depth first search that started at the vertex 0, the depth first search starts at the vertex 7
and then at the vertex 9. Note that there is no path from the vertex 7 to the vertex 9.
Therefore, after completing the depth first search that started at the vertex 7, the depth
first search starts at the vertex 9.

The general algorithm to do a depth first traversal at a given node, v, is:

1. Mark node v as visited

2. Visit the node

3. for each vertex u adjacent to v
if u is not visited

start the depth first traversal at u

Clearly, this is a recursive algorithm. We use a recursive function, dft, to implement this
algorithm. The vertex at which the depth first traversal is to be started, and the bool
array visited, are passed as parameters to this function:

void graphType::dft(int v, bool visited[])
{

visited[v] = true;
cout << " " << v << " "; //visit the vertex

linkedListIterator<int> graphIt;

//for each vertex adjacent to v
for (graphIt = graph[v].begin(); graphIt != graph[v].end();

++graphIt)
{

int w = *graphIt;
if (!visited[w])

dft(w, visited);
} //end while

} //end dft

In the preceding code, note that the statement:

linkedListIterator<int> graphIt;

declares graphIt to be an iterator. In the for loop, we use it to traverse a linked list
(adjacency list) to which the pointer graph[v] points. Next, let us look at the statement:

int w = *graphIt;

The expression *graphIt returns the label of the vertex, adjacent to the vertex v, to
which graphIt points.

1334 | Chapter 21: Graphs

Next, we give the definition of the function depthFirstTraversal to implement the
depth first traversal of the graph:

void graphType::depthFirstTraversal()
{

bool *visited; //pointer to create the array to keep
//track of the visited vertices

visited = new bool[gSize];

int index;

for (index = 0; index < gSize; index++)
visited[index] = false;

//For each vertex that is not visited, do a depth
//first traverssal

for (index = 0; index < gSize; index++)
if (!visited[index])

dft(index,visited);
delete [] visited;

} //end depthFirstTraversal

The function depthFirstTraversal performs a depth first traversal of the entire
graph. The definition of the function dftAtVertex, which performs a depth first
traversal at a given vertex, is as follows:

void graphType::dftAtVertex(int vertex)
{

bool *visited;

visited = new bool[gSize];

for (int index = 0; index < gSize; index++)
visited[index] = false;

dft(vertex, visited);

delete [] visited;
} // end dftAtVertex

Breadth First Traversal
The breadth first traversal of a graph is similar to traversing a binary tree level by level
(the nodes at each level are visited from left to right). All of the nodes at any level, i, are
visited before visiting the nodes at level i + 1.

A breadth first ordering of the vertices of the graph G3 (Figure 21-7) is:

0 1 5 2 3 6 4 8 10 7 9

For the graph G3, we start the breadth traversal at vertex 0. After visiting the vertex 0,
next we visit the vertices that are directly connected to it and are not visited, which are 1

2
1

Graph Traversals | 1335

and 5. Next, we visit the vertices that are directly connected to 1 and are not visited,
which are 2 and 3. After this, we visit the vertices that are directly connected to 5 and are
not visited, which, in this instance, is the single vertex 6. After this, we visit the vertices
that are directly connected to 2 and are not visited, and so on.

As in the case of the depth first traversal, because it might not be possible to traverse the
entire graph from a single vertex, the breadth first traversal also traverses the graph from
each vertex that is not visited. Starting at the first vertex, the graph is traversed as much as
possible; we then go to the next vertex that has not been visited. To implement the
breadth first search algorithm, we use a queue. The general algorithm is:

a. for each vertex v in the graph
if v is not visited

add v to the queue //start the breadth first search at v

b. Mark v as visited

c. while the queue is not empty

c.1. Remove vertex u from the queue

c.2. Retrieve the vertices adjacent to u

c.3. for each vertex w that is adjacent to u

if w is not visited

c.3.1. Add w to the queue

c.3.2. Mark w as visited

The following C++ function, breadthFirstTraversal, implements this algorithm.

void graphType::breadthFirstTraversal()
{

linkedQueueType<int> queue;

bool *visited;
visited = new bool[gSize];

for (int ind = 0; ind < gSize; ind++)
visited[ind] = false; //initialize the array

//visited to false

linkedListIterator<int> graphIt;

for (int index = 0; index < gSize; index++)
if (!visited[index])
{

queue.addQueue(index);
visited[index] = true;
cout << " " << index << " ";

1336 | Chapter 21: Graphs

while (!queue.isEmptyQueue())
{

int u = queue.front();
queue.deleteQueue();

for (graphIt = graph[u].begin();
graphIt != graph[u].end(); ++graphIt)

{
int w = *graphIt;
if (!visited[w])
{

queue.addQueue(w);
visited[w] = true;
cout << " " << w << " ";

}
}

} //end while
}

delete [] visited;
} //end breadthFirstTraversal

As we continue to discuss graph algorithms, we will be writing C++ functions to
implement specific algorithms, so we will derive (using inheritance) new classes from
the class graphType.

Shortest Path Algorithm
The graph theory has many applications. For example, we can use graphs to show how
different chemicals are related or to show airline routes. They can also be used to show
the highway structure of a city, state, or country. The edges connecting two vertices can
be assigned a nonnegative real number, called the weight of the edge. If the graph
represents a highway structure, the weight can represent the distance between two places
or the travel time from one place to another. Such graphs are called weighted graphs.

Let G be a weighted graph. Let u and v be two vertices in G, and let P be a path in G
from u to v. The weight of the path P is the sum of the weights of all the edges on the
path P, which is also called the weight of v from u via P.

Let G be a weighted graph representing a highway structure. Suppose that the weight of
an edge represents the travel time. For example, to plan monthly business trips, a sales-
person wants to find the shortest path (that is, the path with the smallest weight) from
her or his city to every other city in the graph. Many such problems exist in which we
want to find the shortest path from a given vertex, called the source, to every other
vertex in the graph.

This section describes the shortest path algorithm, also called a greedy algorithm,
developed by Dijkstra.

2
1

Shortest Path Algorithm | 1337

Let G be a graph with n vertices, in which n > 0. Let V(G) ¼ {v1, v2, . . ., vn}. Let W be
a two-dimensional n � n matrix such that:

W ði; jÞ ¼ wij if ð�i; �jÞ is an edge in G and wij is the weight of the edge ð�i; �jÞ1 if there is no edge from �i to �j

�

The input to the program is the graph and the weight matrix associated with the graph. To
make inputting the data easier, we extend the definition of the class graphType (using
inheritance) and add the function createWeightedGraph to create the graph and the
weight matrix associated with the graph. Let us call this class weightedGraphType.
The functions to implement the shortest path algorithm will also be added to this class.

class weightedGraphType: public graphType
{
public:

void createWeightedGraph();
//Function to create the graph and the weight matrix.
//Postcondition: The graph using adjacency lists and
// its weight matrix is created.

void shortestPath(int vertex);
//Function to determine the weight of a shortest path
//from vertex, that is, source, to every other vertex
//in the graph.
//Postcondition: The weight of the shortest path from
// vertex to every other vertex in the
// graph is determined.

void printShortestDistance(int vertex);
//Function to print the shortest weight from vertex
//to the other vertex in the graph.
//Postcondition: The weight of the shortest path from
// vertex to every other vertex in the
// graph is printed.

weightedGraphType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked
// lists.
// weights is a two-dimensional array to
// store the weights of the edges.
// smallestWeight is an array to store the
// smallest weight from source to vertices.

~weightedGraphType();
//Destructor
//The storage occupied by the vertices and the arrays
//weights and smallestWeight is deallocated.

1338 | Chapter 21: Graphs

protected:
double **weights; //pointer to create weight matrix
double *smallestWeight; //pointer to create the array to

//store the smallest weight from
//source to vertices

};

We leave the UML class diagram of the class weightedGraphType and the inheri-
tance hierarchy as an exercise. The definition of the function createWeightedGraph is
also left as an exercise for you. Next, we describe the shortest path algorithm.

Shortest Path
Given a vertex, say, vertex (that is, a source), this section describes the shortest path
algorithm.

The general algorithm is:

1. Initialize the array smallestWeight so that:

smallestWeight[u] = weights[vertex, u]

2. Set smallestWeight[vertex] = 0.

3. Find the vertex, v, that is closest to the vertex for which the shortest
path has not been determined.

4. Mark v as the (next) vertex for which the smallest weight is found.

5. For each vertex w in G, such that the shortest path from vertex to w has
not been determined and an edge (v, w) exists, if the weight of the
path to w via v is smaller than its current weight, update the weight of w
to the weight of v + the weight of the edge (v, w).

Because there are n vertices, Steps 3 through 5 are repeated n � 1 times.
Example 21-5 illustrates the shortest path algorithm. (We use the bool array weightFound
to keep track of the vertices for which the smallest weight from the source vertex has been
found. If the smallest weight for a vertex, from the source, has been found, then this vertex’s
corresponding entry in the array weightFound is set to true; otherwise, the corresponding
entry is false.)

2
1

Shortest Path Algorithm | 1339

EXAMPLE 21-5

Let G be the graph shown in Figure 21-8.

Suppose that the source vertex of G is 0. The graph shows the weight of each edge. After
Steps 1 and 2 execute, the resulting graph is as shown in Figure 21-9.

Iteration 1 of Steps 3 to 5: At Step 3, we select a vertex that is closest to the vertex
0 and for which the shortest path has not been found. We do this by finding a vertex in
the array smallestWeight that has the smallest weight and a corresponding entry in the
array weightFound of false. Therefore, in this iteration, we select the vertex 3.
At Step 4, we mark weightFound[3] as true. Next, at Step 5, we consider vertices

0

1

2

3 4

16

12
2

3

7

5

4

3

5

10

FIGURE 21-8 Weighted graph G

0

1

2

3 4

16

12

2

3

7 4

3

5

w = 2 w = 3

w = 16

w = ∞

∞

5

smallestWeight

weightFound

0
[0]

16
[1] [2]

2
[3]

3
[4]

T
[0]

F
[1]

F
[2]

F
[3]

F
[4]

10

FIGURE 21-9 Graph after Steps 1 and 2 execute

1340 | Chapter 21: Graphs

1 and 4 because these are the vertices for which there is an edge from the vertex 3, and
the shortest part from 0 to these vertices has not been found. We then check if the path
from the vertex 0 to the vertices 1 and 4 via the vertex 3 can be improved. The weight of
the path 0–3–1 from 0 to 1 is less than the weight of the path 0–1. So we update
smallestWeight[1] to 14. The weight of the path 0-3-4, which is 2 + 7 = 9, is
greater than the weight of the path 0–4, which is 3. So we do not update the weight of
the vertex 4. Figure 21-10 shows the resulting graph. (The dotted arrow shows the
shortest path from the source—that is, from 0—to the vertex.)

Iteration 2 of Steps 3 to 5: At Step 3, we select vertex 4 because this is the vertex in the
array smallestWeight that has the smallest weight, and its corresponding entry in the
array weightFound is false. Next, we execute Steps 4 and 5. At Step 4, we set
weightFound[4] to true. At Step 5, we consider vertices 1 and 2 because these are the
vertices for which there is an edge from the vertex 4, and the shortest path from 0 to
these vertices has not been found. We then check if the path from the vertex 0 to the
vertices 1 and 2 via the vertex 4 can be improved. Clearly, the weight of the path 0–4–1,
which is 13, is smaller than the current weight of 1, which is 14. So we update
smallestWeight[1]. Similarly, we update smallestWeight[2]. Figure 21-11
shows the resulting graph.

2
1

0

1

2

3 4

16

12

2

3

7 4

3

5

w=2 w=3

w=14

w=∞

∞

5

smallestWeight

weightFound

0
[0]

14
[1] [2]

2
[3]

3
[4]

T
[0]

F
[1]

F
[2]

T
[3]

F
[4]

10

FIGURE 21-10 Graph after the first iteration of Steps 3, 4, and 5

Shortest Path Algorithm | 1341

Iteration 3 of Steps 3 to 5: At Step 3, the vertex selected is 2. At Step 4, we set
weightFound[2] to true. Next, at Step 5, we consider the vertex 1 because this is the
vertex for which there is an edge from the vertex 2, and the shortest part from 0 to this
vertex has not been found. We then check if the path from the vertex 0 to the vertex 1
via the vertex 2 can be improved. Clearly, the weight of the path 0–4–2–1, which is 10,
from 0 to 1 is smaller than the current weight of 1 (which is 13). So we update
smallestWeight[1]. Figure 21-12 shows the resulting graph.

0

1

2

3 4

16

12

2

3

7 4

3

5

w=2 w=3

w=13

w=7

7

5

smallestWeight

weightFound

0
[0]

13
[1] [2]

2
[3]

3
[4]

T
[0]

F
[1]

F
[2]

T
[3]

T
[4]

10

FIGURE 21-11 Graph after the second iteration of Steps 3, 4, and 5

0

1

2

3 4

16

12

2

3

7 4

3

5

w=2 w=3

w=10

w=7

7

5

smallestWeight

weightFound

0
[0]

10
[1] [2]

2
[3]

3
[4]

T
[0]

F
[1]

T
[2]

T
[3]

T
[4]

10

FIGURE 21-12 Graph after the third iteration of Steps 3, 4, and 5

1342 | Chapter 21: Graphs

Iteration 4 of Steps 3 to 5: At Step 3, the vertex 1 is selected, and at Step 4,
weightFound[1] is set to true. In this iteration, the action of Step 5 is null because
the shortest path from the vertex 0 to every other vertex in the graph has been
determined. Figure 21-13 shows the final graph.

The following C++ function, shortestPath, implements the previous algorithm:

void weightedGraphType::shortestPath(int vertex)
{

for (int j = 0; j < gSize; j++)
smallestWeight[j] = weights[vertex][j];

bool *weightFound;
weightFound = new bool[gSize];

for (int j = 0; j < gSize; j++)
weightFound[j] = false;

weightFound[vertex] = true;
smallestWeight[vertex] = 0;

for (int i = 0; i < gSize - 1; i++)
{

double minWeight = DBL_MAX;
int v;

2
1

0

1

2

3 4

16

12

2

3

7 4

3

5

w=2 w=3

w=10

w=7

7

5

smallestWeight

weightFound

0
[0]

10
[1] [2]

2
[3]

3
[4]

T
[0]

T
[1]

T
[2]

T
[3]

T
[4]

10

FIGURE 21-13 Graph after the fourth iteration of Steps 3, 4, and 5

Shortest Path Algorithm | 1343

for (int j = 0; j < gSize; j++)
if (!weightFound[j])

if (smallestWeight[j] < minWeight)
{

v = j;
minWeight = smallestWeight[v];

}

weightFound[v] = true;

for (int j = 0; j < gSize; j++)
if (!weightFound[j])

if (minWeight + weights[v][j] < smallestWeight[j])
smallestWeight[j] = minWeight + weights[v][j];

} //end for
} //end shortestPath

Note that the function shortestPath records only the weight of the shortest path from
the source to a vertex. We leave it for you to modify this function so that the shortest
path from the source to a vertex is also recorded. Moreover, this function used the named
constant DBL_MAX, which is defined in the header file cfloat.

The definitions of the function printShortestDistance and the constructor and
destructor are:

void weightedGraphType::printShortestDistance(int vertex)
{

cout << "Source Vertex: " << vertex << endl;
cout << "Shortest Distance from Source to each Vertex."

<< endl;
cout << "Vertex Shortest_Distance" << endl;

for (int j = 0; j < gSize; j++)
cout << setw(4) << j << setw(12) << smallestWeight[j]

<< endl;
cout << endl;

} //end printShortestDistance

//Constructor
weightedGraphType::weightedGraphType(int size)

:graphType(size)
{

weights = new double*[size];

for (int i = 0; i < size; i++)
weights[i] = new double[size];

smallestWeight = new double[size];
}

1344 | Chapter 21: Graphs

//Destructor
weightedGraphType::~weightedGraphType()
{

for (int i = 0; i < gSize; i++)
delete [] weights[i];

delete [] weights;
delete smallestWeight;

}

Minimal Spanning Tree
Consider the graph of Figure 21-14, which represents the airline connections of a
company between seven cities. The number on each edge represents some cost factor
of maintaining the connection between the cities.

Due to financial hardship, the company needs to shut down the maximum number of
connections and still be able to fly from one city to another (the flights need not be
direct). The graphs of Figure 21-15(a), (b), and (c) show three different solutions.

2
1

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-14 Airline connections between cities and the cost factor of maintaining the
connections

Minimal Spanning Tree | 1345

The total cost factor of maintaining the remaining connections in Figure 21-15(a) is 33,
in Figure 21-15(b) it is 28, and in Figure 21-15(c) it is 25. Out of these three solutions,
obviously, the desired solution is the one shown by the graph of Figure 21-15(c) because
it gives the lowest cost factor. The graphs of Figure 21-15 are called spanning trees of the
graph of Figure 21-14.

Let us note the following from the graphs of Figure 21-15. Each of the graphs is a
subgraph of the graph of Figure 21-14, and there is a unique path from a node to any
other node. Such graphs are called trees. There are many other situations in which, given
a weighted graph, we need to determine a graph with the smallest weight, such as in
Figure 21-15. In this section, we give an algorithm to determine such graphs. However,
first we introduce some terminology.

A (free) tree T is a simple graph such that if u and v are two vertices in T, then there is a
unique path from u to v. A tree in which a particular vertex is designated as a root is called
a rooted tree. If a weight is assigned to the edges in T, T is called a weighted tree. If T
is a weighted tree, the weight of T, denoted by W(T), is the sum of the weights of all of
the edges in T.

(a) (b)

(c)

0

1
2

3

4

5
6

6
5

8

7
5

2

0

1
2

3

4

5
6

5

10

2 4
5

2

0

1
2

3

4

5
6

5

2 74
5

2

FIGURE 21-15 Possible solutions to the graph of Figure 21-14

1346 | Chapter 21: Graphs

A tree T is called a spanning tree of graph G if T is a subgraph of G such that V(T)¼V(G);
that is, all of the vertices of G are in T.

Suppose G denotes the graph of Figure 21-14. Then, the graphs of Figure 21-15 show
three spanning trees of G. Let us note the following theorem.

Theorem: A graph G has a spanning tree if and only if G is connected.

From this theorem, it follows that in order to determine a spanning tree of a graph, the
graph must be connected.

Let G be a weighted graph. A minimal spanning tree of G is a spanning tree with the
minimum weight.

Prim’s algorithm and Kruskal’s algorithm are two well-known algorithms that can be
used to find the minimal spanning tree of a graph. This section discusses Prim’s algorithm
to find a minimal spanning tree. The interested reader can find the Kruskal’s algorithm in
the discrete structures book or a data structures book listed in Appendix H.

Prim’s algorithm builds the tree iteratively by adding edges until a minimal spanning tree
is obtained. We start with a designated vertex, which we call the source vertex. At each
iteration, a new edge that does not complete a cycle is added to the tree.

Let G be a weighted graph such that V(G) ¼ {v0, v1,. . .,vn-1}, in which n, the number of
vertices, is positive. Let v0 be the source vertex. Let T be the partially built tree. Initially,
V(T) contains the source vertex, and E(T) is empty. At the next iteration, a new vertex
that is not in V(T) is added to V(T), such that an edge exists from a vertex in T to the
new vertex so that the corresponding edge has the smallest weight. The corresponding
edge is added to E(T).

The general form of Prim’s algorithm is as follows. (Let n be the number of vertices in G.)

1. Set V(T) ¼ {source}
2. Set E(T) ¼ empty
3. for i = 1 to n

3.1. minWeight = infinity;

3.2. for j = 1 to n
if vj is in V(T)

for k = 1 to n
if vk is not in T and weight[vj, vk] < minWeight
{

endVertex = vk;
edge = (vj, vk);
minWeight = weight[vj, vk];

}

3.3. V(T) = V(T) [{endVertex};
3.4. E(T) = E(T) [{edge};

2
1

Minimal Spanning Tree | 1347

Let us illustrate Prim’s algorithm using the graph G of Figure 21-16 (which is same as the
graph of Figure 21-14).

Let N denote the set of vertices of G that are not in T. Suppose that the source vertex
is 0. After Steps 1 and 2 execute, V(T), E(T), and N are as shown in Figure 21-17.

Step 3.2 checks the following edges:

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-16 Weighted graph G

V(T) = {0}
E(T) = φ
N = {1,2,3,4,5,6}

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-17 Graph G, V(T), E(T), and N after Steps 1 and 2 execute

Edge Weight of the Edge

(0,1) 6

(0,2) 5

(0,3) 2

1348 | Chapter 21: Graphs

Clearly, the edge (0,3) has the smallest weight. Therefore, vertex 3 is added to V(T),
and the edge (0,3) is added to E(T). Figure 21-18 shows the resulting graph, V(T),
E(T), and N. (The dotted line shows the edge in T.)

Next, Step 3.2 checks the following edges:

Clearly, the edge (0,2) has the smallest weight. Therefore, vertex 2 is added to V(T),
and the edge (0,2)is added to E(T). Figure 21-19 shows the resulting graph, V(T), E(T),
and N.

2
1

Edge Weight of the Edge

(0,1) 6

(0,2) 5

(3,4) 8

V(T) = {0,3}
E(T) = {(0,3)}
N = {1,2,4,5,6}

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-18 Graph G, V(T), E(T), and N after the first iteration of Step 3

V(T) = {0,2,3}
E(T) = {(0,3),(0,2)}
N = {1,4,5,6}

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-19 Graph G, V(T), E(T), and N after the second iteration of Step 3

Minimal Spanning Tree | 1349

At the next iteration, Step 3.2 checks the following edges:

Clearly, the edge (2,6) has the smallest weight. Therefore, vertex 6 is added to V(T),
and the edge (2,6) is added to E(T). Figure 21-20 shows the resulting graph, V(T),
E(T), and N. (The dotted lines show the edges in T.)

At the next iteration, Step 3.2 checks the following edges:

Clearly, the edge (6,1) has the smallest weight. Therefore, vertex 1 is added to V(T),
and the edge (6,1) is added to E(T). Figure 21-21 shows the resulting graph, V(T),
E(T), and N. (The dotted lines show the edges in T.)

Edge Weight of the Edge

(0,1) 6

(2,5) 7

(2,6) 5

(3,4) 8

V(T) = {0,2,3,6}
E(T) = {(0,3),(0,2),(2,6)}
N = {1,4,5}

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-20 Graph G, V(T), E(T), and N after the third iteration of Step 3

Edge Weight of the Edge

(0,1) 6

(2,5) 7

(3,4) 8

(6,1) 4

1350 | Chapter 21: Graphs

At the next iteration, Step 3.2 checks the following edges:

Clearly, the edge (1,4) has the smallest weight. Therefore, vertex 4 is added to V(T),
and the edge (1,4) is added to E(T). Figure 21-22 shows the resulting graph, V(T),
E(T), and N. (The dotted lines show the edges in T.)

2
1

V(T) = {0,1,2,3,6}
E(T) = {(0,3),(0,2),(2,6),(6,1)}
N = {4,5}

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-21 Graph G, V(T), E(T), and N after the fourth iteration of Step 3

Edge Weight of the Edge

(1,4) 2

(2,5) 7

(3,4) 8

V(T) = {0,1,2,3,4,6}
E(T) = {(0,3),(0,2),(2,6),(6,1),(1,4)}
N = {5}

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-22 Graph G, V(T), E(T), and N after the fifth iteration of Step 3

Minimal Spanning Tree | 1351

At the next iteration, Step 3.2 checks the following edges:

Clearly, the edge (2,5) has the smallest weight. Therefore, vertex 5 is added to V(T),
and the edge (2,5) is added to E(T). Figure 21-23 shows the resulting graph, V(T),
E(T), and N. (The dotted lines show the edges in T.)

The dotted lines show a minimal spanning tree of G of weight 25.

Before we give the definition of the function to implement Prim’s algorithm, let us first
define the spanning tree as an ADT.

Let mstv be a bool array such that mstv [j] is true if the vertex vi is in T, and false
otherwise. Let edges be an array such that edges[j] = k if there is an edge connecting
vertices vj and vk. Suppose that the edge (vi, vj) is in the minimal spanning tree. Let
edgeWeights be an array such that edgeWeights[j] is the weight of the edge (vi, vj).

Using these conventions, the following class defines a spanning tree as an ADT.

class msTreeType: public graphType
{
public:

void createSpanningGraph();
//Function to create the graph and the weight matrix.
//Postcondition: The graph using adjacency lists and
// its weight matrix is created.

void minimalSpanning(int sVertex);
//Function to create a minimal spanning tree with
//root as sVertex.

Edge Weight of the Edge

(2,5) 7

(4,5) 10

V(T) = {0,1,2,3,4,5,6}
E(T) = {(0,3),(0,2),(2,6),(6,1),(1,4),(2,5)}
N = φ

0

1
2

3

4

5
6

6
5

10

2

8

7
4

5

2

FIGURE 21-23 Graph G, V(T), E(T), and N after the sixth iteration of Step 3

1352 | Chapter 21: Graphs

2
1

// Postcondition: A minimal spanning tree is created.
// The weight of the edges is also
// saved in the array edgeWeights.

void printTreeAndWeight();
//Function to output the edges of the minimal
//spanning tree and the weight of the minimal
//spanning tree.
//Postcondition: The edges of a minimal spanning tree
// and their weights are printed.

msTreeType(int size = 0);
//Constructor
//Postcondition: gSize = 0; maxSize = size;
// graph is an array of pointers to linked
// lists.
// weights is a two-dimensional array to
// store the weights of the edges.
// edges is an array to store the edges
// of a minimal spanning tree.
// egdeWeight is an array to store the
// weights of the edges of a minimal
// spanning tree.

~msTreeType();
//Destructor
//The storage occupied by the vertices and the arrays
//weights, edges, and edgeWeights is deallocated.

protected:
int source;
double **weights;
int *edges;
double *edgeWeights;

};

We leave the UML class diagram of the class msTreeType and the inheritance hierarchy
as an exercise. The definition of the function createSpanningGraph is also left as an
exercise for you. This function creates the graph and the weight matrix associated with
the graph.

The following C++ function, minimalSpanning, implements Prim’s algorithm, as
described previously.

void msTreeType::minimalSpanning(int sVertex)
{

int startVertex, endVertex;
double minWeight;

source = sVertex;

bool *mstv;
mstv = new bool[gSize];

Minimal Spanning Tree | 1353

for (int j = 0; j < gSize; j++)
{

mstv[j] = false;
edges[j] = source;
edgeWeights[j] = weights[source][j];

}

mstv[source] = true;
edgeWeights[source] = 0;

for (int i = 0; i < gSize - 1; i++)
{

minWeight = DBL_MAX;

for (int j = 0; j < gSize; j++)
if (mstv[j])

for (int k = 0; k < gSize; k++)
if (!mstv[k] && weights[j][k] < minWeight)
{

endVertex = k;
startVertex = j;
minWeight = weights[j][k];

}

mstv[endVertex] = true;
edges[endVertex] = startVertex;
edgeWeights[endVertex] = minWeight;

} //end for
} //end minimalSpanning

The definition of the function minimalSpanning contains three nested for loops.
Therefore, in the worst case, Prim’s algorithm given in this section is of the order O(n3).
It is possible to design Prim’s algorithm so that it is of the order O(n2). Programming
Exercise 5 at the end of this chapter asks you to do this.

The definition of the function printTreeAndWeight is:

void msTreeType::printTreeAndWeight()
{

double treeWeight = 0;

cout << "Source Vertex: " << source << endl;
cout << "Edges Weight" << endl;

for (int j = 0; j < gSize; j++)
{

if (edges[j] != j)
{

treeWeight = treeWeight + edgeWeights[j];
cout << "("<<edges[j] << ", " << j << ") "

<< edgeWeights[j] << endl;
}

}

1354 | Chapter 21: Graphs

2
1

cout << endl;
cout << "Minimal Spanning Tree Weight: "

<< treeWeight << endl;
} //end printTreeAndWeight

The definitions of the constructor and the destructor are as follows:

msTreeType::msTreeType(int size)
:graphType(size)

{
weights = new double*[size];

for (int i = 0; i < size; i++)
weights[i] = new double[size];

edges = new int[size];

edgeWeights = new double[size];
}

//Destructor
msTreeType::~msTreeType()
{

for (int i = 0; i < gSize; i++)
delete [] weights[i];

delete [] weights;
delete [] edges;
delete edgeWeights;

}

(Topological Ordering) This chapter also discusses topological ordering. The

necessary material is in the file TopologicalOrder.pdf. This file is on the

Web site, www.course.com/malik/cpp, accompanying this book.

QUICK REVIEW

1. A graph G is a pair, G ¼ (V, E), in which V is a finite nonempty set, called
the set of vertices of G, and E � V � V, called the set of edges.

2. In an undirected graph G ¼ (V, E), the elements of E are unordered pairs.
3. In a directed graph G ¼ (V, E), the elements of E are ordered pairs.
4. Let G be a graph. A graph H is called a subgraph of G if every vertex of H is

a vertex of G and every edge in H is an edge in G.

5. Two vertices u and v in an undirected graph are called adjacent if there is an
edge from one to the other.

6. Let e ¼ (u, v) be an edge in an undirected graph G. The edge e is said to be
incident on the vertices u and v.

7. An edge incident on a single vertex is called a loop.

Quick Review | 1355

www.course.com/malik/cpp

8. In an undirected graph, if two edges e1 and e2 are associated with the same
pair of vertices, then e1 and e2 are called parallel edges.

9. A graph is called a simple graph if it has no loops and no parallel edges.

10. A path from a vertex u to a vertex v is a sequence of vertices u1, u2, . . ., un
such that u ¼ u1, un ¼ v, and (ui, ui + 1) is an edge for all i ¼ 1, 2, . . ., n � 1.

11. The vertices u and v are called connected if there is a path from u to v.

12. A simple path is a path in which all of the vertices, except possibly the first
and last vertices, are distinct.

13. A cycle in G is a simple path in which the first and last vertices are the same.

14. An undirected graph G is called connected if there is a path from any vertex
to any other vertex.

15. A maximal subset of connected vertices is called a component of G.

16. Suppose that u and v are vertices in a directed graph G. If there is an edge from
u to v, that is, (u, v) 2 E, we say that u is adjacent to v and v is adjacent from u.

17. A directed graph G is called strongly connected if any two vertices in G are
connected.

18. Let G be a graph with n vertices, in which n > 0. Let V(G) ¼ {v1, v2, . . .,
vn}. The adjacency matrix AG is a two-dimensional n � n matrix such that
the (i, j)th entry of AG is 1 if there is an edge from vi to vj; otherwise, the (i,
j)th entry is zero.

19. In an adjacency list representation, corresponding to each vertex v is a
linked list such that each node of the linked list contains the vertex u, and
(v, u) 2 E(G).

20. The depth first traversal of a graph is similar to the preorder traversal of a
binary tree.

21. The breadth first traversal of a graph is similar to the level-by-level traversal
of a binary tree.

22. The shortest path algorithm gives the shortest distance for a given node to
every other node in the graph.

23. In a weighted graph, every edge has a nonnegative weight.

24. The weight of the path P is the sum of the weights of all of the edges on the
path P, which is also called the weight of v from u via P.

25. A (free) tree T is a simple graph such that if u and v are two vertices in T,
there is a unique path from u to v.

26. A tree in which a particular vertex is designated as a root is called a rooted tree.

27. Suppose T is a tree. If a weight is assigned to the edges in T, T is called a
weighted tree.

28. If T is a weighted tree, the weight of T, denoted by W(T), is the sum of the
weights of all the edges in T.

29. A tree T is called a spanning tree of graph G if T is a subgraph of G such
that V(T) ¼ V(G), that is, if all of the vertices of G are in T.

1356 | Chapter 21: Graphs

EXERCISES

Use the graph in Figure 21-24 for Exercises 1 through 6.

1. In Figure 21-24(a), find a path from vertex 0 to vertex 9.

2. In Figure 21-24(a), find a path from vertex 0 to vertex 9 via vertex 6.

3. In Figure 21-24(a), determine if the graph is simple. Also determine if there
is a cycle in this graph.

4. In Figure 21-24(a), determine if the vertices 1 and 9 are connected. If these
vertices are connected, find a path from vertex 1 to vertex 9.

5. In Figure 21-24(b), determine if the vertices 2 and 4 are connected. If these
vertices are connected, find a path from vertex 2 to vertex 4.

6. In Figure 21-24(b), determine if the graph is simple. Also determine if there
is a cycle in this graph.

Use the graph in Figure 21-25 for Exercises 7 through 10.

2
1

0 1 2

3

4 5 6 7

8 9 10

0

1

2

3

4

5

6

7

8

9

(b)(a)

FIGURE 21-24 Graph for Exercises 1 through 6

0 1

2

3

4

5

FIGURE 21-25 Graph for Exercises 7 through 10

Exercises | 1357

7. Find the adjacency matrix of the graph.

8. Draw the adjacency list of the graph.

9. List the nodes of the graph in a depth first traversal.

10. List the nodes of the graph in a breadth first traversal.

11. Find the weight matrix of the graph in Figure 21-26.

12. Consider the graph in Figure 21-27. Find the shortest distance from node 0
to every other node in the graph.

0 1
10

6

3 4
8

6

10

11
3

2 6

4

5

FIGURE 21-26 Graph for Exercise 11

0 1
3

4

5
15

8

7

12

8

2

3

2

3

4

5

FIGURE 21-27 Graph for Exercise 12

1358 | Chapter 21: Graphs

13. Find a spanning tree in the graph in Figure 21-28.

14. Find a spanning tree in the graph in Figure 21-29.

15. Find the minimal spanning tree for the graph in Figure 21-30, using the
algorithm given in this chapter.

2
1

8

4

0

10

5

7

6

9

2 3

11

1

FIGURE 21-28 Graph for Exercise 13

0 1

2

5

4 3

7

3
1

2

8
3

5

5

FIGURE 21-30 Graph for Exercise 15

10 3

7

4

8 9

5 6

2

FIGURE 21-29 Graph for Exercise 14

Exercises | 1359

PROGRAMMING EXERCISES

1. Write a program that outputs the nodes of a graph in a depth first traversal.

2. Write a program that outputs the nodes of a graph in a breadth first traversal.

3. Write a program that outputs the shortest distance from a given node to
every other node in the graph.

4. Write a program that outputs the minimal spanning tree for a given graph.

5. The algorithm to determine the minimal spanning tree given in this chapter
is of the order O(n3). The following is an alternative to Prim’s algorithm that
is of the order O(n2).

Input: A connected weighted graph G ¼ (V, E) of n vertices, numbered
0, 1, . . ., n � 1; starting with vertex s, with a weight matrix of W.

Output: The minimal spanning tree.

Prim2(G, W, n, s)
Let T = (V, E), where E = f.
for (j = 0; j < n; j++)
{

edgeWeights[j] = W(s,j);
edges[j] = s;
visited[s] = false;

}
edgeWeights[s] = 0;
visited[s] = true;
while (not all nodes are visited)
{

Choose the node that is not visited and has the smallest weight, and call it k.
visited[k] = true;
E = E [{(k, edges[k])}
V = V [{k}
for each node j that is not visited

if (W(k,j) < edgeWeights[j])
{

edgeWeights[j] = W(k,j);
edges[j] = k;

}
}
return T;

Write a definition of the function Prim2 to implement this algorithm, and
also add this function to the class msTreeType. Furthermore, write a
program to test this version of Prim’s algorithm.

1360 | Chapter 21: Graphs

STANDARD TEMPLATE
LIBRARY (STL)

IN THIS CHAPTER , YOU WILL :

. Learn about the Standard Template Library (STL)

. Become familiar with the three basic components of the STL: containers, iterators, and algorithms

. Explore how various containers are used to manipulate data in a program

. Learn how iterators are used

. Learn about various generic algorithms

22C H A P T E R

Chapter 14 introduced and examined templates in detail. With the help of class
templates, we developed (and used) a generic code to process lists. For example, we used
the class listType to process a list of integers and a list of strings. In Chapters 17 and
18, we studied the three most important data structures: linked lists, stacks, and queues. In
these chapters, using class templates, we developed generic code to process linked lists. In
addition, using the second principle of object-oriented programming (OOP), we devel-
oped generic code to process ordered lists. Furthermore, in Chapter 18, we used class
templates to develop generic code to implement stacks and queues. Along the way, you
saw that a template is a powerful tool that promotes code reuse.

ANSI/ISO Standard C++ is equipped with a Standard Template Library (STL). Among
other things, the STL provides class templates to process lists (contiguous or linked),
stacks, and queues. This chapter discusses many important features of the STL and shows
how to use the tools provided by the STL in a program.

Components of the STL
The main objective of a program is to manipulate data and generate results. Achieving
this goal requires the ability to store data into computer memory, access a particular piece
of data, and write algorithms to manipulate the data.

For example, if all data items are of the same type and we have some idea of the number
of data items, we could use an array to store the data. We can then use an index to access
a particular component of the array. Using a loop and the array index, we can step
through the elements of the array. Algorithms, such as those for initializing the array,
sorting, and searching, are used to manipulate the data stored in an array. On the other
hand, if we do not want to be concerned about the size of the data, we can use a linked
list to process it. If the data needs to be processed in a Last In First Out (LIFO) manner,
we can use a stack. Similarly, if the data needs to be processed in a First In First Out
(FIFO) manner, we can use a queue.

The STL is equipped with these features to effectively manipulate data. More formally,
the STL has three main components:

• Containers

• Iterators

• Algorithms

Containers and iterators are class templates. Iterators are used to step through the elements
of a container. Algorithms are used to manipulate data. The following sections discuss
each of these components in detail.

1362 | Chapter 22: Standard Template Library (STL)

Container Types
Containers are used to manage objects of a given type. The STL containers are classified
into three categories, as follows:

• Sequence containers (also called sequential containers)

• Associative containers

• Container adapters

Sequence Containers
Every object in a sequence container has a specific position. The three predefined
sequence containers are:

• vector

• deque

• list

Before discussing container types in general, let us first briefly describe the sequence
container vector. We do so because vector containers are similar to arrays and thus can
be processed like arrays. Also, with the help of vector containers, we can describe several
properties that are common to all containers. In fact, all containers use the same names for
the common operations. Of course, there are operations that are specific to a container,
which will be discussed when describing a specific container.

Sequence Container: vector
A vector container stores and manages its objects in a dynamic array. Because an array is a
random access data structure, the elements of a vector can be accessed randomly. Item
insertion in the middle or beginning of an array is time consuming, especially if the array
is large. However, inserting an item at the end is quite fast.

The name of the class that implements the vector container is vector. (Recall that
containers are class templates.) The name of the header file containing the class
vector is vector. Thus, to use a vector container in a program, the program must
include the following statement:

#include <vector>

Furthermore, to define an object of type vector, we must specify the type of the object
because the class vector is a class template. For example, the statement:

vector<int> intList;

declares intList to be a vector and the component type to be int. Similarly, the statement:

vector<string> stringList;

declares stringList to be a vector container and the component type to be string.

2
2

Components of the STL | 1363

DECLARING VECTOR OBJECTS

The class vector contains several constructors, including the default constructor.
Therefore, a vector container can be declared and initialized several ways. Table 22-1
describes how a vector container of a specific type can be declared and initialized.

TABLE 22-1 Various Ways to Declare and Initialize a Vector Container

Statement Effect

vector<elemType> vecList;
Creates the empty vector
container vecList. (The
default constructor is invoked.)

vector<elemType> vecList(otherVecList);

Creates the vector container
vecList and initializes
vecList to the elements of
the vector otherVecList.
vecList and
otherVecList are of the
same type.

vector<elemType> vecList(size);

Creates the vector container
vecList of size size.
vecList is initialized using
the default constructor.

vector<elemType> vecList(n, elm);

Creates the vector container
vecList of size n.
vecList is initialized using
n copies of the element elm.

vector<elemType> vecList(beg, end);

Creates the vector container
vecList. vecList is
initialized to the elements in
the range [beg, end), that
is, all the elements in the range
beg...end-1. Both beg
and end are pointers, called
iterators in STL terminology.
(Later in this chapter, we
explain how iterators are used.)

1364 | Chapter 22: Standard Template Library (STL)

Now that we know how to declare a vector sequence container, let us discuss how to
manipulate the data stored in a vector container. In order to manipulate the data in a
vector container, we must know the following basic operations:

• Item insertion

• Item deletion

• Stepping through the elements of a vector container

The elements in a vector container can be accessed directly by using the operations given
in Table 22-2. The name of the function is shown in bold.

From Table 22-2, it follows that the elements in a vector can be processed just as they can
in an array. See Example 22-1. (Recall that in C++, arrays start at location 0. Similarly,
the first element in a vector container is at location 0.)

EXAMPLE 22-1

Consider the following statement, which declares intList to be a vector container of
size 5 with an element type of int.

vector<int> intList(5);

You can use a loop, such as the following, to store elements into intList.

for (int j = 0; j < 5; j++)
intList[j] = j;

Similarly, you can use a for loop to output the elements of intList.

2
2

TABLE 22-2 Operations to Access the Elements of a Vector Container

Expression Description

vecList.at(index) Returns the element at the position specified by index.

vecList[index] Returns the element at the position specified by index.

vecList.front()
Returns the first element. (Does not check whether the
container is empty.)

vecList.back()
Returns the last element. (Does not check whether the
container is empty.)

Components of the STL | 1365

The class vector also contains member functions that can be used to find the number
of elements currently in the container, the maximum number of elements that can be
inserted into a container, and so on. Table 22-3 describes some of these operations. The
name of the function is shown in bold. (Suppose that vecCont is a vector container.)

The class vector also contains member functions that can be used to manipulate the
data, as well as insert and delete items, in a vector container. Suppose that vecList is a
container of type vector. Item insertion and deletion in vecList are accomplished
using the operations given in Table 22-4. These operations are implemented as member
functions of the class vector and are shown in bold. Table 22-4 also shows how
these operations are used.

TABLE 22-3 Operations to Determine the Size of a Vector Container

Expression Description

vecCont.capacity()
Returns the maximum number of elements that can
be inserted into the container vecCont without
reallocation.

vecCont.empty() Returns true if the container vecCont is empty,false otherwise.

vecCont.size() Returns the number of elements currently in the
container vecCont.

vecCont.max_size() Returns the maximum number of elements that
can be inserted into the container vecCont.

1366 | Chapter 22: Standard Template Library (STL)

2
2

In Table 22-4, the identifiers position, beg, and end in STL terminology are called

iterators. An iterator is just like a pointer. In general, iterators are used to step through the

elements of a container. In other words, with the help of an iterator, we can walk through

the elements of a container and process them one at a time. Because iterators are an

integral part of the STL, they are discussed in the section ‘‘Iterators’’ located later in this

chapter.

TABLE 22-4 Various Operations on a Vector Container

Statement Effect

vecList.clear() Deletes all of the elements from the
container.

vecList.erase(position) Deletes the element at the position
specified by position.

vecList.erase(beg, end) Deletes all of the elements starting at
beg until end-1.

vecList.insert(position, elem)

A copy of elem is inserted at the
position specified by position.
The position of the new element is
returned.

vecList.insert(position, n, elem) n copies of elem are inserted at the
position specified by position.

vecList.insert(position, beg, end)

A copy of the elements, starting at
beg until end-1, is inserted into
vecList at the position specified by
position.

vecList.push_back(elem) A copy of elem is inserted into
vecList at the end.

vecList.pop_back() Deletes the last element.

vecList.resize(num)

Changes the number of elements to
num. If size() increases, the
default constructor creates the new
elements.

vecList.resize(num, elem)
Changes the number of elements to
num. If size() increases, the new
elements are copies of elem.

Components of the STL | 1367

Example 22-1 used a for loop and the array subscripting operator, [], to access the
elements of intList. We declare intList to be a vector object of size 5. Does this
mean that we can store only five elements in intList? The answer is no. We can, in
fact, add more elements to intList. However, because when we declared intList we
specified the size to be 5, in order to add elements past position 4, we use the function
push_back. Furthermore, if we initially declare a vector object and do not specify its
size, then to add elements to the vector object, we use the function push_back.
Example 22-2 explains how to use the function push_back.

EXAMPLE 22-2

The following statement declares intList to be a vector object of size 0.

vector<int> intList;

To add elements to intList, we can use the function push_back as follows:

intList.push_back(34);
intList.push_back(55);

After these statements execute, the size of intList is 2 and:

intList = {34, 55}

In Example 22-2, because intList is declared to be of size 0, we use the function
push_back to add elements to intList. However, we can also use the resize
function to increase the size of intList and then use the array subscripting operator.
For example, suppose that intList is declared as in Example 22-2. Then, the following
statement sets the size of intList to 10.

intList.resize(10);

Similarly, the following statement increases the size of intList by 10.

intList.resize(intList.size() + 10);

However, at times, the push_back function is more convenient because it does not
need to know the size of the vector; it simply adds the elements at the end.

Next, we describe how to declare an iterator in a vector container.

DECLARING AN ITERATOR TO A VECTOR CONTAINER

The class vector contains a typedef iterator, which is declared as a public
member. An iterator to a vector container is declared using the typedef iterator. For
example, the statement:

vector<int>::iterator intVecIter;

declares intVecIter to be an iterator in a vector container of type int.

1368 | Chapter 22: Standard Template Library (STL)

Because iterator is a typedef defined inside the class vector, we must use the
container name (which is vector), the container element type, and the scope resolution
operator to use the typedef iterator.

The expression:

++intVecIter

advances the iterator intVecIter to the next element in the container, and the expression:

*intVecIter

returns the element at the current iterator position.

Note that these operations are the same as the operations on pointers, discussed in
Chapter 13. Recall that when used as a unary operator, * is called the dereferencing
operator.

We now discuss how to use an iterator in a vector container to manipulate the data stored
in the vector container.

Suppose that we have the following statements:

vector<int> intList; //Line 1
vector<int>::iterator intVecIter; //Line 2

The statement in Line 1 declares intList to be a vector container, and the element type
is int. The statement in Line 2 declares intVecIter to be an iterator in a vector
container whose element type is int.

CONTAINERS AND THE FUNCTIONS begin AND end

Every container has the member functions begin and end. The function begin returns
the position of the first element in the container; the function end returns the position of
one past the last element in the container. Also, these functions have no parameters.

After the following statement executes:

intVecIter = intList.begin();

the iterator intVecIter points to the first element in the container intList.

The following for loop outputs the elements of intList to the standard output device.

for (intVecIter = intList.begin(); intVecIter != intList.end();
++intVecIter)

cout << *intVecIter << " ";

Example 22-3 shows how the function insert works with vector objects.

2
2

Components of the STL | 1369

EXAMPLE 22-3

Consider the following statements:

int intArray[7] = {1, 3, 5, 7, 9, 11, 13}; //Line 1
vector<int> vecList(intArray, intArray + 7); //Line 2
vector<int>::iterator intVecIter; //Line 3

The statement in Line 2 declares and initializes the vector container vecList. Now
consider the following statements:

intVecIter = vecList.begin(); //Line 4
++intVecIter; //Line 5
vecList.insert(intVecIter, 22); //Line 6

The statement in Line 4 initializes the iterator intVecIter to the first element of
vecList; the statement in Line 5 advances intVecIter to the second element of
vecList. The statement in Line 6 inserts 22 at the position specified by intVecIter.
After the statement in Line 6 executes, vecList = {1, 22, 3, 5, 7, 9, 11, 13}.
Notice that the size of the container also increases.

The following example illustrates how to use a vector container in a program and how to
process the elements in a vector container.

EXAMPLE 22-4

#include <iostream>
#include <vector>

using namespace std;

int main()
{

vector<int> intList; //Line 1
int i; //Line 2

intList.push_back(13); //Line 3
intList.push_back(75); //Line 4
intList.push_back(28); //Line 5
intList.push_back(35); //Line 6

cout << "Line 7: List elements: "; //Line 7
for (i = 0; i < 4; i++) //Line 8

cout << intList[i] << " "; //Line 9
cout << endl; //Line 10

for (i = 0; i < 4; i++) //Line 11
intList[i] *= 2; //Line 12

1370 | Chapter 22: Standard Template Library (STL)

2
2

cout << "Line 13: List elements: "; //Line 13
for (i = 0; i < 4; i++) //Line 14

cout << intList[i] << " "; //Line 15
cout << endl; //Line 16

vector<int>::iterator listIt; //Line 17

cout << "Line 18: List elements: "; //Line 18
for (listIt = intList.begin();

listIt != intList.end(); ++listIt) //Line 19
cout << *listIt << " "; //Line 20

cout << endl; //Line 21

listIt = intList.begin(); //Line 22
++listIt; //Line 23
++listIt; //Line 24

//Insert 88 at the position specified
//by listIt

intList.insert(listIt, 88); //Line 25

cout << "Line 25: List elements: "; //Line 26
for (listIt = intList.begin();

listIt != intList.end(); ++listIt) //Line 27
cout << *listIt << " "; //Line 28

cout << endl; //Line 29

return 0;
}

Sample Run:

Line 7: List elements: 13 75 28 35
Line 13: List elements: 26 150 56 70
Line 18: List elements: 26 150 56 70
Line 25: List elements: 26 150 88 56 70

The statement in Line 1 declares a vector container (or vector for short), intList, of
type int. The statement in Line 2 declares i to be an int variable. The statements in
Lines 3 through 6 use the operation push_back to insert four numbers—13, 75, 28,
and 35—into intList. The statements in Lines 8 and 9 use the for loop and the array
subscripting operator, [], to output the elements of intList. In the output, see the line
marked Line 7, which contains the output of Lines 7 through 10. The statements in Lines
11 and 12 use a for loop to double the value of each element of intList; the
statements in Lines 14 and 15 output the elements of intList. In the output, see the
line marked Line 13, which contains the output of Lines 13 through 16.

The statement in Line 17 declares listIt to be a vector iterator that processes any
vector container whose elements are of type int. Using the iterator listIt, the
statements in Lines 19 and 20 output the elements of intList. After the statement in
Line 22 executes, listIt points to the first element of intList. The statements in
Lines 23 and 24 advance listIt twice; after these statements execute, listIt points to

Components of the STL | 1371

the third element of intList. The statement in Line 25 inserts 88 into intList at the
position specified by the iterator listIt. Because listIt points to the component at
position 2 (the third element of intList), 88 is inserted at position 2 in intList; that
is, 88 becomes the third element of intList. The statements in Lines 27 and 28 output
the modified intList.

Member Functions Common to All Containers
The previous section discussed vector containers. This section discusses operations that
are common to all containers. For example, every container class has the default con-
structor, several constructors with parameters, the destructor, a function to insert an
element into a container, and so on.

Recall that a class encapsulates data and operations on that data into a single unit. Because
every container is a class, several operations are directly defined for a container and are
provided as part of the definition of the class. Also, recall that the operations to manipulate
the data are implemented with the help of functions and are called member functions of the
class. Table 22-5 describes the member functions that are common to all containers; that is,
these functions are included as members of the class template implementing the container.

Suppose ct, ct1, and ct2 are containers of the same type. In Table 22-5, the name of
the function is shown in bold. This table also shows how a function is called.

TABLE 22-5 Operations Common to All Containers

Member function Description

Default constructor Initializes the object to an empty state.

Constructor with parameters

In addition to the default constructor, every
container has constructors with parameters. We
will describe these constructors when we discuss a
specific container.

Copy constructor
Executes when an object is passed as a parameter
by value and when an object is declared and
initialized using another object of the same type.

Destructor Executes when the object goes out of scope.

ct.empty() Returns true if container ct is empty, false
otherwise.

ct.size() Returns the number of elements currently in
container ct.

1372 | Chapter 22: Standard Template Library (STL)

2
2

Because these operations are common to all containers, when discussing a specific

container, to save space, these operations will not be listed again.

TABLE 22-5 Operations Common to All Containers (continued)

Member function Description

ct.max_size() Returns the maximum number of elements that
can be inserted in container ct.

ct1.swap(ct2) Swaps the elements of containers ct1 and ct2.

ct.begin() Returns an iterator to the first element into
container ct.

ct.end() Returns an iterator to the position after the last
element into container ct.

ct.rbegin()
Reverse begin. Returns a pointer to the last
element into container ct. This function is used to
process the elements of ct in reverse.

ct.rend() Reverse end. Returns a pointer to the position
before the first element into container ct.

ct.insert(position,elem)
Inserts elem into container ct at the position
specified by position. Note that here,
position is an iterator.

ct.erase(beg, end)
Deletes all of the elements between
beg...end-1 from container ct. Both beg
and end are iterators.

ct.clear() Deletes all of the elements from the container.
After a call to this function, container ct is empty.

Operator functions

ct1 = ct2;
Copies the elements of ct2 into ct1. After this
operation, the elements in both containers are the
same.

ct1 == ct2
Returns true if containers ct1 and ct2 are
equal, false otherwise.

ct1 != ct2
Returns true if containers ct1 and ct2 are not
equal, false otherwise.

Components of the STL | 1373

Member Functions Common to Sequence Containers
The previous section described the member functions that are common to all containers. In
addition to these member functions, Table 22-6 describes the member functions that are
common to all sequence containers, that is, containers of type vector, deque, and list.
The name of the function is shown in bold. (Suppose that seqCont is a sequence container.)

TABLE 22-6 Member Functions Common to All Sequence Containers

Expression Description

seqCont.insert(position, elem)

A copy of elem is inserted at the
position specified by the iterator
position. The position of the new
element is returned.

seqCont.insert(position, n, elem)
n copies of elem are inserted at the
position specified by the iterator
position.

seqCont.insert(position, beg, end)

A copy of the elements, starting at
beg until end-1, is inserted into
seqCont at the position specified
by the iterator position. Also,
beg and end are iterators.

seqCont.push_back(elem) A copy of elem is inserted into
seqCont at the end.

seqCont.pop_back() Deletes the last element.

seqCont.erase(position) Deletes the element at the position
specified by the iterator position.

seqCont.erase(beg, end)
Deletes all of the elements starting at
beg until end-1. Both beg and
end are iterators.

seqCont.clear() Deletes all of the elements from the
container.

seqCont.resize(num)

Changes the number of elements to
num. If size() grows, the new
elements are created by their default
constructor.

seqCont.resize(num, elem)
Changes the number of elements to
num. If size() grows, the new
elements are copies of elem.

1374 | Chapter 22: Standard Template Library (STL)

The copy Algorithm
Example 22-4 used a for loop to output the elements of a vector container. The STL
provides a convenient way to output the elements of a container with the help of the
function copy. The function copy is provided as a part of the generic algorithm and can
be used with any container type. Because we frequently need to output the elements of a
container, before continuing with our discussion of containers, let us describe this
function.

The function copy does more than output the elements of a container. In general, it
allows us to copy the elements from one place to another. For example, to output the
elements of a vector or to copy the elements of a vector into another vector, we can use
the function copy. The prototype of the function template copy is:

template <class inputIterator, class outputIterator>
outputIterator copy(inputIterator first1, inputIterator last,

outputIterator first2);

The parameter first1 specifies the position from which to begin copying the elements;
the parameter last specifies the end position. The parameter first2 specifies where to
copy the elements. Therefore, the parameters first1 and last specify the source;
parameter first2 specifies the destination.

Note that the elements within the range first1...last-1 are copied.

The definition of the function template copy is contained in the header file algorithm.
Thus, to use the function copy, the program must include the statement:

#include <algorithm>

The function copy works as follows. Consider the following statement:

int intArray[] = {5, 6, 8, 3, 40, 36, 98, 29, 75};

This statement creates an array intArray of nine components. Here, intArray[0] = 5,
intArray[1] = 6, and so on.

The statement:

vector<int> vecList(9);

creates an empty container of nine components of type vector and the element type int.

Recall that the array name, intArray, is actually a pointer and contains the base address of
the array. Therefore, intArray points to the first component of the array, intArray + 1
points to the second component of the array, and so on.

Now consider the statement:

copy(intArray, intArray + 9, vecList.begin());

This statement copies the elements starting at the location intArray, which is the first
component of the array intArray, until intArray + 9 - 1 (that is, intArray + 8),

2
2

Components of the STL | 1375

which is the last element of the array intArray, into the container vecList. (Note that
here, first1 is intArray, last is intArray + 9, and first2 is vecList.begin().)
After the previous statement executes:

vecList = {5, 6, 8, 3, 40, 36, 98, 29, 75}

Next, consider the statement:

copy(intArray + 1, intArray + 9, intArray);

Here, first1 is intArray + 1; that is, first1 points to the location of the second
element of the array intArray, and last is intArray + 9. Also, first2 is intArray;
that is, first2 points to the location of the first element of the array intArray. Therefore,
the second array element is copied into the first array component, the third array element
into the second array component, and so on. After the preceding statement executes:

intArray = {6, 8, 3, 40, 36, 98, 29, 75, 75}

Clearly, the elements of the array intArray are shifted to the left by one position.

Now consider the statement:

copy(vecList.rbegin() + 2, vecList.rend(), vecList.rbegin());

Recall that the function rbegin (reverse begin) returns a pointer to the last element into
a container; it is used to process the elements of a container in reverse. Therefore,
vecList.rbegin() + 2 returns a pointer to the third-to-last element into the con-
tainer vecList. Similarly, the function rend (reverse end) returns a pointer to the first
element into a container. The previous statement shifts the elements of the container
vecList to the right by two positions. After the previous statement executes, the
container vecList is:

vecList = {5, 6, 5, 6, 8, 3, 40, 36, 98}

Example 22-5 shows the effect of the preceding statements using a C++ program. Before
discussing Example 22-5, let us describe a special type of iterators called ostream
iterators. These iterators work well with the function copy to copy the elements of a
container to an output device.

THE ostream ITERATOR AND THE FUNCTION copy

One way to output the contents of a container is to use a for loop, the function begin
to initialize the for loop control variable, and the function end to set the limit.
Alternatively, the function copy can be used to output the elements of a container. In
this case, an iterator of type ostream specifies the destination. (ostream iterators are
discussed in detail later in this chapter.) When we create an iterator of type ostream, we
also specify the type of element that the iterator will output.

The following statement illustrates how to create an ostream iterator of type int.

ostream_iterator<int> screen(cout, " "); //Line A

1376 | Chapter 22: Standard Template Library (STL)

This statement creates screen to be an ostream iterator with the element type int.
The iterator screen has two arguments: the object cout and a space. Thus, the iterator
screen is initialized using the object cout. When this iterator outputs elements, they
are separated by a space.

The statement:

copy(intArray, intArray + 9, screen);

outputs the elements of intArray on the screen.

Similarly, the statement:

copy(vecList.begin(), vecList.end(), screen);

outputs the elements of the container vecList on the screen.

We will frequently use the function copy to output the elements of a container by using
an ostream iterator. Also, until we discuss ostream iterators in detail, we will use
statements similar to Line A to create an ostream iterator.

Of course, we can directly specify an ostream iterator in the function copy. For
example, the statement (shown previously):

copy(vecList.begin(), vecList.end(), screen);

is equivalent to the statement:

copy(vecList.begin(), vecList.end(),
ostream_iterator<int>(cout, " "));

Finally, the statement:

copy(vecList.begin(), vecList.end(),
ostream_iterator<int>(cout, ", "));

outputs the elements of vecList with a comma and space between them.

Example 22-5 shows how to use the function copy and an ostream iterator in a program.

EXAMPLE 22-5

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>

using namespace std;

int main()
{

int intArray[] = {5, 6, 8, 3, 40,
36, 98, 29, 75}; //Line 1

2
2

Components of the STL | 1377

vector<int> vecList(9); //Line 2

ostream_iterator<int> screen(cout, " "); //Line 3

cout << "Line 4: intArray: "; //Line 4
copy(intArray, intArray + 9, screen); //Line 5
cout << endl; //Line 6

copy(intArray, intArray + 9, vecList.begin()); //Line 7

cout << "Line 8: vecList: "; //Line 8
copy(vecList.begin(), vecList.end(), screen); //Line 9
cout << endl; //Line 10

copy(intArray + 1, intArray + 9, intArray); //Line 11

cout << "Line 12: After shifting the elements "
<< "one position to the left, " << endl
<< " intArray: "; //Line 12

copy(intArray, intArray + 9, screen); //Line 13

cout << endl; //Line 14

copy(vecList.rbegin() + 2, vecList.rend(),
vecList.rbegin()); //Line 15

cout << "Line 16: After shifting the elements "
<< "down by two positions, "<< endl
<< " vecList: "; //Line 16

copy(vecList.begin(), vecList.end(), screen); //Line 17

cout << endl; //Line 18

return 0;
}

Sample Run:

Line 4: intArray: 5 6 8 3 40 36 98 29 75
Line 8: vecList: 5 6 8 3 40 36 98 29 75
Line 12: After shifting the elements one position to the left,

intArray: 6 8 3 40 36 98 29 75 75
Line 16: After shifting the elements down by two positions,

vecList: 5 6 5 6 8 3 40 36 98

1378 | Chapter 22: Standard Template Library (STL)

Sequence Container: deque
This section describes the deque sequence containers. The term deque stands for
double-ended queue. Deque containers are implemented as dynamic arrays in such a
way that the elements can be inserted at both ends. Thus, a deque can expand in either
direction. Elements can also be inserted in the middle. Inserting elements in the begin-
ning or at the end is fast; inserting elements in the middle, however, is time consuming
because the elements in the queue need to be shifted.

The name of the class defining the deque containers is deque. The definition of the
class deque, and the functions to implement the various operations on a deque
object, are also contained in the header file deque. Therefore, to use a deque container
in a program, the program must include the following statement:

#include <deque>

The class deque contains several constructors. Thus, a deque object can be initialized
in various ways when it is declared, as described in Table 22-7.

2
2

TABLE 22-7 Various Ways to Declare a deque Object

Statement Description

deque<elementType> deq;
Creates an empty deque container
deq. (The default constructor is
invoked.)

deque<elementType> deq(otherDeq);

Creates the deque container deq
and initializes it to the elements of
otherDeq; deq and otherDeq
are of the same type.

deque<elementType> deq(size);
Creates the deque container deq of
size size. deq is initialized using the
default constructor.

deque<elementType> deq(n, elm);
Creates the deque container deq of
size n. deq is initialized using n copies
of the element elm.

deque<elementType> deq(beg, end);

Creates the deque container deq.
deq is initialized to the elements in
the range [beg, end), that is, all
elements in the range beg...end-1.
Both beg and end are iterators.

Components of the STL | 1379

In addition to the operations that are common to all sequence containers (Table 22-6),
Table 22-8 describes the operations that can be used to manipulate the elements of a
deque container. The name of the function implementing the operations is shown in
bold. Each statement also shows how to use a particular function. Suppose that deq is a
deque container.

Example 22-6 illustrates how to use a deque container in a program.

EXAMPLE 22-6

//deque Example
#include <iostream>
#include <deque>
#include <algorithm>
#include <iterator>

using namespace std;

TABLE 22-8 Various Operations that Can Be Performed on a deque Object

Expression Description

deq.assign(n,elem) Assigns n copies of elem.

deq.assign(beg, end) Assigns all of the elements in the range
beg...end-1.

deq.push_front(elem) Inserts elem at the beginning of deq.

deq.pop_front() Removes the first element from deq.

deq.at(index) Returns the element at the position specified
by index.

deq[index]
Returns the element at the position specified
by index.

deq.front() Returns the first element. (Does not check
whether the container is empty.)

deq.back() Returns the last element. (Does not check
whether the container is empty.)

1380 | Chapter 22: Standard Template Library (STL)

int main()
{

deque<int> intDeq; //Line 1
ostream_iterator<int> screen(cout, " "); //Line 2

intDeq.push_back(13); //Line 3
intDeq.push_back(75); //Line 4
intDeq.push_back(28); //Line 5
intDeq.push_back(35); //Line 6

cout << "Line 7: intDeq: "; //Line 7
copy(intDeq.begin(), intDeq.end(), screen); //Line 8
cout << endl; //Line 9

intDeq.push_front(0); //Line 10
intDeq.push_back(100); //Line 11

cout << "Line 12: After adding two more "
<< "elements, one at the front " << endl
<< " and one at the back, intDeq: "; //Line 12

copy(intDeq.begin(), intDeq.end(), screen); //Line 13
cout << endl; //Line 14

intDeq.pop_front(); //Line 15
intDeq.pop_front(); //Line 16

cout << "Line 17: After removing the first "
<< "two elements, " << endl
<< " intDeq: "; //Line 17

copy(intDeq.begin(), intDeq.end(), screen); //Line 18
cout << endl; //Line 19

intDeq.pop_back(); //Line 20
intDeq.pop_back(); //Line 21

cout << "Line 22: After removing the last "
<< "two elements, " << endl
<< " intDeq = "; //Line 22

copy(intDeq.begin(), intDeq.end(), screen); //Line 23
cout << endl; //Line 24

deque<int>::iterator deqIt; //Line 25

deqIt = intDeq.begin(); //Line 26
++deqIt; //deqIt points to the

//second element //Line 27

intDeq.insert(deqIt, 444); //Insert 444 at the
//location deqIt //Line 28

2
2

Components of the STL | 1381

cout << "Line 29: After inserting 444, "
<< "intDeq: "; //Line 29

copy(intDeq.begin(), intDeq.end(), screen); //Line 30
cout << endl; //Line 31

intDeq.assign(2, 45); //Line 32

cout << "Line 33: After assigning two "
<< "copies of 45, intDeq: "; //Line 33

copy(intDeq.begin(), intDeq.end(), screen); //Line 34
cout << endl; //Line 35

intDeq.push_front(-10); //Line 36
intDeq.push_back(-999); //Line 37

cout << "Line 38: After inserting two "
<< "elements, one at the front " << endl
<< " and one at the back, intDeq: "; //Line 38

copy(intDeq.begin(), intDeq.end(), screen); //Line 39
cout << endl; //Line 40

return 0;
}

Sample Run:

Line 7: intDeq: 13 75 28 35
Line 12: After adding two more elements, one at the front

and one at the back, intDeq: 0 13 75 28 35 100
Line 17: After removing the first two elements,

intDeq: 75 28 35 100
Line 22: After removing the last two elements,

intDeq = 75 28
Line 29: After inserting 444, intDeq: 75 444 28
Line 33: After assigning two copies of 45, intDeq: 45 45
Line 38: After inserting two elements, one at the front

and one at the back, intDeq: -10 45 45 -999

The statement in Line 1 declares a deque container intDeq of type int; that is, all of the
elements of intDeq are of type int. The statement in Line 2 declares screen to be an
ostream iterator initialized to the standard output device. The statements in Lines 3
through 6 use the push_back operation to insert four numbers—13, 75, 28, and 35—
into intDeq. The statement in Line 8 outputs the elements of intDeq. In the output,
see the line marked Line 7, which contains the output of the statements in Lines 7
through 9.

The statement in Line 10 inserts 0 at the beginning of intDeq; the statement in Line 11
inserts 100 at the end of intDeq. The statement in Line 13 outputs the modified
intDeq.

The statements in Lines 15 and 16 use the function pop_front to remove the first two
elements of intDeq; the statement in Line 18 outputs the modified intDeq. The

1382 | Chapter 22: Standard Template Library (STL)

statements in Lines 20 and 21 use the function pop_back to remove the last two
elements of intDeq, and the statement in Line 23 outputs the modified intDeq.

The statement in Line 25 declares deqIt to be a deque iterator that processes all
deque containers whose elements are of type int. After the statement in Line 26
executes, deqIt points to the first element of intDeq. The statement in Line 27
advances deqIt to the next element of intDeq. The statement in Line 28 inserts 444
into intDeq at the position specified by deqIt. The statement in Line 30 outputs
intDeq.

The statement in Line 32 assigns two copies of 45 to intDeq. After the statement in Line
32 executes, the old elements of intDeq are removed and intDeq now contains only
two copies of 45. The output of the statement in Line 34 illustrates this. In the output,
see the line marked Line 33, which contains the output of the statements in Lines 33
through 35 of the program.

The meaning of the remaining statements is self-explanatory.

Sequence Container: list
This section describes the sequence container list. List containers are implemented as
doubly linked lists. Thus, every element in a list points to both its immediate predecessor
and its immediate successor (except the first and last elements). Recall that a linked list is
not a random access data structure, such as an array. Therefore, to access, say, the fifth
element in the list, we must first traverse the first four elements.

The name of the class containing the definition of the class list is list. The
definition of the class list, and the definitions of the functions to implement the
various operations on a list, are contained in the header file list. Therefore, to use list
in a program, the program must include the following statement:

#include <list>

Like other container classes, the class list contains several constructors. Thus, a
list object can be initialized in several ways when it is declared, as described in
Table 22-9.

2
2

Components of the STL | 1383

Table 22-5 described the operations that are common to all containers. Table 22-6
described the operations that are common to all sequence containers. In addition to
these common operations, Table 22-10 describes the operations that are specific to a
list container. The name of the function implementing the operation is shown in
bold.

In Table 22-10, listCont is a container of type list.

TABLE 22-9 Various Ways to Declare a list Object

Statement Description

list<elementType> listCont;
Creates the empty list
container listCont. (The
default constructor is invoked.)

list<elementType> listCont(otherList);

Creates the list container
listCont and initializes it to
the elements of otherList.
listCont and otherList
are of the same type.

list<elementType> listCont(size);

Creates the list container
listCont of size size.
listCont is initialized using
the default constructor.

list<elementType> listCont(n, elm);

Creates the list container
listCont of size n.
listCont is initialized using
n copies of the element elm.

list<elementType> listCont(beg, end);

Creates the list container
listCont. listCont is
initialized to the elements in the
range [beg, end), that is, all
of the elements in the range
beg...end-1. Both beg and
end are iterators.

1384 | Chapter 22: Standard Template Library (STL)

2
2

TABLE 22-10 Various Operations Specific to a list Container

Expression Description

listCont.assign(n, elem) Assigns n copies of elem.

listCont.assign(beg, end)

Assigns all of the elements in
the range beg...end-1.
Both beg and end are
iterators.

listCont.push_front(elem) Inserts elem at the
beginning of listCont.

listCont.pop_front() Removes the first element
from listCont.

listCont.front()
Returns the first element.
(Does not check whether the
container is empty.)

listCont.back()
Returns the last element.
(Does not check whether the
container is empty.)

listCont.remove(elem) Removes all of the elements
that are equal to elem.

listCont.remove_if(oper) Removes all of the elements
for which oper is true.

listCont.unique()

If the consecutive elements
in listCont have the
same value, removes the
duplicates.

listCont.unique(oper)

If the consecutive elements
in listCont have the
same value, removes the
duplicates, for which oper
is true.

Components of the STL | 1385

TABLE 22-10 Various Operations Specific to a list Container (continued)

Expression Description

listCont1.splice(pos, listCont2)

All of the elements of
listCont2 are moved
to listCont1 before
the position specified by
the iterator pos. After this
operation, listCont2 is
empty.

listCont1.splice(pos, listCont2, pos2)

All of the elements starting
at pos2 of listCont2
are moved to listCont1
before the position
specified by the iterator
pos.

listCont1.splice(pos, listCont2, beg, end)

All of the elements in the
range beg...end-1 of
listCont2 are moved
to listCont1 before
the position specified by
the iterator pos. Both
beg and end are
iterators.

listCont.sort()
The elements of
listCont are sorted.
The sort criteria is <.

listCont.sort(oper)

The elements of
listCont are sorted.
The sort criteria is
specified by oper.

listCont1.merge(listCont2)

Suppose that the elements
of listCont1 and
listCont2 are sorted.
This operation moves all of
the elements of
listCont2 into
listCont1. After this
operation, the elements in
listCont1 are sorted.
Moreover, after this
operation, listCont2 is
empty.

1386 | Chapter 22: Standard Template Library (STL)

Example 22-7 illustrates how to use the various operations on a list container.

EXAMPLE 22-7

//List Container Example

#include <iostream>
#include <list>
#include <iterator>
#include <algorithm>

using namespace std;

int main()
{

list<int> intList1, intList2, intList3, intList4; //Line 1

ostream_iterator<int> screen(cout, " "); //Line 2

intList1.push_back(23); //Line 3
intList1.push_back(58); //Line 4
intList1.push_back(58); //Line 5
intList1.push_back(58); //Line 6
intList1.push_back(36); //Line 7
intList1.push_back(15); //Line 8
intList1.push_back(93); //Line 9
intList1.push_back(98); //Line 10
intList1.push_back(58); //Line 11

2
2

TABLE 22-10 Various Operations Specific to a list Container (continued)

Expression Description

listCont1.merge(listCont2, oper)

Suppose that the elements
of listCont1 and
listCont2 are sorted
according to the sort
criteria oper. This
operation moves all of the
elements of listCont2
into listCont1. After
this operation, the
elements in listCont1
are sorted according to the
sort criteria oper.

listCont.reverse() The elements of
listCont are reversed.

Components of the STL | 1387

cout << "Line 12: intList1: "; //Line 12
copy(intList1.begin(), intList1.end(), screen); //Line 13
cout << endl; //Line 14

intList2 = intList1; //Line 15

cout << "Line 16: intList2: "; //Line 16
copy(intList2.begin(), intList2.end(), screen); //Line 17
cout << endl; //Line 18

intList1.unique(); //Line 19

cout << "Line 20: After removing the consecutive "
<< "duplicates," << endl
<< " intList1: "; //Line 20

copy(intList1.begin(), intList1.end(), screen); //Line 21
cout << endl; //Line 22

intList2.sort(); //Line 23

cout << "Line 24: After sorting, intList2: "; //Line 24
copy(intList2.begin(), intList2.end(), screen); //Line 25
cout << endl; //Line 26

intList3.push_back(13); //Line 27
intList3.push_back(23); //Line 28
intList3.push_back(25); //Line 29
intList3.push_back(136); //Line 30
intList3.push_back(198); //Line 31

cout << "Line 32: intList3: "; //Line 32
copy(intList3.begin(), intList3.end(), screen); //Line 33
cout << endl; //Line 34

intList4.push_back(-2); //Line 35
intList4.push_back(-7); //Line 36
intList4.push_back(-8); //Line 37

cout << "Line 38: intList4: "; //Line 38
copy(intList4.begin(), intList4.end(), screen); //Line 39
cout << endl; //Line 40

intList3.splice(intList3.begin(), intList4); //Line 41

cout << "Line 42: After moving the elements of "
<< "intList4 into intList3," << endl
<< " intList3: "; //Line 42

copy(intList3.begin(), intList3.end(), screen); //Line 43
cout << endl; //Line 44

intList3.sort(); //Line 45

1388 | Chapter 22: Standard Template Library (STL)

2
2

cout << "Line 46: After sorting, intList3: "; //Line 46
copy(intList3.begin(), intList3.end(), screen); //Line 47
cout << endl; //Line 48

intList2.merge(intList3); //Line 49

cout << "Line 50: After merging intList2 and "
<< "intList3, intList2: " << endl
<< " "; //Line 50

copy(intList2.begin(), intList2.end(), screen); //Line 51
cout << endl; //Line 52

intList2.unique(); //Line 53

cout << "Line 54: After removing the consecutive "
<< "duplicates, intList2: " << endl
<< " "; //Line 54

copy(intList2.begin(), intList2.end(), screen); //Line 55
cout << endl; //Line 56

return 0;
}

Sample Run:

Line 12: intList1: 23 58 58 58 36 15 93 98 58
Line 16: intList2: 23 58 58 58 36 15 93 98 58
Line 20: After removing the consecutive duplicates,

intList1: 23 58 36 15 93 98 58
Line 24: After sorting, intList2: 15 23 36 58 58 58 58 93 98
Line 32: intList3: 13 23 25 136 198
Line 38: intList4: -2 -7 -8
Line 42: After moving the elements of intList4 into intList3,

intList3: -2 -7 -8 13 23 25 136 198
Line 46: After sorting, intList3: -8 -7 -2 13 23 25 136 198
Line 50: After merging intList2 and intList3, intList2:

-8 -7 -2 13 15 23 23 25 36 58 58 58 58 93 98 136 198
Line 54: After removing the consecutive duplicates, intList2:

-8 -7 -2 13 15 23 25 36 58 93 98 136 198

For the most part, the output of the preceding program is straightforward. The statements
in Lines 3 through 11 insert the element numbers 23, 58, 58, 58, 36, 15, 93, 98, and
58 (in that order) into intList1. The statement in Line 15 copies the elements of
intList1 into intList2. After this statement executes, intList1 and intList2
are identical. The statement in Line 19 removes any consecutive occurrences of the same
elements. For example, the number 58 appears consecutively three times. The operation
unique removes two occurrences of 58. Note that this operation has no effect on the 58
that appears at the end of intList1.

The statement in Line 23 sorts intList2. The statements in Lines 27 through 31 insert 13,
23, 25, 136, and 198 into intList3. Similarly, the statements in Lines 35 through 37
insert -2, -7, and -8 into intList4. The statement in Line 41 uses the operation splice

Components of the STL | 1389

to move the elements of intList4 to the beginning of intList3. After the splice
operation, intList4 is empty. The statement in Line 45 sorts intList3, and the
statement in Line 49 merges intList2 and intList3 into intList2. After the merge
operation, intList3 is empty. The meanings of the remaining statements are similar.

Examples 22-5 through 22-7 further clarify that iterators are important to efficiently
process the elements of a container. Before describing associative containers, let us discuss
iterators in some detail.

Iterators
Iterators are similar to pointers. In general, an iterator points to the elements of a
container (sequence or associative). Thus, with the help of iterators, we can successively
access each element of a container.

The two most common operations on iterators are ++ (the increment operator) and * (the
dereferencing operator). Suppose that cntItr is an iterator into a container. The statement:

++cntItr;

advances cntItr so that it points to the next element in the container. Similarly, the
statement:

*cntItr;

gives access to the element of the container pointed to by cntItr.

Types of Iterators
There are five types of iterators:

• Input iterators

• Output iterators

• Forward iterators

• Bidirectional iterators

• Random access iterators

The following sections describe these iterators.

INPUT ITERATORS

Input iterators, with read access, step forward element by element; consequently, they
return the values element by element. These iterators are provided for reading data from
an input stream.

Suppose inputIterator is an input iterator. Table 22-11 describes the operations on
inputIterator.

1390 | Chapter 22: Standard Template Library (STL)

OUTPUT ITERATORS

Output iterators, with write access, step forward element by element. These iterators are
provided for writing data to an output stream. They are also used as inserters.

Suppose outputIterator is an output iterator. Table 22-12 describes the operations
on outputIterator.

Output iterators cannot be used to iterate over a range twice. Thus, if we write data at

the same position twice, there is no guarantee that the new value will replace the old

value.

2
2

TABLE 22-12 Operations on an Output Iterator

Expression Effect

*outputIterator = value;
Writes the value at the position specified by
outputIterator.

++outputIterator
Moves forward, returns the new position
(pre-increment).

outputIterator++
Moves forward, returns the old position
(post-increment).

TABLE 22-11 Operations on an Input Iterator

Expression Effect

*inputIterator
Gives access to the element to which
inputIterator points.

inputIterator->member Gives access to the member of the element.

++inputIterator
Moves forward, returns the new position
(pre-increment).

inputIterator++
Moves forward, returns the old position
(post-increment).

inputIt1 == inputIt2
Returns true if the two iterators are the same, and
false otherwise.

inputIt1 != inputIt2
Returns true if the two iterators are not the same,
and false otherwise.

Iterators | 1391

FORWARD ITERATORS

Forward iterators combine all of the functionality of input iterators and almost all of
the functionality of output iterators. Suppose forwardIterator is a forward iterator.
Table 22-13 describes the operations on forwardIterator.

A forward iterator can refer to the same element in the same collection and process the

same element more than once.

BIDIRECTIONAL ITERATORS

Bidirectional iterators are forward iterators that can also iterate backward over the elements.
Suppose biDirectionalIterator is a bidirectional iterator. The operations defined
for forward iterators (Table 22-13) are also applicable to bidirectional iterators. To step
backward, the decrement operations are also defined for biDirectionalIterator.
Table 22-14 shows additional operations on a bidirectional iterator.

TABLE 22-13 Operations on a Forward Iterator

Expression Effect

*forwardIterator
Gives access to the element to which
forwardIterator points.

forwardIterator->member Gives access to the member of the element.

++forwardIterator
Moves forward, returns the new position
(pre-increment).

forwardIterator++
Moves forward, returns the old position
(post-increment).

forwardIt1 == forwardIt2
Returns true if the two iterators are the same,
and false otherwise.

forwardIt1 != forwardIt2
Returns true if the two iterators are not the
same, and false otherwise.

forwardIt1 = forwardIt2 Assignment

1392 | Chapter 22: Standard Template Library (STL)

Bidirectional iterators can be used with containers of type vector, deque, list,

set, multiset, map, and multimap.

RANDOM ACCESS ITERATORS

Random access iterators are bidirectional iterators that can randomly process the elements
of a container. These iterators can be used with containers of types vector, deque, and
string, as well as arrays. The operations defined for bidirectional iterators (for
example, Tables 22-13 and 22-14) are also applicable to random access iterators. Table
22-15 describes the additional operations that are defined for random access iterators.
Suppose rAccessIterator is a random access iterator. 2

2

TABLE 22-14 Additional Operations on a Bidirectional Iterator

Expression Effect

--biDirectionalIterator
Moves backward, returns the new position
(pre-decrement).

biDirectionalIterator--
Moves backward, returns the old position
(post-decrement).

TABLE 22-15 Additional Operations on a Random Access Iterator

Expression Effect

rAccessIterator[n] Accesses the nth element.

rAccessIterator += n
Moves rAccessIterator forward n
elements if n >= 0 and backward if n < 0.

rAccessIterator -= n
Moves rAccessIterator backward n
elements if n >= 0 and forward if n < 0.

rAccessIterator + n Returns the iterator of the next nth element.

n + rAccessIterator Returns the iterator of the next nth element.

rAccessIterator - n Returns the iterator of the previous nth element.

rAccessIt1 - rAccessIt2
Returns the distance between the iterators
rAccessIt1 and rAccessIt2.

Iterators | 1393

Figure 22-1 shows the iterator hierarchy.

Now that you know the different types of iterators, next we describe how to declare an
iterator into a container.

typedef ITERATOR

Every container (sequence or associative) contains a typedef iterator. Thus, an iterator
into a container is declared using the typedef iterator. For example, the statement:

vector<int>::iterator intVecIter;

declares intVecIter to be an iterator into a vector container of type int.

Because iterator is a typedef defined inside a container (that is, a class) such as
vector, we must use the appropriate container name, container element type, and the
scope resolution operator to use the typedef iterator.

TABLE 22-15 Additional Operations on a Random Access Iterator (continued)

Expression Effect

rAccessIt1 < rAccessIt2
Returns true if rAccessIt1 is before
rAccessIt2, and false otherwise.

rAccessIt1 <= rAccessIt2
Returns true if rAccessIt1 is before or
equal to rAccessIt2, and false otherwise.

rAccessIt1 > rAccessIt2
Returns true if rAccessIt1 is after
rAccessIt2, and false otherwise.

rAccessIt1 >= rAccessIt2
Returns true if rAccessIt1 is after or equal
to rAccessIt2, and false otherwise.

Input iterators Output iterators

Forward iterators

Bidirectional iterators

Random access iterators

FIGURE 22-1 Iterator hierarchy

1394 | Chapter 22: Standard Template Library (STL)

typedef CONST_ITERATOR

Because an iterator works like a pointer, with the help of an iterator into a container and
the dereferencing operator, *, we can modify the elements of the container. However, if
a container is declared as const, then we must prevent the iterator from modifying the
elements of the container, especially accidentally. To handle this situation, every con-
tainer contains another typedef const_iterator. For example, the statement:

vector<int>::const_iterator intConstVecIt;

declares intConstVecIt to be an iterator into a vector container whose elements are
of type int. The iterator intConstVecIt is used to process the elements of those
vector containers that are declared as constant vector containers of type vector<int>.

An iterator of type const_iterator is a read-only iterator.

typedef REVERSE_ITERATOR

Every container also contains the typedef reverse_iterator. An iterator of this
type is used to iterate through the elements of a container in reverse.

typedef CONST_REVERSE_ITERATOR

An iterator of this type is a read-only iterator and is used to iterate through the elements
of a container in reverse. It is required if the container is declared as const, and we need
to iterate through the elements of the container in reverse.

In addition to the previous four typedefs, several other typedefs are common to all
containers and are described in Table 22-16.

2
2

TABLE 22-16 Various typedefs Common to All Containers

typedef Effect

difference_type
The type of result from subtracting two iterators referring to
the same container.

pointer A pointer to the type of elements stored in the container.

reference A reference to the type of elements stored in the container.

const_reference
A constant reference to the type of elements stored in the
container. A constant reference is read-only.

size_type

The type used to count the elements in a container. This type
is also used to index through sequence containers, except
list containers.

value_type The type of container elements.

Iterators | 1395

Stream Iterators
Another useful set of iterators is that of stream iterators—istream iterators and
ostream iterators. This section describes both types of iterators.

istream_iterator

The istream iterator is used to input data into a program from an input stream. The
class istream_iterator contains the definition of an input stream iterator. The
general syntax to use an istream iterator is:

istream_iterator<Type> isIdentifier(istream&);

in which Type is either a built-in type or a user-defined class type, for which an input
iterator is defined. The identifier isIdentifier is initialized using the constructor
whose argument is either an istream class object, such as cin, or any publicly defined
istream subtype, such as ifstream.

ostream_iterator

The ostream iterators are used to output data from a program into an output stream.
These iterators were defined earlier in this chapter. We review them here for the sake of
completeness.

The class ostream_iterator contains the definition of an output stream iterator.
The general syntax to use an ostream iterator is:

ostream_iterator<Type> osIdentifier(ostream&);

or:

ostream_iterator<Type> osIdentifier(ostream&, char* deLimit);

in which Type is either a built-in type or a user-defined class type, for which an output
iterator is defined. The identifier osIdentifier is initialized using the constructor
whose argument is either an ostream class object, such as cout, or any publicly defined
ostream subtype, such as ofstream. In the second form used to declare an ostream
iterator, by using the second argument (deLimit) of the initializing constructor, we can
specify a character separating the output.

Associative Containers
This section discusses associative containers. Elements in an associative container are
automatically sorted according to some ordering criteria. The default ordering criterion
is the relational operator < (less than). Users also have the option of specifying their own
ordering criterion.

1396 | Chapter 22: Standard Template Library (STL)

Because elements in an associative container are sorted automatically, when a new
element is inserted into the container, it is inserted at the proper place. A convenient
and fast way to implement this type of data structure is to use a binary search tree. This is,
in fact, how associative containers are implemented. Thus, every element in the container
has a parent node (except the root node) and, at most, two children. For each element,
the key in the parent node is larger than the key in the left child and smaller than the key
in the right child.

The predefined associative containers in the STL are:

• Sets

• Multisets

• Maps

• Multimaps

This book discusses only the associative containers set and multiset.

Associative Containers: set and multiset
As described earlier, both the containers set and multiset automatically sort their
elements according to some sort criteria. The default sorting criterion is the relational
operator < (less than); that is, the elements are arranged in ascending order. The user can
also specify other sorting criteria. For user-defined data types, such as classes, the relational
operators must be overloaded properly.

The only difference between the containers set and multiset is that the container
multiset allows duplicates; the container set does not.

The name of the class defining the container set is set; the name of the class defining
the container multiset is multiset. The name of the header file containing the
definitions of the classes set and multiset, and the definitions of the functions to
implement the various operations on these containers, is set. Thus, to use any of these
containers, the program must include the following statement:

#include <set>

Declaring set or multiset Associative Containers
The classes set and multiset contain several constructors to declare and initialize
containers of these types. This section discusses the various ways that these types of
associative containers are declared and initialized. Table 22-17 describes how a set/
multiset container of a specific type can be declared and initialized.

2
2

Associative Containers | 1397

TABLE 22-17 Various Ways to Declare a Set/Multiset Container

Statement Effect

ctType<elmType> ct;
Creates an empty set/multiset
container, ct. The sort
criterion is <.

ctType<elmType, sortOp> ct;

Creates an empty set/multiset
container, ct. The sort
criterion is specified by
sortOp.

ctType<elmType> ct(otherCt);

Creates a set/multiset
container, ct. The elements of
otherCt are copied into ct.
The sort criterion is <. Both ct
and otherCt are of the same
type.

ctType<elmType, sortOp> ct(otherCt);

Creates a set/multiset
container, ct. The elements of
otherCt are copied into ct.
The sort criterion is specified
by sortOp. Both ct and
otherCt are of the same
type. Note that the sort criteria
of ct and otherCt must be
the same.

ctType<elmType> ct(beg, end);

Creates a set/multiset
container, ct. The elements
starting at the position beg
until the position end-1 are
copied into ct. Both beg and
end are iterators.

ctType<elmType, sortOp> ct(beg, end);

Creates a set/multiset
container, ct. The elements
starting at the position beg
until the position end-1 are
copied into ct. Both beg and
end are iterators. The sort
criterion is specified by
sortOp.

1398 | Chapter 22: Standard Template Library (STL)

If you want to use sort criteria other than the default, you must specify this option when
the container is declared. For example, consider the following statements:

set<int> intSet; //Line 1
set<int, greater<int> > otherIntSet; //Line 2
multiset<string> stringMultiSet; //Line 3
multiset<string, greater<string> > otherStringMultiSet; //Line 4

The statement in Line 1 declares intSet to be an empty set container, the element
type is int, and the sort criterion is the default sort criterion. The statement in Line 2
declares otherIntSet to be an empty set container, the element type is int, and
the sort criterion is greater-than. That is, the elements in the container otherIntSet
will be arranged in descending order. The statements in Lines 3 and 4 have similar
conventions.

The statements in Lines 2 and 4 illustrate how to specify the descending sorting
criterion.

In the statements in Lines 2 and 4, note the space between the two > symbols—that is,

the space between greater<int> and >. This space is important because >> is
also a shift operator in C++.

Item Insertion and Deletion from set /multiset
Suppose that ct is either of type set or multiset. Table 22-18 describes the operations
that can be used to insert or delete elements from a set. It also illustrates how to use these
operations. The name of the function is shown in bold.

2
2

TABLE 22-18 Operations to Insert or Delete Elements from a Set

Expression Effect

ct.insert(elem)

Inserts a copy of elem into ct. In the case of
sets, it also returns whether the insert operation
succeeded.

ct.insert(position, elem)

Inserts a copy of elem into ct. The position
where elem is inserted is returned. The first
parameter, position, hints where to begin the
search for insert. The parameter position
is an iterator.

ct.insert(beg, end);

Inserts a copy of all of the elements into ct
starting at the position beg until end-1. Both
beg and end are iterators.

Associative Containers | 1399

Example 22-8 shows the various operations on a set/multiset container.

EXAMPLE 22-8

#include <iostream>
#include <set>
#include <string>
#include <iterator>
#include <algorithm>

using namespace std;

int main()
{

set<int> intSet; //Line 1
set<int, greater<int> > intSetA; //Line 2

set<int, greater<int> >::iterator intGtIt; //Line 3

ostream_iterator<int> screen(cout, " "); //Line 4

intSet.insert(16); //Line 5
intSet.insert(8); //Line 6
intSet.insert(20); //Line 7
intSet.insert(3); //Line 8

cout << "Line 9: intSet: "; //Line 9
copy(intSet.begin(), intSet.end(), screen); //Line 10
cout << endl; //Line 11

intSetA.insert(36); //Line 12
intSetA.insert(84); //Line 13

TABLE 22-18 Operations to Insert or Delete Elements from a Set (continued)

Expression Effect

ct.erase(elem);
Deletes all of the elements with the value elem.
The number of deleted elements is returned.

ct.erase(position);
Deletes the element at the position specified by
the iterator position. No value is returned.

ct.erase(beg, end);

Deletes all of the elements starting at the
position beg until the position end-1. Both
beg and end are iterators. No value is returned.

ct.clear();
Deletes all of the elements from the container ct.
After this operation, the container ct is empty.

1400 | Chapter 22: Standard Template Library (STL)

intSetA.insert(30); //Line 14
intSetA.insert(39); //Line 15
intSetA.insert(59); //Line 16
intSetA.insert(238); //Line 17
intSetA.insert(156); //Line 18

cout << "Line 19: intSetA: "; //Line 19
copy(intSetA.begin(), intSetA.end(), screen); //Line 20
cout << endl; //Line 21

intSetA.erase(59); //Line 22

cout << "Line 23: After removing 59, intSetA: "; //Line 23
copy(intSetA.begin(), intSetA.end(), screen); //Line 24
cout << endl; //Line 25

intGtIt = intSetA.begin(); //Line 26
++intGtIt; //Line 27
++intGtIt; //Line 28
++intGtIt; //Line 29

intSetA.erase(intGtIt); //Line 30

cout << "Line 31: After removing the fourth "
<< "element, " << endl
<< " intSetA: "; //Line 31

copy(intSetA.begin(), intSetA.end(), screen); //Line 32
cout << endl; //Line 33

set<int, greater<int> > intSetB(intSetA); //Line 34

cout << "Line 35: intSetB: "; //Line 35
copy(intSetB.begin(), intSetB.end(), screen); //Line 36
cout << endl; //Line 37

intSetB.clear(); //Line 38

cout << "Line 39: After removing all elements, "
<< endl << " intSetB: "; //Line 39

copy(intSetB.begin(), intSetB.end(), screen); //Line 40
cout << endl; //Line 41

multiset<string, greater<string> > namesMultiSet; //Line 42
multiset<string, greater<string> >::iterator iter; //Line 43

ostream_iterator<string> pScreen(cout, " "); //Line 44

namesMultiSet.insert("Donny"); //Line 45
namesMultiSet.insert("Zippy"); //Line 46
namesMultiSet.insert("Goofy"); //Line 47
namesMultiSet.insert("Hungry"); //Line 48

2
2

Associative Containers | 1401

namesMultiSet.insert("Goofy"); //Line 49
namesMultiSet.insert("Donny"); //Line 50

cout << "Line 51: namesMultiSet: "; //Line 51
copy(namesMultiSet.begin(), namesMultiSet.end(),

pScreen); //Line 52
cout << endl; //Line 53

return 0;
}

Sample Run:

Line 9: intSet: 3 8 16 20
Line 19: intSetA: 238 156 84 59 39 36 30
Line 23: After removing 59, intSetA: 238 156 84 39 36 30
Line 31: After removing the fourth element,

intSetA: 238 156 84 36 30
Line 35: intSetB: 238 156 84 36 30
Line 39: After removing all the elements,

intSetB:
Line 51: namesMultiSet: Zippy Hungry Goofy Goofy Donny Donny

The statement in Line 1 declares intSet to be a set container. The statement in Line 2
declares intSetA to be a set container whose elements are to be arranged in descending
order. The statement in Line 3 declares intGtIt to be a set iterator. The iterator
intGtIt can process the elements of any set container whose elements are of type
int and are arranged in descending order. The statement in Line 4 declares screen to
be an ostream iterator that outputs the elements of any container whose elements are of
type int.

The statements in Lines 5 through 8 insert 16, 8, 20, and 3 into intSet, and the
statement in Line 10 outputs the elements of intSet. In the output, see the line marked
Line 9; it contains the output of the statements in Lines 9 through 11.

The statements in Lines 12 through 18 insert 36, 84, 30, 39, 59, 238, and 156 into
intSetA, and the statement in Line 20 outputs the elements of intSetA. In the output,
see the line marked Line 19. It contains the output of the statements in Lines 19 through
21. Notice that the elements of intSetA appear in descending order.

The statement in Line 22 removes 59 from intSetA. After the statement in Line 26
executes, intGtIt points to the first element of intSetA. The statement in Line 27
advances intGtIt to the next element of intSetA. After the statement in Line 29
executes, intGtIt points to the fourth element of intSetA. The statement in Line 30
removes the element of intSetA pointed to by intGtIt. The meanings of the state-
ments in Lines 34 through 41 are similar.

The statement in Line 42 declares namesMultiSet to be a container of type multiset.
The elements in namesMultiSet are of type string and are arranged in descending
order. The statement in Line 43 declares iter to be a multiset iterator.

1402 | Chapter 22: Standard Template Library (STL)

The statements in Lines 45 through 50 insert Donny, Zippy, Goofy, Hungry, Goofy,
and Donny into namesMultiSet. The statement in Line 52 outputs the elements of
namesMultiSet.

Container Adapters
The previous sections discussed several types of containers. In addition to the containers
that work in a general framework, the STL provides containers to accommodate special
situations. These containers, called container adapters, are adapted standard STL con-
tainers to work in a specific environment. The three container adapters are:

• Stacks

• Queues

• Priority queues

Container adapters do not support any type of iterator. That is, iterators cannot be used
with these types of containers. The next two sections describe two types of container
adapters: stack and queue.

Stack
Chapter 18 discussed the data structure stack in detail. Because a stack is an important
data structure, the STL provides a class to implement a stack in a program. The name of
the class defining a stack is stack; the name of the header file containing the definition of
the class stack is stack. Table 22-19 defines the various operations supported by the
stack container class.

2
2

TABLE 22-19 Various Operations on a stack Object

Operation Description

size Returns the actual number of elements in the stack.

empty Returns true if the stack is empty, false otherwise.

push(item) Inserts a copy of item onto the stack.

top
Returns the top element of the stack but does not remove the element
from the stack. This operation is implemented as a value-returning
function.

pop Removes the top element of the stack.

Container Adapters | 1403

In addition to the operations size, empty, push, top, and pop, the stack container
class provides relational operators to compare two stacks. For example, the relational
operator == can be used to determine whether two stacks are identical.

The program in Example 22-9 illustrates how to use the stack container class.

EXAMPLE 22-9

#include <iostream>
#include <stack>

using namespace std;

int main()
{

stack<int> intStack; //Line 1

intStack.push(16); //Line 2
intStack.push(8); //Line 3
intStack.push(20); //Line 4
intStack.push(3); //Line 5

cout << "Line 6: The top element of intStack: "
<< intStack.top() << endl; //Line 6

intStack.pop(); //Line 7

cout << "Line 8: After the pop operation, "
<< "the top element of intStack: "
<< intStack.top() << endl; //Line 8

cout << "Line 9: intStack elements: "; //Line 9

while (!intStack.empty()) //Line 10
{

cout << intStack.top() << " "; //Line 11
intStack.pop(); //Line 12

}

cout << endl; //Line 13

return 0;
}

Sample Run:

Line 6: The top element of intStack: 3
Line 8: After the pop operation, the top element of intStack: 20
Line 9: intStack elements: 20 8 16

The preceding output is self-explanatory. The details are left as an exercise for you.

1404 | Chapter 22: Standard Template Library (STL)

Queue
Chapter 18 discussed the data structure queue in detail. Because a queue is an important
data structure, the STL provides a class to implement queues in a program. The name of
the class defining the queue is queue, and the name of the header file containing the
definition of the class queue is queue. Table 22-20 defines the various operations
supported by the queue container class.

In addition to the operations size, empty, push, front, back, and pop, the queue
container class provides relational operators to compare two stacks. For example, the
relational operator == can be used to determine whether two stacks are identical.

The program in Example 22-10 illustrates how to use the queue container class.

EXAMPLE 22-10

#include <iostream>
#include <queue>

using namespace std;

int main()
{

queue<int> intQueue; //Line 1

intQueue.push(26); //Line 2
intQueue.push(18); //Line 3

2
2

TABLE 22-20 Various Operations on a queue Object

Operation Description

size Returns the actual number of elements in the queue.

empty Returns true if the queue is empty, false otherwise.

push(item) Inserts a copy of item into the queue.

front
Returns the next—that is, first—element in the queue, but does not
remove the element from the queue. This operation is implemented as
a value-returning function.

back
Returns the last element in the queue but does not remove the
element from the queue. This operation is implemented as a
value-returning function.

pop Removes the next element in the queue.

Container Adapters | 1405

intQueue.push(50); //Line 4
intQueue.push(33); //Line 5

cout << "Line 6: The front element of intQueue: "
<< intQueue.front() << endl; //Line 6

cout << "Line 7: The last element of intQueue: "
<< intQueue.back() << endl; //Line 7

intQueue.pop(); //Line 8

cout << "Line 9: After the pop operation, "
<< "the front element of intQueue: "
<< intQueue.front() << endl; //Line 9

cout << "Line 10: intQueue elements: "; //Line 10

while (!intQueue.empty()) //Line 11
{

cout << intQueue.front() << " "; //Line 12
intQueue.pop(); //Line 13

}

cout << endl; //Line 14

return 0;
}

Sample Run:

Line 6: The front element of intQueue: 26
Line 7: The last element of intQueue: 33
Line 9: After the pop operation, the front element of intQueue: 18
Line 10: intQueue elements: 18 50 33

The preceding output is self-explanatory. The details are left as an exercise for you.

Containers, Associated Header Files,
and Iterator Support
The previous sections discussed various types of containers. Recall that every container is
a class. The definition of the class implementing a specific container is contained in the
header file. Table 22-21 describes the container, its associated header file, and the type of
iterator supported by the container.

1406 | Chapter 22: Standard Template Library (STL)

Algorithms
Several operations can be defined for a container. Some of the operations are very specific
to a container and, therefore, are provided as part of the container definition (that is,
as member functions of the class implementing the container). However, several
operations—such as find, sort, and merge—are common to all containers. These
operations are provided as generic algorithms and can be applied to all containers, as well
as the built-in array type. The algorithms are bound to a particular container through an
iterator pair.

The generic algorithms are contained in the header file algorithm. This section
describes several of these algorithms and shows how to use them in a program. Because
algorithms are implemented with the help of functions, in this section, the terms function
and algorithm mean the same thing.

2
2

TABLE 22-21 Containers, Their Associated Header Files, and the Type of Iterator Supported
by Each Container

Sequence containers Associated header file Type of iterator support

vector <vector> Random access

deque <deque> Random access

list <list> Bidirectional

Associative containers Associated header file Type of iterator support

map <map> Bidirectional

multimap <map> Bidirectional

set <set> Bidirectional

multiset <set> Bidirectional

Adapters Associated header file Type of iterator support

stack <stack> No iterator support

queue <queue> No iterator support

priority queue <queue> No iterator support

Algorithms | 1407

STL Algorithm Classification
In earlier sections, you applied various operations on a sequence container, such as
clear, sort, merge, and so on. However, those algorithms were tied to a specific
container in terms of the members of a specific class. All of those algorithms and a few
others are also available in more general forms, called generic algorithms, and can be
applied in a variety of situations. This section discusses some of these generic algorithms.

The STL contains algorithms that look only at the elements in a container and that move
the elements of a container. It also has algorithms that can perform specific calculations,
such as finding the sum of the elements of a numeric container. In addition, the STL
contains algorithms for basic set theory operations, such as set union and intersection. You
have already encountered some of the generic algorithms, such as the copy algorithm.
This algorithm copies the elements from a given range of elements to another place, such
as another container or the screen. The algorithms in the STL can be classified into the
following categories:

• Nonmodifying algorithms

• Modifying algorithms

• Numeric algorithms

• Heap algorithms

The next four sections describe these algorithms. Most of the generic algorithms are
contained in the header file algorithm. Certain algorithms, such as the numeric
algorithms, are contained in the header file numeric.

NONMODIFYING ALGORITHMS

Nonmodifying algorithms do not modify the elements of the container; they merely
investigate the elements. Table 22-22 lists the nonmodifying algorithms.

TABLE 22-22 Nonmodifying Algorithms

adjacent_find find_end max

binary_search find_first_of max_element

count find_if min

count_if for_each min_element

equal includes search

equal_range lower_bound search_n

find mismatch upper_bound

1408 | Chapter 22: Standard Template Library (STL)

MODIFYING ALGORITHMS

Modifying algorithms, as the name implies, modify the elements of the container by
rearranging, removing, or changing the values of the elements. Table 22-23 lists the
modifying algorithms.

Modifying algorithms that change the order of the elements, not their values, are
also called mutating algorithms. For example, next_permutation, partition,
prev_permutation, random_shuffle, reverse, reverse_copy, rotate,
rotate_copy, and stable_partition are mutating algorithms.

NUMERIC ALGORITHMS

Numeric algorithms are designed to perform numeric calculations on the elements of a
container. Table 22-24 lists these algorithms.

2
2

TABLE 22-23 Modifying Algorithms

copy prev_permutation rotate_copy

copy_backward random_shuffle set_difference

fill remove set_intersection

fill_n remove_copy set_symmetric_difference

generate remove_copy_if set_union

generate_n remove_if sort

inplace_merge replace stable_partition

iter_swap replace_copy stable_sort

merge replace_copy_if swap

next_permutation replace_if swap_ranges

nth_element reverse transform

partial_sort reverse_copy unique

partial_sort_copy rotate unique_copy

partition

Algorithms | 1409

HEAP ALGORITHMS

A special type of sorting algorithm, called the heap sort algorithm, is used to sort the data
stored in an array. In the heap sort algorithm, the array containing the data is viewed as a
binary tree. Thus, a heap is a form of binary tree represented as an array. In a heap, the
first element is the largest element, and the element at the ith position (if it exists) is larger
than the elements at positions 2i and 2i + 1 (if they exist). In the heap sort algorithm, first
the array containing the data is converted into a heap, and then the array is sorted using a
special type of sorting algorithm. Table 22-25 lists the basic algorithms required by the
heap sort algorithm.

Most of the STL algorithms are explained later in this chapter. For the most part, the
function prototypes of these algorithms are given along with a brief explanation of what
each algorithm does. You then learn how to use these algorithms with the help of a C++
program. The STL algorithms are very powerful and accomplish amazing results. Further-
more, they have been made general, in the sense that other than using the natural
operations to manipulate containers, they allow the user to specify the manipulating criteria.
For example, the natural sorting order is ascending, but the user can specify criteria to sort
the container in descending order. Thus, every algorithm is typically implemented with the
help of overloaded functions. Before starting to describe these algorithms, we discuss
function objects, which allow the user to specify the manipulating criteria.

Function Objects
To make the generic algorithms flexible, the STL usually provides two forms of an
algorithm using the mechanism of function overloading. The first form of an algorithm
uses the natural operation to accomplish this goal. In the second form, the user can specify
criteria based on which algorithm processes the elements. For example, the algorithm
adjacent_find searches the container and returns the position of the first two elements
that are equal. In the second form of this algorithm, we can specify criteria (say, less than) to
look for the first two elements, such that the second element is less than the first element.

TABLE 22-24 Numeric Algorithms

accumulate inner_product

adjacent_difference partial_sum

TABLE 22-25 Heap Algorithms

make_heap push_heap

pop_heap sort_heap

1410 | Chapter 22: Standard Template Library (STL)

2
2

These criteria are passed as a function object. More formally, a function object contains a
function that can be treated as a function using the function call operator, (). In fact, a
function object is a class template that overloads the function call operator, operator().

In addition to allowing you to create your own function objects, the STL provides
arithmetic, relational, and logical function objects, which are described in Table 22-26.
The STL’s function objects are contained in the header file functional.

Example 22-11 shows how to use the STL’s function objects.

EXAMPLE 22-11

#include <iostream>
#include <string>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <vector>
#include <functional>

TABLE 22-26 Arithmetic STL Function Objects

Function object name Description

plus<Type>
plus<int> addNum;
int sum = addNum(12, 35);
The value of sum is 47.

minus<Type>
minus<int> subtractNum;
int difference = subtractNum(56, 35);
The value of difference is 21.

multiplies<Type>
multiplies<int> multiplyNum;
int product = multiplyNum(6, 3);
The value of product is 18.

divides<Type>
divides<int> divideNum;
int quotient = divideNum(16, 3);
The value of quotient is 5.

modulus<Type>
modulus<int> remainder;
int rem = remainder(16, 7);
The value of rem is 2.

negate<Type>
negate<int> num;
int opposite = num(-25);
The value of opposite is 25.

Algorithms | 1411

using namespace std;

int funcAdd(plus<int>, int, int);

int main()
{

plus<int> addNum; //Line 1
int num = addNum(34, 56); //Line 2

cout << "Line 3: num = " << num << endl; //Line 3

plus<string> joinString; //Line 4

string str1 = "Hello "; //Line 5
string str2 = "There"; //Line 6

string str = joinString(str1, str2); //Line 7

cout << "Line 8: str = " << str << endl; //Line 8

cout << "Line 9: Sum of 34 and 26 = "
<< funcAdd(addNum, 34, 26) << endl; //Line 9

int list[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 10

vector<int> intList(list, list + 8); //Line 11
ostream_iterator<int> screenOut(cout, " "); //Line 12

cout << "Line 13: intList: "; //Line 13
copy(intList.begin(), intList.end(), screenOut); //Line 14
cout << endl; //Line 15

//accumulate function
int sum = accumulate(intList.begin(),

intList.end(), 0); //Line 16

cout << "Line 17: Sum of the elements of "
<< "intList = " << sum << endl; //Line 17

int product = accumulate(intList.begin(),
intList.end(),
1, multiplies<int>()); //Line 18

cout << "Line 19: Product of the elements of "
<< "intList = " << product << endl; //Line 19

return 0;
}

1412 | Chapter 22: Standard Template Library (STL)

int funcAdd(plus<int> sum, int x, int y)
{

return sum(x, y);
}

Sample Run:

Line 3: num = 90
Line 8: str = Hello There
Line 9: Sum of 34 and 26 = 60
Line 13: intList: 1 2 3 4 5 6 7 8
Line 17: Sum of the elements of intList = 36
Line 19: Product of the elements of intList = 40320

Table 22-27 describes the relational STL function objects.

2
2

TABLE 22-27 Relational STL Function Objects

Function object name Description

equal_to<Type>

Returns true if the two arguments are equal, and
false otherwise. For example,
equal_to<int> compare;
bool isEqual = compare(5, 5);.
The value of isEqual is true.

not_equal_to<Type>

Returns true if the two arguments are not equal, and
false otherwise. For example,
not_equal_to<int> compare;
bool isNotEqual = compare(5, 6);.
The value of isNotEqual is true.

greater<Type>

Returns true if the first argument is greater than the
second argument, and false otherwise. For example,
greater<int> compare;
bool isGreater = compare(8, 5);.
The value of isGreater is true.

greater_equal<Type>

Returns true if the first argument is greater than or
equal to the second argument, and false otherwise.
For example,
greater_equal<int> compare;
bool isGreaterEqual = compare(8, 5);.
The value of isGreaterEqual is true.

Algorithms | 1413

The STL relational function objects can also be applied to containers, as shown next. The
STL algorithm adjacent_find searches a container and returns the position in the
container where the two elements are equal. This algorithm has a second form that allows
the user to specify the comparison criteria. For example, consider the following vector,
vecList:

vecList = {2, 3, 4, 5, 1, 7, 8, 9};

The elements of vecList are supposed to be in ascending order. To see if the elements
are out of order, we can use the algorithm adjacent_find as follows:

intItr = adjacent_find(vecList.begin(), vecList.end(),
greater<int>());

in which intItr is an iterator of the vector type. The function adjacent_find starts
at the position vecList.begin()—that is, at the first element of vecList—and looks
for the first set of consecutive elements such that the first element is greater than the
second. The function returns a pointer to element 5, which is stored in intItr.

The program in Example 22-12 further illustrates how to use the relational function objects.

EXAMPLE 22-12

This example shows how the relational STL function objects work.

#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
#include <vector>
#include <functional>

TABLE 22-27 Relational STL Function Objects (continued)

Function object name Description

less<Type>

Returns true if the first argument is less than the
second argument, and false otherwise. For example,
less<int> compare;
bool isLess = compare(3, 5);.
The value of isLess is true.

less_equal<Type>

Returns true if the first argument is less than or
equal to the second argument, and false otherwise.
For example,
less_equal<int> compare;
bool isLessEqual = compare(8, 15);.
The value of isLessEqual is true.

1414 | Chapter 22: Standard Template Library (STL)

using namespace std;

int main()
{

equal_to<int> compare; //Line 1
bool isEqual = compare(6, 6); //Line 2

cout << "Line 3: isEqual = " << isEqual << endl; //Line 3

greater<string> greaterStr; //Line 4

string str1 = "Hello"; //Line 5
string str2 = "There"; //Line 6

if (greaterStr(str1, str2)) //Line 7
cout << "Line 8: \"" << str1 << "\" is "

<< "greater than \"" << str2 << "\""
<< endl; //Line 8

else //Line 9
cout << "Line 10: \"" << str1 << "\" is "

<< "not greater than \"" << str2
<< "\"" << endl; //Line 10

int temp[8] = {2, 3, 4, 5, 1, 7, 8, 9}; //Line 11

vector<int> vecList(temp, temp + 8); //Line 12
vector<int>::iterator intItr1, intItr2; //Line 13
ostream_iterator<int> screen(cout, " "); //Line 14

cout << "Line 15: vecList: "; //Line 15
copy(vecList.begin(), vecList.end(), screen); //Line 16
cout << endl; //Line 17

intItr1 = adjacent_find(vecList.begin(),
vecList.end(),
greater<int>()); //Line 18

intItr2 = intItr1 + 1; //Line 19

cout << "Line 20: In vecList, the first set of "
<< "out-of-order elements is: " << *intItr1
<< " " << *intItr2 << endl; //Line 20

cout << "Line 21: In vecList, the first out-of-"
<< "order element is at position "
<< vecList.end() - intItr2 << endl; //Line 21

return 0;
}

2
2

Algorithms | 1415

Sample Run:

Line 3: isEqual = 1
Line 10: "Hello" is not greater than "There"
Line 15: vecList: 2 3 4 5 1 7 8 9
Line 20: In vecList, the first set of out-of-order elements is: 5 1
Line 21: In vecList, the first out-of-order element is at position 4

Table 22-28 describes the logical STL function objects.

PREDICATES

Predicates are special types of function objects that return Boolean values. There are two
types of predicates: unary and binary. Unary predicates check a specific property for a
single argument; binary predicates check a specific property for a pair—that is, two
arguments. Predicates are typically used to specify searching or sorting criteria. In the
STL, a predicate must always return the same result for the same value. Therefore, the
functions that modify their internal states cannot be considered predicates.

Insert Iterator
Consider the following statements:

int list[5] = {1, 3, 6, 9, 12}; //Line 1
vector<int> vList; //Line 2

The statement in Line 1 declares and initializes list to be an array of five components.
The statement in Line 2 declares vList to be a vector. Because no size is specified for
vList, no memory space is reserved for the elements of vList. Now suppose that we
want to copy the elements of list into vList. The statement:

copy(list, list + 8, vList.begin());

TABLE 22-28 Logical STL Function Objects

Function object name Effect

logical_not<Type>
Returns true if its operand evaluates to false; otherwise,
it returns false. This is a unary function object.

logical_and<Type>
Returns true if both of its operands evaluate to true;
otherwise, it returns false. This is a binary function object.

logical_or<Type>
Returns true if at least one of its operands evaluates to
true; otherwise, it returns false. This is a binary function
object.

1416 | Chapter 22: Standard Template Library (STL)

will not work because no memory space is allocated for the elements of vList, and the copy
function uses the assignment operator to copy the elements from the source to the destination.
One solution to this problem is to use a for loop to step through the elements of list and
use the function push_back of vList to copy the elements of list. However, there is a
better solution, which is convenient and applicable whenever no memory space is allocated at
the destination. The STL provides three iterators, called insert iterators, to insert the
elements at the destination: back_inserter, front_inserter, and inserter.

• back_inserter: This inserter uses the push_back operation of the
container in place of the assignment operator. The argument to this iterator
is the container itself. For example, for the preceding problem, we can copy
the elements of list into vList by using back_inserter as follows:

copy(list, list + 5, back_inserter(vList));

• front_inserter: This inserter uses the push_front operation of the
container in place of the assignment operator. The argument to this
iterator is the container itself. Because the vector class does not support
the push_front operation, this iterator cannot be used for the vector
container.

• inserter: This inserter uses the container’s insert operation in place
of the assignment operator. There are two arguments to this iterator: the
first argument is the container itself; the second argument is an iterator to
the container specifying the position at which the insertion should begin.

The program in Example 22-13 illustrates the effect of inserters on a container.

EXAMPLE 22-13

//Inserters

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>
#include <list>

using namespace std;

int main()
{

int temp[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 1

vector<int> vecList1; //Line 2
vector<int> vecList2; //Line 3

ostream_iterator<int> screenOut(cout, " "); //Line 4

copy(temp, temp + 8, back_inserter(vecList1)); //Line 5

2
2

Algorithms | 1417

cout << "Line 6: vecList1: "; //Line 6
copy(vecList1.begin(), vecList1.end(),

screenOut); //Line 7
cout << endl; //Line 8

copy(vecList1.begin(), vecList1.end(),
inserter(vecList2, vecList2.begin())); //Line 9

cout << "Line 10: vecList2: "; //Line 10
copy(vecList2.begin(), vecList2.end(),

screenOut); //Line 11
cout << endl; //Line 12

list<int> tempList; //Line 13

copy(vecList2.begin(), vecList2.end(),
front_inserter(tempList)); //Line 14

cout << "Line 15: tempList: "; //Line 15
copy(tempList.begin(), tempList.end(),

screenOut); //Line 16
cout << endl; //Line 17

return 0;
}

Sample Run:

Line 6: vecList1: 1 2 3 4 5 6 7 8
Line 10: vecList2: 1 2 3 4 5 6 7 8
Line 15: tempList: 8 7 6 5 4 3 2 1

STL Algorithms
The following sections describe most of the STL algorithms. For each algorithm, we give
the function prototypes, a brief description of what the algorithm does, and a program
showing how to use it. In the function prototypes, the parameter types indicate for which
type of container the algorithm is applicable. For example, if a parameter is of type
randomAccessIterator, then the algorithm is applicable only on random access type
containers, such as vectors. Throughout, we use abbreviations such as outputItr to
mean output iterator, inputItr to mean input iterator, forwardItr to mean forward
iterator, and so on.

The Functions fill and fill_n
The function fill is used to fill a container with elements; the function fill_n is used
to fill in the next n elements. The element that is used as a filling element is passed as a
parameter to these functions. Both of these functions are defined in the header file
algorithm. The prototypes of these functions are:

1418 | Chapter 22: Standard Template Library (STL)

2
2

template <class forwardItr, class Type>
void fill(forwardItr first, forwardItr last, const Type& value);

template <class forwardItr, class size, class Type>
void fill_n(forwardItr first, size n, const Type& value);

The first two parameters of the function fill are forward iterators specifying the starting
and ending positions of the container; the third parameter is the filling element. The first
parameter of the function fill_n is a forward iterator that specifies the starting position
of the container, the second parameter specifies the number of elements to be filled,
and the third parameter specifies the filling element. The program in Example 22-14
illustrates how to use these functions.

EXAMPLE 22-14

//STL functions fill and fill_n

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

int main()
{

vector<int> vecList(8); //Line 1
ostream_iterator<int> screen(cout, " "); //Line 2

fill(vecList.begin(), vecList.end(), 2); //Line 3

cout << "Line 4: After filling vecList "
<< "with 2s: "; //Line 4

copy(vecList.begin(), vecList.end(), screen); //Line 5
cout << endl; //Line 6

fill_n(vecList.begin(), 3, 5); //Line 7

cout << "Line 8: After filling the first three "
<< "elements with 5s: "
<< endl << " "; //Line 8

copy(vecList.begin(), vecList.end(), screen); //Line 9
cout << endl; //Line 10

return 0;
}

Sample Run:

Line 4: After filling vecList with 2s: 2 2 2 2 2 2 2 2
Line 8: After filling first three elements with 5s:

5 5 5 2 2 2 2 2

Algorithms | 1419

The statements in Lines 1 and 2 declare vecList to be a sequence container of size 8 and
screen to be an ostream iterator initialized to cout with the delimit character space.
The statement in Line 3 uses the function fill to fill vecList with 2; that is, all eight
elements of vecList are set to 2. Recall that vecList.begin() returns an iterator to
the first element of vecList, and vecList.end() returns an iterator to one past the last
element of vecList. The statement in Line 5 outputs the elements of vecList using the
copy function. The statement in Line 7 uses the function fill_n to store 5 in the
elements of vecList. The first parameter of fill_n is vecList.begin(), which
specifies the starting position to begin copying. The second parameter of fill_n is 3,
which specifies the number of elements to be filled. The third parameter, 5, specifies the
filling character. Therefore, 5 is copied into the first three elements of vecList. The
statement in Line 9 outputs the elements of vecList.

The Functions generate and generate_n
The functions generate and generate_n are used to generate elements and fill a
sequence. These functions are defined in the header file algorithm. The prototypes of
these functions are:

template <class forwardItr, class function>
void generate(forwardItr first, forwardItr last, function gen);

template <class forwardItr, class size, class function>
void generate_n(forwardItr first, size n, function gen);

The function generate fills a sequence in the range first...last-1, with successive
calls to the function gen(). The function generate_n fills a sequence in the range
first...first+n-1—that is, starting at position first, with n successive calls to the
function gen(). Note that gen can also be a pointer to a function. Moreover, if gen is a
function, it must be a value-returning function without parameters. The program in
Example 22-15 illustrates how to use these functions.

EXAMPLE 22-15

//STL Functions generate and generate_n

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

int nextNum();

1420 | Chapter 22: Standard Template Library (STL)

int main()
{

vector<int> vecList(8); //Line 1

ostream_iterator<int> screen(cout, " "); //Line 2

generate(vecList.begin(), vecList.end(), nextNum); //Line 3

cout << "Line 4: vecList after filling with "
<< "numbers: "; //Line 4

copy(vecList.begin(), vecList.end(), screen); //Line 5
cout << endl; //Line 6

generate_n(vecList.begin(), 3, nextNum); //Line 7

cout << "Line 8: vecList after filling the "
<< "first three elements " << endl
<< " with the next number: "; //Line 8

copy(vecList.begin(), vecList.end(), screen); //Line 9
cout << endl; //Line 10

return 0;
}

int nextNum()
{

static int n = 1;

return n++;
}

Sample Run:

Line 4: vecList after filling with numbers: 1 2 3 4 5 6 7 8
Line 8: vecList after filling the first three elements

with the next number: 9 10 11 4 5 6 7 8

This program contains a value-returning function, nextNum, which contains a static
variable n initialized to 1. A call to this function returns the current value of n and then
increments the value of n. Therefore, the first call of nextNum returns 1, the second call
returns 2, and so on.

The statements in Lines 1 and 2 declare vecList to be a sequence container of size 8 and
screen to be an ostream iterator initialized to cout with the delimit character space.
The statement in Line 3 uses the function generate to fill vecList by successively
calling the function nextNum. Notice that after the statement in Line 3 executes, the value
of the static variable n of nextNum is 9. The statement in Line 5 outputs the elements of
vecList. The statement in Line 7 calls the function generate_n to fill the first three
elements of vecList by calling the function nextNum three times. The starting position is

2
2

Algorithms | 1421

vecList.begin(), which is the first element of vecList, and the number of elements
to be filled is 3, given by the second parameter of generate_n (see Line 7). The statement
in Line 9 outputs the elements of vecList.

The Functions find, find_if, find_end, and
find_first_of

The functions find, find_if, find_end, and find_first_of are used to find the
elements in a given range. These functions are defined in the header file algorithm.
The prototypes of the functions find and find_if are:

template <class inputItr, class size, class Type>
inputItr find(inputItr first, inputItr last,

const Type& searchValue);

template <class inputItr, class unaryPredicate>
inputItr find_if(inputItr first, inputItr last, unaryPredicate op);

The function find searches the range of elements first...last-1 for the element
searchValue. If searchValue is found in the range, the function returns the position
in the range where searchValue is found; otherwise, it returns last. The function
find_if searches the range of elements first...last-1 for the element for which
op(rangeElement) is true. If an element satisfying op(rangeElement) is true is
found, it returns the position in the given range where such an element is found;
otherwise, it returns last.

The program in Example 22-16 illustrates how to use the functions find and find_if.

EXAMPLE 22-16

//STL Functions find and find_if

#include <iostream>
#include <cctype>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

int main()
{

char cList[10] = {'a', 'i', 'C', 'd', 'e',
'f', 'o', 'H', 'u', 'j'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2

1422 | Chapter 22: Standard Template Library (STL)

2
2

ostream_iterator<char> screen(cout, " "); //Line 3

cout << "Line 4: Character list: "; //Line 4
copy(charList.begin(), charList.end(), screen); //Line 5
cout << endl; //Line 6

vector<char>::iterator position; //Line 7

//find
position = find(charList.begin(),

charList.end(), 'd'); //Line 8

if (position != charList.end()) //Line 9
cout << "Line 10: The element is found at "

<< "position "
<< (position - charList.begin())
<< endl; //Line 10

else //Line 11
cout << "Line 12: The element is not in "

<< "the list." << endl; //Line 12

//find_if
position = find_if(charList.begin(),

charList.end(), isupper); //Line 13

if (position != charList.end()) //Line 14
cout << "Line 15: The first uppercase "

<< "letter is found at position "
<< (position - charList.begin())
<< endl; //Line 15

else //Line 16
cout << "Line 17: The element is not in "

<< "the list." << endl; //Line 17

return 0;
}

Sample Run:

Line 4: Character list: a i C d e f o H u j
Line 10: The element is found at position 3
Line 15: The first uppercase letter is found at position 2

The statement in Line 1 creates and initializes a character array, cList, of 10 compo-
nents. The statement in Line 2 creates the vector container charList and initializes it
using the character array cList. The statement in Line 3 creates an ostream iterator.
The statement in Line 5 outputs charList. (In the output, the line marked Line 4
contains the output of Lines 4 through 6 of the program.) The statement in Line 7
declares the iterator position of type vector<char>. The statement in Line 8
searches charList for the first occurrence of 'd' and returns an iterator, which is
stored in position. The statements in Lines 9 through 12 output the result of the
search. Because 'd' is the fourth character in charList, its position is 3. (In the output,

Algorithms | 1423

see the line marked Line 10.) The statement in Line 13 uses the function find_if to
find the first uppercase character in charList. Note that the function isupper from
the header file cctype is passed as the third parameter to the function find_if (see Line
13). The statements in Lines 14 through 17 output the result of the search. The first
uppercase character in charList is 'C', which is the third element of charList; its
position is 2. (In the output, see the line marked Line 15.)

Next, we describe the functions find_end and find_first_of. Both of these func-
tions have two forms. The prototypes of the function find_end are:

template <class forwardItr1, class forwardItr2>
forwardItr1 find_end(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

template <class forwardItr1, class forwardItr2,
class binaryPredicate>

forwardItr1 find_end(forwardItr1 first1, forwardItr1 last1,
forwardItr2 first2, forwardItr2 last2,
binaryPredicate op);

Both forms of the function find_end search the range first1...last1-1 for the last
occurrence as a subrange of the range first2...last2-1. If the search is successful, the
function returns the position in first1..last1-1 where the match occurs; otherwise, it
returns last1. That is, the function find_end returns the position of the last element in
the range first1...last1-1 where the range first2...last2-1 is a subrange of
first1...last1-1. In the first form, the elements are compared for equality; in the
second form, the comparison op(elementFirstRange, elementSecondRange)
must be true.

The prototypes of the function find_first_of are:

template <class forwardItr1, class forwardItr2>
forwardItr1 find_first_of(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

template <class forwardItr1, class forwardItr2,
class binaryPredicate>

forwardItr1 find_first_of(forwardItr1 first1, forwardItr1 last1,
forwardItr2 first2, forwardItr2 last2,
binaryPredicate op);

The first form returns the position, within the range first1...last1-1, of the first
element of first2...last2-1 that is also in the range first1...last1-1. The
second form returns the position, within the range first1...last1-1, of the first
element of first2...last2-1 for which op(elemRange1, elemRange2) is true.
If no match is found, both forms return last1-1.

The program in Example 22-17 illustrates how to use the functions find_end and
find_first_of.

1424 | Chapter 22: Standard Template Library (STL)

EXAMPLE 22-17

//STL Functions find_end and find_first_of

#include <iostream>
#include <algorithm>
#include <iterator>

using namespace std;

int main()
{

int list1[10] = {12, 34, 56, 21, 34,
78, 34, 56, 12, 25}; //Line 1

int list2[2] = {34, 56}; //Line 2
int list3[3] = {56, 21, 35}; //Line 3
int list4[5] = {33, 48, 21, 34, 73}; //Line 4

int* location; //Line 5

ostream_iterator<int> screenOut(cout, " "); //Line 6

cout << "Line 7: list1: "; //Line 7
copy(list1, list1 + 10, screenOut); //Line 8
cout << endl; //Line 9

cout << "Line 10: list2: "; //Line 10
copy(list2, list2 + 2, screenOut); //Line 11
cout << endl; //Line 12

//find_end
location = find_end(list1, list1+10,

list2, list2 + 2); //Line 13

if (location != list1 + 10) //Line 14
cout << "Line 15: list2 is found in list 1. "

<< "The last occurrence of \n "
<< "list2 in list 1 is at position "
<< (location - list1) << endl; //Line 15

else //Line 16
cout << "Line 17: list2 is not in list1."

<< endl; //Line 17

cout << "Line 18: list3: "; //Line 18
copy(list3, list3 + 3, screenOut); //Line 19
cout << endl; //Line 20

location = find_end(list1, list1 + 10,
list3, list3 + 3); //Line 21

2
2

Algorithms | 1425

if (location != list1 + 10) //Line 22
cout << "Line 23: list3 is found in list 1. "

<< "The last occurrence of list3 in "
<< endl << "list 1 is at position "
<< (location - list1) << endl; //Line 23

else //Line 24
cout << "Line 25: list3 is not in list1."

<< endl; //Line 25

//find_first_of
cout << "Line 26: list4: "; //Line 26
copy(list4, list4 + 5, screenOut); //Line 27
cout << endl; //Line 28

location = find_first_of(list1, list1 + 10,
list4, list4 + 5); //Line 29

if (location != list1 + 10) //Line 30
cout << "Line 31: The first element "

<< *location << " of list4 is found in "
<< endl << " list 1 at position "
<< (location - list1) << endl; //Line 31

else //Line 32
cout << "Line 33: No element of list4 is "

<< "in list1." << endl; //Line 33

return 0;
}

Sample Run:

Line 7: list1: 12 34 56 21 34 78 34 56 12 25
Line 10: list2: 34 56
Line 15: list2 is found in list 1. The last occurrence of

list2 in list 1 is at position 6
Line 18: list3: 56 21 35
Line 25: list3 is not in list1.
Line 26: list4: 33 48 21 34 73
Line 31: The first element 34 of list4 is found in

list 1 at position 1

The statements in Lines 1 through 4 create and initialize the int arrays list1, list2,
list3, and list4. The statements in Lines 5 and 6 declare an int pointer and an ostream
iterator, respectively. The statements in Lines 8 and 11 output the values of list1 and
list2. (In the output, see the lines marked Line 7 and Line 10.) The statement in Line 13
uses the function find_end to find the last occurrence of list2, as a subsequence, within
list1. The last occurrence of list2 in list1 starts at position 6 (that is, at the seventh
element). The statements in Lines 14 through 17 output the result of the search. (In the
output, see Line 15.) The statement in Line 19 outputs list3. The statement in Line 21
uses the function find_end to find the last occurrence of list3, as a subsequence, within
list1. Because list3 does not appear as a subsequence in list1, it is an unsuccessful
search.

1426 | Chapter 22: Standard Template Library (STL)

The statement in Line 27 outputs list4. The statement in Line 29 uses the function
find_first_of to find the position in list1 where the first element of list4 is also
an element of list1. The first element of list4, which is also an element of list1, is
33. Its position in list1 is 1, the second element of list1. The statements in Lines 30
through 33 output the result of the search. (In the output, see Line 31.)

The Functions remove, remove_if, remove_copy,
and remove_copy_if
The function remove is used to remove certain elements from a sequence, and the function
remove_if is used to remove elements from a sequence by using some criteria. The
function remove_copy copies the elements of a sequence into another sequence by
excluding certain elements of the first sequence. Similarly, the function remove_copy_if
copies the elements of a sequence into another sequence by excluding certain elements,
using some criteria, of the first sequence. These functions are defined in the header file
algorithm.

The prototypes of the functions remove and remove_if are:

template <class forwardItr, class Type>
forwardItr remove(forwardItr first, forwardItr last,

const Type& value);

template <class forwardItr, class unaryPredicate>
forwardItr remove_if(forwardItr first, forwardItr last,

unaryPredicate op);

The function remove removes each occurrence of a given element in the range
first...last-1. The element to be removed is passed as the third parameter to
this function. The function remove_if removes those elements, in the range
first...last-1, for which the op(element) is true. Both of these functions
return forwardItr, which points to the position after the last element of the new
range of elements. These functions do not modify the size of the container; in fact, the
elements are moved to the beginning of the container. For example, if the sequence is
{3, 7, 2, 5, 7, 9} and the element to be removed is 7, then after removing 7, the
resulting sequence is {3, 2, 5, 9, 9, 9}. The function returns a pointer to element 9
(which is after 5).

The program in Example 22-18 further illustrates the importance of this returned
forwardItr. (See Lines 8, 10, 12, and 14.)

Let us now look at the prototypes of the functions remove_copy and remove_copy_if.

template <class inputItr, class outputItr, class Type>
outputItr remove_copy(inputItr first1, inputItr last1,

outputItr destFirst, const Type& value);

2
2

Algorithms | 1427

template <class inputItr, class outputItr, class unaryPredicate>
outputItr remove_copy_if(inputItr first1, inputItr last1,

outputItr destFirst,
unaryPredicate op);

The function remove_copy copies all of the elements in the range first1...last1-1,
except the elements specified by value, into the sequence starting at the position
destFirst. Similarly, the function remove_copy_if copies all of the elements in
the range first1...last1-1, except the elements for which op(element) is true,
into the sequence starting at the position destFirst. Both of these functions return an
outputItr, which points to the position after the last element copied.

The program in Example 22-18 shows how to use the functions remove, remove_if,
remove_copy, and remove_copy_if.

EXAMPLE 22-18

//STL Functions remove, remove_if, remove_copy, and
// remove_copy_if

#include <iostream>
#include <cctype>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

bool lessThanEqualTo50(int num);

int main()
{

char cList[10] = {'A', 'a', 'A', 'B', 'A',
'c', 'D', 'e', 'F', 'A'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2
vector<char>::iterator lastElem, newLastElem; //Line 3

ostream_iterator<char> screen(cout, " "); //Line 4

cout << "Line 6: Character list: "; //Line 5
copy(charList.begin(), charList.end(), screen); //Line 6
cout << endl; //Line 7

//remove
lastElem = remove(charList.begin(),

charList.end(), 'A'); //Line 8

cout << "Line 9: Character list after "
<< "removing A: "; //Line 9

1428 | Chapter 22: Standard Template Library (STL)

copy(charList.begin(), lastElem, screen); //Line 10
cout << endl; //Line 11

//remove_if
newLastElem = remove_if(charList.begin(),

lastElem, isupper); //Line 12
cout << "Line 13: Character list after "

<< "removing the uppercase " << endl
<< " letters: "; //Line 13

copy(charList.begin(), newLastElem, screen); //Line 14
cout << endl; //Line 15

int list[10] = {12, 34, 56, 21, 34,
78, 34, 55, 12, 25}; //Line 16

vector<int> intList(list, list + 10); //Line 17
vector<int>::iterator endElement; //Line 18

ostream_iterator<int> screenOut(cout, " "); //Line 19

cout << "Line 20: intList: "; //Line 20
copy(intList.begin(), intList.end(), screenOut); //Line 21
cout << endl; //Line 22

vector<int> temp1(10); //Line 23

//remove_copy
endElement = remove_copy(intList.begin(),

intList.end(),
temp1.begin(), 34); //Line 24

cout << "Line 25: temp1 list after copying "
<< "all the elements of intList "
<< endl << " except 34: "; //Line 25

copy(temp1.begin(), endElement, screenOut); //Line 26
cout << endl; //Line 27

vector<int> temp2(10, 0); //Line 28

//remove_copy_if
remove_copy_if(intList.begin(), intList.end(),

temp2.begin(), lessThanEqualTo50); //Line 29

cout << "Line 30: temp2 after copying all the "
<< "elements of intList except " << endl
<< " numbers less than 50: "; //Line 30

copy(temp2.begin(), temp2.end(), screenOut); //Line 31
cout << endl; //Line 32

return 0;
}

2
2

Algorithms | 1429

bool lessThanEqualTo50(int num)
{

return (num <= 50);
}

Sample Run:

Line 6: Character list: A a A B A c D e F A
Line 9: Character list after removing A: a B c D e F
Line 13: Character list after removing the uppercase

letters: a c e
Line 20: intList: 12 34 56 21 34 78 34 55 12 25
Line 25: temp1 list after copying all the elements of intList

except 34: 12 56 21 78 55 12 25
Line 30: temp2 after copying all the elements of intList except

numbers less than 50: 56 78 55 0 0 0 0 0 0 0

The statement in Line 2 creates a vector list, charList, of type char and initializes
charList using the array cList created in Line 1. The statement in Line 3 declares two
vector iterators, lastElem and newLastElem. The statement in Line 4 declares an
ostream iterator, screen. The statement in Line 6 outputs the value of charList.
The statement in Line 8 uses the function remove to remove all occurrences of 'A' from
charList. The function returns a pointer to one past the last element of the new range,
which is stored in lastElem. The statement in Line 10 outputs the elements in the
new range. (Note that the statement in Line 10 outputs the elements in the range
charList.begin()...lastElem-1.) The statement in Line 12 uses the function
remove_if to remove the uppercase letters from the list charList and stores the
pointer returned by the function remove_if in newLastElem. The statement in
Line 14 outputs the elements in the new range.

The statement in Line 17 creates a vector, intList, of type int and initializes intList
using the array list, created in Line 16. The statement in Line 21 outputs the elements
of intList. The statement in Line 24 copies all of the elements, except the occurrences of
34, of intList into temp1. The list intList is not modified. The statement in Line
26 outputs the elements of temp1. The statement in Line 28 creates a vector, temp2, of
type int of 10 components and initializes all of the elements of temp2 to 0. The statement
in Line 29 uses the function remove_copy_if to copy those elements of intList that
are greater than 50. The statement in Line 31 outputs the elements of temp2.

The Functions replace, replace_if, replace_copy,
and replace_copy_if
The function replace is used to replace all occurrences, within a given range, of a given
element with a new value. The function replace_if is used to replace the values of the
elements, within a given range, satisfying certain criteria with a new value. The proto-
types of these functions are:

1430 | Chapter 22: Standard Template Library (STL)

2
2

template <class forwardItr, class Type >
void replace(forwardItr first, forwardItr last,

const Type& oldValue, const Type& newValue);

template <class forwardItr, class unaryPredicate, class Type>
void replace_if(forwardItr first, forwardItr last,

unaryPredicate op, const Type& newValue);

The function replace replaces all of the elements in the range first...last-1 whose
values are equal to oldValue with the value specified by newValue. The function
replace_if replaces all of the elements in the range first...last-1, for which
op(element) is true, with the value specified by newValue.

The function replace_copy is a combination of replace and copy. Similarly, the
function replace_copy_if is a combination of replace_if and copy. Let us first
look at the prototypes of the functions replace_copy and replace_copy_if.

template <class forwardItr, class outputItr, class Type>
outputItr replace_copy(forwardItr first, forwardItr last,

outputItr destFirst,
const Type& oldValue,
const Type& newValue);

template <class forwardItr, class outputItr,
class unaryPredicate, class Type>

outputItr replace_copy_if(forwardItr first, forwardItr last,
outputItr destFirst,
unaryPredicate op,
const Type& newValue);

The function replace_copy copies all of the elements in the range first...last-1
into the container starting at destFirst. If the value of an element in this range is
equal to oldValue, it is replaced by newValue. The function replace_copy_if
copies all of the elements in the range first...last-1 into the container starting at
destFirst. If, for any element in this range, op(element) is true, at the destination,
its value is replaced by newValue. Both of these functions return an outputItr
(a pointer) positioned one past the last element copied at the destination.

The program in Example 22-19 shows how to use the functions replace, replace_if,
replace_copy, and replace_copy_if.

EXAMPLE 22-19

//STL Functions replace, replace_if, replace_copy, and
// replace_copy_if

#include <iostream>
#include <cctype>
#include <algorithm>
#include <iterator>
#include <vector>

Algorithms | 1431

using namespace std;

bool lessThanEqualTo50(int num);

int main()
{

char cList[10] = {'A', 'a', 'A', 'B', 'A',
'c', 'D', 'e', 'F', 'A'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2

ostream_iterator<char> screen(cout, " "); //Line 3

cout << "Line 4: Character list: "; //Line 4
copy(charList.begin(), charList.end(), screen); //Line 5
cout << endl; //Line 6

//replace
replace(charList.begin(), charList.end(),

'A', 'Z'); //Line 7

cout << "Line 8: Character list after replacing "
<< "A with Z: " << endl
<< " "; //Line 8

copy(charList.begin(), charList.end(), screen); //Line 9
cout << endl; //Line 10

//replace_if
replace_if(charList.begin(), charList.end(),

isupper, '*'); //Line 11
cout << "Line 12: Character list after "

<< "replacing the uppercase " << endl
<< " letters with *: "; //Line 12

copy(charList.begin(), charList.end(), screen); //Line 13
cout << endl; //Line 14

int list[10] = {12, 34, 56, 21, 34,
78, 34, 55, 12, 25}; //Line 15

vector<int> intList(list, list + 10); //Line 16

ostream_iterator<int> screenOut(cout, " "); //Line 17

cout << "Line 18: intList: "; //Line 18
copy(intList.begin(), intList.end(), screenOut); //Line 19
cout << endl; //Line 20

vector<int> temp1(10); //Line 21

//replace_copy
replace_copy(intList.begin(), intList.end(),

temp1.begin(), 34, 0); //Line 22

1432 | Chapter 22: Standard Template Library (STL)

cout << "Line 23: temp1 list after copying "
<< "intList and " << endl
<< " replacing 34 with 0: "; //Line 23

copy(temp1.begin(), temp1.end(), screenOut); //Line 24
cout << endl; //Line 25

vector<int> temp2(10); //Line 26

//replace_copy_if
replace_copy_if(intList.begin(), intList.end(),

temp2.begin(), lessThanEqualTo50, 50); //Line 27

cout << "Line 28: temp2 after copying intList "
<< "and replacing any " << endl
<< " numbers less than 50 "
<< "with 50: " << endl << " "; //Line 28

copy(temp2.begin(), temp2.end(), screenOut); //Line 29
cout << endl; //Line 30

return 0;
}

bool lessThanEqualTo50(int num)
{

return (num <= 50);
}

Sample Run:

Line 4: Character list: A a A B A c D e F A
Line 8: Character list after replacing A with Z:

Z a Z B Z c D e F Z
Line 12: Character list after replacing the uppercase

letters with *: * a * * * c * e * *
Line 18: intList: 12 34 56 21 34 78 34 55 12 25
Line 23: temp1 list after copying intList and

replacing 34 with 0: 12 0 56 21 0 78 0 55 12 25
Line 28: temp2 after copying intList and replacing any

numbers less than 50 with 50:
50 50 56 50 50 78 50 55 50 50

The statement in Line 2 creates a vector list, charList, of type char and initializes
charList using the array cList created in Line 1. The statement in Line 3 declares an
ostream iterator, screen. The statement in Line 5 outputs the value of charList. The
statement in Line 7 uses the function replace to replace all occurrences of 'A' with 'Z'
in charList. The statement in Line 9 outputs the elements of charList. In the output,
the line marked Line 8 contains the outputs of Lines 8 through 10. The statement in Line
11 uses the function replace_if to replace the uppercase letters with ' *' in the list
charList. The statement in Line 13 outputs the elements of charList. In the output,
the line marked Line 12 contains the output of Lines 12 through 14.

2
2

Algorithms | 1433

The statement in Line 16 creates a vector, intList, of type int and initializes intList
using the array list, created in Line 15. The statement in Line 19 outputs the elements
of intList. The statement in Line 21 declares a vector temp1 of type int. The
statement in Line 22 copies all of the elements of intList and replaces 34 with 0. The
list intList is not modified. The statement in Line 24 outputs the elements of temp1.
The statement in Line 26 creates a vector, temp2, of type int, of 10 components. The
statement in Line 27 uses the function replace_copy_if to copy the elements of
intList and replaces all of the elements less than 50 with 50. The statement in Line
29 outputs the elements of temp2. In the output, the line marked Line 28 contains the
output of Lines 28 through 30.

The Functions swap, iter_swap, and swap_ranges
The functions swap, iter_swap, and swap_ranges are used to swap elements. These
functions are defined in the header file algorithm. The prototypes of these functions
are:

template <class Type>
void swap(Type& object1, Type& object2);

template <class forwardItr1, class forwardItr2>
void iter_swap(forwardItr1 first, forwardItr2 second);

template <class forwardItr1, class forwardItr2>
forwardItr2 swap_ranges(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2);

The function swap swaps the values of object1 and object2. The function
iter_swap swaps the values to which the iterators first and second point.

The function swap_ranges swaps the elements of the range first1...last1-1 with
the consecutive elements starting at position first2. It returns the iterator of the second
range positioned one past the last element swapped. The program in Example 22-20
illustrates how to use these functions.

EXAMPLE 22-20

//STL functions swap, iter_swap, and swap_ranges

#include <iostream>
#include <algorithm>
#include <vector>
#include <iterator>

using namespace std;

1434 | Chapter 22: Standard Template Library (STL)

int main()
{

char cList[10] = {'A', 'B', 'C', 'D', 'F',
'G', 'H', 'I', 'J', 'K'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2
vector<char>::iterator charItr; //Line 3

ostream_iterator<char> screen(cout, " "); //Line 4

cout << "Line 5: Character list: "; //Line 5
copy(charList.begin(), charList.end(), screen); //Line 6
cout << endl; //Line 7

swap(charList[0], charList[1]); //Line 8

cout << "Line 9: Character list after swapping "
<< "the first and second " << endl
<< " elements: "; //Line 9

copy(charList.begin(), charList.end(), screen); //Line 10
cout << endl; //Line 11

iter_swap(charList.begin() + 2,
charList.begin() + 3); //Line 12

cout << "Line 13: Character list after swapping "
<< "the third and fourth " << endl
<< " elements: "; //Line 13

copy(charList.begin(), charList.end(), screen); //Line 14
cout << endl; //Line 15

charItr = charList.begin() + 4; //Line 16
iter_swap(charItr, charItr + 1); //Line 17

cout << "Line 18: Character list after swapping "
<< "the fifth and sixth " << endl
<< " elements: "; //Line 18

copy(charList.begin(), charList.end(), screen); //Line 19
cout << endl; //Line 20

int list[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; //Line 21

vector<int> intList(list, list + 10); //Line 22

ostream_iterator<int> screenOut(cout, " "); //Line 23

cout << "Line 24: intList: "; //Line 24
copy(intList.begin(), intList.end(), screenOut); //Line 25
cout << endl; //Line 26

2
2

Algorithms | 1435

//swap_ranges
swap_ranges(intList.begin(), intList.begin() + 4,

intList.begin() + 5); //Line 27

cout << "Line 28: intList after swapping the first "
<< "four elements " << endl
<< " with four elements starting at "
<< "the sixth element " << endl
<< " of intList: "; //Line 28

copy(intList.begin(), intList.end(), screenOut); //Line 29
cout << endl; //Line 30

swap_ranges(list, list + 10, intList.begin()); //Line 31

cout << "Line 32: list and intList after "
<< "swapping their elements " << endl; //Line 32

cout << "Line 33: list: "; //Line 33
copy(list, list+10, screenOut); //Line 34
cout << endl; //Line 35
cout << "List 36: intList: "; //Line 36
copy(intList.begin(), intList.end(), screenOut); //Line 37
cout << endl; //Line 38

return 0;
}

Sample Run:

Line 5: Character list: A B C D F G H I J K
Line 9: Character list after swapping the first and second

elements: B A C D F G H I J K
Line 13: Character list after swapping the third and fourth

elements: B A D C F G H I J K
Line 18: Character list after swapping the fifth and sixth

elements: B A D C G F H I J K
Line 24: intList: 1 2 3 4 5 6 7 8 9 10
Line 28: intList after swapping the first four elements

with four elements starting at the sixth element
of intList: 6 7 8 9 5 1 2 3 4 10

Line 32: list and intList after swapping their elements
Line 33: list: 6 7 8 9 5 1 2 3 4 10
List 36: intList: 1 2 3 4 5 6 7 8 9 10

The statement in Line 2 creates the vector charList and initializes it using the array
cList declared in Line 1. The statement in Line 6 outputs the values of charList. The
statement in Line 8 swaps the first and second elements of charList. The statement
in Line 12, using the function iter_swap, swaps the third and fourth elements of
charList. (Recall that the position of the first element in charList is 0.) After the
statement in Line 16 executes, charItr points to the fifth element of charList. The
statement in Line 17 uses the iterator charItr to swap the fifth and sixth elements of
charList. The statement in Line 19 outputs the values of the elements of charList.

1436 | Chapter 22: Standard Template Library (STL)

(In the output, the line marked Line 18 contains the output of Lines 18 through 20 of the
program.)

The statement in Line 22 creates the vector intList and initializes it using the array
declared in Line 21. The statement in Line 25 outputs the values of the elements of
intList. The statement in Line 27 uses the function swap_ranges to swap the first
four elements of intList with the four elements of intList, starting at the sixth
element of intList. The statement in Line 29 outputs the elements of intList. (In the
output, the line marked Line 28 contains the output of Lines 28 through 30 of the
program.)

The statement in Line 31 swaps the elements of the array list with the elements of the
vector intList. The statement in Line 34 outputs the elements of the array list, and
the statement in Line 37 outputs intList.

The Functions search, search_n, sort,
and binary_search
The functions search, search_n, sort, and binary_search are used to search and
sort elements. These functions are defined in the header file algorithm.

The prototypes of the function search are:

template <class forwardItr1, class forwardItr2>
forwardItr1 search(forwardItr1 first1, forwardItr1 last1,

forwardItr2 first2, forwardItr2 last2);

template <class forwardItr1, class forwardItr2,
class binaryPredicate>

forwardItr1 search(forwardItr1 first1, forwardItr1 last1,
forwardItr2 first2, forwardItr2 last2,
binaryPredicate op);

Given two ranges of elements, first1...last1-1 and first2...last2-1, the
function search searches the first element in the range first1...last1-1 where the
range first2...last2-1 occurs as a subrange of first1...last1-1. The first form
makes the equality comparison between the elements of the two ranges. For the second
form, the comparison op(elemFirstRange, elemSecondRange) must be true. If
a match is found, the function returns the position in the range first1...last1-1
where the match occurs; otherwise, the function returns last1.

The prototypes of the function search_n are:

template <class forwardItr, class size, class Type>
forwardItr search_n(forwardItr first, forwardItr last,

size count, const Type& value);

2
2

Algorithms | 1437

template <class forwardItr, class size, class Type,
class binaryPredicate>

forwardItr search_n(forwardItr first, forwardItr last,
size count, const Type& value,
binaryPredicate op);

Given a range of elements first...last-1, the function search_n searches count
consecutive occurrences of value. The first form returns the position in the range
first...last-1 where a subsequence of count consecutive elements has values equal
to value. The second form returns the position in the range first...last-1 where a
subsequence of count consecutive elements exists for which op(elemRange, value)
is true. If no match is found, both forms return last.

The prototypes of the function sort are:

template <class randomAccessItr>
void sort(randomAccessItr first, randomAccessItr last);

template <class randomAccessItr, class compare>
void sort(randomAccessItr first, randomAccessItr last,

compare op);

The first form of the sort function reorders the elements in the range first...last-1
in ascending order. The second form reorders the elements according to the criteria
specified by op.

The prototypes of the function binary_search are:

template <class forwardItr, class Type>
bool binary_search(forwardItr first, forwardItr last,

const Type& searchValue);

template <class forwardItr, class Type, class compare>
bool binary_search(forwardItr first, forwardItr last,

const Type& searchValue, compare op);

The first form returns true if searchValue is found in the range first...last-1,
and false otherwise. The second form uses a function object, op, that specifies the
search criteria.

Example 22-21 illustrates how to use these searching and sorting functions.

EXAMPLE 22-21

//STL Functions search, search_n, sort, and binary_search

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>

1438 | Chapter 22: Standard Template Library (STL)

2
2

using namespace std;

int main()
{

int intList[15] = {12, 34, 56, 34, 34,
78, 38, 43, 12, 25,
34, 56, 62, 5, 49}; //Line 1

vector<int> vecList(intList, intList + 15); //Line 2
int list[2] = {34, 56}; //Line 3

vector<int>::iterator location; //Line 4

ostream_iterator<int> screenOut(cout, " "); //Line 5

cout << "Line 6: vecList: "; //Line 6
copy(vecList.begin(), vecList.end(), screenOut); //Line 7
cout << endl; //Line 8

cout << "Line 9: list: "; //Line 9
copy(list, list + 2, screenOut); //Line 10
cout << endl; //Line 11

//search
location = search(vecList.begin(), vecList.end(),

list, list + 2); //Line 12

if (location != vecList.end()) //Line 13
cout << "Line 14: list found in vecList. "

<< "The first occurrence of " << endl
<< " list in vecList is at "
<< "the position "
<< (location - vecList.begin()) << endl; //Line 14

else //Line 15
cout << "Line 16: list is not in vecList."

<< endl; //Line 16

//search_n
location = search_n(vecList.begin(),

vecList.end(), 2, 34); //Line 17

if (location != vecList.end()) //Line 18
cout << "Line 19: two consecutive "

<< "occurrences of 34 found in " << endl
<< " vecList at the position "
<< (location - vecList.begin()) << endl; //Line 19

else //Line 20
cout << "Line 21: vecList does not contain "

<< "two consecutive occurrences of 34."
<< endl; //Line 21

//sort
sort(vecList.begin(), vecList.end()); //Line 22

Algorithms | 1439

cout << "Line 23: vecList after sorting:"
<< endl << " "; //Line 23

copy(vecList.begin(), vecList.end(), screenOut); //Line 24
cout << endl; //Line 25

//binary_search
bool found; //Line 26

found = binary_search(vecList.begin(),
vecList.end(), 78); //Line 27

if (found) //Line 28
cout << "Line 29: 78 found in vecList."

<< endl; //Line 29
else //Line 30

cout << "Line 31: 78 not in vecList."
<< endl; //Line 31

return 0;
}

Sample Run:

Line 6: vecList: 12 34 56 34 34 78 38 43 12 25 34 56 62 5 49
Line 9: list: 34 56
Line 14: list found in vecList. The first occurrence of

list in vecList is at the position 1
Line 19: two consecutive occurrences of 34 found in

vecList at the position 3
Line 23: vecList after sorting:

5 12 12 25 34 34 34 34 38 43 49 56 56 62 78
Line 29: 78 found in vecList.

The statement in Line 2 creates a vector, vecList, and initializes it using the array
intList created in Line 1. The statement in Line 3 creates an array, list, of two
components and initializes list. The statement in Line 7 outputs vecList. The
statement in Line 12 uses the function search and searches vecList to find the
position (of the first occurrence) in vecList where list occurs as a subsequence.
The statements in Lines 13 through 16 output the result of the search; see the line marked
Line 14 in the output.

The statement in Line 17 uses the function search_n to find the position in vecList
where two consecutive instances of 34 occur. The statements in Lines 18 through 21
output the result of the search.

The statement in Line 22 uses the function sort to sort vecList. The statement in Line
24 outputs vecList. In the output, the line marked Line 23 contains the output of the
statements in Lines 23 through 25.

The statement in Line 27 uses the function binary_search to search vecList. The
statements in Lines 28 through 31 output the search result.

1440 | Chapter 22: Standard Template Library (STL)

The Functions adjacent_find, merge,
and inplace_merge
The algorithm adjacent_find is used to find the first occurrence of consecutive
elements that meet certain criteria. The prototypes of the functions implementing this
algorithm are:

template <class forwardItr>
forwardItr adjacent_find(forwardItr first, forwardItr last);

template <class forwardItr, class binaryPredicate>
forwardItr adjacent_find(forwardItr first, forwardItr last,

binaryPredicate op);

The first form of adjacent_find uses the equality criteria; that is, it looks for the first
consecutive occurrences of the same element. In the second form, the algorithm returns
an iterator to the element in the range first...last-1 for which op(elem,
nextElem) is true, in which elem is an element in the range first...last-1
and nextElem is an element in this range next to elem. If no matching elements are
found, both algorithms return last.

The algorithm merge merges the sorted lists. The result is a sorted list. Both lists must be
sorted according to the same criteria. For example, both lists should be in either ascending
or descending order. The prototypes of the functions to implement the merge algorithms
are:

template <class inputItr1, class inputItr2, class outputItr>
outputItr merge(inputItr1 first1, inputItr1 last1,

inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr merge(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst, binaryPredicate op);

Both forms of the algorithm merge merge the elements of the sorted ranges
first1...last1-1 and first2...last2-1. The destination range, beginning with
the iterator destFirst, contains the merged elements. The first form uses the less-than
operator, <, for ordering the elements. The second form uses the binary predicate op to
order the elements; that is, op(elemRange1, elemRange2) must be true. Both forms
return the position after the last copied element in the destination range. Moreover, the
source ranges are not modified, and the destination range should not overlap with the
source ranges.

The algorithm inplace_merge is used to combine the sorted consecutive sequences.
The prototypes of the functions implementing this algorithm are:

2
2

Algorithms | 1441

template <class biDirectionalItr>
void inplace_merge(biDirectionalItr first,

biDirectionalItr middle,
biDirectionalItr last);

template <class biDirectionalItr, class binaryPredicate>
void inplace_merge(biDirectionalItr first,

biDirectionalItr middle,
biDirectionalItr last,
binaryPredicate op);

Both forms merge the sorted consecutive sequences first...middle-1 and
middle...last-1. The merged elements overwrite the two ranges beginning at
first. The first form uses the less-than criterion to merge the two consecutive
sequences. The second form uses the binary predicate op to merge the sequences; that
is, for the elements of the two sequences, op(elemSeq1, elemSeq2) must be true.
For example, suppose that:

vecList = {1, 3, 5, 7, 9, 2, 4, 6, 8}

in which vecList is a vector container. Further suppose that vecItr is a vector iterator
pointing to element 2. Then, after the execution of the statement:

inplace_merge(vecList.begin(), vecItr, vecList.end());

the elements in vecList are in the following order:

vecList = {1, 2, 3, 4, 5, 6, 7, 8, 9}

The program in Example 22-22 illustrates how these algorithms work.

EXAMPLE 22-22

//STL Functions adjacent_find, merge, and inplace_merge

#include <iostream>
#include <functional>
#include <algorithm>
#include <iterator>
#include <vector>
#include <list>

using namespace std;

int main()
{

int list1[10] = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8}; //Line 1
int list2[10] = {0, 1, 1, 2, 3, 4, 4, 5, 6, 6}; //Line 2

int list3[5] = {0, 2, 4, 6, 8}; //Line 3
int list4[5] = {1, 3, 5, 7, 9}; //Line 4

1442 | Chapter 22: Standard Template Library (STL)

2
2

list<int> intList(list2, list2 + 10); //Line 5
list<int>::iterator listItr; //Line 6

vector<int> vecList(list1, list1 + 10); //Line 7
vector<int>::iterator intItr; //Line 8

ostream_iterator<int> screen(cout, " "); //Line 9

cout << "Line 10: intList : "; //Line 10
copy(intList.begin(), intList.end(), screen); //Line 11
cout << endl; //Line 12

//adjacent_find
listItr = adjacent_find(intList.begin(),

intList.end()); //Line 13

if (listItr != intList.end()) //Line 14
cout << "Line 15: Adjacent equal "

<< "elements are found " << endl
<< " The first set of "
<< "adjacent equal elements: "
<< *listItr << endl; //Line 15

else //Line 16
cout << "Line 17: No adjacent equal "

<< "element found" << endl; //Line 17

intList.clear(); //Line 18

//merge
merge(list3, list3 + 5, list4, list4 + 5,

back_inserter(intList)); //Line 19

cout << "Line 20: intList after merging list3 "
<< "and " << "list4:\n"
<< " "; //Line 20

copy(intList.begin(), intList.end(), screen); //Line 21
cout << endl; //Line 22

//adjacent_find; second form
intItr = adjacent_find(vecList.begin(),

vecList.end(),
greater<int>()); //Line 23

cout << "Line 24: Last element of first "
<< "sorted sublist: " << *intItr << endl; //Line 24

intItr++; //Line 25
cout << "Line 26: First element of second "

<< "sorted sublist: " << *intItr << endl; //List 26

cout << "Line 27: vecList before "
<< "inplace_merge: "; //Line 27

copy(vecList.begin(), vecList.end(), screen); //Line 28
cout << endl; //Line 29

Algorithms | 1443

//inplace_merge
inplace_merge(vecList.begin(), intItr,

vecList.end()); //Line 30

cout << "Line 31: vecList after inplace_merge: "; //Line 31
copy(vecList.begin(), vecList.end(), screen); //Line 32
cout << endl; //Line 33

return 0;
}

Sample Run:

Line 10: intList : 0 1 1 2 3 4 4 5 6 6
Line 15: Adjacent equal elements are found

The first set of adjacent equal elements: 1
Line 20: intList after merging list3 and list4:

0 1 2 3 4 5 6 7 8 9
Line 24: Last element of first sorted sublist: 9
Line 26: First element of second sorted sublist: 0
Line 27: vecList before inplace_merge: 1 3 5 7 9 0 2 4 6 8
Line 31: vecList after inplace_merge: 0 1 2 3 4 5 6 7 8 9

The statement in Line 5 creates an intList of type list<int> and initializes intList
using list2. Thus, intList is a linked list. The statement in Line 7 creates the vector
vecList of type int and initializes it using list1. The statement in Line 11 outputs
intList. The statement in Line 13 uses the function adjacent_find to find the
position of the (first set of) consecutive identical elements. The function returns a pointer
to the first set of consecutive elements, which is stored in listItr. The statements in
Lines 14 through 17 output those consecutive identical elements, if any are found. Notice
that the statement in Line 15 outputs *listItr—the contents of the memory space to
which listItr is pointing.

The statement in Line 18 clears intList by deleting all of the elements of intList.
The statement in Line 19 uses the function merge to merge list3 and list4. The
third parameter of the function merge, in Line 19, is a call to back_inserter, which
places the merged list into intList. After the statement in Line 19 executes, intList
contains the merged list. The statement in Line 21 outputs intList. In the output,
see the line marked Line 20, which contains the output of the statements in Lines 20
through 22.

Notice that vecList is {1, 3, 5, 7, 9, 0, 2, 4, 6, 8}, which contains two sorted
subsequences. The statement in Line 23 uses the second form of the function
adjacent_find to find the starting position of the second subsequence. Notice that
the third parameter of the function adjacent_find is the binary predicate greater,
which returns the position in vecList where the first element is greater than the second
element. The returned position is stored in the iterator intItr, which now points to
element 9. The statement in Line 25 advances intItr to point to element 0, which is
the first element of the second subsequence. The statement in Line 30 uses the function

1444 | Chapter 22: Standard Template Library (STL)

inplace_merge and the iterator intItr to merge the sorted subsequences of
vecList. Notice that vecList contains the resulting sequence. In the output, the line
marked Line 27 contains the output of the statements in Lines 27 through 29; the line
marked Line 31 contains the output of the statements in Lines 31 through 33.

The Functions reverse, reverse_copy, rotate,
and rotate_copy
The algorithm reverse reverses the order of the elements in a given range. The
prototype of the function to implement the algorithm reverse is:

template <class biDirectionalItr>
void reverse(biDirectionalItr first, biDirectionalItr last);

The elements in the range first...last-1 are reversed. For example, if vecList =
{1, 2, 5, 3, 4}, then the elements in reverse order are vecList = {4, 3, 5, 2, 1}.

The algorithm reverse_copy reverses the elements of a given range while copying into
a destination range. The source is not modified. The prototype of the function imple-
menting the algorithm reverse_copy is:

template <class biDirectionalItr, class outputItr>
outputItr reverse_copy(biDirectionalItr first,

biDirectionalItr last,
outputItr destFirst);

The elements in the range first...last-1 are copied in the reverse order at the
destination, beginning with destFirst. The function also returns the position one past
the last element copied at the destination.

The algorithm rotate rotates the elements of a given range. Its prototype is:

template <class forwardItr>
void rotate(forwardItr first, forwardItr newFirst,

forwardItr last);

The elements in the range first...newFirst-1 are moved to the end of the range.
The element specified by newFirst becomes the first element of the range. For
example, suppose that:

vecList = {3, 5, 4, 0, 7, 8, 2, 5}

and the iterator vecItr points to 0. Then, after the statement:

rotate(vecList.begin(), vecItr, vecList.end());

executes, vecList is as follows:

vecList = {0, 7, 8, 2, 5, 3, 5, 4}

2
2

Algorithms | 1445

The algorithm rotate_copy is a combination of rotate and copy. That is, the
elements of the source are copied at the destination in a rotated order. The source is
not modified. The prototype of the function implementing this algorithm is:

template <class forwardItr, class outputItr>
outputItr rotate_copy(forwardItr first, forwardItr middle,

forwardItr last,
outputItr destFirst);

The elements in the range first...last-1 are copied into the destination range
beginning with destFirst in the rotated order, so that the element specified by
middle in the range first...last-1 becomes the first element of the destination.
The function also returns the position one past the last element copied at the destination.

The algorithms reverse, reverse_copy, rotate, and rotate_copy are contained
in the header file algorithm. The program in Example 22-23 illustrates how to use
these algorithms.

EXAMPLE 22-23

//STL Functions: reverse, reverse_copy, rotate, and rotate_copy

#include <iostream>
#include <algorithm>
#include <iterator>
#include <list>

using namespace std;

int main()
{

int temp[10] = {1, 3, 5, 7, 9, 0, 2, 4, 6, 8}; //Line 1

list<int> intList(temp, temp + 10); //Line 2
list<int> resultList; //List 3
list<int>::iterator listItr; //Line 4

ostream_iterator<int> screen(cout, " "); //Line 5

cout << "Line 6: intList: "; //Line 6
copy(intList.begin(), intList.end(), screen); //Line 7
cout << endl; //Line 8

//reverse
reverse(intList.begin(), intList.end()); //Line 9

cout << "Line 10: intList after reversal: "; //Line 10
copy(intList.begin(), intList.end(), screen); //Line 11
cout << endl; //Line 12

1446 | Chapter 22: Standard Template Library (STL)

//reverse_copy
reverse_copy(intList.begin(), intList.end(),

back_inserter(resultList)); //Line 13

cout << "Line 14: resultList: "; //Line 14
copy(resultList.begin(), resultList.end(),

screen); //Line 15
cout << endl; //Line 16

listItr = intList.begin(); //Line 17
listItr++; //Line 18
listItr++; //Line 19

cout << "Line 20: intList before rotating: "; //Line 20
copy(intList.begin(), intList.end(), screen); //Line 21
cout << endl; //Line 22

//rotate
rotate(intList.begin(), listItr, intList.end()); //Line 23

cout << "Line 24: intList after rotating: "; //Line 24
copy(intList.begin(), intList.end(), screen); //Line 25
cout << endl; //Line 26

//rotate_copy
resultList.clear(); //Line 27

rotate_copy(intList.begin(), listItr,
intList.end(),
back_inserter(resultList)); //Line 28

cout << "Line 29: intList after rotating and "
<< "copying:\n"
<< " "; //Line 29

copy(intList.begin(), intList.end(), screen); //Line 30
cout << endl; //Line 31

cout << "Line 32: resultList after rotating "
<< "and copying:\n"
<< " "; //Line 32

copy(resultList.begin(), resultList.end(),
screen); //Line 33

cout << endl; //Line 34

resultList.clear(); //Line 35

rotate_copy(intList.begin(),
find(intList.begin(), intList.end(), 6),
intList.end(),
back_inserter(resultList)); //Line 36

2
2

Algorithms | 1447

cout << "Line 37: resultList after rotating and "
<< "copying:\n"
<< " "; //Line 37

copy(resultList.begin(), resultList.end(), screen); //Line 38
cout << endl; //Line 39

return 0;
}

Sample Run:

Line 6: intList: 1 3 5 7 9 0 2 4 6 8
Line 10: intList after reversal: 8 6 4 2 0 9 7 5 3 1
Line 14: resultList: 1 3 5 7 9 0 2 4 6 8
Line 20: intList before rotating: 8 6 4 2 0 9 7 5 3 1
Line 24: intList after rotating: 4 2 0 9 7 5 3 1 8 6
Line 29: intList after rotating and copying:

4 2 0 9 7 5 3 1 8 6
Line 32: resultList after rotating and copying:

0 9 7 5 3 1 8 6 4 2
Line 37: resultList after rotating and copying:

6 4 2 0 9 7 5 3 1 8

The Functions count, count_if, max, max_element,
min, min_element, and random_shuffle
The algorithm count counts the occurrences of a given value in a given range. The
prototype of the function implementing this algorithm is:

template <class inputItr, class type>
iterator_traits<inputItr>:: difference_type

count(inputItr first, inputItr last, const Type& value);

The function count returns the number of times the value specified by the parameter
value occurs in the range first...last-1.

The algorithm count_if counts the occurrences of a given value in a given range,
satisfying a certain criterion. The prototype of the function implementing this algo-
rithm is:

template <class inputItr, class unaryPredicate>
iterator_traits<inputItr>::difference_type

count_if(inputItr first, inputItr last, unaryPredicate op);

The function count_if returns the number of elements in the range first...last-1
for which op(elemRange) is true.

1448 | Chapter 22: Standard Template Library (STL)

2
2

The algorithm max is used to determine the maximum of two values. It has two forms, as
shown by the following prototypes:

template <class Type>
const Type& max(const Type& aVal, const Type& bVal);

template <class Type, class compare>
const Type& max(const Type& aVal, const Type& bVal, compare comp);

In the first form, the greater-than operator associated with Type is used. The second form
uses the comparison operation specified by comp.

The algorithm max_element is used to determine the largest element in a given range.
This algorithm has two forms, as shown by the following prototypes:

template <class forwardItr>
forwardItr max_element(forwardItr first, forwardItr last);

template <class forwardItr, class compare>
forwardItr max_element(forwardItr first, forwardItr last,

compare comp);

The first form uses the greater-than operator associated with the data type of the elements
in the range first...last-1. In the second form, the comparison operation specified
by comp is used. Both forms return an iterator to the element containing the largest value
in the range first...last-1.

The algorithm min is used to determine the minimum of two values. It has two forms, as
shown by the following prototypes:

template <class Type>
const Type& min(const Type& aVal, const Type& bVal);

template <class Type, class compare>
const Type& min(const Type& aVal, const Type& bVal, compare comp);

In the first form, the less-than operator associated with Type is used. In the second form,
the comparison operation specified by comp is used.

The algorithm min_element is used to determine the smallest element in a given range.
This algorithm has two forms, as shown by the following prototypes:

template <class forwardItr>
forwardItr min_element(forwardItr first, forwardItr last);

template <class forwardItr, class compare>
forwardItr min_element(forwardItr first, forwardItr last,

compare comp);

The first form uses the less-than operator associated with the data type of the elements in
the range first...last-1. The second form uses the comparison operation specified
by comp. Both forms return an iterator to the element containing the smallest value in the
range first...last-1.

Algorithms | 1449

The algorithm random_shuffle is used to randomly order the elements in a given
range. There are two forms of this algorithm, as shown by the following prototypes:

template <class randomAccessItr>
void random_shuffle(randomAccessItr first,

randomAccessItr last);

template <class randomAccessItr, class randomAccessGenerator>
void random_shuffle(randomAccessItr first,

randomAccessItr last,
randomAccessGenerator rand);

The first form reorders the elements in the range first...last-1 using a uniform
distribution random number generator. The second form reorders the elements in the
range first...last-1 using a random number-generating function object or a pointer
to a function.

Example 22-24 illustrates how to use these functions.

EXAMPLE 22-24

//STL Functions count, count_if, min_element,
// max_element, random_shuffle

#include <iostream>
#include <cctype>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

void doubleNum(int num);

int main()
{

char cList[10] = {'Z', 'a', 'Z', 'B', 'Z',
'c', 'D', 'e', 'F', 'Z'}; //Line 1

vector<char> charList(cList, cList + 10); //Line 2

ostream_iterator<char> screen(cout, " "); //Line 3

cout << "Line 4: charList: "; //Line 4
copy(charList.begin(), charList.end(), screen); //Line 5
cout << endl; //Line 6

//count
int noOfZs = count(charList.begin(),

charList.end(), 'Z'); //Line 7

1450 | Chapter 22: Standard Template Library (STL)

cout << "Line 8: Number of Zs in charList = "
<< noOfZs << endl; //Line 8

//count_if
int noOfUpper = count_if(charList.begin(),

charList.end(), isupper); //Line 9

cout << "Line 10: Number of uppercase letters "
<< "in charList = " << noOfUpper << endl; //Line 10

int list[10] = {12, 34, 56, 21, 34,
78, 34, 55, 12, 25}; //Line 11

ostream_iterator<int> screenOut(cout, " "); //Line 12

cout << "Line 13: list: "; //Line 13
copy(list, list + 10, screenOut); //Line 14
cout << endl; //Line 15

//max_element
int *maxLoc = max_element(list, list + 10); //Line 16

cout << "Line 17: Largest element in list = "
<< *maxLoc << endl; //Line 17

//min_element
int *minLoc = min_element(list, list + 10); //Line 18

cout << "Line 19: Smallest element in list = "
<< *minLoc << endl; //Line 19

//random_shuffle
random_shuffle(list, list + 10); //Line 20

cout << "Line 21: list after random shuffle:\n"
<< " "; //Line 21

copy(list, list + 10, screenOut); //Line 22
cout << endl; //Line 23

return 0;
}

void doubleNum(int num)
{

cout << 2 * num << " ";
}

Sample Run:

Line 4: charList: Z a Z B Z c D e F Z
Line 8: Number of Zs in charList = 4
Line 10: Number of uppercase letters in charList = 7
Line 13: list: 12 34 56 21 34 78 34 55 12 25

2
2

Algorithms | 1451

Line 17: Largest element in list = 78
Line 19: Smallest element in list = 12
Line 21: list after random shuffle:

12 34 25 56 12 78 55 21 34 34

The preceding output is self-explanatory. The details are left as an exercise for you.

The Functions for_each and transform
The algorithm for_each is used to access and process each element in a given range by
applying a function, which is passed as a parameter. The prototype of the function
implementing this algorithm is:

template <class inputItr, class function>
function for_each(inputItr first, inputItr last, function func);

The function specified by the parameter func is applied to each element in the range
first...last-1. The function func can modify the element. The returned value of
the function for_each is usually ignored.

The algorithm transform has two forms. The prototypes of the functions implementing
this algorithm are:

template <class inputItr, class outputItr,
class unaryOperation>

outputItr transform(inputItr first, inputItr last,
outputItr destFirst,
unaryOperation op);

template <class inputItr1, class inputItr2,
class outputItr, class binaryOperation>

outputItr transform(inputItr1 first1, inputItr1 last,
inputItr2 first2,
outputItr destFirst,
binaryOperation bOp);

The first form of the function transform has four parameters. This function creates a
sequence of elements at the destination, beginning with destFirst, by applying the
unary operation op to each element in the range first1...last-1. This function
returns the position one past the last element copied at the destination.

The second form of the function transform has five parameters. This function creates a
sequence of elements by applying the binary operation bOp—that is, bOp(elemRange1,
elemRange2)—to the corresponding elements in the range first1...last1-1 and
the range beginning with first2. The resulting sequence is placed at the destination
beginning with destFirst. The function returns the position one element past the last
element copied at the destination.

Example 22-25 illustrates how to use these functions.

1452 | Chapter 22: Standard Template Library (STL)

EXAMPLE 22-25

//STL Functions for_each and transform

#include <iostream>
#include <cctype>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

void doubleNum(int& num);

int main()
{

char cList[5] = {'a', 'b', 'c', 'd', 'e'}; //Line 1

vector<char> charList(cList, cList + 5); //Line 2

ostream_iterator<char> screen(cout, " "); //Line 3

cout << "Line 4: cList: "; //Line 4
copy(charList.begin(), charList.end(), screen); //Line 5
cout << endl; //Line 6

//transform
transform(charList.begin(), charList.end(),

charList.begin(), toupper); //Line 7

cout << "Line 8: cList after changing all "
<< "lowercase letters to \n"
<< " uppercase: "; //Line 8

copy(charList.begin(), charList.end(), screen); //Line 9
cout << endl; //Line 10

int list[7] = {2, 8, 5, 1, 7, 11, 3}; //Line 11

ostream_iterator<int> screenOut(cout, " "); //Line 12

cout << "Line 13: list: "; //Line 13
copy(list, list + 7, screenOut); //Line 14
cout << endl; //Line 15

cout << "Line 16: The effect of for_each "
<< "function:\n "; //Line 16

//for_each
for_each(list, list + 7, doubleNum); //Line 17
cout << endl; //Line 18

2
2

Algorithms | 1453

cout << "Line 19: list after a call to "
<< "for_each function:\n "; //Line 19

copy(list, list + 7, screenOut); //Line 20
cout << endl; //Line 21

return 0;
}

void doubleNum(int& num)
{

num = 2 * num;

cout << num << " ";
}

Sample Run:

Line 4: cList: a b c d e
Line 8: cList after changing all lowercase letters to

uppercase: A B C D E
Line 13: list: 2 8 5 1 7 11 3
Line 16: The effect of for_each function:

4 16 10 2 14 22 6
Line 19: list after a call to for_each function:

4 16 10 2 14 22 6

The statement in Line 7 uses the function transform to change every lowercase letter of
charList into its uppercase counterpart. The statement in Line 9 outputs the elements
of charList. In the output, the line marked Line 8 contains the output of the statements
in Lines 8 through 10 in the program. Notice that the fourth parameter of the function
transform (in Line 7) is the function toupper from the header file cctype.

The statement in Line 17 calls the function for_each to process each element in the list
using the function doubleNum. The function doubleNum has a reference parameter,
num, of type int. Moreover, this function doubles the value of num and then outputs the
value of num. Because num is a reference parameter, the value of the actual parameter is
changed. In the output, the line marked Line 16 contains the output produced by
the cout statement in the function doubleNum, which is passed as the third parameter
of the function for_each (see Line 17). The statement in Line 20 outputs the values of
the elements of list. In the output, Line 19 contains the output of the statements in
Lines 19 through 20.

1454 | Chapter 22: Standard Template Library (STL)

The Functions includes, set_intersection, set_union,
set_difference, and set_symmetric_difference
This section describes the set theory operations includes (subset), set_intersection,
set_union, set_difference, and set_symmetric_difference. All of these algo-
rithms assume that the elements within each given range are already sorted.

The algorithm includes determines whether the elements in one range appear in
another range. This function has two forms, as shown by the following prototypes:

template <class inputItr1, class inputItr2>
bool includes(inputItr1 first1, inputItr1 last1,

inputItr2 first2, inputItr2 last2);

template <class inputItr1, class inputItr2,
class binaryPredicate>

bool includes(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
binaryPredicate op);

Both forms of the function includes assume that the elements in the ranges first1...
last1-1 and first2...last2-1 are sorted according to the same sorting criterion.
The function returns true if all of the elements in the range first2...last2-1 are
also in first1...last1-1. In other words, the function returns true if first1...
last1-1 contains all of the elements in the range first2...last2-1. The first form
assumes that the elements in both ranges are in ascending order. The second form uses the
operation op to determine the ordering of the elements.

Example 22-26 illustrates how the function includes works.

EXAMPLE 22-26

//STL function includes
//This function assumes that the elements in the given ranges
//are ordered according to some sorting criteria

#include <iostream>
#include <algorithm>

using namespace std;

int main()
{

char setA[5] = {'A', 'B', 'C', 'D', 'E'}; //Line 1
char setB[10] = {'A', 'B', 'C', 'D', 'E',

'F', 'I', 'J', 'K', 'L'}; //Line 2
char setC[5] = {'A', 'E', 'I', 'O', 'U'}; //Line 3

ostream_iterator<char> screen(cout, " "); //Line 4
cout << "Line 5: setA: "; //Line 5

2
2

Algorithms | 1455

copy(setA, setA + 5, screen); //Line 6
cout << endl; //Line 7

cout << "Line 8: setB: "; //Line 8
copy(setB, setB + 10, screen); //Line 9
cout << endl; //Line 10

cout << "Line 11: setC: "; //Line 11
copy(setC, setC + 5, screen); //Line 12
cout << endl; //Line 13

if (includes(setB, setB + 10, setA, setA + 5)) //Line 14
cout << "Line 15: setA is a subset of "

<< "setB." << endl; //Line 15
else //Line 16

cout << "Line 17: setA is not a subset "
<< "of setB." << endl; //Line 17

if (includes(setB, setB + 10, setC, setC + 5)) //Line 18
cout << "Line 19: setC is a subset of "

<< "setB." << endl; //Line 19
else //Line 20

cout << "Line 21: setC is not a subset "
<< "of setB." << endl; //Line 21

return 0;
}

Sample Run:

Line 5: setA: A B C D E
Line 8: setB: A B C D E F I J K L
Line 11: setC: A E I O U
Line 15: setA is a subset of setB
Line 21: setC is not a subset of setB

The preceding output is self-explanatory. The details are left as an exercise for you.

The algorithm set_intersection is used to find the elements that are common to
two ranges of elements. This algorithm has two forms, as shown by the following
prototypes:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_intersection(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

1456 | Chapter 22: Standard Template Library (STL)

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_intersection(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst,
binaryPredicate op);

Both forms create a sequence of sorted elements that are common to two sorted ranges,
first1...last1-1 and first2...last2-1. The created sequence is placed in the
container beginning with destFirst. Both forms return an iterator positioned one past
the last element copied at the destination range. The first form assumes that the elements
are in ascending order; the second form assumes that both ranges are sorted using the
operation specified by op. The elements in the source ranges are not modified.

Suppose that:

setA[5] = {2, 4, 5, 7, 8};
setB[7] = {1, 2, 3, 4, 5, 6, 7};
setC[5] = {2, 5, 8, 8, 15};
setD[6] = {1, 4, 4, 6, 7, 12};
setE[7] = {2, 3, 4, 4, 5, 6, 10};

Then:

AintersectB = {2, 4, 5, 7}
AintersectC = {2, 5, 8}
DintersectE = {4, 4, 6}

Notice that because 8 appears only once in setA, 8 appears only once in AintersectC,
even though 8 appears twice in setC. However, because 4 appears twice in both setD
and setE, 4 also appears twice in DintersectE.

The algorithm set_union is used to find the elements that are contained in two ranges
of elements. This algorithm has two forms, as shown by the following prototypes:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_union(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_union(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr result,
binaryPredicate op);

Both forms create a sequence of sorted elements that appear in either two sorted ranges,
first1...last1-1 or first2...last2-1. The created sequence is placed in the
container beginning with destFirst. Both forms return an iterator positioned one past
the last element copied at the destination range. The first form assumes that the elements

2
2

Algorithms | 1457

are in ascending order. The second form assumes that both ranges are sorted using the
operation specified by op. The elements in the source ranges are not modified.

Suppose that you have setA, setB, setC, setD, and setE as defined previously. Then:

AunionB = {1, 2, 3, 4, 5, 6, 7, 8}
AunionC = {2, 4, 5, 7, 8, 8, 15}
BunionD = {1, 2, 3, 4, 4, 5, 6, 7, 12}
DunionE = {1, 2, 3, 4, 4, 5, 6, 7, 10, 12}

Notice that because 8 appears twice in setC, it appears twice in AunionC. Because 4
appears twice in setD and setE, 4 appears twice in DunionE.

Example 22-27 illustrates how the functions set_union and set_intersection work.

EXAMPLE 22-27

//STL set theory functions set_union and set_intersection
//These functions assume that the elements in the given ranges
//are ordered according to some sorting criteria.

#include <iostream>
#include <algorithm>

using namespace std;

int main()
{

int setA[5] = {2, 4, 5, 7, 8}; //Line 1
int setB[7] = {1, 2, 3, 4, 5, 6, 7}; //Line 2
int setC[5] = {2, 5, 8, 8, 15}; //Line 3
int setD[6] = {1, 4, 4, 6, 7, 12}; //Line 4

int AunionB[10]; //Line 5
int AunionC[10]; //Line 6
int BunionD[15]; //Line 7
int AintersectB[10]; //Line 8
int AintersectC[10]; //Line 9

int *lastElem; //Line 10

ostream_iterator<int> screen(cout, " "); //Line 11

cout << "Line 12: setA = "; //Line 12
copy(setA, setA + 5, screen); //Line 13
cout << endl; //Line 14

cout << "Line 15: setB = "; //Line 15
copy(setB, setB + 7, screen); //Line 16
cout << endl; //Line 17

1458 | Chapter 22: Standard Template Library (STL)

cout << "Line 18: setC = "; //Line 18
copy(setC, setC + 5, screen); //Line 19
cout << endl; //Line 20

cout << "Line 21: setD = "; //Line 21
copy(setD, setD + 6, screen); //Line 22
cout << endl; //Line 23

lastElem = set_union(setA, setA + 5,
setB, setB + 7,
AunionB); //Line 24

cout << "Line 25: Set AunionB: "; //Line 25
copy(AunionB, lastElem, screen); //Line 26
cout << endl; //Line 27

lastElem = set_union(setA, setA + 5,
setC, setC + 5,
AunionC); //Line 28

cout << "Line 29: Set AunionC: "; //Line 29
copy(AunionC, lastElem, screen); //Line 30
cout << endl; //Line 31

lastElem = set_union(setB, setB + 7,
setD, setD + 6,
BunionD); //Line 32

cout << "Line 33: Set BunionD: "; //Line 33
copy(BunionD, lastElem, screen); //Line 34
cout << endl; //Line 35

lastElem = set_intersection(setA, setA + 5,
setB, setB + 7,
AintersectB); //Line 36

cout << "Line 37: Set AintersectB: "; //Line 37
copy(AintersectB, lastElem, screen); //Line 38
cout << endl; //Line 39

lastElem = set_intersection(setA, setA + 5,
setC, setC + 5,
AintersectC); //Line 40

cout << "Line 41: Set AintersectC: "; //Line 41
copy(AintersectC, lastElem, screen); //Line 42
cout << endl; //Line 43

return 0;
}

2
2

Algorithms | 1459

Sample Run:

Line 12: setA = 2 4 5 7 8
Line 15: setB = 1 2 3 4 5 6 7
Line 18: setC = 2 5 8 8 15
Line 21: setD = 1 4 4 6 7 12
Line 25: Set AunionB: 1 2 3 4 5 6 7 8
Line 29: Set AunionC: 2 4 5 7 8 8 15
Line 33: Set BunionD: 1 2 3 4 4 5 6 7 12
Line 37: Set AintersectB: 2 4 5 7
Line 41: Set AintersectC: 2 5 8

The preceding output is self-explanatory. The details are left as an exercise for you.

The algorithm set_difference is used to find the elements in one range of elements
that do not appear in another range of elements. This algorithm has two forms, as shown
by the following prototypes:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_difference(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_difference(inputItr1 first1, inputItr1 last1,
inputItr2 first2, inputItr2 last2,
outputItr destFirst,
binaryPredicate op);

Both forms create a sequence of sorted elements that are in the sorted range
first1...last1-1 but not in the sorted range first2...last2-1. The created
sequence is placed in the container beginning with destFirst. Both forms return an
iterator positioned one past the last element copied at the destination range. The first
form assumes that the elements are in ascending order. The second form assumes that
both ranges are sorted using the operation specified by op. The elements in the source
ranges are not modified.

Suppose that:

setA = {2, 4, 5, 7, 8}
setC = {1, 5, 6, 8, 15}
setD = {2, 5, 5, 6, 9}
setE = {1, 5, 7, 9, 12}

Then:

AdifferenceC = {2, 4, 7}
DdifferenceE = {2, 5, 6}

Because 5 appears twice in setD but only once in setE, 5 appears once in DdifferenceE.

1460 | Chapter 22: Standard Template Library (STL)

The algorithm set_symmetric_difference has two forms, as shown by the follow-
ing prototypes:

template <class inputItr1, class inputItr2,
class outputItr>

outputItr set_symmetric_difference(inputItr1 first1,
inputItr1 last1,
inputItr2 first2,
inputItr2 last2,
outputItr destFirst);

template <class inputItr1, class inputItr2,
class outputItr, class binaryPredicate>

outputItr set_symmetric_difference(inputItr1 first1,
inputItr1 last1,
inputItr2 first2,
inputItr2 last2,
outputItr destFirst,
binaryPredicate op);

Both forms create a sequence of sorted elements that are in the sorted range
first1...last1-1 but not in first2...last2-1, or elements that are in
the sorted range first2...last2-1 but not in first1...last1-1. In other words,
the sequence of elements created by set_symmetric_difference contains the elements
that are in range1_difference_range2 union range2_difference_range1. The
created sequence is placed in the container beginning with destFirst. Both forms
return an iterator positioned one past the last element copied at the destination range.
The first form assumes that the elements are in ascending order. The second form
assumes that both ranges are sorted using the operation specified by op. The elements
in the source ranges are not modified. It can be shown that the sequence created by
set_symmetric_difference contains elements that are in range1_union_range2
but not in range1_intersection_range2.

Suppose that:

setB = {3, 4, 5, 6, 7, 8, 10}
setC = {1, 5, 6, 8, 15}
setD = {2, 5, 5, 6, 9}

Notice that BdifferenceC = {3, 4, 7, 10} and CdifferenceB = {1, 15}.
Therefore:

BsymDiffC = {1, 3, 4, 7, 10, 15}

Now DdifferenceC = {2, 5, 9} and CdifferenceD = {1, 8, 15}. Therefore:

DsymDiffC = {1, 2, 5, 8, 9, 15}

Example 22-28 illustrates how the functions set_difference and
set_symmetric_difference work.

2
2

Algorithms | 1461

EXAMPLE 22-28

//STL set theory functions: set_difference and
// set_symmetric_difference.
//These functions assume that the elements in the given
//ranges are ordered according to some sorting criteria.

#include <iostream>
#include <algorithm>

using namespace std;

int main()
{

int setA[5] = {2, 4, 5, 7, 8}; //Line 1
int setB[7] = {3, 4, 5, 6, 7, 8, 10}; //Line 2
int setC[5] = {1, 5, 6, 8, 15}; //Line 3

int AdifferenceC[5]; //Line 4
int BsymDiffC[10]; //Line 5

int *lastElem; //Line 6

ostream_iterator<int> screen(cout, " "); //Line 7

cout << "Line 8: setA = "; //Line 8
copy(setA, setA + 5, screen); //Line 9
cout << endl; //Line 10

cout << "Line 11: setB = "; //Line 11
copy(setB, setB + 7, screen); //Line 12
cout << endl; //Line 13

cout << "Line 14: setC = "; //Line 14
copy(setC, setC + 5, screen); //Line 15
cout << endl; //Line 16

lastElem = set_difference(setA, setA + 5,
setC, setC + 5,
AdifferenceC); //Line 17

cout << "Line 18: AdifferenceC: "; //Line 18
copy(AdifferenceC, lastElem, screen); //Line 19
cout << endl; //Line 20

lastElem = set_symmetric_difference(setB, setB + 7,
setC, setC + 5,
BsymDiffC); //Line 21

1462 | Chapter 22: Standard Template Library (STL)

2
2

cout << "Line 22: BsymDiffC: "; //Line 22
copy(BsymDiffC, lastElem, screen); //Line 23
cout << endl; //Line 24

return 0;
}

Sample Run:

Line 8: setA = 2 4 5 7 8
Line 11: setB = 3 4 5 6 7 8 10
Line 14: setC = 1 5 6 8 15
Line 18: AdifferenceC: 2 4 7
Line 22: BsymDiffC: 1 3 4 7 10 15

The preceding output is self-explanatory. The details are left as an exercise for you.

The Functions accumulate, adjacent_difference,
inner_product, and partial_sum
The algorithms accumulate, adjacent_difference, inner_product, and
partial_sum are numerical functions and thus manipulate numeric data. Each of these
functions has two forms. The first form uses the natural operation to manipulate the data.
For example, the algorithm accumulate finds the sum of all of the elements in a given
range. In the second form, we can specify the operation to be applied to the elements of
the range. For example, rather than add the elements of a given range, we can specify the
multiplication operation to the algorithm accumulate to multiply the elements of the
range. Next, we give the prototype of each of these algorithms followed by a brief
explanation. The algorithms are contained in the header file numeric.

template<class inputItr, class Type>
Type accumulate(inputItr first, inputItr last, Type init);

template<class inputItr, class Type, class binaryOperation>
Type accumulate(inputItr first, inputItr last,

Type init, binaryOperation op);

The first form of the algorithm accumulate adds all of the elements to an initial value
specified by the parameter init in the range first...last-1. For example, if the
value of init is 0, the algorithm returns the sum of all of the elements. In the second
form, we can specify a binary operation, such as multiplication, to be applied to the
elements of the range. For example, if the value of init is 1 and the binary operation is
multiplication, the algorithm returns the products of the elements of the range.

Next, we describe the algorithm adjacent_difference. Its prototypes are:

template <class inputItr, class outputItr>
outputItr adjacent_difference(inputItr first, inputItr last,

outputItr destFirst);

Algorithms | 1463

template <class inputItr, class outputItr,
class binaryOperation>

outputItr adjacent_difference(inputItr first, inputItr last,
outputItr destFirst,
binaryOperation op);

The first form creates a sequence of elements in which the first element is the same as the
first element in the range first...last-1, and all other elements are the differences
of the current and previous elements. For example, if the range of elements is:

{2, 5, 6, 8, 3, 7}

then the sequence created by the function adjacent_difference is:

{2, 3, 1, 2, -5, 4}

The first element is the same as the first element in the original range. The second
element is equal to the second element in the original range minus the first element in the
original range. Similarly, the third element is equal to the third element in the original
range minus the second element in the original range, and so on.

In the second form of adjacent_difference, the binary operation op is applied to
the elements in the range. The resulting sequence is copied at the destination specified by
destFirst. For example, if the sequence is {2, 5, 6, 8, 3, 7} and the operation is
multiplication, the resulting sequence is {2, 10, 30, 48, 24, 21}.

Both forms return an iterator positioned one past the last element copied at the destination.

The algorithm inner_product is used to manipulate the elements of two ranges. The
prototypes of this algorithm are:

template <class inputItr1, class inputItr2, class Type>
Type inner_product(inputItr1 first1, inputItr1 last,

inputItr2 first2, Type init);

template <class inputItr1, class inputItr2, class Type
class binaryOperation1, class binaryOperation2>

Type inner_product(inputItr1 first1, inputItr1 last,
inputItr2 first2, Type init,
binaryOperation1 op1, binaryOperation2 op2);

The first form multiplies the corresponding elements in the range first1...last-1
and the range of elements starting with first2. The products of the elements are then
added to the value specified by the parameter init. To be specific, suppose that elem1
ranges over the first range and elem2 ranges over the second range starting with
first2. The first form computes:

init = init + elem1 * elem2

for all of the corresponding elements. For example, suppose that the two ranges are
{2, 4, 7, 8} and {1, 4, 6, 9} and that init is 0. The function computes and returns:

0 + 2 * 1 + 4 * 4 + 7 * 6 + 8 * 9 = 132

1464 | Chapter 22: Standard Template Library (STL)

In the second form, the default addition can be replaced by the operation specified by
op1, and the default multiplication can be replaced by the operation specified by op2.
This form, in fact, computes:

init = init op1 (elem1 op2 elem2);

The algorithm partial_sum has two forms, as shown by the following prototypes:

template <class inputItr, class outputItr>
outputItr partial_sum(inputItr first, inputItr last,

outputItr destFirst);

template <class inputItr, class outputItr,
class binaryOperation>

outputItr partial_sum(inputItr first, inputItr last,
outputItr destFirst, binaryOperation op);

The first form creates a sequence of elements in which each element is the sum of all of
the previous elements in the range first...last-1 up to the position of the element.
For example, the first element of the new sequence is the same as the first element in the
range first...last-1, the second element is the sum of the first two elements in the
range first...last-1, the third element of the new sequence is the sum of the first
three elements in the range first...last-1, and so on. For example, for the
sequence of elements:

{1, 3, 4, 6}

the function partial_sum generates the following sequence:

{1, 4, 8, 14}

In the second form, the default addition can be replaced by the operation specified by op.
For example, if the sequence is:

{1, 3, 4, 6}

and the operation is multiplication, the function partial_sum generates the following
sequence:

{1, 3, 12, 72}

The created sequence is copied at the destination specified by destFirst and returns an
iterator positioned one past the last copied element at the destination.

Example 22-29 illustrates how the functions of this section work.

2
2

Algorithms | 1465

EXAMPLE 22-29

//Numeric algorithms: accumulate, adjacent_difference,
// inner_product, and partial_sum

#include <iostream>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <vector>
#include <functional>

using namespace std;

void print(vector<int> vList);

int main()
{

int list[8] = {1, 2, 3, 4, 5, 6, 7, 8}; //Line 1

vector<int> vecList(list, list + 8); //Line 2
vector<int> newVList(8); //Line 3

cout << "Line 4: vecList: "; //Line 4
print(vecList); //Line 5

//accumulate function
int sum = accumulate(vecList.begin(),

vecList.end(), 0); //Line 6

cout << "Line 7: Sum of the elements of "
<< "vecList = " << sum << endl; //Line 7

int product = accumulate(vecList.begin(),
vecList.end(),
1, multiplies<int>()); //Line 8

cout << "Line 9: Product of the elements of "
<< "vecList = " << product << endl; //Line 9

//adjacent_difference function
adjacent_difference(vecList.begin(),

vecList.end(),
newVList.begin()); //Line 10

cout << "Line 11: newVList: "; //Line 11
print(newVList); //Line 12

adjacent_difference(vecList.begin(), vecList.end(),
newVList.begin(),
multiplies<int>()); //Line 13

1466 | Chapter 22: Standard Template Library (STL)

cout << "Line 14: newVList: "; //Line 14
print(newVList); //Line 15

//inner_product function
sum = inner_product(vecList.begin(), vecList.end(),

newVList.begin(), 0); //Line 16

cout << "Line 17: Inner product of vecList "
<< "and newVList: " << sum << endl; //Line 17

sum = inner_product(vecList.begin(), vecList.end(),
newVList.begin(), 0,
plus<int>(), minus<int>()); //Line 18

cout << "Line 19: Inner product of vecList and "
<< "newVList, using - for *: "
<< sum << endl; //Line 19

//partial_sum function
partial_sum(vecList.begin(), vecList.end(),

newVList.begin()); //Line 20

cout << "Line 21: newVList with partial sum : "; //Line 21
print(newVList); //Line 22

//partial_sum: the default + is replaced by *
partial_sum(vecList.begin(), vecList.end(),

newVList.begin(), multiplies<int>()); //Line 23

cout << "Line 24: newVList with partial "
<< "multiplication: " << endl
<< " "; //Line 24

print(newVList); //Line 25

return 0;
}

void print(vector<int> vList)
{

ostream_iterator<int> screenOut(cout, " "); //Line 26

copy(vList.begin(), vList.end(), screenOut); //Line 27
cout << endl; //Line 28

}

Sample Run:

Line 4: vecList: 1 2 3 4 5 6 7 8
Line 7: Sum of the elements of vecList = 36
Line 9: Product of the elements of vecList = 40320
Line 11: newVList: 1 1 1 1 1 1 1 1
Line 14: newVList: 1 2 6 12 20 30 42 56

2
2

Algorithms | 1467

Line 17: Inner product of vecList and newVList: 1093
Line 19: Inner product of vecList and newVList, using - for *: -133
Line 21: newVList with partial sum: 1 3 6 10 15 21 28 36
Line 24: newVList with partial multiplication:

1 2 6 24 120 720 5040 40320

The preceding output is self-explanatory. The details are left as an exercise for you.

QUICK REVIEW

1. The three main components of the STL are containers, iterators, and
algorithms.

2. STL containers are class templates.

3. Iterators are used to step through the elements of a container.

4. Algorithms are used to manipulate the elements in a container.

5. The main categories of containers are sequence containers, associative
containers, and container adapters.

6. The three predefined sequence containers are vector, deque, and list.

7. A vector container stores and manages its objects in a dynamic array.

8. Because an array is a random access data structure, elements of a vector can
be accessed randomly.

9. The name of the class that implements the vector container is vector.

10. Item insertion in a vector container is accomplished by using the operations
insert and push_back.

11. Item deletion in a vector container is accomplished by using the operations
pop_back, erase, and clear.

12. An iterator to a vector container is declared using the typedef iterator,
which is declared as a public member of the class vector.

13. Member functions common to all containers are the default constructor,
constructors with parameters, the copy constructor, the destructor, empty,
size, max_size, swap, begin, end, rbegin, rend, insert, erase,
clear, and the relational operator functions.

14. The member function begin returns an iterator to the first element into
the container.

15. The member function end returns an iterator to one past the last element
into the container.

16. In addition to the member functions listed in item 13 above, the other
member functions common to all sequence containers are insert,
push_back, pop_back, erase, clear, and resize.

1468 | Chapter 22: Standard Template Library (STL)

17. The copy algorithm is used to copy the elements in a given range to
another place.

18. The function copy, using an ostream iterator, can also be used to output
the elements of a container.

19. When we create an iterator of type ostream, we also specify the type of
element that the iterator will output.

20. Deque containers are implemented as dynamic arrays in such a way that the
elements can be inserted at both ends of the array.

21. A deque can expand in either direction.

22. The name of the class containing the definition of the class deque is
deque.

23. In addition to the operations that are common to all containers, other
operations that can be used to manipulate the elements of a deque are
assign, push_front, pop_front, at, the array subscripting operator
[], front, and back.

24. List containers are implemented as doubly linked lists. Thus, every element
in the list points to its immediate predecessor and its immediate successor
(except the first and last elements).

25. The name of the class containing the definition of the class list is
list.

26. In addition to the operations that are common to sequence containers,
other operations that can be used to manipulate the elements in a list
container are assign, push_front, pop_front, front, back,
remove, remove_if, unique, splice, sort, merge, and reverse.

27. The five categories of iterators are input, output, forward, bidirectional,
and random access iterator.

28. Input iterators are used to input data from an input stream.

29. Output iterators are used to output data to an output stream.

30. A forward iterator can refer to the same element in the same collection and
process the same element more than once.

31. Bidirectional iterators are forward iterators that can also iterate backward
over the elements.

32. Bidirectional iterators can be used with containers of type list, set,
multiset, multimap, map, and multimap.

33. Random access iterators are bidirectional iterators that can randomly pro-
cess the elements of a container.

34. Random access iterators can be used with containers of type vector,
dequeue, and string, as well as arrays.

2
2

Quick Review | 1469

35. Elements in an associative container are automatically sorted according
to some various ordering criteria. The default ordering criterion is the
relational operator less-than, <.

36. The predefined associative containers in the STL are set, multiset, map,
and multimap.

37. Containers of the type set do not allow duplicates.

38. Containers of the type multiset allow duplicates.

39. The name of the class defining the container set is set.

40. The name of the class defining the container multiset is multiset.

41. The name of the header file containing the definition of the classes set
and multiset, and the definitions of the functions to implement the
various operations on these containers, is set.

42. The operations insert, erase, and clear can be used to insert or delete
elements from sets.

43. Most of the generic algorithms are contained in the header file algorithm.

44. The main categories of STL algorithms are nonmodifying, modifying,
numeric, and heap.

45. Nonmodifying algorithms do not modify the elements of the container.

46. Modifying algorithms modify the elements of the container by rearranging,
removing, and/or changing the values of the elements.

47. Modifying algorithms that change the order of the elements, not their
values, are also called mutating algorithms.

48. Numeric algorithms are designed to perform numeric calculations on the
elements of a container.

49. A function object is a class template that overloads the function call
operator, operator().

50. The predefined arithmetic function objects are plus, minus, multiplies,
divides, modulus, and negate.

51. The predefined relational function objects are equal_to, not_equal_to,
greater, greater_equal, less, and less_equal.

52. The predefined logical function objects are logical_not, logical_and,
and logical_or.

53. Predicates are special types of function objects that return Boolean values.

54. Unary predicates check a specific property for a single argument; binary
predicates check a specific property for a pair—that is, two arguments.

55. Predicates are typically used to specify a searching or sorting criteria.

56. In the STL, a predicate must always return the same result for the same
value.

57. The functions that modify their internal states cannot be considered predicates.

1470 | Chapter 22: Standard Template Library (STL)

2
2

58. The STL provides three iterators—back_inserter, front_inserter, and
inserter—called insert iterators to insert the elements at the destination.

59. The back_inserter uses the push_back operation of the container in
place of the assignment operator.

60. The front_inserter uses the push_front operation of the container
in place of the assignment operator.

61. Because the vector class does not support the push_front operation, this
iterator cannot be used for the vector container.

62. The inserter iterator uses the container’s insert operation in place of
the assignment operator.

63. The function fill is used to fill a container with elements, and the
function fill_n is used to fill in the next n elements.

64. The functions generate and generate_n are used to generate elements
and fill a sequence.

65. The functions find, find_if, find_end, and find_first_of are used
to find the elements in a given range.

66. The function remove is used to remove certain elements from a sequence.

67. The function remove_if is used to remove elements from a sequence
using a specified criterion.

68. The function remove_copy copies the elements in a sequence into
another sequence by excluding certain elements from the first sequence.

69. The function remove_copy_if copies the elements in a sequence into
another sequence by excluding certain elements, using a specified criterion,
from the first sequence.

70. The functions swap, iter_swap, and swap_ranges are used to swap
elements.

71. The functions search, search_n, sort, and binary_search are used
to search elements.

72. The function adjacent_find is used to find the first occurrence of
consecutive elements satisfying a certain criterion.

73. The algorithm merge merges two sorted lists.

74. The algorithm inplace_merge is used to combine two sorted, consecu-
tive sequences.

75. The algorithm reverse reverses the order of the elements in a given range.

76. The algorithm reverse_copy reverses the elements in a given range
while copying into a destination range. The source is not modified.

77. The algorithm rotate rotates the elements in a given range.

78. The algorithm rotate_copy copies the elements of the source at the
destination in a rotated order.

79. The algorithm count counts the occurrences of a given value in a given range.

Quick Review | 1471

80. The algorithm count_if counts the occurrences of a given value in a
given range, satisfying a certain criterion.

81. The algorithm max is used to determine the maximum of two values.

82. The algorithm max_element is used to determine the largest element in a
given range.

83. The algorithm min is used to determine the minimum of two values.

84. The algorithm min_element is used to determine the smallest element in
a given range.

85. The algorithm random_shuffle is used to randomly order the elements
in a given range.

86. The algorithm for_each is used to access and process each element in a
given range by applying a function, which is passed as a parameter.

87. The function transform creates a sequence of elements by applying
certain operations to each element in a given range.

88. The algorithm includes determines whether the elements of one range
appear in another range.

89. The algorithm set_intersection is used to find the elements that are
common to two ranges of elements.

90. The algorithm set_union is used to find the elements that are contained
in two ranges of elements.

91. The algorithm set_difference is used to find the elements in one range
of elements that do not appear in another range of elements.

92. Given two ranges of elements, the algorithm set_symmetric_difference
determines the elements that are in the first range but not the second range
or the elements that are in the second range but not the first range.

93. The algorithms accumulate, adjacent_difference, inner_product,
and partial_sum are numerical functions and manipulate numeric data.

EXERCISES

1. What are the three main components of the STL?

2. What is the difference between an STL container and an STL iterator?

3. What is the difference between an STL container and an STL algorithm?

4. What is the difference between a set and a multiset?

5. What is an STL function object?

6. Suppose that vecList is a vector container and:

vecList = {12, 16, 8, 23, 40, 6, 18, 9, 75}

Show vecList after the following statement executes.

copy(vecList.begin() + 2, vecList.end(), vecList.begin());

1472 | Chapter 22: Standard Template Library (STL)

7. Suppose that vecList is a vector container and:

vecList = {12, 16, 8, 23, 40, 6, 18, 9, 75}

Show vecList after the following statement executes.

copy(vecList.rbegin() + 3, vecList.rend(), vecList.rbegin());

8. Suppose that intList is a list container and:

intList = {3, 23, 23, 43, 56, 11, 11, 23, 25}

Show intList after the following statement executes.

intList.unique();

9. Suppose that intList1 and intList2 are list containers and:

intList1 = {3, 58, 78, 85, 6, 15, 93, 98, 25}
intList2 = {5, 24, 16, 11, 60, 9}

Show intList after the following statement executes.

intList1.splice(intList1.begin(),intList2);

10. What is a predicate?

11. What is the difference between a back_inserter and a front_inserter?

12. Suppose that you have the following statements:

int numList[] = {7, 6, 9, 1, 2, 3, 4};
vector<int> intVec;
list<int> intList;

a. What are the contents of intVec after the following statement
executes?
copy(numList, numList + 7, back_inserter(intVec));

b. What are the contents of intList after the following statement
executes?
copy(numList, numList + 7, front_inserter(intList));

13. Suppose that you have the following statements:

vector<int> vec;
vector<int>::iterator intItr;

Suppose that vec = {9, 7, 6, 8, 5, 4}. What is the output of the following
statements?

intItr = adjacent_find(vec.begin(), vec.end(), less<int>());
cout << *intItr << endl;

14. Suppose that you have the following statements:

char list[10] ¼ {'A', 'B', 'C', 'D', 'E', 'F', '*', '%', '$', '&'};
ostream_iterator<char> screen(cout, " ");
vector<char> charVec(list, list + 10);
swap_ranges(charVec.begin(), charVec.begin() + 3,

charVec.begin() + 6);

2
2

Exercises | 1473

What is the output of the following statement?
copy(charVec.begin(), charVec.end(), screen);

15. Suppose that you have the following statements:

char list[10] = {'A', 'B', 'C', '*', 'E', '%', 'F', '$', 'H', '8'};
vector<char> charVec(list, list + 10);
ostream_iterator<char> screen(cout, " ");
transform(charVec.begin(), charVec.end(),

charVec.begin(), tolower);

What is the output of the following statement?
copy(charVec.begin(), charVec.end(), screen);

16. Suppose that charList is a vector container and:

charList = {a, A, B, b, c, d, A, e, f, K}

Further suppose that:

lastElem = remove_if(charList.begin(), charList.end(), islower);
ostream_iterator<char> screen(cout, " ");

in which lastElem is a vector iterator into a vector container of type char.
What is the output of the following statement?

copy(charList.begin(), lastElem, screen);

17. Suppose that intList is a vector container and:

intList = {18, 24, 24, 5, 11, 56, 27, 24, 2, 24}

Furthermore, suppose that:

vector<int>::iterator lastElem;
ostream_iterator<int> screen(cout, " ");
vector<int> otherList(10);
lastElem = remove_copy(intList.begin(), intList.end(),

otherList.begin(), 24);

What is the output of the following statement?

copy(otherList.begin(), lastElem, screenOut);

18. Suppose that intList is a vector container and:

intList = {2, 4, 6, 8, 10, 12, 14, 16}

What is the value of result after the following statement executes?

result = accumulate(intList.begin(), intList.end(), 0);

19. Suppose that intList is a vector container and:

intList = {2, 4, 6, 8, 10, 12, 14, 16}

What is the value of result after the following statement executes?

result = accumulate(intList.begin(), intList.end(),
0, multiplies<int>());

20. Suppose that setA, setB, setC, and setD are defined as follows:

int setA[] = {3, 4, 5, 8, 9, 12, 14};
int setB[] = {2, 3, 4, 5, 6, 7, 8};

1474 | Chapter 22: Standard Template Library (STL)

2
2

int setC[] = {2, 5, 5, 9};
int setD[] = {4, 4, 4, 6, 7, 12};

Further suppose that you have the following declarations:

int AunionB[10];
int AunionC[9];
int BunionD[10];
int AintersectB[4];
int AintersectC[2];

What is stored in AunionB, AunionC, BunionD, AintersectB, and
AintersectC after the following statements execute?

set_union(setA, setA + 7, setB, setB + 7, AunionB);
set_union(setA, setA + 7, setC, setC + 4, AunionC);
set_union(setB, setB + 7, setD, setD + 6, BunionD);
set_intersection(setA, setA + 7, setB, setB + 7, AintersectB);
set_intersection(setA, setA + 7, setC, setC + 4, AintersectC);

PROGRAMMING EXERCISES

1. Redo the Video Store programming example of Chapter 17 so that it uses
the STL class list to process a list of videos.

2. Redo Programming Exercise 9 of Chapter 17 so that it uses the STL class list
to process the list of videos rented by the customer and the list of store members.

3. Redo Programming Exercise 10 of Chapter 17 so that it uses the STL class
list to process the list of videos owned by the store, the list of videos
rented by each customer, and the list of store members.

4. Redo the Postfix Expression Calculator program of Chapter 18 so that it uses
the STL class stack to evaluate the postfix expressions.

5. Redo Programming Exercise 9 of Chapter 18 so that it uses the STL
class stack to convert the infix expressions to postfix expressions.

6. Redo the simulation program of Chapter 18 so that it uses the STL
class queue to maintain the list of waiting customers.

7. Write a program to play the Card Guessing Game. Your program must give
the user the following choices:

a. Guess only the face value of the card.

b. Guess only the suit of the card.

c. Guess both the face value and suit of the card.

Before the start of the game, create a deck of cards. Before each guess, use
the function random_shuffle to randomly shuffle the deck.

Programming Exercises | 1475

This page intentionally left blank

and and_eq asm auto

bitand bitor bool break

case catch char class

compl const const_cast continue

default delete do double

dynamic_cast else enum explicit

export extern false float

for friend goto if

include inline int long

mutable namespace new not

not_eq operator or or_eq

private protected public register

reinterpret_cast return short signed

sizeof static static_cast struct

switch template this throw

true try typedef typeid

typename union unsigned using

virtual void volatile wchar_t

while xor xor_eq

1477

APPENDIX A

RESERVED WORDS

This page intentionally left blank

The following table shows the precedence (highest to lowest) and associativity of the

operators in C++.

Operator Associativity

:: (binary scope resolution) Left to right

:: (unary scope resolution) Right to left

() Left to right

[] -> . Left to right

++ �� (as postfix operators) Right to left

typeid dynamic_cast Right to left

static_cast const_cast Right to left

reinterpret_cast Right to left

++ �� (as prefix operators) ! + (unary) - (unary) Right to left

~ & (address of) * (dereference) Right to left

new delete sizeof Right to left

->* �� .* Left to right

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

1479

APPENDIX B

OPERATOR PRECEDENCE

Operator Associativity

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= Right to left

<<= >>= &= |= ^= Right to left

throw Right to left

, (the sequencing operator) Left to right

1480 | Appendix B: Operator Precedence

ASCII (American Standard Code for Information
Interchange)
The following table shows the ASCII character set.

ASCII

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 lf vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us b ! " # $ % & '

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ` a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

The numbers 0-12 in the first column specify the left digit(s), and the numbers 0-9 in the

second row specify the right digit of each character in the ASCII data set. For example,

1481

APPENDIX C

CHARACTER SETS

the character in the row marked 6 (the number in the first column) and the column

marked 5 (the number in the second row) is A. Therefore, the character at position 65

(which is the 66th character) is A. Moreover, the character b at position 32 represents the

space character.

The first 32 characters, that is, the characters at positions 00-31 and at position 127 are

nonprintable characters. The following table shows the abbreviations and meanings of

these characters.

nul null character ff form feed can cancel

soh start of header cr carriage return em end of medium

stx start of text so shift out sub substitute

etx end of text si shift in esc escape

eot end of transmission dle data link escape fs file separator

enq enquiry dc1 device control 1 gs group separator

ack acknowledge dc2 device control 2 rs record separator

bel bell dc3 device control 3 us unit separator

bs back space dc4 device control 4 b space

ht horizontal tab nak negative acknowledge del delete

lf line feed syn synchronous idle

vt vertical tab etb end of transmitted block

EBCDIC (Extended Binary Coded Decimal
Interchange Code)
The following table shows some of the characters in the EBCDIC character set.

EBCDIC

0 1 2 3 4 5 6 7 8 9

6 b

7 . < (+ |

8 &

9 ! $ *) ; � - /

10 , % _

1482 | Appendix C: Character Sets

EBCDIC

11 > ?

12
`

: # @ ‘ = " a

13 b c d e f g h i

14 j k l m n

15 o p q r

16 ~ s t u v w x y z

17

18 []

19 A B C D E F G

20 H I J

21 K L M N O P Q R

22 S T U V

23 W X Y Z

24 0 1 2 3 4 5 6 7 8 9

The numbers 6-24 in the first column specify the left digit(s), and the numbers 0-9 in the

second row specify the right digits of the characters in the EBCDIC data set. For

example, the character in the row marked 19 (the number in the first column) and the

column marked 3 (the number in the second row) is A. Therefore, the character at

position 193 (which is the 194th character) is A. Moreover, the character b at position 64

represents the space character. The preceding table does not show all the characters in the

EBCDIC character set. In fact, the characters at positions 00-63 and 250-255 are

nonprintable control characters.

EBCDIC (Extended Binary Coded Decimal Interchange Code) | 1483

This page intentionally left blank

The following table lists the operators that can be overloaded.

Operators that can be overloaded

+ - * / % ^ & |

! && || = == < <= >

>= != += -= *= /= %= ^=

|= &= << >> >>= <<= ++ —

->* , -> [] () ~ new delete

The following table lists the operators that cannot be overloaded.

Operators that cannot be overloaded

. .* :: ?: sizeof

APPENDIX D

OPERATOR
OVERLOADING

1485

This page intentionally left blank

Binary (Base 2) Representation
of a Nonnegative Integer
Converting a Base 10 Number to a Binary Number (Base 2)
Chapter 1 remarked that A is the 66th character in the ASCII character set, but its position

is 65 because the position of the first character is 0. Furthermore, the binary number

1000001 is the binary representation of 65. The number system that we use daily is

called the decimal number system or base 10 system. The number system that the

computer uses is called the binary number system or base 2 system. In this section,

we describe how to find the binary representation of a nonnegative integer and vice versa.

Consider 65. Note that:

65 ¼ 1� 26 þ 0� 25 þ 0� 24 þ 0� 23 þ 0� 22 þ 0� 21 þ 1� 20

Similarly:

711 ¼ 1� 29 þ 0� 28 þ 1� 27 þ 1� 26 þ 0� 25 þ 0� 24 þ 0� 23 þ 1� 22þ
1� 21 þ 1� 20

In general, if m is a nonnegative integer, then m can be written as:

m ¼ ak � 2k þ ak�1 � 2k�1 þ ak�2 � 2k�2 þ � � � þ a1 � 21 þ a0 � 20;
for some nonnegative integer k, and where ai = 0 or 1, for each i = 0, 1, 2, . . ., k. The
binary number akak�1ak�2. . .a1a0 is called the binary or base 2 representation of m. In
this case, we usually write:

m10 ¼ ðakak�1ak�2 � � � a1a0Þ2
and say that m to the base 10 is akak-1ak-2. . .a1a0 to the base 2.

For example, for the integer 65, k = 6, a6 = 1, a5 = 0, a4 = 0, a3 = 0, a2 = 0, a1 = 0, a0 = 1.
Thus, a6a5a4a3a2a1a0 = 1000001, so the binary representation of 65 is 1000001, that is:

6510 ¼ ð1000001Þ2:
If no confusion arises, then we write (1000001)2 as 10000012.

1487

APPENDIX E

ADDITIONAL C++
TOPICS

Similarly, for the number 711, k = 9, a9 = 1, a8 = 0, a7 = 1, a6 = 1, a5 = 0, a4 = 0, a3 = 0,

a2 = 1, a1 = 1, a0 = 1. Thus:

71110 ¼ 10110001112:
It follows that to find the binary representation of a nonnegative, we need to find the

coefficients, which are 0 or 1, of various powers of 2. However, there is an easy algorithm,

described next, that can be used to find the binary representation of a nonnegative integer.

First, note that:

010 ¼ 02; 110 ¼ 12; 210 ¼ 102; 310 ¼ 112; 410 ¼ 1002; 510 ¼ 1012; 610 ¼ 1102;
and 710 ¼ 1112:

Let us consider the integer 65. Note that 65 / 2 = 32 and 65 % 2 = 1, where % is

the mod operator. Next, 32 / 2 = 16, and 32 % 2 = 0, and so on. It can be shown that

a0 = 65 % 2 = 1, a1 = 32 % 2 = 0, and so on. We can show this continuous division and

obtaining the remainder with the help of Figure E-1.

Notice that in Figure E-1(a), starting at the second row, the second column contains the

quotient when the number in the previous row is divided by 2 and the third column

contains the remainder of that division. For example, in the second row, 65 / 2 = 32, and

65 % 2 = 1. In the third row, 32 / 2 = 16 and 32 % 2 = 0, and so on. For each row, the

number in the second column is divided by 2, the quotient is written in the next row,

below the current row, and the remainder is written in the third column. When using a

65

dividend / quotient

(a) (b)

dividend / quotient
remainder

remainder

2

2

2

2

2

2

65 / 2 = 32 65 % 2 = 1 = a 0
32 / 2 = 16

16 / 2 = 8

8 / 2 = 4

4 / 2 = 2

2 / 2 = 1

1 / 2 = 0 1 % 2 = 1 = a 6

32 % 2 = 0 = a 1
16 % 2 = 0 = a 2
8 % 2 = 0 = a 3
4 % 2 = 0 = a 4
2 % 2 = 0 = a 5

65

2 32

2

2

2

2

2

1 = a 0
16

8

4

2

1

0 1 = a 6

0 = a 1

0 = a 2
0 = a 3
0 = a 4
0 = a 5

FIGURE E-1 Determining the binary representation of 65

1488 | Appendix E: Additional C++ Topics

figure, such as E-1, to find the binary representation of a nonnegative integer, typically,

we show only the quotients and remainders as in Figure E-1(b). You can write the binary

representation of the number starting with the last remainder in the third column,

followed by the second last remainder, and so on. Thus:

6510 ¼ 10000012:
Next, consider the number 711. Figure E-2 shows the quotients and the remainders.

From Figure E-2, it follows that:

71110 ¼ 10110001112:

Converting a Binary Number (Base 2) to Base 10
To convert a number from base 2 to base 10, we first find the weight of each bit in the

binary number. The weight of each bit in the binary number is assigned from right to left.

The weight of the rightmost bit is 0. The weight of the bit immediately to the left of the

rightmost bit is 1, the weight of the bit immediately to the left of it is 2, and so on.

Consider the binary number 1001101. The weight of each bit is as follows:

weight 6 5 4 3 2 1 0

1 0 0 1 1 0 1

711

2

2

2

2

2

2

355

177

88

44

22

11

0

5

2

1

2

2

2

1 = a 0
1 = a 1

1 = a 2
0 = a 3

0 = a 4

0 = a 5
1 = a 6
1 = a 7

0 = a 8
1 = a 9

dividend / quotient

remainder

FIGURE E-2 Determining the binary representation of 711

Binary (Base 2) Representation of a Nonnegative Integer | 1489

We use the weight of each bit to find the equivalent decimal number. For each bit, we

multiply the bit by 2 to the power of its weight and then we add all of the numbers. For

the above binary number, the equivalent decimal number is:

1� 26 þ 0� 25 þ 0� 24 þ 1� 23 þ 1� 22 þ 0� 21 þ 1� 20

¼ 64þ 0þ 0þ 8þ 4þ 0þ 1

¼ 77:

Converting a Binary Number (Base 2) to Octal (Base 8)
and Hexadecimal (Base 16)
The previous sections described how to convert a binary number to a decimal number

(base 2). Even though the language of a computer is binary, if the binary number is too

long, then it will be hard to manipulate it manually. To effectively deal with binary

numbers, two more number systems, octal (base 8) and hexadecimal (base 16), are of

interest to computer scientists.

The digits in the octal number system are 0, 1, 2, 3, 4, 5, 6, and 7. The digits in the

hexadecimal number system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. So A in

hexadecimal is 10 in decimal, B in hexadecimal is 11 in decimal, and so on.

The algorithm to convert a binary number into an equivalent number in octal (or

hexadecimal) is quite simple. Before we describe the method to do so, let us review

some notations. Suppose ab represents the number a to the base b. For example, 2A016
means 2A0 to the base 16, and 638 means 63 to the base 8.

First we describe how to convert a binary number into an equivalent octal number and

vice versa. Table E-1 describes the first eight octal numbers.

Consider the binary number 1101100010101. To find the equivalent octal number,

starting from right to left we consider three digits at a time and write their octal

representation. Note that the binary number 1101100010101 has only 13 digits. So when

TABLE E-1 Binary representation of first eight octal numbers

Binary Octal Binary Octal

000 0 100 4

001 1 101 5

010 2 110 6

011 3 111 7

1490 | Appendix E: Additional C++ Topics

we consider three digits at a time, at the end we will be left with only one digit. In this

case, we just add two 0s to the left of the binary number; the equivalent binary number is

001101100010101. Thus,

11011000101012 ¼ 0011011000101012

¼ 001 101 100 010 101

¼ 154258 because 0012 ¼ 18, 1012 ¼58, 1002 ¼ 48, 0102 ¼ 28,
and 1012 ¼ 58

Thus, 11011000101012 ¼ 154258.
To convert an octal number into an equivalent binary number, using Table E-1, write

the binary representation of each octal digit in the number. For example,

37618 ¼ 011 111 110 0012

¼ 0111111100012

¼ 111111100012

Thus, 37618 ¼ 111111100012.
Next we discuss how to convert a binary number into an equivalent hexadecimal number

and vice versa. The method to do so is similar to converting a number from binary to

octal and vice versa, except that here we work with four binary digits. Table E-2 gives

the binary representation of the first 16 hexadecimal numbers.

TABLE E-2 Binary representation of first 16 hexadecimal numbers

Binary Hexadecimal Binary Hexadecimal

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Binary (Base 2) Representation of a Nonnegative Integer | 1491

Consider the binary number 11111010100010101012. Now,

11111010100010101012 ¼ 111 1101 0100 0101 01012

¼ 0111 1101 0100 0101 01012, add one zero to the left

¼ 7D45516

Hence, 11111010100010101012 ¼ 7D45516.
Next, to convert a hexadecimal number into an equivalent binary number, write the

four-digit binary representation of each hexadecimal digit into that number. For example,

A7F3216 ¼ 1010 0111 1111 0011 00102

¼ 101001111111001100102

Thus, A7F3216 ¼ 101001111111001100102.

More on File Input/Output
In Chapter 3, you learned how to read data from and write data to a file. This section

expands on the concepts introduced in that chapter.

Binary Files
In Chapter 3, you learned how to make a program read data from and write data to a file.

However, the files that the programs have used until now are called text files. Data in a

text file is stored in the character format. For example, consider the number 45. If 45 is

stored in a file, then it is stored as a sequence of two characters—the character '4'
followed by the character '5'. The eight-bit machine representation of '4' is
00000100 and the eight-bit machine representation of '5' is 00000101. Therefore,
in a text file, 45 is stored as 0000010000000101. When this number is read by a C++

program, it must first be converted to its binary format. Suppose that the integers are

represented as 16-bit binary numbers. The 16-bit binary representation of 45 is then

0000000000101101. Similarly, when a program stores the number 45 in a text file, it

first must be converted to its text format. It thus follows that reading data from and

writing data to a text file is not efficient, because the data must be converted from the text

to the binary format and vice versa.

On the other hand, when data is stored in a file in the binary format, reading and writing

data is faster because no time is lost in converting the data from one format to another

format. Such files are called binary files. More formally, binary files are files in which

data is stored in the binary format. Data in a text file is also called formatted data, and in

a binary file it is called raw data.

C++ allows a programmer to create binary files. This section explains how to create

binary files and also how to read data from binary files.

1492 | Appendix E: Additional C++ Topics

To create a binary file, the file must be opened in the binary mode. Suppose outFile is

an ofstream variable (object). Consider the following statement:

outFile.open("employee.dat", ios::binary);

This statement opens the file employee.dat. Data in this file will be written in its

binary format. Therefore, the file opening mode ios::binary specifies that the file is

opened in the binary mode.

Next, you use the stream function write to write data to the file employee.dat. The

syntax to use the function write is:

fileVariableName.write(reinterpret_cast<const char *> (buffer),
sizeof(buffer));

where fileVariableName is the object used to open the output file, and the first argument

buffer specifies the starting address of the location in memory where the data is stored. The

expression sizeof(buffer)specifies the size of the data, in bytes, to be written.

For example, suppose num is an int variable. The following statement writes the value of
num in the binary format to the file associated with outFile:

outFile.write(reinterpret_cast<const char *> (&num),
sizeof(num));

Similarly, suppose empSalary is an array of, say, 100 components and the component

type is double. The following statement writes the entire array to the file associated with
outFile:

outFile.write(reinterpret_cast<const char *> (empSalary),
sizeof(empSalary));

Next, let us discuss how to read data from a binary file. The operation of reading data

from a binary file is similar to writing data to a binary file. First, the binary file must be

opened. For example, suppose inFile is an ifstream variable, and a program has

already created the binary file employee.dat. The following statement opens this file:

inFile.open("employee.dat");

or:

inFile.open("employee.dat", ios::binary);

To read data in the binary format, the stream function read is used. The syntax to use

the function read is:

fileVariableName.read(reinterpret_cast<char *> (buffer),
sizeof(buffer));

More on File Input/Output | 1493

The first argument buffer specifies the starting address of the location in memory where

the data is to be stored. The expression sizeof(buffer) specifies the size of the data,
in bytes, to be read.

The program in the following example further explains how to create binary files and

read data from a binary file.

EXAMPLE E-1

//Creating and reading binary files

#include <iostream>
#include <fstream>

using namespace std;

struct studentType
{

char firstName[15];
char lastName[15];
int ID;

};

int main()
{

//create and initialize an array of students’ IDs
int studentIDs[5] = {111111, 222222, 333333,

444444, 555555}; //Line 1

//declare and initialize the struct newStudent
studentType newStudent = {"John", "Wilson",

777777}; //Line 2

ofstream outFile; //Line 3

//open the output file as a binary file
outFile.open("ids.dat", ios::binary); //Line 4

//write the array in the binary format
outFile.write(reinterpret_cast<const char *> (studentIDs),

sizeof(studentIDs)); //Line 5
//write the newStudent data in the binary format

outFile.write(reinterpret_cast<const char *> (&newStudent),
sizeof(newStudent)); //Line 6

outFile.close(); //close the file //Line 7

ifstream inFile; //Line 8
int arrayID[5]; //Line 9
studentType student; //Line 10

1494 | Appendix E: Additional C++ Topics

//open the input file
inFile.open("ids.dat"); //Line 11

if (!inFile) //Line 12
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 13

return 1; //Line 14
}

//input the data into the array arrayID
inFile.read(reinterpret_cast<char *> (arrayID),

sizeof(arrayID)); //Line 15
//output the data of the array arrayID

for (int i = 0; i < 5; i++) //Line 16
cout << arrayID[i] << " "; //Line 17

cout << endl; //Line 18

//read the student's data
inFile.read(reinterpret_cast<char *> (&student),

sizeof(student)); //Line 19

//output studentData
cout << student.ID << " " << student.firstName

<< " " << student.lastName << endl; //Line 20

inFile.close(); //close the file //Line 21

return 0; //Line 22
}

Sample Run:

111111 222222 333333 444444 555555
777777 John Wilson

The output of the preceding program is self-explanatory. The details are left as an exercise
for you.

In the program in Example E-1, the statement in Line 2 declares the struct variable
newStudent and also initializes it. Because newStudent has three components and

we want to initialize all the components, three values are specified in braces separated by

commas. In other words, struct variables can also be initialized when they are
declared.

The program in the following example further explains how to create binary files and

then read the data from the binary files.

More on File Input/Output | 1495

EXAMPLE E-2

//Creating and reading a binary file consisting of
//bank customers' data

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

struct customerType
{

char firstName[15];
char lastName[15];
int ID;
double balance;

};

int main()
{

customerType cust; //Line 1
ifstream inFile; //Line 2
ofstream outFile; //Line 3

inFile.open("customerData.txt"); //Line 4

if (!inFile) //Line 5
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 6

return 1; //Line 7
}

outFile.open("customer.dat", ios::binary); //Line 8

inFile >> cust.ID >> cust.firstName >> cust.lastName
>> cust.balance; //Line 9

while (inFile) //Line 10
{

outFile.write(reinterpret_cast<const char *> (&cust),
sizeof(cust)); //Line 11

inFile >> cust.ID >> cust.firstName >> cust.lastName
>> cust.balance; //Line 12

}

inFile.close(); //Line 13
inFile.clear(); //Line 14
outFile.close(); //Line 15

1496 | Appendix E: Additional C++ Topics

inFile.open("customer.dat", ios::binary); //Line 16

if (!inFile) //Line 17
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 18

return 1; //Line 19
}

cout << left << setw(8) << "ID"
<< setw(16) << "First Name"
<< setw(16) << "Last Name"
<< setw(10) << " Balance" << endl; //Line 20

cout << fixed << showpoint << setprecision(2); //Line 21

//read and output the data from the binary
//file customer.dat

inFile.read(reinterpret_cast<char *> (&cust),
sizeof(cust)); //Line 22

while (inFile) //Line 23
{

cout << left << setw(8) << cust.ID
<< setw(16) << cust.firstName
<< setw(16) << cust.lastName
<< right << setw(10) << cust.balance
<< endl; //Line 24

inFile.read(reinterpret_cast<char *> (&cust),
sizeof(cust)); //Line 25

}

inFile.close(); //close the file //Line 26

return 0; //Line 27
}

Sample Run:

ID First Name Last Name Balance
77234 Ashley White 4563.50
12345 Brad Smith 128923.45
87123 Lisa Johnson 2345.93
81234 Sheila Robinson 674.00
11111 Rita Gupta 14863.50
23422 Ajay Kumar 72682.90
22222 Jose Ramey 25345.35
54234 Sheila Duffy 65222.00
55555 Tommy Pitts 892.85
23452 Salma Quade 2812.90
32657 Jennifer Ackerman 9823.89
82722 Steve Sharma 78932.00

More on File Input/Output | 1497

Random File Access
In Chapter 3 and the preceding section, you learned how to read data from and write data

to a file. More specifically, you used ifstream objects to read data from a file and

ofstream objects to write data to a file. However, the files were read and/or written

sequentially. Reading data from a file sequentially does not work very well for a variety of

applications. For example, consider a program that processes customers’ data in a bank.

Typically, there are thousands or even millions of customers in a bank. Suppose we want

to access a customer’s data from the file that contains such data, say, for an account

update. If the data is accessed sequentially, starting from the first position and read until

the desired customer’s data is found, this process might be extremely time consuming.

Similarly, in an airline’s reservation system to access a passenger’s reservation information

sequentially, this might also be very time consuming. In such cases, the data retrieval must

be efficient. A convenient way to do this is to be able to read the data randomly from a

file, that is, randomly access any record in the file.

In the preceding section, you learned how to use the stream function read to read a

specific number of bytes, and the function write to write a specific number of bytes.

The stream function seekg is used to move the read position to any byte in the file. The

general syntax to use the function seekg is:

fileVariableName.seekg(offset, position);

The stream function seekp is used to move the write position to any byte in the file.

The general syntax to use the function seekp is:

fileVariableName.seekp(offset, position);

The offset specifies the number of bytes the reading/writing positions are to be

moved, and position specifies where to begin the offset. The offset can be calculated

from the beginning of the file, end of the file, or the current position in the file.

Moreover, offset is a long integer representation of an offset. Table E-3 shows the

values that can be used for position.

TABLE E-3 Values of position

position Description

ios::beg The offset is calculated from the beginning of the file.

ios::cur The offset is calculated from the current position of the reading marker
in the file.

ios::end The offset is calculated from the end of the file.

1498 | Appendix E: Additional C++ Topics

EXAMPLE E-3

Suppose you have the following line of text stored in a file, say,
digitsAndLetters.txt:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

Also, suppose that inFile is an ifstream object and the file digitsAndLetters.txt
has been opened using the object inFile. One byte is used to store each character of this
line of text. Moreover, the position of the first character is 0.

The program in the following example further explains how the functions seekg and

seekp work.

EXAMPLE E-4

#include <iostream>
#include <fstream>

using namespace std;

int main()
{

char ch; //Line 1
ifstream inFile; //Line 2

inFile.open("digitsAndAlphabet.txt"); //Line 3

if (!inFile) //Line 4
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 5

return 1; //Line 6
}

Statement Explanation

inFile.seekp(10L, ios::beg); Sets the reading position of inFile to the 11th

byte (character), which is at position 10. That is, it
sets the reading position just after the digit 9 or
just before the letter A.

inFile.seekp(5L, ios::cur); Moves the reading position of inFile five bytes
to the right of its current position.

inFile.seekp(-6L, ios::end); Sets the reading position of inFile to the sixth
byte (character) from the end. That is, it sets the
reading position just before the letter U.

More on File Input/Output | 1499

inFile.get(ch); //Line 7
cout << "Line 8: The first byte: " << ch << endl; //Line 8

//position the reading marker six bytes to the
//right of its current position

inFile.seekg(6L, ios::cur); //Line 9
inFile.get(ch); //read the character //Line 10
cout << "Line 11: Current byte read: " << ch

<< endl; //Line 11

//position the reading marker seven bytes
//from the beginning

inFile.seekg(7L, ios::beg); //Line 12
inFile.get(ch); //read the character //Line 13
cout << "Line 14: Seventh byte from the beginning: "

<< ch << endl; //Line 14

//position the reading marker 26 bytes
//from the end

inFile.seekg(-26L, ios::end); //Line 15
inFile.get(ch); //read the character //Line 16
cout << "Line 17: Byte 26 from the end: " << ch

<< endl; //Line 17

return 0; //Line 18
}

Sample Run:

Line 8: The first byte: 0
Line 11: Current byte read: 7
Line 14: Seventh byte from the beginning: 7
Line 17: Byte 26 from the end: A

The input file contains the following line of text:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

The following program illustrates how the function seekg works with structs.

EXAMPLE E-5

Suppose customerType is a struct defined as follows:

struct customerType
{

char firstName[15];
char lastName[15];
int ID;
double balance;

};

1500 | Appendix E: Additional C++ Topics

The program in Example E-2 created the binary file customer.dat consisting of
certain customers’ data. You can use the function seekg to move the reading position
of this file to any record. Suppose inFile is an ifstream object used to open the
binary file customer.dat.

The following statement calculates the size of a customerType struct and stores it in
the variable custSize:

long custSize = sizeof(cust);

We can use the value of the variable custSize to move the reading position to a specific
record in the file. For example, consider the following statement:

inFile.seekg(6 * custSize, ios::beg);

This statement moves the reading position just after the sixth customer’s record, that is,
just before the seventh customer’s record.

The following program further illustrates how the function seekg works with structs.

EXAMPLE E-6

//Reading a file randomly

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

struct customerType
{

char firstName[15];
char lastName[15];
int ID;
double balance;

};

void printCustData(const customerType& customer);

int main()
{

customerType cust; //Line 1
ifstream inFile; //Line 2

long custSize = sizeof(cust); //Line 3

inFile.open("customer.dat", ios::binary); //Line 4
if (!inFile) //Line 5

More on File Input/Output | 1501

{
cout << "The input file does not exist. "

<< "The program terminates!!!!" << endl; //Line 6
return 1; //Line 7

}

cout << fixed << showpoint << setprecision(2); //Line 8

//randomly read the records and output them
inFile.seekg(6 * custSize, ios::beg); //Line 9
inFile.read(reinterpret_cast<char *> (&cust),

sizeof(cust)); //Line 10
cout << "Seventh customer's data: " << endl; //Line 11
printCustData(cust); //Line 12

inFile.seekg(8 * custSize, ios::beg); //Line 13
inFile.read(reinterpret_cast<char *> (&cust),

sizeof(cust)); //Line 14
cout << "Ninth customer's data: " << endl; //Line 15
printCustData(cust);

inFile.seekg(-8 * custSize, ios::end); //Line 16
inFile.read(reinterpret_cast<char *> (&cust),

sizeof(cust)); //Line 17
cout << "Eighth (from the end) customer's data: "

<< endl; //Line 18
printCustData(cust); //Line 19

inFile.close(); //close the file //Line 20

return 0; //Line 21
}

void printCustData(const customerType& customer)
{

cout << " ID: " << customer.ID <<endl
<< " First Name: " << customer.firstName <<endl
<< " Last Name: " << customer.lastName <<endl
<< " Account Balance: $" << customer.balance
<< endl;

}

Sample Run:

Seventh customer's data:
ID: 22222
First Name: Jose
Last Name: Ramey
Account Balance: $25345.35

Ninth customer's data:
ID: 55555
First Name: Tommy
Last Name: Pitts

1502 | Appendix E: Additional C++ Topics

Account Balance: $892.85
Eighth (from the end) customer's data:

ID: 11111
First Name: Rita
Last Name: Gupta
Account Balance: $14863.50

The program in Example E-6 illustrates how the function seekg works. Using the

function seekg, the reading position in a file can be moved to any location in the file.

Similarly, the function seekp can be used to move the write position in a file to any

location. Furthermore, these functions can be used to create a binary file in which the

data is organized according to the values of either a variable or a particular component of

a struct. For example, suppose there are at most, say, 100 students in a class. Each
student has a unique ID in the range 1 to 100. Using the students’ IDs, we can create a

random access binary file in such a way that in the file, a student’s data is written at the

location specified by its ID. This is like treating the file as an array. The advantage is that,

once the file is created, a student’s data from the file can be read, directly, using the

student’s ID. Another advantage is that in the file, the data is sorted according to the IDs.

Here, we are assuming that the student IDs are in the range 1 to 100. However, if you use,

say, a three-, four-, or five-digit number as a student ID and there are only a few students in

the class, the data in the file could be scattered. In other words, a lot of space could be used

just to store only a few students’ data. In such cases, more advanced techniques are used to

organize the data so that it can be accessed efficiently.

The program in Example E-7 illustrates how to use the students’ IDs to organize the data

in a binary file. The program also shows how to output the file.

EXAMPLE E-7

//Creating and reading a random access file.

#include <iostream>
#include <fstream>
#include <iomanip>

using namespace std;

struct studentType
{

char firstName[15];
char lastName[15];
int ID;
double GPA;

};

void printStudentData(const studentType& student);

More on File Input/Output | 1503

int main()
{

studentType st; //Line 1
ifstream inFile; //Line 2
ofstream outFile; //Line 3

long studentSize = sizeof(st); //Line 4

//open the input file, which is a text file
inFile.open("studentData.txt"); //Line 5

if (!inFile) //Line 6
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 7

return 1; //Line 8
}

//open a binary output file
outFile.open("student.dat", ios::binary); //Line 9

inFile >> st.ID >> st.firstName
>> st.lastName >> st.GPA; //Line 10

while (inFile) //Line 11
{

outFile.seekp((st.ID - 1) * studentSize,
ios::beg); //Line 12

outFile.write(reinterpret_cast<const char *> (&st),
sizeof(st)); //Line 13

inFile >> st.ID >> st.firstName
>> st.lastName >> st.GPA; //Line 14

};

inFile.close(); //Line 15
inFile.clear(); //Line 16
outFile.close(); //Line 17

cout << left << setw(3) << "ID"
<< setw(16) << "First Name"
<< setw(16) << "Last Name"
<< setw(12) << "Current GPA" << endl; //Line 18

cout << fixed << showpoint << setprecision(2); //Line 19

//open the input file, which is a binary file
inFile.open("student.dat", ios::binary); //Line 20

if (!inFile) //Line 21
{

cout << "The input file does not exist. "
<< "The program terminates!!!!" << endl; //Line 22

return 1; //Line 23
}

1504 | Appendix E: Additional C++ Topics

//read the data at location 0 in the file
inFile.read(reinterpret_cast<char *> (&st),

sizeof(st)); //Line 24
while (inFile) //Line 25
{

if (st.ID != 0) //Line 26
printStudentData(st); //Line 27

//read the data at the current reading position
inFile.read(reinterpret_cast<char *> (&st),

sizeof(st)); //Line 28
};

return 0; //Line 29
}

void printStudentData(const studentType& student)
{

cout << left << setw(3) << student.ID
<< setw(16) << student.firstName
<< setw(16) << student.lastName
<< right << setw(10)<< student.GPA
<< endl;

}

Sample Run:

ID First Name Last Name Current GPA
2 Sheila Duffy 4.00
10 Ajay Kumar 3.60
12 Ashley White 3.90
16 Tommy Pitts 2.40
23 Rita Gupta 3.40
34 Brad Smith 3.50
36 Salma Quade 3.90
41 Steve Sharma 3.50
45 Sheila Robinson 2.50
56 Lisa Johnson 2.90
67 Jose Ramey 3.80
75 Jennifer Ackerman 4.00

The data in the file studentData.txt is as follows:

12 Ashley White 3.9
34 Brad Smith 3.5
56 Lisa Johnson 2.9
45 Sheila Robinson 2.5
23 Rita Gupta 3.4
10 Ajay Kumar 3.6
67 Jose Ramey 3.8
2 Sheila Duffy 4.0
16 Tommy Pitts 2.4

More on File Input/Output | 1505

36 Salma Quade 3.9
75 Jennifer Ackerman 4.0
41 Steve Sharma 3.5

Naming Conventions of Header Files in ANSI/ISO
Standard C++ and Standard C++
The programs in this book are written using ANSI/ISO Standard C++. As indicated

in Chapter 1, there are two versions of C++—ANSI/ISO Standard C++ and

Standard C++. For the most part, these two standards are the same. The header

files in Standard C++ have the extension .h, while the header files in ANSI/ISO

Standard C++ have no extension. Moreover, the names of certain header files, such

as math.h, in ANSI/ISO Standard C++ start with the letter c. The language C++

evolved from C. Therefore, certain header files—such as math.h, stdlib.h, and

string.h—were brought from C into C++. The header files—such as

iostream.h, iomanip.h, and fstream.h—were specially designed for C++.

Recall that when a header file is included in a program, the global identifiers of

the header file also become the global identifiers of the program. In ANSI/ISO

Standard C++, to take advantage of the namespace mechanism, all of the header
files were modified so that the identifiers are declared within a namespace. Recall
that the name of this namespace is std.

In ANSI/ISO Standard C++, the extension .h of the header files that were specially

designed for C++ was dropped. For the header files that were brought from C into C++,

the extension .h was dropped and the names of these header files start with the letter c.

Following are the names of the most commonly used header files in Standard C++ and

ANSI/ISO Standard C++:

Standard C++ Header File Name ANSI/ISO Standard C++ Header File Name

assert.h cassert

ctype.h cctype

float.h cfloat

fstream.h fstream

iomanip.h iomanip

iostream.h iostream

limits.h climits

math.h cmath

stdlib.h cstdlib

string.h cstring

1506 | Appendix E: Additional C++ Topics

To include a header file, say, iostream, the following statement is required:

#include <iostream>

Furthermore, to use identifiers, such as cin, cout, endl, and so on, the program should

use either the statement:

using namespace std;

or the prefix std:: before the identifier.

Naming Conventions of Header Files in ANSI/ISO Standard C++ and Standard C++ | 1507

This page intentionally left blank

The C++ standard library contains many predefined functions, named constants, and

specialized data types. This appendix discusses some of the most widely used library

routines (and several named constants). For additional explanation and information on

functions, named constants, and so on, check your system documentation. The names of

the Standard C++ header files are shown in parentheses.

Header File cassert (assert.h)
The following table describes the function assert. Its specification is contained in the

header file cassert (assert.h).

assert(expression) expression is any
int expression;
expression is usually
a logical expression

• If the value of expression
is nonzero (true), the
program continues to execute.

• If the value of expression
is 0 (false), execution of
the program terminates
immediately. The expression,
the name of the file containing
the source code, and the line
number in the source code are
displayed.

To disable all of the assert statements, place the preprocessor directive #define
NDEBUG before the directive #include <cassert>.

1509

APPENDIX F

HEADER FILES

Header File cctype (ctype.h)
The following table shows various functions from the header file cctype (ctype.h).

Function Name
and Parameters

Parameter(s) Types Function Return Value

isalnum(ch) ch is a char value Function returns an int value as follows:

• If ch is a letter or a digit character, that is
('A'-'Z', 'a'-'z', '0'-'9'), it
returns a nonzero value (true)

• 0 (false), otherwise

iscntrl(ch) ch is a char value Function returns an int value as follows:

• If ch is a control character (in ASCII, a
character value 0-31 or 127), it returns a
nonzero value (true)

• 0 (false), otherwise

isdigit(ch) ch is a char value Function returns an int value as follows:

• If ch is a digit ('0'-'9'), it returns a
nonzero value (true)

• 0 (false), otherwise

islower(ch) ch is a char value Function returns an int value as follows:

• If ch is lowercase ('a'-'z'), it returns a
nonzero value (true)

• 0 (false), otherwise

isprint(ch) ch is a char value Function returns an int value as follows:

• If ch is a printable character, including blank
(in ASCII, ' ' through '~'), it returns
a nonzero value (true)

• 0 (false), otherwise

ispunct(ch) ch is a char value Function returns an int value as follows:

• If ch is a punctuation character, it returns a
nonzero value (true)

• 0 (false), otherwise

isspace(ch) ch is a char value Function returns an int value as follows:

• If ch is a whitespace character (blank,
newline, tab, carriage return, form feed), it
returns a nonzero value (true)

• 0 (false), otherwise

1510 | Appendix F: Header Files

Function Name
and Parameters

Parameter(s) Types Function Return Value

isupper(ch) ch is a char value Function returns an int value as follows:

• If ch is an uppercase letter ('A'-'Z'), it
returns a nonzero value (true)

• 0 (false), otherwise

tolower(ch) ch is a char value Function returns an int value as follows:

• If ch is an uppercase letter, it returns the
ASCII value of the lowercase equivalent of ch

• ASCII value of ch, otherwise

toupper(ch) ch is a char value Function returns an int value as follows:

• If ch is a lowercase letter, it returns the ASCII
value of the uppercase equivalent of ch

• ASCII value of ch, otherwise

Header File cfloat (float.h)
In Chapter 2, we listed the largest and smallest values belonging to the floating-point data

types. We also remarked that these values are system dependent. These largest and

smallest values are stored in named constants. The header file cfloat contains many

such named constants. The following table lists some of these constants.

Named Constant Description

FLT_DIG Approximate number of significant digits in a float value

FLT_MAX Maximum positive float value

FLT_MIN Minimum positive float value

DBL_DIG Approximate number of significant digits in a double value

DBL_MAX Maximum positive double value

DBL_MIN Minimum positive double value

LDBL_DIG Approximate number of significant digits in a long double value

LDBL_MAX Maximum positive long double value

LDBL_MIN Minimum positive long double value

Header File cfloat (float.h) | 1511

A program similar to the following can print the values of these named constants on your

system.

#include <iostream>
#include <cfloat>

using namespace std;

int main()
{

cout << "Approximate number of significant digits "
<< "in a float value " << FLT_DIG << endl;

cout << "Maximum positive float value " << FLT_MAX
<< endl;

cout << "Minimum positive float value " << FLT_MIN
<< endl;

cout << "Approximate number of significant digits "
<< "in a double value " << DBL_DIG << endl;

cout << "Maximum positive double value " << DBL_MAX
<< endl;

cout << "Minimum positive double value " << DBL_MIN
<< endl;

cout << "Approximate number of significant digits "
<< "in a long double value " << LDBL_DIG << endl;

cout << "Maximum positive long double value " << LDBL_MAX
<< endl;

cout << "Minimum positive long double value " << LDBL_MIN
<< endl;

return 0;
}

Header File climits (limits.h)
In Chapter 2, we listed the largest and smallest values belonging to the integral data types.

We also remarked that these values are system dependent. These largest and smallest

values are stored in named constants. The header file climits contains many such

named constants. The following table lists some of these constants.

Named Constant Description

CHAR_BIT Number of bits in a byte

CHAR_MAX Maximum char value

CHAR_MIN Minimum char value

SHRT_MAX Maximum short value

SHRT_MIN Minimum short value

1512 | Appendix F: Header Files

Named Constant Description

INT_MAX Maximum int value

INT_MIN Minimum int value

LONG_MAX Maximum long value

LONG_MIN Minimum long value

UCHAR_MAX Maximum unsigned char value

USHRT_MAX Maximum unsigned short value

UINT_MAX Maximum unsigned int value

ULONG_MAX Maximum unsigned long value

A program similar to the following can print the values of these named constants on your

system.

#include <iostream>
#include <climits>

using namespace std;

int main()
{

cout << "Number of bits in a byte " << CHAR_BIT << endl;
cout << "Maximum char value " << CHAR_MAX << endl;
cout << "Minimum char value " << CHAR_MIN << endl;
cout << "Maximum short value " << SHRT_MAX << endl;
cout << "Minimum short value " << SHRT_MIN << endl;
cout << "Maximum int value " << INT_MAX << endl;
cout << "Minimum int value " << INT_MIN << endl;
cout << "Maximum long value " << LONG_MAX << endl;
cout << "Minimum long value " << LONG_MIN << endl;
cout << "Maximum unsigned char value " << UCHAR_MAX

<< endl;
cout << "Maximum unsigned short value " << USHRT_MAX

<< endl;
cout << "Maximum unsigned int value " << UINT_MAX << endl;
cout << "Maximum unsigned long value " << ULONG_MAX

<< endl;

return 0;
}

Header File climits (limits.h) | 1513

Header File cmath (math.h)
The following table shows various math functions.

Function Name
and Parameters

Parameter(s) Type Function Return Value

acos(x) x is a floating-point expression,
–1.0 � x � 1.0

Arc cosine of x, a value between 0.0 and p

asin(x) x is a floating-point expression,
–1.0 � x � 1.0

Arc sine of x, a value between -p/2
and p/2

atan(x) x is a floating-point expression Arc tan of x, a value between -p/2 and p/2

ceil(x) x is a floating-point expression The smallest whole number � x,
(‘‘ceiling’’ of x)

cos(x) x is a floating-point expression,
x is measured in radians

Trigonometric cosine of the angle

cosh(x) x is a floating-point expression Hyperbolic cosine of x

exp(x) x is a floating-point expression The value e raised to the power of x;
(e = 2.718. . .)

fabs(x) x is a floating-point expression Absolute value of x

floor(x) x is a floating-point expression The largest whole number� x; (‘‘floor’’ of x)

log(x) x is a floating-point expression,
in which x > 0.0

Natural logarithm (base e) of x

log10(x) x is a floating-point expression,
in which x > 0.0

Common logarithm (base 10) of x

pow(x,y) x and y are floating-point
expressions. If x = 0.0,
y must be positive;
if x � 0.0, y must
be a whole number.

x raised to the power of y

sin(x) x is a floating-point expression;
x is measured in radians

Trigonometric sine of the angle

sinh(x) x is a floating-point expression Hyperbolic sine of x

1514 | Appendix F: Header Files

Function Name
and Parameters

Parameter(s) Type Function Return Value

sqrt(x) x is a floating-point expression,
in which x � 0.0

Square root of x

tan(x) x is a floating-point expression;
x is measured in radians

Trigonometric tangent of the angle

tanh(x) x is a floating-point expression Hyperbolic tangent of x

Header File cstddef (stddef.h)
Among others, this header file contains the definition of the following symbolic constant:

NULL: The system-dependent null pointer (usually 0)

Header File cstring (string.h)
The following table shows various string functions.

Function Name and
Parameters

Parameter(s) Type Function Return Value

strcat(destStr, srcStr) destStr and srcStr
are null-terminated char
arrays; destStr must be
large enough to hold the
result

The base address of
destStr is returned;
srcStr, including the
null character, is
concatenated to the end of
destStr

strcmp(str1, str2) str1 and str2 are null-
terminated char arrays

The returned value is as
follows:

• An int value < 0 if
str1 < str2

• An int value 0 if
str1 = str2

• An int value > 0 if
str1 > str2

Header File cmath (math.h) | 1515

Function Name and
Parameters

Parameter(s) Type Function Return Value

strcpy(destStr, srcStr) destStr and
srcStr are

null-terminated char
arrays

The base address of
destStr is returned;
srcStr is copied into
destStr

strlen(str) str is a null-terminated
char array

An integer value � 0
specifying the length of
the str (excluding the
'\0') is returned

HEADER FILE string

This header file—not to be confused with the header file cstring—supplies a programmer-

defined data type named string. Associated with the string type are a data type

string::size_type and a named constant string::npos. These are defined as follows:

string::size_type An unsigned integer type

string::npos The maximum value of type string::size_type

The type string contains several functions for string manipulation. In addition to the
string functions listed in Table 8-1, the following table describes additional string functions.

In this table, we assume that strVar is a string variable and str is a string variable, a
string constant, or a character array.

Expression Effect

getline(istreamVar, strVar); istreamVar is an input stream variable (of type
istream or ifstream).

Characters until the newline character are input

from istreamVar and stored in strVar. (The
newline character is read but not stored into
strVar.) The value returned by this function is
usually ignored.

strVar.append(str, n) The first n characters of the character array str are
appended to strVar.

strVar.c_str() The base address of a null-terminated C-string
corresponding to the characters in strVar.

1516 | Appendix F: Header Files

Expression Effect

strVar.capacity() Returns the size of the storage allocated for strVar.

strVar.erase(pos); pos is a parameter of type
string::size_type.

Removes all of the characters from strVar starting
at index pos.

strVar.resize(n, ch); Changes the size of storage allocation for strVar
to n. If n is less than the current storage size of
strVar, the storage size of the string is truncated
to n. If n is greater than the current storage size, the
string is expanded to size n and the additional space
is filled with copies of the character specified by the
char variable ch.

Header File cmath (math.h) | 1517

This page intentionally left blank

A program similar to the following prints the memory size of the built-in data types on

your system. (The output of the program shows the size of the built-in data type on

which this program was run.)

#include <iostream>

using namespace std;

int main()
{

cout << "Size of char = " << sizeof(char) << endl;
cout << "Size of int = " << sizeof(int) << endl;
cout << "Size of short = " << sizeof(short) << endl;
cout << "Size of unsigned int = " << sizeof(unsigned int)

<< endl;
cout << "Size of long = " << sizeof(long) << endl;
cout << "Size of bool = " << sizeof(bool) << endl;
cout << "Size of float = " << sizeof(float) << endl;
cout << "Size of double = " << sizeof(double) << endl;
cout << "Size of long double = " << sizeof(long double)

<< endl;
cout << "Size of unsigned short = "

<< sizeof(unsigned short) << endl;
cout << "Size of unsigned long = "

<< sizeof(unsigned long) << endl;

return 0;
}

Sample Run:

Size of char = 1
Size of int = 4
Size of short = 2
Size of unsigned int = 4
Size of long = 4
Size of bool = 1
Size of float = 4
Size of double = 8
Size of long double = 8
Size of unsigned short = 2
Size of unsigned long = 4

APPENDIX G

MEMORY SIZE ON A
SYSTEM AND RANDOM
NUMBER GENERATOR

1519

Random Number Generator
To generate a random number, you can use the C++ function rand. To use the function

rand, the program must include the header file cstdlib. The header file cstdlib also

contains the constant RAND_MAX. Typically, the value of RAND_MAX is 32767. To find

the exact value of RAND_MAX, check your system’s documentation. The function rand

generates an integer between 0 and RAND_MAX. The following program illustrates how to

use the function rand. It also prints the value of RAND_MAX:

#include <iostream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main()
{

cout << fixed << showpoint << setprecision(5);
cout << "The value of RAND_MAX: " << RAND_MAX << endl;

cout << "A random number: " << rand() << endl;
cout << "A random number between 0 and 9: "

<< rand() % 10 << endl;
cout << "A random number between 0 and 1: "

<< static_cast<double> (rand())
/ static_cast<double>(RAND_MAX)

<< endl;

return 0;
}

Sample Run:

The value of RAND_MAX: 32767
A random number: 41
A random number between 0 and 9: 7
A random number between 0 and 1: 0.19330

1520 | Appendix G: Memory Size on a System and Random Number Generator

1. G. Booch, Object-Oriented Analysis and Design, Second Edition, Addison-Wesley, 1995.

2. E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms C++, Computer Science

Press, 1997.

3. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-Wesley,

Reading, MA, 1999.

4. D.E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd ed.,

Addison-Wesley, Reading, MA, 1997.

5. D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd ed.,

Addison-Wesley, Reading, MA, 1998.

6. D.E. Knuth, The Art of Computer Programming, Volume 3: Searching and Sorting, 2nd ed.,

Addison-Wesley, Reading, MA, 1998.

7. S.B. Lippman and J. Lajoie, C++ Primer, Third Edition, Addison-Wesley, Reading, MA,

1998.

8. D.S. Malik and M.K. Sen, Discrete Mathematics: Theory and Applications (Revised Edition),

Cengage Learning Asia, Singapore, 2010.

9. E.M. Reingold and W.J. Hensen, Data Structures in Pascal, Little Brown and Company,

Boston, MA, 1986.

10. R. Sedgewick, Algorithms in C, Third Edition, Addison-Wesley, Reading, MA, Parts 1-4,

1998; Part 5, 2002.

11. B. Stroustrup, The Design and Evolution of C++, Addison-Wesley, Reading, MA, 1994.

APPENDIX H

REFERENCES

1521

This page intentionally left blank

Chapter 1
1. a. false; b. false; c. true; d. false; e. false; f; false; g. false; h. true; i. true; j. false;

k. true; l. false

3. Screen and printer.

5. An operating system monitors the overall activity of the computer and provides

services. Some of these services include memory management, input/output activ-

ities, and storage management.

7. In machine language, the programs are written using the binary codes, whereas in

high-level language, the programs are closer to the natural language. For execution,

a high-level language program is translated into machine language, whereas a

machine language need not be translated into any other language.

9. Because the computer cannot directly execute instructions written in a high-level

language, a compiler is needed to translate a program written in high-level language

into machine code.

11. Every computer directly understands its own machine language. Therefore, for the

computer to execute a program written in a high-level language, the high-level

language program must be translated into the computer’s machine language.

13. In linking, an object program is combined with other programs in the library used

in the program to create the executable code.

15. To find the weighted average of the four test scores, first you need to know each

test score and its weight. Next, you multiply each test score with its weight and

then add these numbers to get the average. Therefore:

1. Get testScore1, weightTestScore1

2. Get testScore2, weightTestScore2

3. Get testScore3, weightTestScore3

4. Get testScore4, weightTestScore4

5. weightedAverage = testScore1 * weightTestScore1 +
testScore2 * weightTestScore2 +
testScore3 * weightTestScore3 +
testScore4 * weightTestScore4;

APPENDIX I

ANSWERS TO
ODD-NUMBERED
EXERCISES

1523

17. To find the price per square inch, first we need to find the area of the pizza. Then

we divide the price of the pizza by the area of the pizza. Let radius denote the

radius, area denote the area of the circle, and price denote the price of the pizza.

Also, let pricePerSquareInch denote the price per square inch.

a. Get radius.

b. area = p * radius * radius
c. Get price.

d. pricePerSquareInch = price / area

19. To calculate the selling price of an item, we need to know the original price (the price

the store pays to buy) of the item. We can then use the following formula to find the

selling price.

sellingPrice = originalPrice + originalPrice * .60

The algorithm is as follows:

a. Get originalPrice.

b. Calculate the sellingPrice using the formula:

sellingPrice = originalPrice + originalPrice * .60

The information needed to calculate the selling price is the original price and

the marked-up percentage.

21. Suppose that numOfPages denotes the number of pages to be faxed, and

billingAmount denotes the total charges for the pages faxed. To calculate the

total charges, you need to know the number of pages faxed.

If numOfPages is less than or equal to 10, the billing amount is service charges þ
(numOfPages � 0.20); otherwise, billing amount is service charges þ 10 � 0.20þ
(numOfPages - 10) � 0.10. That is,

You can now write the algorithm as follows:

a. Get numOfPages.

b. Calculate billing amount using the formula:

if (numOfPages is less than or equal to 10)

billingAmount = 3.00 + (numOfPages � 0.20);

otherwise

billingAmount = 3.00 + 10 � 0.20 + (numOfPages - 10) � 0.10;
23. Suppose averageTestScore denotes the average test score, highestScore

denotes the highest test score, testScore denotes a test score, sum denotes the

sum of all of the test scores, count denotes the number of students in class, and

studentName denotes the name of a student.

1524 | Appendix I: Answers to Odd-Numbered Exercises

a. First, you design an algorithm to find the average test score. To find the average

test score, first you need to count the number of students in the class and add the

test score of each student. You then divide the sum by count to find the average

test score. The algorithm to find the average test score is as follows:

i. Set sum and count to 0.

ii. Repeat the following for each student in class.

1. Get testScore.

2. Increment count and update the value of sum by adding the current

test score to sum.

iii. Use the following formula to find the average test score.

if (count is 0)
averageTestScore = 0;

otherwise
averageTestScore = sum / count;

b. The following algorithm determines and prints the names of all of the students

whose test score is below the average test score.

Repeat the following for each student in class.

i. Get studentName and testScore.

ii. if (testScore is less than averageTestScore)
print studentName

c. The following algorithm determines the highest test score.
i. Get first student’s test score and call it highestTestScore.

ii. Repeat the following for each of the remaining students in class

1. Get testScore

2. if (testScore is greater than highestTestScore)
highestTestScore = testScore;

d. To print the names of all of the students whose test score is the same as the

highest test score, compare the test score of each student with the highest test

score, and if they are equal, print the name. The following algorithm accom-

plishes this. Repeat the following for each student in class.

i. Get studentName and testScore.

ii. if (testScore is equal to highestTestScore)
print studentName

You can use the solutions of the subproblems obtained in parts a through d to design

the main algorithm as follows:

1. Use the algorithm in part a to find the average test score.

2. Use the algorithm in part b to print the names of all of the students whose score is

below the average test score.

3. Use the algorithm in part c to find the highest test score.

4. Use the algorithm in part d to print the names of all of the students whose test score

is the same as the highest test score.

Chapter 1 | 1525

Chapter 2
1. a. false; b. false; c. false; d. true; e. true; f. false; g. true; h. true; i. false; j. true; k. false

3. b, d, e

5. The identifiers firstName and FirstName are not the same. C++ is case

sensitive. The first letter of firstName is lowercase f, whereas the first character

of FirstName is uppercase F. So these identifiers are different.

7. a. 3

b. Not possible. Both of the operands of the operator % must be integers. Because

the second operand, w, is a floating-point value, the expression is invalid.

c. Not possible. Both of the operands of the operator % must be integers. Because

the first operand, which is y + w, is a floating-point value, the expression is

invalid.

d. 38.5

e. 1

f. 2

g. 2

h. 420.0

9. 7

11. a and c are valid.

13. a. 32 * a + b

b. '8'

c. "Julie Nelson"

d. (b * b – 4 * a * c) / (2 * a)

e. (a + b) / c * (e * f) - g * h

f. (-b + (b * b - 4 * a * c)) / (2 * a)

15. x = 20
y = 15
z = 6
w = 11.5
t = 4.5

17. a. 0.50; b. 24.50; c. 37.6; d. 8.3; e. 10; f. 38.75

19. a and c are correct.

21. a. int num1;
int num2;

b. cout << "Enter two numbers separated by spaces." << endl;

c. cin >> num1 >> num2;

d. cout << "num1 = " << num1 << "num2 = " << num2
<< "2 * num1 - num2 = " << 2 * num1 - num2 << endl;

1526 | Appendix I: Answers to Odd-Numbered Exercises

23. A correct answer is:
#include <iostream>

using namespace std;

const char STAR = '*';
const int PRIME = 71;

int main()
{

int count, sum;
double x;

int newNum; //declare newNum

count = 1;
sum = count + PRIME;
x = 25.67; // x = 25.67;
newNum = count * 1 + 2; //newNum = count * ONE + 2;
sum = sum + count; //sum + count = sum;
x = x + sum * count; // x = x + sum * COUNT;
cout << " count = " << count << ", sum = " << sum

<< ", PRIME = " << PRIME << endl;
return 0;

}

25. An identifier must be declared before it can be used.

27. a. x *= 2;

b. x += y - 2;

c. sum += num;

d. z *= x + 2;

e. y /= x + 5;

29. a b c
a = (b++) + 3; 9 7 und
c = 2 * a + (++b); 9 8 26
b = 2 * (++c) – (a++); 10 45 27

31. (The user input is shaded.)

a = 25
Enter two integers : 20 15

The numbers you entered are 20 and 15
z = 45.5
Your grade is A
The value of a = 65

33. #include <iostream>
#include <string>

using namespace std;

const double X = 13.45;
const int Y = 34;
const char BLANK = ' ';

Chapter 2 | 1527

int main()
{

string firstName, lastName;
int num;
double salary;

cout << "Enter first name: ";
cin >> firstName;
cout << endl;

cout << "Enter last name: ";
cin >> lastName;
cout << endl;

cout << "Enter a positive integer less than 70: ";
cin >> num;
cout << endl;

salary = num * X;

cout << "Name: " << firstName << BLANK << lastName << endl;
cout << "Wages: $" << salary << endl;
cout << "X = " << X << endl;
cout << "X + Y = " << X + Y << endl;

return 0;
}

Chapter 3
1. a. true; b. true; c. false; d. false; e. true; f. true

3. a. x = 37, y = 86, z = 0.56

b. x = 37, y = 32, z = 86.56

c. Input failure: z = 37.0, x = 86, trying to read the . (period) into y.

5. Input failure: Trying to read A into y, which is an int variable. x = 46, y = 18, and
z = 'A'. The values of y and z are unchanged.

7. iomanip

9. getline(cin, name);

11. a. name ¼ " Lance Grant", age ¼ 23
b. name ¼ " ", age ¼ 23

13. #include <iostream>
#include <fstream>

using namespace std;

int main()
{

int num1, num2;
ifstream infile;
ostream outfile;

1528 | Appendix I: Answers to Odd-Numbered Exercises

infile.open("input.dat");
outfile.open("output.dat");

infile >> num1 >> num2;
outfile << "Sum = " << num1 + num2 << endl;

infile.close();
outfile.close();

return 0;
}

15. fstream

17. a. Same as before.

b. The file contains the output produced by the program.

c. The file contains the output produced by the program. The old contents are

erased.

d. The program would prepare the file and store the output in the file.

19. a. outfile.open("travel.dat ");

b. outfile >> fixed >> showpoint >> setprecision(2);

c. outfile >> day >> " " >> distance >> " " >> speed >> endl;

d. travelTime = distance / speed;
outfile >> travelTime;

e. fstream and iomanip.

Chapter 4
1. a. false; b. false; c. false; d. true; e. false; f. false; g. false; h. false; i. false; j. true

3. a. true; b. false; c. true; d. true; e. false

5. a. x = y: 0

b. x != z: 1

c. y = = z – 3: 1

d. !(z > w): 0

e. x + y < z: 0

7. Omit the semicolon after else. The correct statement is:
if (score >= 60)

cout << "You pass." << endl;
else

cout << "You fail." << endl;

9. 3 1

11. if (sale > 20000)
bonus = 0.10

else if (sale > 10000 && sale <= 20000)
bonus = 0.05;

else
bonus = 0.0;

Chapter 4 | 1529

13. a. The output is: Discount ¼ 10%. The semicolon at the end of the if
statement terminates the if statement. So the cout statement is not part of
the if statement. The cout statement will execute regardless of whether the
expression in the if statement evaluates to true or false.

b. The output is: Discount ¼ 10%. The semicolon at the end of the if
statement terminates the if statement. So the cout statement is not part of
the if statement. The cout statement will execute regardless of whether the
expression in the if statement evaluates to true or false.

15. a. (x >= y) ? z = x – y : z = y – x;

b. (hours >= 40.0) ? wages = 40 * 7.50 + 1.5 * 7.5 * (hours - 40)
: wages = hours * 7.50;

c. (score >= 60) ? str = "Pass" : str = "Fail";

17. a. 40.00

b. 40.00

c. 55.00

19. 15

21. 96

23. #include <iostream>

using namespace std;
const int SECRET = 5;

int main()
{

int x, y, w, z;

z = 9;

if (z > 10)
{

x = 12;
y = 5;
w = x + y + SECRET;

}
else
{

x = 12;
y = 4;
w = x + y + SECRET;

}

cout << "w = " << w << endl;

return 0;
}

1530 | Appendix I: Answers to Odd-Numbered Exercises

Chapter 5
1. a. false; b. true; c. false; d. true; e. true; f. true; g. true; h. false

3. 5

5. if ch > 'Z' or ch < 'A'

7. Sum = 158

9. Sum = 158

11. 11 18 25

13. Replace the while loop statement with the following:

while (response = = 'Y' || response = = 'y')

Replace the cout statement:

cout << num1 << " + " << num2 << " = " << (num1 - num2)
<< endl;

with the following:

cout << num1 << " + " << num2 << " = " << (num1 + num2)
<< endl;

15. 4 3 2 1

17. 0 3 8 15 24

19. Loop control variable: j

The initialization statement: j = 1;

Loop condition: j <= 10;

Update statement: j++

The statement that updates the value of s: s = s + j * (j - 1);

21. 2 7 17 37 77 157 317

23. a. *

b. infinite loop

c. infinite loop

d. ****

e. ******

f. ***

25. The relationship between x and y is: 3y = x.

Output: x = 19683, y = 10

27. 0 - 24
25 - 49
50 - 74
75 - 99
100 - 124
125 - 149
150 - 174
175 - 200

Chapter 5 | 1531

29. a. both

b. do . . . while
c. while
d. while

31. In a pretest loop, the loop condition is evaluated before executing the body of the

loop. In a posttest loop, the loop condition is evaluated after executing the body of

the loop. A posttest loop executes at least once, whereas a pretest loop may not

execute at all.

33. int num;
do
{

cout << "Enter a number less than 20 or greater than 75: ";
cin >> num;

}
while (20 <= num && num <= 75);

35. int i = 0, value = 0;
do
{

if (i % 2 == 0 && i <= 10)
value = value + i * i;

else if (i % 2 == 0 && i > 10)
value = value + i;

else
value = value - i;

i = i + 1;
}
while (i <= 20);

cout << "value = " << value << endl;

The Output is: Value = 200

37. cin >> number;
while (number != -1)
{

total = total + number;
cin >> number;

}
cout << endl;
cout << total << endl;

39. a.
number = 1;
while (number <= 10)
{

cout << setw(3) << number;
number++;

}

1532 | Appendix I: Answers to Odd-Numbered Exercises

b. number = 1;
do
{

cout << setw(3) << number;
number++;

}
while (number <= 10);

41. 11 18 25

43. -1 0 3 8 15 24

45. 12 11 9 7 6 4 2 1

Chapter 6
1. a. false; b. true; c. true; d. true; e. false

3. a. 4 b. 10.8 c. 2.5 d. 10.24 e. 15.625
f. 5 g. 2.5 h. 9 i. 28 j. 36

5. (iii)

7. a, b, c, e, f, and g are valid. In d, the function call in the output (cout) statement

requires one more argument.

9. a. 4; int

b. 2; double

c. 4; char

d. The function test requires four actual parameters. The order of the parameters

is: int, char, double, int.

e. cout << test(5, 'z', 7.3, 5) << endl;

f. cout << two(17.5, 18.3) << endl;

g. cout << static_cast<char>(static_cast<int>
(three(4, 3, 'A', 17.6)) + 1)

<< endl;

11. bool isUppercaseLetter(char ch)
{

if (isupper(ch))
return true;

else
return false;

}

13. a. i. 125 ii. 432

b. The function computes x3, in which x is the argument of the function.

15. 1 4 9 16 25 36 49 64 81 100

Chapter 6 | 1533

17. double funcEx17(double x, double y, double z)
{

return (x + y) * z;
}

Chapter 7
1. a. true; b. false; c. true; d. false; e. true; f. false; g. false; h. false; i. true

3. a. A variable declared in the heading of a function definition is called a formal

parameter. A variable or expression used in a function call is called an actual

parameter.

b. A value parameter receives a copy of the actual parameter’s data. A reference

parameter receives the address of the actual parameter.

c. A variable declared within a function or block is called a local variable. A

variable declared outside of every function definition is called a global

variable.

5. void funcThreeTimes(double x)
{

cout << fixed << showpoint << setprecision(2);

cout << 3 * x << endl;

}

7. void initialize(int& x, double& y, string& str)
{

x = 0;

y = 0;

str = "";

}

9. 5, 10, 15

20, 10, 15

25, 30, 15

45, 30, 60

11. #include <iostream>

using namespace std;

void func(int val1, int val2);

int main()
{

int num1, num2;
__1__ cout << "Please enter two integers." << endl;
__2__ cin >> num1 >> num2;
__3__ func (num1, num2);

1534 | Appendix I: Answers to Odd-Numbered Exercises

__7__ cout << " The two integers are " << num1
<< ", " << num2 << endl;

__8__ return 0;
}

void func (int val1, int val2)
{

int val3, val4;
__4__ val3 = val1 + val2;
__5__ val4 = val1 * val2;
__6__ cout << "The sum and product are " << val3

<< " and " << val4 << endl;
}

13. void traceMe(double& x, double y, double& z)
{

if (x != 0)
z = sqrt(y) / x;

else
{

cout << "Enter a nonzero number: ";

cin >> x;

cout << endl;

z = floor(pow(y, x));

}

}

15. 10 20

5 20

17. 11, 3

16, 2

19, 3

24, 2

19. (a), (b), and (d) are correct.

Chapter 8
1. a. true; b. false; c. true; d. false; e. false; f. true; g. true; h. true; i. false; j. false; k. false

3. Only a and c are valid.

5. The statement:

using namespace std;

is missing between Lines 1 and 2.

Chapter 8 | 1535

7. Either include the statement:

using namespace aaa;

before the function main or refer to the identifiers x and y in main as aaa::x

and aaa::y, respectively.

9. Hello --> Jello

Bingo --> Ringo

Sunny --> Bunny

11. Going to the Amusement Park
14
10
musem
ABCDEFGHIJK
11
aBdDEFGHIJK

Chapter 9
1. a. true; b. true; c. false; d. false; e. true; f. false; g. false; h. false; i. true; j. false;

k. false; l. false

3. a. This declaration is correct.

b. The const declaration should be: const int SIZE = 100;
double list[SIZE];

c. This declaration should be: int numList[10];

d. This declaration is correct.

e. This declaration should be: double scores[50];

5. 0 to 49

7. -3 -1 1 3 5

5 -1 8 3 -1

9. 5 6 9 19 23 37

11. If array index is less than 0 or greater than arraySize – 1, we say that the array index

is out of bounds. C++ does not check for array indices within bound.

13. a. double heights[10] = {5.2, 6.3, 5.8, 4.9, 5.2, 5.7, 6.7, 7.1, 5.10, 6.0};

or

double heights[] = {5.2, 6.3, 5.8, 4.9, 5.2, 5.7, 6.7, 7.1, 5.10, 6.0};

b. int weights[7] = {120, 125, 137, 140, 150, 180, 210};
or

int weights[] = {120, 125, 137, 140, 150, 180, 210};

c. char specialSymbols[] = {'$ ', '# ', '% ', '@ ', '& ', '! ', '^ '};.

d. string seasons[4] ¼ {"fall", "winter", "spring", "summer"};
or

string seasons[] ¼ {"fall", "winter", "spring", "summer"};

1536 | Appendix I: Answers to Odd-Numbered Exercises

15. list[0] = 8, list[1] = 9, list[2] = 15, list[3] = 12, list[4] = 80,

list[5] = 0, list[6] = 0, list[7] = 0, list[8] = 0, and list[9] = 0.

17. a. Correct.

b. Correct.

c. Incorrect. The size of score is 50, so the call should be tryMe(score, 50);.

d. Correct.

e. Incorrect. The array gpa is of type double, whereas the parameter x of tryMe
is of type int. So there will be mismatch data type error.

19. 1 25000.00 750.00

2 36500.00 1095.00

3 85000.00 2550.00

4 62500.00 1875.00

5 97000.00 2910.00

21. List elements: 11 16 21 26 30

23. 1 3.50 10.70 235.31

2 7.20 6.50 294.05

3 10.50 12.00 791.68

4 9.80 10.50 646.54

5 6.50 8.00 326.73

25. No

27. a. Invalid; the assignment operator is not defined for C-strings.

b. Invalid; the relational operators are not defined for C-strings.

c. Invalid; the assignment operator is not defined for C-strings.

d. Valid

29. a. strcpy(str1, "Sunny Day");

b. length = strlen(str1);

c. strcpy(str2, name);

d. if (strcmp(str1, str2) <= 0)
cout << str1 << endl;

else
cout << str2 << endl;

31. int temp[3][4] = {{6, 8, 12, 9},
{7, 5, 10, 6},
{4, 13, 16, 20}};

33. a. 30; b. 5; c. 6; d. row; e. column

35. a. beta is initialized to 0.

Chapter 9 | 1537

b. First row of beta: 0 1 2
Second row of beta: 1 2 3
Third row of beta: 2 3 4

c. First row of beta: 0 0 0
Second row of beta: 0 1 2
Third row of beta: 0 2 4

d. First row of beta: 0 2 0
Second row of beta: 2 0 2
Third row of beta: 0 2 0

Chapter 10
1. a. false; b. false; c. true; d. true; e. true; f. true; g. false

3. checkingAccount newAcct;

newAcct.name = "Jason Miller";

newAcct.accountNum = 17328910;

newAcct.balance = 24476.38;

newAcct.interestRate = 0.025;

5. movieType newRelease;

newRelease.name = "Summer Vacation";

newRelease.director = "Tom Blair";

newRelease.producer = "Rajiv Merchant";

newRelease.yearReleased = 2005;

newRelease.copiesInStock = 34;

7. a. Invalid; the member name of newEmployee is a struct. Specify the member
names to store the value "John Smith". For example:

newEmployee.name.first = "John";
newEmployee.name.last = "Smith";

b. Invalid; the member name of newEmployee is a struct. There are no aggregate
output operations on a struct. A correct statement is:

cout << newEmployee.name.first << " "
<< newEmployee.name.last << endl;

c. Valid

d. Valid

e. Invalid; employees is an array. There are no aggregate assignment operations

on arrays.

9. partsType inventory [100];

1538 | Appendix I: Answers to Odd-Numbered Exercises

11. void getData(partsType& pType)
{

for (int j = 0; j < length; j++)
{

cin >> pType.partName;

cin >> pType.partNum;

cin >> pType.price;

cin >> pType.quantitiesInStock;

}

}

for (int j = 0; j < 100; j++)
getData(inventory [i]);

Chapter 11
1. a. false; b. false; c. true; d. false; e. false

3. a. 6; b. 2; c. 2;

d. void xClass::func()
{

u = 10;
w = 15.3;

}

e. void xClass::print()
{

cout << u << " " << w << endl;
}

f. xClass::xClass()
{

u = 0;
w = 0;

}

g. x.print();

h. xClass t(20, 35.0);

5. a. int testClass::sum()
{

return x + y;
}

Chapter 11 | 1539

void testClass::print() const
{

cout << "x = " << x << ", y = " << y << endl;
}

testClass::testClass()
{

x = 0;
y = 0;

}

testClass::testClass(int a, int b)
{

x = a;
y = b;

}

b. One possible solution. (We assume that the name of the header file containing

the definition of the class testClass is Exercise5Ch11.h.)

#include <iostream>
#include "Exercise5Ch11.h"

int main()
{

testClass one;
testClass two(4, 5);

one.print();
two.print();

return 0;
}

7. a. personType student("Buddy", "Arora");

b. student.print();

c. student.setName("Susan", "Gilbert");

9. A constructor is a member of a class, and it executes automatically when a class

object is instantiated and a call to the constructor is specified in the object declara-

tion. A constructor is included in a class so that the objects are properly initialized

when they are declared.

11. A destructor is a member of a class, and if it is included in a class, it executes

automatically when a class object goes out of scope. Its main purpose is to deallocate

the dynamic memory created by an object.

13. a. myClass::count = 0;

b. myClass.incrementCount();

c. myClass.printCount();

d. int myClass::count = 0;

1540 | Appendix I: Answers to Odd-Numbered Exercises

void myClass::setX(int a)
{

x = a;
}

void myClass::printX() const
{

cout << x;
}

void myClass::printCount()
{

cout << count;
}

void myClass::incrementCount()
{

count++;
}

myClass::myClass(int a)
{

x = a;
}

e. myClass myObject1(5);

f. myClass myObject2(7);

g. The statements in Lines 1 and 2 are valid.

The statement in Line 3 should be: myClass::printCount();.

The statement in Line 4 is invalid because the member function printX is not

a static member of the class, so it cannot be called by using the name of class.

The statement in Line 5 is invalid because count is a private static
member variable of the class.

h. 5
2
2
3
14
3
3

Chapter 12
1. a. true; b. true; c. true

3. Some of the member variables that can be added to the class employeeType are:
department, salary, employeeCategory (such as supervisor and president),

and employeeID. Some of the member functions are: setInfo, getSalary,

getEmployeeCategory, and setSalary.

Chapter 12 | 1541

5. The private members of the object newCylinder are radius and height.

7. a. The statement:

class bClass public aClass

should be:

class bClass: public aClass

Also missing semicolon after }.

b. Missing semicolon after the statement cClass(int), and missing semicolon
after }.

9. a. yClass::yClass()
{

a = 0;
b = 0;

}

b. xClass::xClass()
{

z = 0;
}

c. void yClass::two(int u, int v)
{

a = u;
b = v;

}

11. The protected members of a base class can be directly accessed by the member
functions of the derived class, but they cannot be directly accessed in a program that

uses that class. The public members of a class can be directly accessed by the
member functions of any derived class as well as in a program that uses that class.

13. The members setX, print, y, and setY are protected members in class
third. The private member x of class first is hidden in class third, and
it can be accessed in class third only through the protected and public
members of class first.

15. Because the memberAccessSpecifier is not specified, it is a private inheritance.

Therefore, all of the members of the class first become private members in
class fifth.

17. a. void two::setData(int a, int b, int c)
{

one::setData(a, b);
z = c;

}

b. void two::print() const
{

one::print();
cout << z << endl;

}

1542 | Appendix I: Answers to Odd-Numbered Exercises

19. In base: x = 7
In derived: x = 3, y = 8; x + y = 11
****7
####11

Chapter 13
1. a. false; b. false; c. false; d. true; e. true; f. true; g. false; h. false

3. The operator * is used to declare a pointer variable and to access the memory space

to which a pointer variable points.

5. 98 98
98 98

7. b and c

9. 78 78

11. 27 35
73 27
36 36

13. 4 4 5 7 10 14 19 25 32 40

15. The operator delete deallocates the memory space to which a pointer points.

17. a. num ¼ new int[10];
b. for (int j = 0; j < 10; j++)

cin >> num[j];

c. delete [] num;

19. In a shallow copy of data, two or more pointers point to the same memory space. In

a deep copy of data, each pointer has its own copy of the data.

21. Array p: 5 7 11 17 25
Array q: 25 17 11 7 5

23. The copy constructor makes a copy of the actual variable.

25. Classes with pointer data members should include the destructor, overload the

assignment operator, and explicitly provide the copy constructor by including it

in the class definition and providing its definition.

27. ClassA x: 4

ClassA x: 6
ClassB y: 10

29. Yes

31. a. Because employeeType is an abstract class, you cannot instantiate an object of

this class. Therefore, this statement is illegal.

b. This statement is legal.

c. This statement is legal.

Chapter 13 | 1543

Chapter 14
1. a. false; b. true; c. true; d. false; e. false; f. true; g. false; h. true; i. false; j. true; k. false

3. A friend function is a nonmember of a class, whereas a member function is a
member of a class.

5. Because the left operand of << is a stream object, which is not of the type

mystery.

7. When the class has pointer data members.

9. a. friend strange operator+(const strange&, const strange&);

b. friend bool operator==(const strange&, const strange&);

c. friend strange operator++(strange&, int);

11. In Line 2, the word friend before the word bool is missing. The correct
statement is:

friend bool operator<=(mystery, mystery); //Line 2

13. Because the leftmost operand of << is not an object of the class type for which << is

overloaded.

15. A reference to an object of the class istream.

17. Suppose that a class, say temp, overloads the pre- and post-increment operator ++,

and tempObj is an object of the class temp. Then, the statement ++tempObj; is
compiled as tempObj.operator++();, and the statement tempObj++; is com-

piled as tempObj.operator++(0);. The dummy parameter distinguishes

between the pre- and post-increment operator functions. Similar conventions for

the pre- and post-decrement operators.

19. None

21. One

23. Answer to this question is available at the Web site accompanying this book.

25. Error in Line 4. A template instantiation can be for only a built-in type or a user-

defined type. The word ‘‘type’’ between the angular brackets must be replaced

either with a built-in type or a user-defined type.

27. a. 12 b. Sunny Day

29. template <class Type>
void swap(Type &x, Type &y)
{

Type temp;
temp = x;
x = y;
y = temp;

}

1544 | Appendix I: Answers to Odd-Numbered Exercises

Chapter 15
1. a. false; b. true; c. true; d. false

3. The program will terminate with an error message.

5. If an exception is thrown in a try block, the remaining statements in that try
block are ignored. The program searches the catch blocks in the order that they
appear after the try block and looks for an appropriate exception handler. If the
type of thrown exception matches the parameter type in one of the catch blocks,
the code of that catch block executes, and the remaining catch blocks after this
catch block are ignored.

7. a. Leaving the try block.

b. Current balance: 975

Balance must be greater than 1000.00

c. Current balance: -2000

Balance must be greater than 1000.00

9. a. Entering the try block.
Exception: Lower limit violation.
After the catch block

b. Entering the try block.
Exception: 0
After the catch block

c. Entering the try block.
Exiting the try block.
After the catch block

d. Entering the try block.
Exception: 0
After the catch block

11. A throw statement.

13. (Assume that the definition of the class tornadoException is in the header file
tornadoException.h.)

#include <iostream>
#include "tornadoException.h"

using namespace std;

int main()
{

int miles;

try
{

cout << "Enter the miles: ";
cin >> miles;
cout << endl;

Chapter 15 | 1545

if (miles < 5)
throw tornadoException();

else
throw tornadoException(miles);

}
catch (tornadoException tE)
{

cout << tE.what() << endl;
}

return 0;
}

15. A function specifies the exceptions it throws in its heading using the throw clause.

Chapter 16
1. a. true; b. true; c. false; d. false; e. false

3. The case in which the solution is defined in terms of smaller versions of itself.

5. A function that calls another function and eventually results in the original function

call is said to be indirectly recursive.

7. a. The statements in Lines 2 and 3.

b. The statements in Lines 4 and 5.

c. Any nonnegative integer.

d. It is a valid call. The value of mystery(0) is 0.

e. It is a valid call. The value of mystery(5) is 15.

f. It is an invalid call. It will result in infinite recursion.

9. a. 2
5
8

b. 7 c. 3
6

d. -85

11. a. It does not produce any output.

b. 5 6 7 8 9

c. It does not produce any output.

d. It does not produce any output.

13. a. 2; b. 3; c. 5; d. 21

15.

multiplyðm; nÞ ¼
0 if n ¼ 0
m if n ¼ 1
mþ multiplyðm; n� 1Þ otherwise

8
<

:

The base cases are when n = 0 or n = 1. The general case is specified by the
option otherwise.

1546 | Appendix I: Answers to Odd-Numbered Exercises

Chapter 17
1. a. false; b. false; c. false; d. false

3. NULL

5. Before deletion, the link field of the third node stores the address of the fourth node.

After deletion, the link field of the third node will store the address of the next node,

which is the old fifth node. If there was no fifth node, then after deletion, the link

field will store the value NULL. Therefore, after deleting the fourth node, the link

field of the third node is changed. So a pointer to the third node is needed.

7. a. true; b. true; c. false; d. false; e. true

9. a. A = A->link;

b. list = A->link->link;

c. B = B->link->link;

d. list = NULL;

e. B->link->info = 35;

f. newNode = new nodeType;
newNode->info = 10;
newNode->link = A->link;
A->link = newNode;

g. p = A->link;

A->link = p->link;

delete p;

11. This is an invalid code. The statement s->info = B; is invalid because B is a

pointer and s->info is an int.

13. 10 18 13

15. nodeType head, p, q;

head = new nodeType;
head->info = 72;

head->link = NULL;

p = new nodeType;
p->info = 43;

p->link = head;

head = p;

p = head->link;

q = new nodeType;
q->info = 8;

q->link = NULL;

p->link = q;

q = new nodeType;
q->info = 12;

q->link = p;

head->link = q;

Chapter 17 | 1547

p = head;

while (p != NULL)
{

cout << p->info << " ";

p = p->link;

}

cout << endl;

The output of this code is: 43 12 72 8

17. Item to be deleted is not in the list.
18 38 2 15 45 25

19. Answer to this question is available at the Web site accompanying this book.

21. Answer to this question is available at the Web site accompanying this book.

Chapter 18
1. The two basic operations on a stack are push, to add an element to a stack, and pop,

to remove an element from a stack.

3. x = 3
y = 9
7
13
4
7

5. a. 26; b. 45; c. 8; d. 29

7. a. A * B + C

b. (A + B) * (C – D)

c. (A – B – C) * D

9. 10 20 30 40 50

11. If the stack is nonempty, the statement stack.top(); returns the top element of

the stack, and the statement stack.pop(); removes the top element of the stack.

13. template <class elemType>
elemType second(stackType<elemType> stack)
{

elemType temp1, temp2;

if (stack.isEmptyStack())
{

cout << "Stack is empty." << endl;
exit(0); //terminate the program

}

temp1 = stack.top();
stack.pop();

1548 | Appendix I: Answers to Odd-Numbered Exercises

if (stack.isEmptyStack())
{

cout << "Stack has only one element." << endl;
exit(0); //terminate the program

}

temp2 = stack.top();
stack.push(temp1);

return temp2;
}

15. Queue Element = 0
Queue Element = 14
Queue Element = 22
Sorry, the queue is empty
Sorry, the queue is empty
Stack Element = 32
Stack Elements: 64 28 0
Queue Elements: 30

17. a. queueFront = 50; queueRear = 0.

b. queueFront = 51; queueRear = 99.

19. a. queueFront = 25; queueRear = 76.

b. queueFront = 26; queueRear = 75.

21. 51

23. template <class Type>
void reverseStack(stackType<Type> &s)
{

linkedQueueType<Type> q;
Type elem;

while (!s.isEmptyStack())
{

elem = s.top();
s.pop();
q.addQueue(elem);

}

while (!q.isEmptyQueue())
{

elem = q.front();
q.deleteQueue();
s.push(elem);

}
}

25. template <class Type>
int queueType<Type>::queueCount()
{

return count;
}

Chapter 18 | 1549

27. Answer to this question is available at the Web site accompanying this book.

29. Answer to this question is available at the Web site accompanying this book.

Chapter 19
1. a. false; b. true; c. false; d. false

3. a.

template <class elemType>
int seqOrdSearch(const elemType list[], int length,

const elemType& item)
{

int loc;
bool found = false;

for (loc = 0; loc < length; loc++)
if (list[loc] >= item)
{

found = true;
break;

}

if (found)
if (list[loc] == item)

return loc;
else

return -1;
else

return -1;
} //end seqOrdSearch

b. i. 5 ii. 7 iii. 8 iv. 11

5. 26

7. a.

Suppose that the list is of length n. Then length = n. Consider the first iteration of

the outer for loop, that is, when the value of iteration = 1. Now the inner loop
executes n – 1. Before the execution of the inner for loop, the variable isSorted
is set to true, assuming that the list is sorted. If the list is already sorted, then the
expression list[index] > list[index + 1] in the if statement always evalu-
ates to false, so the body of the if statement never executes. Because the inner
loop executes n – 1 times, there are n – 1 comparisons. In the second iteration of

the outer loop, because the variable isSorted is true, the loop condition,
(iteration < length) && !isSorted, evaluates to false, so the outer for
loop terminates. It follows that, if the list is already sorted, the outer for loop
executes only once. Hence, the total number of comparisons is n – 1 = O(n).

b. 30

1550 | Appendix I: Answers to Odd-Numbered Exercises

9. 3

11. 10, 12, 18, 21, 25, 28, 30, 71, 32, 58, 15

13. In quick sort, the list is partitioned according to an element, called pivot, of the

list. After partitioning, elements in the first sublist are smaller than the pivot and

in the second sublist are larger than the pivot. The merge sort partitions the

list by dividing it into two sublists of nearly equal size by breaking the list in the

middle.

15. a. 35

b. 18, 16, 40, 14, 17, 35, 57, 50, 37, 47, 72, 82, 64, 67

17. Quick sort: 10000 � log2(10000) ¼ 132878; merge sort: 132878.

Chapter 20
1. a. false; b. true; c. false; d. false

3. LA = {B, C, D, E}

5. RB = {E}

7. A B C D E F G

9. 80-55-58-70-79

11.

50

30 80

25 40 98

85 11048

45

75

55

58

70

65 79

90

Chapter 20 | 1551

13. Answer to this question is available at the Web site accompanying this book.

15. Each node has two pointers. Thus, there are 2n pointers in all the nodes of the

binary tree. The pointer pointing to the root node is an external pointer. Each of

the remaining n�1 nodes has one pointer pointing to it, which is a pointer from the
parent node. The remaining pointers in all the nodes, which is 2n� (n�1) = n + 1,
are NULL. This implies that the binary tree has n + 1 empty subtrees.

17.

19.

21. Answer to this question is available at the Web site accompanying this book.

A

B G

H L

D I M

E F J K

C

a
b
a

b
a

d
b
a

b
a

g
b
a a

e
a

a c f
h
f f

Pop
d

Pop
g

Pop
b

Pop
e

Pop
a

Pop
h

Pop
c

Pop
f

1552 | Appendix I: Answers to Odd-Numbered Exercises

Chapter 21
1. 0-5-9

3. This is a simple graph. There is no cycle in this graph

5. Vertices 2 and 4 are not connected.

7.

0 1 1 1 0 0

0 0 0 0 1 0

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 1 0 0

2

6666664

3

7777775

9. 0 1 4 2 3 5

11.

1 10 6 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 4 8
3 1 1 1 11 1 1
1 1 1 1 1 1 1
1 6 1 1 1 1 10
1 1 1 1 1 1 1

2

666666664

3

777777775

13.

8

5 6

9

4

7

2 3

0

10 11

1

Chapter 21 | 1553

15.

Source Vertex: 0
Edges Weight
(5, 1) 2
(0, 2) 3
(1, 3) 5
(5, 4) 3
(2, 5) 1

Minimal Spanning Tree Weight: 14

Chapter 22
1. The three main components of the STL are: containers, iterators, and algorithms.

3. A container is used to store data, while an algorithm is used to manipulate the data

stored in a container.

5. An STL function object contains a function that can be treated as a function using

the function call operator.

7. vecList = {12, 16, 8, 12, 16, 8, 23, 40, 6}

9. intList1 = {5, 24, 16, 11, 60, 9, 3, 58, 78, 85, 6, 15, 93, 98, 25}

11. A back_inserter uses the push_back operation of the container, while a

front_inserter uses the push_front operation of the container to add ele-

ments to the container. Furthermore, a front_inserter cannot be used for the

vector container.

13. 6

15. a b c * e % f $ h 8

17. 18 5 11 56 27 2

19. 0

10

2

5

4 3

7

3
1

2

8
3

5

5

1554 | Appendix I: Answers to Odd-Numbered Exercises

Note : Page numbers in bo ld face ind ica te key te rms .

& (ampersand), 747–748, 764
* (asterisk), 746, 747, 748, 764
, (comma), 1377
’’ (double quotes), 695
= (equal sign), 1121
() (parentheses), 1301
. (period), 566, 567, 607
+ (plus sign), 606
(pound sign), 606, 843, 847, 1122
� (tilde), 629

A

abs function, 321, 325
abstract classes, 787–795, 1086–1087

described, 788
linked lists and, 1005–1006, 1009, 1011

abstract data types. See ADTs
(abstract data types)

accessor functions, 616, 617–619
accumulate function, 1463–1468
action statements, 189
actual parameter lists, 327, 363
addFirst function, 381
addQueue function, 1134, 1136, 1138, 1139,

1143, 1147–1150, 1165
address of operator, 747–748, 809–811
addressOfX function, 810, 811
addVotes function, 1252
adjacency

lists, 1327–1328
matrix, 1326, 1327

adjacent, use of the term, 1325
adjacent from, use of the term, 1326
adjacent to, use of the term, 1326
adjacent_difference function,

1463–1468

adjacent_find function, 1441–1445
ADTs (abstract data types)

binary trees and, 1276–1277, 1287
graphs and, 1329–1332, 1352
lists and, 797, 808, 896–902, 1005–1017,

1026–1027, 1040–1042
OOP and, 709
overview, 630–632
queues and, 1133, 1135, 1153–1154,

1156–1158, 1160–1161, 1164
stacks and, 1086–1087
structS and, 633
templates and, 893

aggregate operations, 497. See also composition
aggregation. See composition
Aiken, Howard, 3
algebra, 320
algorithm(s). See also specific algorithms

arrays and, 507–510
control structures and, 287–288
described, 12
function objects and, 1410–1416
generic, 1408
heap, 1410
modifying, 1409
nonmodifying, 1408
numeric, 1409–1410
overview, 1407–1468
problem analysis-coding-execution cycle

and, 12–20
sort, 1202–1208, 1216–1217

algorithm header file, 1434, 1446
ampersand (&), 369, 747–748, 764
analog signals, 6
anonymous data types, 442–443
ANSI (American National Standards Institute),

22, 76. See also ANSI/ISO Standard C++

INDEX

ANSI/ISO Standard C++, 49, 434, 458, 530
namespaces and, 452–453, 454
naming conventions and, 1506–1507
overview, 22

append function, 462
Apple Computer, 3
application programs, 6. See also programs
arguments, 125, 127. See also parameters
arithmetic expressions, 40
arithmetic operators

described, 40
overview, 39–44

array(s). See also array indexes; specific types
base addresses, 501, 502–503
-based lists, 896–902, 1208–1218
components, accessing, 488–490, 520
constant, as formal parameters, 498–500
declarations, 495–496, 507
described, 487
finding the sum/average of, 492
implementation of queues as, 1136–1145
in bounds, 495
initialization, 491, 495, 496
largest elements in, 492–493, 964–974
of objects, 627–629
out of bounds, 495
overview, 487–507
parallel, 537, 538
as parameters to functions, 497–498
partial initialization, 496
passed by reference, 497–498
printing, 492, 525
processing, 491–494, 496–497
reading data into, 492
searching, for specific items, 507–510
stacks and, 1088–1102
of strings, 530–531
structS and, 571–576

array indexes, 506, 530
c-Strings and, 514
described, 488
out of bounds, 494–495

array subscript operator, 459, 488, 882–890,
1368

arrayListType class, 797–800, 896–902
ASCII (American Standard Code for Information

Interchange)
characters, comparing, 179–180
collating sequence, 179, 180–181
c-Strings and, 510, 512
data types and, 37–38
described, 7
functions and, 323

input/output and, 120
overview, 7–8, 1481–1482
recursion and, 975
type conversion and, 49

assemblers, 9
assembly language, 8–9
assert function, 223–231, 920, 923, 1509
assert.h (cassert) header file, 885, 1506, 1509
assign function, 1380, 1385
assignment operator, 56, 209–211, 608–609, 1017

operator overloading and, 853–861
pointer variables and, 772–773
stacks and, 1097–1098, 1115–1117
templates and, 898

assignment statements, 489, 567–569
compound, 89–90
enumeration types and, 436
putting data into variables with, 53–56
simple, 89–90
types of, 89–97

associative containers, 1396–1403
associativity, 43, 56, 185
asterisk (*), 746, 747, 748, 764
asymptotic, use of the term, 1198
asymptotic notation, 1194–1202
at function, 462, 1380
Augusta, Ada, 2

B

Babbage, Charles, 2
back, of queues, 1133
back function, 1045, 1134, 1380, 1385, 1405
back_inserter iterator, 1417
backslash (/), 69, 73
bad_alloc exception, 757, 933–935
base addresses, 501, 502–503
base case, 960, 965
base class(es)

constructors, 686–693
described, 677
member functions of, redefining/overriding,

679–686
begin function, 1014–1015, 1369–1373
Big-O notation, 1194–1198, 1199, 1200–1202
billingAmount function, 721
binary code, 6
binary digits, 6. See also binary number system
binary files

described, 1492
input/output and, 1492–1497

binary number system
described, 6

1556 | Index

number conversion and, 975–982, 1487–1492
overview, 6–7, 1487

binary operators, 40, 842–848
binary search algorithms, 1187, 1188–1194
binary tree(s)

binary search trees, 1285–1287
copying, 1271–1272
deleting items from, 1291–1296
described, 1217
height of, 1270
implementing, 1276–1284
inserting items in, 1289–1291
overview, 1265–1320
traversal, 1272–1276, 1297–1304

binary_search function, 1437–1440
binaryTreeType class, 1280, 1282–1284,

1302–1303
binSearch function, 1193
binToDec function, 977–979
bits, 6–7
blanks, use of, 85, 87, 120
blocks

described, 195
nested, 383

bool data type, 36, 37, 188, 1416
bottom-up design, 20
boxType class, 682–691
branch, use of the term, 1217
breadth first traversal, 1276, 1335, 1336–1337
breadthFirstTraversal function, 1336–1337
break statement, 216, 217–220, 289–291
bSearchTreeType class, 1303, 1308
bubble sort algorithm, 1202, 1203–1208
bubbleSort function, 1206, 1207
bugs. See also debugging; errors

avoiding, 203–209, 221–223, 296–299
control structures and, 203–209, 221–223,

296–299
patches and, 296–299

Build command, 12, 638
buildListBackward function, 1006
buildListForward function, 1003–1004, 1006
bytes, 6–7

C

C++ Builder, 638
cable-company program, 225–231, 343–349
calculateTotalVotes function, 1242
callPrint function, 781, 782, 786
candy-machine example, 649–662
case sensitivity, 34
cashRegister class, 649–651

cassert.h (assert.h) header file, 885, 1506, 1509
cAssignmentOprOverload class, 858–859
cast operator, 47
casting (type conversion), 47, 48–49
cctype.h header file, 1454, 1510–1511
ceil function, 321
central processing units. See CPUs (central

processing units)
cfloat.h header file, 1344, 1511–1512
change-making program, 94–97
char data type, 36–38, 121, 537

c-Strings and, 510, 511
dynamic variables and, 756
enumeration types and, 438–439
functions and, 364
pointers and, 747, 760
templates and, 891, 893

character arrays (c-Strings)
arrays of strings and, 530–531
described, 510
execution time and, 516
overview, 510–537
reading and writing strings with, 513
string input and, 514–515
string output and, 515–516

character sets, 1481–1483. See also ASCII
(American Standard Code for Information
Interchange); EBCDIC (Extended Binary Coded
Decimal Interchange Code)

characters, comparing, 179–180. See also
character sets

charitable-donations program, 156–161
cin identifier, 33, 76, 119–124

get function and, 127–128
ignore function and, 128–130
input/output and, 118–119

circle class, 677, 678
class(es). See also classes (listed by name);

inheritance
built-in operations on, 608
clients of, 615
described, 602
functions and, 610
identifying, 709–710
overview, 133, 601–674
peculiarities of, 770–780
precautions regarding, 626–627
scope, 609
structS versus, 632–633

class diagrams, 641–642, 650, 652, 870, 878
ADTs and, 632
composition and, 704, 706, 717
graphs and, 1330, 1339, 1353

Index | 1557

class diagrams (Continued)
inheritance and, 680–682, 683, 692
lists and,799, 808, 1008,1011, 1018,1027, 1042
overview, 606
queues and, 1135, 1146, 1154–1555, 1158
stacks and, 1108, 1087, 1089

class keyword, 603, 891
class members

accessing, 607–608
overview, 603

class templates, 891, 893–895. See also STL
(C++ Standard Template Library); templates

classes (listed by name). See also classes
arrayListType class, 797–800, 896–902
binaryTreeType class, 1280, 1282–1284,

1302–1303
boxType class, 682–691
bSearchTreeType class, 1303, 1308
cashRegister class, 649–651
cAssignmentOprOverload class, 858–859
circle class, 677, 678
classExample class, 754
classIllusFriend class, 836, 837–838
clockType class, 603–608, 612–642, 676,

828–829, 868–876
complexType class, 877–882
customerType class, 1153–1155
cylinderType class, 710
dateType class, 703–704
derivedClass class, 679, 691
die class, 639–640
dispenserType class, 651–652
divByZero class, 936–937
divisionByZero class, 937–940
dogType class, 781, 783, 784–787
doubleLinkedList class, 1042
employeeType class, 789, 790
extClockType class, 676
fstream class, 697
fullTimeEmployee class, 789, 791–793
graphType class, 1329–1330, 1338
illustrate class, 644–648
ios class, 697
istream class, 697
istream_iterator class, 1396
length_error class, 932
linkedListIterator class, 1007–1009
linkedListType class, 1005–1007, 1009,

1011–1012, 1016, 1017, 1130, 1150
linkedQueueType class, 1146, 1149–1151
linkedStackType class, 1108–1109, 1117–1119
list class, 1383–1390
listType class, 632, 893–894

myException class, 948–949
newString class, 882, 884–890
orderedArrayListType class, 800, 807–809, 896,

1193–1194
orderedLinkedList class, 1005–1006,

1011–1012, 1026–1037
ostream class, 697, 721
ostream_iterator class, 1396
out_of_range class, 932
overflow_error class, 932
partTimeEmployee class, 676, 692–693, 694,

789, 793–795
personalInfo class, 703, 705–707
personType class, 641–642, 676, 692–695,

702–703, 789, 833–836, 1236–1237,
1239–1240, 1243

petType class, 780–781, 783, 784–787
ptrMemberVarType class, 770, 771, 772–780
queueADT class, 1135–1136, 1140,

1145–1147
queueType class, 1164
rectangle class, 677, 789
rectangleType class, 680–690, 840–868
serverListType class, 1160–1161
serverType class, 1156–1158
shape class, 677, 678, 787–789
stack class, 1403–1404
stackADT class, 1107–1108, 1086–1088
stackType class, 1088–1091, 1097–1098,

1101
studentType class, 717–718
unorderedArrayListType class, 800, 803–807,

896, 899, 900–902, 1207–1208
unorderedLinkedList class, 1005–1006, 1011,

1017–1026, 1232, 1329
vector class, 1363–1367
videoBinaryTree class, 1309–1310
videoListType class, 1308–1309
videoType class, 1307–1308
waitingCustomerQueueType class, 1164
weightedGraphType class, 1338–1339

classExample class, 754
classifying-numbers program, 281–284
classIllusFriend class, 836, 837–838
clear function, 135–136, 462, 463, 1367, 1373,

1374, 1400
clearGraph function, 1332
clearList function, 802
clients, of classes, 615
clockType class, 603–608, 612–642, 676,

828–829, 868–876
clockType.h, 634, 635–636, 637

1558 | Index

cmath (math.h) header file, 456, 458, 1506,
1514–1515

code
detection program, 534–539
executable, 637–642
source, 10, 77

CodeWarrior, 638
collating sequence, 38
column(s)

largest element in, 526
processing, 523
sum by, 526

comma (,), 85, 1377
comments, 32, 87
common

input, 118
output, 118

compare function, 462
compareThree function, 331, 332–333
comparison tree, 1217
comparison-based search algorithms, 1202
comparison-based sort algorithms, 1216–1217
compilers, 22, 490. See also compile-time errors

described, 9
functions and, 340
namespaces and, 452

compile-time binding, 782
compile-time errors, 625, 786, 811
complex numbers, 877, 878–882
complexType class, 877–882
composition

described, 676
overview, 702–707

computer(s)
history of, 2–3
language of, 6–8
overview, 1–26
systems, elements of, 3–6

computer programs. See programs
conditional operators, 211
connected vertices, use of the term,

1325, 1326
const keyword, 574, 605, 610–611, 616
constructors. See also copy constructor; default

constructors
arrays and, 627–629
default parameters and, 626
graphs and, 1344
inheritance and, 686–693
invoking, 623–625
lists and, 802–803, 806
overview, 621–622
precautions regarding, 626–627

queues and, 1144–1145, 1164
stacks and, 1115, 1096–1097

container(s)
adapters, 1403, 1404–1406
deque, 1379, 1380–1383, 1407
header files and, 1406–1407
member functions common to, 1372–1374
sequence, 1363–1372
set, 1397–1399, 1407
types, 1363
vector, 1363–1372, 1407

continue statement, 289–291
control structure(s). See also repetition

structures; selection structures; sequence
structures

bugs and, 203–209, 221–223, 296–300
indentation and, 211–212
nested, 291–296
patches and, 296–299
short-circuit evaluation and, 199–200
terminating programs and, 223–231

conversion constructor, 888
copy algorithm, 1375–1378
copy constructor, 774–780, 803. See also

constructors
binary trees and, 1272
described, 773
linked lists and, 1013, 1016, 1017
stacks and, 1097

copy function, 1375, 1376–1378
copyList function, 1015–1016
copyStack function, 1090, 1096, 1114–1115
copyTree function, 1282, 1283–1284
cos function, 321
count function, 1448–1452
count_if function, 1448–1452
counter-controlled while loops, 252, 253–255
cout identifier, 33, 76

debugging with, 149–152
input/output and, 118–119, 515

CPUs (central processing units), 3, 4, 5
createGraph function, 1331–1332
createSpanningGraph function, 1353
createWeightedGraph function, 1338–1339
cstddef (stddef.h) header file, 1515
c-Strings (character arrays)

arrays of strings and, 530–531
described, 510
example, 884–890
execution time and, 516
overview, 510–537
reading and writing strings with, 513
specifying I/O files and, 516

Index | 1559

c-Strings (character arrays) (Continued)
string input and, 514–515
string output and, 515–516

curly braces ({}), 78, 85, 212
customer(s)

queues and, 1152, 1153–1156, 1164–1165
use of the term, 1152

customerType class, 1153–1155
cycle, use of the term, 1326
cylinderType class, 710

D

dangling pointers, 759
data abstraction, 630, 631–632
data types. See also specific data types

anonymous, 442–443
control structures and, 178–179
described, 35
functions and, 324, 326, 328
overview, 35–39
simple, 53, 433–483, 486
structured, 486

data-comparison program, 404–414
dateType class, 703–704
DBL_MAX constant, 1344
debugging. See also bugs; errors

control structures and, 212–215, 299–300
cout statements and, 149–152
functions and, 392–394
input/output and, 149–152
overview, 80–84
pseudocode and, 212–215
queues and, 1155

decimal expressions, 44
decimal number system

described, 7
number conversion and, 975–982,

1487–1490
overview, 1487

decision makers, 189, 249
declaration statements, 78
decrement operators, 65, 66–67, 861–862
decToBin function, 980–982
deep copy, 768, 769, 770
default constructors, 1109, 1012, 1364. See also

constructors
binary trees and, 1280
default parameters and, 626
described, 621
invoking, 623
linked lists and, 1043

delete operator, 756, 757–759, 770, 1283

deleteFromTree function, 1293–1296
deleteNode function, 1024–1025, 1033–1034,

1050–1051, 1280, 1295–1296
deleteQueue function, 1134, 1136, 1137,

1139, 1143–1144, 1147–1150,
1164–1165

depth first traversal, 1333, 1334–1335
depthFirstTraversal function, 1335
deque container, 1379, 1380–1383, 1407
dereferencing (indirection) operator, 747, 748,

749–752, 1395
derived classes. See also inheritance

constructors and, 686–693
described, 676–677
destructors and, 694–695
header files of, 694–695
protected members in, 699–702
syntax of, 677–679

derivedClass class, 679, 691
destination, use of the term, 1323
destroy function, 1282, 1283
destroyList function, 774, 776, 1012–1013,

1282, 1283
destructors, 694–695, 1016, 1344

lists and, 802–803
overview, 629–630
pointer variables and, 770–771
queues and, 1144–1145
stacks and, 1096–1097, 1115
virtual, 787

dft function, 1335
dftAtVertex function, 1335
dice-rolling program, 336–337
die class, 639–640
digital signals, 6
digraph (directed graph), 1323, 1324–1325
directed edge (branch), 1266
discardExp function, 1126
dispenserType class, 651–652
divByZero class, 936–937
‘‘divide and conquer’’ technique, 477
divideList function, 1228–1229, 1231,

1232
divisibility test, 287–288
divisionByZero class, 937–940
divisor, use of the term, 287
do keyword, 285
do. . .while loops, 947, 1216

functions and, 337, 390
overview, 284–289

documentation, overview of, 87
doDivision function, 940
dogType class, 781, 783, 784–787

1560 | Index

domain, 631
dot notation, 132, 133
double data type, 121, 498

functions and, 328, 329
inheritance and, 687, 700
templates and, 891, 893

double quotes (‘‘), 458, 510, 513, 695
doubleFirst function, 381
doubleLinkedList class, 1042
draw function, 788
driver programs, 392, 393–394
dynamic arrays. See also arrays

described, 761
overview, 490, 761–767

dynamic variables. See also variables
described, 756
overview, 755–759

E

early binding. See compile-time binding
EBCDIC (Extended Binary Coded Decimal

Interchange Code), 8, 37, 510, 1482–1483
edge(s)

described, 1323
directed (branch), 1266
origin of, 1323
parallel, 1325
weight of, 1337, 1348–1352

election-results example, 1235–1256
employeeType class, 789, 790
empty function, 1372, 1403–1405
encapsulation, 708
end function, 1014–1015, 1369–1372, 1373
enumeration types, 35, 506

anonymous data types and, 442–443
described, 434
functions and, 440–442
input/output of, 438–440
loops and, 438
operations on, 437
overview, 434–444
two-dimensional arrays and, 521–524

enumerators, 435
eof function, 263–264
EOF-controlled while loops, 263, 264–268,

294–295
equal sign (=), 1121
equality operator, 209–211
equalTime function, 605, 607, 608, 614–615, 616
erase function, 462, 463, 1367, 1373, 1374,

1400

errors. See also bugs; compile-time errors;
debugging; syntax errors

identifiers and, 34
information hiding and, 634
logging, 948
logic, 149–152
semantic, 194
stacks and, 1096, 1124, 1126

escape sequences, 69–74
evaluateExpression function, 1122–1124
evaluateOpr function, 1124
example function, 499
exception handling

exception classes and, 931–945
logging errors and, 948
mechanisms, 924–931
overview, 919–957
with programs, 920–935
stack unwinding and, 948–951
techniques, 946–948

.exe filename extension, 77, 78
executable

code, 637–642
statements, 78

exp function, 321
expressions. See also specific types

overview, 44–46
saving, 56–57
using the value of, 56–57

extClockType class, 676
extern keyword, 386
extraction operator, 119–124, 129, 148, 696–697,

840, 848–853

F

fabs function, 321
fact function, 962
fail state, 134, 208
Fibonacci numbers, 967–971, 974

described, 269
overview, 270–273, 279–280
nth, 270, 967–971

Fibonacci sequences, 270
FIFO (First In First Out) data structure, 1134, 1362
file(s)

described, 153
input/output, 152–165
-name extensions, 77–78
opening, 153
stream variables, 153

fill function, 767, 1418–1420
fill_n function, 1418–1420

Index | 1561

fillNames function, 1246–1247
find function, 462, 465–467, 1422–1427
find_end function, 1422–1427
find_first_of function, 1422–1427
find_if function, 1422–1427
first, use of the term, 992
fixed manipulator, 138–139, 140–141
flag variables, 260
flag-controlled while loops, 259, 260, 268
floating-point data types, 35, 38, 39, 44, 200–201
floor function, 321, 322
for keyword, 274
for loops, 780, 1201, 1335, 1354

arrays and, 493, 524, 525, 526, 765
enumeration types and, 438
exception handling and, 934
functions and, 365, 383
nested, 292–293
operator overloading and, 859
overview, 273–280
sorting algorithms and, 1207, 1216
STL and, 1368, 1369, 1371, 1375, 1376

for_each function, 1452–1454
formal parameter lists, 326, 362, 395
formatted data, 1492
forward slash (/), 32
free tree, 1346
friend functions, 836, 837–840
front, of queues, 1133
front function, 1134, 1380, 1405
front_inserter iterator, 1417
fstream class, 697
fstream.h header file, 697, 1506
fullTimeEmployee class, 789, 791–793
funcArrayAsParam function, 498
funcExp function, 397
function(s). See also functions (listed by name)

body, 325
calls, 125, 326, 340, 363
debugging and, 392–394
with default parameters, 396–399
definition of, 325, 362
described, 31
enumeration types and, 440–442
flow of execution and, 340–341
friend, 836, 837–840
headers, 325
identifiers and, 382–386
memory allocation and, 372–382
nesting, 382
objects, 1410, 1411–1416
overloading, 395, 396, 708, 890

passing two-dimensional arrays as parameters to,
527–530

predefined, 320–323
prototypes, 331, 332–333, 397, 398
redefining/overriding, 679–686
return values, 764
signatures, 395
structS and, 570–571
stubs, 394
templates, 891, 892–893
user-defined, 324
value-returning, 324, 325-343

functions (listed by name). See also functions; main
function

abs function, 321, 325
accumulate function, 1463–1468
addFirst function, 381
addQueue function, 1134, 1136, 1138, 1139,

1143, 1147–1150, 1165
addressOfX function, 810, 811
addVotes function, 1252
adjacent_difference function, 1463–1468
adjacent_find function, 1441–1445
append function, 462
assert function, 223–231, 920, 923, 1509
assign function, 1380, 1385
at function, 462, 1380
back function, 1045, 1134, 1380, 1385, 1405
begin function, 1014–1015, 1369–1373
billingAmount function, 721
binary_search function, 1437–1440
binSearch function, 1193
binToDec function, 977–979
breadthFirstTraversal function, 1336–1337
bubbleSort function, 1206, 1207
buildListBackward function, 1006
buildListForward function, 1003–1004, 1006
calculateTotalVotes function, 1242
callPrint function, 781, 782, 786
ceil function, 321
clear function, 135–136, 462, 463, 1367, 1373,

1374, 1400
clearGraph function, 1332
clearList function, 802
compare function, 462
compareThree function, 331, 332–333
copy function, 1375, 1376–1378
copyList function, 1015–1016
copyStack function, 1090, 1096, 1114–1115
copyTree function, 1282, 1283–1284
cos function, 321
count function, 1448–1452
count_if function, 1448–1452

1562 | Index

createGraph function, 1331–1332
createSpanningGraph function, 1353
createWeightedGraph function, 1338–1339
decToBin function, 980–982
deleteFromTree function, 1293–1296
deleteNode function, 1024–1025, 1033–1034,

1050–1051, 1280, 1295–1296
deleteQueue function, 1134, 1136, 1137, 1139,

1143–1144, 1147–1150, 1164–1165
depthFirstTraversal function, 1335
destroy function, 1282, 1283
destroyList function, 774, 776, 1012–1013,

1282, 1283
dft function, 1335
dftAtVertex function, 1335
discardExp function, 1126
divideList function, 1228–1229, 1231, 1232
doDivision function, 940
doubleFirst function, 381
draw function, 788
empty function, 1372, 1403–1405
end function, 1014–1015, 1369–1372, 1373
eof function, 263–264
equalTime function, 605, 607, 608, 614–615,

616
erase function, 462, 463, 1367, 1373, 1374,

1400
evaluateExpression function, 1122–1124
evaluateOpr function, 1124
example function, 499
exp function, 321
fabs function, 321
fact function, 962
fill function, 767, 1418–1420
fill_n function, 1418–1420
fillNames function, 1246–1247
find function, 462, 465–467, 1422–1427
find_end function, 1422–1427
find_first_of function, 1422–1427
find_if function, 1422–1427
floor function, 321, 322
for_each function, 1452–1454
front function, 1134, 1380, 1405
funcArrayAsParam function, 498
funcExp function, 397
generate function, 1420–1422
generate_n function, 1420–1422
get function, 127–128, 514, 696
getCost function, 653
getCredits function, 721
getData function, 584–586
getFirstName function, 1238
getFreeServerID function, 1162

getGpa function, 722
getLastName function, 1238
getLength function, 685
getLine function, 515
getNumberOfBusyServers function, 1162
getScore function, 369–370
getStudentData function, 724–725
getTime function, 616
getTotalVotes function, 1242
getWaitingTime function, 1156
getWidth function, 685
height function, 1271
ignore function, 128–130, 696
includes function, 1455–1463
incrementMinutes function, 614
incrementSeconds function, 614
incrementWaitingTime function, 1156
initalize function, 583
initializeList function, 1013–1014, 1044
initializeQueue function, 1134, 1140, 1142,

1147–1150
initializeStack function, 1086, 1091–1092, 1110
inner_product function, 1463–1468
inorder function, 1275, 1302
inorderTitle function, 1310
inorderTraversal function, 1280, 1304
inplace_merge function, 1441–1445
insert function, 462, 467–468, 808, 1037,

1047, 1280, 1289, 1367, 1373, 1374,
1399

insertAt function, 803–804
insertEnd function, 804, 899, 902, 1246
insertFirst function, 1006, 1019–1020,

1032–1033, 1118
insertLast function, 1006, 1020, 1032–1033
insertNode function, 1048
isEmpty function, 1280, 1330–1331
isEmptyList function, 1012, 1043
isEmptyQueue function, 1134, 1165
isEmptyStack function, 1086, 1092, 1109–1110
isFullQueue function, 1134, 1147, 1165
isFullStack function, 1086, 1108, 1109–1110,

1092
isItemAt function, 801
isItemAtEqual function, 897
islower function, 322
isNumPalindrome function, 338–340
isupper function, 322
larger function, 328–331, 332, 341–343
largerChar function, 396
largerInt function, 396
largest function, 966–967
largestInRows function, 528–529

Index | 1563

functions (listed by name) (Continued)
length function, 462, 463, 464–465
listSize function, 800–801
max function, 1448–1452
max_element function, 1448–1452
maxListSize function, 800–801
maxSaleByPerson function, 588
maxSaleByQuarter function, 588–589
max_size function, 1373
merge function, 1232, 1386, 1387, 1441–1445
mergeList function, 1230–1231, 1233, 1234
min function, 1448–1452
min_element function, 1448–1452
minimalSpanning function, 1353–1354
minLocation function, 1211–1212
move function, 788
nodeCount function, 1282
partial_sum function, 1463–1468
partition function, 1223, 1224
peek function, 130–132
poolCapacity function, 394
poolFillTime function, 394
pop function, 1085, 1086, 1110, 1112–1114,

1094–1096, 1403–1405
pop_back function, 1367, 1374
pop_front function, 1380, 1382, 1385
pow function, 321–326, 456
print function, 684, 701, 714, 720–721, 767,

781–783, 801, 852, 897, 1013, 1044
printDataTotalVotes function, 1242
printGradeReports function, 725–726
printGraph function, 1332
printListReverse function, 1039–1040
printMatrix function, 528–529
printReport function, 587–588
printResult function, 453, 454, 457, 1126–1129
printShortestDistance function, 1344
printStars function, 364–366
printTime function, 605, 616
printTreeAndWeight function, 1354–1355
processVotes function, 1250
push function, 1085, 1086, 1110–1112,

1092–1094, 1403–1405
push_back function, 1367, 1368, 1374, 1382
push_front function, 1380, 1385
quickSort function, 1224
random_shuffle function, 1448–1452
rbegin function, 1373, 1376
recMergeSort function, 1231–1233
remove function, 805, 899, 1427, 1385
removeAt function, 801, 805, 897
remove_copy function, 1427
remove_copy_if function, 1427

remove_if function, 1385, 1427
replace function, 463, 467–468, 1430–1434
replaceAt function, 805–806, 899
replace_copy function, 1430–1434
replace_copy_if function, 1430–1434
replace_if function, 1430–1434
resize function, 1367, 1368, 1374
retrieveAt function, 802, 897
reverse function, 1387, 1445–1448
reverse_copy function, 1445–1448
reversePrint function, 1037–1039
rFibNum function, 967–971
rollDice function, 639–640
rotate function, 1445–1448
rotate_copy function, 1445–1448
runSimulation function, 1167, 1168
saleByQuarter function, 586
search function, 1018–1019, 1045, 1280,

1288–1289, 1437–1440
search_n function, 1437–1440
searchVideoList function, 1309
seekg function, 1498, 1499–1503
seekp function, 1499–1500, 1503
sellProduct function, 654–655
seqSearch function, 508–509, 573, 574, 805,

899
setCustomerInfo function, 1155–1156
setData function, 701, 704–705
set_difference function, 1455–1463
setDimension function, 684, 685
setFirstName function, 834–835
setInfo function, 718
set_intersection function, 1455–1463
setLastName function, 834–835
setName function, 1238
setServerBusy function, 1162
setSimulationParameters function, 1166
set_symmetric_difference function, 1455–1463
setTime function, 604, 605, 608, 611–612, 616,

621, 622
set_union function, 1455–1463
setX function, 755
shortestPath function, 1343, 1344
showSelection function, 654
size function, 463, 1372, 1403–1405
sort function, 1207, 1386, 1437–1440
sortCourses function, 718, 722
splice function, 1386, 1389–1390
sqrt function, 321, 322
squareFirst function, 381
strcmp function, 512, 513
strlen function, 512
substr function, 463, 469–470

1564 | Index

sumRows function, 528–529
swap function, 463, 470, 1210–1211, 1223,

1373, 1434
terminate function, 948
testTime function, 610–611
tolower function, 322
top function, 1085, 1086, 1403–1404
totalSaleByPerson function, 586–587
toupper function, 322, 323, 1454
transform function, 1452–1454
unique function, 1385
updateServers function, 1163
updateVotesByRegion function, 1242
what function, 931–932
write function, 1498

G

general case, 960, 965
generate function, 1420–1422
generate_n function, 1420–1422
get function, 127–128, 514, 696
getCost function, 653
getCredits function, 721
getData function, 584–586
getFirstName function, 1238
getFreeServerID function, 1162
getGpa function, 722
getLastName function, 1238
getLength function, 685
getLine function, 515
getNumberOfBusyServers function, 1162
getScore function, 369–370
getStudentData function, 724–725
getTime function, 616
getTotalVotes function, 1242
getWaitingTime function, 1156
getWidth function, 685
grade-calculation programs, 162–165, 369–372,

710–731, 1102–1106
graph(s). See also digraph (directed graph)

as ADTs, 1329–1332
definitions, 1323–1326
described, 1323
minimal spanning tree, 1345–1355
notations, 1323–1326
operations on, 1328–1329
overview, 1321–1360
representation, 1326–1328
traversals, 1333–1337

graphType class, 1329–1330, 1338
greedy algorithm. See shortest path algorithm

H

hardware, overview of, 4–5
head, use of the term, 992, 994, 996
header file(s), 76, 80, 456, 512. See also

specific files
containers and, 1406–1407
control structures and, 224
described, 634
functions and, 321
graphs and, 1344
inheritance and, 694–696
input/output and, 118, 142, 143
linked lists and, 1025–1026, 1034–1037
multiple inclusions of, 695–696
namespaces and, 452, 458
naming conventions, 1506–1507
overview, 1509–1517
stacks and, 1098–1102
templates and, 895

heap algorithms, 1410
height, use of the term, 1270, 1271
height function, 1271
hexadecimal number system, 1490–1492
high-level languages, 9
Hollerith, Herman, 2

I

IBM (International Business Machines)
character sets and, 37
encoding schemes and, 8
history of, 2–3

identifiers
described, 33
functions and, 382–386
global, 382
local, 382
namespaces and, 452, 455
naming, 85–86
overview, 33–34
self-documenting, 86

IDEs (integrated development environments)
debugging and, 299
exception handling and, 935
executable code and, 638
filename extensions and, 78
identifiers and, 34
indentation and, 212
input/output and, 137
overview, 11–12

if statements, 188–212, 981
comparing if. . .else statements with, 198–199

Index | 1565

if statements (Continued)
functions and, 334
nested, 195, 196, 197–199

if. . .else statements, 198–199
ignore function, 128–130, 696
illustrate class, 644–648
immediate successors, 1329
implementation files, 634, 895
implicit type coercion, 47
incident edges, 1325
#include preprocessor directive, 75, 81,

512, 637
functions and, 322–323
inheritance and, 696
input/output and, 118
STL and, 1363, 1379, 1383, 1397
string data type and, 458

includes function, 1455–1463
increment operator, 65, 66–67, 760, 861–862
incrementMinutes function, 614
incrementSeconds function, 614
incrementWaitingTime function, 1156
indexes. See array indexes
infinite loops, 250
infix notation, 1119, 1120
information hiding, 623–637
inheritance

constructors and, 686–693
described, 676
linked lists and, 1018
overview, 676–702, 708
pointers and, 780–787
stream classes and, 696–697

initalize function, 583
initializeList function, 1013–1014, 1044
initializeQueue function, 1134, 1140, 1142,

1147–1150
initializeStack function, 1086, 1091–1092, 1110
inner_product function, 1463–1468
inorder function, 1275, 1302
inorder sequence, 1272, 1273
inorder traversal, nonrecursive, 1297–1299
inorderTitle function, 1310
inorderTraversal function, 1280, 1304
inplace_merge function, 1441–1445
input. See also input/output (I/O)

devices, 5
failure, 124, 133, 134–136, 206–207
iterators, 1390–1391
memory allocation and, 50–53
overview, 50–65
statement, 58–61
stream variables, 119

streams, 118
string, 514–515

input/output (I/O). See also input; output
c-Strings and, 515–517
debugging and, 149–152
enumeration types and, 438
EOF-controlled while loops and, 263, 264
file, 152–165, 516
functions and, 321
inheritance and, 696–697
overview, 1492–1506
random file access and, 1498–1506
stream classes and, 696–697
stream variables, 132–133
string data type and, 148–152, 458
structS and, 570–571

insert function, 462, 467–468, 808, 1037, 1047,
1280, 1289, 1367, 1373, 1374, 1399

insert iterator, 1416, 1417, 1418
insertAt function, 803–804
insertEnd function, 804, 899, 902, 1246
inserter iterator, 1417
insertFirst function, 1006, 1019–1020,

1032–1033, 1118
insertion operator, 515, 696, 697
insertion sort algorithms, 1212, 1213–1218
insertLast function, 1006, 1020, 1032–1033
insertNode function, 1048
instance variables, 615
instances, of classes, 606
int data type, 36–37, 121, 333–335, 364

arrays and, 508, 761, 763–764, 765, 767
binary trees and, 1302, 1304
classes and, 603, 624
control structures and, 187–188
dereferencing operator and, 748–751
dynamic variables and, 756
exception handling and, 942
lists and, 797, 996
pointers and, 746, 747
recursion and, 976
STL and, 1365, 1369, 1371, 1375–1376, 1402,

1420, 1427
StructS and, 568, 577
templates and, 891, 893

int keyword, 87
integral data type, 35–36, 506
integral expressions, 44
iomanip.h header file, 458, 1506
ios class, 697
iostream.h header file, 321, 452, 456–455, 458,

695, 696–697, 1506, 1507
isEmpty function, 1280, 1330–1331

1566 | Index

isEmptyList function, 1012, 1043
isEmptyQueue function, 1134, 1165
isEmptyStack function, 1086, 1092, 1109–1110
isFullQueue function, 1134, 1147, 1165
isFullStack function, 1086, 1108, 1109–1110,

1092
isItemAt function, 801
isItemAtEqual function, 897
islower function, 322
isNumPalindrome function, 338–340
ISO (International Standards Organization), 22
istream class, 697
istream iterators, 1396
istream member functions, 124
istream_iterator class, 1396
isupper function, 322
iterative control structures. See also iterators

described, 974
linked lists and, 1007–1013
recursion and, 974–984

iterators. See also iterative control structures
bidirectional, 1392–1393
containers and, 1406–1407
declaring, 1368–1369
described, 1007
forward, 1392
input, 1390–1391
linked lists and, 1007–1013
ostream, 1376–1378, 1402, 1423
output, 1391
overview, 1367, 1390–1396
random access, 1393–1394
stream, 1396
types of, 1390–1395

J

Jacquard, Joseph, 2
Jobs, Steven, 3

K

key, of items, 1185
keywords. See also specific keywords

described, 33
list of, 1477

kilobytes (KB), 6–7
Königsberg bridge problem, 1322–1323
Kruskal’s algorithm, 1347

L

larger function, 328–331, 332, 341–343
largerChar function, 396
largerInt function, 396
largest function, 966–967
largestInRows function, 528–529
largest-number program, 342–343
leaf, use of the term, 1269
left child, 1266
left manipulator, 146–148
left subtree, 1266
length, of a path, 1270
length function, 462, 463, 464–465
length-conversion program, 91–94
length_error class, 932
level, of nodes, 1270
libraries. See also STL (C++ Standard Template

Library)
described, 11
Standard C++, 458

LIFO (Last In First Out) data structure, 117, 1085,
1088, 1362

limits.h (climits) header file, 1506, 1512–1513
linked lists. See also lists

ADTs and, 1005–1017, 1026–1027,
1040–1042

building, 1000–1005
circular, 1051
copying, 1015–1016
deleting items in, 996–999
described, 992
destroying, 1012–1013, 1043
dividing, 1227–1229
doubly, 1040–1051
first/last elements of, 1045–1051
initializing, 1013–1014, 1044
inserting items in, 996–999
iterators, 1007–1013
length of, 1013–1014, 1044
ordered, 1026–1037
overview, 991–1082
printing, 1013, 1037–1039, 1044–1045
properties, 993–1000
recursion and, 1037–1039
searching, 1018–1019, 1027–1028, 1045
sorting algorithms and, 1225–1235
stacks and, 1118–1119
traversing, 995–996
unordered, 1017–1026

linkedListIterator class, 1007–1009
linkedListType class, 1005–1007, 1009,

1011–1012, 1016, 1017, 1130, 1150

Index | 1567

linkedQueueType class, 1146, 1149–1151
linkedStackType class, 1108–1109,

1117–1119
linkers, 11
links, of nodes, 992
list(s). See also linked lists

adjacency, 1327–1328
array-based, 1208–1225
described, 796
formal parameter, 326, 362, 395
length of, 796
sort algorithms and, 1208–1225

list class, 1383–1390
list container, 1383–1390, 1407
listSize function, 800–801
listType class, 632, 893–894
loaders, 11
local declaration, 328
logic errors, 149–152, 932. See also errors
logical expressions, 178, 182–188, 443–444
logical operators, 182–188
logical values, 178
loop(s). See also recursion; specific types

arrays and, 491
enumeration types and, 438
graphs and, 1325
nested, 291–296, 525, 526
overview, 1325
recursion and, 974–984
stacks and, 1131–1133
structS and, 575–576

loop control variables (LCVs), 250, 251, 256, 274
Lukasiewicz, Jan, 1119

M

machine language, 6
main function, 31, 78, 80, 124, 324, 369, 381,

456–457, 795, 832–833, 838, 1122, 1168
candy-machine example and, 656–657
exception handling and, 940, 950
pointer variables and, 754, 778–779
structS and, 589–590
void functions and, 362

main memory. See RAM (random access memory)
make command, 638
map containers, 1407
math.h (cmath) header file, 456, 458, 1506,

1514–1515
max function, 1448–1452
max_element function, 1448–1452
maxListSize function, 800–801
maxSaleByPerson function, 588

maxSaleByQuarter function, 588–589
max_size function, 1373
member access operator, 133, 567, 607–609
member access operator arrow, 753
member access specifiers, 603. See also private

members; protected members; public members
member functions

containers and, 1372–1374
implementation of, 611–615
operator functions and, 839–842
operator overloading and, 839–846
redefining/overriding, 679–686

members, of classes, 602
memory. See also RAM (random access memory);

stacks
addresses, 4
allocation, 50–53, 372–382
cells, 4
data types and, 36
leaks, 758
overview, 4–5
structS and, 565–566
size, 1519–1520

menu-driven programs, 388–389
merge function, 1232, 1386, 1387, 1441–1445
merge sort algorithms, 1225–1235
mergeList function, 1230–1231, 1233, 1234
min function, 1448–1452
min_element function, 1448–1452
minimal spanning tree, 1345–1346, 1347,

1348–1355
minimalSpanning function, 1353–1354
minLocation function, 1211–1212
mixed expressions, 45, 46
mnemonics, 8–9
modular programming, 20
modules, 320. See also functions
move function, 788
movie-ticket-sales program, 156–161
multidimensional arrays, 518–533. See also arrays
multimap containers, 1407
multiple inheritance, 677. See also inheritance
multiset containers, 1397–1399, 1407
mutator functions, 616, 617–619
myException class, 948–949

N

named constants, 51, 52, 386–390, 461
namespace keyword, 76
namespaces, 76, 452–458, 1506, 1507,

1519–1520
n-dimensional arrays, 532, 533. See also arrays

1568 | Index

new operator, 756–757, 761, 933–934
newline (\n) escape sequence, 69, 71–73, 120, 128,

295
newString class, 882, 884–890
node(s)

building linked lists and, 1000–1005
dangling, 999
data of, retrieving, 1014
deleting, 1020–1024, 1033–1034, 1048–1051
described, 992
inserting, 1019–1025, 1028–1032, 1046–1048
level of, 1270
link properties and, 993–1000
overview, 1217
structure of, 1006

nodeCount function, 1282
nonrecursive algorithms, 1129–1133
null character, 510
null pointers, 755
null strings, 49
number(s). See also specific number systems

-classification program, 399–404
conversion, 1487–1492
-guessing game, 260–261
random, generating, 1519–1520

O

.obj filename extension, 77–78
object(s)

arrays of, 627–629
class scope and, 609
declaration, 606–607
described, 602
identifying, 709–710
overview, 606
programs, 10–11

object-oriented design. See OOD (object-oriented
design)

object-oriented programming, See OOP (object-
oriented programming)

octal number system, 1490–1492
one-dimensional arrays, 487, 491–494, 498, 519,

527. See also arrays
OOD (object-oriented design). See also objects

basic principles, 708
described, 20
overview, 20–22, 602, 707–731

OOP (object-oriented programming). See also objects
described, 21
languages, in existence today, 709
overview, 707–731

operands, 40

operating system software, 6
operations, identifying, 709–710
operator(s). See also operator overloading; specific

operators
arithmetic operators, 39, 40, 41–44
described, 631
precedence, 43–44, 85, 184–187, 1479–1480

operator function(s)
described, 829
as nonmember functions, 839–848
syntax, 830

operator overloading
array index operator and, 882–890
assignment operator and, 853–861
binary operators and, 842–848
described, 829
linked lists and, 1017
member versus nonmember, 867–868
need for, 828–829
overview, 829–882
stacks and, 1097–1098, 1115–1117
table, 1485
unary operators and, 861–867

ordered lists, 807–809, 1005–1006, 1011–1012,
1026–1037. See also lists

orderedArrayListType class, 800, 807–809, 896,
1193–1194

orderedLinkedList class, 1005–1006, 1011–1012,
1026–1037

origin, of edges, 1323
ostream class, 697, 721
ostream iterators, 1376–1378, 1402, 1423
ostream_iterator class, 1396
out_of_range class, 932
output. See also input/output (I/O)

devices, 5
formatting, 137–148
iterators, 1391
overview, 67–74, 117–174
statements, 68
stream variables, 119
streams, 118
string, 515–516

overflow condition, 126, 1094
overflow_error class, 932

P

palindrome number program, 338–340
parallel arrays, 537, 538. See also arrays
parameter(s)

actual, 326
arrays as, 497–498

Index | 1569

parameter(s) (Continued)
binary trees and, 1283, 1301–1304
classes and, 610–611, 622, 623–626
constructors with, invoking, 623–625
default, 396–399, 626
exception handling and, 939, 942–945
formal, 325–326, 498–500
passing, to functions, 527–530
queues and, 1155
recursion and, 967
reference, 363, 372–382
sorting algorithms and, 1230
structS and, 573–574
value, 363, 372–382, 784

parameterized stream manipulators, 148
parameterized types, 893. See also class templates
parent, use of the term, 1266, 1269
parentheses, 187, 327, 1301
partial_sum function, 1463–1468
partition function, 1223, 1224
partTimeEmployee class, 676, 692–693, 694, 789,

793–795
Pascal, Blaise, 2
patches, 296–299
path

binary trees and, 1269
described, 1217
length of, 1270
simple, 1325–1326
weight of, 1337

PCs (personal computers), history of, 3. See also
computers

peek function, 130–132
period (.), 129, 566, 567, 607
personalInfo class, 703, 705–707
personType class, 641–642, 676, 692–695,

702–703, 789, 833–836, 1236–1237,
1239–1240, 1243

petType class, 780–781, 783, 784–787
pig-latin strings, 471–475
pivot, 1218, 1219–1225
plus sign (+), 606
pointer variables

dangling, 759
declaring, 746–747
described, 746
functions and, 764
initializing, 755
operations on, 759–761
operator overloading and, 868
overview, 746–759

pointers. See also pointer variables
deep copy and, 768–770

functions and, 764
peculiarities of, 770–780
return types of functions as, 764
shallow copy and, 768–770

Poisson distributions, 1167
polymorphism

described, 708
parametric, 709

poolCapacity function, 394
poolFillTime function, 394
pop function, 1085, 1086, 1110, 1112–1114,

1094–1096, 1403–1405
pop_back function, 1367, 1374
pop_front function, 1380, 1382, 1385
postconditions, 635
postfix Expressions calculator, 1119–1129
post-increment operator, 863–867
postorder sequence, 1273, 1274–1276
postorder traversal, nonrecursive, 1300–1301
posttest loops, 286
pound sign (#), 145, 257, 606, 843, 847, 1122
pow function, 321–326, 456
pre-increment operator, 862–863
precision

described, 39
double, 39
single, 39

preconditions, 635
predefined functions

described, 125
overview, 31
using, 124–133

predicates, 1416
prefix (Polish) notation, 1119
preorder sequence, 1273
preorder traversal, nonrecursive, 1299–1300
preprocessors, 10, 75–76. See also #include

preprocessor directive
pretest loops, 286
Prim’s algorithm, 1347–1348, 1352–1354
print function, 684, 701, 714, 720–721, 767,

781–783, 801, 852, 897, 1013, 1044
printDataTotalVotes function, 1242
printGradeReports function, 725–726
printGraph function, 1332
printListReverse function, 1039–1040
printMatrix function, 528–529
printReport function, 587–588
printResult function, 453, 454, 457, 1126–1129
printShortestDistance function, 1344
printStars function, 364–366
printTime function, 605, 616
printTreeAndWeight function, 1354–1355

1570 | Index

private keyword, 603
private members, 606–606, 619–621, 1090, 1164

friend functions and, 836, 837–839
inheritance and, 677–679, 685–686, 698–699
linked lists and, 1006, 1011, 1012
overview, 603
sorting algorithms and, 1232
structS and, 633

problem analysis-coding-execution cycle, 12–20
processVotes function, 1250
program(s). See also programming; programming

languages
basic elements of, 28–34
creating, overview of, 77–80
described, 28
driver, 392, 393–394
form, 84–89, 211–212
overview, 6
processing, overview of, 10–12
source, 10
style, 84–89, 211–212
terminating, 223–231, 946, 948

programming. See also programs
described, 28
methodologies, 20–22
structured, 20

programming languages. See also programming
described, 31
evolution of, 8–9
overview, 1–26
structured, 20

prompt lines, 86
protected keyword, 603
protected members, 606, 1011, 1012

friend functions and, 836
inheritance and, 698–702
overview, 603

prototypes, 331, 332–333, 397, 398
pseudocode

described, 212
overview, 212–215

ptrMemberVarType class, 770, 771, 772–780
public keyword, 603, 604–606
public members, 606, 619–621, 633, 1369

friend functions and, 836
overview, 603
inheritance and, 677–679, 683–684, 686,

698–699
push function, 1085, 1086, 1110–1112,

1092–1094, 1403–1405
push_back function, 1367, 1368, 1374, 1382
push_front function, 1380, 1385

Q

queue(s). See also queuing systems
application of, 1151–1171
described, 1133
empty, 1142, 1146–1147
full, 1142, 1146–1147
implementation of, as arrays, 1136–1145
initializing, 1142, 1147
linked implementation of, 1145–1151
operations, 1134–1135
overview, 1133–1151
STL and, 1405, 1407

queueADT class, 1135–1136, 1140, 1145–1147
queueType class, 1164
queuing systems. See also queues

described, 1152
designing, 1151–1153

quick sort algorithms, 1218–1225
quickSort function, 1224

R

RAM (random access memory), 4, 5. See also memory
RAND_MAX constant, 1520
random file access, 1498–1506
random number generators, 1519–1520
random_shuffle function, 1448–1452
raw data, 1492
rbegin function, 1373, 1376
rear, of queues, 1133–1134
Rebuild command, 12, 638
recMergeSort function, 1231–1233
records. See structS
rectangle class, 677, 789
rectangleType class, 680–690, 840–868
recursion

described, 960
direct, 963
graphs and, 1334
indirect, 963
infinite, 963–964
iteration and, 974–984
linked lists and, 1037–1039
overview, 959–989
problem solving with, 964–974
removing, 1129–1133
sorting algorithms and, 1234

recursive algorithms, 961, 964–974
recursive definitions, 960, 961–964
recursive functions

described, 961, 962–963
designing, 963–964

Index | 1571

recursive functions (Continued)
iteration and, 974–975
tail, 963

reference variables, as parameters, 368–372
relational operators, 201–203, 437–438

described, 178
overview, 177–182
structS and, 569–570

remove function, 805, 899, 1427, 1385
removeAt function, 801, 805, 897
remove_copy function, 1427
remove_copy_if function, 1427
remove_if function, 1385, 1427
repetition structures. See also loops

need for, 248–249
overview, 176–177, 247–318

replace function, 463, 467–468, 1430–1434
replaceAt function, 805–806, 899
replace_copy function, 1430–1434
replace_copy_if function, 1430–1434
replace_if function, 1430–1434
reserved words. See keywords
resize function, 1367, 1368, 1374
retrieveAt function, 802, 897
return keyword, 77, 328
return statement, 208, 324, 327–331, 333–335
return type, of functions, 326
reverse function, 1387, 1445–1448
Reverse Polish notation, 1119
reverse_copy function, 1445–1448
reversePrint function, 1037–1039
rFibNum function, 967–971
right child, 1266
right manipulator, 146–148
right subtree, 1266
rightmost bit, 979
‘‘rock, paper, and scissors’’ game, 444–452
rollDice function, 639–640
root, use of the term, 1269
root node, 1217, 1286
rooted tree, 1346
rotate function, 1445–1448
rotate_copy function, 1445–1448
row(s)

arrays and, 523, 525
largest element in, 526
order form, 527
processing, 523
sum by, 525

runSimulation function, 1167, 1168
run-time (late/dynamic) binding, 782, 788
run-together words, 86

S

saleByQuarter function, 586
sales data analysis example, 580–593
scope resolution operator, 386, 454, 457,

611–615, 683
search algorithms

Big-O notation and, 1194–1202
comparison-based, 1202
overview, 1184–1194

search function, 1018–1019, 1045, 1280,
1288–1289, 1437–1440

searching. See also search algorithms; search
function

arrays, for specific items, 507–510
comparison-based, 1202
linked lists, 1018–1019, 1027–1028, 1045
sequential, 507, 508–510, 573–574,

1185–1187
search_n function, 1437–1440
searchVideoList function, 1309
secondary storage, 5
seekg function, 1498, 1499–1503
seekp function, 1499–1500, 1503
selection structures

multiple, 195–199
one-way, 189–191
overview, 176–177, 188–212
two-way, 191–194

selection sort algorithms, 1208–1212
selectors, 215
sellProduct function, 654–655
semantic(s)

described, 85
errors, 194
rules, 31

semicolon (;), 85
sentinel(s), 257, 259

-controlled while loops, 255, 256
described, 255

seqSearch function, 508–509, 573, 574,
805, 899

sequence containers, 1363–1372
sequence structures, 176–177
sequential search algorithm, 507, 508–510,

573–574, 1185–1187
server(s)

lists, 1159–1163
queues and, 1152, 1156–1163

serverListType class, 1160–1161
serverType class, 1156–1158
set container, 1397–1399, 1407
setCustomerInfo function, 1155–1156

1572 | Index

setData function, 701, 704–705
set_difference function, 1455–1463
setDimension function, 684, 685
setfill manipulator, 144–146
setFirstName function, 834–835
setInfo function, 718
set_intersection function, 1455–1463
setLastName function, 834–835
setName function, 1238
setprecision manipulator, 137–138, 140–141
sets

described, 807
ordered, 809
unordered, 807

setServerBusy function, 1162
setSimulationParameters function, 1166
set_symmetric_difference function, 1455–1463
setTime function, 604, 605, 608, 611–612, 616,

621, 622
set_union function, 1455–1463
setw manipulator, 142–144, 146
setX function, 755
shallow copy, 768, 769, 770
shape class, 677, 678, 787–789
short-circuit evaluation, 199, 200
shortest path, 1337
shortest path algorithm, 1337, 1338–1345
shortestPath function, 1343, 1344
showpoint manipulator, 139–142
showSelection function, 654
side effects, 386–390
simple data types, 53, 433–483, 486
simple graphs, 1325. See also graphs
simulation

example, 1151–1171
time-driven, 1152

single inheritance, 677. See also inheritance
size function, 463, 1372, 1403–1405
slicing problem, 786
software. See also programs

operating system, 6
overview of, 6

sort algorithms, 1202–1208, 1216–1217
sort function, 1207, 1386, 1437–1440
sortCourses function, 718, 722
source

code, 10, 77
file, 77
program, 10
use of the term, 1337

spanning tree, 1347
splice function, 1386, 1389–1390
sqrt function, 321, 322

square brackets ([]), 495
squareFirst function, 381
stack(s)

application of, 1119–1229
copying, 1114–1115
described, 1084
empty, 1092, 1109–1110
header files and, 1098–1102
implementation of, as arrays, 1088–1102
initializing, 1081–1082, 1110
linked implementation of, 1106–1119
overview, 1084–1087
STL and, 1403–1404, 1407
unwinding, 948–951

stack class, 1403–1404
stackADT class, 1107–1108, 1086–1088
stackType class, 1088–1091, 1097–1098, 1101
Standard C++. See also ANSI/ISO Standard C++

library, 458
naming conventions, 1506–1507

statement(s)
action, 189
declaration, 78
executable, 78
nested, 195, 196, 197–199, 280
terminators, 85

static binding. See compile-time binding
static keyword, 491, 643
static members, 643–648
std:: prefix, 455
stepwise refinement, 20
STL (C++ Standard Template Library). See also

templates
algorithms and, 1407–1468
components of, 1362–1390
overview, 1361–1475

strcmp function, 512, 513
stream(s)

classes, 696–697
described, 118
extraction operator, 59
functions, 124
insertion operator, 31, 68, 848–853
iterators, 1396
variables, 119, 373

string(s). See also string data type
arrays of, 530–531
comparison, 512–513
described, 49
exception handling and, 942
output, 515–516
pig-latin, 471–475
reading, 60–61, 513

Index | 1573

string(s) (Continued)
templates and, 891, 893
writing, 513

string data type, 49–50, 76, 148–152, 180–182.
See also strings

functions, list of, 462–463
overview, 458–470

string.h (cstring) header file, 470, 512, 516, 517,
1506, 1515–1517

strlen function, 512
strongly connected, use of the term, 1326
struct(S)

arrays and, 571–576
classes versus, 632–633
comparison operators and, 569–570
described, 564
input/output and, 570–571
members, accessing, 566–568
overview, 563–600
pointer variables and, 752–753
seekg function and, 1500–1503
structS within, 576–579

struct keyword, 565
structured data types, 486
structured design, 20
structured programming, 20
structures. See also specific types

choosing the right, 289
switch, 215, 216–223
testing, 212–215

studentType class, 717–718
subgraphs, 1323
subsets, 1323
substr function, 463, 469–470
sumRows function, 528–529
swap function, 463, 470, 1210–1211, 1223,

1373, 1434
switch statement, 439–440
switch structures, 215, 216–223
syntax errors, 80–84, 133, 396. See also debugging;

errors; syntax rules
control structures and, 215
fixing, 80–84

syntax rules, 31, 84–85. See also syntax errors
system programs, 6

T

tabs, 120
tail recursive functions, 963
target, 1187
telephone-digit program, 257–259
template keyword, 891

templates. See also STL (C++ Standard Template
Library)

array-based lists and, 896–902
class, 891, 893–895
function, 891, 892–893
overview, 891–902

terminate function, 948
ternary operators, 211
testing, of control structures, 212–215
testTime function, 610–611
text processing program, 540–547
this keyword, 831
this pointer, 831–836, 861
throw keyword, 926
throw statements, 925–926, 932, 941–945
tilde (�), 629
tokens, 32–33, 34
tolower function, 322
top, of stacks, 116, 1084, 1094, 1112
top function, 1085, 1086, 1403–1404
top-down design, 20
totalSaleByPerson function, 586–587
toupper function, 322, 323, 1454
Tower of Hanoi problem, 971–974
transaction time, 1152
transform function, 1452–1454
traversal

binary tree, 1272–1276, 1297–1304
breadth-first (level-by-level), 1276, 1335,

1336–1337
depth first, 1333, 1334–1335
graph, 1333–1337
inorder, 1297–1299
postorder traversal, 1300–1301
preorder, 1299–1300

try/catch blocks, 924–931, 941–945, 947, 948,
950–951

two-dimensional arrays. See also arrays
accessing components of, 530
declaration of, 521, 531–532
described, 519
dynamic, 765–767
enumeration types and, 521–524
initialization of, 521, 524–525
overview, 518–533
passing, as parameters to functions, 527–530
printing, 525
processing, 523

type
conversion, 47, 48–49
name, 631

typedef iterators, 1394–1395
typedef statement, 443

1574 | Index

U

UML (Unified Modeling Language). See also class
diagrams

binary trees and, 1280
described, 606

unary operators, 40, 861–867
underflow condition, 1096
underscore (_), 33, 34, 86, 453
undirected graph, 1323
Unicode, 8
union, of sets, 1323
unique function, 1385
UNIX, 265
unordered lists, 803–807, 896, 899, 900–902,

1005–1006, 1011, 1017–1026, 1232, 1329
unorderedArrayListType class, 800, 803–807, 896,

899, 900–902, 1207–1208
unorderedLinkedList class, 1005–1006, 1011,

1017–1026, 1232, 1329
updateServers function, 1163
updateVotesByRegion function, 1242
user-defined functions, 324
using keyword, 76, 454
using statement, 454–455, 456

V

value parameters, 367–368
value-returning function(s)

calls, 326
described, 324
overview, 324–343
return statements and, 327–331

variable(s)
automatic, 391, 392
declaring, 57–58, 442
described, 52
enumeration types and, 436
external, 386
functions and, 372–382
global, 386–390, 391
initialized, 53, 57–58, 61–65
input/output and, 1493–1495, 1501
instance, 615
local, 372
loop control (LCVs), 250, 251, 256, 274

memory allocation and, 50–53
operator overloading and, 868
putting data into, 53–56
static, 391, 392
structS and, 565–569, 570–571, 578–579

vector class, 1363–1367
vector containers, 1363–1372, 1407
vector objects, declaring, 1364–1368
vertices

connected, 1325
described, 1323
drawing, 1324

video store example, 1052–1071, 1305–1314
videoBinaryTree class, 1309–1310
videoListType class, 1308–1309
videoType class, 1307–1308
virtual functions, 780–781, 782, 783–795
virtual keyword, 783
Visual C++ 2008 Express (Microsoft), 638
Visual Studio .NET (Microsoft), 638
void functions, 324, 362–366

W

waitingCustomerQueueType class, 1164
walk-throughs, 56, 65, 214, 292
weighted graphs, 1337, 1338–1339. See also graphics
weighted tree, 1346
weightedGraphType class, 1338–1339
what function, 931–932
while loops, 1131–1133, 1186, 1189,

1192–1193, 1195
counter-controlled, 252, 253–255
described, 249
designing, 251–252
EOF-controlled, 263, 264–268, 294–295
expressions in, 268–269
Fibonacci numbers and, 269, 270–273
flag-controlled, 259, 260, 268
functions and, 366
nested, 293
overview, 249–284
sentinel-controlled, 255, 256

whitespace, 34, 120, 129, 149
Wozniak, Stephen, 3
write function, 1498

Index | 1575

	Cover
	Title Page
	Copyright
	TABLE OF CONTENTS
	Preface��������������
	1 AN OVERVIEW OF COMPUTERS AND PROGRAMMING LANGUAGES

	Introduction�������������������
	A Brief Overview of the History of Computers���
	Elements of a Computer System������������������������������������

	Hardware
	Central Processing Unit and Main Memory
	Input /Output Devices
	Software

		The Language of a Computer���������������������������������
	The Evolution of Programming Languages���
	Processing a C++ Program�������������������������������
	Programming with the Problem Analysis–Coding–Execution Cycle���
	Programming Methodologies��������������������������������

	Structured Programming
	Object-Oriented Programming

		ANSI/ISO Standard C++����������������������������
	Quick Review�������������������
	Exercises����������������

		2 BASIC ELEMENTS OF C++

	A C++ Program��������������������
	The Basics of a C++ Program����������������������������������

	Comments
	Special Symbols
	Reserved Words (Keywords)
	Identifiers
	Whitespaces

		Data Types�����������������

	Simple Data Types
	Floating-Point Data Types

		Arithmetic Operators and Operator Precedence���

	Order of Precedence

		Expressions������������������

	Mixed Expressions

		Type Conversion (Casting)��������������������������������
	string Type
	Input������������

	Allocating Memory with Constants and Variables
	Putting Data into Variables
	Assignment Statement
	Saving and Using the Value of an Expression
	Declaring and Initializing Variables
	Input (Read) Statement
	Variable Initialization

		Increment and Decrement Operators��
	Output�������������
	Preprocessor Directives������������������������������

	namespace and Using cin and cout in a Program
	Using the string Data Type in a Program

		Creating a C++ Program�����������������������������
	Debugging: Understanding and Fixing Syntax Errors��
	Program Style and Form�����������������������������

	Syntax
	Use of Blanks
	Use of Semicolons, Brackets, and Commas
	Semantics
	Naming Identifiers
	Prompt Lines
	Form and Style

		More on Assignment Statements������������������������������������
	Programming Example: Convert Length��
	Programming Example: Make Change���������������������������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		3 INPUT/OUTPUT

	I/O Streams and Standard I/O Devices���

	cin and the Extraction Operator >>

		Using Predefined Functions in a Program��

	cin and the get Function
	cin and the ignore Function
	The putback and peek Functions
	The Dot Notation between I/O Stream Variables and I/O Functions: A Precaution

		Input Failure��������������������

	The clear Function

		Output and Formatting Output�����������������������������������

	setprecision Manipulator
	fixed Manipulator
	showpoint Manipulator
	setw

		Additional Output Formatting Tools���

	setfill Manipulator
	left and right Manipulators

		Input/Output and the string Type���������������������������������������
	Debugging: Understanding Logic Errors and Debugging with cout Statements���
	File Input/Output������������������������
	Programming Example: Movie Tickets Sale and Donation to Charity��
	Programming Example: Student Grade���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		4 CONTROL STRUCTURES I (SELECTION)

	Control Structures�������������������������
	Relational Operators���������������������������

	Relational Operators and Simple Data Types
	Comparing Characters
	Relational Operators and the string Type

		Logical (Boolean) Operators and Logical Expressions��

	Order of Precedence
	int Data Type and Logical (Boolean) Expressions
	bool Data Type and Logical (Boolean) Expressions

		Selection: if and if...else����������������������������������

	One-Way Selection 189
	Two-Way Selection
	Compound (Block of) Statements
	Multiple Selections: Nested if
	Comparing if...else Statements with a Series of if Statements
	Short-Circuit Evaluation
	Comparing Floating-Point Numbers for Equality: A Precaution
	Associativity of Relational Operators: A Precaution
	Avoiding Bugs by Avoiding Partially Understood Concepts and Techniques
	Input Failure and the if Statement
	Confusion between the Equality Operator (==) and the Assignment Operator (=)
	Conditional Operator (?:)
	Program Style and Form (Revisited): Indentation

		Using Pseudocode to Develop, Test, and Debug a Program���
	switch Structures������������������������

	Avoiding Bugs by Avoiding Partially Understood Concepts and Techniques (Revisited)

		Terminating a Program with the assert Function���
	Programming Example: Cable Company Billing���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		5 CONTROL STRUCTURES II (REPETITION)

	Why Is Repetition Needed?��������������������������������
	while Looping (Repetition) Structure���
	Designing while Loops

	Case 1: Counter-Controlled while Loops
	Case 2: Sentinel-Controlled while Loops
	Case 3: Flag-Controlled while Loops
	Case 4: EOF-Controlled while Loops
	eof Function
	More on Expressions in while Statements

		Programming Example: Fibonacci Number��
	for Looping (Repetition) Structure���
	Programming Example: Classifying Numbers���
	do...while Looping (Repetition) Structure��

	Choosing the Right Looping Structure

		break and continue Statements������������������������������������
	Nested Control Structures��������������������������������
	Avoiding Bugs by Avoiding Patches��
	Debugging Loops����������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		6 USER-DEFINED FUNCTIONS I

	Predefined Functions���������������������������
	User-Defined Functions�����������������������������
	Value-Returning Functions��������������������������������

	Syntax: Value-Returning Functions
	Syntax: Formal Parameter List
	Function Call
	Syntax: Actual Parameter List
	return Statement
	Syntax: return Statement
	Function Prototype
	Syntax: Function Prototype
	Value-Returning Functions: Some Peculiarity
	More Examples of Value-Returning Functions
	Flow of Execution

		Programming Example: Largest Number��
	Programming Example: Cable Company���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		7 USER-DEFINED FUNCTIONS II

	Void Functions���������������������

	FUNCTION DEFINITION
	FORMAL PARAMETER LIST
	FUNCTION CALL
	ACTUAL PARAMETER LIST

		Value Parameters�����������������������
	Reference Variables as Parameters��

	Calculate Grade

		Value and Reference Parameters and Memory Allocation���
	Reference Parameters and Value-Returning Functions���
	Scope of an Identifier�����������������������������
	Global Variables, Named Constants, and Side Effects��
	Static and Automatic Variables�������������������������������������
	Debugging: Using Drivers and Stubs���
	Function Overloading: An Introduction��
	Functions with Default Parameters��
	Programming Example: Classify Numbers��
	Programming Example: Data Comparison���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		8 USER-DEFINED SIMPLE DATA TYPES, NAMESPACES, AND THE string TYPE

	Enumeration Type�����������������������

	Declaring Variables
	Assignment
	Operations on Enumeration Types
	Relational Operators
	Input /Output of Enumeration Types
	Functions and Enumeration Types
	Declaring Variables When Defining the Enumeration Type
	Anonymous Data Types
	typedef Statement

		Programming Example: The Game of Rock, Paper, and Scissors���
	Namespaces�����������������
	string Type������������������

	Additional string Operations

		Programming Example: Pig Latin Strings���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		9 ARRAYS AND STRINGS

	Arrays�������������

	Accessing Array Components
	Processing One-Dimensional Arrays
	Array Index Out of Bounds
	Array Initialization During Declaration
	Partial Initialization of Arrays During Declaration
	Some Restrictions on Array Processing
	Arrays as Parameters to Functions
	Constant Arrays as Formal Parameters
	Base Address of an Array and Array in Computer Memory
	Functions Cannot Return a Value of the Type Array
	Integral Data Type and Array Indices
	Other Ways to Declare Arrays

		Searching an Array for a Specific Item���
	C-Strings (Character Arrays)�����������������������������������

	String Comparison
	Reading and Writing Strings
	String Input
	String Output
	Specifying Input/Output Files at Execution Time
	string Type and Input/Output Files

		Parallel Arrays����������������������
	Two- and Multidimensional Arrays���������������������������������������

	Accessing Array Components
	Two-Dimensional Array Initialization During Declaration
	Two-Dimensional Arrays and Enumeration Types
	Initialization
	Print
	Input
	Sum by Row
	Sum by Column
	Largest Element in Each Row and Each Column
	Passing Two-Dimensional Arrays as Parameters to Functions
	Arrays of Strings
	Arrays of Strings and the string Type
	Arrays of Strings and C-Strings (Character Arrays)
	Another Way to Declare a Two-Dimensional Array
	Multidimensional Arrays

		Programming Example: Code Detection��
	Programming Example: Text Processing���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		10 RECORDS (structS)

	Records (structs)������������������������

	Accessing struct Members
	Assignment
	Comparison (Relational Operators)
	Input /Output
	struct Variables and Functions
	Arrays versus structs
	Arrays in structs
	structs in Arrays
	structs within a struct

		Programming Example: Sales Data Analysis���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		11 CLASSES AND DATA ABSTRACTION

	Classes��������������

	Unified Modeling Language Class Diagrams
	Variable (Object) Declaration
	Accessing Class Members
	Built-in Operations on Classes
	Assignment Operator and Classes
	Class Scope
	Functions and Classes
	Reference Parameters and Class Objects (Variables)
	Implementation of Member Functions
	Accessor and Mutator Functions
	Order of public and private Members of a Class
	Constructors
	Invoking a Constructor
	Invoking the Default Constructor
	Invoking a Constructor with Parameters
	Constructors and Default Parameters
	Classes and Constructors: A Precaution
	Arrays of Class Objects (Variables) and Constructors
	Destructors

		Data Abstraction, Classes, and Abstract Data Types���
	A struct Versus a class������������������������������
	Information Hiding�������������������������
	Executable Code����������������������
	Static Members of a Class��������������������������������
	Programming Example: Candy Machine���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		12 INHERITANCE AND COMPOSITION

	Inheritance������������������

	Redefining (Overriding) Member Functions of the Base Class
	Constructors of Derived and Base Classes
	Destructors in a Derived Class
	Multiple Inclusions of a Header File
	C++ Stream Classes
	Protected Members of a Class
	Inheritance as public, protected, or private

		Composition (Aggregation)��������������������������������
	Object-Oriented Design (OOD) and Object-Oriented Programming (OOP)���

	Identifying Classes, Objects, and Operations

		Programming Example: Grade Report��
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		13 POINTERS, CLASSES, VIRTUAL FUNCTIONS, ABSTRACT CLASSES, AND LISTS

	Pointer Data Type and Pointer Variables��

	Declaring Pointer Variables

		Address of Operator (&)������������������������������
	Dereferencing Operator (*)���������������������������������
	Classes, Structs, and Pointer Variables��
	Initializing Pointer Variables�������������������������������������
	Dynamic Variables������������������������

	Operator new
	Operator delete

		Operations on Pointer Variables��������������������������������������
	Dynamic Arrays���������������������

	Functions and Pointers
	Pointers and Function Return Values
	Dynamic Two-Dimensional Arrays

		Shallow versus Deep Copy and Pointers��
	Classes and Pointers: Some Peculiarities���

	Destructor
	Assignment Operator
	Copy Constructor

		Inheritance, Pointers, and Virtual Functions���

	Classes and Virtual Destructors

		Abstract Classes and Pure Virtual Functions��
	Array Based Lists������������������������
	Unordered Lists����������������������
	Ordered Lists��������������������
	Address of Operator and Classes��������������������������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		14 OVERLOADING AND TEMPLATES

	Why Operator Overloading Is Needed���
	Operator Overloading���������������������������

	Syntax for Operator Functions
	Overloading an Operator: Some Restrictions
	Pointer this
	Friend Functions of Classes
	Operator Functions as Member Functions and Nonmember Functions
	Overloading Binary Operators
	Overloading the Stream Insertion (<<) and Extraction (>>) Operators
	Overloading the Assignment Operator (=)
	Overloading Unary Operators
	Operator Overloading: Member versus Nonmember
	Classes and Pointer Member Variables (Revisited)
	Operator Overloading: One Final Word

		Programming Example: ClockType
	Programming Example: Complex Numbers���
	Overloading the Array Index (Subscript) Operator ([])��
	Programming Example: newString�������������������������������������
	Function Overloading���������������������������
	Templates����������������

	Function Templates
	Class Templates
	Array-Based Lists (Revisited)

		Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		15 EXCEPTION HANDLING

	Handling Exceptions within a Program���

	C++ Mechanisms of Exception Handling
	try/catch Block
	Using C++ Exception Classes

		Creating Your Own Exception Classes��

	Rethrowing and Throwing an Exception

		Exception-Handling Techniques������������������������������������

	Terminate the Program
	Fix the Error and Continue
	Log the Error and Continue

		Stack Unwinding����������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		16 RECURSION

	Recursive Definitions����������������������������

	Direct and Indirect Recursion
	Infinite Recursion

		Problem Solving Using Recursion��������������������������������������

	Tower of Hanoi: Analysis

		Recursion or Iteration?������������������������������
	Programming Example: Converting a Number from Binary to Decimal��
	Programming Example: Converting a Number from Decimal to Binary��
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		17 LINKED LISTS

	Linked Lists�������������������

	Linked Lists: Some Properties
	Deletion
	Building a Linked List

		Linked List as an ADT����������������������������

	Structure of Linked List Nodes
	Member Variables of the class linkedListType
	Linked List Iterators
	Print the List
	Length of a List
	Retrieve the Data of the First Node
	Retrieve the Data of the Last Node
	Begin and End
	Copy the List
	Destructor
	Copy Constructor
	Overloading the Assignment Operator

		Unordered Linked Lists�����������������������������

	Search the List
	Insert the First Node
	Insert the Last Node
	Header File of the Unordered Linked List

		Ordered Linked Lists���������������������������

	Search the List
	Insert a Node
	Insert First and Insert Last
	Delete a Node
	Header File of the Ordered Linked List

		Print a Linked List in Reverse Order (Recursion Revisited)���
	printListReverse
	Doubly Linked Lists��������������������������

	Default Constructor
	isEmptyList
	Destroy the List
	Initialize the List
	Length of the List
	Print the List
	Reverse Print the List
	Search the List
	First and Last Elements

		Circular Linked Lists����������������������������
	Programming Example: Video Store���������������������������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		18 STACKS AND QUEUES

	Stacks�������������

	Stack Operations

		Implementation of Stacks as Arrays���

	Initialize Stack
	Empty Stack
	Full Stack
	Push
	Return the Top Element
	Pop
	Copy Stack
	Constructor and Destructor
	Copy Constructor
	Overloading the Assignment Operator (=)
	Stack Header File

		Programming Example: Highest GPA���������������������������������������
	Linked Implementation of Stacks��������������������������������������

	Default Constructor
	Empty Stack and Full Stack
	Initialize Stack
	Push
	Return the Top Element
	Pop
	Copy Stack
	Constructors and Destructors
	Overloading the Assignment Operator (=)
	Stack as Derived from the class unorderedLinkedList

		Application of Stacks: Postfix Expressions Calculator��

	Main Algorithm
	Function evaluateExpression
	Function evaluateOpr
	Function discardExp
	Function printResult

		Removing Recursion: Nonrecursive Algorithm to Print a Linked List Backward���
	Queues�������������

	Queue Operations
	Implementation of Queues as Arrays
	Linked Implementation of Queues
	Queue Derived from the class unorderedLinkedListType

		Application of Queues: Simulation��

	Designing a Queuing System
	Customer
	Server
	Server List
	Waiting Customers Queue
	Main Program

		Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		19 SEARCHING AND SORTING ALGORITHMS

	Searching and Sorting Algorithms���������������������������������������
	Search Algorithms������������������������

	Sequential Search
	Binary Search
	Performance of Binary Search
	Binary Search Algorithm and the class orderedArrayListType

		Asymptotic Notation: Big-O Notation��

	Lower Bound on Comparison-Based Search Algorithms

		Sorting Algorithms�������������������������
	Sorting a List: Bubble Sort����������������������������������

	Analysis: Bubble Sort
	Bubble Sort Algorithm and the class unorderedArrayListType

		Selection Sort: Array-Based Lists��

	Analysis: Selection Sort

		Insertion Sort: Array-Based Lists��

	Analysis: Insertion Sort

		Lower Bound on Comparison-Based Sort Algorithms��
	Quick Sort: Array-Based Lists������������������������������������

	Analysis: Quick Sort

		Merge Sort: Linked List-Based Lists��

	Divide
	Merge
	Analysis: Merge Sort

		Programming Example: Election Results��
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		20 BINARY TREES

	Binary Trees�������������������

	Copy Tree
	Binary Tree Traversal

		Implementing Binary Trees��������������������������������
	Binary Search Trees��������������������������

	Binary Search Tree: Analysis

		Nonrecursive Binary Tree Traversal Algorithms��

	Nonrecursive Inorder Traversal
	Nonrecursive Preorder Traversal
	Nonrecursive Postorder Traversal

		Binary Tree Traversal and Functions as Parameters��
	Programming Example: Video Store (Revisited)���
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		21 GRAPHS

	Introduction�������������������
	Graph Definitions and Notations��������������������������������������
	Graph Representation���������������������������

	Adjacency Matrix
	Adjacency Lists

		Operations on Graphs���������������������������
	Graphs as ADTs���������������������
	Graph Traversals�����������������������

	Depth First Traversal
	Breadth First Traversal

		Shortest Path Algorithm������������������������������

	Shortest Path

		Minimal Spanning Tree����������������������������
	Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		22 STANDARD TEMPLATE LIBRARY (STL)

	Components of the STL����������������������������

	Container Types
	Sequence Containers
	Sequence Container: vector
	Member Functions Common to All Containers
	Member Functions Common to Sequence Containers
	The copy Algorithm
	Sequence Container: deque
	Sequence Container: list

		Iterators����������������

	Types of Iterators
	Stream Iterators

		Associative Containers�����������������������������

	Associative Containers: set and multiset
	Declaring set or multiset Associative Containers
	Item Insertion and Deletion from set/multiset

		Container Adapters�������������������������

	Stack
	Queue

		Containers, Associated Header Files, and Iterator Support��
	Algorithms�����������������

	STL Algorithm Classification
	Function Objects
	Insert Iterator
	STL Algorithms
	The Functions fill and fill_n
	The Functions generate and generate_n
	The Functions find, find_if, find_end, and find_first_of
	The Functions remove, remove_if, remove_copy, and remove_copy_if
	The Functions replace, replace_if, replace_copy, and replace_copy_if
	The Functions swap, iter_swap, and swap_ranges
	The Functions search, search_n, sort, and binary_search
	The Functions adjacent_find, merge, and inplace_merge
	The Functions reverse, reverse_copy, rotate, and rotate_copy
	The Functions count, count_if, max, max_element, min, min_element, and random_shuffle
	The Functions for_each and transform
	The Functions includes, set_intersection, set_union, set_difference, and set_symmetric_difference
	The Functions accumulate, adjacent_difference, inner_product, and partial_sum

		Quick Review�������������������
	Exercises����������������
	Programming Exercises����������������������������

		APPENDIX A: RESERVED WORDS
	APPENDIX B: OPERATOR PRECEDENCE
	APPENDIX C: CHARACTER SETS

	ASCII (American Standard Code for Information Interchange)���
	EBCDIC (Extended Binary Coded Decimal Interchange Code)��

		APPENDIX D: OPERATOR OVERLOADING
	APPENDIX E: ADDITIONAL C++ TOPICS

	Binary (Base 2) Representation of a Nonnegative Integer��

	Converting a Base 10 Number to a Binary Number (Base 2)
	Converting a Binary Number (Base 2) to Base 10
	Converting a Binary Number (Base 2) to Octal (Base 8) and Hexadecimal (Base 16)

		More on File Input/Output��������������������������������

	Binary Files
	Random File Access

		Naming Conventions of Header Files in ANSI/ISO Standard C++ and Standard C++���

		APPENDIX F: HEADER FILES

	Header File cassert (assert.h)�������������������������������������
	Header File cctype (ctype.h)�����������������������������������
	Header File cfloat (float.h)�����������������������������������
	Header File climits (limits.h)�������������������������������������
	Header File cmath (math.h)���������������������������������

		APPENDIX G: MEMORY SIZE ON A SYSTEM AND RANDOM NUMBER GENERATOR

	Random Number Generator������������������������������

		APPENDIX H: REFERENCES
	APPENDIX I: ANSWERS TO ODD-NUMBERED EXERCISES

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22

		INDEX

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

