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FIGURE 2-27

Note that y is positive in the direc-
tion toward point O.
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CURVED MEMBERS IN FLEXURE

The distribution of stress in a curved

flexural member is determined by using the
following assumptions:

» The cross section has an axis of Symmetry in a plane along the length of the beam.
* Plane cross sections remain plane after bending.

¢ The modulus of elasticity is the same in tension as in compression.

We shall find that the neutral axis and the centroidal axis of a curved beam, unlike a
straight beam, are not coincident and also that the stress does not vary linearly from the
neutral axis. The notation shown in Fig. 2-27 is defined as follows:

r, = radius of outer fiber

r; = radius of inner fiber

h = depth of section

¢, = distance from neutral axis to outer fiber

¢; = distance from neutral axis to inner fiber

7, = radius of neutral axis

R = radius of centroidal axis

e = distance from centroidal axis to neutral axis

Figure 2-27 shows that the neutral and centroidal axes are not coincident.* It turns out

that the location of the neutral axis with respect to the center of curvature O is given by
the equation ’

Ty =———

T ' (2-64)
-

*For a complete development of the relations in this section, see Joseph E. Shigley,
Design, First Metric Edition, McGraw-Hill, New York, 1986, pp. 72-75.

Mechanical Engineering
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The stress distribution can be found by balancing the external applied moment against
the internal resisting moment. The result is found to be
My

) A

where M is positive in the direction shown in Fig. 2-27. Equation (2-65) shows that the-
stress distribution is hyperbolic. The critical stresses occur at the inner and outer
surfaces and are ,

Mc; Mc,
g; = —— g, = —
Y Aer; ¢ Aer,

T

(2-66)

These equations are valid for pure bending. In the usual and more general case, such as
a crane hook, the U frame of a press, or the frame of a clamp, the bending moment is
due to forces acting to one side of the cross section under consideration. In this case the
bending moment is computed about the centroidal axis, not the neutral axis. Also, an
additional axial tensile or compressive stress must be added to the bending stresses
given by Egs. (2-65) and (2-66) to obtain the resultant stresses acting on the section.

EXAMPLE 2-8

Solution

Plot the distribution of stresses across section A-A of the crane hook Shown in Fig.
2-28a. The cross-section is rectangular, with b= 0.75 in.and 2 = 4 in, and the load is
F = 5000 Ib. "

Since A = bh, we have dA = b dr and, from Eq. (2-64),

A bh h
= = = 1
T fdA f b , ‘ W
—_— —dr In-% :
r r: r r;
- From Fig. 2-28b, we see that r;y=2in, r,=6in, R=41in, and A = 3 in2. Thus,
from Eq. (1), ' '
' h 4
y = ———— = = 3.6411i y
") Ing m ,»

and so the eccentricityise=R — r,, = 4 — 3.641 = 0.359 in. The moment M is posi-
tive andis M = FR = 5000(4) =20 000 1b - in. Adding the axial component of stress
to Eq. (2-65) gives '

E + My _ 5000 + (20 000)(3.641 — r)

A Ae(r,—y 3 . 3(0.359)r !

o= @)
Substituting values of r from 2 to 6 in results in the stress distribution shown in Fig.
2-28c. The stresses at the inner and outer radii are found to be 16.9 and —5.6 kpsi,
respectively, as shown.

Sections most frequently encountered in the stress analysis of curved beams are
shown in Fig. 2-29. Formulas for the rectangular section were developed in Example
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FIGURE 2-28 ; . < ] :
(a) Front view of crane hook; . p ‘ .
(b) cross section and notation; —5.6 kpsi
(c) resulting stress distribution. ©
2-8, but they are repeated here for conveniénce:
h 3
R=r+— (2-67) i
2 .
h ) . ;
=— : (2-68) i
In (r,/ry) .
For the trapezoidal section in Fig. 2-29b, the formulas are
h b;+2b
R=r+—-———2 (2-69)
3 b+ b, '
[ A ]
Tn = 2-70) |
b, = b + [(bir, = bor)/h] In (ro/r) ?
For the T section in Fig. 2-29¢, we have §
R=r+ bic? + 2b,cicp + boch : @-71)
. 2(bocr + bicy)
bic; + b,
o= 1T o @-72)

biIn [(r; + c1)/r)] + b, In [r,/(r; + ¢1)]
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(e) )
The equations for the solid rounfi section of Fig. 2-29 are
d
R=r+— (2-73)
& (2-74)
Fn = -
42R — V4AR? — ) -
For thé I shape in Fig. 2-29¢, we have
%t + 32(b, — ¢ + to(by = BO(h — t./2
R=r + YELEIG — 1)+ 1,0, ~ 0 - 12) 275
' Wb =+ t,(b,—1) + It .
b — 1) + t,(b, — ¢ + hz,
n= r +( r L ) ) (2-76)
' i o — 1, 7o ’
bi ln +tln + bo ln

i i i ] ro—_to

——
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FIGURE 2-30

Notation for integration by
Simpson’s rule. Note that N is an
even number.

‘ R“r,-+
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Finally, for the rectangular tubing in Fig. 2-29f, the results are

%t + 32— 1) + t,(b — D — 1,/2)
ht+ (b= D@+ 1) 2-77)

-0 +1,)+ ht

rit+ o, r, — t
b(lnl -+ In —= >+tln 2
r; To ™ I rit

.

r, =

(2-78)

Formulas for other sections can be obtained by performing the integration indicated by
Eq. (2-64). :

"Many cases arise in which numerical integration must be used. These may occur
because ' '

* A digital computer is being used.
* It is not possible to integrate the function by any other means.

* The function tQ be integrated is described only by data.

A method of integration by Simpson’s rule consists of defining equally spaced ordi-
nates in the integration interval. Then parabolic curves are assumed to pass through
each contiguous set of three ordinates. Using the notation of Fig. 2-30, the area under
the curve AB, by Simpson’s rule, is '

H . .
IZ'E“(YQ+4Y1 +2Y2+4Y3 + 2Y4+"+4YN_1 +YN)
H
= —3— (YO + YN +4 2Yodd +2 EYeven) (2‘79)

where H is the width of the interval and is

Xy — X, .
N

H (2-80)

- The terms 2Yqq and 2Yeyen are the sums, respectively, of the odd-numbered and

Y
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even-numbered subscripted ordinates. Equation (2-79) then gives Simpson’s approxi
mation to the equation '

XN
I=f FX) dX (2-81)

Xo

Unfortunately, Eq. (2-79) does not always give good accuracy. The result can be .
checked using Richardson’s error estimate.* This is obtained by performing the inte-
gration twice, once with all the ordinates, and again with every other ordinate. Desig-
nating the first integration by I; and the second by I, Richardson’s error is

L1
E=—— : 2-82
5 (2-82)

The sign of the result is significant. Once E has been obtained from Eq. (2-82), a better
estimate of the integral is

I=1+E (2-83)

For the analysis of a curved beam of any arbitrary cross section, divide the cross
section into an even number of strips of thickness Ar and length b;, where by is the
length of the Ith strip. Then the equations to be solved are

A= j bdr : (2-84)
Yo br dr
R= ] , 2-85
B (2-85)
——-—A (2-86)
Fn= -
f o bdr
L
e=R-r, | (2-87)

Numerical integration methods are easy to program; see Fig. 2-31 for a simplified
flow diagram.

*See B. Carnahan, H. A. Luther, and J. O Wilkes, Applied Numerical Analysis, Wiley, New York, 1969, p.
¢ 79.

: FIGURE 2-31

Fiow diagram for computer solu-
tion of Simpson’s rule for integra-
tion.




