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PREFACE vii


PREFACE


What we have to learn to do
we learn by doing. . . 


—ARISTOTLE, Ethics


Welcome to the Sixth Edition!


I was very pleased to be asked to produce the sixth edition of my artificial intelligence
book. It is a compliment to the earlier editions, started over twenty years ago, that our
approach to AI has been so highly valued. It is also exciting that, as new development in
the field emerges, we are able to present much of it in each new edition. We thank our
many readers, colleagues, and students for keeping our topics relevant and our presenta-
tion up to date. 


Many sections of the earlier editions have endured remarkably well, including the
presentation of logic, search algorithms, knowledge representation, production systems,
machine learning, and, in the supplementary materials, the programming techniques
developed in Lisp, Prolog, and with this edition, Java. These remain central to the practice
of artificial intelligence, and a constant in this new edition.


This book remains accessible. We introduce key representation techniques including
logic, semantic and connectionist networks, graphical models, and many more. Our search
algorithms are presented clearly, first in pseudocode, and then in the supplementary mate-
rials, many of them are implemented in Prolog, Lisp, and/or Java. It is expected that the
motivated students can take our core implementations and extend them to new exciting
applications.


We created, for the sixth edition, a new machine learning chapter based on stochastic
methods (Chapter 13). We feel that the stochastic technology is having an increasingly
larger impact on AI, especially in areas such as diagnostic and prognostic reasoning, natu-
ral language analysis, robotics, and machine learning. To support these emerging technol-
ogies we have expanded the presentation of Bayes' theorem, Markov models, Bayesian
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belief networks, and related graphical models. Our expansion includes greater use of prob-
abilistic finite state machines, hidden Markov models, and dynamic programming with the
Earley parser and implementing the Viterbi algorithm. Other topics, such as emergent
computation, ontologies, stochastic parsing algorithms, that were treated cursorily in ear-
lier editions, have grown sufficiently in importance to merit a more complete discussion.
The changes for the sixth edition reflect emerging artificial intelligence research questions
and are evidence of the continued vitality of our field. 


As the scope of our AI project grew, we have been sustained by the support of our
publisher, editors, friends, colleagues, and, most of all, by our readers, who have given our
work such a long and productive life. We remain excited at the writing opportunity we are
afforded: Scientists are rarely encouraged to look up from their own, narrow research
interests and chart the larger trajectories of their chosen field. Our readers have asked us to
do just that. We are grateful to them for this opportunity. We are also encouraged that our
earlier editions have been used in AI communities worldwide and translated into a number
of languages including German, Polish, Portuguese, Russian, and two dialects of Chinese!


Although artificial intelligence, like most engineering disciplines, must justify itself
to the world of commerce by providing solutions to practical problems, we entered the
field of AI for the same reasons as many of our colleagues and students: we want to under-
stand and explore the mechanisms of mind that enable intelligent thought and action. We
reject the rather provincial notion that intelligence is an exclusive ability of humans, and
believe that we can effectively investigate the space of possible intelligences by designing
and evaluating intelligent artifacts. Although the course of our careers has given us no
cause to change these commitments, we have arrived at a greater appreciation for the
scope, complexity, and audacity of this undertaking. In the preface to our earlier editions,
we outlined three assertions that we believed distinguished our approach to teaching artifi-
cial intelligence. It is reasonable, in writing a preface to the present edition, to return to
these themes and see how they have endured as our field has grown.


The first of these goals was to unify the diverse branches of AI through a detailed dis-
cussion of its theoretical foundations. At the time we first adopted that goal, it seemed that
the main problem was in reconciling researchers who emphasized the careful statement
and analysis of formal theories of intelligence (the neats) with those who believed that
intelligence itself was some sort of grand hack that could be best approached in an appli-
cation-driven, ad hoc manner (the scruffies). That dichotomy has proven far too simple. 


In contemporary AI, debates between neats and scruffies have given way to dozens of
other debates between proponents of physical symbol systems and students of neural net-
works, between logicians and designers of artificial life forms that evolve in a most illogi-
cal manner, between architects of expert systems and case-based reasoners, and finally,
between those who believe artificial intelligence has already been achieved and those who
believe it will never happen. Our original image of AI as frontier science where outlaws,
prospectors, wild-eyed prairie prophets and other dreamers were being slowly tamed by
the disciplines of formalism and empiricism has given way to a different metaphor: that of
a large, chaotic but mostly peaceful city, where orderly bourgeois neighborhoods draw
their vitality from diverse, chaotic, bohemian districts. Over the years that we have
devoted to the different editions of this book, a compelling picture of the architecture of
intelligence has started to emerge from this city's structure, art, and industry. 
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Intelligence is too complex to be described by any single theory; instead, researchers
are constructing a hierarchy of theories that characterize it at multiple levels of abstrac-
tion. At the lowest levels of this hierarchy, neural networks, genetic algorithms and other
forms of emergent computation have enabled us to understand the processes of adaptation,
perception, embodiment, and interaction with the physical world that must underlie any
form of intelligent activity. Through some still partially understood resolution, this chaotic
population of blind and primitive actors gives rise to the cooler patterns of logical infer-
ence. Working at this higher level, logicians have built on Aristotle's gift, tracing the out-
lines of deduction, abduction, induction, truth-maintenance, and countless other modes
and manners of reason. At even higher levels of abstraction, designers of diagnostic sys-
tems, intelligent agents, and natural language understanding programs have come to rec-
ognize the role of social processes in creating, transmitting, and sustaining knowledge. 


At this point in the AI enterprise it looks as though the extremes of rationalism and
empiricism have only led to limited results. Both extremes suffer from limited applicabil-
ity and generalization. The author takes a third view, that the empiricist's conditioning:
semantic nets, scripts, subsumption architectures and the rationalist's clear and distinct
ideas: predicate calculus, non-monotonic logics, automated reasoning - suggest a third
viewpoint, the Bayesian. The experience of relational invariances conditions intelligent
agents's expectations, and learning these invariances, in turn, bias future expectations. As
philosophers we are charged to critique the epistemological validity of the AI enterprise.
For this task, in Chapter 16 we discuss the rationalist project, the empiricists dilemma, and
propose a Bayesian based constructivist rapprochement. In this sixth edition, we touch on
all these levels in the presenting the AI enterprise.


The second commitment we made in earlier editions was to the central position of
advanced representational formalisms and search techniques in AI methodology. This is,
perhaps, the most controversial aspect of our previous editions and of much early work in
AI, with many researchers in emergent computation questioning whether symbolic rea-
soning and referential semantics have any role at all in intelligence. Although the idea of
representation as giving names to things has been challenged by the implicit representa-
tion provided by the emerging patterns of a neural network or an artificial life, we believe
that an understanding of representation and search remains essential to any serious practi-
tioner of artificial intelligence. We also feel that our Chapter 1 overview of the historical
traditions and precursors of AI are critical components of AI education. Furthermore,
these are invaluable tools for analyzing such aspects of non-symbolic AI as the expressive
power of a neural network or the progression of candidate problem solutions through the
fitness landscape of a genetic algorithm. Comparisons, contrasts, and a critique of modern
AI are offered in Chapter 16.


Our third commitment was made at the beginning of this book's life cycle: to place
artificial intelligence within the context of empirical science. In the spirit of the Newell
and Simon (1976) Turing award lecture we quote from an earlier edition:


... AI is not some strange aberration from the scientific tradition, but . . . part of a general
quest for knowledge about, and the understanding of, intelligence itself. Furthermore, our
AI programming tools, along with the exploratory programming methodology . . . are
ideal for exploring an environment. Our tools give us a medium for both understanding
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and questions. We come to appreciate and know phenomena constructively, that is, by pro-
gressive approximation. 


Thus we see each design and program as an experiment with nature: we propose a
representation, we generate a search algorithm, and we question the adequacy of our char-
acterization to account for part of the phenomenon of intelligence. And the natural world
gives a response to our query. Our experiment can be deconstructed, revised, extended,
and run again. Our model can be refined, our understanding extended.


New with The Sixth Edition


The biggest change for the sixth edition is the extension of the stochastic approaches to
AI. To accomplish this we revised Section 9.3 and added a new chapter (13) introducing
probability-based machine learning. Our presentation of stochastic AI tools and their
application to learning and natural language is now more comprehensive.


From probability theory's foundations in set theory and counting we develop the
notions of probabilities, random variables, and independence. We present and use Bayes'
theorem first with one symptom and one disease and then in its full general form. We
examine the hypotheses that underlie the use of Bayes and then present the argmax and
naive Bayes approaches. We present examples of stochastic reasoning, including the anal-
ysis of language phenomena and the Vierbi algorithm. We also introduce the idea of condi-
tional independence that leads to Bayesian belief networks, the BBN, in Chapter 9. 


In Chapter 13 we introduce hidden Markov models, HMMs, and show their use in
several examples. We also present several HMM variants, including the auto-regressive
and hierarchical HMMs. We present dynamic Bayesian networks, DBNs, and demonstrate
their use. We discuss parameter and structure learning and present the expectation maxi-
mization algorithm and demonstrate its use with loopy belief propagation. Finally, we
present Markov decision processes, the MDP, and partially observable Markov decision
process, the POMDP, in the context of an extension to the earlier presentation of reinforce-
ment learning.


We include several more examples of probabilistic finite state machines and probabi-
listic acceptors, as well as the use of dynamic programming, especially with stochastic
measures (the Viterbi algorithm). We added a stochastic English language parser (based on
the work of Mark Steedman at the University of Edinburgh) as well as the use of dynamic
programming with the Earley parser.


We made a major decision to remove the Prolog and Lisp chapters from the book.
Part of the reason for this is that these were getting too large. We have also accumulated a
number of AI algorithms written in Java. When we added the new Chapter 13 on stochas-
tic approaches to machine learning, we determined that the book was getting too large/
cumbersome. Thus the sixth edition is more than 150 pages smaller than the fifth and the
AI algorithms in Prolog, Lisp, and Java are being released as supplementary materials.
From our earliest days in AI we have always felt that the way to understand the power
(and limitations) of AI algorithms is constructively - that is, by building them! We encour-
age our present generation of readers to do exactly this: to visit the supplementary materi-
als: to build and experiment directly with the algorithms we present.
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Finally, we have done the usual updating of references and materials that a new edi-
tion warrants. In a revised Chapter 16, we return to the deeper questions on the nature of
intelligence and the possibility of creating intelligent machines. 


Sixth Edition: The Contents


Chapter 1 introduces artificial intelligence, beginning with a brief history of attempts to
understand mind and intelligence in philosophy, psychology, and other areas of research.
In an important sense, AI is an old science, tracing its roots back at least to Aristotle. An
appreciation of this background is essential for an understanding of the issues addressed in
modern research. We also present an overview of some of the important application areas
in AI. Our goal in Chapter 1 is to provide both background and a motivation for the theory
and applications that follow. 


Chapters 2, 3, 4, 5, and 6 (Part II) introduce the research tools for AI problem
solving. These include, in Chapter 2, the predicate calculus presented both as a mathemat-
ical system as well as a representation language to describe the essential features of a
problem. Search, and the algorithms and data structures used to implement search, are
introduced in Chapter 3, to organize the exploration of problem situations. In Chapter 4,
we discuss the essential role of heuristics in focusing and constraining search-based prob-
lem solving. In Chapter 5, we introduce the stochastic methodology, important technology
for reasoning in situations of uncertainty. In Chapter 6, we present a number of software
architectures, including the blackboard and production system, for implementing these
search algorithms. 


Chapters 7, 8, and 9 make up Part III: representations for AI, knowledge-inten-
sive problem solving, and reasoning in changing and ambiguous situations. In Chap-
ter 7 we present the evolving story of AI representational schemes. We begin with a
discussion of association-based networks and extend this model to include conceptual
dependency theory, frames, and scripts. We then present an in-depth examination of a par-
ticular formalism, conceptual graphs, emphasizing the epistemological issues involved in
representing knowledge and showing how these issues are addressed in a modern repre-
sentation language. Expanding on this formalism in Chapter 14, we show how conceptual
graphs can be used to implement a natural language database front end. We conclude
Chapter 7 with more modern approaches to representation, including Copycat and agent-
oriented architectures.


Chapter 8 presents the rule-based expert system along with case-based and model-
based reasoning, including examples from the NASA space program. These approaches to
problem solving are presented as a natural evolution of the material in Part II: using a pro-
duction system of predicate calculus expressions to orchestrate a graph search. We end
with an analysis of the strengths and weaknesses of each of these approaches to knowl-
edge-intensive problem solving.


Chapter 9 presents models for reasoning with uncertainty as well as the use of unreli-
able information. We introduce Bayesian models, belief networks, Dempster-Shafer,
causal models, and the Stanford certainty algebra for reasoning in uncertain situations.
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Chapter 9 also contains algorithms for truth maintenance, reasoning with minimum mod-
els, logic-based abduction, and the clique-tree algorithm for Bayesian belief networks.


Part IV, Chapters 10 through 13, is an extensive presentation of issues in
machine learning. In Chapter 10 we offer a detailed look at algorithms for symbol-based
learning, a fruitful area of research spawning a number of different problems and solution
approaches. These learning algorithms vary in their goals, the training data considered,
their learning strategies, and the knowledge representations they employ. Symbol-based
learning includes induction, concept learning, version-space search, and ID3. The role of
inductive bias is considered, generalizations from patterns of data, as well as the effective
use of knowledge to learn from a single example in explanation-based learning. Category
learning, or conceptual clustering, is presented with unsupervised learning. Reinforcement
learning, or the ability to integrate feedback from the environment into a policy for mak-
ing new decisions concludes the chapter.


In Chapter 11 we present neural networks, often referred to as sub-symbolic or con-
nectionist models of learning. In a neural net, information is implicit in the organization
and weights on a set of connected processors, and learning involves a re-arrangement and
modification of the overall weighting of nodes and structure of the system. We present a
number of connectionist architectures, including perceptron learning, backpropagation,
and counterpropagation. We demonstrate Kohonen, Grossberg, and Hebbian models. We
present associative learning as well as attractor models, including examples of Hopfield
networks.


Genetic algorithms and evolutionary approaches to learning are introduced in Chapter
12. On this viewpoint, learning is cast as an emerging and adaptive process. After several
examples of problem solutions based on genetic algorithms, we introduce the application
of genetic techniques to more general problem solvers. These include classifier systems
and genetic programming. We then describe society-based learning with examples from
artificial life, called a-life, research. We conclude the chapter with an example of emergent
computation from research at the Santa Fe Institute. 


Chapter 13 presents stochastic approaches to machine learning. We begin with a defi-
nition of hidden markov models and then present several important variations including
the auto-regressive and hierarchical HMM. We then present dynamic Bayesian networks,
a generalization of the HMM, and also able to track systems across periods of time. These
techniques are useful for modeling the changes in complex environments as is required for
diagnostic and prognostic reasoning. Finally, we add a probabilistic component to rein-
forcement learning first introduced in Chapter 10. This includes presentation of the
Markov decision process (or MDP) and the partially observed Markov decision process
(or POMDP).


Part V, Chapters 14 and 15, presents automated reasoning and natural language
understanding. Theorem proving, often referred to as automated reasoning, is one of the
oldest areas of AI research. In Chapter 14, we discuss the first programs in this area,
including the Logic Theorist and the General Problem Solver. The primary focus of the
chapter is binary resolution proof procedures, especially resolution refutations. More
advanced inferencing with hyper-resolution and paramodulation is also presented. Finally,
we describe the Prolog interpreter as a Horn clause and resolution-based inferencing sys-
tem, and see Prolog computing as an instance of the logic programming paradigm.
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Chapter 15 presents natural language understanding. Our traditional approach to lan-
guage understanding, exemplified by many of the semantic structures presented in Chap-
ter 7, is complemented with the stochastic approach. These include using Markov models,
CART trees, CHART parsing (the Earley algorithm), mutual information clustering, and
statistics-based parsing. The chapter concludes with examples applying natural language
techniques to database query generation, a text summarization systems well as.the use of
machine learning to generalize extracted results from the WWW.


Finally, Chapter 16 serves as an epilogue for the book. It addresses the issue of the
possibility of a science of intelligent systems, and considers contemporary challenges to
AI; it discusses AI's current limitations, and projects its exciting future. 


Using This Book


Artificial intelligence is a big field, and consequently, this is a large book. Although it
would require more than a single semester to cover all of the material offered, we have
designed our book so that a number of paths may be taken through the material. By select-
ing subsets of the material, we have used this text for single semester and full year (two
semester) courses. 


We assume that most students will have had introductory courses in discrete mathe-
matics, including predicate calculus, set theory, counting, and graph theory. If this is not
true, the instructor should spend more time on these concepts in the “optional” sections at
the beginning of the introductory chapters (2.1, 3.1, and 5.1). We also assume that students
have had courses in data structures including trees, graphs, and recursion-based search,
using stacks, queues, and priority queues. If they have not, then spend more time on the
beginning sections of Chapters 3, 4, and 6.


In a one quarter or one semester course, we go quickly through the first two parts of
the book. With this preparation, students are able to appreciate the material in Part III. We
then consider the Prolog, Lisp, or the Java code in the supplementary materials for the
book and require students to build many of the representation and search techniques of the
second part of the book. Alternatively, one of the languages, Prolog, for example, can be
introduced early in the course and be used to test out the data structures and search tech-
niques as that are encountered. We feel the meta-interpreters presented in the language
materials are very helpful for building rule-based and other knowledge-intensive problem
solvers. Prolog, Lisp, and Java are excellent tools for building natural language under-
standing and learning systems; these architectures are presented in Parts II and III and
there are examples of them in the supplementary course materials.


In a two-semester or three-quarter course, we are able to cover the application areas
of Parts IV and V, especially the machine learning chapters, in appropriate detail. We also
expect a much more detailed programming project from students. We also think that it is
very important in the second semester for students to revisit many of the primary sources
of the AI literature. It is crucial for students to see both where we are in the evolution of
the AI enterprise, as well as how we got here, and to have an appreciation of the future
promises of artificial intelligence. We use materials from the WWW for this purpose or
select a collected set of readings, such as, Computation and Intelligence (Luger 1995).
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The algorithms of our book are described using a Pascal-like pseudo-code. This nota-
tion uses the control structures of Pascal along with English descriptions of the tests and
operations. We have added two useful constructs to the Pascal control structures. The first
is a modified case statement that, rather than comparing the value of a variable with con-
stant case labels, as in standard Pascal, lets each item be labeled with an arbitrary boolean
test. The case evaluates these tests in order until one of them is true and then performs the
associated action; all other actions are ignored. Those familiar with Lisp will note that this
has the same semantics as the Lisp cond statement. 


The other addition to our pseudo code language is a return statement which takes one
argument and can appear anywhere within a procedure or function. When the return is
encountered, it causes the program to immediately exit the function, returning its argu-
ment as a result. Other than these modifications we used Pascal structure, with a reliance
on the English descriptions, to make the algorithms clear. 


Supplemental Material Available


The sixth edition has an attached web site maintained by my graduate students. This site,
built originally by two UNM students, Alejandro CdeBaca and Cheng Liu, includes sup-
plementary ideas for most chapters, some sample problems with their solutions, and ideas
for student projects. Besides the Prolog, Lisp, and Java programs in the supplementary
materials for this book, we have included many other AI algorithms in Java and C++ on
the web site. Students are welcome to use these and supplement them with their own com-
ments, code, and critiques. The web url is www.cs.unm.edu/~luger/ai-final/.


The Prolog, Lisp, and Java programs implementing many of the AI data structures
and search algorithms of the book are available through your Addison-Wesley Pearson
Education representative. There is also an Instructor’s Guide available which has many of
the book's exercises worked out, several practice tests with solutions, a sample syllabus,
and ideas supporting teaching the material. There are also a full set of PowerPoint presen-
tation materials for use by instructors adopting this book. Again, consult your local A-W
Pearson representative for access and visit www.aw.com/luger.


My e-mail address is [email protected], and I enjoy hearing from my readers.
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P A R T I


ARTIFICIAL INTELLIGENCE:
ITS ROOTS AND SCOPE


Everything must have a beginning, to speak in Sanchean phrase; and that beginning must 
be linked to something that went before. Hindus give the world an elephant to support it, 
but they make the elephant stand upon a tortoise. Invention, it must be humbly admitted, 
does not consist in creating out of void, but out of chaos; the materials must, in the first 
place, be afforded. . . .


—MARY SHELLEY, Frankenstein


Artificial Intelligence: An Attempted Definition


Artificial intelligence (AI) may be defined as the branch of computer science that is
concerned with the automation of intelligent behavior. This definition is particularly
appropriate to this book in that it emphasizes our conviction that AI is a part of computer
science and, as such, must be based on sound theoretical and applied principles of that
field. These principles include the data structures used in knowledge representation, the
algorithms needed to apply that knowledge, and the languages and programming tech-
niques used in their implementation.


However, this definition suffers from the fact that intelligence itself is not very well
defined or understood. Although most of us are certain that we know intelligent behavior
when we see it, it is doubtful that anyone could come close to defining intelligence in a
way that would be specific enough to help in the evaluation of a supposedly intelligent
computer program, while still capturing the vitality and complexity of the human mind.


As a result of the daunting task of building a general intelligence, AI researchers often
assume the roles of engineers fashioning particular intelligent artifacts. These often come
in the form of diagnostic, prognostic, or visualization tools that enable their human users
to perform complex tasks. Examples of these tools include hidden Markov models for
language understanding, automated reasoning systems for proving new theorems in math-
ematics, dynammic Bayesian networks for tracking signals across cortical networks, and
visualization of patterns of gene expression data, as seen in the applications of Section 1.2.
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The problem of defining the full field of artificial intelligence becomes one of defining
intelligence itself: is intelligence a single faculty, or is it just a name for a collection of dis-
tinct and unrelated abilities? To what extent is intelligence learned as opposed to having an
a priori existence? Exactly what does happen when learning occurs? What is creativity?
What is intuition? Can intelligence be inferred from observable behavior, or does it require
evidence of a particular internal mechanism? How is knowledge represented in the nerve
tissue of a living being, and what lessons does this have for the design of intelligent
machines? What is self-awareness; what role does it play in intelligence? Furthermore, is
it necessary to pattern an intelligent computer program after what is known about human
intelligence, or is a strict “engineering” approach to the problem sufficient? Is it even pos-
sible to achieve intelligence on a computer, or does an intelligent entity require the rich-
ness of sensation and experience that might be found only in a biological existence?


These are unanswered questions, and all of them have helped to shape the problems
and solution methodologies that constitute the core of modern AI. In fact, part of the
appeal of artificial intelligence is that it offers a unique and powerful tool for exploring
exactly these questions. AI offers a medium and a test-bed for theories of intelligence:
such theories may be stated in the language of computer programs and consequently tested
and verified through the execution of these programs on an actual computer.


For these reasons, our initial definition of artificial intelligence falls short of unambig-
uously defining the field. If anything, it has only led to further questions and the paradoxi-
cal notion of a field of study whose major goals include its own definition. But this
difficulty in arriving at a precise definition of AI is entirely appropriate. Artificial intelli-
gence is still a young discipline, and its structure, concerns, and methods are less clearly
defined than those of a more mature science such as physics.


Artificial intelligence has always been more concerned with expanding the capabili-
ties of computer science than with defining its limits. Keeping this exploration grounded
in sound theoretical principles is one of the challenges facing AI researchers in general
and this book in particular.


Because of its scope and ambition, artificial intelligence defies simple definition. For
the time being, we will simply define it as the collection of problems and methodologies
studied by artificial intelligence researchers. This definition may seem silly and meaning-
less, but it makes an important point: artificial intelligence, like every science, is a human
endeavor, and perhaps, is best understood in that context.


There are reasons that any science, AI included, concerns itself with a certain set of
problems and develops a particular body of techniques for approaching these problems. In
Chapter 1, a short history of artificial intelligence and the people and assumptions that
have shaped it will explain why certain sets of questions have come to dominate the field
and why the methods discussed in this book have been taken for their solution.
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AI: EARLY HISTORY 
AND APPLICATIONS


All men by nature desire to know...


—ARISTOTLE, Opening sentence of the Metaphysics


Hear the rest, and you will marvel even more at the crafts and resources I have contrived. 
Greatest was this: in the former times if a man fell sick he had no defense against the 
sickness, neither healing food nor drink, nor unguent; but through the lack of drugs men 
wasted away, until I showed them the blending of mild simples wherewith they drive out 
all manner of diseases. . . .


It was I who made visible to men’s eyes the flaming signs of the sky that were before dim. 
So much for these. Beneath the earth, man’s hidden blessing, copper, iron, silver, and 
gold—will anyone claim to have discovered these before I did? No one, I am very sure, 
who wants to speak truly and to the purpose. One brief word will tell the whole story: all 
arts that mortals have come from Prometheus. 


—AESCHYLUS, Prometheus Bound


1.1 From Eden to ENIAC: Attitudes toward
Intelligence, Knowledge, and Human Artifice


Prometheus speaks of the fruits of his transgression against the gods of Olympus: his
purpose was not merely to steal fire for the human race but also to enlighten humanity
through the gift of intelligence or nous: the rational mind. This intelligence forms the
foundation for all of human technology and ultimately all human civilization. The work of
Aeschylus, the classical Greek dramatist, illustrates a deep and ancient awareness of the
extraordinary power of knowledge. Artificial intelligence, in its very direct concern for
Prometheus’s gift, has been applied to all the areas of his legacy—medicine, psychology,
biology, astronomy, geology—and many areas of scientific endeavor that Aeschylus could
not have imagined. 


1








4 PART I / ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE


Though Prometheus’s action freed humanity from the sickness of ignorance, it also
earned him the wrath of Zeus. Outraged over this theft of knowledge that previously
belonged only to the gods of Olympus, Zeus commanded that Prometheus be chained to a
barren rock to suffer the ravages of the elements for eternity. The notion that human efforts
to gain knowledge constitute a transgression against the laws of God or nature is deeply
ingrained in Western thought. It is the basis of the story of Eden and appears in the work of
Dante and Milton. Both Shakespeare and the ancient Greek tragedians portrayed
intellectual ambition as the cause of disaster. The belief that the desire for knowledge must
ultimately lead to disaster has persisted throughout history, enduring the Renaissance, the
Age of Enlightenment, and even the scientific and philosophical advances of the nine-
teenth and twentieth centuries. Thus, we should not be surprised that artificial intelligence
inspires so much controversy in both academic and popular circles. 


Indeed, rather than dispelling this ancient fear of the consequences of intellectual
ambition, modern technology has only made those consequences seem likely, even
imminent. The legends of Prometheus, Eve, and Faustus have been retold in the language
of technological society. In her introduction to Frankenstein, subtitled, interestingly
enough, The Modern Prometheus, Mary Shelley writes: 


Many and long were the conversations between Lord Byron and Shelley to which I was a
devout and silent listener. During one of these, various philosophical doctrines were discussed,
and among others the nature of the principle of life, and whether there was any probability of
its ever being discovered and communicated. They talked of the experiments of Dr. Darwin
(I speak not of what the doctor really did or said that he did, but, as more to my purpose, of
what was then spoken of as having been done by him), who preserved a piece of vermicelli in a
glass case till by some extraordinary means it began to move with a voluntary motion. Not thus,
after all, would life be given. Perhaps a corpse would be reanimated; galvanism had given
token of such things: perhaps the component parts of a creature might be manufactured,
brought together, and endued with vital warmth (Butler 1998). 


Mary Shelley shows us the extent to which scientific advances such as the work of
Darwin and the discovery of electricity had convinced even nonscientists that the work-
ings of nature were not divine secrets, but could be broken down and understood system-
atically. Frankenstein’s monster is not the product of shamanistic incantations or
unspeakable transactions with the underworld: it is assembled from separately “manufac-
tured” components and infused with the vital force of electricity. Although nineteenth-cen-
tury science was inadequate to realize the goal of understanding and creating a fully
intelligent agent, it affirmed the notion that the mysteries of life and intellect might be
brought into the light of scientific analysis.


1.1.1 A Brief History of the Foundations for AI


By the time Mary Shelley finally and perhaps irrevocably joined modern science with the
Promethean myth, the philosophical foundations of modern work in artificial intelligence
had been developing for several thousand years. Although the moral and cultural issues
raised by artificial intelligence are both interesting and important, our introduction is more
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properly concerned with AI’s intellectual heritage. The logical starting point for such a
history is the genius of Aristotle, or as Dante in the Divine Comedy refers to him, “the
master of them that know”. Aristotle wove together the insights, wonders, and fears of the
early Greek tradition with the careful analysis and disciplined thought that were to become
the standard for more modern science. 


For Aristotle, the most fascinating aspect of nature was change. In his Physics, he
defined his “philosophy of nature” as the “study of things that change”. He distinguished
between the matter and form of things: a sculpture is fashioned from the material bronze
and has the form of a human. Change occurs when the bronze is molded to a new form.
The matter/form distinction provides a philosophical basis for modern notions such as
symbolic computing and data abstraction. In computing (even with numbers) we are
manipulating patterns that are the forms of electromagnetic material, with the changes of
form of this material representing aspects of the solution process. Abstracting the form
from the medium of its representation not only allows these forms to be manipulated com-
putationally but also provides the promise of a theory of data structures, the heart of mod-
ern computer science. It also supports the creation of an “artificial” intelligence. 


In his Metaphysics, beginning with the words “All men by nature desire to know”,
Aristotle developed a science of things that never change, including his cosmology and
theology. More relevant to artificial intelligence, however, was Aristotle’s epistemology or
analysis of how humans “know” their world, discussed in his Logic. Aristotle referred to
logic as the “instrument” (organon), because he felt that the study of thought itself was at
the basis of all knowledge. In his Logic, he investigated whether certain propositions can
be said to be “true” because they are related to other things that are known to be “true”.
Thus if we know that “all men are mortal” and that “Socrates is a man”, then we can con-
clude that “Socrates is mortal”. This argument is an example of what Aristotle referred to
as a syllogism using the deductive form modus ponens. Although the formal axiomatiza-
tion of reasoning needed another two thousand years for its full flowering in the works of
Gottlob Frege, Bertrand Russell, Kurt Gödel, Alan Turing, Alfred Tarski, and others, its
roots may be traced to Aristotle. 


Renaissance thought, building on the Greek tradition, initiated the evolution of a dif-
ferent and powerful way of thinking about humanity and its relation to the natural world.
Science began to replace mysticism as a means of understanding nature. Clocks and, even-
tually, factory schedules superseded the rhythms of nature for thousands of city dwellers.
Most of the modern social and physical sciences found their origin in the notion that pro-
cesses, whether natural or artificial, could be mathematically analyzed and understood. In
particular, scientists and philosophers realized that thought itself, the way that knowledge
was represented and manipulated in the human mind, was a difficult but essential subject
for scientific study. 


Perhaps the major event in the development of the modern world view was the
Copernican revolution, the replacement of the ancient Earth-centered model of the
universe with the idea that the Earth and other planets are actually in orbits around the sun.
After centuries of an “obvious” order, in which the scientific explanation of the nature of
the cosmos was consistent with the teachings of religion and common sense, a drastically
different and not at all obvious model was proposed to explain the motions of heavenly
bodies. For perhaps the first time, our ideas about the world were seen as fundamentally
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distinct from that world’s appearance. This split between the human mind and its sur-
rounding reality, between ideas about things and things themselves, is essential to the
modern study of the mind and its organization. This breach was widened by the writings
of Galileo, whose scientific observations further contradicted the “obvious” truths about
the natural world and whose development of mathematics as a tool for describing that
world emphasized the distinction between the world and our ideas about it. It is out of this
breach that the modern notion of the mind evolved: introspection became a common motif
in literature, philosophers began to study epistemology and mathematics, and the system-
atic application of the scientific method rivaled the senses as tools for understanding the
world.


In 1620, Francis Bacon’s Novum Organun offered a set of search techniques for this
emerging scientific methodology. Based on the Aristotelian and Platonic idea that the
“form” of an entity was equivalent to the sum of its necessary and sufficient “features”,
Bacon articulated an algorithm for determining the essence of an entity. First, he made an
organized collection of all instances of the entity, enumerating the features of each in a
table. Then he collected a similar list of negative instances of the entity, focusing espe-
cially on near instances of the entity, that is, those that deviated from the “form” of the
entity by single features. Then Bacon attempts - this step is not totally clear - to make a
systematic list of all the features essential to the entity, that is, those that are common to all
positive instances of the entity and missing from the negative instances.


It is interesting to see a form of Francis Bacon’s approach to concept learning
reflected in modern AI algorithms for Version Space Search, Chapter 10.2. An extension
of Bacon’s algorithms was also part of an AI program for discovery learning, suitably
called Bacon (Langley et al. 1981). This program was able to induce many physical laws
from collections of data related to the phenomena. It is also interesting to note that the
question of whether a general purpose algorithm was possible for producing scientific
proofs awaited the challenges of the early twentieth century mathematician Hilbert (his
Entscheidungsproblem) and the response of the modern genius of Alan Turing (his Turing
Machine and proofs of computability and the halting problem); see Davis et al. (1976).


Although the first calculating machine, the abacus, was created by the Chinese in the
twenty-sixth century BC, further mechanization of algebraic processes awaited the skills
of the seventeenth century Europeans. In 1614, the Scots mathematician, John Napier, cre-
ated logarithms, the mathematical transformations that allowed multiplication and the use
of exponents to be reduced to addition and multiplication. Napier also created his bones
that were used to represent overflow values for arithmetic operations. These bones were
later used by Wilhelm Schickard (1592-1635), a German mathematician and clergyman of
Tübingen, who in 1623 invented a Calculating Clock for performing addition and subtrac-
tion. This machine recorded the overflow from its calculations by the chiming of a clock.


Another famous calculating machine was the Pascaline that Blaise Pascal, the French
philosopher and mathematician, created in 1642. Although the mechanisms of Schickard
and Pascal were limited to addition and subtraction - including carries and borrows - they
showed that processes that previously were thought to require human thought and skill
could be fully automated. As Pascal later stated in his Pensees (1670), “The arithmetical
machine produces effects which approach nearer to thought than all the actions of
animals”.
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Pascal’s successes with calculating machines inspired Gottfried Wilhelm von Leibniz
in 1694 to complete a working machine that become known as the Leibniz Wheel. It inte-
grated a moveable carriage and hand crank to drive wheels and cylinders that performed
the more complex operations of multiplication and division. Leibniz was also fascinated
by the possibility of a automated logic for proofs of propositions. Returning to Bacon’s
entity specification algorithm, where concepts were characterized as the collection of their
necessary and sufficient features, Liebniz conjectured a machine that could calculate with
these features to produce logically correct conclusions. Liebniz (1887) also envisioned a
machine, reflecting modern ideas of deductive inference and proof, by which the produc-
tion of scientific knowledge could become automated, a calculus for reasoning.


The seventeenth and eighteenth centuries also saw a great deal of discussion of episte-
mological issues; perhaps the most influential was the work of René Descartes, a central
figure in the development of the modern concepts of thought and theories of mind. In his
Meditations, Descartes (1680) attempted to find a basis for reality purely through intro-
spection. Systematically rejecting the input of his senses as untrustworthy, Descartes was
forced to doubt even the existence of the physical world and was left with only the reality
of thought; even his own existence had to be justified in terms of thought: “Cogito ergo
sum” (I think, therefore I am). After he established his own existence purely as a thinking
entity, Descartes inferred the existence of God as an essential creator and ultimately reas-
serted the reality of the physical universe as the necessary creation of a benign God. 


We can make two observations here: first, the schism between the mind and the phys-
ical world had become so complete that the process of thinking could be discussed in iso-
lation from any specific sensory input or worldly subject matter; second, the connection
between mind and the physical world was so tenuous that it required the intervention of a
benign God to support reliable knowledge of the physical world! This view of the duality
between the mind and the physical world underlies all of Descartes’s thought, including
his development of analytic geometry. How else could he have unified such a seemingly
worldly branch of mathematics as geometry with such an abstract mathematical frame-
work as algebra?


Why have we included this mind/body discussion in a book on artificial intelligence?
There are two consequences of this analysis essential to the AI enterprise: 


1.   By attempting to separate the mind from the physical world, Descartes and related
thinkers established that the structure of ideas about the world was not necessar-
ily the same as the structure of their subject matter. This underlies the methodol-
ogy of AI, along with the fields of epistemology, psychology, much of higher
mathematics, and most of modern literature: mental processes have an existence
of their own, obey their own laws, and can be studied in and of themselves.


2.   Once the mind and the body are separated, philosophers found it necessary to find
a way to reconnect the two, because interaction between Descartes mental, res
cogitans, and physical, res extensa, is essential for human existence. 


Although millions of words have been written on this mind–body problem, and
numerous solutions proposed, no one has successfully explained the obvious interactions
between mental states and physical actions while affirming a fundamental difference
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between them. The most widely accepted response to this problem, and the one that
provides an essential foundation for the study of AI, holds that the mind and the body are
not fundamentally different entities at all. On this view, mental processes are indeed
achieved by physical systems such as brains (or computers). Mental processes, like physi-
cal processes, can ultimately be characterized through formal mathematics. Or, as
acknowledged in his Leviathan by the 17th century English philosopher Thomas Hobbes
(1651), “By ratiocination, I mean computation”.


1.1.2 AI and the Rationalist and Empiricist Traditions


Modern research issues in artificial intelligence, as in other scientific disciplines, are
formed and evolve through a combination of historical, social, and cultural pressures. Two
of the most prominent pressures for the evolution of AI are the empiricist and rationalist
traditions in philosophy.


The rationalist tradition, as seen in the previous section, had an early proponent in
Plato, and was continued on through the writings of Pascal, Descartes, and Liebniz. For
the rationalist, the external world is reconstructed through the clear and distinct ideas of a
mathematics. A criticism of this dualistic approach is the forced disengagement of repre-
sentational systems from their field of reference. The issue is whether the meaning attrib-
uted to a representation can be defined independent of its application conditions. If the
world is different from our beliefs about the world, can our created concepts and symbols
still have meaning?


Many AI programs have very much of this rationalist flavor. Early robot planners, for
example, would describe their application domain or “world” as sets of predicate calculus
statements and then a “plan” for action would be created through proving theorems about
this “world” (Fikes et al. 1972, see also Section 8.4). Newell and Simon’s Physical Symbol
System Hypothesis (Introduction to Part II and Chapter 16) is seen by many as the arche-
type of this approach in modern AI. Several critics have commented on this rationalist bias
as part of the failure of AI at solving complex tasks such as understanding human lan-
guages (Searle 1980, Winograd and Flores 1986, Brooks 1991a).


Rather than affirming as “real” the world of clear and distinct ideas, empiricists con-
tinue to remind us that “nothing enters the mind except through the senses”. This con-
straint leads to further questions of how the human can possibly perceive general concepts
or the pure forms of Plato’s cave (Plato 1961). Aristotle was an early empiricist, emphasiz-
ing in his De Anima, the limitations of the human perceptual system. More modern empir-
icists, especially Hobbes, Locke, and Hume, emphasize that knowledge must be explained
through an introspective but empirical psychology. They distinguish two types of mental
phenomena perceptions on one hand and thought, memory, and imagination on the other.
The Scots philosopher, David Hume, for example, distinguishes between impressions and
ideas. Impressions are lively and vivid, reflecting the presence and existence of an exter-
nal object and not subject to voluntary control, the qualia of  Dennett (2005). Ideas on the
other hand, are less vivid and detailed and more subject to the subject’s voluntary control.


Given this distinction between impressions and ideas, how can knowledge arise? For
Hobbes, Locke, and Hume the fundamental explanatory mechanism is association.
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Particular perceptual properties are associated through repeated experience. This repeated
association creates a disposition in the mind to associate the corresponding ideas, a pre-
curser of the behaviorist approach of the twentieth century. A fundamental property of this
account is presented with Hume’s skepticism. Hume’s purely descriptive account of the
origins of ideas cannot, he claims, support belief in causality. Even the use of logic and
induction cannot be rationally supported in this radical empiricist epistemology.


In An Inquiry Concerning Human Understanding (1748), Hume’s skepticism
extended to the analysis of miracles. Although Hume didn’t address the nature of miracles
directly, he did question the testimony-based belief in the miraculous. This skepticism, of
course, was seen as a direct threat by believers in the bible as well as many other purvey-
ors of religious traditions. The Reverend Thomas Bayes was both a mathematician and a
minister. One of his papers, called Essay towards Solving a Problem in the Doctrine of
Chances (1763) addressed Hume’s questions mathematically. Bayes’ theorem demon-
strates formally how, through learning the correlations of the effects of actions, we can
determine the probability of their causes.


The associational account of knowledge plays a significant role in the development of
AI representational structures and programs, for example, in memory organization with
semantic networks and MOPS and work in natural language understanding (see Sections
7.0, 7.1, and Chapter 15). Associational accounts have important influences of machine
learning, especially with connectionist networks (see Section 10.6, 10.7, and Chapter 11).
Associationism also plays an important role in cognitive psychology including the sche-
mas of Bartlett and Piaget as well as the entire thrust of the behaviorist tradition (Luger
1994). Finally, with AI tools for stochastic analysis, including the Bayesian belief network
(BBN) and its current extensions to first-order Turing-complete systems for stochastic
modeling, associational theories have found a sound mathematical basis and mature
expressive power. Bayesian tools are important for research including diagnostics,
machine learning, and natural language understanding (see Chapters 5 and 13).


Immanuel Kant, a German philosopher trained in the rationalist tradition, was
strongly influenced by the writing of Hume. As a result, he began the modern synthesis of
these two traditions. Knowledge for Kant contains two collaborating energies, an a priori
component coming from the subject’s reason along with an a posteriori component com-
ing from active experience. Experience is meaningful only through the contribution of the
subject. Without an active organizing form proposed by the subject, the world would be
nothing more than passing transitory sensations. Finally, at the level of judgement, Kant
claims, passing images or representations are bound together by the active subject and
taken as the diverse appearances of an identity, of an “object”. Kant’s realism began the
modern enterprise of psychologists such as Bartlett, Brunner, and Piaget. Kant’s work
influences the modern AI enterprise of machine learning (Section IV) as well as the con-
tinuing development of a constructivist epistemology (see Chapter 16).


1.1.3 The Development of Formal Logic


Once thinking had come to be regarded as a form of computation, its formalization and
eventual mechanization were obvious next steps. As noted in Section 1.1.1,
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Gottfried Wilhelm von Leibniz, with his Calculus Philosophicus, introduced the first sys-
tem of formal logic as well as proposed a machine for automating its tasks (Leibniz 1887).
Furthermore, the steps and stages of this mechanical solution can be represented as move-
ment through the states of a tree or graph. Leonhard Euler, in the eighteenth century, with
his analysis of the “connectedness” of the bridges joining the riverbanks and islands of the
city of Königsberg (see the introduction to Chapter 3), introduced the study of representa-
tions that can abstractly capture the structure of relationships in the world as well as the
discrete steps within a computation about these relationships (Euler 1735).


The formalization of graph theory also afforded the possibility of state space search,
a major conceptual tool of artificial intelligence. We can use graphs to model the deeper
structure of a problem. The nodes of a state space graph represent possible stages of a
problem solution; the arcs of the graph represent inferences, moves in a game, or other
steps in a problem solution. Solving the problem is a process of searching the state space
graph for a path to a solution (Introduction to II and Chapter 3). By describing the entire
space of problem solutions, state space graphs provide a powerful tool for measuring the
structure and complexity of problems and analyzing the efficiency, correctness, and gener-
ality of solution strategies. 


As one of the originators of the science of operations research, as well as the designer
of the first programmable mechanical computing machines, Charles Babbage, a nine-
teenth century mathematician, may also be considered an early practitioner of artificial
intelligence (Morrison and Morrison 1961). Babbage’s difference engine was a special-
purpose machine for computing the values of certain polynomial functions and was the
forerunner of his analytical engine. The analytical engine, designed but not successfully
constructed during his lifetime, was a general-purpose programmable computing machine
that presaged many of the architectural assumptions underlying the modern computer. 


In describing the analytical engine, Ada Lovelace (1961), Babbage’s friend, sup-
porter, and collaborator, said: 


We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jac-
quard loom weaves flowers and leaves. Here, it seems to us, resides much more of originality
than the difference engine can be fairly entitled to claim.


Babbage’s inspiration was his desire to apply the technology of his day to liberate
humans from the drudgery of making arithmetic calculations. In this sentiment, as well as
with his conception of computers as mechanical devices, Babbage was thinking in purely
nineteenth century terms. His analytical engine, however, also included many modern
notions, such as the separation of memory and processor, the store and the mill in Bab-
bage’s terms, the concept of a digital rather than analog machine, and programmability
based on the execution of a series of operations encoded on punched pasteboard cards.
The most striking feature of Ada Lovelace’s description, and of Babbage’s work in gen-
eral, is its treatment of the “patterns” of algebraic relationships as entities that may be
studied, characterized, and finally implemented and manipulated mechanically without
concern for the particular values that are finally passed through the mill of the calculating
machine. This is an example implementation of the “abstraction and manipulation of
form” first described by Aristotle and Liebniz. 
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The goal of creating a formal language for thought also appears in the work of George
Boole, another nineteenth-century mathematician whose work must be included in any
discussion of the roots of artificial intelligence (Boole 1847, 1854). Although he made
contributions to a number of areas of mathematics, his best known work was in the
mathematical formalization of the laws of logic, an accomplishment that forms the very
heart of modern computer science. Though the role of Boolean algebra in the design of
logic circuitry is well known, Boole’s own goals in developing his system seem closer to
those of contemporary AI researchers. In the first chapter of An Investigation of the Laws
of Thought, on which are founded the Mathematical Theories of Logic and Probabilities,
Boole (1854) described his goals as


to investigate the fundamental laws of those operations of the mind by which reasoning is
performed: to give expression to them in the symbolical language of a Calculus, and upon this
foundation to establish the science of logic and instruct its method; …and finally to collect
from the various elements of truth brought to view in the course of these inquiries some proba-
ble intimations concerning the nature and constitution of the human mind. 


The importance of Boole’s accomplishment is in the extraordinary power and sim-
plicity of the system he devised: three operations, “AND” (denoted by 


 


∗ or


 


∧), “OR”
(denoted by 


 


+ or


 


 ∨), and “NOT” (denoted by 


 


¬), formed the heart of his logical calculus.
These operations have remained the basis for all subsequent developments in formal logic,
including the design of modern computers. While keeping the meaning of these symbols
nearly identical to the corresponding algebraic operations, Boole noted that “the Symbols
of logic are further subject to a special law, to which the symbols of quantity, as such, are
not subject”. This law states that for any X, an element in the algebra, X


 


∗X


 


=X (or that once
something is known to be true, repetition cannot augment that knowledge). This led to the
characteristic restriction of Boolean values to the only two numbers that may satisfy this
equation: 1 and 0. The standard definitions of Boolean multiplication (AND) and addition
(OR) follow from this insight. 


Boole’s system not only provided the basis of binary arithmetic but also demonstrated
that an extremely simple formal system was adequate to capture the full power of logic.
This assumption and the system Boole developed to demonstrate it form the basis of all
modern efforts to formalize logic, from Russell and Whitehead’s Principia Mathematica
(Whitehead and Russell 1950), through the work of Turing and Gödel, up to modern auto-
mated reasoning systems. 


Gottlob Frege, in his Foundations of Arithmetic (Frege 1879, 1884), created a
mathematical specification language for describing the basis of arithmetic in a clear and
precise fashion. With this language Frege formalized many of the issues first addressed by
Aristotle’s Logic. Frege’s language, now called the first-order predicate calculus, offers a
tool for describing the propositions and truth value assignments that make up the elements
of mathematical reasoning and describes the axiomatic basis of “meaning” for these
expressions. The formal system of the predicate calculus, which includes predicate sym-
bols, a theory of functions, and quantified variables, was intended to be a language for
describing mathematics and its philosophical foundations. It also plays a fundamental role
in creating a theory of representation for artificial intelligence (Chapter 2). The first-order
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predicate calculus offers the tools necessary for automating reasoning: a language for
expressions, a theory for assumptions related to the meaning of expressions, and a logi-
cally sound calculus for inferring new true expressions. 


Whitehead and Russell’s (1950) work is particularly important to the foundations of
AI, in that their stated goal was to derive the whole of mathematics through formal opera-
tions on a collection of axioms. Although many mathematical systems have been con-
structed from basic axioms, what is interesting is Russell and Whitehead’s commitment to
mathematics as a purely formal system. This meant that axioms and theorems would be
treated solely as strings of characters: proofs would proceed solely through the application
of well-defined rules for manipulating these strings. There would be no reliance on intu-
ition or the meaning of theorems as a basis for proofs. Every step of a proof followed from
the strict application of formal (syntactic) rules to either axioms or previously proven the-
orems, even where traditional proofs might regard such a step as “obvious”. What “mean-
ing” the theorems and axioms of the system might have in relation to the world would be
independent of their logical derivations. This treatment of mathematical reasoning in
purely formal (and hence mechanical) terms provided an essential basis for its automation
on physical computers. The logical syntax and formal rules of inference developed by
Russell and Whitehead are still a basis for automatic theorem-proving systems, presented
in Chapter 14, as well as for the theoretical foundations of artificial intelligence.


Alfred Tarski is another mathematician whose work is essential to the foundations of
AI. Tarski created a theory of reference wherein the well-formed formulae of Frege or
Russell and Whitehead can be said to refer, in a precise fashion, to the physical world
(Tarski 1944, 1956; see Chapter 2). This insight underlies most theories of formal seman-
tics. In his paper The Semantic Conception of Truth and the Foundation of Semantics, Tar-
ski describes his theory of reference and truth value relationships. Modern computer
scientists, especially Scott, Strachey, Burstall (Burstall and Darlington 1977), and Plotkin
have related this theory to programming languages and other specifications for computing.


Although in the eighteenth, nineteenth, and early twentieth centuries the formaliza-
tion of science and mathematics created the intellectual prerequisite for the study of artifi-
cial intelligence, it was not until the twentieth century and the introduction of the digital
computer that AI became a viable scientific discipline. By the end of the 1940s electronic
digital computers had demonstrated their potential to provide the memory and processing
power required by intelligent programs. It was now possible to implement formal reason-
ing systems on a computer and empirically test their sufficiency for exhibiting intelli-
gence. An essential component of the science of artificial intelligence is this commitment
to digital computers as the vehicle of choice for creating and testing theories of
intelligence.


Digital computers are not merely a vehicle for testing theories of intelligence. Their
architecture also suggests a specific paradigm for such theories: intelligence is a form of
information processing. The notion of search as a problem-solving methodology, for
example, owes more to the sequential nature of computer operation than it does to any
biological model of intelligence. Most AI programs represent knowledge in some formal
language that is then manipulated by algorithms, honoring the separation of data and
program fundamental to the von Neumann style of computing. Formal logic has emerged
as an important representational tool for AI research, just as graph theory plays an indis-
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pensable role in the analysis of problem spaces as well as providing a basis for semantic
networks and similar models of semantic meaning. These techniques and formalisms are
discussed in detail throughout the body of this text; we mention them here to emphasize
the symbiotic relationship between the digital computer and the theoretical underpinnings
of artificial intelligence. 


We often forget that the tools we create for our own purposes tend to shape our
conception of the world through their structure and limitations. Although seemingly
restrictive, this interaction is an essential aspect of the evolution of human knowledge: a
tool (and scientific theories are ultimately only tools) is developed to solve a particular
problem. As it is used and refined, the tool itself seems to suggest other applications,
leading to new questions and, ultimately, the development of new tools. 


1.1.4 The Turing Test


One of the earliest papers to address the question of machine intelligence specifically in
relation to the modern digital computer was written in 1950 by the British mathematician
Alan Turing. Computing Machinery and Intelligence (Turing 1950) remains timely in both
its assessment of the arguments against the possibility of creating an intelligent computing
machine and its answers to those arguments. Turing, known mainly for his contributions
to the theory of computability, considered the question of whether or not a machine could
actually be made to think. Noting that the fundamental ambiguities in the question itself
(what is thinking? what is a machine?) precluded any rational answer, he proposed that the
question of intelligence be replaced by a more clearly defined empirical test. 


The Turing test measures the performance of an allegedly intelligent machine against
that of a human being, arguably the best and only standard for intelligent behavior. The
test, which Turing called the imitation game, places the machine and a human
counterpart in rooms apart from a second human being, referred to as the interrogator
(Figure 1.1). The interrogator is not able to see or speak directly to either of them, does not
know which entity is actually the machine, and may communicate with them solely by use
of a textual device such as a terminal. The interrogator is asked to distinguish the
computer from the human being solely on the basis of their answers to questions asked
over this device. If the interrogator cannot distinguish the machine from the human, then,
Turing argues, the machine may be assumed to be intelligent.


By isolating the interrogator from both the machine and the other human participant,
the test ensures that the interrogator will not be biased by the appearance of the machine or
any mechanical property of its voice. The interrogator is free, however, to ask any
questions, no matter how devious or indirect, in an effort to uncover the computer’s
identity. For example, the interrogator may ask both subjects to perform a rather involved
arithmetic calculation, assuming that the computer will be more likely to get it correct than
the human; to counter this strategy, the computer will need to know when it should fail to
get a correct answer to such problems in order to seem like a human. To discover the
human’s identity on the basis of emotional nature, the interrogator may ask both subjects
to respond to a poem or work of art; this strategy will require that the computer have
knowledge concerning the emotional makeup of human beings. 
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The important features of Turing’s test are: 


1. It attempts to give an objective notion of intelligence, i.e., the behavior of a
known intelligent being in response to a particular set of questions. This provides
a standard for determining intelligence that avoids the inevitable debates over its
“true” nature. 


2. It prevents us from being sidetracked by such confusing and currently
unanswerable questions as whether or not the computer uses the appropriate
internal processes or whether or not the machine is actually conscious of
its actions. 


3. It eliminates any bias in favor of living organisms by forcing the interrogator to
focus solely on the content of the answers to questions. 


Because of these advantages, the Turing test provides a basis for many of the schemes
actually used to evaluate modern AI programs. A program that has potentially achieved
intelligence in some area of expertise may be evaluated by comparing its performance on
a given set of problems to that of a human expert. This evaluation technique is just a
variation of the Turing test: a group of humans are asked to blindly compare the
performance of a computer and a human being on a particular set of problems. As we will
see, this methodology has become an essential tool in both the development and
verification of modern expert systems. 


The Turing test, in spite of its intuitive appeal, is vulnerable to a number of justifiable
criticisms. One of the most important of these is aimed at its bias toward purely symbolic
problem-solving tasks. It does not test abilities requiring perceptual skill or manual
dexterity, even though these are important components of human intelligence. Conversely,
it is sometimes suggested that the Turing test needlessly constrains machine intelligence to
fit a human mold. Perhaps machine intelligence is simply different from human intelli-
gence and trying to evaluate it in human terms is a fundamental mistake. Do we really
wish a machine would do mathematics as slowly and inaccurately as a human? Shouldn’t
an intelligent machine capitalize on its own assets, such as a large, fast, reliable memory,


THE
INTERROGATOR


Figure 1.1 The Turing test.
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rather than trying to emulate human cognition? In fact, a number of modern AI practitio-
ners (e.g., Ford and Hayes 1995) see responding to the full challenge of Turing’s test as a
mistake and a major distraction to the more important work at hand: developing general
theories to explain the mechanisms of intelligence in humans and machines and applying
those theories to the development of tools to solve specific, practical problems. Although
we agree with the Ford and Hayes concerns in the large, we still see Turing’s test as an
important component in the verification and validation of modern AI software.


Turing also addressed the very feasibility of constructing an intelligent program on a
digital computer. By thinking in terms of a specific model of computation (an electronic
discrete state computing machine), he made some well-founded conjectures concerning
the storage capacity, program complexity, and basic design philosophy required for such a
system. Finally, he addressed a number of moral, philosophical, and scientific objections
to the possibility of constructing such a program in terms of an actual technology. The
reader is referred to Turing’s article for a perceptive and still relevant summary of the
debate over the possibility of intelligent machines. 


Two of the objections cited by Turing are worth considering further. Lady
Lovelace’s Objection, first stated by Ada Lovelace, argues that computers can only do as
they are told and consequently cannot perform original (hence, intelligent) actions. This
objection has become a reassuring if somewhat dubious part of contemporary technologi-
cal folklore. Expert systems (Section 1.2.3 and Chapter 8), especially in the area of diag-
nostic reasoning, have reached conclusions unanticipated by their designers. Indeed, a
number of researchers feel that human creativity can be expressed in a computer program. 


The other related objection, the Argument from Informality of Behavior, asserts the
impossibility of creating a set of rules that will tell an individual exactly what to do under
every possible set of circumstances. Certainly, the flexibility that enables a biological
intelligence to respond to an almost infinite range of situations in a reasonable if not nec-
essarily optimal fashion is a hallmark of intelligent behavior. While it is true that the con-
trol structure used in most traditional computer programs does not demonstrate great
flexibility or originality, it is not true that all programs must be written in this fashion.
Indeed, much of the work in AI over the past 25 years has been to develop programming
languages and models such as production systems, object-based systems, neural network
representations, and others discussed in this book that attempt to overcome this deficiency. 


Many modern AI programs consist of a collection of modular components, or rules of
behavior, that do not execute in a rigid order but rather are invoked as needed in response
to the structure of a particular problem instance. Pattern matchers allow general rules to
apply over a range of instances. These systems have an extreme flexibility that enables rel-
atively small programs to exhibit a vast range of possible behaviors in response to differ-
ing problems and situations. 


Whether these systems can ultimately be made to exhibit the flexibility shown by a
living organism is still the subject of much debate. Nobel laureate Herbert Simon has
argued that much of the originality and variability of behavior shown by living creatures is
due to the richness of their environment rather than the complexity of their own internal
programs. In The Sciences of the Artificial, Simon (1981) describes an ant progressing
circuitously along an uneven and cluttered stretch of ground. Although the ant’s path
seems quite complex, Simon argues that the ant’s goal is very simple: to return to its
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colony as quickly as possible. The twists and turns in its path are caused by the obstacles it
encounters on its way. Simon concludes that 


An ant, viewed as a behaving system, is quite simple. The apparent complexity of its behavior
over time is largely a reflection of the complexity of the environment in which it finds itself. 


This idea, if ultimately proved to apply to organisms of higher intelligence as well as
to such simple creatures as insects, constitutes a powerful argument that such systems are
relatively simple and, consequently, comprehensible. It is interesting to note that if one
applies this idea to humans, it becomes a strong argument for the importance of culture in
the forming of intelligence. Rather than growing in the dark like mushrooms, intelligence
seems to depend on an interaction with a suitably rich environment. Culture is just as
important in creating humans as human beings are in creating culture. Rather than deni-
grating our intellects, this idea emphasizes the miraculous richness and coherence of the
cultures that have formed out of the lives of separate human beings. In fact, the idea that
intelligence emerges from the interactions of individual elements of a society is one of the
insights supporting the approach to AI technology presented in the next section. 


1.1.5 Biological and Social Models of Intelligence: Agents Theories


So far, we have approached the problem of building intelligent machines from the view-
point of mathematics, with the implicit belief of logical reasoning as paradigmatic of intel-
ligence itself, as well as with a commitment to “objective” foundations for logical
reasoning. This way of looking at knowledge, language, and thought reflects the rational-
ist tradition of western philosophy, as it evolved through Plato, Galileo, Descartes, Leib-
niz, and many of the other philosophers discussed earlier in this chapter. It also reflects the
underlying assumptions of the Turing test, particularly its emphasis on symbolic reasoning
as a test of intelligence, and the belief that a straightforward comparison with human
behavior was adequate to confirming machine intelligence.


The reliance on logic as a way of representing knowledge and on logical inference as
the primary mechanism for intelligent reasoning are so dominant in Western philosophy
that their “truth” often seems obvious and unassailable. It is no surprise, then, that
approaches based on these assumptions have dominated the science of artificial
intelligence from its inception almost through to the present day.


The latter half of the twentieth century has, however, seen numerous challenges to
rationalist philosophy. Various forms of philosophical relativism question the objective
basis of language, science, society, and thought itself. Ludwig Wittgenstein's later
philosophy (Wittgenstein 1953), has forced us to reconsider the basis on meaning in both
natural and formal languages. The work of Godel (Nagel and Newman 1958) and Turing
has cast doubt on the very foundations of mathematics itself. Post-modern thought has
changed our understanding of meaning and value in the arts and society. Artificial intelli-
gence has not been immune to these criticisms; indeed, the difficulties that AI has encoun-
tered in achieving its goals are often taken as evidence of the failure of the rationalist
viewpoint (Winograd and Flores 1986, Lakoff and Johnson 1999, Dennett 2005). 
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Two philosophical traditions, that of Wittgenstein (1953) as well as that of Husserl
(1970, 1972) and Heidegger (1962) are central to this reappraisal of the Western philo-
sophical tradition. In his later work, Wittgenstein questioned many of the assumptions of
the rationalist tradition, including the foundations of language, science, and knowledge.
Human language was a major focus of Wittgenstein’s analysis: he challenged the notion
that language derived its meaning from any sort of objective foundation. 


For Wittgenstein, as well as the speech act theory developed by Austin (1962) and his
followers (Grice 1975, Searle 1969), the meaning of any utterance depends on its being
situated in a human, cultural context. Our understanding of the meaning of the word
“chair”, for example, is dependent on having a physical body that conforms to a sitting
posture and the cultural conventions for using chairs. When, for example, is a large, flat
rock a chair? Why is it odd to refer to the throne of England as a chair? What is the
difference between a human being's understanding of a chair and that of a dog or cat, inca-
pable of sitting in the human sense? Based on his attacks on the foundations of meaning,
Wittgenstein argued that we should view the use of language in terms of choices made and
actions taken in a shifting cultural context. Wittgenstein even extended his criticisms to
science and mathematics, arguing that they are just as much social constructs as is
language use.


Husserl (1970, 1972), the father of phenomenology, was committed to abstractions as
rooted in the concrete Lebenswelt or life-world: a rationalist model was very much sec-
ondary to the concrete world that supported it. For Husserl, as well as for his student
Heidegger (1962), and their proponent Merleau-Ponty (1962), intelligence was not know-
ing what was true, but rather knowing how to cope in a world that was constantly chang-
ing and evolving. Gadamer (1976) also contributed to this tradition. For the existentialist/
phenomenologist, intelligence is seen as survival in the world, rather than as a set of logi-
cal propositions about the world (combined with some inferencing scheme).


Many authors, for example Dreyfus and Dreyfus (1985) and Winograd and Flores
(1986), have drawn on Wittgenstein’s and the Husserl/Heidegger work in their criticisms
of AI. Although many AI practitioners continue developing the rational/logical agenda,
also known as GOFAI, or Good Old Fashioned AI, a growing number of researchers in the
field have incorporated these criticisms into new and exciting models of intelligence. In
keeping with Wittgenstein’s emphasis on the anthropological and cultural roots of
knowledge, they have turned to social, sometimes referred to as agent-based or situated,
models of intelligent behavior for their inspiration. 


As an example of an alternative to a logic-based approach, research in connectionist
learning (Section 1.2.9 and Chapter 11) de-emphasizes logic and the functioning of the
rational mind in an effort to achieve intelligence by modeling the architecture of the
physical brain. Neural models of intelligence emphasize the brain’s ability to adapt to the
world in which it is situated by modifying the relationships between individual neurons.
Rather than representing knowledge in explicit logical sentences, they capture it
implicitly, as a property of patterns of relationships. 


Another biologically based model of intelligence takes its inspiration from the
processes by which entire species adapt to their surroundings. Work in artificial life and
genetic algorithms (Chapter 12) applies the principles of biological evolution to the prob-
lems of finding solutions to difficult problems. These programs do not solve problems by
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reasoning logically about them; rather, they spawn populations of competing candidate
solutions and drive them to evolve ever better solutions through a process patterned after
biological evolution: poor candidate solutions tend to die out, while those that show the
promise for solving a problem survive and reproduce by constructing new solutions out of
components of their successful parents. 


Social systems provide another metaphor for intelligence in that they exhibit global
behaviors that enable them to solve problems that would confound any of their individual
members. For example, although no individual could accurately predict the number of
loaves of bread to be consumed in New York City on a given day, the entire system of
New York bakeries does an excellent job of keeping the city stocked with bread, and doing
so with minimal waste. The stock market does an excellent job of setting the relative val-
ues of hundreds of companies, even though each individual investor has only limited
knowledge of a few companies. A final example comes from modern science. Individuals
located in universities, industry, or government environments focus on common problems.
With conferences and journals as the main communication media, problems important to
society at large are attacked and solved by individual agents working semi-independently,
although progress in many instances is also driven by funding agencies.


These examples share two themes: first, the view of intelligence as rooted in culture
and society and, as a consequence, emergent. The second theme is that intelligence is
reflected by the collective behaviors of large numbers of very simple interacting, semi-
autonomous individuals, or agents. Whether these agents are neural cells, individual mem-
bers of a species, or a single person in a society, their interactions produce intelligence.


What are the main themes supporting an agent-oriented and emergent view of
intelligence? They include:


1. Agents are autonomous or semi-autonomous. That is, each agent has certain
responsibilities in problem solving with little or no knowledge of either what
other agents do or how they do it. Each agent does its own independent piece of
the problem solving and either produces a result itself (does something) or
reports results back to others in the community (communicating agent).


2. Agents are “situated.” Each agent is sensitive to its own surrounding environ-
ment and (usually) has no knowledge of the full domain of all agents. Thus, an
agent's knowledge is limited to the tasks to hand: “the-file-I’m-processing” or
“the-wall-next-to-me” with no knowledge of the total range of files or physical
constraints in the problem solving task.


3. Agents are interactional. That is, they form a collection of individuals that
cooperate on a particular task. In this sense they may be seen as a “society” and,
as with human society, knowledge, skills, and responsibilities, even when seen as
collective, are distributed across the population of individuals.


4. The society of agents is structured. In most views of agent-oriented problem
solving, each individual, although having its own unique environment and skill
set, will coordinate with other agents in the overall problem solving. Thus, a final
solution will not only be seen as collective, but also as cooperative.
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5. Finally, the phenomenon of intelligence in this environment is “emergent.”
Although individual agents are seen as possessing sets of skills and responsibili-
ties, the overall cooperative result can be viewed as greater than the sum of its
individual contributors. Intelligence is seen as a phenomenon resident in and
emerging from a society and not just a property of an individual agent.


Based on these observations, we define an agent as an element of a society that can
perceive (often limited) aspects of its environment and affect that environment either
directly or through cooperation with other agents. Most intelligent solutions require a vari-
ety of agents. These include rote agents, that simply capture and communicate pieces of
information, coordination agents that can support the interactions between other agents,
search agents that can examine multiple pieces of information and return some chosen bit
of it, learning agents that can examine collections of information and form concepts or
generalizations, and decision agents that can both dispatch tasks and come to conclusions
in the light of limited information and processing. Going back to an older definition of
intelligence, agents can be seen as the mechanisms supporting decision making in the con-
text of limited processing resources.


The main requisites for designing and building such a society are:


1. structures for the representation of information, 


2. strategies for the search through alternative solutions, and 


3. the creation of architectures that can support the interaction of agents. 


The remaining chapters of our book, especially Section 7.4, include prescriptions for the
construction of support tools for this society of agents, as well as many examples of agent-
based problem solving.


Our preliminary discussion of the possibility of a theory of automated intelligence is
in no way intended to overstate the progress made to date or minimize the work that lies
ahead. As we emphasize throughout this book, it is important to be aware of our limita-
tions and to be honest about our successes. For example, there have been only limited
results with programs that in any interesting sense can be said to “learn”. Our accomplish-
ments in modeling the semantic complexities of a natural language such as English have
also been very modest. Even fundamental issues such as organizing knowledge or fully
managing the complexity and correctness of very large computer programs (such as large
knowledge bases) require considerable further research. Knowledge-based systems,
though they have achieved marketable engineering successes, still have many limitations
in the quality and generality of their reasoning. These include their inability to perform
commonsense reasoning or to exhibit knowledge of rudimentary physical reality, such as
how things change over time.


But we must maintain a reasonable perspective. It is easy to overlook the
accomplishments of artificial intelligence when honestly facing the work that remains. In
the next section, we establish this perspective through an overview of several important
areas of artificial intelligence research and development. 
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1.2 Overview of AI Application Areas


The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. 


—ADA BYRON, Countess of Lovelace


I’m sorry Dave; I can’t let you do that. 


—HAL 9000 in 2001: A Space Odyssey by Arthur C. Clarke


We now return to our goal of defining artificial intelligence through an examination of the
ambitions and accomplishments of workers in the field. The two most fundamental con-
cerns of AI researchers are knowledge representation and search. The first of these
addresses the problem of capturing in a language, i.e., one suitable for computer manipu-
lation, the full range of knowledge required for intelligent behavior. Chapter 2 introduces
predicate calculus as a language for describing the properties and relationships among
objects in problem domains that require qualitative reasoning rather than arithmetic calcu-
lations for their solutions. Later, Section III discusses the tools that artificial intelligence
has developed for representing the ambiguities and complexities of areas such as com-
monsense reasoning and natural language understanding. 


Search is a problem-solving technique that systematically explores a space of prob-
lem states, i.e., successive and alternative stages in the problem-solving process. Exam-
ples of problem states might include the different board configurations in a game or
intermediate steps in a reasoning process. This space of alternative solutions is then
searched to find an answer. Newell and Simon (1976) have argued that this is the essential
basis of human problem solving. Indeed, when a chess player examines the effects of dif-
ferent moves or a doctor considers a number of alternative diagnoses, they are searching
among alternatives. The implications of this model and techniques for its implementation
are discussed in Chapters 3, 4, 6, and 16. The auxiliary material for this book (see Preface)
offers Lisp, Prolog, and Java implementations of these algorithms.


Like most sciences, AI is decomposed into a number of subdisciplines that, while
sharing an essential approach to problem solving, have concerned themselves with
different applications. In this section we outline several of these major application areas
and their contributions to artificial intelligence as a whole. 


1.2.1 Game Playing


Much of the early research in state space search was done using common board games
such as checkers, chess, and the 15-puzzle. In addition to their inherent intellectual appeal,
board games have certain properties that made them ideal subjects for research. Most
games are played using a well-defined set of rules: this makes it easy to generate the
search space and frees the researcher from many of the ambiguities and complexities
inherent in less structured problems. The board configurations used in playing games are
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easily represented on a computer, requiring none of the complex formalisms needed to
capture the semantic subtleties of more complex problem domains. As games are
easily played, testing a game-playing program presents no financial or ethical burden.
State space search, the paradigm underlying most game-playing research, is presented in
Chapters 3 and 4. 


Games can generate extremely large search spaces. These are large and complex
enough to require powerful techniques for determining what alternatives to explore in the
problem space. These techniques are called heuristics and constitute a major area of AI
research. A heuristic is a useful but potentially fallible problem-solving strategy, such as
checking to make sure that an unresponsive appliance is plugged in before assuming that it
is broken or to castle in order to try and protect your king from capture in a chess game.
Much of what we commonly call intelligence seems to reside in the heuristics used by
humans to solve problems.


Because most of us have some experience with these simple games, it is possible to
devise and test the effectiveness of our own heuristics. We do not need to find and consult
an expert in some esoteric problem area such as medicine or mathematics (chess is an
obvious exception to this rule). For these reasons, games provide a rich domain for the
study of heuristic search. Chapter 4 introduces heuristics using these simple games.
Game-playing programs, in spite of their simplicity, offer their own challenges, including
an opponent whose moves may not be deterministically anticipated, Chapters 5 and 9, and
the need to consider psychological as well as tactical factors in game strategy.


Recent successes in computer-based game playing include world championships in
backgammon and chess. It is also interesting to note that in 2007 the full state space for
the game of checkers was mapped out, allowing it to be from the first move, deterministic! 


1.2.2 Automated Reasoning and Theorem Proving


We could argue that automatic theorem proving is the oldest branch of artificial
intelligence, tracing its roots back through Newell and Simon’s Logic Theorist (Newell
and Simon 1963a) and General Problem Solver (Newell and Simon 1963b), through Rus-
sell and Whitehead’s efforts to treat all of mathematics as the purely formal derivation of
theorems from basic axioms, to its origins in the writings of Babbage and Leibniz. In any
case, it has certainly been one of the most fruitful branches of the field. Theorem-proving
research was responsible for much of the early work in formalizing search algorithms and
developing formal representation languages such as the predicate calculus (Chapter 2) and
the logic programming language Prolog. 


Most of the appeal of automated theorem proving lies in the rigor and generality of
logic. Because it is a formal system, logic lends itself to automation. A wide variety of
problems can be attacked by representing the problem description and relevant
background information as logical axioms and treating problem instances as theorems to
be proved. This insight is the basis of work in automatic theorem proving and
mathematical reasoning systems (Chapter 14). 


Unfortunately, early efforts at writing theorem provers failed to develop a system that
could consistently solve complicated problems. This was due to the ability of any
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reasonably complex logical system to generate an infinite number of provable theorems:
without powerful techniques (heuristics) to guide their search, automated theorem provers
proved large numbers of irrelevant theorems before stumbling onto the correct one. In
response to this inefficiency, many argue that purely formal, syntactic methods of guiding
search are inherently incapable of handling such a huge space and that the only alternative
is to rely on the informal, ad hoc strategies that humans seem to use in solving problems.
This is the approach underlying the development of expert systems (Chapter 8), and it has
proved to be a fruitful one.


Still, the appeal of reasoning based in formal mathematical logic is too strong to
ignore. Many important problems such as the design and verification of logic circuits,
verification of the correctness of computer programs, and control of complex systems
seem to respond to such an approach. In addition, the theorem-proving community has
enjoyed success in devising powerful solution heuristics that rely solely on an evaluation
of the syntactic form of a logical expression, and as a result, reducing the complexity of
the search space without resorting to the ad hoc techniques used by most human problem
solvers. 


Another reason for the continued interest in automatic theorem provers is the
realization that such a system does not have to be capable of independently solving
extremely complex problems without human assistance. Many modern theorem provers
function as intelligent assistants, letting humans perform the more demanding tasks of
decomposing a large problem into subproblems and devising heuristics for searching the
space of possible proofs. The theorem prover then performs the simpler but still demand-
ing task of proving lemmas, verifying smaller conjectures, and completing the
formal aspects of a proof outlined by its human associate (Boyer and Moore 1979, Bundy
1988, Veroff 1997, Veroff and Spinks 2006).


1.2.3 Expert Systems


One major insight gained from early work in problem solving was the importance of
domain-specific knowledge. A doctor, for example, is not effective at diagnosing illness
solely because she possesses some innate general problem-solving skill; she is effective
because she knows a lot about medicine. Similarly, a geologist is effective at discovering
mineral deposits because he is able to apply a good deal of theoretical and empirical
knowledge about geology to the problem at hand. Expert knowledge is a combination of a
theoretical understanding of the problem and a collection of heuristic problem-solving
rules that experience has shown to be effective in the domain. Expert systems are
constructed by obtaining this knowledge from a human expert and coding it into a form
that a computer may apply to similar problems. 


This reliance on the knowledge of a human domain expert for the system’s problem
solving strategies is a major feature of expert systems. Although some programs are writ-
ten in which the designer is also the source of the domain knowledge, it is far more typical
to see such programs growing out of a collaboration between a domain expert such as a
doctor, chemist, geologist, or engineer and a separate artificial intelligence specialist. The
domain expert provides the necessary knowledge of the problem domain through a
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general discussion of her problem-solving methods and by demonstrating those skills on a
carefully chosen set of sample problems. The AI specialist, or knowledge engineer, as
expert systems designers are often known, is responsible for implementing this knowledge
in a program that is both effective and seemingly intelligent in its behavior. Once such a
program has been written, it is necessary to refine its expertise through a process of giving
it example problems to solve, letting the domain expert criticize its behavior, and making
any required changes or modifications to the program’s knowledge. This process is
repeated until the program has achieved the desired level of performance. 


One of the earliest systems to exploit domain-specific knowledge in problem solving
was DENDRAL, developed at Stanford in the late 1960s (Lindsay et al. 1980). DEN-
DRAL was designed to infer the structure of organic molecules from their chemical for-
mulas and mass spectrographic information about the chemical bonds present in the
molecules. Because organic molecules tend to be very large, the number of possible
structures for these molecules tends to be huge. DENDRAL addresses the problem of this
large search space by applying the heuristic knowledge of expert chemists to the structure
elucidation problem. DENDRAL’s methods proved remarkably effective, routinely find-
ing the correct structure out of millions of possibilities after only a few trials. The
approach has proved so successful that descendants extensions of DENDRAL are cur-
rently used in chemical and pharmaceutical laboratories throughout the world. 


Whereas DENDRAL was one of the first programs to effectively use domain-specific
knowledge to achieve expert performance, MYCIN established the methodology of con-
temporary expert systems (Buchanan and Shortliffe 1984). MYCIN uses expert medical
knowledge to diagnose and prescribe treatment for spinal meningitis and bacterial infec-
tions of the blood. MYCIN, developed at Stanford in the mid-1970s, was one of the first
programs to address the problems of reasoning with uncertain or incomplete information.
MYCIN provided clear and logical explanations of its reasoning, used a control structure
appropriate to the specific problem domain, and identified criteria to reliably evaluate its
performance. Many of the expert system development techniques currently in use were
first developed in the MYCIN project (Chapter 8). 


Other early expert systems include the PROSPECTOR program for determining the
probable location and type of ore deposits based on geological information about a site
(Duda et al. 1979a, 1979b), the INTERNIST program for performing diagnosis in the area
of internal medicine, the Dipmeter Advisor for interpreting the results of oil well drilling
logs (Smith and Baker 1983), and XCON for configuring VAX computers. XCON was
developed in 1981, and at one time every VAX sold by Digital Equipment Corporation
was configured by that software. Numerous other expert systems are currently solving
problems in areas such as medicine, education, business, design, and science (Waterman
1986, Durkin 1994). See also current proceedings of the Inovative Applications of Artifi-
cial Intelligence (IAAI) Confersnces.


It is interesting to note that most expert systems have been written for relatively spe-
cialized, expert level domains. These domains are generally well studied and have clearly
defined problem-solving strategies. Problems that depend on a more loosely defined
notion of “common sense” are much more difficult to solve by these means. In spite of the
promise of expert systems, it would be a mistake to overestimate the ability of this
technology. Current deficiencies include: 
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1. Difficulty in capturing “deep” knowledge of the problem domain. MYCIN, for
example, lacks any real knowledge of human physiology. It does not know what
blood does or the function of the spinal cord. Folklore has it that once, when
selecting a drug for treatment of meningitis, MYCIN asked whether the patient
was pregnant, even though it had been told that the patient was male. Whether
this actually occurred or not, it does illustrate the potential narrowness of knowl-
edge in expert systems. 


2. Lack of robustness and flexibility. If humans are presented with a problem
instance that they cannot solve immediately, they can generally return to an
examination of first principles and come up with some strategy for attacking the
problem. Expert systems generally lack this ability. 


3. Inability to provide deep explanations. Because expert systems lack deep
knowledge of their problem domains, their explanations are generally restricted
to a description of the steps they took in finding a solution. For example, they
often cannot tell “why” a certain approach was taken. 


4. Difficulties in verification. Though the correctness of any large computer system
is difficult to prove, expert systems are particularly difficult to verify. This is a
serious problem, as expert systems technology is being applied to critical
applications such as air traffic control, nuclear reactor operations, and weapons
systems.


5. Little learning from experience. Current expert systems are handcrafted; once the
system is completed, its performance will not improve without further attention
from its programmers, leading to doubts about the intelligence of such systems.


In spite of these limitations, expert systems have proved their value in a number of
important applications. Expert systems are a major topic in this text and are discussed in
Chapters 7 and 8. Current applications can often be found in the proceedings of the Inova-
tive Applications of Artificial Intelligence (IAAI) conferences.


1.2.4 Natural Language Understanding and Semantics


One of the long-standing goals of artificial intelligence is the creation of programs that are
capable of understanding and generating human language. Not only does the ability to use
and understand natural language seem to be a fundamental aspect of human intelligence,
but also its successful automation would have an incredible impact on the usability and
effectiveness of computers themselves. Much effort has been put into writing programs
that understand natural language. Although these programs have achieved success within
restricted contexts, systems that can use natural language with the flexibility and general-
ity that characterize human speech are beyond current methodologies. 


Understanding natural language involves much more than parsing sentences into their
individual parts of speech and looking those words up in a dictionary. Real understanding
depends on extensive background knowledge about the domain of discourse and the
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idioms used in that domain as well as an ability to apply general contextual knowledge to
resolve the omissions and ambiguities that are a normal part of human speech. 


Consider, for example, the difficulties in carrying on a conversation about baseball
with an individual who understands English but knows nothing about the rules, players, or
history of the game. Could this person possibly understand the meaning of the sentence:
“With none down in the top of the ninth and the go-ahead run at second, the manager
called his relief from the bull pen”? Even though all of the words in the sentence may be
individually understood, this sentence would be gibberish to even the most intelligent
non-baseball fan. 


The task of collecting and organizing this background knowledge in such a way that it
may be applied to language comprehension forms the major problem in automating
natural language understanding. Responding to this need, researchers have developed
many of the techniques for structuring semantic meaning used throughout artificial
intelligence (Chapters 7 and 15). 


Because of the tremendous amounts of knowledge required for understanding natural
language, most work is done in well-understood, specialized problem areas. One of the
earliest programs to exploit this “micro world” methodology was Winograd’s SHRDLU, a
natural language system that could “converse” about a simple configuration of blocks of
different shapes and colors (Winograd 1973). SHRDLU could answer queries such as
“what color block is on the blue cube?” as well as plan actions such as “move the red pyr-
amid onto the green brick”. Problems of this sort, involving the description and manipula-
tion of simple arrangements of blocks,  appeared with surprising frequency in early AI
research and are known as “blocks world” problems. 


In spite of SHRDLU’s success in conversing about arrangements of blocks, its
methods did not generalize from that domain. The representational techniques used in the
program were too simple to capture the semantic organization of richer and more
complex domains in a useful way. Much of the current work in natural language under-
standing is devoted to finding representational formalisms that are general enough to be
used in a wide range of applications yet adapt themselves well to the specific structure of a
given domain. A number of different techniques (many of which are extensions or modifi-
cations of semantic networks) are explored for this purpose and used in the development
of programs that can understand natural language in constrained but interesting knowl-
edge domains. Finally, in current research (Marcus 1980, Manning and Schutze 1999,
Jurafsky and Martin 2009) stochastic models, describing how words and language struc-
tures “occur” in use, are employed to characterize both syntax and semantics. Full compu-
tational understanding of language, however, remains beyond the current state of the art. 


1.2.5 Modeling Human Performance


Although much of the above discussion uses human intelligence as a reference point in
considering artificial intelligence, it does not follow that programs should pattern them-
selves after the organization of the human mind. Indeed, many AI programs are engi-
neered to solve some useful problem without regard for their similarities to human mental
architecture. Even expert systems, while deriving much of their knowledge from human








26 PART I / ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE


experts, do not really attempt to simulate human internal mental problem solving pro-
cesses. If performance is the only criterion by which a system will be judged, there may be
little reason to attempt to simulate human problem-solving methods; in fact, programs that
take nonhuman approaches to solving problems (chess) are often more successful than
their human counterparts. Still, the design of systems that explicitly model aspects of
human performance is a fertile area of research in both AI and psychology. 


Human performance modeling, in addition to providing AI with much of its basic
methodology, has proved to be a powerful tool for formulating and testing theories of
human cognition. The problem-solving methodologies developed by computer scientists
have given psychologists a new metaphor for exploring the human mind. Rather than
casting theories of cognition in the vague language used in early research or abandoning
the problem of describing the inner workings of the human mind entirely (as suggested by
the behaviorists), many psychologists have adopted the language and theory of computer
science to formulate models of human intelligence. Not only do these techniques provide a
new vocabulary for describing human intelligence, but also computer implementations of
these theories offer psychologists an opportunity to empirically test, critique, and refine
their ideas (Luger 1994; See the Cognitive Science Society’s journal and conferences).
The relationship between artificial and human intelligence is summarized in Chapter 16.


1.2.6 Planning and Robotics


Research in planning began as an effort to design robots that could perform their tasks
with some degree of flexibility and responsiveness to the outside world. Briefly, planning
assumes a robot that is capable of performing certain atomic actions. It attempts to find a
sequence of those actions that will accomplish some higher-level task, such as moving
across an obstacle-filled room. 


Planning is a difficult problem for a number of reasons, not the least of which is the
size of the space of possible sequences of moves. Even an extremely simple robot is
capable of generating a vast number of potential move sequences. Imagine, for example, a
robot that can move forward, backward, right, or left, and consider how many different
ways that robot can possibly move around a room. Assume also that there are obstacles in
the room and that the robot must select a path that moves around them in some efficient
fashion. Writing a program that can discover the best path under these circumstances,
without being overwhelmed by the huge number of possibilities, requires sophisticated
techniques for representing spatial knowledge and controlling search through possible
environments.


One method that human beings use in planning is hierarchical problem decomposi-
tion. If you are planning a trip from Albuquerque to London, you will generally treat the
problems of arranging a flight, getting to the airport, making airline connections, and find-
ing ground transportation in London separately, even though they are all part of a bigger
overall plan. Each of these may be further decomposed into smaller subproblems such as
finding a map of the city, negotiating the subway system, and finding a decent pub. Not
only does this approach effectively restrict the size of the space that must be searched, but
also supports the saving of frequently used subplans for future use. 
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While humans plan effortlessly, creating a computer program that can do the same is a
difficult challenge. A seemingly simple task such as breaking a problem into independent
subproblems actually requires sophisticated heuristics and extensive knowledge about the
planning domain. Determining what subplans should be saved and how they may be
generalized for future use is an equally difficult problem. 


A robot that blindly performs a sequence of actions without responding to changes in
its environment or being able to detect and correct errors in its own plan could hardly be
considered intelligent. A robot may not have adequate sensors to locate all obstacles in the
way of a projected path. Such a robot must begin moving through the room based on what
it has “perceived” and correct its path as other obstacles are detected. Organizing plans in
a fashion that allows response to changing environmental conditions is a major problem
for planning (Lewis and Luger 2000, Thrun et al. 2007). 


Finally, robotics was one of the research areas in AI that produced many of the
insights supporting agent-oriented problem solving (Section 1.1.4). Frustrated by both the
complexities of maintaining the large representational space as well as the design of
search algorithms for traditional planning, researchers, including Agre and Chapman
(1987) , Brooks (1991a), Thrun et al. (2007), restated the problem in terms of the interac-
tion of multiple semi-autonomous agents. Each agent was responsible for its own portion
of the problem task and through their coordination the larger solution would emerge. 


Planning research now extends well beyond the domains of robotics, to include the
coordination of any complex set of tasks and goals. Modern planners are applied to agents
(Nilsson 1994) as well as to control of particle beam accelerators (Klein et al. 1999, 2000).


1.2.7 Languages and Environments for AI


Some of the most important by-products of artificial intelligence research have been
advances in programming languages and software development environments. For a num-
ber of reasons, including the size of many AI application programs, the importance of a
prototyping methodology, the tendency of search algorithms to generate huge spaces, and
the difficulty of predicting the behavior of heuristically driven programs, AI programmers
have been forced to develop a powerful set of programming methodologies. 


Programming environments include knowledge-structuring techniques such as
object-oriented programming. High-level languages, such as Lisp and Prolog, which sup-
port modular development, help manage program size and complexity. Trace packages
allow a programmer to reconstruct the execution of a complex algorithm and make it pos-
sible to unravel the complexities of heuristic search. Without such tools and techniques, it
is doubtful that many significant AI systems could have been built. 


Many of these techniques are now standard tools for software engineering and have
little relationship to the core of AI theory. Others, such as object-oriented programming,
are of significant theoretical and practical interest. Finally, many AI algorithms are also
now built in more traditional computing languages, such as C++ and Java.


The languages developed for artificial intelligence programming are intimately bound
to the theoretical structure of the field. We have built many of the representational struc-
tures presneted in this book in Prolog, Lisp and Java and make them available in Luger
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and Stubblefield (2009) and on the internet. In this book we remain apart from religious
debates over their relative merits  different languages. Rather, We adhere to the adage “the
good professional knows all her tools.” 


1.2.8 Machine Learning


Learning has remained a challenging area for AI. The importance of learning, however, is
beyond question, particularly as this ability is one of the most important components of
intelligent behavior. An expert system may perform extensive and costly computations to
solve a problem. Unlike a human being, however, if it is given the same or a similar prob-
lem a second time, it usually does not remember the solution. It performs the same
sequence of computations again. This is true the second, third, fourth, and every time it
solves that problem—hardly the behavior of an intelligent problem solver. The obvious
solution to this problem is for programs to learn on their own, either from experience,
analogy, examples, being “told” what to do, or rewarded or punished depending on results. 


Although learning is a difficult area, there are several programs that suggest that it is
not impossible. One early program is AM, the Automated Mathematician, designed to dis-
cover mathematical laws (Lenat 1977, 1982). Initially given the concepts and axioms of
set theory, AM was able to induce such important mathematical concepts as cardinality,
integer arithmetic, and many of the results of number theory. AM conjectured new theo-
rems by modifying its current knowledge base and used heuristics to pursue the “best” of
a number of possible alternative theorems. More recently, Cotton et al. (2000) designed a
program that automatically invents “interesting” integer sequences. 


Early influential work also includes Winston’s research on the induction of structural
concepts such as “arch” from a set of examples in the blocks world (Winston 1975a). The
ID3 algorithm has proved successful in learning general patterns from examples (Quinlan
1986a). Meta-DENDRAL learns rules for interpreting mass spectrographic data in organic
chemistry from examples of data on compounds of known structure. Teiresias, an intelli-
gent “front end” for expert systems, converts high-level advice into new rules for its
knowledge base (Davis 1982). Hacker devises plans for performing blocks world manipu-
lations through an iterative process of devising a plan, testing it, and correcting any flaws
discovered in the candidate plan (Sussman 1975). Work in explanation-based learning has
shown the effectiveness of prior knowledge in learning (Mitchell et al. 1986, DeJong and
Mooney 1986). There are also now many important biological and sociological models of
learning; we review these in the connectionist learning and emergent learning chapters. 


The success of machine learning programs suggests the existence of a set of general
learning principles that will allow the construction of programs with the ability to learn in
realistic domains. We present several approaches to learning in Section IV.


1.2.9 Alternative Representations: Neural Nets and Genetic Algorithms


Most of the techniques presented in this AI book use explicitly represented knowledge and
carefully designed search algorithms to implement intelligence. A very different approach
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seeks to build intelligent programs using models that parallel the structure of neurons in
the human brain or the evolving patterns found in genetic algorithms and artificial life.


A simple schematic of a neuron (Figure 1.2) consists of a cell body that has a number
of branched protrusions, called dendrites, and a single branch called the axon. Dendrites
receive signals from other neurons. When these combined impulses exceed a certain
threshold, the neuron fires and an impulse, or spike, passes down the axon. Branches at the
end of the axon form synapses with the dendrites of other neurons. The synapse is the
point of contact between neurons; synapses may be either excitatory or inhibitory, either
adding to the total of signals reaching the neuron or subtracting from that total. 


This description of a neuron is excessively simple, but it captures those features that
are relevant to neural models of computation. In particular, each computational unit com-
putes some function of its inputs and passes the result along to connected units in the net-
work: the final results are produced by the parallel and distributed processing of this
network of neural connections and threshold weights.


Neural architectures are appealing mechanisms for implementing intelligence for a
number of reasons. Traditional AI programs can be brittle and overly sensitive to noise.
Human intelligence is much more flexible and good at interpreting noisy input, such as a
face in a darkened room or a conversation at a noisy party. Neural architectures, because
they capture knowledge in a large number of fine-grained units distributed about a net-
work, seem to have more potential for partially matching noisy and incomplete data. 


With genetic algorithms and artificial life we evolve new problem solutions from
components of previous solutions. The genetic operators, such as crossover and mutation,
much like their genetic equivalents in the natural world, work to produce, for each new
generation, ever better potential problem solutions. Artificial life produces its new genera-
tion as a function of the “quality” of its neighbors in previous generations.


Both neural architectures and genetic algorithms provide a natural model for parallel-
ism, because each neuron or segment of a solution is an independent unit. Hillis (1985)
has commented on the fact that humans get faster at a task as they acquire more knowl-
edge, while computers tend to slow down. This slowdown is due to the cost of sequen-
tially searching a knowledge base; a massively parallel architecture like the human brain
would not suffer from this problem. Finally, something is intrinsically appealing about
approaching the problems of intelligence from a neural or genetic point of view. After all,
the evolved brain achieves intelligence and it does so using a neural architecture. We
present neural networks, genetic algorithms, and artificial life, in Chapters 10 and 11. 


Synapse


Cell body


Dendrite
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Figure 1.2 A simplified diagram of a neuron, from 
Crick and Asanuma (1986).
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1.2.10 AI and Philosophy


In Section 1.1 we presented the philosophical, mathematical, and sociological roots of
artificial intelligence. It is important to realize that modern AI is not just a product of this
rich intellectual tradition but also contributes to it. 


For example, the questions that Turing posed about intelligent programs reflect back
on our understanding of intelligence itself. What is intelligence, and how is it described?
What is the nature of knowledge? Can knowledge be represented? How does knowledge
in an application area relate to problem-solving skill in that domain? How does knowing
what is true, Aristotle’s theoria, relate to knowing how to perform, his praxis?


Answers proposed to these questions make up an important part of what AI research-
ers and designers do. In the scientific sense, AI programs can be viewed as experiments. A
design is made concrete in a program and the program is run as an experiment. The pro-
gram designers observe the results and then redesign and rerun the experiment. In this
manner we can determine whether our representations and algorithms are sufficient mod-
els of intelligent behavior. Newell and Simon (1976) proposed this approach to scientific
understanding in their 1976 Turing Award lecture (Section VI). Newell and Simon (1976)
also propose a stronger model for intelligence with their physical symbol system hypothe-
sis: the necessary and sufficient condition for a physical system to exhibit intelligence is
that it be a physical symbol system. We take up in Section VI what this hypothesis means
in practice as well as how it has been criticized by many modern thinkers. 


A number of AI application areas also open up deep philosophical issues. In what
sense can we say that a computer can understand natural language expressions? To
produce or understand a language requires interpretation of symbols. It is not sufficient to
be able to say that a string of symbols is well formed. A mechanism for understanding
must be able to impute meaning or interpret symbols in context. What is meaning? What is
interpretation? In what sense does interpretation require responsibility? 


Similar philosophical issues emerge from many AI application areas, whether they be
building expert systems to cooperate with human problem solvers, designing computer
vision systems, or designing algorithms for machine learning. We look at many of these
issues as they come up in the chapters of this book and address the general issue of
relevance to philosophy again in Section VI.


1.3 Artificial Intelligence—A Summary


We have attempted to define artificial intelligence through discussion of its major areas of
research and application. This survey reveals a young and promising field of study whose
primary concern is finding an effective way to understand and apply intelligent problem
solving, planning, and communication skills to a wide range of practical problems. In
spite of the variety of problems addressed in artificial intelligence research, a number of
important features emerge that seem common to all divisions of the field; these include: 


1. The use of computers to do reasoning, pattern recognition, learning, or some
other form of inference. 
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2. A focus on problems that do not respond to algorithmic solutions. This underlies
the reliance on heuristic search as an AI problem-solving technique. 


3. A concern with problem solving using inexact, missing, or poorly defined infor-
mation and the use of representational formalisms that enable the programmer to
compensate for these problems. 


4. Reasoning about the significant qualitative features of a situation. 


5. An attempt to deal with issues of semantic meaning as well as syntactic form.


6. Answers that are neither exact nor optimal, but are in some sense “sufficient”.
This is a result of the essential reliance on heuristic problem-solving methods in
situations where optimal or exact results are either too expensive or not possible. 


7. The use of large amounts of domain-specific knowledge in solving problems.
This is the basis of expert systems. 


8. The use of meta-level knowledge to effect more sophisticated control of problem
solving strategies. Although this is a very difficult problem, addressed in rela-
tively few current systems, it is emerging as an essential area of research. 


We hope that this introduction provides some feel for the overall structure and
significance of the field of artificial intelligence. We also hope that the brief discussions of
such technical issues as search and representation were not excessively cryptic and
obscure; they are developed in proper detail throughout the remainder of the book, but
included here to demonstrate their significance in the general organization of the field. 


As we mentioned in the discussion of agent-oriented problem solving, objects take on
meaning through their relationships with other objects. This is equally true of the facts,
theories, and techniques that constitute a field of scientific study. We have intended to give
a sense of those interrelationships, so that when the separate technical themes of artificial
intelligence are presented, they will find their place in a developing understanding of the
overall substance and directions of the field. We are guided in this process by an observa-
tion made by Gregory Bateson (1979), the psychologist and systems theorist: 


Break the pattern which connects the items of learning and you necessarily destroy all quality.


1.4 Epilogue and References


The field of AI reflects some of the oldest concerns of Western civilization in the light of
the modern computational model. The notions of rationality, representation, and reason
are now under scrutiny as perhaps never before, because we workers in AI demand to
understand them algorithmically! At the same time, the political, economic, and ethical
situation of our species forces us to confront our responsibility for the effects of our
artifices.  


Many excellent sources are available on the topics raised in this chapter: Mind Design
(Haugeland 1997), Artificial Intelligence: The Very Idea (Haugeland 1985), Brainstorms
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(Dennett 1978), Mental Models (Johnson-Laird 1983), Elbow Room (Dennett 1984), The
Body in the Mind (Johnson 1987), Consciousness Explained (Dennett 1991), and Darwin’s
Dangerous Idea (Dennett 1995), Prehistory of Android Epistemology (Glymour, Ford, and
Hayes 1995a), and Sweet Dreems (Dennett 2006).


Several of the primary sources are also readily available, including Aristotle’s Phys-
ics, Metaphysics, and Logic; papers by Frege; and the writings of Babbage, Boole, and
Russell and Whitehead. Turing’s papers are also very interesting, especially his discus-
sions of the nature of intelligence and the possibility of designing intelligent programs
(Turing 1950). Turing's famous 1937 paper On Computable Numbers, with an Application
to the Entscheidungsproblem worked out the theory of Turing machines and the definition
of computability. Turing’s biography, Alan Turing: The Enigma (Hodges 1983), makes
excellent reading. Selfridge’s Pandemonium (1959) is an early example of learning. An
important collection of early papers in AI may be found in Webber and Nilsson (1981).


Computer Power and Human Reason (Weizenbaum 1976) and Understanding
Computers and Cognition (Winograd and Flores 1986) offer sobering comments on the
limitations of and ethical issues in AI. The Sciences of the Artificial (Simon 1981) is a pos-
itive statement on the possibility of artificial intelligence and its role in society. 


The AI applications mentioned in Section 1.2 are intended to introduce the reader to
the broad interests of AI researchers and outline many of the important questions under
investigation. Each of these subsections referenced the primary areas in this book where
these topics are presented. The Handbook of Artificial Intelligence (Barr and Feigenbaum
1989) also offers an introduction to many of these areas. The Encyclopedia of Artificial
Intelligence (Shapiro 1992) offers a clear and comprehensive treatment of the field of arti-
ficial intelligence. 


Natural language understanding is a dynamic field of study; some important points of
view are expressed in Natural Language Understanding (Allen 1995), Language as a
Cognitive Process (Winograd 1983), Computer Models of Thought and Language (Schank
and Colby 1973), Grammar, Meaning and the Machine Analysis of Language (Wilks
1972), The Language Instinct (Pinker 1994), Philosophy in the Flesh (Lakoff and Johnson
1999), and Speech and Language Processing (Jurafsky and Martin 2009); an introduction
to the field is presented in our Chapters 7 and 15. 


Using computers to model human performance, which we address briefly in Chapter
17, is discussed in some depth in Human Problem Solving (Newell and Simon 1972),
Computation and Cognition (Pylyshyn 1984), Arguments Concerning Representations for
Mental Imagery (Anderson 1978), Cognitive Science: the Science of Intelligent
Systems (Luger 1994), Problem Solving as Model Refinement: Towards a Constructivist
Epistemology (Luger et al. 2002), and Bayesian Brain, (Doya et al. 2007). 


Machine learning is discussed in Section IV; the multi-volume set, Machine Learning
(Michalski et al. 1983, 1986; Kodratoff and Michalski 1990), the Journal of Artificial
Intelligence and the Journal of Machine Learning are important resources. Further refer-
ences may be found in the four chapters of Section IV. 


Finally, Chapter 12 presents a view of intelligence that emphasizes its modular struc-
ture and adaptation within a social and natural context. Minsky’s Society of Mind (1985) is
one of the earliest and most thought provoking articulations of this point of view. Also see
Android Epistemology (Ford et al. 1995b) and Artificial Life (Langton 1995).
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1.5 Exercises


1. Create and justify your own definition of artificial intelligence. 


2. Give several other examples of Aristotle’s distinction between matter and form. Can you
show how your examples might fit into a theory of abstraction? 


3. Much traditional Western thought has dwelt on the mind–body relationship. Are the mind
and body: 


a. distinct entities somehow interacting, or 


b. is mind an expression of “physical processes”, or 


c. is body just an illusion of the rational mind?


Discuss your thoughts on the mind–body problem and its importance for a theory of artificial
intelligence.


4. Criticize Turing’s criteria for computer software being “intelligent”. 


5. Describe your own criteria for computer software to be considered “intelligent”. 


6. Although computing is a relatively new discipline, philosophers and mathematicians have
been thinking about the issues involved in automating problem solving for thousands of
years. What is your opinion of the relevance of these philosophical issues to the design of a
device for intelligent problem solving? Justify your answer. 


7. Given the differences between the architectures of modern computers and that of the human
brain, what relevance does research into the physiological structure and function of
biological systems have for the engineering of AI programs? Justify your answer. 


8. Pick one problem area that you feel would justify the energy required to design an expert
system solution. Spell the problem out in some detail. Based on your own intuition, which
aspects of this solution would be most difficult to automate? 


9. Add two more benefits for expert systems to those already listed in the text. Discuss these in
terms of intellectual, social, or financial results. 


   10. Discuss why you think the problem of machines “learning” is so difficult.


   11. Discuss whether or not you think it is possible for a computer to understand and use a natural
(human) language.


12. List and discuss two potentially negative effects on society of the development of artificial
intelligence technologies.
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P A R T II


ARTIFICIAL INTELLIGENCE AS
REPRESENTATION AND
SEARCH


A PROPOSAL FOR THE DARTMOUTH SUMMER RESEARCH 
PROJECT ON ARTIFICIAL INTELLIGENCE (url IIa)


We propose that a 2 month, 10 man (sic) study of artificial intelligence be carried out dur-
ing the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is 
to proceed on the basis of the conjecture that every aspect of learning or any other feature 
of intelligence can in principle be so precisely described that a machine can be made to 
simulate it. An attempt will be made to find how to make machines use language, form 
abstractions and concepts, solve kinds of problems now reserved for humans, and improve 
themselves. We think that a significant advance can be made in one or more of these prob-
lems if a carefully selected group of scientists work on it together for a summer. 


J. MCCARTHY, Dartmouth College
M. L. MINSKY, Harvard University


N. ROCHESTER, I.B.M. Corporation


C.E. SHANNON, Bell Telephone Laboratories


August 31, 1955 


Introduction to Representation and Search


From an engineering perspective, the description of artificial intelligence presented in
Section 1.3 may be summarized as the study of representation and search through which
intelligent activity can be enacted on a mechanical device. This perspective has dominated
the origins and growth of AI.


The first modern workshop/conference for AI practitioners was held at Dartmouth
College in the summer of 1956. The proposal for this workshop is presented as the intro-
ductory quotation for Part II. This workshop, where the name artificial intelligence itself
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was chosen, brought together many of the then current researchers focused on the integra-
tion of computation and intelligence. There were also a few computer programs written by
that time reflecting these early ideas. The main topics for discussion at this conference,
abridged here from the original workshop proposal (url IIa), were: 


1. Automatic Computers 


If a machine can do a job, then an automatic calculator can be programmed to simu-
late the machine. 


2. How Can a Computer be Programmed to Use a Language 


It may be speculated that a large part of human thought consists of manipulating
words according to rules of reasoning and rules of conjecture. 


3. Neuron Nets


How can a set of (hypothetical) neurons be arranged so as to form concepts?


4. Theory of the Size of a Calculation 


If we are given a well-defined problem (one for which it is possible to test mechani-
cally whether or not a proposed answer is a valid answer) one way of solving it is to
try all possible answers in order. This method is inefficient, and to exclude it one must
have some criterion for efficiency of calculation. 


5. Self-improvement (Machine Learning)


Probably a truly intelligent machine will carry out activities which may best be
described as self-improvement. 


6. Abstractions 


A number of types of “abstraction” can be distinctly defined and several others less
distinctly. A direct attempt to classify these and to describe machine methods of form-
ing abstractions from sensory and other data would seem worthwhile. 


7. Randomness and Creativity


A fairly attractive and yet clearly incomplete conjecture is that the difference between
creative thinking and unimaginative competent thinking lies in the injection of a some
randomness.


It is interesting to note that the topics proposed for this first conference on artificial
intelligence capture many of the issues, such as complexity theory, methodologies for
abstraction, language design, and machine learning that make up the focus of modern
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computer science. In fact, many of the defining characteristics of computer science as we
know it today have their roots in AI. AI has also had its own historical and political strug-
gles, with several of these early topics proposed for research, such as “neuron nets” and
“randomness and creativity” were put into background mode for decades. 


A powerful new computational tool, the Lisp language, emerged at about this time,
built under the direction of John McCarthy, one of the original proposers of the Dartmouth
Workshop. Lisp addressed several of the topics of the Workshop, supporting the ability to
create relationships that could themselves be manipulated by other structures of the lan-
guage. Lisp gave artificial intelligence both a highly expressive language, rich in abstrac-
tion, as well as a medium for interpretation of these expressions. 


The availability of the Lisp programming language did shape much of the early devel-
opment of AI, in particular, the use of the predicate calculus as a representational medium
as well as search to explore the efficacy of different logical alternatives, what we now call
graph search. Prolog, created in the late 1970s, would offer AI a similar powerful compu-
tational tool.


An introduction to the fundamental representation and search techniques supporting
work in artificial intelligence make up the five chapters of Part II. The predicate calculus,
graph search, heuristic and stochastic methods, and architectures (control systems) for
intelligent problem solving make up the material of Part II. These technologies reflect the
dominant techniques explored by the AI community during its first two decades.


Representational Systems


The function of any representation scheme is to capture - often called abstract out - the
critical features of a problem domain and make that information accessible to a problem-
solving procedure. Abstraction is an essential tool for managing complexity as well as an
important factor in assuring that the resulting programs are computationally efficient.
Expressiveness (the result of the features abstracted) and efficiency (the computationall
complexity of the algorithms used on the abstracted features) are major dimensions for
evaluating knowledge representation languages. Sometimes, expressiveness must be
sacrificed to improve an algorithm’s efficiency. This must be done without limiting the
representation’s ability to capture essential problem-solving knowledge. Optimizing the
trade-off between efficiency and expressiveness is a major task for designers of intelligent
programs.


Knowledge representation languages can also be tools for helping humans solve
problems. As such, a representation should provide a natural framework for expressing
problem-solving knowledge; it should make that knowledge available to the computer and
assist the programmer in its organization.


The computer representation of floating-point numbers illustrates these trade-offs
(see Fig. II.1). To be precise, real numbers require an infinite string of digits to be fully
described; this cannot be accomplished on a finite device such as a computer. One answer
to this dilemma is to represent the number in two pieces: its significant digits and the loca-
tion within those digits of the decimal point. Although it is not possible to actually store a
real number in a computer, it is possible to create a representation that functions ade-
quately in most practical applications.
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Floating-point representation thus sacrifices full expressive power to make the repre-
sentation efficient, in this case to make it possible. This representation also supports algo-
rithms for multiple-precision arithmetic, giving effectively infinite precision by limiting
round-off error to any pre-specified tolerance. It also guarantees well-behaved round-off
errors. Like all representations, it is only an abstraction, a symbol pattern that designates a
desired entity and not the entity itself.


The array is another representation common in computer science. For many prob-
lems, it is more natural and efficient than the memory architecture implemented in com-
puter hardware. This gain in naturalness and efficiency involves compromises in
expressiveness, as illustrated by the following example from image processing. Figure II.2
is a digitized image of human chromosomes in a stage called metaphase. The image is
processed to determine the number and structure of the chromosomes, looking for breaks,
missing pieces, and other abnormalities.


The visual scene is made up of a number of picture points. Each picture point, or
pixel, has both a location and a number value representing its intensity or gray level. It is
natural, then, to collect the entire scene into a two-dimensional array where the row and
column address gives the location of a pixel (X and Y coordinates) and the content of the
array element is the gray level at that point. Algorithms are designed to perform operations
like looking for isolated points to remove noise from the image, finding threshold levels
for discerning objects and edges, summing contiguous elements to determine size or den-
sity, and in various other ways transforming the picture point data. Implementing these
algorithms is straightforward, given the array representation and the FORTRAN language,
for example. This task would be quite cumbersome using other representations such as the
predicate calculus, records, or assembly code, because these do not have a natural fit with
the material being represented.


When we represent the picture as an array of pixel points, we sacrifice fineness of
resolution (compare a photo in a newspaper to the original print of the same picture). In
addition, pixel arrays cannot express the deeper semantic organization of the image. For
example, a pixel array cannot represent the organization of chromosomes in a single cell
nucleus, their genetic function, or the role of metaphase in cell division. This knowledge is
more easily captured using a representation such as predicate calculus (Chapter 2) or
semantic networks (Chapter 7). In summary, a representational scheme should be ade-
quate to express all of the necessary information, support efficient execution of the result-
ing code, and provide a natural scheme for expressing the required knowledge.


The real number:


The decimal equivalent:


The floating point representation:


The representation in computer memory:


3.1415927 . . .


31416     1


11100010


Exponent


Mantissa


π


Figure II.1 Different representations of the real number π.
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In general, the problems AI attempts to solve do not lend themselves to the represen-
tations offered by more traditional formalisms such as arrays. Artificial intelligence is con-
cerned with qualitative rather than quantitative problem solving, with reasoning rather
than numeric calculation, and with organizing large and varied amounts of knowledge
rather than implementing a single, well-defined algorithm. 


For example, consider Figure II.3, the arrangement of blocks on a table. Suppose we
wish to capture the properties and relations required to control a robot arm. We must deter-
mining which blocks are stacked on other blocks and which blocks have clear tops so that
they can be picked up.The predicate calculus offers a medium to capture this descriptive
information. The first word of each expression (on, ontable, etc.) is a predicate denoting
some property or relationship among its arguments (appearing in the parentheses). The
arguments are symbols denoting objects (blocks) in the domain. The collection of logical
clauses describes the important properties and relationships of this blocks world:


clear(c)
clear(a)
ontable(a)
ontable(b)
on(c, b)
cube(b)
cube(a)
pyramid(c)


Figure II.2 Digitized image of chromosomes in metaphase.
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Predicate calculus provides artificial intelligence programmers with a well-defined
language for describing and reasoning about qualitative aspects of a system. Suppose, in
the blocks world example, we want to define a test to determine whether a block is clear,
that is, has nothing stacked on top of it. This is important if the robot hand is to pick it up
or stack another block on top of it. We can define a general rule:


 


∀ X


 


¬


 


∃ Y on(Y,X) 


 


⇒ clear(X)


This is read “for all X, X is clear if there does not exist a Y such that Y is on X.” This gen-
eral rule can be applied to a variety of situations by substituting different block names, a,
b, c, etc., for X and Y. By supporting general inference rules, predicate calculus allows
economy of representation, as well as the possibility of designing systems that are flexible
and general enough to respond intelligently to a range of situations. 


The predicate calculus may also be used to represent the properties of individuals and groups. It
is often not sufficient, for example, to describe a car by simply listing its component parts; we may
want to describe the ways in which those parts are combined and the interactions between them.
This view of structure is essential to a range of situations including taxonomic information, such as
the classification of plants by genus and species, or a description of complex objects such as a diesel
engine or a human body in terms of their component parts. For example, a simple description of a
bluebird might be “a bluebird is a small blue-colored bird and a bird is a feathered flying verte-
brate”, which may be represented as the set of logical predicates:


hassize(bluebird,small)
hascovering(bird,feathers)
hascolor(bluebird,blue)
hasproperty(bird,flies)
isa(bluebird,bird)
isa(bird,vertebrate)


This predicate description can be represented graphically by using the arcs, or links,
in a graph instead of predicates to indicate relationships (Fig. II.4). This semantic network,
is a technique for representing semantic meaning. Because relationships are explicitly
denoted in the graph, an algorithm for reasoning about a problem domain could make rel-
evant associations by following the links. In the bluebird illustration, for example, the pro-
gram need only follow one link to se that a blubird flies and two links to determine that a
bluebird is a vertebrate. 


a b


c


Figure II.3 A blocks world.
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Perhaps the most important application for semantic networks is to represent mean-
ings for language understanding programs. When it is necessary to understand a child’s
story, the details of a journal article, or the contents of a web page, semantic networks may
be used to encode the information and relationships that reflect the knowledge in that
application. Semantic networks are discussed in Chapter 6, and their application to lan-
guage understanding in Chapter 15.


Search


Given a representation, the second component of intelligent problem solving is search.
Humans generally consider a number of alternative strategies on their way to solving a
problem. A chess player typically reviews alternative moves, selecting the “best” accord-
ing to criteria such as the opponent’s possible responses or the degree to which various
moves support some global game strategy. A player also considers short-term gain (such
as taking the opponent’s queen), opportunities to sacrifice a piece for positional advan-
tage, or conjectures concerning the opponent’s psychological makeup and level of skill.
This aspect of intelligent behavior underlies the problem-solving technique of state space
search.


Consider, for example, the game of tic-tac-toe. Given any board situation, there is
only a finite number of moves that a player can make. Starting with an empty board, the
first player may place an X in any one of nine places. Each of these moves yields a differ-
ent board that will allow the opponent eight possible responses, and so on. We can repre-
sent this collection of possible moves and responses by regarding each board
configuration as a node or state in a graph. The links of the graph represent legal moves
from one board configuration to another. The resulting structure is a state space graph.


The state space representation thus enables us to treat all possible games of tic-tac-toe
as different paths through the state space graph. Given this representation, an effective
game strategy will search through the graph for the paths that lead to the most wins and
fewest losses and play in a way that always tries to force the game along one of these opti-
mal paths, as in Figure II.5. 


vertebrate


bird


bluebird


hasproperty


hascolor


hascovering


hassize


feathers


small


flies


blue


isa


isa


Figure II.4 Semantic network description of a bluebird.
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As an example of how search is used to solve a more complicated problem, consider
the task of diagnosing a mechanical fault in an automobile. Although this problem does
not initially seem to lend itself to state space search as easily as tic-tac-toe or chess, it actu-
ally fits this strategy quite well. Instead of letting each node of the graph represent a
“board state,” we let it represent a state of partial knowledge about the automobile’s
mechanical problems. The process of examining the symptoms of the fault and inducing
its cause may be thought of as searching through states of increasing knowledge. The
starting node of the graph is empty, indicating that nothing is known about the cause of the
problem. The first thing a mechanic might do is ask the customer which major system
(engine, transmission, steering, brakes, etc.) seems to be causing the trouble. This is repre-
sented by a collection of arcs from the start state to states that indicate a focus on a single
subsystem of the automobile, as in Figure II.6. 


Each of the states in the graph has arcs (corresponding to basic diagnostic checks) that
lead to states representing further accumulation of knowledge in the diagnostic process.


X X X
X X X


X X X


XXXXXXXXXXX X
0 0


0 0 0
0 0


0 0 0


0 0


X
XXXXXXXXX X0 0 0 0 0 0 0 0 0 0 0


X X
X


X X X


X X X
X X X


X
0


Figure II.5 Portion of the state space for tic-tac-toe.








PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH 43


For example, the engine trouble node has arcs to nodes labeled engine starts and
engine won t start. From the won t start node we may move to nodes labeled turns over
and won t turn over. The won t turn over node has arcs to nodes labeled battery dead
and battery ok, see Figure II.7. A problem solver can diagnose car trouble by searching
for a path through this graph that is consistent with the symptoms of a particular defective


engine trouble                  transmission                    brakes .  .  .


start ask:
where is the problem?


engine starts
ask: . . .


engine won't start
ask:


Will engine turn over?


turns over
ask: . . .


won't turn over
ask:


Do lights come on?


battery
dead


battery
ok


.  .  .


start ask:
where is the problem?


engine trouble
ask:


does the car start?


transmission
ask: . . .


brakes
ask: . . .


yes no


yesno


yes no


Figure II.7 State space description of the automotive
diagnosis problem.


Figure II.6 State space description of the first step in
diagnosing an automotive problem.
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car. Although this problem is very different from that of finding an optimal way to play
tic-tac-toe or chess, it is equally amenable to solution by state space search.


In spite of this apparent universality, state space search is not, by itself, sufficient for
automating intelligent problem-solving behavior; rather it is an important tool for the
design of intelligent programs. If state space search were sufficient, it would be fairly sim-
ple to write a program that plays chess by searching through the entire space for the
sequence of moves that brought a victory, a method known as exhaustive search. Though
exhaustive search can be applied to any state space, the overwhelming size of the space for
interesting problems makes this approach a practical impossibility. Chess, for example,
has approximately 10120 different board states. This is a number larger than the number of
molecules in the universe or the number of nanoseconds that have passed since the big
bang. Search of this space is beyond the capabilities of any computing device, whose
dimensions must be confined to the known universe and whose execution must be com-
pleted before the universe succumbs to the ravages of entropy.


Humans use intelligent search: a chess player considers a number of possible moves,
a doctor examines several possible diagnoses, a computer scientist entertains different
designs before beginning to write code. Humans do not use exhaustive search: the chess
player examines only moves that experience has shown to be effective, the doctor does not
require tests that are not somehow indicated by the symptoms at hand. Human problem
solving seems to be based on judgmental rules that guide search to those portions of the
state space that seem most “promising”.


These rules are known as heuristics, and they constitute one of the central topics of AI
research. A heuristic (the name is taken from the Greek word “to discover”) is a strategy
for selectively searching a problem space. It guides search along lines that have a high
probability of success while avoiding wasted or apparently stupid efforts. Human beings
use a large number of heuristics in problem solving. If you ask a mechanic why your car is
overheating, she may say something like, “Usually that means the thermostat is bad.” If
you ask a doctor what could cause nausea and stomach pains, he might say it is “probably
either stomach flu or food poisoning.”


State space search gives us a means of formalizing the problem-solving process, and
heuristics allow us to infuse that formalism with intelligence. These techniques are dis-
cussed in detail in the early chapters of this book and remain at the heart of most modern
work in AI. In summary, state space search is a formalism, independent of any particular
search strategies, and used as a launch point for many problem solving approaches.


Throughout the text we continue to explore the theoretical aspects of knowledge rep-
resentation and search and the use of this theory in building effective programs. The treat-
ment of knowledge representation begins with Chapter 2 and the predicate calculus.
Chapter 3 introduces search in the context of game graphs and other applications. In Chap-
ter 4, heuristics are introduced and applied to graph search, including games. In Chapter 5
we present stochastic (probabilistic) techniques for building and organizing search spaces;
these will be used later in areas including machine learning and natural language process-
ing. Finally, Chapter 6 introduces the production system, blackboards and other software
architectures that integrate representation and serach, thus supporting the building of intel-
ligent problem solvers.
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THE PREDICATE
CALCULUS


We come to the full possession of our power of drawing inferences, the last of our 
faculties; for it is not so much a natural gift as a long and difficult art.


—C. S. PIERCE


The essential quality of a proof is to compel belief.


—FERMAT


2.0 Introduction


In this chapter we introduce the predicate calculus as a representation language for
artificial intelligence. The importance of the predicate calculus was discussed in the
introduction to Part II; its advantages include a well-defined formal semantics and sound
and complete inference rules. This chapter begins with a brief (optional) review of the
propositional calculus (Section 2.1). Section 2.2 defines the syntax and semantics of the
predicate calculus. In Section 2.3 we discuss predicate calculus inference rules and their
use in problem solving. Finally, the chapter demonstrates the use of the predicate calculus
to implement a knowledge base for financial investment advice. 


2.1 The Propositional Calculus (optional)


2.1.1 Symbols and Sentences


The propositional calculus and, in the next subsection, the predicate calculus are first of all
languages. Using their words, phrases, and sentences, we can represent and reason about
properties and relationships in the world. The first step in describing a language is to
introduce the pieces that make it up: its set of symbols.


2
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D E F I N I T I O N


PROPOSITIONAL CALCULUS SYMBOLS


The symbols of propositional calculus are the propositional symbols: 


P, Q, R, S, …


truth symbols: 


true, false 


and connectives: 


 


∧,


 


∨,


 


¬,


 


→,


 


≡


Propositional symbols denote propositions, or statements about the world that may be
either true or false, such as “the car is red” or “water is wet.” Propositions are denoted by
uppercase letters near the end of the English alphabet. Sentences in the propositional cal-
culus are formed from these atomic symbols according to the following rules:


D E F I N I T I O N


PROPOSITIONAL CALCULUS SENTENCES


Every propositional symbol and truth symbol is a sentence. 


For example: true, P, Q, and R are sentences. 


The negation of a sentence is a sentence. 


For example: 


 


¬ P and 


 


¬ false are sentences.


The conjunction, or and, of two sentences is a sentence. 


For example: P


 


∧


 


¬ P is a sentence. 


The disjunction, or or, of two sentences is a sentence. 


For example: P


 


∨


 


¬ P is a sentence. 


The implication of one sentence from another is a sentence. 


For example: P


 


→ Q is a sentence. 


The equivalence of two sentences is a sentence. 


For example: P


 


∨ Q


 


≡ R is a sentence. 


Legal sentences are also called well-formed formulas or WFFs.


In expressions of the form P


 


∧ Q, P and Q are called the conjuncts. In P


 


∨ Q, P and
Q are referred to as disjuncts. In an implication, P


 


→ Q, P is the premise or antecedent
and Q, the conclusion or consequent.








CHAPTER 2 / THE PREDICATE CALCULUS 47


In propositional calculus sentences, the symbols (  ) and [ ] are used to group symbols
into subexpressions and so to control their order of evaluation and meaning. For example,
(P


 


∨ Q)


 


≡ R is quite different from P


 


∨ (Q


 


≡ R), as can be demonstrated using truth tables
as we see Section 2.1.2. 


An expression is a sentence, or well-formed formula, of the propositional calculus if
and only if it can be formed of legal symbols through some sequence of these rules. For
example,


((P


 


∧ Q)


 


→ R)


 


≡


 


¬ P


 


∨ ¬ Q


 


∨ R


is a well-formed sentence in the propositional calculus because:


P, Q, and R are propositions and thus sentences.


P ∧ Q, the conjunction of two sentences, is a sentence.


(P ∧ Q) → R, the implication of a sentence for another, is a sentence.


¬ P and ¬ Q, the negations of sentences, are sentences.


¬ P ∨ ¬ Q, the disjunction of two sentences, is a sentence.


¬ P ∨ ¬ Q ∨ R, the disjunction of two sentences, is a sentence.


((P ∧ Q) → R) ≡ ¬ P ∨ ¬ Q ∨ R, the equivalence of two sentences, is a sentence. 


This is our original sentence, which has been constructed through a series of applications
of legal rules and is therefore “well formed”. 


2.1.2 The Semantics of the Propositional Calculus


Section 2.1.1 presented the syntax of the propositional calculus by defining a set of rules
for producing legal sentences. In this section we formally define the semantics or
“meaning” of these sentences. Because AI programs must reason with their
representational structures, it is important to demonstrate that the truth of their
conclusions depends only on the truth of their initial knowledge or premises, i.e., that log-
ical errors are not introduced by the inference procedures. A precise treatment of seman-
tics is essential to this goal.


A proposition symbol corresponds to a statement about the world. For example, P
may denote the statement “it is raining” or Q, the statement “I live in a brown house.” A
proposition must be either true or false, given some state of the world. The truth value
assignment to propositional sentences is called an interpretation, an assertion about their
truth in some possible world.


Formally, an interpretation is a mapping from the propositional symbols into the set
{T, F}. As mentioned in the previous section, the symbols true and false are part of the
set of well-formed sentences of the propositional calculus; i.e., they are distinct from the
truth value assigned to a sentence. To enforce this distinction, the symbols T and F are
used for truth value assignment. 
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Each possible mapping of truth values onto propositions corresponds to a possible
world of interpretation. For example, if P denotes the proposition “it is raining” and Q
denotes “I am at work,” then the set of propositions {P, Q} has four different functional
mappings into the truth values {T, F}. These mappings correspond to four different inter-
pretations. The semantics of propositional calculus, like its syntax, is defined inductively:


D E F I N I T I O N


PROPOSITIONAL CALCULUS SEMANTICS


An interpretation of a set of propositions is the assignment of a truth value, either T or
F, to each propositional symbol. 


The symbol true is always assigned T, and the symbol false is assigned F.


The interpretation or truth value for sentences is determined by: 


The truth assignment of negation, ¬ P, where P is any propositional symbol, is F
if the assignment to P is T, and T if the assignment to P is F.


The truth assignment of conjunction, ∧, is T only when both conjuncts have truth
value T; otherwise it is F.


The truth assignment of disjunction, ∨, is F only when both disjuncts have truth
value F; otherwise it is T.


The truth assignment of implication, →, is F only when the premise or symbol
before the implication is T and the truth value of the consequent or symbol after
the implication is F; otherwise it is T.


The truth assignment of equivalence, ≡, is T only when both expressions have the
same truth assignment for all possible interpretations; otherwise it is F.


The truth assignments of compound propositions are often described by truth tables.
A truth table lists all possible truth value assignments to the atomic propositions of an
expression and gives the truth value of the expression for each assignment. Thus, a truth
table enumerates all possible worlds of interpretation that may be given to an expression.
For example, the truth table for P ∧ Q, Figure 2.1, lists truth values for each possible truth
assignment of the operands. P ∧ Q is true only when P and Q are both T. Or (∨), not (¬),
implies (→), and equivalence (≡) are defined in a similar fashion. The construction of
these truth tables is left as an exercise. 


Two expressions in the propositional calculus are equivalent if they have the same
value under all truth value assignments. This equivalence may be demonstrated using truth
tables. For example, a proof of the equivalence of P → Q and ¬ P ∨ Q is given by the
truth table of Figure 2.2.


By demonstrating that two different sentences in the propositional calculus have iden-
tical truth tables, we can prove the following equivalences. For propositional expressions
P, Q, and R:
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¬ (¬ P) ≡ P


(P ∨ Q) ≡ (¬ P → Q)


the contrapositive law: (P → Q) ≡ (¬ Q → ¬ P)


de Morgan’s law: ¬ (P ∨ Q) ≡ (¬ P ∧ ¬ Q) and ¬ (P ∧ Q) ≡ (¬ P ∨¬ Q)


the commutative laws: (P ∧ Q) ≡ (Q ∧ P) and (P ∨ Q) ≡ (Q ∨ P)


the associative law: ((P ∧ Q) ∧ R) ≡ (P ∧ (Q ∧ R))


the associative law: ((P ∨ Q) ∨ R) ≡ (P ∨ (Q ∨ R))


the distributive law: P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)


the distributive law: P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)


Identities such as these can be used to change propositional calculus expressions into
a syntactically different but logically equivalent form. These identities may be used
instead of truth tables to prove that two expressions are equivalent: find a series of identi-
ties that transform one expression into the other. An early AI program, the Logic Theorist
(Newell and Simon 1956), designed by Newell, Simon, and Shaw, used transformations
between equivalent forms of expressions to prove many of the theorems in Whitehead and
Russell’s Principia Mathematica (1950). The ability to change a logical expression into a
different form with equivalent truth values is also important when using inference rules
(modus ponens, Section 2.3, and resolution, Chapter 14) that require expressions to be in a
specific form. 


Figure 2.2 Truth table demonstrating the equivalence of
P → Q and ¬ P ∨ Q.


Figure 2.1 Truth table for the operator ∧.


T       T        F         T          T                  T 


P       Q      ¬P    ¬P  Q   P    Q   (¬P  Q)=(P    Q)>


T       F        F         F          F                  T


F       T        T         T          T                  T


F       F        T         T          T                  T


⇒ > ⇒


T        T        T


P        Q     P   Q>


T        F        F


F        T        F


F        F        F








50 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


2.2 The Predicate Calculus


In propositional calculus, each atomic symbol (P, Q, etc.) denotes a single proposition.
There is no way to access the components of an individual assertion. Predicate calculus
provides this ability. For example, instead of letting a single propositional symbol, P,
denote the entire sentence “it rained on Tuesday,” we can create a predicate weather that
describes a relationship between a date and the weather: weather(tuesday, rain).
Through inference rules we can manipulate predicate calculus expressions, accessing their
individual components and inferring new sentences. 


Predicate calculus also allows expressions to contain variables. Variables let us create
general assertions about classes of entities. For example, we could state that for all values
of X, where X is a day of the week, the statement weather(X, rain) is true; i.e., it rains
every day. As we did with the propositional calculus, we will first define the syntax of the
language and then discuss its semantics. 


2.2.1 The Syntax of Predicates and Sentences


Before defining the syntax of correct expressions in the predicate calculus, we define an
alphabet and grammar for creating the symbols of the language. This corresponds to the
lexical aspect of a programming language definition. Predicate calculus symbols, like the
tokens in a programming language, are irreducible syntactic elements: they cannot be
broken into their component parts by the operations of the language. 


In our presentation we represent predicate calculus symbols as strings of letters and
digits beginning with a letter. Blanks and nonalphanumeric characters cannot appear
within the string, although the underscore, _, may be used to improve readability.


D E F I N I T I O N


PREDICATE CALCULUS SYMBOLS


The alphabet that makes up the symbols of the predicate calculus consists of: 


1. The set of letters, both upper- and lowercase, of the English alphabet. 


2. The set of digits, 0, 1, …, 9. 


3. The underscore, _. 


Symbols in the predicate calculus begin with a letter and are followed by any
sequence of these legal characters. 


Legitimate characters in the alphabet of predicate calculus symbols include


a R 6 9 p _ z


Examples of characters not in the alphabet include 
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# % @ / &   


Legitimate predicate calculus symbols include 


George   fire3   tom_and_jerry   bill   XXXX   friends_of 


Examples of strings that are not legal symbols are 


3jack   no blanks allowed    ab%cd   ***71   duck!!!


Symbols, as we see in Section 2.2.2, are used to denote objects, properties, or
relations in a world of discourse. As with most programming languages, the use of
“words” that suggest the symbol’s intended meaning assists us in understanding program
code. Thus, even though l(g,k) and likes(george, kate) are formally equivalent (i.e., they
have the same structure), the second can be of great help (for human readers) in indicating
what relationship the expression represents. It must be stressed that these descriptive
names are intended solely to improve the readability of expressions. The only “meaning”
that predicate calculus expressions have is given through their formal semantics. 


Parentheses “( )”, commas “,”, and periods “.” are used solely to construct well-
formed expressions and do not denote objects or relations in the world. These are called
improper symbols.


Predicate calculus symbols may represent either variables, constants, functions, or
predicates. Constants name specific objects or properties in the world. Constant symbols
must begin with a lowercase letter. Thus george, tree, tall, and blue are examples of
well-formed constant symbols. The constants true and false are reserved as truth symbols.


Variable symbols are used to designate general classes of objects or properties in the
world. Variables are represented by symbols beginning with an uppercase letter. Thus
George, BILL, and KAte are legal variables, whereas geORGE and bill are not. 


Predicate calculus also allows functions on objects in the world of discourse. Func-
tion symbols (like constants) begin with a lowercase letter. Functions denote a mapping of
one or more elements in a set (called the domain of the function) into a unique element of
a second set (the range of the function). Elements of the domain and range are objects in
the world of discourse. In addition to common arithmetic functions such as addition and
multiplication, functions may define mappings between nonnumeric domains. 


Note that our definition of predicate calculus symbols does not include numbers or
arithmetic operators. The number system is not included in the predicate calculus primi-
tives; instead it is defined axiomatically using “pure” predicate calculus as a basis (Manna
and Waldinger 1985). While the particulars of this derivation are of theoretical interest,
they are less important to the use of predicate calculus as an AI representation language.
For convenience, we assume this derivation and include arithmetic in the language.


Every function symbol has an associated arity, indicating the number of elements in
the domain mapped onto each element of the range. Thus father could denote a function
of arity 1 that maps people onto their (unique) male parent. plus could be a function of
arity 2 that maps two numbers onto their arithmetic sum. 


A function expression is a function symbol followed by its arguments. The arguments
are elements from the domain of the function; the number of arguments is equal to the
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arity of the function. The arguments are enclosed in parentheses and separated by com-
mas. For example, 


f(X,Y)
father(david)
price(bananas)


are all well-formed function expressions. 
Each function expression denotes the mapping of the arguments onto a single object


in the range, called the value of the function. For example, if father is a unary
function, then 


father(david)


is a function expression whose value (in the author’s world of discourse) is george. If
plus is a function of arity 2, with domain the integers, then 


plus(2,3)


is a function expression whose value is the integer 5. The act of replacing a function with
its value is called evaluation.


The concept of a predicate calculus symbol or term is formalized in the following def-
inition:


D E F I N I T I O N


SYMBOLS and TERMS


Predicate calculus symbols include: 


1. Truth symbols true and false (these are reserved symbols). 


2. Constant symbols are symbol expressions having the first character lowercase. 


3. Variable symbols are symbol expressions beginning with an uppercase character. 


4. Function symbols are symbol expressions having the first character lowercase.
Functions have an attached arity indicating the number of elements of the domain
mapped onto each element of the range. 


A function expression consists of a function constant of arity n, followed by n terms,
, enclosed in parentheses and separated by commas. 


A predicate calculus term is either a constant, variable, or function expression. 


Thus, a predicate calculus term may be used to denote objects and properties in a
problem domain. Examples of terms are: 


t1 t2 … tn, , ,
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cat
times(2,3)
X
blue
mother(sarah)
kate


Symbols in predicate calculus may also represent predicates. Predicate symbols, like
constants and function names, begin with a lowercase letter. A predicate names a
relationship between zero or more objects in the world. The number of objects so related
is the arity of the predicate. Examples of predicates are


likes   equals   on   near   part_of


An atomic sentence, the most primitive unit of the predicate calculus language, is a
predicate of arity n followed by n terms enclosed in parentheses and separated by com-
mas. Examples of atomic sentences are


likes(george,kate) likes(X,george)
likes(george,susie) likes(X,X)
likes(george,sarah,tuesday) friends(bill,richard)
friends(bill,george) friends(father_of(david),father_of(andrew))
helps(bill,george) helps(richard,bill)


The predicate symbols in these expressions are likes, friends, and helps. A predicate
symbol may be used with different numbers of arguments. In this example there are two
different likes, one with two and the other with three arguments. When a predicate symbol
is used in sentences with different arities, it is considered to represent two different rela-
tions. Thus, a predicate relation is defined by its name and its arity. There is no reason that
the two different likes cannot make up part of the same description of the world; however,
this is usually avoided because it can often cause confusion.


In the predicates above, bill, george, kate, etc., are constant symbols and represent
objects in the problem domain. The arguments to a predicate are terms and may also
include variables or function expressions. For example, 


friends(father_of(david),father_of(andrew))


is a predicate describing a relationship between two objects in a domain of discourse.
These arguments are represented as function expressions whose mappings (given that the
father_of david is george and the father_of andrew is allen) form the parameters of the
predicate. If the function expressions are evaluated, the expression becomes


friends(george,allen)


These ideas are formalized in the following definition.
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D E F I N I T I O N


PREDICATES and ATOMIC SENTENCES


Predicate symbols are symbols beginning with a lowercase letter. 


Predicates have an associated positive integer referred to as the arity or “argument
number” for the predicate. Predicates with the same name but different arities are
considered distinct. 


An atomic sentence is a predicate constant of arity n, followed by n terms,
, enclosed in parentheses and separated by commas. 


The truth values, true and false, are also atomic sentences. 


Atomic sentences are also called atomic expressions, atoms, or propositions.
We may combine atomic sentences using logical operators to form sentences in the


predicate calculus. These are the same logical connectives used in propositional calculus:
∧, ∨, ¬, →, and ≡.


When a variable appears as an argument in a sentence, it refers to unspecified objects
in the domain. First order (Section 2.2.2) predicate calculus includes two symbols, the
variable quantifiers ∀ and ∃, that constrain the meaning of a sentence containing a vari-
able. A quantifier is followed by a variable and a sentence, such as 


∃ Y friends(Y, peter)
∀ X likes(X, ice_cream)


The universal quantifier, ∀, indicates that the sentence is true for all values of the variable.
In the example, ∀ X likes(X, ice_cream) is true for all values in the domain of the defini-
tion of X. The existential quantifier, ∃, indicates that the sentence is true for at least one
value in the domain. ∃ Y friends(Y, peter) is true if there is at least one object, indicated
by Y that is a friend of peter. Quantifiers are discussed in more detail in Section 2.2.2. 


Sentences in the predicate calculus are defined inductively.


D E F I N I T I O N


PREDICATE CALCULUS SENTENCES


Every atomic sentence is a sentence. 


1. If s is a sentence, then so is its negation, ¬ s.


2. If s1 and s2 are sentences, then so is their conjunction, s1 ∧ s2.


3. If s1 and s2 are sentences, then so is their disjunction, s1 ∨ s2.


4. If s1 and s2 are sentences, then so is their implication, s1 → s2.


5. If s1 and s2 are sentences, then so is their equivalence, s1 ≡ s2.


t1 t2 … tn, , ,
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6. If X is a variable and s a sentence, then ∀ X s is a sentence. 


7. If X is a variable and s a sentence, then ∃ X s is a sentence. 


Examples of well-formed sentences follow. Let times and plus be function symbols
of arity 2 and let equal and foo be predicate symbols with arity 2 and 3, respectively.


plus(two,three) is a function and thus not an atomic sentence.


equal(plus(two,three), five) is an atomic sentence.


equal(plus(2, 3), seven) is an atomic sentence. Note that this sentence, given the
standard interpretation of plus and equal, is false. Well-formedness and truth value
are independent issues.


∃ X foo(X,two,plus(two,three)) ∧ equal(plus(two,three),five) is a sentence since
both conjuncts are sentences.


(foo(two,two,plus(two,three))) → (equal(plus(three,two),five) ≡ true) is a sen-
tence because all its components are sentences, appropriately connected by logical
operators.


The definition of predicate calculus sentences and the examples just presented suggest
a method for verifying that an expression is a sentence. This is written as a recursive
algorithm, verify_sentence. verify_sentence takes as argument a candidate expression
and returns success if the expression is a sentence. 


function verify_sentence(expression); 
begin


case
expression is an atomic sentence: return SUCCESS;
expression is of the form Q X s, where Q is either ∀ or ∃, X is a variable,


if verify_sentence(s) returns SUCCESS
then return SUCCESS
else return FAIL;


expression is of the form ¬ s:
if verify_sentence(s) returns SUCCESS
then return SUCCESS
else return FAIL;


expression is of the form s1 op s2, where op is a binary logical operator:
if verify_sentence(s1) returns SUCCESS and


verify_sentence(s2) returns SUCCESS
then return SUCCESS
else return FAIL;


otherwise: return FAIL
end


end.
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We conclude this section with an example of the use of predicate calculus to describe
a simple world. The domain of discourse is a set of family relationships in a biblical
genealogy: 


mother(eve,abel)
mother(eve,cain)
father(adam,abel)
father(adam,cain)


∀ X ∀ Y father(X, Y) ∨ mother(X, Y) → parent(X, Y) 
∀ X ∀ Y ∀ Z parent(X, Y) ∧ parent(X, Z) → sibling(Y, Z)


In this example we use the predicates mother and father to define a set of parent–
child relationships. The implications give general definitions of other relationships, such
as parent and sibling, in terms of these predicates. Intuitively, it is clear that these implica-
tions can be used to infer facts such as sibling(cain,abel). To formalize this process so
that it can be performed on a computer, care must be taken to define inference algorithms
and to ensure that such algorithms indeed draw correct conclusions from a set of predicate
calculus assertions. In order to do so, we define the semantics of the predicate calculus
(Section 2.2.2) and then address the issue of inference rules (Section 2.3). 


2.2.2 A Semantics for the Predicate Calculus


Having defined well-formed expressions in the predicate calculus, it is important to
determine their meaning in terms of objects, properties, and relations in the world.
Predicate calculus semantics provide a formal basis for determining the truth value of
well-formed expressions. The truth of expressions depends on the mapping of constants,
variables, predicates, and functions into objects and relations in the domain of discourse.
The truth of relationships in the domain determines the truth of the corresponding
expressions.


For example, information about a person, George, and his friends Kate and Susie may
be expressed by 


friends(george,susie)
friends(george,kate)


If it is indeed true that George is a friend of Susie and George is a friend of Kate then these
expressions would each have the truth value (assignment) T. If George is a friend of Susie
but not of Kate, then the first expression would have truth value T and the second would
have truth value F.


To use the predicate calculus as a representation for problem solving, we describe
objects and relations in the domain of interpretation with a set of well-formed expressions.
The terms and predicates of these expressions denote objects and relations in the domain.
This database of predicate calculus expressions, each having truth value T, describes the
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“state of the world”. The description of George and his friends is a simple example of such
a database. Another example is the blocks world in the introduction to Part II.


Based on these intuitions, we formally define the semantics of predicate calculus.
First, we define an interpretation over a domain D. Then we use this interpretation to
determine the truth value assignment of sentences in the language.


D E F I N I T I O N


INTERPRETATION


Let the domain D be a nonempty set. 


An interpretation over D is an assignment of the entities of D to each of the constant,
variable, predicate, and function symbols of a predicate calculus expression,
such that: 


1. Each constant is assigned an element of D.


2. Each variable is assigned to a nonempty subset of D; these are the allowable
substitutions for that variable. 


3. Each function f of arity m is defined on m arguments of D and defines a mapping
from Dm into D.


4. Each predicate p of arity n is defined on n arguments from D and defines a
mapping from Dn into {T, F}.


Given an interpretation, the meaning of an expression is a truth value assignment over
the interpretation. 


D E F I N I T I O N


TRUTH VALUE OF PREDICATE CALCULUS EXPRESSIONS


Assume an expression E and an interpretation I for E over a nonempty domain D. The
truth value for E is determined by:


1. The value of a constant is the element of D it is assigned to by I.


2. The value of a variable is the set of elements of D it is assigned to by I.


3. The value of a function expression is that element of D obtained by
evaluating the function for the parameter values assigned by the
interpretation. 


4. The value of truth symbol “true” is T and “false” is F.


5. The value of an atomic sentence is either T or F, as determined by the
interpretation I.
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6. The value of the negation of a sentence is T if the value of the sentence is F
and is F if the value of the sentence is T.


7. The value of the conjunction of two sentences is T if the value of both
sentences is T and is F otherwise. 


8.–10. The truth value of expressions using ∨, →, and ≡ is determined from the
value of their operands as defined in Section 2.1.2. 


Finally, for a variable X and a sentence S containing X:


11. The value of ∀ X S is T if S is T for all assignments to X under I, and it is F
otherwise.


12. The value of ∃ X S is T if there is an assignment to X in the interpretation
under which S is T; otherwise it is F.


Quantification of variables is an important part of predicate calculus semantics. When
a variable appears in a sentence, such as X in likes(george,X), the variable functions as a
placeholder. Any constant allowed under the interpretation can be substituted for it in the
expression. Substituting kate or susie for X in likes(george,X) forms the statements
likes(george,kate) and likes(george,susie) as we saw earlier.


The variable X stands for all constants that might appear as the second parameter of
the sentence. This variable name might be replaced by any other variable name, such as Y
or PEOPLE, without changing the meaning of the expression. Thus the variable is said to
be a dummy. In the predicate calculus, variables must be quantified in either of two ways:
universally or existentially. A variable is considered free if it is not within the scope of
either the universal or existential quantifiers. An expression is closed if all of its variables
are quantified. A ground expression has no variables at all. In the predicate calculus all
variables must be quantified.


Parentheses are often used to indicate the scope of quantification, that is, the instances
of a variable name over which a quantification holds. Thus, for the symbol indicating uni-
versal quantification, ∀:


∀ X (p(X) ∨ q(Y) → r(X))


indicates that X is universally quantified in both p(X) and r(X).
Universal quantification introduces problems in computing the truth value of a


sentence, because all the possible values of a variable symbol must be tested to see
whether the expression remains true. For example, to test the truth value of ∀ X
likes(george,X), where X ranges over the set of all humans, all possible values for X must
be tested. If the domain of an interpretation is infinite, exhaustive testing of all substitu-
tions to a universally quantified variable is computationally impossible: the algorithm may
never halt. Because of this problem, the predicate calculus is said to be undecidable.
Because the propositional calculus does not support variables, sentences can only have a
finite number of truth assignments, and we can exhaustively test all these possible
assignments. This is done with the truth table, Section 2.1. 
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As seen in Section 2.2.1 variables may also be quantified existentially, indicated by
the symbol ∃. In the existential case the expression containing the variable is said to be
true for at least one substitution from its domain of definition. The scope of an existen-
tially quantified variable is also indicated by enclosing the quantified occurrences of the
variable in parentheses. 


Evaluating the truth of an expression containing an existentially quantified variable
may be no easier than evaluating the truth of expressions containing universally quantified
variables. Suppose we attempt to determine the truth of the expression by trying substitu-
tions until one is found that makes the expression true. If the domain of the variable is infi-
nite and the expression is false under all substitutions, the algorithm will never halt. 


Several relationships between negation and the universal and existential quantifiers
are given below. These relationships are used in resolution refutation systems described in
Chapter 14. The notion of a variable name as a dummy symbol that stands for a set of
constants is also noted. For predicates p and q and variables X and Y:


¬ ∃ X p(X) ≡ ∀ X ¬ p(X)


¬ ∀ X p(X) ≡ ∃ X ¬ p(X)


∃ X p(X) ≡ ∃ Y p(Y)


∀ X q(X) ≡ ∀ Y q(Y)


∀ X (p(X) ∧ q(X)) ≡ ∀ X p(X) ∧ ∀ Y q(Y)


∃ X (p(X) ∨ q(X)) ≡ ∃ X p(X) ∨ ∃ Y q(Y)


In the language we have defined, universally and existentially quantified variables
may refer only to objects (constants) in the domain of discourse. Predicate and function
names may not be replaced by quantified variables. This language is called the first-order
predicate calculus.


D E F I N I T I O N


FIRST-ORDER PREDICATE CALCULUS


First-order predicate calculus allows quantified variables to refer to objects in the
domain of discourse and not to predicates or functions. 


For example, 


∀ (Likes) Likes(george,kate)


is not a well-formed expression in the first-order predicate calculus. There are
higher-order predicate calculi where such expressions are meaningful. Some researchers








60 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


(McCarthy 1968, Appelt 1985) have used higher-order languages to represent knowledge
in natural language understanding programs. 


Many grammatically correct English sentences can be represented in the first-order
predicate calculus using the symbols, connectives, and variable symbols defined in this
section. It is important to note that there is no unique mapping of sentences into predicate
calculus expressions; in fact, an English sentence may have any number of different
predicate calculus representations. A major challenge for AI programmers is to find a
scheme for using these predicates that optimizes the expressiveness and efficiency of the
resulting representation. Examples of English sentences represented in predicate calculus
are:


If it doesn’t rain on Monday, Tom will go to the mountains. 
¬ weather(rain, monday) → go(tom, mountains)
Emma is a Doberman pinscher and a good dog. 
gooddog(emma) ∧ isa(emma, doberman)


All basketball players are tall. 
∀ X (basketball_player(X) → tall(X))
Some people like anchovies. 
∃ X (person(X) ∧ likes(X, anchovies))


If wishes were horses, beggars would ride. 
equal(wishes, horses) → ride(beggars)
Nobody likes taxes. 
¬ ∃ X likes(X, taxes)


2.2.3   A “Blocks World” Example of Semantic Meaning


We conclude this section by giving an extended example of a truth value assignment to a
set of predicate calculus expressions. Suppose we want to model the blocks world of Fig-
ure 2.3 to design, for example, a control algorithm for a robot arm. We can use predicate
calculus sentences to represent the qualitative relationships in the world: does a given
block have a clear top surface? can we pick up block a? etc. Assume that the computer has
knowledge of the location of each block and the arm and is able to keep track of these
locations (using three-dimensional coordinates) as the hand moves blocks about the table. 


We must be very precise about what we are proposing with this “blocks world” exam-
ple. First, we are creating a set of predicate calculus expressions that is to represent a static
snapshot of the blocks world problem domain. As we will see in Section 2.3, this set of
blocks offers an interpretation and a possible model for the set of predicate calculus
expressions.


Second, the predicate calculus is declarative, that is, there is no assumed timing or
order for considering each expression. Nonetheless, in the planning section of this book,
Section 8.4, we will add a “procedural semantics”, or a clearly specified methodology for
evaluating these expressions over time. A concrete example of a procedural semantics for
predicate calculus expressions is Prolog, Section 14.3. This situation calculus we are
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creating will introduce a number of issues, including the frame problem and the issue of
non-monotonicity of logic interpretations, that will be addressed later in this book. For this
example, however, it is sufficient to say that our predicate calculus expressions will be
evaluated in a top-down and left-to-right fashion. 


To pick up a block and stack it on another block, both blocks must be clear. In Figure
2.3, block a is not clear. Because the arm can move blocks, it can change the state of the
world and clear a block. Suppose it removes block c from block a and updates the
knowledge base to reflect this by deleting the assertion on(c,a). The program needs to be
able to infer that block a has become clear. 


The following rule describes when a block is clear: 


∀ X (¬ ∃ Y on(Y,X) → clear(X))


That is, for all X, X is clear if there does not exist a Y such that Y is on X.
This rule not only defines what it means for a block to be clear but also provides a


basis for determining how to clear blocks that are not. For example, block d is not clear,
because if variable X is given value d, substituting b for Y will make the statement false.
Therefore, to make this definition true, block b must be removed from block d. This is
easily done because the computer has a record of all the blocks and their locations.


Besides using implications to define when a block is clear, other rules may be added
that describe operations such as stacking one block on top of another. For example: to
stack X on Y, first empty the hand, then clear X, then clear Y, and then pick_up X and
put_down X on Y.


∀ X ∀ Y ((hand_empty ∧ clear(X) ∧ clear(Y) ∧ pick_up(X) ∧ put_down(X,Y))
→ stack(X,Y))


a d


c b


on(c,a)


on(b,d)


ontable(a)


ontable(d)


clear(b)


clear(c)


hand_empty


Figure 2.3 A blocks world with its predicate
calculus description.
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Note that in implementing the above description it is necessary to “attach” an action
of the robot arm to each predicate such as pick_up(X). As noted previously, for such an
implementation it was necessary to augment the semantics of predicate calculus by requir-
ing that the actions be performed in the order in which they appear in a rule premise. How-
ever, much is gained by separating these issues from the use of predicate calculus to define
the relationships and operations in the domain.


Figure 2.3 gives a semantic interpretation of these predicate calculus expressions.
This interpretation maps the constants and predicates in the set of expressions into a
domain D, here the blocks and relations between them. The interpretation gives truth
value T to each expression in the description. Another interpretation could be offered by a
different set of blocks in another location, or perhaps by a team of four acrobats. The
important question is not the uniqueness of interpretations, but whether the interpretation
provides a truth value for all expressions in the set and whether the expressions describe
the world in sufficient detail that all necessary inferences may be carried out by
manipulating the symbolic expressions. The next section uses these ideas to provide a for-
mal basis for predicate calculus inference rules.


2.3 Using Inference Rules to Produce Predicate
Calculus Expressions


2.3.1 Inference Rules


The semantics of the predicate calculus provides a basis for a formal theory of
logical inference. The ability to infer new correct expressions from a set of true assertions
is an important feature of the predicate calculus. These new expressions are correct in that
they are consistent with all previous interpretations of the original set of expressions. First
we discuss these ideas informally and then we create a set of definitions to make
them precise. 


An interpretation that makes a sentence true is said to satisfy that sentence. An
interpretation that satisfies every member of a set of expressions is said to satisfy the set.
An expression X logically follows from a set of predicate calculus expressions S if every
interpretation that satisfies S also satisfies X. This notion gives us a basis for verifying the
correctness of rules of inference: the function of logical inference is to produce new sen-
tences that logically follow a given set of predicate calculus sentences. 


It is important that the precise meaning of logically follows be understood: for expres-
sion X to logically follow S, it must be true for every interpretation that satisfies the origi-
nal set of expressions S. This would mean, for example, that any new predicate calculus
expression added to the blocks world of Figure 2.3 must be true in that world as well as in
any other interpretation that that set of expressions may have.


The term itself, “logically follows,” may be a bit confusing. It does not mean that X is
deduced from or even that it is deducible from S. It simply means that X is true for every
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interpretation that satisfies S. However, because systems of predicates can have a poten-
tially infinite number of possible interpretations, it is seldom practical to try all interpreta-
tions. Instead, inference rules provide a computationally feasible way to determine when
an expression, a component of an interpretation, logically follows for that interpretation.
The concept “logically follows” provides a formal basis for proofs of the soundness and
correctness of inference rules. 


An inference rule is essentially a mechanical means of producing new predicate
calculus sentences from other sentences. That is, inference rules produce new sentences
based on the syntactic form of given logical assertions. When every sentence X produced
by an inference rule operating on a set S of logical expressions logically follows from S,
the inference rule is said to be sound.


If the inference rule is able to produce every expression that logically follows from S,
then it is said to be complete. Modus ponens, to be introduced below, and resolution,
introduced in Chapter 11, are examples of inference rules that are sound and, when used
with appropriate application strategies, complete. Logical inference systems generally use
sound rules of inference, although later chapters (4, 9, and 15) examine heuristic
reasoning and commonsense reasoning, both of which relax this requirement. 


We formalize these ideas through the following definitions.


D E F I N I T I O N


SATISFY, MODEL, VALID, INCONSISTENT


For a predicate calculus expression X and an interpretation I:


If X has a value of T under I and a particular variable assignment, then I is said to
satisfy X.


If I satisfies X for all variable assignments, then I is a model of X.


X is satisfiable if and only if there exist an interpretation and variable assignment
that satisfy it; otherwise, it is unsatisfiable.


A set of expressions is satisfiable if and only if there exist an interpretation and
variable assignment that satisfy every element. 


If a set of expressions is not satisfiable, it is said to be inconsistent.


If X has a value T for all possible interpretations, X is said to be valid.


In the blocks world example of Figure 2.3, the blocks world was a model for its
logical description. All of the sentences in the example were true under this interpretation.
When a knowledge base is implemented as a set of true assertions about a problem
domain, that domain is a model for the knowledge base. 


The expression ∃ X (p(X) ∧ ¬ p(X)) is inconsistent, because it cannot be satisfied
under any interpretation or variable assignment. On the other hand, the expression ∀ X
(p(X) ∨ ¬ p(X)) is valid. 
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The truth table method can be used to test validity for any expression not containing
variables. Because it is not always possible to decide the validity of expressions contain-
ing variables (as mentioned above, the process may not terminate), the full predicate cal-
culus is “undecidable.” There are proof procedures, however, that can produce any
expression that logically follows from a set of expressions. These are called complete
proof procedures. 


D E F I N I T I O N


PROOF PROCEDURE


A proof procedure is a combination of an inference rule and an algorithm for applying
that rule to a set of logical expressions to generate new sentences. 


We present proof procedures for the resolution inference rule in Chapter 11. 


Using these definitions, we may formally define “logically follows.”


D E F I N I T I O N


LOGICALLY FOLLOWS, SOUND, and COMPLETE


A predicate calculus expression X logically follows from a set S of predicate calculus
expressions if every interpretation and variable assignment that satisfies S also
satisfies X.


An inference rule is sound if every predicate calculus expression produced by the rule
from a set S of predicate calculus expressions also logically follows from S.


An inference rule is complete if, given a set S of predicate calculus expressions, the
rule can infer every expression that logically follows from S.


Modus ponens is a sound inference rule. If we are given an expression of the form
P → Q and another expression of the form P such that both are true under an
interpretation I, then modus ponens allows us to infer that Q is also true for that
interpretation. Indeed, because modus ponens is sound, Q is true for all interpretations for
which P and P → Q are true. 


Modus ponens and a number of other useful inference rules are defined below.


D E F I N I T I O N


MODUS PONENS, MODUS TOLLENS, AND ELIMINATION, AND
INTRODUCTION, and UNIVERSAL INSTANTIATION


If the sentences P and P → Q are known to be true, then modus ponens lets us
infer Q.
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Under the inference rule modus tollens, if P → Q is known to be true and Q is
known to be false, we can infer that P is false: ¬ P.


And elimination allows us to infer the truth of either of the conjuncts from the
truth of a conjunctive sentence. For instance, P ∧ Q lets us conclude P and Q
are true. 


And introduction lets us infer the truth of a conjunction from the truth of its
conjuncts. For instance, if P and Q are true, then P ∧ Q is true. 


Universal instantiation states that if any universally quantified variable in a true
sentence, say p(X), is replaced by an appropriate term from the domain, the result
is a true sentence. Thus, if a is from the domain of X, ∀ X p(X) lets us infer p(a).


As a simple example of the use of modus ponens in the propositional calculus,
assume the following observations: “if it is raining then the ground is wet” and “it is rain-
ing.” If P denotes “it is raining” and Q is “the ground is wet” then the first expression
becomes P → Q. Because it is indeed now raining (P is true), our set of axioms becomes


P → Q
P


Through an application of modus ponens, the fact that the ground is wet (Q) may be added
to the set of true expressions. 


Modus ponens can also be applied to expressions containing variables. Consider as an
example the common syllogism “all men are mortal and Socrates is a man; therefore
Socrates is mortal.” “All men are mortal” may be represented in predicate calculus by:


∀ X (man(X) → mortal(X)).


“Socrates is a man” is 


man(socrates).


Because the X in the implication is universally quantified, we may substitute any value in
the domain for X and still have a true statement under the inference rule of universal
instantiation. By substituting socrates for X in the implication, we infer the expression


man(socrates) → mortal(socrates).


We can now apply modus ponens and infer the conclusion mortal(socrates). This is
added to the set of expressions that logically follow from the original assertions. An
algorithm called unification can be used by an automated problem solver to determine that
socrates may be substituted for X in order to apply modus ponens. Unification is
discussed in Section 2.3.2. 


Chapter 14 discusses a more powerful rule of inference called resolution, which is the
basis of many automated reasoning systems. 
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2.3.2 Unification


To apply inference rules such as modus ponens, an inference system must be able to
determine when two expressions are the same or match. In propositional calculus, this is
trivial: two expressions match if and only if they are syntactically identical. In predicate
calculus, the process of matching two sentences is complicated by the existence of
variables in the expressions. Universal instantiation allows universally quantified vari-
ables to be replaced by terms from the domain. This requires a decision process for deter-
mining the variable substitutions under which two or more expressions can be made
identical (usually for the purpose of applying inference rules). 


Unification is an algorithm for determining the substitutions needed to make two
predicate calculus expressions match. We have already seen this done in the previous
subsection, where socrates in man(socrates) was substituted for X in ∀ X(man(X) ⇒
mortal(X)). This allowed the application of modus ponens and the conclusion
mortal(socrates). Another example of unification was seen previously when dummy
variables were discussed. Because p(X) and p(Y) are equivalent, Y may be substituted for
X to make the sentences match. 


Unification and inference rules such as modus ponens allow us to make inferences on
a set of logical assertions. To do this, the logical database must be expressed in an
appropriate form. 


An essential aspect of this form is the requirement that all variables be universally
quantified. This allows full freedom in computing substitutions. Existentially quantified
variables may be eliminated from sentences in the database by replacing them with the
constants that make the sentence true. For example, ∃ X parent(X,tom) could be replaced
by the expression parent(bob,tom) or parent(mary,tom), assuming that bob and mary
are tom s parents under the interpretation. 


The process of eliminating existentially quantified variables is complicated by the
fact that the value of these substitutions may depend on the value of other variables in the
expression. For example, in the expression ∀ X ∃ Y mother(X,Y), the value of the
existentially quantified variable Y depends on the value of X. Skolemization replaces each
existentially quantified variable with a function that returns the appropriate constant as a
function of some or all of the other variables in the sentence. In the above example,
because the value of Y depends on X, Y could be replaced by a skolem function, f, of X.
This yields the predicate ∀ X mother(X,f(X)). Skolemization, a process that can also bind
universally quantified variables to constants, is discussed in more detail in Section 14.2. 


Once the existentially quantified variables have been removed from a logical data-
base, unification may be used to match sentences in order to apply inference rules such as
modus ponens. 


Unification is complicated by the fact that a variable may be replaced by any term,
including other variables and function expressions of arbitrary complexity. These
expressions may themselves contain variables. For example, father(jack) may be
substituted for X in man(X) to infer that jack s father is mortal.


Some instances of the expression 


foo(X,a,goo(Y)).








CHAPTER 2 / THE PREDICATE CALCULUS 67


generated by legal substitutions are given below: 


1) foo(fred,a,goo(Z))
2) foo(W,a,goo(jack))
3) foo(Z,a,goo(moo(Z)))


In this example, the substitution instances or unifications that would make the initial
expression identical to each of the other three are written as the sets:


1) {fred/X, Z/Y} 
2) {W/X, jack/Y} 
3) {Z/X, moo(Z)/Y}


The notation X/Y,… indicates that X is substituted for the variable Y in the original
expression. Substitutions are also referred to as bindings. A variable is said to be bound to
the value substituted for it. 


In defining the unification algorithm that computes the substitutions required to
match two expressions, a number of issues must be taken into account. First, although a
constant may be systematically substituted for a variable, any constant is considered a
“ground instance” and may not be replaced. Neither can two different ground instances be
substituted for one variable. Second, a variable cannot be unified with a term containing
that variable. X cannot be replaced by p(X) as this creates an infinite expression:
p(p(p(p(...X)...))). The test for this situation is called the occurs check.


Furthermore, a problem-solving process often requires multiple inferences and,
consequently, multiple successive unifications. Logic problem solvers must maintain
consistency of variable substitutions. It is important that any unifying substitution be
made consistently across all occurrences within the scope of the variable in both expres-
sions being matched. This was seen before when socrates was substituted not only for the
variable X in man(X) but also for the variable X in mortal(X).


Once a variable has been bound, future unifications and inferences must take the
value of this binding into account. If a variable is bound to a constant, that variable may
not be given a new binding in a future unification. If a variable X1 is substituted for
another variable X2 and at a later time X1 is replaced by a constant, then X2 must also
reflect this binding. The set of substitutions used in a sequence of inferences is important,
because it may contain the answer to the original query (Section 14.2.5). For example, if
p(a,X) unifies with the premise of p(Y,Z) ⇒ q(Y,Z) with substitution {a/Y, X/Z}, modus
ponens lets us infer q(a,X) under the same substitution. If we match this result with the
premise of q(W,b) ⇒ r(W,b), we infer r(a,b) under the substitution set {a/W, b/X}.


Another important concept is the composition of unification substitutions. If S and S′
are two substitution sets, then the composition of S and S′ (written SS′) is obtained by
applying S′ to the elements of S and adding the result to S. Consider the example of com-
posing the following three sets of substitutions: 


{X/Y, W/Z}, {V/X}, {a/V, f(b)/W}.
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Composing the third set, {a/V, f(b)/W}, with the second, {V/X}, produces:


{a/X, a/V, f(b)/W}.


Composing this result with the first set, {X/Y, W/Z}, produces the set of substitutions:


{a/Y, a/X, a/V, f(b)/Z, f(b)/W}.


Composition is the method by which unification substitutions are combined and
returned in the recursive function unify, presented next. Composition is associative but not
commutative. The exercises present these issues in more detail. 


A further requirement of the unification algorithm is that the unifier be as general as
possible: that the most general unifier be found. This is important, as will be seen in the
next example, because, if generality is lost in the solution process, it may lessen the scope
of the eventual solution or even eliminate the possibility of a solution entirely. 


For example, in unifying p(X) and p(Y) any constant expression such as {fred/X,
fred/Y} will work. However, fred is not the most general unifier; any variable would pro-
duce a more general expression: {Z/X, Z/Y}. The solutions obtained from the first substitu-
tion instance would always be restricted by having the constant fred limit the resulting
inferences; i.e., fred would be a unifier, but it would lessen the generality of the result.


D E F I N I T I O N


MOST GENERAL UNIFIER (mgu)


If s is any unifier of expressions E, and g is the most general unifier of that set of
expressions, then for s applied to E there exists another unifier s′ such that Es =
Egs′, where Es and Egs′ are the composition of unifiers applied to the expression E.


The most general unifier for a set of expressions is unique except for alphabetic variations;
i.e., whether a variable is eventually called X or Y really does not make any difference to
the generality of the resulting unifications. 


Unification is important for any artificial intelligence problem solver that uses the
predicate calculus for representation. Unification specifies conditions under which two (or
more) predicate calculus expressions may be said to be equivalent. This allows use of
inference rules, such as resolution, with logic representations, a process that often requires
backtracking to find all possible interpretations. 


We next present pseudo-code for a function, unify, that can compute the unifying sub-
stitutions (when this is possible) between two predicate calculus expressions. Unify takes
as arguments two expressions in the predicate calculus and returns either the most general
set of unifying substitutions or the constant FAIL if no unification is possible. It is defined
as a recursive function: first, it recursively attempts to unify the initial components of the
expressions. If this succeeds, any substitutions returned by this unification are applied to
the remainder of both expressions. These are then passed in a second recursive call to
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unify, which attempts to complete the unification. The recursion stops when either argu-
ment is a symbol (a predicate, function name, constant, or variable) or the elements of the
expression have all been matched. 


To simplify the manipulation of expressions, the algorithm assumes a slightly modi-
fied syntax. Because unify simply performs syntactic pattern matching, it can effectively
ignore the predicate calculus distinction between predicates, functions, and arguments. By
representing an expression as a list (an ordered sequence of elements) with the predicate
or function name as the first element followed by its arguments, we simplify the manipula-
tion of expressions. Expressions in which an argument is itself a predicate or function
expression are represented as lists within the list, thus preserving the structure of the
expression. Lists are delimited by parentheses, ( ), and list elements are separated by
spaces. Examples of expressions in both predicate calculus, PC, and list syntax include:


PC SYNTAX LIST SYNTAX


p(a,b) (p a b)
p(f(a),g(X,Y)) (p (f a) (g X Y))
equal(eve,mother(cain)) (equal eve (mother cain))


We next present the function unify:


function unify(E1, E2); 
begin


case
both E1 and E2 are constants or the empty list: %recursion stops


if E1 = E2 then return {}
else return FAIL;


E1 is a variable:
if E1 occurs in E2 then return FAIL


else return {E2/E1};
E2 is a variable:


if E2 occurs in E1 then return FAIL
else return {E1/E2}


either E1 or E2 are empty then return FAIL   %the lists are of different sizes
otherwise: %both E1 and E2 are lists


begin
HE1 := first element of E1;
HE2 := first element of E2;
SUBS1 := unify(HE1,HE2);
if SUBS1 : = FAIL then return FAIL;
TE1 := apply(SUBS1, rest of E1);
TE2 : = apply (SUBS1, rest of E2);
SUBS2 : = unify(TE1, TE2);
if SUBS2 = FAIL then return FAIL;


else return composition(SUBS1,SUBS2)
end


end %end case
end
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2.3.3 A Unification Example


The behavior of the preceding algorithm may be clarified by tracing the call


unify((parents X (father X) (mother bill)), (parents bill (father bill) Y)).


When unify is first called, because neither argument is an atomic symbol, the function will
attempt to recursively unify the first elements of each expression, calling 


unify(parents, parents).


This unification succeeds, returning the empty substitution, { }. Applying this to the
remainder of the expressions creates no change; the algorithm then calls


unify((X (father X) (mother bill)), (bill (father bill) Y)).


A tree depiction of the execution at this stage appears in Figure 2.4.
In the second call to unify, neither expression is atomic, so the algorithm separates


each expression into its first component and the remainder of the expression. This leads to
the call 


unify(X, bill).


This call succeeds, because both expressions are atomic and one of them is a variable. The
call returns the substitution {bill/X}. This substitution is applied to the remainder of each
expression and unify is called on the results, as in Figure 2.5:


unify(((father bill) (mother bill)), ((father bill)Y)).


The result of this call is to unify (father bill) with (father bill). This leads to the calls 


unify(father, father) 
unify(bill, bill) 
unify(( ), ( ))


All of these succeed, returning the empty set of substitutions as seen in Figure 2.6. 
Unify is then called on the remainder of the expressions: 


unify(((mother bill)), (Y)).


This, in turn, leads to calls 


unify((mother bill), Y) 


unify(( ),( )).
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In the first of these, (mother bill) unifies with Y. Notice that unification substitutes the
whole structure (mother bill) for the variable Y. Thus, unification succeeds and returns the
substitution {(mother bill)/Y}. The call 


unify(( ),( ))


returns { }. All the substitutions are composed as each recursive call terminates, to return
the answer {bill/X (mother bill)/Y}. A trace of the entire execution appears in Figure 2.6.
Each call is numbered to indicate the order in which it was made; the substitutions
returned by each call are noted on the arcs of the tree. 


1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))


Unify first elements
and apply


substitutions to rest


return { }


2. unify(parents, parents)                                          3. unify((X (father X) (mother bill)),(bill (father bill) Y))


Figure 2.4 Initial steps in the unification of (parents X
(father X) (mother bill)) and (parents bill 
(father bill) Y).


Figure 2.5 Further steps in the unification of (parents X
(father X) (mother bill)) and (parents bill (father
bill) Y).


1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))


Unify first elements
and apply


substitutions to rest


return { }


2. unify(parents, parents)                                 3. unify((X (father X) (mother bill)),(bill (father bill) Y))


Unify first elements
and apply


substitutions to rest


return {bill/X}


4. unify(X,bill)                         5. unify(((father bill) (mother bill)),((father bill) Y))
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1. unify((parents X (father X) (mother bill)), (parents bill (father bill) Y))


Unify first elements
and apply


substitutions to rest


return { }


2. unify(parents, parents)                            3. unify((X (father X) (mother bill)), (bill (father bill) Y))


Unify first elements
and apply


substitutions to rest


return {bill/X}


4. unify(X,bill)                         5. unify(((father bill) (mother bill)), ((father bill) Y))


return {(mother bill)/Y}


return {(mother bill)/Y, bill/X}


Unify first elements
and apply


substitutions to rest


return { }


6. unify((father bill), (father bill))                    11. unify(((mother bill)), (Y))


return {(mother bill)/Y}


Unify first elements
and apply


substitutions to rest


return {(mother bill)/Y}


12. unify((mother bill), Y)                13. unify((), ())


return { }


Unify first elements
and apply


substitutions to rest


7. unify(father, father)                8. unify((bill), (bill))


return { }


Unify first elements
and apply


substitutions to rest


9. unify(bill, bill)                        10. unify((), ())


return { }


return { }


return { }


Figure 2.6 Final trace of the unification of (parents X
(father X) (mother bill)) and (parents bill 
(father bill) Y).
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2.4 Application: A Logic-Based Financial Advisor


As a final example of the use of predicate calculus to represent and reason about problem
domains, we design a financial advisor using predicate calculus. Although this is a simple
example, it illustrates many of the issues involved in realistic applications. 


The function of the advisor is to help a user decide whether to invest in a savings
account or the stock market. Some investors may want to split their money between the
two. The investment that will be recommended for individual investors depends on their
income and the current amount they have saved according to the following criteria: 


1. Individuals with an inadequate savings account should always make increasing
the amount saved their first priority, regardless of their income. 


2. Individuals with an adequate savings account and an adequate income should
consider a riskier but potentially more profitable investment in the stock market.


3. Individuals with a lower income who already have an adequate savings account
may want to consider splitting their surplus income between savings and stocks,
to increase the cushion in savings while attempting to increase their income
through stocks. 


The adequacy of both savings and income is determined by the number of dependents
an individual must support. Our rule is to have at least $5,000 in savings for each
dependent. An adequate income must be a steady income and supply at least $15,000 per
year plus an additional $4,000 for each dependent. 


To automate this advice, we translate these guidelines into sentences in the predicate
calculus. The first task is to determine the major features that must be considered. Here,
they are the adequacy of the savings and the income. These are represented by the
predicates savings_account and income, respectively. Both of these are unary
predicates, and their argument could be either adequate or inadequate. Thus, 


savings_account(adequate).
savings_account(inadequate).
income(adequate).
income(inadequate).


are their possible values. 
Conclusions are represented by the unary predicate investment, with possible values


of its argument being stocks, savings, or combination (implying that the investment
should be split). 


Using these predicates, the different investment strategies are represented by
implications. The first rule, that individuals with inadequate savings should make
increased savings their main priority, is represented by


savings_account(inadequate) → investment(savings).


Similarly, the remaining two possible investment alternatives are represented by
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savings_account(adequate) ∧ income(adequate) → investment(stocks).
savings_account(adequate) ∧ income(inadequate) 


→ investment(combination).


Next, the advisor must determine when savings and income are adequate or inade-
quate. This will also be done using an implication. The need to do arithmetic calculations
requires the use of functions. To determine the minimum adequate savings, the function
minsavings is defined. minsavings takes one argument, the number of dependents, and
returns 5000 times that argument. 


Using minsavings, the adequacy of savings is determined by the rules


∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧ greater(X, minsavings(Y)))
→ savings_account(adequate).


∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧ ¬ greater(X, minsavings(Y)))
→ savings_account(inadequate).


where minsavings(X) ≡ 5000 ∗ X.
In these definitions, amount_saved(X) and dependents(Y) assert the current


amount in savings and the number of dependents of an investor; greater(X,Y) is the
standard arithmetic test for one number being greater than another and is not formally
defined in this example. 


Similarly, a function minincome is defined as 


minincome(X) ≡ 15000 + (4000 ∗ X).


minincome is used to compute the minimum adequate income when given the number of
dependents. The investor’s current income is represented by a predicate, earnings.
Because an adequate income must be both steady and above the minimum, earnings takes
two arguments: the first is the amount earned, and the second must be equal to either
steady or unsteady. The remaining rules needed for the advisor are


∀ X earnings(X, steady) ∧ ∃ Y (dependents(Y) ∧ greater(X, minincome(Y)))
→ income(adequate).


∀ X earnings(X, steady) ∧ ∃ Y (dependents(Y) ∧ ¬ greater(X, minincome(Y)))
→ income(inadequate).


∀ X earnings(X, unsteady) → income(inadequate).


In order to perform a consultation, a description of a particular investor is added to
this set of predicate calculus sentences using the predicates amount_saved, earnings,
and dependents. Thus, an individual with three dependents, $22,000 in savings, and a
steady income of $25,000 would be described by


amount_saved(22000).
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earnings(25000, steady). 
dependents(3).


This yields a logical system consisting of the following sentences:


1. savings_account(inadequate) → investment(savings). 


2. savings_account(adequate) ∧ income(adequate) → investment(stocks).


3. savings_account(adequate) ∧ income(inadequate) 
→ investment(combination).


4. ∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧
greater(X, minsavings(Y))) → savings_account(adequate).


5. ∀ X amount_saved(X) ∧ ∃ Y (dependents(Y) ∧
¬ greater(X, minsavings(Y))) → savings_account(inadequate). 


6. ∀ X earnings(X, steady) ∧ ∃ Y (dependents (Y) ∧ 
greater(X, minincome(Y))) → income(adequate). 


7. ∀ X earnings(X, steady) ∧ ∃ Y (dependents(Y) ∧
¬ greater(X, minincome(Y))) → income(inadequate). 


8. ∀ X earnings(X, unsteady) → income(inadequate). 


9. amount_saved(22000).


10. earnings(25000, steady). 


11. dependents(3).


where minsavings(X) ≡ 5000 ∗ X and minincome(X) ≡ 15000 + (4000 ∗ X).
This set of logical sentences describes the problem domain. The assertions are


numbered so that they may be referenced in the following trace. 
Using unification and modus ponens, a correct investment strategy for this individual


may be inferred as a logical consequence of these descriptions. A first step would be to
unify the conjunction of 10 and 11 with the first two components of the premise of 7; i.e.,


earnings(25000,steady) ∧ dependents(3)


unifies with 


earnings(X,steady) ∧ dependents(Y)


under the substitution {25000/X, 3/Y}. This substitution yields the new implication:


earnings(25000, steady) ∧ dependents(3) ∧ ¬ greater(25000, minincome(3))
→ income(inadequate).








76 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


Evaluating the function minincome yields the expression


earnings(25000, steady) ∧ dependents(3) ∧ ¬ greater(25000, 27000) 
→ income(inadequate).


Because all three components of the premise are individually true, by 10, 3, and the
mathematical definition of greater, their conjunction is true and the entire premise is true.
Modus ponens may therefore be applied, yielding the conclusion income(inadequate).
This is added as assertion 12. 


12. income(inadequate).


Similarly, 


amount_saved(22000) ∧ dependents(3)


unifies with the first two elements of the premise of assertion 4 under the substitution
{22000/X, 3/Y}, yielding the implication 


amount_saved(22000) ∧ dependents(3) ∧ greater(22000, minsavings(3))
→ savings_account(adequate).


Here, evaluating the function minsavings(3) yields the expression


amount_saved(22000) ∧ dependents(3) ∧ greater(22000, 15000)
→ savings_account(adequate).


Again, because all of the components of the premise of this implication are true, the
entire premise evaluates to true and modus ponens may again be applied, yielding the
conclusion savings_account(adequate), which is added as expression 13. 


13. savings_account(adequate).


As an examination of expressions 3, 12, and 13 indicates, the premise of implication 3 is
also true. When we apply modus ponens yet again, the conclusion is
investment(combination), the suggested investment for our individual. 


This example illustrates how predicate calculus may be used to reason about a
realistic problem, drawing correct conclusions by applying inference rules to the initial
problem description. We have not discussed exactly how an algorithm can determine the
correct inferences to make to solve a given problem or the way in which this can be
implemented on a computer. These topics are presented in Chapters 3, 4, and 6. 
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2.5 Epilogue and References


In this chapter we introduced predicate calculus as a representation language for AI
problem solving. The symbols, terms, expressions, and semantics of the language were
described and defined. Based on the semantics of predicate calculus, we defined inference
rules that allow us to derive sentences that logically follow from a given set of expres-
sions. We defined a unification algorithm that determines the variable substitutions that
make two expressions match, which is essential for the application of inference rules. We
concluded the chapter with the example of a financial advisor that represents financial
knowledge with the predicate calculus and demonstrates logical inference as a problem-
solving technique. 


Predicate calculus is discussed in detail in a number of computer science books,
including: The Logical Basis for Computer Programming by Zohar Manna and Richard
Waldinger (1985), Logic for Computer Science by Jean H. Gallier (1986), Symbolic Logic
and Mechanical Theorem Proving by Chin-liang Chang and Richard Char-tung Lee
(1973), and An Introduction to Mathematical Logic and Type Theory by Peter B. Andrews
(1986). We present more modern proof techniques in Chapter 14, Automated Reasoning.


Books that describe the use of predicate calculus as an artificial intelligence
representation language include: Logical Foundations of Artificial Intelligence by Michael
Genesereth and Nils Nilsson (1987), Artificial Intelligence by Nils Nilsson (1998), The
Field of Automated Reasoning by Larry Wos (1995), Computer Modelling of Mathemati-
cal Reasoning by Alan Bundy (1983, 1988), and Readings in Knowledge Representation
by Ronald Brachman and Hector Levesque (1985). See Automated Reasoning by Bob Ver-
off (1997) for interesting applications of automated inference. The Journal for Automated
Reasoning (JAR) and Conference on Automated Deduction (CADE) cover current topics.


2.6 Exercises


1. Using truth tables, prove the identities of Section 2.1.2. 


2. A new operator, ⊕, or exclusive-or, may be defined by the following truth table:


Create a propositional calculus expression using only ∧, ∨, and ¬ that is equivalent to 
P ⊕ Q.
Prove their equivalence using truth tables. 


P Q P ⊕ Q


T T F


T F T


F T T


F F F








78 PART II / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


3. The logical operator “↔” is read “if and only if.” P ↔ Q is defined as being equivalent to
(P → Q) ∧ (Q → P). Based on this definition, show that P ↔ Q is logically equivalent to
(P ∨ Q) → (P ∧ Q):
a. By using truth tables. 
b. By a series of substitutions using the identities on page 51. 


4. Prove that implication is transitive in the propositional calculus, that is, that ((P → Q) 
∧ (Q → R)) → (P → R). 


5. a. Prove that modus ponens is sound for propositional calculus. Hint: use truth tables to
enumerate all possible interpretations. 


b. Abduction is an inference rule that infers P from P → Q and Q. Show that abduction
is not sound (see Chapter 7). 


c. Show modus tollens ((P → Q) ∧ ¬ Q) → ¬ P is sound. 


6. Attempt to unify the following pairs of expressions. Either show their most general
unifiers or explain why they will not unify. 


a. p(X,Y) and p(a,Z)
b. p(X,X) and p(a,b)
c. ancestor(X,Y) and ancestor(bill,father(bill))
d. ancestor(X,father(X)) and ancestor(david,george)
e. q(X) and ¬ q(a)


7. a. Compose the substitution sets {a/X, Y/Z} and {X/W, b/Y}.
b. Prove that composition of substitution sets is associative. 
c. Construct an example to show that composition is not commutative. 


8. Implement the unify algorithm of Section 2.3.2 in the computer language of your choice. 


9. Give two alternative interpretations for the blocks world description of Figure 2.3. 


10. Jane Doe has four dependents, a steady income of $30,000, and $15,000 in her savings
account. Add the appropriate predicates describing her situation to the general investment
advisor of the example in Section 2.4 and perform the unifications and inferences needed
to determine her suggested investment. 


11. Write a set of logical predicates that will perform simple automobile diagnostics (e.g., if
the engine won’t turn over and the lights won’t come on, then the battery is bad). Don’t try
to be too elaborate, but cover the cases of bad battery, out of gas, bad spark plugs, and bad
starter motor. 


12. The following story is from N. Wirth’s (1976) Algorithms + data structures = programs.


I married a widow (let’s call her W) who has a grown-up daughter (call her D). My father
(F), who visited us quite often, fell in love with my step-daughter and married her. Hence
my father became my son-in-law and my step-daughter became my mother. Some months
later, my wife gave birth to a son (S1), who became the brother-in-law of my father, as
well as my uncle. The wife of my father, that is, my step-daughter, also had a son (S2).


Using predicate calculus, create a set of expressions that represent the situation in the
above story. Add expressions defining basic family relationships such as the definition of
father-in-law and use modus ponens on this system to prove the conclusion that “I am my
own grandfather.” 
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STRUCTURES AND
STRATEGIES FOR STATE
SPACE SEARCH


In order to cope, an organism must either armor itself (like a tree or a clam) and “hope 
for the best,” or else develop methods for getting out of harm’s way and into the better 
neighborhoods of the vicinity. If you follow this later course, you are confronted with the 
primordial problem that every agent must continually solve: Now what do I do? 


—DANIEL C. DENNETT, “Consciousness Explained”


Two roads diverged in a yellow wood, 
And sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could 
To where it bent in the undergrowth; 
Then took the other. . .


—ROBERT FROST, “The Road Not Taken”


3.0 Introduction


Chapter 2 introduced predicate calculus as an example of an artificial intelligence repre-
sentation language. Well-formed predicate calculus expressions provide a means of
describing objects and relations in a problem domain, and inference rules such as modus
ponens allow us to infer new knowledge from these descriptions. These inferences define
a space that is searched to find a problem solution. Chapter 3 introduces the theory of state
space search. 


To successfully design and implement search algorithms, a programmer must be able
to analyze and predict their behavior. Questions that need to be answered include:


Is the problem solver guaranteed to find a solution?


Will the problem solver always terminate? Can it become caught in an infinite loop?


3
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When a solution is found, is it guaranteed to be optimal?


What is the complexity of the search process in terms of time usage? Memory usage?


How can the interpreter most effectively reduce search complexity?


How can an interpreter be designed to most effectively utilize a representation
language?


The theory of state space search is our primary tool for answering these questions. By
representing a problem as a state space graph, we can use graph theory to analyze the
structure and complexity of both the problem and the search procedures that we employ to
solve it. 


A graph consists of a set of nodes and a set of arcs or links connecting pairs of nodes.
In the state space model of problem solving, the nodes of a graph are taken to represent
discrete states in a problem-solving process, such as the results of logical inferences or the
different configurations of a game board. The arcs of the graph represent transitions
between states. These transitions correspond to logical inferences or legal moves of a
game. In expert systems, for example, states describe our knowledge of a problem
instance at some stage of a reasoning process. Expert knowledge, in the form of if . . . then
rules, allows us to generate new information; the act of applying a rule is represented as an
arc between states. 


Graph theory is our best tool for reasoning about the structure of objects and relations;
indeed, this is precisely the need that led to its creation in the early eighteenth century. The
Swiss mathematician Leonhard Euler invented graph theory to solve the “bridges of
Königsberg problem.” The city of Königsberg occupied both banks and two islands of a
river. The islands and the riverbanks were connected by seven bridges, as indicated in
Figure 3.1. 


River
2 3


5 6


Island 1 Island 2


1


4


7


Riverbank 1


Riverbank 2


Figure 3.1 The city of Königsberg.
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The bridges of Königsberg problem asks if there is a walk around the city that crosses
each bridge exactly once. Although the residents had failed to find such a walk and
doubted that it was possible, no one had proved its impossibility. Devising a form of graph
theory, Euler created an alternative representation for the map, presented in Figure 3.2.
The riverbanks (rb1 and rb2) and islands (i1 and i2) are described by the nodes of a graph;
the bridges are represented by labeled arcs between nodes (b1, b2, , b7 ). The graph
representation preserves the essential structure of the bridge system, while ignoring
extraneous features such as bridge lengths, distances, and order of bridges in the walk. 


Alternatively, we may represent the Königsberg bridge system using predicate
calculus. The connect predicate corresponds to an arc of the graph, asserting that two
land masses are connected by a particular bridge. Each bridge requires two connect
predicates, one for each direction in which the bridge may be crossed. A predicate expres-
sion, connect(X, Y, Z) = connect (Y, X, Z), indicating that any bridge can be crossed in
either direction, would allow removal of half the following connect facts:


connect(i1, i2, b1) connect(i2, i1, b1)


connect(rb1, i1, b2) connect(i1, rb1, b2)


connect(rb1, i1, b3) connect(i1, rb1, b3)


connect(rb1, i2, b4) connect(i2, rb1, b4)


connect(rb2, i1, b5) connect(i1, rb2, b5)


connect(rb2, i1, b6) connect(i1, rb2, b6)


connect(rb2, i2, b7) connect(i2, rb2, b7)


rb1


i2


rb2


i1


b 2


b 3


b 1


b 4


b 7
b 5


b 6


Figure 3.2 Graph of the Königsberg bridge system.
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The predicate calculus representation is equivalent to the graph representation in that
the connectedness is preserved. Indeed, an algorithm could translate between the two rep-
resentations with no loss of information. However, the structure of the problem can be
visualized more directly in the graph representation, whereas it is left implicit in the pred-
icate calculus version. Euler’s proof illustrates this distinction. 


In proving that the walk was impossible, Euler focused on the degree of the nodes of
the graph, observing that a node could be of either even or odd degree. An even degree
node has an even number of arcs joining it to neighboring nodes. An odd degree node has
an odd number of arcs. With the exception of its beginning and ending nodes, the desired
walk would have to leave each node exactly as often as it entered it. Nodes of odd degree
could be used only as the beginning or ending of the walk, because such nodes could be
crossed only a certain number of times before they proved to be a dead end. The traveler
could not exit the node without using a previously traveled arc. 


Euler noted that unless a graph contained either exactly zero or two nodes of odd
degree, the walk was impossible. If there were two odd-degree nodes, the walk could start
at the first and end at the second; if there were no nodes of odd degree, the walk could
begin and end at the same node. The walk is not possible for graphs containing any other
number of nodes of odd degree, as is the case with the city of Königsberg. This problem is
now called finding an Euler path through a graph. 


Note that the predicate calculus representation, though it captures the relationships
between bridges and land in the city, does not suggest the concept of the degree of a node.
In the graph representation there is a single instance of each node with arcs between the
nodes, rather than multiple occurrences of constants as arguments in a set of predicates.
For this reason, the graph representation suggests the concept of node degree and the focus
of Euler’s proof. This illustrates graph theory’s power for analyzing the structure of
objects, properties, and relationships. 


In Section 3.1 we review basic graph theory and then present finite state machines
and the state space description of problems. In section 3.2 we introduce graph search as a
problem-solving methodology. Depth-first and breadth-first search are two strategies for
searching a state space. We compare these and make the added distinction between goal-
driven and data-driven search. Section 3.3 demonstrates how state space search may be
used to characterize reasoning with logic. Throughout the chapter, we use graph theory to
analyze the structure and complexity of a variety of problems. 


3.1 Structures for State Space Search


3.1.1 Graph Theory (optional)


A graph is a set of nodes or states and a set of arcs that connect the nodes. A labeled
graph has one or more descriptors (labels) attached to each node that distinguish that node
from any other node in the graph. In a state space graph, these descriptors identify states
in a problem-solving process. If there are no descriptive differences between two nodes,
they are considered the same. The arc between two nodes is indicated by the labels of the
connected nodes. 
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The arcs of a graph may also be labeled. Arc labels are used to indicate that an arc
represents a named relationship (as in a semantic network) or to attach weights to arcs (as
in the traveling salesperson problem). If there are different arcs between the same two
nodes (as in Figure 3.2), these can also be distinguished through labeling. 


A graph is directed if arcs have an associated directionality. The arcs in a directed
graph are usually drawn as arrows or have an arrow attached to indicate direction. Arcs
that can be crossed in either direction may have two arrows attached but more often have
no direction indicators at all. Figure 3.3 is a labeled, directed graph: arc (a, b) may only be
crossed from node a to node b, but arc (b, c) is crossable in either direction. 


A path through a graph connects a sequence of nodes through successive arcs. The
path is represented by an ordered list that records the nodes in the order they occur in the
path. In Figure 3.3, [a, b, c, d] represents the path through nodes a, b, c, and d, in
that order. 


A rooted graph has a unique node, called the root, such that there is a path from the
root to all nodes within the graph. In drawing a rooted graph, the root is usually drawn at
the top of the page, above the other nodes. The state space graphs for games are usually
rooted graphs with the start of the game as the root. The initial moves of the tic-tac-toe
game graph are represented by the rooted graph of Figure II.5. This is a directed graph
with all arcs having a single direction. Note that this graph contains no cycles; players
cannot (as much as they might sometimes wish!) undo a move. 


A tree is a graph in which two nodes have at most one path between them. Trees often
have roots, in which case they are usually drawn with the root at the top, like a rooted
graph. Because each node in a tree has only one path of access from any other node, it is
impossible for a path to loop or cycle through a sequence of nodes. 


For rooted trees or graphs, relationships between nodes include parent, child, and sib-
ling. These are used in the usual familial fashion with the parent preceding its child along
a directed arc. The children of a node are called siblings. Similarly, an ancestor comes
before a descendant in some path of a directed graph. In Figure 3.4, b is a parent of nodes
e and f (which are, therefore, children of b and siblings of each other). Nodes a and c are
ancestors of states g, h, and i, and g, h, and i are descendants of a and c.


e


d


c


b


a


{a,b,c,d,e}


{(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e),(e,c),(e,d)}


Nodes =


Arcs   =


Figure 3.3 A labeled directed graph.
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Before introducing the state space representation of problems we formally define
these concepts.


D E F I N I T I O N


GRAPH


A graph consists of: 


A set of nodes N1, N2, N3, ..., Nn, ..., which need not be finite. 


A set of arcs that connect pairs of nodes. 


Arcs are ordered pairs of nodes; i.e., the arc (N3, N4) connects node N3 to node
N4. This indicates a direct connection from node N3 to N4 but not from N4 to N3,
unless (N4, N3) is also an arc, and then the arc joining N3 and N4 is undirected.


If a directed arc connects Nj and Nk, then Nj is called the parent of Nk and Nk, the
child of Nj. If the graph also contains an arc (Nj, Nl), then Nk and Nl are
called siblings.


A rooted graph has a unique node NS from which all paths in the graph originate.
That is, the root has no parent in the graph. 


A tip or leaf node is a node that has no children. 


An ordered sequence of nodes [N1, N2, N3, ..., Nn], where each pair Ni, Ni+1 in the
sequence represents an arc, i.e., (Ni, Ni+1), is called a path of length n - 1.


On a path in a rooted graph, a node is said to be an ancestor of all nodes
positioned after it (to its right) as well as a descendant of all nodes before it. 


A path that contains any node more than once (some Nj in the definition of path
above is repeated) is said to contain a cycle or loop.


A tree is a graph in which there is a unique path between every pair of nodes.
(The paths in a tree, therefore, contain no cycles.) 


a


b              c               d


e          f     g    h    i          j


Figure 3.4 A rooted tree, exemplifying
family relationships.
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The edges in a rooted tree are directed away from the root. Each node in a rooted
tree has a unique parent. 


Two nodes are said to be connected if a path exists that includes them both. 


Next we introduce the finite state machine, an abstract representation for computa-
tional devices, that may be viewed as an automaton for traversing paths in a graph.


3.1.2 The Finite State Machine (optional)


We can think of a machine as a system that accepts input values, possibly produces output
values, and that has some sort of internal mechanism (states) to keep track of information
about previous input values. A finite state machine (FSM) is a finite, directed, connected
graph, having a set of states, a set of input values, and a state transition function that
describes the effect that the elements of the input stream have on the states of the graph.
The stream of input values produces a path within the graph of the states of this finite
machine. Thus the FSM can be seen as an abstract model of computation.


The primary use for such a machine is to recognize components of a formal language.
These components are often strings of characters (“words” made from characters of an
“alphabet”). In Section 5.3 we extend this definition to a probabilistic finite state machine.
These state machines have an important role in analyzing expressions in languages,
whether computational or human, as we see in Sections 5.3, 9.3, and Chapter 15.


D E F I N I T I O N


FINITE STATE MACHINE (FSM)


A finite state machine is an ordered triple (S, I, F), where: 


S is a finite set of states in a connected graph s1, s2, s3, ... sn.


I is a finite set of input values i1, i2, i3, ... im.


F is a state transition function that for any i ∈ I, describes its effect on the
states S of the machine, thus ∀ i ∈ I, Fi : (S → S). If the machine is in state
sj and input i occurs, the next state of the machine will be Fi (sj).


For a simple example of a finite state machine, let S = {s0, s1}, I = {0,1}, f0(s0) = s0,
f0(s1) = (s1), f1(s0) = s1, and f1(s1) = s0. With this device, sometimes called a flip-flop,
an input value of zero leaves the state unchanged, while input 1 changes the state of the
machine. We may visualize this machine from two equivalent perspectives, as a finite
graph with labelled, directed arcs, as in Figure 3.5a, or as a transition matrix, Figure 3.5b.
In the transition matrix, input values are listed along the top row, the states are in the left-
most column, and the output for an input applied to a state is at the intersection point.
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A second example of a finite state machine is represented by the directed graph of
Figure 3.6a and the (equivalent) transition matrix of Figure 3.6b. One might ask what the
finite state machine of Figure 3.6 could represent. With two assumptions, this machine
could be seen as a recognizer of all strings of characters from the alphabet {a, b, c, d} that
contain the exact sequence “abc”. The two assumptions are, first, that state s0 has a spe-
cial role as the starting state, and second, that s3 is the accepting state. Thus, the input
stream will present its first element to state s0. If the stream later terminates with the
machine in state s3, it will have recognized that there is the sequence “abc” within that
input stream.


What we have just described is a finite state accepting machine, sometimes called a
Moore machine. We use the convention of placing an arrow from no state that terminates
in the starting state of the Moore machine, and represent the accepting state (or states) as
special, often using a doubled circle, as in Figure 3.6. We now present a formal definition
of the Moore machine: 


D E F I N I T I O N


FINITE STATE ACCEPTOR (MOORE MACHINE)


A finite state acceptor is a finite state machine (S, I, F), where: 


∃ s0 ∈ S such that the input stream starts at s0, and 


∃ sn ∈ S, an accept state. The input stream is accepted if it terminates in that
state. In fact, there may be a set of accept states. 


The finite state acceptor is represented as (S, s0, {sn}, I, F)


We have presented two fairly simple examples of a powerful concept. As we will see
in natural language understanding (Chapter 15), finite state recognizers are an important
tool for determining whether or not patterns of characters, words, or sentences have
desired properties. We will see that a finite state accepter implicitly defines a formal lan-
guage on the basis of the sets of letters (characters) and words (strings) that it accepts. 


Figure 3.5 (a) The finite state graph for a flip-flop
and (b) its transition matrix.
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We have also shown only deterministic finite state machines, where the transition
function for any input value to a state gives a unique next state. Probabilistic finite state
machines, where the transition function defines a distribution of output states for each
input to a state, are also an important modeling technique. We consider these in Section
5.3 and again in Chapter 15. We next consider a more general graphical representation for
the analysis of problem solving: the state space.


3.1.3 The State Space Representation of Problems


In the state space representation of a problem, the nodes of a graph correspond to partial
problem solution states and the arcs correspond to steps in a problem-solving process. One
or more initial states, corresponding to the given information in a problem instance, form
the root of the graph. The graph also defines one or more goal conditions, which are solu-
tions to a problem instance. State space search characterizes problem solving as the pro-
cess of finding a solution path from the start state to a goal. 


A goal may describe a state, such as a winning board in tic-tac-toe (Figure II.5) or a
goal configuration in the 8-puzzle (Figure 3.7). Alternatively, a goal can describe some
property of the solution path itself. In the traveling salesperson problem (Figures 3.9 and
3.10), search terminates when the “shortest” path is found through all nodes of the graph.
In the parsing problem (Section 3.3), the solution path is a successful analysis of a sen-
tence’s structure.


Arcs of the state space correspond to steps in a solution process and paths through the
space represent solutions in various stages of completion. Paths are searched, beginning at
the start state and continuing through the graph, until either the goal description is satisfied
or they are abandoned. The actual generation of new states along the path is done by
applying operators, such as “legal moves” in a game or inference rules in a logic problem
or expert system, to existing states on a path. The task of a search algorithm is to find a
solution path through such a problem space. Search algorithms must keep track of the
paths from a start to a goal node, because these paths contain the series of operations that
lead to the problem solution. 


We now formally define the state space representation of problems:


Figure 3.6 (a) The finite state graph and (b) the transition
matrix for string recognition example.
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D E F I N I T I O N


STATE SPACE SEARCH


A state space is represented by a four-tuple [N,A,S,GD], where: 
N is the set of nodes or states of the graph. These correspond to the states in a
problem-solving process. 


A is the set of arcs (or links) between nodes. These correspond to the steps in a
problem-solving process. 


S, a nonempty subset of N, contains the start state(s) of the problem. 


GD, a nonempty subset of N, contains the goal state(s) of the problem. The states
in GD are described using either:


1. A measurable property of the states encountered in the search.


2. A measurable property of the path developed in the search, for example,
the sum of the transition costs for the arcs of the path. 


A solution path is a path through this graph from a node in S to a node in GD.


One of the general features of a graph, and one of the problems that arise in the design
of a graph search algorithm, is that states can sometimes be reached through different
paths. For example, in Figure 3.3 a path can be made from state a to state d either through
b and c or directly from a to d. This makes it important to choose the best path according
to the needs of a problem. In addition, multiple paths to a state can lead to loops or cycles
in a solution path that prevent the algorithm from reaching a goal. A blind search for goal
state e in the graph of Figure 3.3 might search the sequence of states abcdabcdabcd . . .
forever! 


If the space to be searched is a tree, as in Figure 3.4, the problem of cycles does not
occur. It is, therefore, important to distinguish between problems whose state space is a
tree and those that may contain loops. General graph search algorithms must detect and
eliminate loops from potential solution paths, whereas tree searches may gain efficiency
by eliminating this test and its overhead. 


Tic-tac-toe and the 8-puzzle exemplify the state spaces of simple games. Both of
these examples demonstrate termination conditions of type 1 in our definition of state
space search. Example 3.1.3, the traveling salesperson problem, has a goal description of
type 2, the total cost of the path itself.


EXAMPLE 3.1.1: TIC-TAC-TOE


The state space representation of tic-tac-toe appears in Figure II.5, pg 42. The start state is
an empty board, and the termination or goal description is a board state having three Xs in
a row, column, or diagonal (assuming that the goal is a win for X). The path from the start
state to a goal state gives the series of moves in a winning game. 
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The states in the space are all the different configurations of Xs and Os that the game
can have. Of course, although there are 39 ways to arrange {blank, X, O} in nine spaces,
most of them would never occur in an actual game. Arcs are generated by legal moves of
the game, alternating between placing an X and an O in an unused location. The state
space is a graph rather than a tree, as some states on the third and deeper levels can be
reached by different paths. However, there are no cycles in the state space, because the
directed arcs of the graph do not allow a move to be undone. It is impossible to “go back
up” the structure once a state has been reached. No checking for cycles in path generation
is necessary. A graph structure with this property is called a directed acyclic graph, or
DAG, and is common in state space search and in graphical models, Chapter 13. 


The state space representation provides a means of determining the complexity of the
problem. In tic-tac-toe, there are nine first moves with eight possible responses to each of
them, followed by seven possible responses to each of these, and so on. It follows that 9 ×
8 × 7 × ... or 9! different paths can be generated. Although it is not impossible for a
computer to search this number of paths (362,880) exhaustively, many important prob-
lems also exhibit factorial or exponential complexity, although on a much larger scale.
Chess has 10120 possible game paths; checkers has 1040, some of which may never occur in
an actual game. These spaces are difficult or impossible to search exhaustively. Strategies
for searching such large spaces often rely on heuristics to reduce the complexity of the
search (Chapter 4). 


EXAMPLE 3.1.2: THE 8-PUZZLE


In the 15-puzzle of Figure 3.7, 15 differently numbered tiles are fitted into 16 spaces on a
grid. One space is left blank so that tiles can be moved around to form different patterns.
The goal is to find a series of moves of tiles into the blank space that places the board in a
goal configuration. This is a common game that most of us played as children. (The
version I remember was about 3 inches square and had red and white tiles in a black
frame.)


A number of interesting aspects of this game have made it useful to researchers in
problem solving. The state space is large enough to be interesting but is not completely
intractable (16! if symmetric states are treated as distinct). Game states are easy to
represent. The game is rich enough to provide a number of interesting heuristics (see
Chapter 4). 
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Figure 3.7 The 15-puzzle and the 8-puzzle.
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The 8-puzzle is a 3 × 3 version of the 15-puzzle in which eight tiles can be moved
around in nine spaces. Because the 8-puzzle generates a smaller state space than the full
15-puzzle and its graph fits easily on a page, it is used for many examples in this book. 


Although in the physical puzzle moves are made by moving tiles (“move the 7 tile
right, provided the blank is to the right of the tile” or “move the 3 tile down”), it is much
simpler to think in terms of “moving the blank space”. This simplifies the definition of
move rules because there are eight tiles but only a single blank. In order to apply a move,
we must make sure that it does not move the blank off the board. Therefore, all four moves
are not applicable at all times; for example, when the blank is in one of the corners only
two moves are possible. 


The legal moves are:


move the blank up ↑
move the blank right →
move the blank down ↓
move the blank left ←


If we specify a beginning state and a goal state for the 8-puzzle, it is possible to give a
state space accounting of the problem-solving process (Figure 3.8). States could be
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Figure 3.8 State space of the 8-puzzle generated by
move blank  operations.
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represented using a simple 3 × 3 array. A predicate calculus representation could use a
“state” predicate with nine parameters (for the locations of numbers in the grid). Four
procedures, describing each of the possible moves of the blank, define the arcs in the
state space. 


As with tic-tac-toe, the state space for the 8-puzzle is a graph (with most states having
multiple parents), but unlike tic-tac-toe, cycles are possible. The GD or goal description of
the state space is a particular state or board configuration. When this state is found on a
path, the search terminates. The path from start to goal is the desired series of moves. 


It is interesting to note that the complete state space of the 8- and 15-puzzles consists
of two disconnected (and in this case equal-sized) subgraphs. This makes half the possible
states in the search space impossible to reach from any given start state. If we exchange
(by prying loose!) two immediately adjacent tiles, states in the other component of the
space become reachable. 


EXAMPLE 3.1.3: THE TRAVELING SALESPERSON


Suppose a salesperson has five cities to visit and then must return home. The goal of the
problem is to find the shortest path for the salesperson to travel, visiting each city, and
then returning to the starting city. Figure 3.9 gives an instance of this problem. The nodes
of the graph represent cities, and each arc is labeled with a weight indicating the cost of
traveling that arc. This cost might be a representation of the miles necessary in car travel
or cost of an air flight between the two cities. For convenience, we assume the salesperson
lives in city A and will return there, although this assumption simply reduces the problem
of N cities to a problem of (N - 1) cities. 


The path [A,D,C,B,E,A], with associated cost of 450 miles, is an example of a
possible circuit. The goal description requires a complete circuit with minimum cost. Note
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Figure 3.9 An instance of the traveling 
salesperson problem.
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that the goal description is a property of the entire path, rather than of a single state. This is
a goal description of type 2 from the definition of state space search. 


Figure 3.10 shows one way in which possible solution paths may be generated and
compared. Beginning with node A, possible next states are added until all cities are
included and the path returns home. The goal is the lowest-cost path. 


As Figure 3.10 suggests, the complexity of exhaustive search in the traveling sales-
person problem is (N - 1)!, where N is the number of cities in the graph. For 9 cities we
may exhaustively try all paths, but for any problem instance of interesting size, for exam-
ple with 50 cities, simple exhaustive search cannot be performed within a practical length
of time. In fact complexity costs for an N! search grow so fast that very soon the search
combinations become intractable. 


Several techniques can reduce this search complexity. One is called branch and
bound (Horowitz and Sahni 1978). Branch and bound generates paths one at a time, keep-
ing track of the best circuit found so far. This value is used as a bound on future candi-
dates. As paths are constructed one city at a time, the algorithm examines each partially
completed path. If the algorithm determines that the best possible extension to a path, the
branch, will have greater cost than the bound, it eliminates that partial path and all of its
possible extensions. This reduces search considerably but still leaves an exponential num-
ber of paths (1.26N rather than N!).
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Figure 3.10 Search of the traveling salesperson problem.
Each arc is marked with the total weight of all
paths from the start node (A) to its endpoint.
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Another strategy for controlling search constructs the path according to the rule “go to
the closest unvisited city.” The nearest neighbor path through the graph of Figure 3.11 is
[A,E,D,B,C,A], at a cost of 375 miles. This method is highly efficient, as there is only one
path to be tried! The nearest neighbor, sometimes called greedy, heuristic is fallible, as
graphs exist for which it does not find the shortest path, see Figure 3.11, but it is a possible
compromise when the time required makes exhaustive search impractical. 


Section 3.2 examines strategies for state space search. 


3.2 Strategies for State Space Search


3.2.1 Data-Driven and Goal-Driven Search


A state space may be searched in two directions: from the given data of a problem instance
toward a goal or from a goal back to the data. 


In data-driven search, sometimes called forward chaining, the problem solver begins
with the given facts of the problem and a set of legal moves or rules for changing state.
Search proceeds by applying rules to facts to produce new facts, which are in turn used by
the rules to generate more new facts. This process continues until (we hope!) it generates a
path that satisfies the goal condition. 


An alternative approach is possible: take the goal that we want to solve. See what
rules or legal moves could be used to generate this goal and determine what conditions
must be true to use them. These conditions become the new goals, or subgoals, for the
search. Search continues, working backward through successive subgoals until (we hope!)


A


B


C


D


E


125


75
50


100


300


125
100


100


75


50


Figure 3.11 An instance of the traveling salesperson problem
with the nearest neighbor path in bold. Note that
this path (A, E, D, B, C, A), at a cost of 550, is not
the shortest path. The comparatively high cost of
arc (C, A) defeated the heuristic.
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it works back to the facts of the problem. This finds the chain of moves or rules leading
from data to a goal, although it does so in backward order. This approach is called
goal-driven reasoning, or backward chaining, and it recalls the simple childhood trick of
trying to solve a maze by working back from the finish to the start. 


To summarize: data-driven reasoning takes the facts of the problem and applies the
rules or legal moves to produce new facts that lead to a goal; goal-driven reasoning
focuses on the goal, finds the rules that could produce the goal, and chains backward
through successive rules and subgoals to the given facts of the problem. 


In the final analysis, both data-driven and goal-driven problem solvers search the
same state space graph; however, the order and actual number of states searched can dif-
fer. The preferred strategy is determined by the properties of the problem itself. These
include the complexity of the rules, the “shape” of the state space, and the nature and
availability of the problem data. All of these vary for different problems. 


As an example of the effect a search strategy can have on the complexity of search,
consider the problem of confirming or denying the statement “I am a descendant of
Thomas Jefferson.” A solution is a path of direct lineage between the “I” and Thomas
Jefferson. This space may be searched in two directions, starting with the “I” and working
along ancestor lines to Thomas Jefferson or starting with Thomas Jefferson and working
through his descendants. 


Some simple assumptions let us estimate the size of the space searched in each
direction. Thomas Jefferson was born about 250 years ago; if we assume 25 years per
generation, the required path will be about length 10. As each person has exactly two
parents, a search back from the “I” would examine on the order of 210 ancestors. A search
that worked forward from Thomas Jefferson would examine more states, as people tend to
have more than two children (particularly in the eighteenth and nineteenth centuries). If
we assume an average of only three children per family, the search would examine on the
order of 310 nodes of the family tree. Thus, a search back from the “I” would examine
fewer nodes. Note, however, that both directions yield exponential complexity. 


The decision to choose between data- and goal-driven search is based on the structure
of the problem to be solved. Goal-driven search is suggested if: 


1. A goal or hypothesis is given in the problem statement or can easily be
formulated. In a mathematics theorem prover, for example, the goal is the
theorem to be proved. Many diagnostic systems consider potential diagnoses in a
systematic fashion, confirming or eliminating them using goal-driven reasoning. 


2. There are a large number of rules that match the facts of the problem and thus
produce an increasing number of conclusions or goals. Early selection of a goal
can eliminate most of these branches, making goal-driven search more effective
in pruning the space (Figure 3.12). In a theorem prover, for example, the total
number of rules used to produce a given theorem is usually much smaller than
the number of rules that may be applied to the entire set of axioms. 


3. Problem data are not given but must be acquired by the problem solver. In this
case, goal-driven search can help guide data acquisition. In a medical diagnosis
program, for example, a wide range of diagnostic tests can be applied. Doctors
order only those that are necessary to confirm or deny a particular hypothesis. 
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Goal-driven search thus uses knowledge of the desired goal to guide the search through
relevant rules and eliminate branches of the space. 


Data-driven search (Figure 3.13) is appropriate for problems in which: 


1. All or most of the data are given in the initial problem statement. Interpretation
problems often fit this mold by presenting a collection of data and asking the
system to provide a high-level interpretation. Systems that analyze particular data
(e.g., the PROSPECTOR or Dipmeter programs, which interpret geological data


Goal


Data


Direction of
reasoning


Goal


Data
Direction of
reasoning


Figure 3.12 State space in which goal-directed search
effectively prunes extraneous search paths.


Figure 3.13 State space in which data-directed search prunes
irrelevant data and their consequents and
determines one of a number of possible goals.
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or attempt to find what minerals are likely to be found at a site) fit the data-driven
approach.


2. There are a large number of potential goals, but there are only a few ways to use
the facts and given information of a particular problem instance. The DENDRAL
program, an expert system that finds the molecular structure of organic com-
pounds based on their formula, mass spectrographic data, and knowledge of
chemistry, is an example of this. For any organic compound, there are an enor-
mous number of possible structures. However, the mass spectrographic data on a
compound allow DENDRAL to eliminate all but a few of these.


3. It is difficult to form a goal or hypothesis. In using DENDRAL, for example, lit-
tle may be known initially about the possible structure of a compound.


Data-driven search uses the knowledge and constraints found in the given data of a prob-
lem to guide search along lines known to be true. 


To summarize, there is no substitute for careful analysis of the particular problem to
be solved, considering such issues as the branching factor of rule applications (see Chap-
ter 4; on average, how many new states are generated by rule applications in both direc-
tions?), availability of data, and ease of determining potential goals. 


3.2.2 Implementing Graph Search


In solving a problem using either goal- or data-driven search, a problem solver must find a
path from a start state to a goal through the state space graph. The sequence of arcs in this
path corresponds to the ordered steps of the solution. If a problem solver were given an
oracle or other infallible mechanism for choosing a solution path, search would not be
required. The problem solver would move unerringly through the space to the desired
goal, constructing the path as it went. Because oracles do not exist for interesting
problems, a problem solver must consider different paths through the space until it finds a
goal. Backtracking is a technique for systematically trying all paths through a state space. 


We begin with backtrack because it is one of the first search algorithms computer sci-
entists study, and it has a natural implementation in a stack oriented recursive environ-
ment. We will present a simpler version of the backtrack algorithm with depth-first search
(Section 3.2.3). 


Backtracking search begins at the start state and pursues a path until it reaches either a
goal or a “dead end.” If it finds a goal, it quits and returns the solution path. If it reaches a
dead end, it “backtracks” to the most recent node on the path having unexamined siblings
and continues down one of these branches, as described in the following recursive rule: 


If the present state S does not meet the requirements of the goal description, then generate its
first descendant Schild1, and apply the backtrack procedure recursively to this node. If backtrack
does not find a goal node in the subgraph rooted at Schild1, repeat the procedure for its sibling,
Schild2. Continue until either some descendant of a child is a goal node or all the children have
been searched. If none of the children of S leads to a goal, then backtrack “fails back” to the
parent of S, where it is applied to the siblings of S, and so on.
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The algorithm continues until it finds a goal or exhausts the state space. Figure 3.14
shows the backtrack algorithm applied to a hypothetical state space. The direction of the
dashed arrows on the tree indicates the progress of search up and down the space. The
number beside each node indicates the order in which it is visited. We now define an algo-
rithm that performs a backtrack, using three lists to keep track of nodes in the state space:


SL, for state list, lists the states in the current path being tried. If a goal is found, SL
contains the ordered list of states on the solution path.


NSL, for new state list, contains nodes awaiting evaluation, i.e., nodes whose
descendants have not yet been generated and searched.


DE, for dead ends, lists states whose descendants have failed to contain a goal. If
these states are encountered again, they will be detected as elements of DE and elimi-
nated from consideration immediately. 


In defining the backtrack algorithm for the general case (a graph rather than a tree), it
is necessary to detect multiple occurrences of any state so that it will not be reentered and
cause (infinite) loops in the path. This is accomplished by testing each newly generated
state for membership in any of these three lists. If a new state belongs to any of these lists,
then it has already been visited and may be ignored. 


function backtrack; 
begin


SL := [Start];  NSL := [Start];  DE := [ ];  CS := Start; % initialize:
while NSL ≠ [ ] do % while there are states to be tried


begin
if CS = goal (or meets goal description)


then return SL; % on success, return list of states in path.
if CS has no children (excluding nodes already on DE, SL, and NSL)


then begin
while SL is not empty and CS = the first element of SL do


begin
add CS to DE; % record state as dead end
remove first element from SL; %backtrack
remove first element from NSL;
CS := first element of NSL; 


end
add CS to SL;


end
else begin


place children of CS (except nodes already on DE, SL, or NSL) on NSL;
CS := first element of NSL;
add CS to SL


end
end;
return FAIL;


end.
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In backtrack, the state currently under consideration is called CS for current state. CS is
always equal to the state most recently added to SL and represents the “frontier” of the
solution path currently being explored. Inference rules, moves in a game, or other
appropriate problem-solving operators are ordered and applied to CS. The result is an
ordered set of new states, the children of CS. The first of these children is made the new
current state and the rest are placed in order on NSL for future examination. The new
current state is added to SL and search continues. If CS has no children, it is removed
from SL (this is where the algorithm “backtracks”) and any remaining children of its
predecessor on SL are examined. 


A trace of backtrack on the graph of Figure 3.14 is given by:


Initialize: SL = [A]; NSL = [A]; DE = [ ]; CS = A;


AFTER ITERATION CS SL NSL DE


0 A [A] [A] [ ]


1 B [B A] [B C D A] [ ]


2 E [E B A] [E F B C D A] [ ]


3 H [H E B A] [H I E F B C D A] [ ]


4 I [I E B A] [I E F B C D A] [H]


5 F [F B A] [F B C D A] [E I H]


6 J [J F B A] [J F B C D A] [E I H]


7 C [C A] [C D A] [B F J E I H]


8 G [G C A] [G C D A] [B F J E I H]
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Figure 3.14 Backtracking search of
a hypothetical state space.
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As presented here, backtrack implements data-driven search, taking the root as a
start state and evaluating its children to search for the goal. The algorithm can be viewed
as a goal-driven search by letting the goal be the root of the graph and evaluating
descendants back in an attempt to find a start state. If the goal description is of type 2 (see
Section 3.1.3), the algorithm must determine a goal state by examining the path on SL.


backtrack is an algorithm for searching state space graphs. The graph search
algorithms that follow, including depth-first, breadth-first, and best-first search, exploit
the ideas used in backtrack, including:


1. The use of a list of unprocessed states (NSL) to allow the algorithm to return to
any of these states. 


2. A list of “bad” states (DE) to prevent the algorithm from retrying useless paths. 


3. A list of nodes (SL) on the current solution path that is returned if a goal is found. 


4. Explicit checks for membership of new states in these lists to prevent looping. 


The next section introduces search algorithms that, like backtrack, use lists to keep
track of states in a search space. These algorithms, including depth-first, breadth-first, and
best-first (Chapter 4) search, differ from backtrack in providing a more flexible basis for
implementing alternative graph search strategies. 


3.2.3 Depth-First and Breadth-First Search


In addition to specifying a search direction (data-driven or goal-driven), a search algo-
rithm must determine the order in which states are examined in the tree or the graph. This
section considers two possibilities for the order in which the nodes of the graph are con-
sidered: depth-first and breadth-first search. 


Consider the graph represented in Figure 3.15. States are labeled (A, B, C, . . .) so
that they can be referred to in the discussion that follows. In depth-first search, when a
state is examined, all of its children and their descendants are examined before any of its
siblings. Depth-first search goes deeper into the search space whenever this is possible.
Only when no further descendants of a state can be found are its siblings considered.
Depth-first search examines the states in the graph of Figure 3.15 in the order A, B, E, K,
S, L, T, F, M, C, G, N, H, O, P, U, D, I, Q, J, R. The backtrack algorithm of Section
3.2.2 implemented depth-first search. 


Breadth-first search, in contrast, explores the space in a level-by-level fashion. Only
when there are no more states to be explored at a given level does the algorithm move on
to the next deeper level. A breadth-first search of the graph of Figure 3.15 considers the
states in the order A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U.


We implement breadth-first search using lists, open and closed, to keep track of
progress through the state space. open, like NSL in backtrack, lists states that have been
generated but whose children have not been examined. The order in which states are
removed from open determines the order of the search. closed records states already
examined. closed is the union of the DE and SL lists of the backtrack algorithm.
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function breadth_first_search; 


begin
open := [Start]; % initialize
closed := [ ]; 
while open ≠ [ ] do % states remain


begin
remove leftmost state from open, call it X;


if X is a goal then return SUCCESS % goal found
else begin


generate children of X; 
put X on closed; 
discard children of X if already on open or closed; % loop check
put remaining children on right end of open % queue


end
end


return FAIL % no states left
end.


Child states are generated by inference rules, legal moves of a game, or other state
transition operators. Each iteration produces all children of the state X and adds them to
open. Note that open is maintained as a queue, or first-in-first-out (FIFO) data structure.
States are added to the right of the list and removed from the left. This biases search
toward the states that have been on open the longest, causing the search to be
breadth-first. Child states that have already been discovered (already appear on either
open or closed) are discarded. If the algorithm terminates because the condition of the
“while” loop is no longer satisfied (open = [ ]) then it has searched the entire graph with-
out finding the desired goal: the search has failed. 


A trace of breadth_first_search on the graph of Figure 3.15 follows. Each succes-
sive number, 2,3,4, . . . , represents an iteration of the “while” loop. U is the goal state.


A


B C D


E F G H I J


K L M N O P Q R


S T U


Figure 3.15 Graph for breadth- and depth-first
search examples.
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1. open = [A]; closed = [ ] 
2. open = [B,C,D]; closed = [A]
3. open = [C,D,E,F]; closed = [B,A]
4. open = [D,E,F,G,H]; closed = [C,B,A]
5. open = [E,F,G,H,I,J]; closed = [D,C,B,A]
6. open = [F,G,H,I,J,K,L]; closed = [E,D,C,B,A]
7. open = [G,H,I,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]
8. open = [H,I,J,K,L,M,N]; closed = [G,F,E,D,C,B,A] 
9. and so on until either U is found or open = [ ]. 


Figure 3.16 illustrates the graph of Figure 3.15 after six iterations of
breadth_first_search. The states on open and closed are highlighted. States not shaded
have not been discovered by the algorithm. Note that open records the states on the
“frontier” of the search at any stage and that closed records states already visited.


Because breadth-first search considers every node at each level of the graph before
going deeper into the space, all states are first reached along the shortest path from the
start state. Breadth-first search is therefore guaranteed to find the shortest path from the
start state to the goal. Furthermore, because all states are first found along the shortest
path, any states encountered a second time are found along a path of equal or greater
length. Because there is no chance that duplicate states were found along a better path, the
algorithm simply discards any duplicate states.


It is often useful to keep other information on open and closed besides the names of
the states. For example, note that breadth_first_search does not maintain a list of states
on the current path to a goal as backtrack did on the list SL; all visited states are kept on
closed. If a solution path is required, it can not be returned by this algorithm. The solution
can be found by storing ancestor information along with each state. A state may be saved
along with a record of its parent state, e.g., as a (state, parent) pair. If this is done in the
search of Figure 3.15, the contents of open and closed at the fourth iteration would be:


open = [(D,A), (E,B), (F,B), (G,C), (H,C)]; closed = [(C,A), (B,A), (A,nil)] 


Figure 3.16 Graph of Figure 3.15 at iteration 6 of breadth-first search.
States on open and closed are highlighted.
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The path (A, B, F) that led from A to F could easily be constructed from this
information. When a goal is found, the algorithm can construct the solution path by
tracing back along parents from the goal to the start state. Note that state A has a parent of
nil, indicating that it is a start state; this stops reconstruction of the path. Because
breadth-first search finds each state along the shortest path and retains the first version of
each state, this is the shortest path from a start to a goal. 


Figure 3.17 shows the states removed from open and examined in a breadth-first
search of the graph of the 8-puzzle. As before, arcs correspond to moves of the blank up,
to the right, down, and to the left. The number next to each state indicates the order in
which it was removed from open. States left on open when the algorithm halted are
not shown. 


Next, we create a depth-first search algorithm, a simplification of the backtrack algo-
rithm already presented in Section 3.2.3. In this algorithm, the descendant states are added
and removed from the left end of open: open is maintained as a stack, or last-in-first-out
(LIFO) structure. The organization of open as a stack directs search toward the most
recently generated states, producing a depth-first search order: 


function depth_first_search; 


begin
open := [Start]; % initialize
closed := [ ];
while open ≠ [ ] do % states remain


begin
remove leftmost state from open, call it X;
if X is a goal then return SUCCESS % goal found


else begin
generate children of X;
put X on closed;
discard children of X if already on open or closed; % loop check
put remaining children on left end of open % stack


end
end;


return FAIL % no states left
end.


A trace of depth_first_search on the graph of Figure 3.15 appears below. Each suc-
cessive iteration of the “while” loop is indicated by a single line (2, 3, 4, . . .). The initial
states of open and closed are given on line 1. Assume U is the goal state. 


1. open = [A]; closed = [ ] 
2. open = [B,C,D]; closed = [A]
3. open = [E,F,C,D]; closed = [B,A]
4. open = [K,L,F,C,D]; closed = [E,B,A]
5. open = [S,L,F,C,D]; closed = [K,E,B,A]
6. open = [L,F,C,D]; closed = [S,K,E,B,A]
7. open = [T,F,C,D]; closed = [L,S,K,E,B,A]
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8. open = [F,C,D]; closed = [T,L,S,K,E,B,A]
9. open = [M,C,D], (as L is already on closed); closed = [F,T,L,S,K,E,B,A]


10. open = [C,D]; closed = [M,F,T,L,S,K,E,B,A]
11. open = [G,H,D]; closed = [C,M,F,T,L,S,K,E,B,A]


and so on until either U is discovered or open = [ ].
As with breadth_first_search, open lists all states discovered but not yet evaluated


(the current “frontier” of the search), and closed records states already considered. Fig-
ure 3.18 shows the graph of Figure 3.15 at the sixth iteration of the depth_first_search.
The contents of open and closed are highlighted. As with breadth_first_search, the
algorithm could store a record of the parent along with each state, allowing the algorithm
to reconstruct the path that led from the start state to a goal. 


Unlike breadth-first search, a depth-first search is not guaranteed to find the shortest
path to a state the first time that state is encountered. Later in the search, a different path
may be found to any state. If path length matters in a problem solver, when the algorithm
encounters a duplicate state, the algorithm should save the version reached along the
shortest path. This could be done by storing each state as a triple: (state, parent,
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Figure 3.17 Breadth-first search of the 8-puzzle, showing order
in which states were removed from open.
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length_of_path). When children are generated, the value of the path length is simply
incremented by one and saved with the child. If a child is reached along multiple paths,
this information can be used to retain the best version. This is treated in more detail in the
discussion of algorithm A in Chapter 4. Note that retaining the best version of a state in a
simple depth-first search does not guarantee that a goal will be reached along the
shortest path. 


Figure 3.19 gives a depth-first search of the 8-puzzle. As noted previously, the space
is generated by the four “move blank” rules (up, down, left, and right). The numbers next
to the states indicate the order in which they were considered, i.e., removed from open.
States left on open when the goal is found are not shown. A depth bound of 5 was
imposed on this search to keep it from getting lost deep in the space. 


As with choosing between data- and goal-driven search for evaluating a graph, the
choice of depth-first or breadth-first search depends on the specific problem being solved.
Significant features include the importance of finding the shortest path to a goal, the
branching factor of the space, the available compute time and space resources, the average
length of paths to a goal node, and whether we want all solutions or only the first solution.
In making these decisions, there are advantages and disadvantages for each approach. 


Breadth-First Because it always examines all the nodes at level n before proceeding to
level n + 1, breadth-first search always finds the shortest path to a goal node. In a problem
where it is known that a simple solution exists, this solution will be found. Unfortunately,
if there is a bad branching factor, i.e., states have a high average number of children, the
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Closed


Open


Figure 3.18 Graph of Figure 3.15 at iteration 6 of depth-first search. 
States on open and closed are highlighted.
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combinatorial explosion may prevent the algorithm from finding a solution using avail-
able memory. This is due to the fact that all unexpanded nodes for each level of the search
must be kept on open. For deep searches, or state spaces with a high branching factor, this
can become quite cumbersome. 


The space utilization of breadth-first search, measured in terms of the number of
states on open, is an exponential function of the length of the path at any time. If each
state has an average of B children, the number of states on a given level is B times the
number of states on the previous level. This gives Bn states on level n. Breadth-first search
would place all of these on open when it begins examining level n. This can be prohibi-
tive if solution paths are long, in the game of chess, for example. 


Depth-First Depth-first search gets quickly into a deep search space. If it is known
that the solution path will be long, depth-first search will not waste time searching a large
number of “shallow” states in the graph. On the other hand, depth-first search can get
“lost” deep in a graph, missing shorter paths to a goal or even becoming stuck in an
infinitely long path that does not lead to a goal. 


Depth-first search is much more efficient for search spaces with many branches
because it does not have to keep all the nodes at a given level on the open list. The space
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Figure 3.19 Depth-first search of the 8-puzzle with a depth bound of 5.
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usage of depth-first search is a linear function of the length of the path. At each level,
open retains only the children of a single state. If a graph has an average of B children per
state, this requires a total space usage of B × n states to go n levels deep into the space.


The best answer to the “depth-first versus breadth-first” issue is to examine the
problem space and consult experts in the area. In chess, for example, breadth-first search
simply is not possible. In simpler games, breadth-first search not only may be possible
but, because it gives the shortest path, may be the only way to avoid losing. 


3.2.4 Depth-First Search with Iterative Deepening


A nice compromise on these trade-offs is to use a depth bound on depth-first search. The
depth bound forces a failure on a search path once it gets below a certain level. This causes
a breadth-first like sweep of the search space at that depth level. When it is known that a
solution lies within a certain depth or when time constraints, such as those that occur in an
extremely large space like chess, limit the number of states that can be considered; then a
depth-first search with a depth bound may be most appropriate. Figure 3.19 showed a
depth-first search of the 8-puzzle in which a depth bound of 5 caused the sweep across the
space at that depth. 


This insight leads to a search algorithm that remedies many of the drawbacks of both
depth-first and breadth-first search. Depth-first iterative deepening (Korf 1987) performs
a depth-first search of the space with a depth bound of 1. If it fails to find a goal, it per-
forms another depth-first search with a depth bound of 2. This continues, increasing the
depth bound by one each time. At each iteration, the algorithm performs a complete
depth-first search to the current depth bound. No information about the state space is
retained between iterations. 


Because the algorithm searches the space in a level-by-level fashion, it is guaranteed
to find a shortest path to a goal. Because it does only depth-first search at each iteration,
the space usage at any level n is B × n, where B is the average number of children of
a node. 


Interestingly, although it seems as if depth-first iterative deepening would be much
less efficient than either depth-first or breadth-first search, its time complexity is
actually of the same order of magnitude as either of these: O(Bn). An intuitive explanation
for this seeming paradox is given by Korf (1987): 


Since the number of nodes in a given level of the tree grows exponentially with depth, almost
all the time is spent in the deepest level, even though shallower levels are generated an arith-
metically increasing number of times. 


Unfortunately, all the search strategies discussed in this chapter—depth-first,
breadth-first, and depth-first iterative deepening—may be shown to have worst-case
exponential time complexity. This is true for all uninformed search algorithms. The only
approaches to search that reduce this complexity employ heuristics to guide search.
Best-first search is a search algorithm that is similar to the algorithms for depth- and
breadth-first search just presented. However, best-first search orders the states on the
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open list, the current fringe of the search, according to some measure of their heuristic
merit. At each iteration, it considers neither the deepest nor the shallowest but the “best”
state. Best-first search is the main topic of Chapter 4. 


3.3 Using the State Space to Represent Reasoning


with the Propositional and Predicate Calculus


3.3.1 State Space Description of a Logic System


When we defined state space graphs in Section 3.1, we noted that nodes must be distin-
guishable from one another, with each node representing some state of the solution pro-
cess. The propositional and predicate calculus can be used as the formal specification
language for making these distinctions as well as for mapping the nodes of a graph onto
the state space. Furthermore, inference rules can be used to create and describe the arcs
between states. In this fashion, problems in the predicate calculus, such as
determining whether a particular expression is a logical consequence of a given set of
assertions, may be solved using search. 


The soundness and completeness of predicate calculus inference rules can guarantee
the correctness of conclusions derived through this form of graph-based reasoning. This
ability to produce a formal proof of the integrity of a solution through the same algorithm
that produces the solution is a unique attribute of much artificial intelligence and theorem
proving based problem solving. 


Although many problems’ states, e.g., tic-tac-toe, can be more naturally described by
other data structures, such as arrays, the power and generality of logic allow much of AI
problem solving to use the propositional and predicate calculus descriptions and inference
rules. Other AI representations such as rules (Chapter 8), semantic networks, or frames
(Chapter 7) also employ search strategies similar to those presented in Section 3.2. 


EXAMPLE 3.3.1: THE PROPOSITIONAL CALCULUS


The first example of how a set of logic relationships may be viewed as defining a graph is
from the propositional calculus. If p, q, r,... are propositions, assume the assertions:


q → p
r → p
v → q
s → r
t → r
s → u
s
t
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From this set of assertions and the inference rule modus ponens, certain propositions
(p, r, and u) may be inferred; others (such as v and q) may not be so inferred and indeed
do not logically follow from these assertions. The relationship between the initial asser-
tions and these inferences is expressed in the directed graph in Figure 3.20.


In Figure 3.20 the arcs correspond to logical implications (→). Propositions that are
given as true (s and t) correspond to the given data of the problem. Propositions that are
logical consequences of this set of assertions correspond to the nodes that may be reached
along a directed path from a state representing a true proposition; such a path corresponds
to a sequence of applications of modus ponens. For example, the path [s, r, p] corresponds
to the sequence of inferences:


s and s → r yields r.
r and r → p yields p.


Given this representation, determining whether a given proposition is a logical conse-
quence of a set of propositions becomes a problem of finding a path from a boxed node
(the start node) to the proposition (the goal node). Thus, the task can be cast as a graph
search problem. The search strategy used here is data-driven, because it proceeds from
what is known (the true propositions) toward the goal. Alternatively, a goal-directed strat-
egy could be applied to the same state space by starting with the proposition to be proved
(the goal) and searching back along arcs to find support for the goal among the true
propositions. We can also search this space of inferences in either a depth-first or breadth-
first fashion.


3.3.2 And/Or Graphs


In the propositional calculus example of Section 3.3.1, all of the assertions were implica-
tions of the form p → q. We did not discuss the way in which the logic operators and and
or could be represented in such a graph. Expressing the logic relationships defined by
these operators requires an extension to the basic graph model defined in Section 3.1 to
what we call the and/or graph. And/or graphs are an important tool for describing the
search spaces generated by many AI problems, including those solved by logic-based the-
orem provers and expert systems. 


p


q              r               u


t               sv


Figure 3.20 State space graph of a set of implications
in the propositional calculus.
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In expressions of the form q ∧ r → p, both q and r must be true for p to be true. In
expressions of the form q ∨ r → p, the truth of either q or r is sufficient to prove p is true.
Because implications containing disjunctive premises may be written as separate
implications, this expression is often written as q → p, r → p. To represent these different
relationships graphically, and/or graphs distinguish between and nodes and or nodes. If
the premises of an implication are connected by an ∧ operator, they are called and nodes
in the graph and the arcs from this node are joined by a curved link. The expression
q ∧ r → p is represented by the and/or graph of Figure 3.21. 


The link connecting the arcs in Figure 3.21 captures the idea that both q and r must be
true to prove p. If the premises are connected by an or operator, they are regarded as or
nodes in the graph. Arcs from or nodes to their parent node are not so connected (Figure
3.22). This captures the notion that the truth of any one of the premises is independently
sufficient to determine the truth of the conclusion. 


An and/or graph is actually a specialization of a type of graph known as a hyper-
graph, which connects nodes by sets of arcs rather than by single arcs. A hypergraph is
defined as follows:


D E F I N I T I O N


HYPERGRAPH


A hypergraph consists of: 


N, a set of nodes. 


H, a set of hyperarcs defined by ordered pairs in which the first element of the
pair is a single node from N and the second element is a subset of N.


An ordinary graph is a special case of hypergraph in which all the sets of
descendant nodes have a cardinality of 1. 


Hyperarcs are also known as k-connectors, where k is the cardinality of the set of
descendant nodes. If k = 1, the descendant is thought of as an or node. If k > 1, the ele-
ments of the set of descendants may be thought of as and nodes. In this case, the
connector is drawn between the individual edges from the parent to each of the descendant
nodes; see, for example, the curved link in Figure 3.21.


p


q              r


Figure 3.21 And/or graph of the expression q ∧ r → p.
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EXAMPLE 3.3.2: AND/OR GRAPH SEARCH


The second example is also from the propositional calculus but generates a graph that con-
tains both and and or descendants. Assume a situation where the following propositions
are true: 


a
b
c
a ∧ b → d
a ∧ c → e
b ∧ d → f
f → g
a ∧ e → h


This set of assertions generates the and/or graph in Figure 3.23. 


Questions that might be asked (answers deduced by the search of this graph) are: 


1. Is h true? 


2. Is h true if b is no longer true? 


c               a               b


e


h


d


f


g


Figure 3.23 And/or graph of a set of propositional
calculus expressions.


p


q              r


Figure 3.22 And/or graph of the expression q ∨ r → p.
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3. What is the shortest path (i.e., the shortest sequence of inferences) to show that X
(some proposition) is true? 


4. Show that the proposition p (note that p is not supported) is false. What does this
mean? What would be necessary to achieve this conclusion? 


And/or graph search requires only slightly more record keeping than search in regular
graphs, an example of which was the backtrack algorithm, previously discussed. The or
descendants are checked as they were in backtrack: once a path is found connecting a
goal to a start node along or nodes, the problem will be solved. If a path leads to a failure,
the algorithm may backtrack and try another branch. In searching and nodes, however, all
of the and descendants of a node must be solved (or proved true) to solve the parent node.


In the example of Figure 3.23, a goal-directed strategy for determining the truth of h
first attempts to prove both a and e. The truth of a is immediate, but the truth of e requires
the truth of both c and a; these are given as true. Once the problem solver has traced all
these arcs down to true propositions, the true values are recombined at the and nodes to
verify the truth of h.


A data-directed strategy for determining the truth of h, on the other hand, begins with
the known facts (c, a, and b) and begins adding new propositions to this set of known
facts according to the constraints of the and/or graph. e or d might be the first proposition
added to the set of facts. These additions make it possible to infer new facts. This process
continues until the desired goal, h, has been proved. 


One way of looking at and/or graph search is that the ∧ operator (hence the and nodes
of the graph) indicates a problem decomposition in which the problem is broken into
subproblems such that all of the subproblems must be solved to solve the original
problem. An ∨ operator in the predicate calculus representation of the problem indicates a
selection, a point in the problem solution at which a choice may be made between alterna-
tive problem-solving paths or strategies, any one of which, if successful, is sufficient to
solve the problem.


3.3.3 Further Examples and Applications


EXAMPLE 3.3.3: MACSYMA


One natural example of an and/or graph is a program for symbolically integrating
mathematical functions. MACSYMA is a well-known program that is used extensively by
mathematicians. The reasoning of MACSYMA can be represented as an and/or graph. In
performing integrations, one important class of strategies involves breaking an expression
into sub-expressions that may be integrated independently of one another, with the result
being combined algebraically into a solution expression. Examples of this strategy include
the rule for integration by parts and for decomposing the integral of a sum into the sum of
the integrals of the individual terms. These strategies, representing the decomposition of a
problem into independent subproblems, can be represented by and nodes in the graph. 


Another class of strategies involves the simplification of an expression through
various algebraic substitutions. Because any given expression may allow a number of
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different substitutions, each representing an independent solution strategy, these strategies
are represented by or nodes of the graph. Figure 3.24 illustrates the space searched by
such a problem solver. The search of this graph is goal-directed, in that it begins with the
query “find the integral of a particular function” and searches back to the algebraic expres-
sions that define that integral. Note that this is an example in which goal-directed search is
the obvious strategy. It would be practically impossible for a problem solver to determine
the algebraic expressions that formed the desired integral without working back from the
query. 


EXAMPLE 3.3.4: GOAL-DRIVEN AND/OR SEARCH


This example is taken from the predicate calculus and represents a goal-driven graph
search where the goal to be proved true in this situation is a predicate calculus expression
containing variables. The axioms are the logical descriptions of a relationship between a
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Figure 3.24 And/or graph of part of the state space for 
integrating a function, from Nilsson (1971).
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dog, Fred, and his master, Sam. We assume that a cold day is not a warm day, bypassing
issues such as the complexity added by equivalent expressions for predicates, an issue dis-
cussed further in Chapters 7 and 14. The facts and rules of this example are given as
English sentences followed by their predicate calculus equivalents: 


1. Fred is a collie. 
collie(fred).


2. Sam is Fred’s master. 
master(fred,sam).


3. The day is Saturday. 
day(saturday).


4. It is cold on Saturday. 
¬¬¬¬ (warm(saturday)).


5. Fred is trained. 
trained(fred).


6. Spaniels are good dogs and so are trained collies. 
∀∀∀∀ X[spaniel(X) ∨ (collie(X) ∧ trained(X)) → gooddog(X)]


7. If a dog is a good dog and has a master then he will be with his master. 
∀∀∀∀ (X,Y,Z) [gooddog(X) ∧ master(X,Y) ∧ location(Y,Z) → location(X,Z)]


8. If it is Saturday and warm, then Sam is at the park. 
(day(saturday) ∧ warm(saturday)) → location(sam,park).


9. If it is Saturday and not warm, then Sam is at the museum. 
(day(saturday) ∧ ¬¬¬¬ (warm(saturday))) → location(sam,museum).


The goal is the expression ∃∃∃∃ X location(fred,X), meaning “where is fred?” A backward
search algorithm examines alternative means of establishing this goal: if fred is a good
dog and fred has a master and fred’s master is at a location then fred is at that location
also. The premises of this rule are then examined: what does it mean to be a gooddog,
etc.? This process continues, constructing the and/or graph of Figure 3.25.


Let us examine this search in more detail, particularly because it is an example of
goal-driven search using the predicate calculus and it illustrates the role of unification in
the generation of the search space. The problem to be solved is “where is fred?” More for-
mally, it may be seen as determining a substitution for the variable X, if such a substitution
exists, under which location(fred,X) is a logical consequence of the initial assertions. 


When it is desired to determine Fred’s location, clauses are examined that have
location as their conclusion, the first being clause 7. This conclusion, location(X,Z), is
then unified with location(fred, X) by the substitutions {fred/X, X/Z}. The premises of
this rule, under the same substitution set, form the and descendants of the top goal: 


gooddog(fred) ∧ master(fred,Y) ∧ location(Y,X).








114 PART II  / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


This expression may be interpreted as meaning that one way to find Fred is to see if
Fred is a good dog, find out who Fred’s master is, and find out where the master is. The
initial goal has thus been replaced by three subgoals. These are and nodes and all of them
must be solved. 


To solve these subgoals, the problem solver first determines whether Fred is a good-
dog. This matches the conclusion of clause 6 using the substitution {fred/X}. The premise
of clause 6 is the or of two expressions: 


spaniel(fred) ∨ (collie(fred) ∧ trained(fred))


The first of these or nodes is spaniel(fred). The database does not contain this assertion,
so the problem solver must assume it is false. The other or node is (collie(fred) ∧
trained(fred)), i.e., is Fred a collie and is Fred trained. Both of these need to be true,
which they are by clauses 1 and 5. 


This proves that gooddog(fred) is true. The problem solver then examines the sec-
ond of the premises of clause 7: master(X,Y). Under the substitution {fred/X},
master(X,Y) becomes master(fred,Y), which unifies with the fact (clause 2) of
master(fred,sam). This produces the unifying substitution of {sam/Y}, which also gives
the value of sam to the third subgoal of clause 7, creating the new goal location(sam,X).


In solving this, assuming the problem solver tries rules in order, the goal
location(sam,X) will first unify with the conclusion of clause 7. Note that the same rule is
being tried with different bindings for X. Recall (Chapter 2) that X is a “dummy” variable
and could have any name (any string beginning with an uppercase letter). Because the
extent of the meaning of any variable name is contained within the clause in which it


location (X,Z)


gooddog(X)                        master(X,Y)                         location(Y,Z)


collie(X)              trained(X)            master(fred,sam)            day(saturday)            ¬ (warm(saturday))


collie(fred)            trained(fred)


Direction
of search


Substitutions = {fred/X, sam/Y, museum/Z}


Figure 3.25 The solution subgraph showing that fred is at the
museum.
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appears, the predicate calculus has no global variables. Another way of saying this is that
values of variables are passed to other clauses as parameters and have no fixed (memory)
locations. Thus, the multiple occurrences of X in different rules in this example indicate
different formal parameters (Section 14.3). 


In attempting to solve the premises of rule 7 with these new bindings, the problem
solver will fail because sam is not a gooddog. Here, the search will backtrack to the goal
location(sam,X) and try the next match, the conclusion of rule 8. This will also fail,
which will cause another backtrack and a unification with the conclusion of clause 9,
at(sam,museum).


Because the premises of clause 9 are supported in the set of assertions (clauses 3 and
4), it follows that the conclusion of 9 is true. This final unification goes all the way back
up the tree to finally answer ∃∃∃∃ X location(fred,X) with location(fred, museum).


It is important to examine carefully the nature of the goal-driven search of a graph and
compare it with the data-driven search of Example 3.3.2. Further discussion of this issue,
including a more rigorous comparison of these two methods of searching a graph,
continues in the next example, but is seen in full detail only in the discussion of produc-
tion systems in Chapter 6 and in the application to expert systems in Part IV. Another
point implicit in this example is that the order of clauses affects the order of search. In the
example above, the multiple location clauses were tried in order, with backtracking
search eliminating those that failed to be proved true. 


EXAMPLE 3.3.5: THE FINANCIAL ADVISOR REVISITED


In the last example of Chapter 2 we used predicate calculus to represent a set of rules for
giving investment advice. In that example, modus ponens was used to infer a proper
investment for a particular individual. We did not discuss the way in which a program
might determine the appropriate inferences. This is, of course, a search problem; the
present example illustrates one approach to implementing the logic-based financial
advisor, using goal-directed, depth-first search with backtracking. The discussion uses the
predicates found in Section 2.4; these predicates are not duplicated here.


Assume that the individual has two dependents, $20,000 in savings, and a steady
income of $30,000. As discussed in Chapter 2, we can add predicate calculus expressions
describing these facts to the set of predicate calculus expressions. Alternatively, the
program may begin the search without this information and ask the user to add it as
needed. This has the advantage of not requiring data that may not prove necessary for a
solution. This approach, often taken with expert systems, is illustrated here. 


In performing a consultation, the goal is to find an investment; this is represented with
the predicate calculus expression ∃∃∃∃ X investment(X), where X in the goal variable we
seek to bind. There are three rules (1, 2, and 3) that conclude about investments, because
the query will unify with the conclusion of these rules. If we select rule 1 for initial explo-
ration, its premise savings_account(inadequate) becomes the subgoal, i.e., the child
node that will be expanded next. 


In generating the children of savings_account(inadequate), the only rule that may
be applied is rule 5. This produces the and node: 
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amount_saved(X) ∧ dependents(Y) ∧ ¬ greater(X,minsavings(Y)).


If we attempt to satisfy these in left-to-right order, amount_saved(X) is taken as the first
subgoal. Because the system contains no rules that conclude this subgoal, it will query the
user. When amount_saved(20000) is added the first subgoal will succeed, with
unification substituting 20000 for X. Note that because an and node is being searched, a
failure here would eliminate the need to examine the remainder of the expression. 


Similarly, the subgoal dependents(Y) leads to a user query, and the response,
dependents(2), is added to the logical description. The subgoal matches this expression
with the substitution {2/Y}. With these substitutions, the search next evaluates the truth of 


¬ greater(20000, minsavings(2)).


This evaluates to false, causing failure of the entire and node. The search then backtracks
to the parent node, savings_account(inadequate), and attempts to find an alternative
way to prove that node true. This corresponds to the generation of the next child in the
search. Because no other rules conclude this subgoal, search fails back to the top-level
goal, investment(X). The next rule whose conclusions unify with this goal is rule 2,
producing the new subgoals 


savings_account(adequate) ∧ income(adequate).


Continuing the search, savings_account(adequate) is proved true as the conclu-
sion of rule 4, and income(adequate) follows as the conclusion of rule 6. Although the
details of the remainder of the search will be left to the reader, the and/or graph that is ulti-
mately explored appears in Figure 3.26. 


EXAMPLE 3.3.6: AN ENGLISH LANGUAGE PARSER AND SENTENCE GENERATOR


Our final example is not from the predicate calculus but consists of a set of rewrite rules
for parsing sentences in a subset of English grammar. Rewrite rules take an expression and
transform it into another by replacing the pattern on one side of the arrow (↔) with the
pattern on the other side. For example, a set of rewrite rules could be defined to change an
expression in one language, such as English, into another language (perhaps French or a
predicate calculus clause). The rewrite rules given here transform a subset of English
sentences into higher level grammatical constructs such as noun phrase, verb phrase, and
sentence. These rules are used to parse sequences of words, i.e., to determine whether they
are well-formed sentences (whether they are grammatically correct or not) and to model
the linguistic structure of the sentences. 


Five rules for a simple subset of English grammar are: 


1. sentence ↔ np vp
(A sentence is a noun phrase followed by a verb phrase.


2. np ↔ n
(A noun phrase is a noun.)
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3. np ↔ art n
(A noun phrase is an article followed by a noun.) 


4. vp ↔ v
(A verb phrase is a verb.)


5. vp ↔ v np
(A verb phrase is a verb followed by a noun phrase.)


In addition to these grammar rules, a parser needs a dictionary of words in the lan-
guage. These words are called the terminals of the grammar. They are defined by their
parts of speech using rewrite rules. In the following dictionary, “a,” “the,” “man,” “dog,”
“likes,” and “bites” are the terminals of our very simple grammar: 


savings_account(inadequate)


amount_saved(X)               dependents(Y)                   ¬ greater(X,minsavings(Y))


investment(savings)


investment(X)


amount_saved(20000)            dependents(2)


savings_account(adequate)


amount_saved(X)               dependents(Y)                  greater(X,minsavings(Y))


amount_saved(20000)            dependents(2)


investment(stocks)


income(adequate)


earnings(X,steady)               dependents(Y)                  greater(X,minincome(Y))


earnings(30000, steady)            dependents(2)


fail here and backtrack***** *****


Figure 3.26 And/or graph searched by the financial advisor.








118 PART II  / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


6. art ↔ a


7. art ↔ the
(“a” and “the” are articles) 


8. n ↔ man


9. n ↔ dog
(“man” and “dog” are nouns) 


10. v ↔ likes


11. v ↔ bites
(“likes” and “bites” are verbs) 


These rewrite rules define the and/or graph of Figure 3.27, where sentence is the
root. The elements on the left of a rule correspond to and nodes in the graph. Multiple
rules with the same conclusion form the or nodes. Notice that the leaf or terminal nodes of
this graph are the English words in the grammar (hence, they are called terminals).


An expression is well formed in a grammar if it consists entirely of terminal symbols
and there is a series of substitutions in the expression using rewrite rules that reduce it to
the sentence symbol. Alternatively, this may be seen as constructing a parse tree that has
the words of the expression as its leaves and the sentence symbol as its root.


art


np                   vp


v v np


likes    bites        likes   bites


n n


man   dog      a   the      man   dog artn n


man   dog      a   the      man   dog


sentence


Figure 3.27 And/or graph for the grammar of Example 3.3.6. Some
of the nodes (np, art, etc.) have been written more
than once to simplify drawing the graph.
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For example, we may parse the sentence the dog bites the man, constructing the
parse tree of Figure 3.28. This tree is a subtree of the and/or graph of Figure 3.27 and is
constructed by searching this graph. A data-driven parsing algorithm would implement
this by matching right-hand sides of rewrite rules with patterns in the sentence, trying
these matches in the order in which the rules are written. Once a match is found, the part
of the expression matching the right-hand side of the rule is replaced by the pattern on the
left-hand side. This continues until the sentence is reduced to the symbol sentence
(indicating a successful parse) or no more rules can be applied (indicating failure). A trace
of the parse of the dog bites the man:


1. The first rule that will match is 7, rewriting the as art. This yields: art dog bites
the man.


2. The next iteration would find a match for 7, yielding art dog bites art man.


3. Rule 8 will fire, producing art dog bites art n.


4. Rule 3 will fire to yield art dog bites np.


5. Rule 9 produces art n bites np.


6. Rule 3 may be applied, giving np bites np.


7. Rule 11 yields np v np.


8. Rule 5 yields np vp.


9. Rule 1 reduces this to sentence, accepting the expression as correct. 


Figure 3.28 Parse tree for the sentence The dog bites the man.
Note that this is a subtree of the graph of Figure 3.27.


sentence
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np                   vp


v


np
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the        dog    bites    the      man 
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The above example implements a data-directed depth-first parse, as it always applies
the highest-level rule to the expression; e.g., art n reduces to np before bites reduces to v.
Parsing could also be done in a goal-directed fashion, taking sentence as the starting
string and finding a series of replacements of patterns that match left-hand sides of rules
leading to a series of terminals that match the target sentence. 


Parsing is important, not only for natural language (Chapter 15) but also for con-
structing compilers and interpreters for computer languages (Aho and Ullman 1977). The
literature is full of parsing algorithms for all classes of languages. For example, many
goal-directed parsing algorithms look ahead in the input stream to determine which rule to
apply next. 


In this example we have taken a very simple approach of searching the and/or graph
in an uninformed fashion. One thing that is interesting in this example is the implementa-
tion of the search. This approach of keeping a record of the current expression and trying
to match the rules in order is an example of using a production system to implement
search. This is a major topic of Chapter 6. 


Rewrite rules are also used to generate legal sentences according to the specifications
of the grammar. Sentences may be generated by a goal-driven search, beginning with sen-
tence as the top-level goal and ending when no more rules can be applied. This produces
a string of terminal symbols that is a legal sentence in the grammar. For example:


A sentence is a np followed by a vp (rule 1).


np is replaced by n (rule 2), giving n vp.


man is the first n available (rule 8), giving man vp.


Now np is satisfied and vp is attempted. Rule 3 replaces vp with v, man v.


Rule 10 replaces v with likes.


man likes is found as the first acceptable sentence. 


If it is desired to create all acceptable sentences, this search may be systematically
repeated until all possibilities are tried and the entire state space has been searched
exhaustively. This generates sentences including a man likes, the man likes, and so on.
There are about 80 correct sentences that are produced by an exhaustive search. These
include such semantic anomalies as the man bites the dog.


Parsing and generation can be used together in a variety of ways to handle different
problems. For instance, if it is desired to find all sentences to complete the string “the
man,” then the problem solver may be given an incomplete string the man... . It can work
upward in a data-driven fashion to produce the goal of completing the sentence rule (rule
1), where np is replaced by the man, and then work in a goal-driven fashion to determine
all possible vps that will complete the sentence. This would create sentences such as the
man likes, the man bites the man, and so on. Again, this example deals only with syn-
tactic correctness. The issue of semantics (whether the string has a mapping into some
“world” with “truth”) is entirely different. Chapter 2 examined the issue of constructing a
logic-based semantics for expressions; for verifing sentences in natural language, the issue
is much more difficult and is discussed in Chapter 15. 
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In the next chapter we discuss the use of heuristics to focus search on the “best” pos-
sible portion of the state space. Chapter 6 discusses the production system and other soft-
ware “architectures” for controlling state-space search. 


3.4 Epilogue and References


Chapter 3 introduced the theoretical foundations of state space search, using graph theory
to analyze the structure and complexity of problem-solving strategies. The chapter com-
pared data-driven and goal-driven reasoning and depth-first and breadth-first search. And/
or graphs allow us to apply state space search to the implementation of logic-based rea-
soning.


Basic graph search is discussed in a number of textbooks on computer algorithms.
These include Introduction to Algorithms by Thomas Cormen, Charles Leiserson, and
Ronald Rivest (1990), Walls and Mirrors by Paul Helman and Robert Veroff (1986),
Algorithms by Robert Sedgewick (1983), and Fundamentals of Computer Algorithms by
Ellis Horowitz and Sartaj Sahni (1978). Finite automata are presented in Lindenmayer and
Rosenberg (1976). More algorithms for and/or search are presented in Chapter 14, Auto-
mated Reasoning.


The use of graph search to model intelligent problem solving is presented in Human
Problem Solving by Alan Newell and Herbert Simon (1972). Artificial intelligence texts
that discuss search strategies include Nils Nilsson’s Artificial Intelligence (1998), Patrick
Winston’s Artificial Intelligence (1992), and Artificial Intelligence by Eugene Charniak
and Drew McDermott (1985). Heuristics by Judea Pearl (1984) presents search algorithms
and lays a groundwork for the material we present in Chapter 4. Developing new tech-
niques for graph search are often topics at the annual AI conferences.


3.5 Exercises


1. A Hamiltonian path is a path that uses every node of the graph exactly once. What condi-
tions are necessary for such a path to exist? Is there such a path in the Königsberg map? 


2. Give the graph representation for the farmer, wolf, goat, and cabbage problem:


A farmer with his wolf, goat, and cabbage come to the edge of a river they wish to
cross. There is a boat at the river’s edge, but, of course, only the farmer can row. The
boat also can carry only two things (including the rower) at a time. If the wolf is ever
left alone with the goat, the wolf will eat the goat; similarly, if the goat is left alone with
the cabbage, the goat will eat the cabbage. Devise a sequence of crossings of the river
so that all four characters arrive safely on the other side of the river. 


Let nodes represent states of the world; e.g., the farmer and the goat are on the west bank
and the wolf and cabbage on the east. Discuss the advantages of breadth-first and depth-
first search for this problem. 


3. Build a finite state acceptor that recognizes all strings of binary digits a) that contain
“111”, b) that end in “111”, c)  that contain “111” but not more that three consecutive “1”s.
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4. Give an instance of the traveling salesperson problem for which the nearest-neighbor
strategy fails to find an optimal path. Suggest another heuristic for this problem. 


5. “Hand run” the backtrack algorithm on the graph in Figure 3.29. Begin from state A. Keep
track of the successive values of NSL, SL, CS, etc.


6. Implement a backtrack algorithm in a programming language of your choice.


7. Determine whether goal-driven or data-driven search would be preferable for solving each
of the following problems. Justify your answer. 


a. Diagnosing mechanical problems in an automobile. 
b. You have met a person who claims to be your distant cousin, with a common ancestor


named John Doe. You would like to verify her claim. 
c. Another person claims to be your distant cousin. He does not know the common


ancestor’s name but knows that it was no more than eight generations back. You
would like to either find this ancestor or determine that she did not exist. 


d. A theorem prover for plane geometry. 
e. A program for examining sonar readings and interpreting them, such as telling a large


submarine from a small submarine from a whale from a school of fish. 
f. An expert system that will help a human classify plants by species, genus, etc. 


8. Choose and justify a choice of breadth- or depth-first search for examples of Exercise 6.


9. Write a backtrack algorithm for and/or graphs. 


10. Trace the goal-driven good-dog problem of Example 3.3.4 in a data-driven fashion. 


11. Give another example of an and/or graph problem and develop part of the search space.


12. Trace a data-driven execution of the financial advisor of Example 3.3.5 for the case of an
individual with four dependents, $18,000 in the bank, and a steady income of $25,000 per
year. Based on a comparison of this problem and the example in the text, suggest a
generally “best” strategy for solving the problem. 


13. Add rules for adjectives and adverbs to the English grammar of Example 3.3.6.


14. Add rules for (multiple) prepositional phrases to the English grammar of Example 3.3.6.


15. Add grammar rules to Example 3.3.6 that allow complex sentences such as,


sentence ↔ sentence AND sentence.


B                  C                        D


E        F                  G                      H                    I


J         K        L          M              N               O       P             R


A


Figure 3.29 A graph to be searched.
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HEURISTIC SEARCH


The task that a symbol system is faced with, then, when it is presented with a problem and 
a problem space, is to use its limited processing resources to generate possible solutions, 
one after another, until it finds one that satisfies the problem defining test. If the symbol 
system had some control over the order in which potential solutions were generated, then 
it would be desirable to arrange this order of generation so that actual solutions would 
have a high likelihood of appearing early. A symbol system would exhibit intelligence to 
the extent that it succeeded in doing this. Intelligence for a system with limited processing 
resources consists in making wise choices of what to do next. . . . 


—NEWELL AND SIMON, 1976, Turing Award Lecture


I been searchin’ . . .
Searchin’ . . . Oh yeah,
Searchin’ every which-a-way . . .


—LIEBER AND STOLLER


4.0 Introduction


George Polya defines heuristic as “the study of the methods and rules of discovery and
invention” (Polya 1945). This meaning can be traced to the term’s Greek root, the verb
eurisco, which means “I discover.” When Archimedes emerged from his famous bath
clutching the golden crown, he shouted “Eureka!” meaning “I have found it!”. In state
space search, heuristics are formalized as rules for choosing those branches in a state
space that are most likely to lead to an acceptable problem solution. 


AI problem solvers employ heuristics in two basic situations: 


1. A problem may not have an exact solution because of inherent ambiguities in the
problem statement or available data. Medical diagnosis is an example of this. A
given set of symptoms may have several possible causes; doctors use heuristics


4
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to choose the most likely diagnosis and formulate a plan of treatment. Vision is
another example of an inexact problem. Visual scenes are often ambiguous,
allowing multiple interpretations of the connectedness, extent, and orientation of
objects. Optical illusions exemplify these ambiguities. Vision systems often use
heuristics to select the most likely of several possible interpretations of as scene. 


2. A problem may have an exact solution, but the computational cost of finding it
may be prohibitive. In many problems (such as chess), state space growth is
combinatorially explosive, with the number of possible states increasing
exponentially or factorially with the depth of the search. In these cases,
exhaustive, brute-force search techniques such as depth-first or breadth-first
search may fail to find a solution within any practical length of time. Heuristics
attack this complexity by guiding the search along the most “promising” path
through the space. By eliminating unpromising states and their descendants from
consideration, a heuristic algorithm can (its designer hopes) defeat this
combinatorial explosion and find an acceptable solution. 


Unfortunately, like all rules of discovery and invention, heuristics are fallible. A
heuristic is only an informed guess of the next step to be taken in solving a problem. It is
often based on experience or intuition. Because heuristics use limited information, such as
knowledge of the present situation or descriptions of states currently on the open list, they
are not always able to predict the exact behavior of the state space farther along in the
search. A heuristic can lead a search algorithm to a suboptimal solution or fail to find any
solution at all. This is an inherent limitation of heuristic search. It cannot be eliminated by
“better” heuristics or more efficient search algorithms (Garey and Johnson 1979). 


Heuristics and the design of algorithms to implement heuristic search have long been
a core concern of artificial intelligence. Game playing and theorem proving are two of the
oldest applications in artificial intelligence; both of these require heuristics to prune
spaces of possible solutions. It is not feasible to examine every inference that can be made
in a mathematics domain or every possible move that can be made on a chessboard. Heu-
ristic search is often the only practical answer. 


Expert systems research has affirmed the importance of heuristics as an essential
component of problem solving. When a human expert solves a problem, he or she exam-
ines the available information and makes a decision. The “rules of thumb” that a human
expert uses to solve problems efficiently are largely heuristic in nature. These heuristics
are extracted and formalized by expert systems designers, as we see in Chapter 8. 


It is useful to think of heuristic search from two perspectives: the heuristic measure
and an algorithm that uses heuristics to search the state space. In Section 4.1, we imple-
ment heuristics with hill-climbing and dynamic programming algorithms. In Section 4.2
we present an algorithm for best-first search. The design and evaluation of the effective-
ness of heuristics is presented in Section 4.3, and game playing heuristics in Section 4.4.


Consider heuristics in the game of tic-tac-toe, Figure II.5. The combinatorics for
exhaustive search are high but not insurmountable. Each of the nine first moves has eight
possible responses, which in turn have seven continuing moves, and so on. A simple anal-
ysis puts the total number of states for exhaustive search at 9 


 


× 8 


 


× 7 


 


×


 


⋅⋅⋅ or 9!. 
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Symmetry reduction decreases the search space. Many problem configurations are
actually equivalent under symmetric operations of the game board. Thus, there are not
nine but really three initial moves: to a corner, to the center of a side, and to the center of
the grid. Use of symmetry on the second level further reduces the number of paths through
the space to 12 


 


× 7!, as seen in Figure 4.1. Symmetries in a game space such as this may
be described as mathematical invariants, that, when they exist, can often be used to tre-
mendous advantage in reducing search.


A simple heuristic, however, can almost eliminate search entirely: we may move to
the state in which X has the most winning opportunities. (The first three states in the tic-
tac-toe game are so measured in Figure 4.2.) In case of states with equal numbers of
potential wins, take the first such state found. The algorithm then selects and moves to the
state with the highest number of opportunities. In this case X takes the center of the grid.
Note that not only are the other two alternatives eliminated, but so are all their descen-
dants. Two-thirds of the full space is pruned away with the first move, Figure 4.3.


After the first move, the opponent can choose either of two alternative moves (as seen
in Figure 4.3). Whichever is chosen, the heuristic can be applied to the resulting state of
the game, again using “most winning opportunities” to select among the possible moves.
As search continues, each move evaluates the children of a single node; exhaustive search
is not required. Figure 4.3 shows the reduced search after three steps in the game. States
are marked with their heuristic values. Although not an exact calculation of search size for
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Figure 4.1 First three levels of the tic-tac-toe state space
reduced by symmetry.
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this “most wins” strategy for tic-tac-toe, a crude upper bound can be computed by assum-
ing a maximum of five moves in a game with five options per move. In reality, the number
of states is smaller, as the board fills and reduces options. This crude bound of 25 states is
an improvement of four orders of magnitude over 9!.


X
X


X


Three wins through
a corner square


Four wins through 
the center square


Two wins through
a side square


Figure 4.2 The most wins  heuristic applied to the first
children in tic-tac-toe.
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Figure 4.3 Heuristically reduced state space for tic-tac-toe.
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The next section presents two algorithms for implementing heuristic search: hill-
climbing and dynamic programming. Section 4.2 uses the priority queue for best-first
search. In Section 4.3 we discuss theoretical issues related to heuristic search, such as
admissibility and monotonicity. Section 4.4 examines the use of minimax and alpha-beta
pruning to apply heuristics to two-person games. The final section of Chapter 4 examines
the complexity of heuristic search and reemphasizes its essential role in intelligent prob-
lem solving.


4.1 Hill-Climbing and Dynamic Programming


4.1.1 Hill-Climbing


The simplest way to implement heuristic search is through a procedure called hill-climb-
ing (Pearl 1984). Hill-climbing strategies expand the current state of the search and evalu-
ate its children. The “best” child is selected for further expansion; neither its siblings nor
its parent are retained. Hill climbing is named for the strategy that might be used by an
eager, but blind mountain climber: go uphill along the steepest possible path until you can
go no farther up. Because it keeps no history, the algorithm cannot recover from failures of
its strategy. An example of hill-climbing in tic-tac-toe was the “take the state with the most
possible wins” that we demonstrated in Section 4.0.


A major problem of hill-climbing strategies is their tendency to become stuck at local
maxima. If they reach a state that has a better evaluation than any of its children, the algo-
rithm falters. If this state is not a goal, but just a local maximum, the algorithm may fail to
find the best solution. That is, performance might well improve in a limited setting, but
because of the shape of the entire space, it may never reach the overall best. An example
of local maxima in games occurs in the 8-puzzle. Often, in order to move a particular tile
to its destination, other tiles already in goal position need be moved out. This is necessary
to solve the puzzle but temporarily worsens the board state. Because “better” need not be
“best” in an absolute sense, search methods without backtracking or some other recovery
mechanism are unable to distinguish between local and global maxima. 


Figure 4.4 is an example of the local maximum dilemma. Suppose, exploring this
search space, we arrive at state X, wanting to maximize state values. The evaluations of
X’s children, grand children, and great grandchildren demonstrate that hill-climbing can
get confused even with multiple level look ahead. There are methods for getting around
this problem, such as randomly perturbing the evaluation function, but in general there is
no way of guaranteeing optimal performance with hill-climbing techniques. Samuel’s
(1959) checker program offers an interesting variant of the hill climbing algorithm. 


Samuel’s program was exceptional for its time, 1959, particularly given the limita-
tions of the 1950s computers. Not only did Samuel’s program apply heuristic search to
checker playing, but it also implemented algorithms for optimal use of limited memory, as
well as a simple form of learning. Indeed, it pioneered many of the techniques still used in
game-playing and machine learning programs.


Samuel’s program evaluated board states with a weighted sum of several different
heuristic measures:
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The xi in this sum represented features of the game board such as piece advantage, piece
location, control of center board, opportunities to sacrifice pieces for advantage, and even
a calculation of moments of inertia of one player’s pieces about an axis of the board. The
ai coefficients of these xi were specially tuned weights that tried to model the importance
of that factor in the overall board evaluation. Thus, if piece advantage was more important
than control of the center, the piece advantage coefficient would reflect this. 


Samuel’s program would look ahead in the search space the desired number of levels
or plies (usually imposed by space and/or time limitations of the computer) and evaluate
all the states at that level with the evaluation polynomial. Using a variation on minimax
(Section 4.3), it propagated these values back up the graph. The checker player would then
move to the best state; after the opponent’s move, the process would be repeated for the
new board state. 


If the evaluation polynomial led to a losing series of moves, the program adjusted its
coefficients in an attempt to improve performance. Evaluations with large coefficients
were given most of the blame for losses and had their weights decreased, while smaller
weights were increased to give these evaluations more influence. If the program won, the
opposite was done. The program trained by playing either against a human partner or
against another version of itself. 


Samuel’s program thus took a hill-climbing approach to learning, attempting to
improve performance through local improvements on the evaluation polynomial. Sam-
uel’s checker player was able to improve its performance until it played a very good game
of checkers. Samual addressed some of the limitations of hill climbing by checking the
effectiveness of the individual weighted heuristic measures, and replacing the less effec-
tive. The program also retained certain interesting limitations. For example, because of a
limited global strategy, it was vulnerable to evaluation functions leading to traps. The
learning component of the program was also vulnerable to inconsistencies in opponent’s
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play; for example, if the opponent used widely varying strategies, or simply played fool-
ishly, the weights on the evaluation polynomial might begin to take on “random” values,
leading to an overall degradation of performance. 


4.1.2 Dynamic Programming


Dynamic programming (DP) is sometimes called the forward-backward, or, when using
probabilities, the Viterbi algorithm. Creatred by Richard Bellman (1956), dynammic pro-
gramming addresses the issue of restricted memory search in problems composed of mul-
tiple interacting and interrelated subproblems. DP keeps track of and reuses subproblems
already searched and solved within the solution of the larger problem. An example of this
would be the reuse the subseries solutions within the solution of the Fibonacci series. The
technique of subproblem caching for reuse is sometimes called memoizing partial subgoal
solutions. The result is an important algorithm often used for string matching, spell check-
ing, and related areas in natural language processing (see Sections 9.4 and 14.4).


We demonstrate dynamic programming using two examples, both from text process-
ing; first, finding an optimum global alignment of two strings of characters and, second,
finding the minimum edit difference between two strings of characters. Suppose we
wanted to find the best possible alignment for the characters in the strings BAADDCAB-
DDA and BBADCBA. One optimal alignment, among several possible, would be:


BAADDCABDDA
BBA DC B A


Dynamic programming requires a data structure to keep track of the subproblems
related to the state currently being processed. We use an array. The size of the dimensions
of this array, because of initialization requirements, is one more than the length of each
string, in our example 12 by 8, as in Figure 4.5. The value of each row-column element of


Figure 4.5 The initialization stage and first step in
completing the array for character align-
ment using dynamic programming.
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the array reflects the global alignment success to that point in the matching process. There
are three possible costs for creating the current state: if a character is shifted along in the
shorter string for better possible alignment, the cost is 1 and is recorded by the array’s col-
umn score. If a new character is inserted, the cost is 1 and reflected in the array’s row
score. If the characters to be aligned are different, shift and insert, the cost is 2; or if they
are identical the cost is 0; this is reflected in the array’s diagonal. Figure 4.5 shows initial-
ization, the increasing +1s in the first row and column reflect the continued shifting or
insertion of characters to the “_” or empty string.


In the forward stage of the dynamic programming algorithm, we fill the array from
the upper left corner by considering the partial matching successes to the current point of
the solution. That is, the value of the intersection of row x and column y, (x, y), is a func-
tion (for the minimum alignment problem, the minimum cost) of one of the three values in
row x - 1 column y, row x - 1 column y - 1, or row x column y - 1. These three array loca-
tions hold the alignment information up to the present point of the solution. If there is a
match of characters at location (x, y) add 0 to the value at location (x - 1, y - 1), if there is
no match add 2 (for shift and insert). We add 1 by either shifting the shorter character
string (add to the previous value of column y) or inserting a character (add to the previous
value of row x). Continuing this approach produces the filled array of Figure 4.6. It can be
observed that the minimum cost match often takes place near the upper-left to lower-right
diagonal of the array.


Once the array is filled, we begin the backward stage of the algorithm that produces
particular solutions. That is, from the best alignment possible, we go back through the
array to select a specific solution alignment. We begin this process at the maximum row
column value, in our example the 6 in row 7 column 12. From there we move back
through the array, at each step selecting one of the immediate state’s predecessors that pro-
duced the present state (from the forward stage), ie, one of either the diagonal, row, or col-
umn that produced that state. Whenever there is a forced decreasing difference, as in the 6
and 5 near the beginning of the trace back, we select the previous diagonal, as that is
where the match came from; otherwise we use the value of the preceding row or column.
The trace back of Figure 4.7, one of several possible, produces the optimal string align-
ment of the previous page.


Figure 4.6 The completed array reflecting the maxi-
mum alignment information for the strings.
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In the second example use of DP, we consider the idea of the minimum edit difference
between two strings. If we were building an intelligent spell checker, for example, we
might want to determine what words from our set of correctly spelled words best approxi-
mate a certain unrecognized string of characters. A similar approach could be used to
determine what known (strings of phones representing) words most closely matched a
given string of phones. The next example of establishing the edit distance between two
strings of characters is adapted from Jurafsky and Martin (2009).


Suppose you produce an unrecognized string of characters. The task of the spell
checker is to produce an ordered list of the most likely words from the dictionary that you
meant to type. The question is then, how can a difference be measured between pairs of
strings of characters, ie, the string you just typed and the character strings of a dictionary.
For your string, we want to produce an ordered list of possibly correct words in the dictio-
nary. For each of these words, we want a numerical measure of how “different” each word
is from your string.


A minimum edit difference between two strings can be specified as the number of
character insertions, deletions, and replacements necessary to turn the first string, the
source, into the second string, the target. This is sometimes called the Levenshtein dis-
tance (Jurafsky and Martin 2009). We now implement a dynamic programming search for
determining the minimum edit difference between two strings of characters. We let inten-
tion be the source string and execution be the target. The edit cost for transforming the
first string to the second is 1 for a character insertion or a deletion and 2 for a replacement
(a deletion plus an insertion). We want to determine a minimum cost difference between
these two strings.


Our array for subgoals will again be one character longer than each of the strings, in
this case 10 by 10. The initialization is as in Figure 4.8 (a sequence of insertions is neces-
sary, starting at the null string, to make either string resemble the other. The array location
(2, 2) is 2, because a replacement (or making a delete plus an insert) is required to turn an
i into an e.
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Figure 4.7 A completed backward component of the
dynamic programming example giving one
(of several possible) string alignments.
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Figure 4.9 gives the full result of applying the dynamic programming algorithm to
transform intention into execution. The value at each location (x, y) in the array is the
cost of the minimum editing to that point plus the (minimum) cost of either an insertion,
deletion, or replacement. Thus the cost of (x, y) is the minimum of the cost of (x - 1, y)
plus cost of insertion, or cost (x - 1, y - 1) plus cost of replacement, or cost of (x, y - 1)
plus the deletion cost. Pseudocode for his algorithm is a function taking the two strings (a
source and a target) and their lengths and returning the minimum edit difference cost:


function dynamic (source, sl, target, tl) return cost (i, j);


create array cost(sl + 1, tl + 1)
cost (0,0) := 0                                                                            % initialize
for i := 1 to sl + 1 do


for j := 1 to tl + 1 do
cost (i, j) := min [ cost (i - 1, j) + insertion cost targeti - 1 % add 1


cost (i - 1, j - 1) + replace cost sourcej - 1 targeti - 1   % add 2
cost(i, j - 1) + delete cost sourcej - 1 ]                            % add 1


Using the results (bold) in Figure 4.9, the following edits will translate intention into
execution with total edit cost of 8:


intention
ntention delete i, cost 1
etention replace n with e, cost 2
exention replace t with x, cost 2
exenution insert u, cost 1
execution replace n with c, cost 2


Figure 4.8 Initialization of minimum edit difference
matrix between intention and execution
(adapted from Jurafsky and Martin 2000).
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In the spell check situation of proposing a cost-based ordered list of words for replac-
ing an unrecognized string, the backward segment of the dynamic programming algorithm
is not needed. Once the minimum edit measure is calculated for the set of related strings a
prioritized order of alternatives is proposed from which the user chooses an appropriate
string.


The justification for dynamic programming is the cost of time/space in computation.
Dynamic programming, as seen in our examples has cost of n2, where n is the length of
the largest string; the cost in the worse case is n3, if other related subproblems need to be
considered (other row/column values) to determine the current state. Exhaustive search for
comparing two strings is exponential, costing between 2n and 3n.


There are a number of obvious heuristics that can be used to prune the search in
dynamic programming. First, useful solutions will usually lie around the upper left to
lower right diagonal of the array; this leads to ignoring development of array extremes.
Second, it can be useful to prune the search as it evolves, e.g., for edit distances passing a
certain threshold, cut that solution path or even abandon the whole problem, i.e., the
source string will be so distant from the target string of characters as to be useless. There is
also a stochastic approach to the pattern comparison problem that we will see in Section
5.3.


4.2 The Best-First Search Algorithm


4.2.1 Implementing Best-First Search


In spite of their limitations, algorithms such as backtrack, hill climbing, and dynamic pro-
gramming can be used effectively if their evaluation functions are sufficiently informative
to avoid local maxima, dead ends, and related anomalies in a search space. In general,
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however, use of heuristic search requires a more flexible algorithm: this is provided by
best-first search, where, with a priority queue, recovery from these situations is possible. 


Like the depth-first and breadth-first search algorithms of Chapter 3, best-first search
uses lists to maintain states: open to keep track of the current fringe of the search and
closed to record states already visited. An added step in the algorithm orders the states on
open according to some heuristic estimate of their “closeness” to a goal. Thus, each
iteration of the loop considers the most “promising” state on the open list. The pseudo-
code for the function best_first_search appears below.


function best_first_search; 


begin
open := [Start]; % initialize
closed := [ ];
while open ≠ [ ] do % states remain


begin
remove the leftmost state from open, call it X;
if X = goal then return the path from Start to X 
else begin


generate children of X; 
for each child of X do
case


the child is not on open or closed: 
begin


assign the child a heuristic value; 
add the child to open 


end;
the child is already on open: 


if the child was reached by a shorter path 
then give the state on open the shorter path


the child is already on closed: 
if the child was reached by a shorter path then 


begin
remove the state from closed;
add the child to open


end;
end; % case
put X on closed;
re-order states on open by heuristic merit (best leftmost)


end;
return FAIL % open is empty
end.


At each iteration, best_first_search removes the first element from the open list. If
it meets the goal conditions, the algorithm returns the solution path that led to the goal.
Note that each state retains ancestor information to determine if it had previously been
reached by a shorter path and to allow the algorithm to return the final solution path. (See
Section 3.2.3.)
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If the first element on open is not a goal, the algorithm applies all matching produc-
tion rules or operators to generate its descendants. If a child state is not on open or closed
best_first_search applies a heuristic evaluation to that state, and the open list is sorted
according to the heuristic values of those states. This brings the “best” states to the front of
open. Note that because these estimates are heuristic in nature, the next “best” state to be
examined may be from any level of the state space. When open is maintained as a sorted
list, it is often referred to as a priority queue.


If a child state is already on open or closed, the algorithm checks to make sure that
the state records the shorter of the two partial solution paths. Duplicate states are not
retained. By updating the path history of nodes on open and closed when they are redis-
covered, the algorithm will find a shortest path to a goal (within the states considered). 


Figure 4.10 shows a hypothetical state space with heuristic evaluations attached to
some of its states. The states with attached evaluations are those actually generated in
best_first_search. The states expanded by the heuristic search algorithm are indicated in
bold; note that it does not search all of the space. The goal of best-first search is to find the
goal state by looking at as few states as possible; the more informed (Section 4.2.3) the
heuristic, the fewer states are processed in finding the goal. 


A trace of the execution of best_first_search on this graph appears below. Suppose
P is the goal state in the graph of Figure 4.10. Because P is the goal, states along the path
to P will tend to have lower heuristic values. The heuristic is fallible: the state O has a
lower value than the goal itself and is examined first. Unlike hill climbing, which does not
maintain a priority queue for the selection of “next” states, the algorithm recovers from
this error and finds the correct goal. 


1. open = [A5]; closed = [ ] 


2. evaluate A5; open = [B4,C4,D6]; closed = [A5] 
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Figure 4.10 Heuristic search of a hypothetical
state space.
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3. evaluate B4; open = [C4,E5,F5,D6]; closed = [B4,A5] 


4. evaluate C4; open = [H3,G4,E5,F5,D6]; closed = [C4,B4,A5]


5. evaluate H3; open = [O2,P3,G4,E5,F5,D6]; closed = [H3,C4,B4,A5]


6. evaluate O2; open = [P3,G4,E5,F5,D6]; closed = [O2,H3,C4,B4,A5]


7. evaluate P3; the solution is found!


Figure 4.11 shows the space as it appears after the fifth iteration of the while loop.
The states contained in open and closed are indicated. open records the current frontier
of the search and closed records states already considered. Note that the frontier of the
search is highly uneven, reflecting the opportunistic nature of best-first search. 


The best-first search algorithm selects the most promising state on open for further
expansion. However, as it is using a heuristic that may prove erroneous, it does not aban-
don all the other states but maintains them on open. In the event a heuristic leads the
search down a path that proves incorrect, the algorithm will eventually retrieve some
previously generated, “next best” state from open and shift its focus to another part of the
space. In the example of Figure 4.10, after the children of state B were found to have poor
heuristic evaluations, the search shifted its focus to state C. The children of B were kept
on open in case the algorithm needed to return to them later. In best_first_search, as in
the algorithms of Chapter 3, the open list supports backtracking from paths that fail to
produce a goal.


States on open                 States on closed
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S T


Figure 4.11 Heuristic search of a hypothetical
state space with open and closed
states highlighted.
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4.2.2 Implementing Heuristic Evaluation Functions


We next evaluate the performance of several different heuristics for solving the 8-puzzle.
Figure 4.12 shows a start and goal state for the 8-puzzle, along with the first three states
generated in the search. 


The simplest heuristic counts the tiles out of place in each state when compared with
the goal. This is intuitively appealing, because it would seem that, all else being equal, the
state that had fewest tiles out of place is probably closer to the desired goal and would be
the best to examine next. 


However, this heuristic does not use all of the information available in a board
configuration, because it does not take into account the distance the tiles must be moved.
A “better” heuristic would sum all the distances by which the tiles are out of place, one for
each square a tile must be moved to reach its position in the goal state. 


Both of these heuristics can be criticized for failing to acknowledge the difficulty of
tile reversals. That is, if two tiles are next to each other and the goal requires their being in
opposite locations, it takes (several) more than two moves to put them back in place, as the
tiles must “go around” each other (Figure 4.13).


A heuristic that takes this into account multiplies a small number (2, for example)
times each direct tile reversal (where two adjacent tiles must be exchanged to be in the
order of the goal). Figure 4.14 shows the result of applying each of these three heuristics
to the three child states of Figure 4.12. 
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Figure 4.12 The start state, first moves, and goal
state for an example 8-puzzle.
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In Figure 4.14’s summary of evaluation functions, the sum of distances heuristic does
indeed seem to provide a more accurate estimate of the work to be done than the simple
count of the number of tiles out of place. Also, the tile reversal heuristic fails to distin-
guish between these states, giving each an evaluation of 0. Although it is an intuitively
appealing heuristic, it breaks down since none of these states have any direct reversals. A
fourth heuristic, which may overcome the limitations of the tile reversal heuristic, adds the
sum of the distances the tiles are out of place and 2 times the number of direct reversals.


This example illustrates the difficulty of devising good heuristics. Our goal is to use
the limited information available in a single state descriptor to make intelligent choices.
Each of the heuristics proposed above ignores some critical bit of information and is
subject to improvement. The design of good heuristics is an empirical problem; judgment
and intuition help, but the final measure of a heuristic must be its actual performance on
problem instances. 


If two states have the same or nearly the same heuristic evaluations, it is generally
preferable to examine the state that is nearest to the root state of the graph. This state will
have a greater probability of being on the shortest path to the goal. The distance from the
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Figure 4.13 An 8-puzzle state with a goal and two
reversals: 1 and 2, 5 and 6.
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Figure 4.14 Three heuristics applied to states in the 8-puzzle.
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starting state to its descendants can be measured by maintaining a depth count for each
state. This count is 0 for the beginning state and is incremented by 1 for each level of the
search. This depth measure can be added to the heuristic evaluation of each state to bias
search in favor of states found shallower in the graph. 


This makes our evaluation function, f, the sum of two components: 


f(n) = g(n) + h(n)


where g(n) measures the actual length of the path from any state n to the start state and
h(n) is a heuristic estimate of the distance from state n to a goal.


In the 8-puzzle, for example, we can let h(n) be the number of tiles out of place.
When this evaluation is applied to each of the child states in Figure 4.12, their f values are
6, 4, and 6, respectively, see Figure 4.15.


The full best-first search of the 8-puzzle graph, using f as defined above, appears in
Figure 4.16. Each state is labeled with a letter and its heuristic weight, f(n) = g(n) + h(n).
The number at the top of each state indicates the order in which it was taken off the open
list. Some states (h, g, b, d, n, k, and i) are not so numbered, because they were still on
open when the algorithm terminates. 
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6                             4                             6Values of f(n) for each state,


where:
     f(n)  =   g(n)  +   h(n),
     g(n) =   actual distance from n
                      to the start state, and
     h(n) =   number of tiles out of place.


Figure 4.15 The heuristic f applied to states in the 8-puzzle.
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The successive stages of open and closed that generate this graph are: 


1. open = [a4]; 
closed = [ ] 


2. open = [c4, b6, d6]; 
closed = [a4]


3. open = [e5, f5, b6, d6, g6]; 
closed = [a4, c4] 


4. open = [f5, h6, b6, d6, g6, i7]; 
closed = [a4, c4, e5]


5. open = [ j5, h6, b6, d6, g6, k7, i7]; 
closed = [a4, c4, e5, f5] 


6. open = [l5, h6, b6, d6, g6, k7, i7]; 
closed = [a4, c4, e5, f5, j5]


7. open = [m5, h6, b6, d6, g6, n7, k7, i7]; 
closed = [a4, c4, e5, f5, j5, l5]


8. success, m = goal!


In step 3, both e and f have a heuristic of 5. State e is examined first, producing chil-
dren, h and i. Although h, the child of e, has the same number of tiles out of place as f, it is
one level deeper in the space. The depth measure, g(n), causes the algorithm to select f for
evaluation in step 4. The algorithm goes back to the shallower state and continues to the
goal. The state space graph at this stage of the search, with open and closed highlighted,
appears in Figure 4.17. Notice the opportunistic nature of best-first search.


In effect, the g(n) component of the evaluation function gives the search more of a
breadth-first flavor. This prevents it from being misled by an erroneous evaluation: if a
heuristic continuously returns “good” evaluations for states along a path that fails to reach
a goal, the g value will grow to dominate h and force search back to a shorter solution
path. This guarantees that the algorithm will not become permanently lost, descending an
infinite branch. Section 4.3 examines the conditions under which best-first search using
this evaluation function can actually be guaranteed to produce the shortest path to a goal.


To summarize: 


1. Operations on states generate children of the state currently under examination. 


2. Each new state is checked to see whether it has occurred before (is on either
open or closed), thereby preventing loops. 


3. Each state n is given an f value equal to the sum of its depth in the search space
g(n) and a heuristic estimate of its distance to a goal h(n). The h value guides
search toward heuristically promising states while the g value can prevent search
from persisting indefinitely on a fruitless path. 
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4. States on open are sorted by their f values. By keeping all states on open until
they are examined or a goal is found, the algorithm recovers from dead ends. 


5. As an implementation point, the algorithm’s efficiency can be improved through
maintenance of the open and closed lists, perhaps as heaps or leftist trees.


Best-first search is a general algorithm for heuristically searching any state space
graph (as were the breadth- and depth-first algorithms presented earlier). It is equally
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Figure 4.16 State space generated in heuristic search of the 8-puzzle graph.
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applicable to data- and goal-driven searches and supports a variety of heuristic evaluation
functions. It will continue (Section 4.3) to provide a basis for examining the behavior of
heuristic search. Because of its generality, best-first search can be used with a variety of
heuristics, ranging from subjective estimates of state’s “goodness” to sophisticated
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Figure 4.17 open and closed as they appear after the third iteration
of heuristic search.
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measures based on the probability of a state leading to a goal. Bayesian statistical mea-
sures (Chapters 5 and 9) offer an important example of this approach.


Another interesting approach to implementing heuristics is the use of confidence
measures by expert systems to weigh the results of a rule. When human experts employ a
heuristic, they are usually able to give some estimate of their confidence in its conclu-
sions. Expert systems employ confidence measures to select the conclusions with the
highest likelihood of success. States with extremely low confidences can be eliminated
entirely. This approach to heuristic search is examined in the next section.


4.2.3 Heuristic Search and Expert Systems


Simple games such as the 8-puzzle are ideal vehicles for exploring the design and
behavior of heuristic search algorithms for a number of reasons: 


1. The search spaces are large enough to require heuristic pruning. 


2. Most games are complex enough to suggest a rich variety of heuristic evaluations
for comparison and analysis. 


3. Games generally do not involve complex representational issues. A single node
of the state space is just a board description and usually can be captured in a
straightforward fashion. This allows researchers to focus on the behavior of the
heuristic rather than the problems of knowledge representation. 


4. Because each node of the state space has a common representation (e.g., a board
description), a single heuristic may be applied throughout the search space. This
contrasts with systems such as the financial advisor, where each node represents
a different subgoal with its own distinct description. 


More realistic problems greatly complicate the implementation and analysis of heu-
ristic search by requiring multiple heuristics to deal with different situations in the prob-
lem space. However, the insights gained from simple games generalize to problems such
as those found in expert systems applications, planning, intelligent control, and machine
learning. Unlike the 8-puzzle, a single heuristic may not apply to each state in these
domains. Instead, situation specific problem-solving heuristics are encoded in the syntax
and content of individual problem solving operators. Each solution step incorporates its
own heuristic that determines when it should be applied; the pattern matcher matches the
appropriate operation (heuristic) with the relevant state in the space. 


EXAMPLE 4.2.1: THE FINANCIAL ADVISOR, REVISITED


The use of heuristic measures to guide search is a general approach in AI. Consider again
the financial advisor problem of Chapters 2 and 3, where the knowledge base was treated
as a set of logical implications, whose conclusions are either true or false. In actuality,
these rules are highly heuristic in nature. For example, one rule states that an individual
with adequate savings and income should invest in stocks: 
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savings_account(adequate) ∧ income(adequate) ⇒ investment(stocks).


In reality, it is possible that such an individual may prefer the added security of a
combination strategy or even that of placing all investment money in savings. Thus, the
rule is a heuristic, and the problem solver should try to account for this uncertainty. We
could take additional factors, such as the age of the investor and the long-term prospects
for security and advancement in the investor’s profession, into account to make the rules
more informed and capable of finer distinctions. However, this does not change the
fundamentally heuristic nature of financial advice. 


One way in which expert systems have addressed this issue is to attach a numeric
weight (called a confidence measure or certainty factor) to the conclusion of each rule.
This measures the confidence that may be placed in their conclusions. 


Each rule conclusion is given a confidence measure, say a real number between −1
and 1, with 1 corresponding to certainty (true) and −1 to a definite value of false. Values in
between reflect varying confidence in the conclusion. For example, the preceding rule
may be given a confidence of, say, 0.8, reflecting a small possibility that it may not be cor-
rect. Other conclusions may be drawn with different confidence weights: 


savings_account(adequate) ∧ income(adequate) ⇒ investment(stocks)
with confidence = 0.8. 


savings_account(adequate) ∧ income(adequate) ⇒ investment(combination)
with confidence = 0.5. 


savings_account(adequate) ∧ income(adequate) ⇒ investment(savings)
with confidence = 0.1. 


These rules reflect the common investment advice that although an individual with
adequate savings and income would be most strongly advised to invest in stocks, there is
some possibility that a combination strategy should be pursued and a slight chance that
they may want to continue investing in savings. Heuristic search algorithms can use these
certainty factors in a number of ways. For example, the results of all applicable rules could
be produced along with their associated confidences. This exhaustive search of all possi-
bilities may be appropriate in domains such as medicine. Alternatively, the program might
return only the result with the strongest confidence value, if alternative solutions are not of
interest. This can allow the program to ignore other rules, radically pruning the search
space. A more conservative pruning strategy could ignore rules that draw a conclusion
with a confidence less than a certain value, 0.2 for example.


A number of important issues must be addressed in using confidence measures to
weight rule conclusions. What does it really mean to have a “numeric confidence
measure”? For example, how are the confidences handled if the conclusion of one rule is
used as the premise of others? How are confidences combined in the event that more than
one rule draws the same conclusion? How are the proper confidence measures assigned to
rules in the first place? These issues are discussed in more detail in Chapter 8. 
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4.3 Admissibility, Monotonicity, and Informedness


We may evaluate the behavior of heuristics along a number of dimensions. For instance,
we may desire a solution and also require the algorithm to find the shortest path to the
goal. This could be important when an application might have an excessive cost for extra
solution steps, such as planning a path for an autonomous robot through a
dangerous environment. Heuristics that find the shortest path to a goal whenever it exists
are said to be admissible. In other applications a minimal solution path might not be as
important as overall problem-solving efficiency (see Figure 4.28).


We may want to ask whether any better heuristics are available. In what sense is one
heuristic “better” than another? This is the informedness of a heuristic. 


When a state is discovered by using heuristic search, is there any guarantee that the
same state won’t be found later in the search at a cheaper cost (with a shorter path from the
start state)? This is the property of monotonicity. The answers to these and other questions
related to the effectiveness of heuristics make up the content of this section. 


4.3.1 Admissibility Measures


A search algorithm is admissible if it is guaranteed to find a minimal path to a solution
whenever such a path exists. Breadth-first search is an admissible search strategy. Because
it looks at every state at level n of the graph before considering any state at the level n + 1,
any goal nodes are found along the shortest possible path. Unfortunately, breadth-first
search is often too inefficient for practical use. 


Using the evaluation function f(n) = g(n) + h(n) that was introduced in the last sec-
tion, we may characterize a class of admissible heuristic search strategies. If n is a node in
the state space graph, g(n) measures the depth at which that state has been found in the
graph, and h(n) is the heuristic estimate of the distance from n to a goal. In this sense f(n)
estimates the total cost of the path from the start state through n to the goal state. In deter-
mining the properties of admissible heuristics, we define an evaluation function f*:


f*(n) = g*(n) + h*(n)


where g*(n) is the cost of the shortest path from the start to node n and h* returns the
actual cost of the shortest path from n to the goal. It follows that f*(n) is the actual cost of
the optimal path from a start node to a goal node that passes through node n.


As we will see, when we employ best_first_search with the evaluation function f*,
the resulting search strategy is admissible. Although oracles such as f* do not exist for
most real problems, we would like the evaluation function f to be a close estimate of f*. In
algorithm A, g(n), the cost of the current path to state n, is a reasonable estimate of g*, but
they may not be equal: g(n) ≥ g*(n). These are equal only if the graph search has discov-
ered the optimal path to state n.


Similarly, we replace h*(n) with h(n), a heuristic estimate of the minimal cost to a
goal state. Although we usually may not compute h*, it is often possible to determine
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whether or not the heuristic estimate, h(n), is bounded from above by h*(n), i.e., is always
less than or equal to the actual cost of a minimal path. If algorithm A uses an evaluation
function f in which h(n) h*(n), it is called algorithm A*.


D E F I N I T I O N


ALGORITHM A, ADMISSIBILITY, ALGORITHM A*


Consider the evaluation function f(n) = g(n) + h(n), where


n is any state encountered in the search. 


g(n) is the cost of n from the start state. 


h(n) is the heuristic estimate of the cost of going from n to a goal. 


If this evaluation function is used with the best_first_search algorithm of
Section 4.1, the result is called algorithm A.


A search algorithm is admissible if, for any graph, it always terminates in the optimal
solution path whenever a path from the start to a goal state exists. 


If algorithm A is used with an evaluation function in which h(n) is less than or equal
to the cost of the minimal path from n to the goal, the resulting search algorithm is
called algorithm A* (pronounced “A STAR”). 


It is now possible to state a property of A* algorithms: 


All A* algorithms are admissible. 


The admissibility of A* algorithms is a theorem. An exercise at the end of the chapter
gives directions for developing its proof (see also Nilsson 1980, p 76-78). The theorem
says that any A* algorithm, i.e., one that uses a heuristic h(n) such that h(n) h*(n) for all
n, is guaranteed to find the minimal path from n to the goal, if such a path exists. 


Note that breadth-first search may be characterized as an A* algorithm in which f(n) =
g(n) + 0. The decision for considering a state is based solely on its distance from the start
state. We will show (Section 4.3.3) that the set of nodes considered by an A* algorithm is
a subset of the states examined in breadth-first search. 


Several heuristics from the 8-puzzle provide examples of A* algorithms. Although we
may not be able to compute the value of h*(n) for the 8-puzzle, we may determine when a
heuristic is bounded from above by the actual cost of the shortest path to a goal. 


For instance, the heuristic of counting the number of tiles not in the goal position is
certainly less than or equal to the number of moves required to move them to their goal
position. Thus, this heuristic is admissible and guarantees an optimal (or shortest) solution
path when that path exists. The sum of the direct distances of tiles out of place is also less
than or equal to the minimum actual path. Using small multipliers for direct tile reversals
gives an admissible heuristic. 


<


<
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This approach to proving admissibility of 8-puzzle heuristics may be applied to any
heuristic search problem. Even though the actual cost of the shortest path to a goal may
not always be computed, we can often prove that a heuristic is bounded from above by this
value. When this can be done, the resulting search will terminate in the discovery of the
shortest path to the goal, when such a path exists. 


4.3.2 Monotonicity


Recall that the definition of A* algorithms did not require that g(n) = g*(n). This means
that admissible heuristics may initially reach non-goal states along a suboptimal path, as
long as the algorithm eventually finds an optimal path to all states on the path to a goal. It
is natural to ask if there are heuristics that are “locally admissible,” i.e., that consistently
find the minimal path to each state they encounter in the search. This property is called
monotonicity.


D E F I N I T I O N


MONOTONICITY


A heuristic function h is monotone if 


1. For all states ni and nj, where nj is a descendant of ni,


h(ni) − h(nj)  cost(ni,nj),


where cost(ni,nj) is the actual cost (in number of moves) of going from state
ni to nj.


2. The heuristic evaluation of the goal state is zero, or h(Goal) = 0.


One way of describing the monotone property is that the search space is everywhere
locally consistent with the heuristic employed. The difference between the heuristic mea-
sure for a state and any one of its successors is bound by the actual cost of going between
that state and its successor. This is to say that the heuristic is everywhere admissible,
reaching each state along the shortest path from its ancestors. 


If the graph search algorithm for best-first search is used with a monotonic heuristic,
an important step may be omitted. Because the heuristic finds the shortest path to any state
the first time that state is discovered, when a state is encountered a second time, it is not
necessary to check whether the new path is shorter. It won’t be! This allows any state that
is rediscovered in the space to be dropped immediately without updating the path
information retained on open or closed.


When using a monotonic heuristic, as the search moves through the space, the
heuristic measure for each state n is replaced by the actual cost for generating that piece of
the path to n. Because the actual cost is equal to or larger than the heuristic in each
instance, f will not decrease; i.e., f is monotonically nondecreasing (hence the name). 


<
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A simple argument can show that any monotonic heuristic is admissible. This
argument considers any path in the space as a sequence of states s1, s2,…, sg, where s1 is
the start state and sg is the goal. For the sequence of moves in this arbitrarily selected path:


Summing each column and using the monotone property of h(sg) = 0:


path s1 to sg h(s1)  cost(s1,sg)


This means that monotone heuristic h is A* and admissible. It is left as an exercise whether
or not the admissibility property of a heuristic implies monotonicity. 


4.3.3 When One Heuristic Is Better: More Informed Heuristics


The final issue of this subsection compares two heuristics’ ability to find the minimal path.
An interesting case occurs when the heuristics are A*.


D E F I N I T I O N


INFORMEDNESS


For two A* heuristics h1 and h2, if h1(n)  h2(n), for all states n in the search space,
heuristic h2 is said to be more informed than h1.


We can use this definition to compare the heuristics proposed for solving the
8-puzzle. As pointed out previously, breadth-first search is equivalent to the A* algorithm
with heuristic h1 such that h1(x) = 0 for all states x. This is, trivially, less than h*. We have
also shown that h2, the number of tiles out of place with respect to the goal state, is a lower
bound for h*. In this case h1  h2  h*. It follows that the “number of tiles out of place”
heuristic is more informed than breadth-first search. Figure 4.18 compares the spaces
searched by these two heuristics. Both h1 and h2 find the optimal path, but h2 evaluates
many fewer states in the process. 


Similarly, we can argue that the heuristic that calculates the sum of the direct
distances by which all the tiles are out of place is again more informed than the calculation


s1 to s2 h(s1) − h(s2)  cost(s1,s2) by monotone property


s2 to s3 h(s2) − h(s3)  cost(s2,s3) by monotone property


s3 to s4 h(s3) − h(s4)  cost(s3,s4) by monotone property


⋅ ⋅ ⋅ ⋅ by monotone property


⋅ ⋅ ⋅ ⋅ by monotone property


sg−1 to sg h(sg−1) − h(sg)  cost(sg−1,sg) by monotone property


<


<


<


<


<


<


< <
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of the number of tiles that are out of place with respect to the goal state, and indeed this is
the case. One can visualize a sequence of search spaces, each smaller than the previous
one, converging on the direct optimal path solution. 


If a heuristic h2 is more informed than h1, then the set of states examined by h2 is a
subset of those expanded by h1. This can be verified by assuming the opposite (that there
is at least one state expanded by h2 and not by h1). But since h2 is more informed than h1,
for all n, h2(n) † h1(n), and both are bounded above by h*, our assumption is contradic-
tory.


In general, then, the more informed an A* algorithm, the less of the space it needs to
expand to get the optimal solution. We must be careful, however, that the computations
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Figure 4.18 Comparison of state space searched using heuristic search with
space searched by breadth-first search. The portion of the
graph searched heuristically is shaded. The optimal solution
path is in bold. Heuristic used is f(n) = g(n) + h(n) where h(n)
is tiles out of place.
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necessary to employ the more informed heuristic are not so inefficient as to offset the
gains from reducing the number of states searched. 


Computer chess programs provide an interesting example of this trade-off. One
school of thought uses simple heuristics and relies on computer speed to search deeply
into the search space. These programs often use specialized hardware for state evaluation
to increase the depth of the search. Another school relies on more sophisticated heuristics
to reduce the number of board states searched. These heuristics include calculations of
piece advantages, control of board geography, possible attack strategies, passed pawns,
and so on. Calculation of heuristics itself may involve exponential complexity (an issue
discussed in Section 4.5). Since the total time for the first 40 moves of the game is limited
it is important to optimize this trade-off between search and heuristic evaluation. The opti-
mal blend of blind search and heuristics remains an open empirical question in computer
chess, as can be seen in the Gary Kasparov Deep Blue battle (Hsu 2002). 


4.4 Using Heuristics in Games


At that time two opposing concepts of the game called forth commentary and discussion. 
The foremost players distinguished two principal types of Game, the formal and the 
psychological . . .


—HERMANN HESSE, “Magister Ludi” (The Glass Bead Game)


4.4.1 The Minimax Procedure on Exhaustively Searchable Graphs


Games have always been an important application area for heuristic algorithms.
Two-person games are more complicated than simple puzzles because of the existence of
a “hostile” and essentially unpredictable opponent. Thus, they provide some interesting
opportunities for developing heuristics, as well as greater difficulties in developing search
algorithms.


First we consider games whose state space is small enough to be exhaustively
searched; here the problem is systematically searching the space of possible moves and
countermoves by the opponent. Then we look at games in which it is either impossible or
undesirable to exhaustively search the game graph. Because only a portion of the state
space can be generated and searched, the game player must use heuristics to guide play
along a path to a winning state. 


We first consider a variant of the game nim, whose state space may be exhaustively
searched. To play this game, a number of tokens are placed on a table between the two
opponents; at each move, the player must divide a pile of tokens into two nonempty piles
of different sizes. Thus, 6 tokens may be divided into piles of 5 and 1 or 4 and 2, but not 3
and 3. The first player who can no longer make a move loses the game. For a reasonable
number of tokens, the state space can be exhaustively searched. Figure 4.19 illustrates the
space for a game with 7 tokens. 


In playing games whose state space may be exhaustively delineated, the primary dif-
ficulty is in accounting for the actions of the opponent. A simple way to handle this
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assumes that your opponent uses the same knowledge of the state space as you use and
applies that knowledge in a consistent effort to win the game. Although this assumption
has its limitations (which are discussed in Section 4.4.2), it provides a reasonable basis for
predicting an opponent’s behavior. Minimax searches the game space under this assump-
tion.


The opponents in a game are referred to as MIN and MAX. Although this is partly for
historical reasons, the significance of these names is straightforward: MAX represents the
player trying to win, or to MAXimize her advantage. MIN is the opponent who attempts to
MINimize MAX’s score. We assume that MIN uses the same information and always
attempts to move to a state that is worst for MAX. 


In implementing minimax, we label each level in the search space according to whose
move it is at that point in the game, MIN or MAX. In the example of Figure 4.20, MIN is
allowed to move first. Each leaf node is given a value of 1 or 0, depending on whether it is
a win for MAX or for MIN. Minimax propagates these values up the graph through
successive parent nodes according to the rule:


If the parent state is a MAX node, give it the maximum value among its children.


If the parent is a MIN node, give it the minimum value of its children. 


7


6-1                   5-2                    4-3


4-1-1-1            3-2-1-1              2-2-2-1


5-1-1                   4-2-1                    3-2-2                    3-3-1


3-1-1-1-1                2-2-1-1-1


2-1-1-1-1-1


Figure 4.19 State space for a variant of nim.
Each state partitions the seven
matches into one or more piles.
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The value that is thus assigned to each state indicates the value of the best state that this
player can hope to achieve (assuming the opponent plays as predicted by the minimax
algorithm). These derived values are used to choose among possible moves. The result of
applying minimax to the state space graph for nim appears in Figure 4.20. 


The values of the leaf nodes are propagated up the graph using minimax. Because all
of MIN’s possible first moves lead to nodes with a derived value of 1, the second player,
MAX, always can force the game to a win, regardless of MIN’s first move. MIN could
win only if MAX played foolishly. In Figure 4.20, MIN may choose any of the first move
alternatives, with the resulting win paths for MAX in bold arrows. 


Although there are games where it is possible to search the state space exhaustively,
most interesting games do not. We examine fixed depth search next. 


4.4.2 Minimaxing to Fixed Ply Depth


In applying minimax to more complicated games, it is seldom possible to expand the state
space graph out to the leaf nodes. Instead, the state space is searched to a predefined
number of levels, as determined by available resources of time and memory. This strategy
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6-1                    5-2                    4-3


4-1-1-1            3-2-1-1              2-2-2-1


5-1-1                     4-2-1                    3-2-2                     3-3-1


3-1-1-1-1                2-2-1-1-1


2-1-1-1-1-1


1


1                       1                       1


0                             1                        0                           1


0                      1                       0


0                            1


0


MIN


MAX


MIN


MAX


MIN


MAX


Figure 4.20 Exhaustive minimax for the game of nim. Bold lines indicate
forced win for MAX. Each node is marked with its derived
value (0 or 1) under minimax.
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is called an n-ply look-ahead, where n is the number of levels explored. As the leaves of
this subgraph are not final states of the game, it is not possible to give them values that
reflect a win or a loss. Instead, each node is given a value according to some heuristic
evaluation function. The value that is propagated back to the root node is not an indication
of whether or not a win can be achieved (as in the previous example) but is simply the
heuristic value of the best state that can be reached in n moves from the root. Look-ahead
increases the power of a heuristic by allowing it to be applied over a greater area of the
state space. Minimax consolidates these separate evaluations for the ancestor state.


In a game of conflict, each player attempts to overcome the other, so many game
heuristics directly measure the advantage of one player over another. In checkers or chess,
piece advantage is important, so a simple heuristic might take the difference in the number
of pieces belonging to MAX and MIN and try to maximize the difference between these
piece measures. A more sophisticated strategy might assign different values to the pieces,
depending on their value (e.g., queen vs. pawn or king vs. ordinary checker) or location on
the board. Most games provide limitless opportunities for designing heuristics. 


Game graphs are searched by level, or ply. As we saw in Figure 4.20, MAX and MIN
alternately select moves. Each move by a player defines a new ply of the graph. Game
playing programs typically look ahead a fixed ply depth, determined by the space/time
limitations of the computer. The states on that ply are measured heuristically and the val-
ues are propagated back up the graph using minimax. The search algorithm then uses these
derived values to select among possible next moves. 


After assigning an evaluation to each state on the selected ply, the program propa-
gates a value up to each parent state. If the parent is on a MIN level, the minimum value of
the children is backed up. If the parent is a MAX node, minimax assigns it the maximum
value of its children. 


Maximizing for MAX parents and minimizing for MIN, the values go back up the
graph to the children of the current state. These values are then used by the current state to
select among its children. Figure 4.21 shows minimax on a hypothetical state space with a
four-ply look-ahead. 


3


3 0 2


3 9 0 7 2 6


2 3 5 9 0 7 4 62 1 5


MAX


MIN


MAX


MIN


Figure 4.21 Minimax to a hypothetical state space. Leaf
states show heuristic values; internal states
show backed-up values.
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We can make several final points about the minimax procedure. First, and most
important, evaluations to any (previously decided) fixed ply depth may be seriously mis-
leading. When a heuristic is applied with limited look-ahead, it is possible the depth of the
look-ahead may not detect that a heuristically promising path leads to a bad situation later
in the game. If your opponent in chess offers a rook as a lure to take your queen, and the
evaluation only looks ahead to the ply where the rook is offered, the evaluation is going to
be biased toward this state. Unfortunately, selection of the state may cause the entire game
to be lost! This is referred to as the horizon effect. It is usually countered by searching sev-
eral plies deeper from states that look exceptionally good. This selective deepening of
search in important areas will not make the horizon effect go away, however. The search
must stop somewhere and will be blind to states beyond that point.


There is another effect that occurs in minimaxing on the basis of heuristic evalua-
tions. The evaluations that take place deep in the space can be biased by their very depth
(Pearl 1984). In the same way that the average of products differs from the product of
averages, the estimate of minimax (which is what we desire) is different from the minimax
of estimates (which is what we are doing). In this sense, deeper search with evaluation and
minimax normally does, but need not always, mean better search. Further discussion of
these issues and possible remedies may be found in Pearl (1984). 


Figure 4.22 Heuristic measuring conflict applied to
states of tic-tac-toe.
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In concluding the discussion of minimax, we present an application to tic-tac-toe
(Section 4.0), adapted from Nilsson (1980). A slightly more complex heuristic is used, one
that attempts to measure the conflict in the game. The heuristic takes a state that is to be
measured, counts the total winning lines open to MAX, and then subtracts the total num-
ber of winning lines open to MIN. The search attempts to maximize this difference. If a
state is a forced win for MAX, it is evaluated as +∞; a forced win for MIN as −∞. Figure
4.22 shows this heuristic applied to several sample states. 


Figures 4.23, 4.24, and 4.25 demonstrate the heuristic of Figure 4.22 in a two-ply
minimax. These figures show the heuristic evaluation, minimax backup, and MAX’s
move, with some type of tiebreaker applied to moves of equal value, from Nilsson (1971).


4.4.3 The Alpha-Beta Procedure


Straight minimax requires a two-pass analysis of the search space, the first to descend to
the ply depth and there apply the heuristic and the second to propagate values back up the
tree. Minimax pursues all branches in the space, including many that could be ignored or
pruned by a more intelligent algorithm. Researchers in game playing developed a class of
search techniques called alpha-beta pruning, first proposed in the late 1950s (Newell and
Simon 1976), to improve search efficiency in two-person games (Pearl 1984). 


The idea for alpha-beta search is simple: rather than searching the entire space to the
ply depth, alpha-beta search proceeds in a depth-first fashion. Two values, called alpha
and beta, are created during the search. The alpha value, associated with MAX nodes, can
never decrease, and the beta value, associated with MIN nodes, can never increase. Sup-
pose a MAX node’s alpha value is 6. Then MAX need not consider any backed-up value


Start
node


4 - 5 = -15 - 5 = 06 - 5 = 15 - 5 = 06 - 5 = 1


4 - 6 = -26 - 6 = 05 - 6 = -16 - 6 = 05 - 6 = -1


6 - 4 = 25 - 4 = 1


MAX's move


-1


-2


1


1


Figure 4.23 Two-ply minimax applied to the opening
move of tic-tac-toe, from Nilsson (1971).
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less than or equal to 6 that is associated with any MIN node below it. Alpha is the worst
that MAX can “score” given that MIN will also do its “best”. Similarly, if MIN has beta
value 6, it does not need to consider any MAX node below that has a value of 6 or more. 


To begin alpha-beta search, we descend to full ply depth in a depth-first fashion and
apply our heuristic evaluation to a state and all its siblings. Assume these are MIN nodes.
The maximum of these MIN values is then backed up to the parent (a MAX node, just as
in minimax). This value is then offered to the grandparent of these MINs as a potential
beta cutoff. 


Next, the algorithm descends to other grandchildren and terminates exploration of
their parent if any of their values is equal to or larger than this beta value. Similar
procedures can be described for alpha pruning over the grandchildren of a MAX node. 


Two rules for terminating search, based on alpha and beta values, are: 


1. Search can be stopped below any MIN node having a beta value less than or
equal to the alpha value of any of its MAX node ancestors. 


2. Search can be stopped below any MAX node having an alpha value greater than
or equal to the beta value of any of its MIN node ancestors. 


Figure 4.24 Two-ply minimax and one of two possible
MAX second moves, from Nilsson (1971).
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Alpha-beta pruning thus expresses a relation between nodes at ply n and nodes at ply
n + 2 under which entire subtrees rooted at level n + 1 can be eliminated from consider-
ation. As an example, Figure 4.26 takes the space of Figure 4.21 and applies alpha-beta
pruning. Note that the resulting backed-up value is identical to the minimax result and the
search saving over minimax is considerable. 


With a fortuitous ordering of states in the search space, alpha-beta can effectively
double the depth of the search space considered with a fixed space/time computer commit-
ment (Nilsson 1980). If there is a particular unfortunate ordering, alpha-beta searches no
more of the space than normal minimax; however, the search is done in only one pass. 


4.5 Complexity Issues


The most difficult aspect of combinatorial problems is that the “explosion” often takes
place without program designers realizing that it is happening. Because most human activ-
ity, computational and otherwise, takes place in a linear-time world, we have difficulty
appreciating exponential growth. We hear the complaint: “If only I had a larger (or faster
or highly parallel) computer my problem would be solved.” Such claims, often made in
the aftermath of the explosion, are usually rubbish. The problem wasn’t understood prop-
erly and/or appropriate steps were not taken to address the combinatorics of the situation. 


The full extent of combinatorial growth staggers the imagination. It has been esti-
mated that the number of states produced by a full search of the space of possible chess


3 - 2 = 12 - 2 = 02 - 2 = 0−∞


−∞


2 - 1 = 13 - 1 = 22 - 1 = 1−∞


−∞


3 - 1 = 22 - 1 = 13 - 1 = 22 - 1 = 1


1


1


3 - 2 = 12 - 2 = 03 - 2 = 1−∞ 3 - 1 = 23 - 1 = 22 - 1 = 1−∞


−∞−∞


DCBA


Start
node


MAX's move


Figure 4.25 Two-ply minimax applied to X s move near the end
of the game, from Nilsson (1971). 
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moves is about 10120. This is not “just another large number;” it is comparable to the num-
ber of molecules in the universe or the number of nanoseconds since the “big bang”. 


Several measures have been developed to help calculate complexity. One of these is
the branching factor of a space. We define branching factor as the average number of
branches (children) that are expanded from any state in the space. The number of states at
depth n of the search is equal to the branching factor raised to the nth power. Once the
branching factor is computed for a space, it is possible to estimate the search cost to gener-
ate a path of any particular length. Figure 4.27 gives the relationship between B (branch-
ing), L (path length), and T (total states in the search) for small values. The figure is
logarithmic in T, so L is not the “straight” line it looks in the graph. 


Several examples using this figure show how bad things can get. If the branching fac-
tor is 2, it takes a search of about 100 states to examine all paths that extend six levels
deep into the search space. It takes a search of about 10,000 states to consider paths 12
moves deep. If the branching can be cut down to 1.5 (by some heuristic), then a path twice
as long can be examined for the same number of states searched.


The mathematical formula that produced the relationships of Figure 4.27 is:


T = B + B2 + B3 + ⋅ ⋅ ⋅ + BL


with T total states, L path length, and B branching factor. This equation reduces to: 


T = B(BL − 1)/(B − 1) 
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Figure 4.26 Alpha-beta pruning applied to state space of
Figure 4.21. States without numbers are
not evaluated.
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Measuring a search space is usually an empirical process done by considerable play-
ing with a problem and testing its variants. Suppose, for example, we wish to establish the
branching factor of the 8-puzzle. We calculate the total number of possible moves: 2 from
each corner for a total of 8 corner moves, 3 from the center of each side for a total of 12,
and 4 from the center of the grid for a grand total of 24. This divided by 9, the different
number of possible locations of the blank, gives an average branching factor of 2.67. As
can be seen in Figure 4.27, this is not very good for a deep search. If we eliminate moves
directly back to a parent state (already built into the search algorithms of this chapter)
there is one move fewer from each state. This gives a branching factor of 1.67, a consider-
able improvement, which might (in some state spaces) make exhaustive search possible. 


As we considered in Chapter 3, the complexity cost of an algorithm can also be
measured by the sizes of the open and closed lists. One method of keeping the size of
open reasonable is to save on open only a few of the (heuristically) best states. This can
produce a better focused search but has the danger of possibly eliminating the best, or
even the only, solution path. This technique of maintaining a size bound on open, often a
function of the number of steps expected for the search, is called beam search.


In the attempt to bring down the branching of a search or otherwise constrain the
search space, we presented the notion of more informed heuristics. The more informed the
search, the less the space that must be searched to get the minimal path solution. As we
pointed out in Section 4.4, the computational costs of the additional information needed to
further cut down the search space may not always be acceptable. In solving problems on a
computer, it is not enough to find a minimum path. We must also minimize total cpu costs. 


Figure 4.28, taken from an analysis by Nilsson (1980), is an informal attempt to get at
these issues. The “informedness” coordinate marks the amount of information costs
included in the evaluation heuristic that are intended to improve performance. The cpu
coordinate marks the cpu costs for implementing state evaluation and other aspects of the
search. As the information included in the heuristic increases, the cpu cost of the heuristic
increases. Similarly, as the heuristic gets more informed, the cpu cost of evaluating states
gets smaller, because fewer states are considered. The critical cost, however, is the total
cost of computing the heuristic PLUS evaluating states, and it is usually desirable that this
cost be minimized. 


Finally, heuristic search of and/or graphs is an important area of concern, as the state
spaces for expert systems are often of this form. The fully general search of these struc-
tures is made up of many of the components already discussed in this and the preceding
chapter. Because all and children must be searched to find a goal, the heuristic estimate of
the cost of searching an and node is the sum of the estimates of searching the children. 


There are many further heuristic issues, however, besides the numerical evaluation of
individual and states, in the study of and/or graphs, such as are used in knowledge based
systems. For instance, if the satisfaction of a set of and children is required for solving a
parent state, which child should be considered first? The state most costly to evaluate? The
state most likely to fail? The state the human expert considers first? The decision is impor-
tant both for computational efficiency as well as overall cost, e.g., in medical or other
diagnostic tests, of the knowledge system. These, as well as other related heuristic issues
are visited again in Chapter 8.
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Figure 4.27 Number of nodes generated as a function of branching factor,
B, for various lengths, L, of solution paths. The relating
equation is: T = B(BL − 1)/(B − 1), adapted from Nilsson (1980).


Figure 4.28 Informal plot of cost of searching and cost of
computing heuristic evaluation against 
informedness of heuristic, adapted from Nilsson (1980).
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4.6 Epilogue and References


The search spaces for interesting problems tend to grow exponentially; heuristic search is
a primary tool for managing this combinatorial complexity. Various control strategies for
implementing heuristic search were presented in this chapter. 


We began the chapter with two traditional algorithms, both of them inherited from the
discipline of operations research, hill-climbing and dynamic programming. We recom-
mend reading the paper by Arthur Samuel (1959) discussing his checker playing program
and its sophisticated use of hill-climbing and minimax search. Samuel also presents early
interesting examples of a sophisticated memory management system and a program that is
able to learn. Bellman’s (1956) design of algorithms for dynamic programming remains
important in in areas such as natural language processing where it is necessary to compare
strings of characters, words, or phonemes. Dynamic programing is often called the for-
ward/backward or Viterbi algorithms. For impotant examples of use of dynamic program-
ming for language analysis see Jurafsky and Martin (2009) and Chapter 15.


We next presented heuristics in the context of traditional state space search. We pre-
sented the A and A* algorithms for implementing best-first search. Heuristic search was
demonstrated using simple games such as the 8-puzzle and extended to the more complex
problem spaces generated by rule-based expert systems (Chapter 8). The chapter also
applied heuristic search to two-person games, using look-ahead with minimax and alpha-
beta pruning to try to predict the behavior of the opponent. After discussing A* algo-
rithms, we analyzed their behavior, considering properties including admissibility, mono-
tonicity, and informedness.


The discipline of complexity theory has essential ramifications for virtually every
branch of computer science, especially the analysis of state space growth and heuristic
pruning. Complexity theory examines the inherent complexity of problems (as opposed to
algorithms applied to these problems). The key conjecture in complexity theory is that
there exists a class of inherently intractable problems. This class, referred to as NP-hard
(Nondeterministically Polynomial), consists of problems that may not be solved in less
than exponential time without resorting to the use of heuristics. Almost all interesting
search problems belong to this class. We especially recommend Computers and Intracta-
bility by Michael R. Garey and David S. Johnson (1979) and Algorithms from P to NP, Vol.
I: Design and Efficiency by Bernard Moret and Henry Shapiro (1991) for discussing these
issues.


The book Heuristics by Judea Pearl (1984) provides a comprehensive treatment of the
design and analysis of heuristic algorithms. R. E. Korf (1987, 1998, 1999, 2004) continues
research on search algorithms, including an analysis of iterative deepening and the devel-
opment of the IDA* algorithm. IDA* integrates iterative deepening with A* to obtain lin-
ear bounds on open for heuristic search. Chess and other game playing programs have
held an abiding interest across the history of AI (Hsu 2002), with results often presented
and discussed at the annual conferences. 


We are indebted to Nils Nilsson (1980) for the approach and many of the examples of
this chapter. 
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4.7 Exercises


1. Extend the the “most wins” heuristic for tic-tac-toe two plys deeper in the search space of
Figure 4.3. What is the total number of states examined using this heuristic? Would the
traditional hill-climbing algorithm work in this situation? Why?


2. Use the backward component of the dynamic programing algorithm to find another opti-
mal alignment of the characters of Figure 4.6. How many optimal alignments are there? 


3. With the Levenshtein metric of Section 4.1.2, use dynamic programming to determine the
minimum edit distance from source strings sensation and excitation to target string
execution.


4. Give a heuristic that a block-stacking program might use to solve problems of the form
“stack block X on block Y.” Is it admissible? Monotonic? 


5. The sliding-tile puzzle consists of three black tiles, three white tiles, and an empty space in
the configuration shown in Figure 4.29.
The puzzle has two legal moves with associated costs:


A tile may move into an adjacent empty location. This has a cost of 1. A tile can hop
over one or two other tiles into the empty position. This has a cost equal to the
number of tiles jumped over.


The goal is to have all the white tiles to the left of all the black tiles. The position of the
blank is not important. 


a. Analyze the state space with respect to complexity and looping. 
b. Propose a heuristic for solving this problem and analyze it with respect to


admissibility, monotonicity, and informedness. 


6. Compare the three 8-puzzle heuristics of Figure 4.14 with the heuristic of adding the sum
of distances out of place to 2 times the number of direct reversals. Compare them in terms
of:


a. Accuracy in estimating distance to a goal. This requires that you first derive the
shortest path solution and use it as a standard. 


b. Informedness. Which heuristic most effectively prunes the state space? 
c. Are any of these three 8-puzzle heuristics monotonic?
d. Admissibility. Which of these heuristics are bounded from above by the actual cost


of a path to the goal? Either prove your conclusions for the general case or give a
counterexample. 


7. a. As presented in the text, best-first search uses the closed list to implement loop
detection. What would be the effect of eliminating this test and relying on the depth
test, g(n), to detect loops? Compare the efficiencies of the two approaches. 


B B B W W W


Figure 4.29 The sliding block puzzle.








CHAPTER 4 / HEURISTIC SEARCH 163


b. best_first_search does not test a state to see whether it is a goal until it is removed
from the open list. This test could be performed when new states are generated.
What effect would doing so have on the efficiency of the algorithm? Admissibility?


8. Prove A* is admissible. Hint: the proof should show that: 
a. A* search will terminate.
b. During its execution there is always a node on open that lies on an optimal path to


the goal. 
c. If there is a path to a goal, A* will terminate by finding the optimal path. 


9. Does admissibility imply monotonicity of a heuristic? If not, can you describe when
admissibility would imply monotonicity? 


10. Prove that the set of states expanded by algorithm A* is a subset of those examined by
breadth-first search. 


11. Prove that more informed heuristics develop the same or less of the search space. Hint:
formalize the argument presented in Section 4.3.3. 


12. A Caesar cipher is an encryption scheme based on cyclic permutations of the alphabet,
with the i-th letter of the alphabet replaced by the (i + n)-th letter of the alphabet. For
example, in a Caesar cipher with a shift of 4, “Caesar” would be encrypted as “Geiwev.”


a. Give three heuristics that might be used for solving Caesar ciphers. 
b. In a simple substitution cipher, each letter is replaced by another letter under some


arbitrary one-to-one mapping. Which of the heuristics proposed for the Caesar cipher
may be used to solve substitution ciphers? Explain. (Thanks to Don Morrison for
this problem.) 


13. Perform minimax on the tree shown in Figure 4.30.


14. Perform a left-to-right alpha-beta prune on the tree of Exercise 13. Perform a right-to-left
prune on the same tree. Discuss why a different pruning occurs. 
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15. Consider three-dimensional tic-tac-toe. Discuss representational issues; analyze the
complexity of the state space. Propose a heuristic for playing this game.


16. Perform alpha-beta pruning on the tic-tac-toe search of Figures 4.23, 4.24, and 4.25. How
many leaf nodes can be eliminated in each case? 


17. a. Create an algorithm for heuristically searching and/or graphs. Note that all descen-
dants of an and node must be solved to solve the parent. Thus, in computing heuristic
estimates of costs to a goal, the estimate of the cost to solve an and node must be at
least the sum of the estimates to solve the different branches. 


b. Use this algorithm to search the graph in Figure 4.31.
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STOCHASTIC METHODS


God does not play dice. . .


—ALBERT EINSTEIN (His answer to the credibility of Quantum Theory)


God not only plays dice, but he sometimes throws them where they can’t be seen. . .


—STEPHEN HAWKING


Probable impossibilities are to be preferred to improbable possibilities. . .


—ARISTOTLE As quoted by Bobby Wolfe in “Aces on Bridge”, 2003


5.0 Introduction


Chapter 4 introduced heuristic search as an approach to problem solving in domains where
either a problem does not have an exact solution or where the full state space may be too
costly to calculate. In this chapter we propose the stochastic methodology as appropriate
for these situations. Probabilistic reasoning is also suitable for situations where state infor-
mation is found from sampling an information base and causal models are learned from
data.


One important application domain for the use of the stochastic methodology is diag-
nostic reasoning where cause/effect relationships are not always captured in a purely
deterministic fashion, as is often possible in the knowledge-based approaches to problem
solving that we saw in Chapters 2, 3, 4, and will see again in Chapter 8. A diagnostic situ-
ation usually presents evidence, such as fever or headache, without further causative justi-
fication. In fact, the evidence can often be indicative of several different causes, e.g., fever
can be caused by either flu or an infection. In these situations probabilistic information can
often indicate and prioritize possible explanations for the evidence.


Another interesting application for the stochastic methodology is gambling, where
supposedly random events such as the roll of dice, the dealing of shuffled cards, or the
spin of a roulette wheel produce possible player payoff. In fact, in the 18th century, the
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attempt to provide a mathematical foundation for gambling was an important motivation
for Pascal (and later Laplace) to develop a probabilistic calculus.


Finally, as observed in Section 1.1.4, a “situated” accounting of intelligence suggests
that human decisions often emerge from complex, time-critical, and embodied environ-
ments where a fully mechanistic calculus may simply not be definable, or, if defined, may
not compute answers in a usable time frame. In these situations intelligent actions may
best be seen as stochastic responses to anticipated costs and benefits.


We next describe several problem areas, among many, where the stochastic methodol-
ogy is often used in the computational implementation of intelligence; these areas will be
major topics in later chapters.


1. Diagnostic reasoning. In medical diagnosis, for example, there is not always an
obvious cause/effect relationship between the set of symptoms presented by the
patient and the causes of these symptoms. In fact, the same sets of symptoms
often suggest multiple possible causes. Probabilistic models are also important in
complex mechanical situations, such as monitoring aircraft or helicopter flight
systems. Rule-based (Chapter 8) and probabilistic (Chapters 9 and 13) systems
have both been applied in these and other diagnostic domains.


2. Natural language understanding. If a computer is to understand and use a
human language, that computer must be able to characterize how humans them-
selves use that language. Words, expressions, and metaphors are learned, but also
change and evolve as they are used over time. The stochastic methodology sup-
ports the understanding of language; for example, when a computational system
is trained on a database of specific language use (called a corpus linguistics). We
consider these language issues further in this chapter as well as in Chapter 15.


3. Planning and scheduling. When an agent forms a plan, for example, a vacation
trip by automobile, it is often the case that no deterministic sequence of opera-
tions is guaranteed to succeed. What happens if the car breaks down, if the car
ferry is cancelled on a specific day, if a hotel is fully booked, even though a reser-
vation was made? Specific plans, whether for humans or robots, are often
expressed in probabilistic language. Planning is considered in Section 8.4.


4. Learning. The three previous areas mentioned can also be seen as domains for
automated learning. An important component of many stochastic systems is that
they have the ability to sample situations and learn over time. Some sophisticated
systems are able to both sample data and predict outcomes as well as learn new
probabilistic relationships based on data and outcomes. We consider learning in
Part IV, and stochastic approaches to learning in Chapter 13.


The stochastic methodology has its foundation in the properties of counting. The
probability of an event in a situation is described as the ratio of the number of ways the
event can occur to the total number of possible outcomes of that event. Thus, the probabil-
ity that an even number results from the roll of a fair die is the total number of even out-
comes (here 2, 4, or 6) over the total number of outcomes (1, 2, 3, 4, 5, or 6), or 1/2. Again,
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the probability of drawing a marble of a certain color from a bag of marbles is the ratio of
the number of marbles of that color to the total number of marbles in the bag. In Section
5.1 we introduce basic counting techniques, including the sum and product rules. Because
of their importance in counting, we also present the permutations and combinations of dis-
crete events. This is an optional section that can be skipped by readers with a sufficient
background in discrete mathematics.


In Section 5.2, we introduce a formal language for reasoning with the stochastic
methodology. This includes the definitions of independence and different types of random
variables. For example, for probabilistic propositions, random variables may be boolean
(true or false), discrete, the integers 1 to 6 as in rolling a fair die, or continuous, a function
defined on the real numbers. 


In Section 5.3, we present Bayes’ theorem which supports most approaches to sto-
chastic modeling and learning (Section 9.3 and Chapter 13). Bayes’ rule is important for
interpreting new evidence in the context of the prior knowledge or experience. In Section
5.4 we present two applications of stochastic methods, including probabilistic finite state
automata and a methodology for predicting English word patterns based on sampled data.


In Chapters 9 and 13 we continue presentation of probabilistic approaches to reason-
ing,  including Bayesian belief networks (BBNs), an introduction to Markov models
(HMMs), and first-order representation systems supporting stochastic modeling. These
models use the directed acyclic graph (or DAG) formalism, and are referred to as graphi-
cal models. In Chaper 13 we present stochastic approaches to machine learning.


5.1 The Elements of Counting (optional)


The foundation for the stochastic methodology is the ability to count the elements of an
application domain. The basis for collecting and counting elements is, of course, set the-
ory, in which we must be able to unequivocally determine whether an element is or is not
a member of a set of elements. Once this is determined, there are methodologies for count-
ing elements of sets, of the complement of a set, and the union and intersection of multiple
sets. We review these techniques in this section.


5.1.1 The Addition and Multiplication Rules


If we have a set A, the number of the elements in set A is denoted by |A|, called the cardi-
nality of A. Of course, A may be empty (the number of elements is zero), finite, countably
infinite, or uncountably infinite. Each set is defined in terms of a domain of interest or uni-
verse, U, of elements that might be in that set. For example, the set of male people in a
classroom may be defined in the context, or or in the universe, of all the people in that
room. Similarly, the roll of a 3 on a fair die may be seen as one of a set of six possible out-
comes.


The domain or universe of a set A is thus also a set and is used to determine the com-
plement of that set, A. For example, the complement of the set of all males in the class-
room just mentioned is the set of all females, and the complement of the {3} roll of the fair
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die is {1, 2, 4, 5, 6}. One set A is a subset of another set B, , if every element of the
set A is also an element of the set B. Thus, trivially, every set is a subset of itself, any set A
is a subset of its universe, and the empty set, denoted { } or 


 


φ, is a subset of every set.
The union of two sets A and B, A


 


∪ B, may be described as the set of all elements in
either set. The number of elements in the union of two sets is the total of all the elements
in each of the sets minus the number of elements that are in both sets. The justification for
this, of course, is the fact that each distinct element in a set may only be counted once.
Trivially, if the two sets have no elements in common, the number of the elements in their
union is the sum of the number of elements in each set.


The intersection of two sets A and B, A


 


∩ B, is the set of all elements common to both
sets. We now give examples of a number of the concepts just defined.


Suppose the universe, U, is the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Let A be the set {1, 3, 5, 7, 9}
Let B be the set {0, 2, 4, 6, 8}
Let C be the set {4, 5, 6}
Then |A| is 5, |B| is 5, |C| is 3, and |U| is 10.
Also, ,   and  A


 


∪ B = U, |B| = |A|, A = B
Further, |A


 


∪ B| = |A| + |B| = 10, since A


 


∩ B = { }, but 
|A


 


∪ C| = |A| + |C| - |A


 


∩ C| = 7, since A


 


∩ C = {5} 


We have just presented the major components for the addition rule for combining two
sets. For any two sets A and C, the number of elements in the union of these sets is:


|A ∪ C| = |A| + |C| - |A ∩ C|


Note that this addition rule holds whether the two sets are disjoint or have elements in
common. A similar addition rule holds for three sets A, B, and C, again whether or not
they have elements in common:


|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|


An argument similar to that made earlier can be used to justify this equation. Similar
inclusion/exclusion equations are available, and easily demonstrated, for the addition of
sets of elements of more than three sets.


The multiplication principle for counting states that if we have two sets of elements A
and B of size a and b respectively, then there are a x b unique ways of combining the ele-
ments of the sets together. The justification for this, of course, is that for each of the a ele-
ments of A there are b pairings for that element. The multiplication principle supports
many of the techniques used in counting, including the Cartesian product of sets, as well
as permutations and combinations of sets.


The Cartesian product of two sets A and B, denoted A X B, is the set of all ordered
pairs (a, b) where a is an element of set A and b is an element of set B; or more formally:


A X B = {(a, b) | (a ∈ A) ∧ (b ∈ B)}


A B⊆


A U⊆ B U⊆
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and by the multiplication principle of counting:


|A X B| = |A| x |B|


The Cartesian product can, of course, be defined across any number of sets. The prod-
uct for n sets will be the set of n-tuples where the first component of the n-tuple is any ele-
ment of the first set, the second component of the n-tuple is any element of the second set,
and so on. Again, the number of unique n-tuples that result is the product of the number of
elements in each set.


5.1.2 Permutations and Combinations


A permutation of a set of elements is an arranged sequence of the elements of that set.
In this arrangement of elements, each may be used only once. An example permutation is
an arrangement or ordering of a set of ten books on a shelf that can hold all ten. Another
example is the assignment of specific tasks to four of a group of six children.


We often wish to know how many (unique) permutations there are of a set of n ele-
ments. We use multiplication to determine this. If there are n elements in set A, then the set
of permutations of these elements is a sequence of length n, where the first element of the
sequence is any of the n elements of A, the second element of the sequence is any of the (n
- 1) remaining elements of A, the third element of the sequence is any of the (n - 2)
remaining elements, and so on. 


The order in which the elements are placed in the permutation sequence is unimpor-
tant, i.e., any of the n elements of the set may be placed first in any location in the
sequence, any of the n - 1 remaining elements may be placed second in any of the n - 1
remaining locations of the permutation sequence, and so on. Finally, by the multiplication
principle, there are n! permutation sequences for this set of n elements.


We can restrict the number of elements in a permutation of a set A to be any number
greater than or equal to zero, and less than or equal to the number of elements n in the
original set A. For example, we might want to know how many distinct orderings there are
of ten possible books on a shelf that can only hold six of them at a time. If we wanted to
determine the number of permutations of the n elements of A taken r at a time, where 0 ≤ r
≤ n, we use multiplication as before, except that now we only have r places in each permu-
tation sequence:


n x (n - 1) x (n - 2) x (n - 3) x ... x (n - (r - 1))


Alternatively, we can represent this equation as:


n x (n - 1) x (n - 2) x (n - 3) x ... x (n - (r - 1)) x (n - r) x (n - r -1) x ... x 2 x 1
                                                 (n - r) x (n - r -1) x ... x 2 x 1


or equivalently, the number of permutations of n elements taken r at a time, which is sym-
bolized as nPr, is:
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nPr  =      n!
                (n - r)!


The combination of a set of n elements is any subset of these elements that can be
formed. As with permutations, we often want to count the number of combinations of
items that can be formed, given a set of items. Thus, there is only one combination of the n
elements of a set of n items. The key idea here is that the number of combinations repre-
sents the number of subsets of the full set of elements that can be created. In the bookshelf
example, combinations represent the different subsets of six books, the books on the shelf,
that can be formed from the full set of ten books. Another example of combinations is the
task of forming four-member committees from a group of fifteen people. Each person is
either on the committee or not, and it doesn’t make any difference whether they are the
first or last member chosen. A further example is a five-card hand in a poker game. The
order in which the cards are dealt makes no difference to the ultimate value of the hand. (It
can make a huge difference to the value of the betting, if the last four cards are dealt face-
up as in traditional stud poker, but the ultimate value of the hand is independent of the
dealt order).


The number of combinations of n elements taken r at a time, where 0 ≤ r ≤ n, is sym-
bolized by nCr. A straightforward method for determining the number of these combina-
tions is to take the number of permutations, nPr, as we did already, and then divide out the
number of duplicate sets. Since any r element subset of n elements has r! permutations, to
get the number of combinations of n elements taken r at a time we divide the number of
permutations of n elements taken r at a time by r!. Thus we have:


nCr   =   nPr      =          n!
 r!           (n - r)! r!


There are many other variations of the counting principles just presented, some of
which will be found in the Chapter 5 exercises. We recommend any discrete mathematics
textbook for further development of these counting techniques.


5.2 Elements of Probability Theory


With the foundation in the counting rules presented in Section 5.1, we can now introduce
probability theory. First, in Section 5.2.1, we consider some fundamental definitions, such
as the notion of whether two or more events are independent of each other. In Section
5.2.2 we demonstrate how to infer explanations for particular data sets. This will set us up
to consider several examples of probabilistic inference in Section 5.3 and Bayes’ theorem
in Section 5.4.


5.2.1 The Sample Space, Probabilities, and Independence


The following definitions, the foundation for a theory for probability, were first formal-
ized by the French mathematician Laplace (1816) in the early nineteenth century. As
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mentioned in the introduction to Chapter 5, Laplace was in the process of creating a calcu-
lus for gambling!


D E F I N I T I O N


ELEMENTARY EVENT


An elementary or atomic event is a happening or occurrence that cannot be made up
of other events.


EVENT, E


An event is a set of elementary events.


SAMPLE SPACE, S


The set of all possible outcomes of an event E is the sample space S or universe for
that event. 


PROBABILITY, p


The probability of an event E in a sample space S is the ratio of the number of ele-
ments in E to the total number of possible outcomes of the sample space S of E. Thus,
p(E) = |E| / |S|.


For example, what is the probability that a 7 or an 11 are the result of the roll of two
fair dice? We first determine the sample space for this situation. Using the multiplication
principle of counting, each die has 6 outcomes, so the total set of outcomes of the two dice
is 36. The number of combinations of the two dice that can give a 7 is 1,6; 2,5; 3,4; 4,3;
5,2; and 6,1 - 6 altogether. The probability of rolling a 7 is thus 6/36 = 1/6. The number of
combinations of the two dice that can give an 11 is 5,6; 6,5 - or 2, and the probability of
rolling an 11 is 2/36 = 1/18. Using the additive property of distinct outcomes, there is 1/6
+ 1/18 or 2/9 probability of rolling either a 7 or 11 with two fair dice.


In this 7/11 example, the two events are getting a 7 and getting an 11. The elementary
events are the distinct results of rolling the two dice. Thus the event of a 7 is made up of
the six atomic events (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). The full sample space is the
union of all thirty-six possible atomic events, the set of all pairs that result from rolling the
dice. As we see soon, because the events of getting a 7 and getting an 11 have no atomic
events in common, they are independent, and the probability of their sum (union) is just
the sum of their individual probabilities.


In a second example, how many four-of-a-kind hands can be dealt in all possible five-
card poker hands? First, the set of atomic events that make up the full space of all five-
card poker hands is the combination of 52 cards taken 5 at a time. To get the total number
of four-of-a-kind hands we use the multiplication principle. We multiply the number of
combinations of 13 cards taken 1 at a time (the number of different kinds of cards: ace, 2,
3..., king) times the number of ways to pick all four cards of the same kind (the combina-
tion of 4 cards taken 4 at a time) times the number of possible other cards that fill out the 5
card hand (48 cards remain). Thus, the probability of a four-of-a-kind poker hand is:
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(13C1  x  4C4 x  48C1)  / 52C5   = 13 x 1 x 48 / 2,598,960 ≈ 0.00024


Several results follow immediately from the definitions just made. First, the probabil-
ity of any event E from the sample space S is:


0 ≤ p(E) ≤ 1, where 


A second result is that the sum of the probabilities of all possible outcomes in S is 1. To
see this, note that the definition for sample space S indicates that it is made up of the
union of all individual events E in the problem.


As a third result of the definitions, note that the probability of the complement of an
event is:


p(E) = (|S| - |E|)  /  |S|  =  (|S|  /  |S|) -  (|E|  /  |S|) = 1 -  p(E).


The complement of an event is an important relationship. Many times it is easier to deter-
mine the probability of an event happening as a function of it not happening, for example,
determining the probability that at least one element of a randomly generated bit string of
length n is a 1. The complement is that all the bits in the string are 0, with probability 2-n,
with n the length of the string. Thus, the probability of the original event is 1 - 2-n.


Finally, from the probability of the complement of an event set we work out the prob-
ability when no event occurs, sometimes referred to as a contradictory or false outcome:


p({ }) = 1 -  p({ }) = 1 - p(S) = 1 - 1 = 0, or alternatively,
 = |{ }| / |S| = 0 / |S| = 0


A final important relationship, the probability of the union of two sets of events, may
be determined from the principle of counting presented in Section 5.1, namely that for any
two sets A and B: |A ∪ B| = |A| + |B| - |A ∩ B|. From this relationship we can determine the
probability of the union of any two sets taken from the sample space S:


p(A ∪ B) = |A ∪  B|  /  |S|  =  (|A|  +  |B|  -  |A ∩  B|)  /  |S|
 = |A|  /  |S|  +  |B|  /  |S|  -  |A ∩ B|  /  |S|  =  p(A)  +  p(B)  -  p(A ∩  B)


Of course, this result may be extended to the union of any number of sets, along the line of
the principle of inclusion/exclusion presented in Section 5.1.


We already presented an example of determining the probability of the union of two
sets: The probability of rolling a 7 or an 11 with two fair dice. In this example, the formula
just presented was used with the probability of the pairs of dice that gave a 7 disjoint from
the pairs of dice that gave an 11. We may also use this formula in the more general case
when the sets are not disjoint. Suppose we wanted to determine, rolling two fair dice, the
probability of rolling an 8 or of rolling pairs of the same number. We would simply calcu-
late the probability of this union where there is one elementary event - (4,4) - that is in the
intersection of both desired outcome events.


E S⊆
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We next consider the probability of two independent events. Suppose that you are a
player in a four-person card game where all the cards are dealt out equally. If you do not
have the queen of spades, you can conclude that each of the other players has it with prob-
ability 1/3. Similarly, you can conclude that each player has the ace of hearts with proba-
bility 1/3 and that any one player has both cards with probability 1/3 × 1/3, or 1/9. In this
situation we assumed that the events of getting these two cards are independent, even
though this is only approximately true. We formalize this intuition with a definition.


D E F I N I T I O N


INDEPENDENT EVENTS


Two events A and B are independent if and only if the probability of their both occur-
ring is equal to the product of their occurring individually. This independence relation
is expressed: 


p(A ∩ B) = p(A) * p(B)


We sometimes use the equivalent notation p(s,d) for p(s ∩ d). We clarify the notion
of independence further in the context of conditional probabilities in Section 5.2.4.


Because the description of independence of events as just presented is an if and only if
relationship, we can determine whether two events are independent by working out their
probabilistic relationships. Consider the situation where bit strings of length four are ran-
domly generated. We want to know whether the event of the bit string containing an even
number of 1s is independent of the event where the bit string ends with a 0. Using the mul-
tiplication principle, each bit having 2 values, there are a total of 24 = 16 bit strings of
length 4.


There are 8 bit strings of length four that end with a 0: {1110, 1100, 1010, 1000,
0010, 0100, 0110, 0000}. There are also 8 bit strings that have an even number of 1s:
{1111, 1100, 1010, 1001, 0110, 0101, 0011, 0000}. The number of bit strings that have
both an even number of 1s and end with a 0 is 4: {1100, 1010, 0110, 0000}. Now these
two events are independent since


p({even number of 1s} ∩ {end with 0}) = p({even number of 1s}) x p({end with 0})
4/16 = 8/16 x  8/16 = 1/4


Consider this same example of randomly generated bit strings of length four. Are the
two following events independent: the bit strings have an even number of 1s, and the bit
strings end in a 1? When two or more events are not independent, that is the probability of
any one event affects the probability of the others, it requires the notion of conditional
probability to work out their relationships. We see this in Section 5.2.4.


Before closing this section, we note that other axiom systems supporting the founda-
tions of probability theory are possible, for instance, as an extension to the propositional
calculus (Section 2.1). As an example of the set-based approach we have taken, the Rus-
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sian mathematician Kolmogorov (1950) proposed a variant of the following axioms,
equivalent to our definitions. From these three axioms Kolmogorov systematically con-
structed all of probability theory.


1. The probability of event E in sample space S is between 0 and 1, i.e., 0 ≤ p(E) ≤ 1.
2. When the union of all E = S, p(S) = 1, and p(S ) = 0.
3. The probability of the union of two sets of events A and B is:


p(A ∪ B) = p(A)  +  p(B)  -  p(A ∩ B)


In the next section we present a simple example of probabilistic reasoning.


5.2.2 Probabilistic Inference: An Example


We now demonstrate examples of reasoning with the ideas just presented. Suppose you
are driving the interstate highway system and realize you are gradually slowing down
because of increased traffic congestion. You begin to search for possible explanations of
the slowdown. Could it be road construction? Has there been an accident? All you are
aware of is that you are slowing down. But wait! You have access to the state highway sta-
tistics, and with your new automobile based GUI and inferencing system you can down-
load to your car’s computer the relevant statistical information. Okay, so you have the
data; what can you do with them?


For this example we assume we have three true or false parameters (we will define
this type parameter as a boolean random variable in Section 5.2.4). First, there is whether
or not the traffic - and you - are slowing down. This situation will be labeled S, with
assignment of t or f. Second, there is the probability of whether or not there is an accident,
A, with assignments t or f. Finally, the probability of whether or not there is road construc-
tion at the time, C; again either t or f. We can express these relationships for the interstate
highway traffic, thanks to our car-based data download system, in Table 5.1.


The entries of Table 5.1 are interpreted, of course, just like the truth tables of Section
2.1, except that the right hand column gives the probability of the situation on the left hand
side happening. Thus, the third row of the table gives the probability of the traffic slowing
down and there being an accident but with no construction as 0.16:


S ∩ C ∩ A  = 0.16


It should be noted that we have been developing our probabilistic calculus in the con-
text of sets of events. Figure 5.1 demonstrates how the probabilities of Table 5.1 may be
represented with the traditional Venn diagram. We could equally well have presented this
situation as the probabilistic truth assignments of propositions, in which case the ∩ would
be replaced by a  ∧ and Table 5.1 would be interpreted as the truth values of the conjunc-
tion of propositions.


Next, we note that the sum of all possible outcomes of the joint distribution of Table
5.1 is 1.0; this is as one would expect with the axioms of probability presented in Section
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5.2.1. We can also work out the probability of any simple or complex set of events. For
example, we can calculate the probability that there is traffic slowdown S. The value for
slow traffic is 0.32, the sum of the first four lines of Table 5.1; that is, all the situations
where S = t. This is sometimes called the unconditional or marginal probability of slow
traffic, S. This process is called marginalization because all the probabilities other than
slow traffic are summed out. That is, the distribution of a variable can be obtained by sum-
ming out all the other variables from the joint distribution containing that variable.


In a like manner, we can calculate the probability of construction C with no slow-
down S - a phenomenon not uncommon in the State of New Mexico! This situation is cap-
tured by p(C ∩ S) = t, as the sum of the 5th and the 6th lines of Table 5.1, or 0.06. If we
consider the negation of the situation C ∩ S, we would get (using deMorgan’s laws), p(C
∪ S). Calculating the probability of the union of two sets, as presented in Section 5.2.1,
we obtain:


0.16 + 0.12 + 0.01 + 0.61 + 0.01 + 0.03 + 0.16 + 0.12 - (0.16 + 0.12) = .94


And again the total probability of C ∩ S and its complement (negation) is 1.0.


5.2.3 Random Variables


In the theory of probability, individual probabilities are either computed analytically,
through combinatorial methods, or empirically, by sampling a population of events. To
this point most of our probabilities have been determined analytically. For example, there
are six sides to a die, and two sides to a coin. When the die or coin is “fair” we say that
each outcome, from rolling or flipping, is equally likely. As a result, it is straightforward to
determine the event space for these problem situations we later call parametric.


Table 5.1 The joint probability distribution for the traffic 
slowdown, S, accident, A, and construction, 
C, variables of the example of Section 5.3.2.


S              C              A                      p


t t t                         0.01
t t f                         0.03
t f t                         0.16
t f f                         0.12


f t t                         0.01
f t f                         0.05
f f t                          0.01


f f f                          0.61
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More interesting probabilistic reasoning, however, results from the sampling based
analysis of situations in the actual world of events. These situations often lack a well
defined specification that supports the analytical calculation of probabilities. It is also the
case that some situations, even when an analytic foundation exists, are so complex that
time and computation costs are not sufficient for the deterministic calculation of probabi-
listic outcomes. In these situations we usually adopt an empirical sampling methodology.


Most importantly, we assume that all outcomes of an experiment are not equally
likely. We retain, however, the basic axioms or assumptions we have made in the previous
sections; namely, that the probability of an event is a number between (and including) 0
and 1, and that the summed probabilities of all outcomes is 1. We also retain our rule for
the probability of unioned sets of events. We define the idea of a random variable as a
method for making this calculus precise.


D E F I N I T I O N


RANDOM VARIABLE
A random variable is a function whose domain is a sample space and range a set of
outcomes, most often real numbers. Rather than using a problem-specific event space,
a random variable allows us to talk about probabilities as numerical values that are
related to an event space.


BOOLEAN, DISCRETE, and CONTINUOUS RANDOM VARIABLES
A boolean random variable is a function from an event space to {true, false} or to
the subset of real numbers {0.0, 1.0}. A boolean random variable is sometimes called
a Bernoulli trial.


Figure 5.1 A Venn diagram representation of the proba-
bility distributions of Table 5.1; S is traffic 
slowdown, A is accident, C is construction.
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A discrete random variable, which includes boolean random variables as a subset, is
a function from the sample space to (a countable subset of) real numbers in [0.0, 1.0].


A continuous random variable has as its range the set of real numbers.


An example using a discrete random variable on the domain of Season, where the
atomic events of Season are {spring, summer, fall, winter}, assigns .75, say, to the
domain element Season = spring. In this situation we say p(Season = spring) = .75.
An example of a boolean random variable in the same domain would be the mapping
p(Season = spring) = true. Most of the probabilistic examples that we consider will be
of discrete random variables. 


Another example of the use of a boolean random variable would be to calculate the
probability of obtaining 5 heads in 7 flips of a fair coin. This would be the combination of
5 of 7 flips being heads times the 1/2 probability of heads to the 5th power times the 1/2
probability of not getting heads to the 2nd power, or:


7C5  x  (1/2)
5  x  (1/2)2


This coin flip situation is an example of what is called the binomial distribution. In fact,
the outcome of any situation where we want to measure r successes in n trials, where p is
the known probability of success may be represented as:


nCr x  p
r  x  (1 - p)(n - r)


An important natural extension to associating probabilistic measures to events is the
notion of the expected cost or payoff for that outcome. For example, we can calculate the
prospective payback from betting specific money values of the draw of a card or the spin
of a roulette wheel. We define the expectation of a random variable or event, ex(E):


D E F I N I T I O N


EXPECTATION OF AN EVENT


If the reward for the occurrence of an event E, with probability p(E), is r, and the cost
of the event not occurring, 1 - p(E), is c, then the expectation derived from an event
occurring, ex(E), is: 


ex(E) = r x p(E) + c x (1 - p(E))


For example, suppose that a fair roulette wheel has integers 0 through 36 equally
spaced on the slots of the wheel. In the game each player places $1 on any number she
chooses: if the wheel stops on the number chosen, she wins $35; otherwise she loses the
dollar. The reward of a win is $35; the cost of a loss, $1. Since the probability of winning
is 1/37, of losing, 36/37, the expected value for this event, ex(E), is:
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ex(E) = 35 (1/37)  +  (-1) (36/37) ≈  -0.027


Thus the player loses, on average, about $0.03 per play! 
We conclude this subsection with a brief discussion and summary of the origins of the


values of probabilities used in stochastic reasoning. As noted above, in most of our exam-
ples so far, we considered probabilistic values that can be determined by reasoning about
known situations such as the flip of a fair coin or the spin of a fair roulette wheel. When
we have these situations, we can draw many conclusions about aspects of the probability
space, such as its mean, the statistically-based probability measure, and how far from this
mean the sampled values usually vary, the standard deviation of the outcomes in this
domain.


We refer to this well understood situation as the parametric approach to the genera-
tion of a sample outcome space. The parametric approach is justified in stochastic situa-
tions where there exist a priori expectations for the structure of the results of experimental
trials. Our task is to “fill in” the parameters of this well understood situation. An example
is flipping a fair coin with the outcome as the binomial distribution. We then can build our
expectations of the situation with the binomial model for possible outcomes.


There are a number of advantages of parametric approaches. The first is that fewer
data points are needed to calibrate the expected outcomes, since the shape of the outcome
curve is known in advance. A further advantage is that it is often possible to determine a
priori the number of outcomes or the amount of training data sufficient to make quality
probability estimates. In fact, in the parametric situation, besides calculating the mean and
standard deviation of the expectations, we can make an accurate determination of when
certain data points are outside normal expectations.


Of course, many, if not most, interesting situations do not have clear expected out-
comes. One example is diagnostic reasoning, in medicine, say. A second example is the
use and interpretation of a natural language expression. With language it is quite common
to take a non parametric approach to expectations by sampling a large number of situa-
tions, as one might have for example, in a language corpus. By analyzing collected exam-
ples of language use in newspapers, say, or in conversations from a help-desk for
computer support, it is possible to infer meaning for ambiguous expressions in these
domains. We demonstrate this methodology analyzing possible phoneme relationships in
Section 5.3. 


With sufficient data points, the resulting discrete distribution in non parametric envi-
ronments can often be smoothed by interpolation to be continuous. Then new situations
can be inferred in the context of this created distribution. A major disadvantage of non
parametric methods is that, with the absence of the constraints from prior expectations, a
large amount of training data is often required to compensate. We present examples of this
type reasoning in Section 5.3. 


5.2.4 Conditional Probability


The probability measures discussed to this point in Chapter 5 are often called prior proba-
bilities, because they are worked out prior to having any new information about the
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expected outcomes of events in a particular situation. In this present section we consider
the conditional probability of an occurrence of an event, that is, the probability of the
event, given some new information or constraint on that event.


As seen earlier in this chapter, the prior probability of getting a 2 or a 3 on the roll of
a fair die is the sum of these two individual results divided by the total number of possible
outcomes of the roll of a fair die, or 2/6. The prior probability of a person having a disease
is the number of people with the disease divided by the number of people in the domain of
concern.


An example of a conditional or posterior probability is the situation of a patient enter-
ing the doctor’s office with a set of symptoms, headaches and nausea, say. The experi-
enced doctor will know a set of prior expectations for different diseases based on
symptoms, but will want to determine a specific diagnosis for this patient currently suffer-
ing from the headaches and nausea. To make these ideas more precise we make two
important definitions.


D E F I N I T I O N


PRIOR PROBABILITY
The prior probability, generally an unconditioned probability, of an event is the prob-
ability assigned based on all knowledge supporting its occurrence or absence, that is,
the probability of the event prior to any new evidence. The prior probability of an
event is symbolized: p(event).


POSTERIOR PROBABILITY
The posterior (after the fact) probability, generally a conditional probability, of an
event is the probability of an event given some new evidence. The posterior probabil-
ity of an event given some evidence is symbolized: p(event | evidence).


We next begin the presentation of Bayes’ theorem, who’s general form is seen in Sec-
tion 5.4. The idea supporting Bayes is that the probability of a new (posterior) situation of
an hypothesis given evidence can be seen as a function of known probabilities for the evi-
dence given that hypothesis. We can say that we wish to determine the function f, such that
p(h|e) = f(p(e|h)). We usually want to determine the value on the left side of this equation
given that it is often much easier to compute the values on the right hand side.


We now prove Bayes’ theorem for one symptom and one disease. Based on the previ-
ous definitions, the posterior probability of a person having disease d, from a set of dis-
eases D, with symptom or evidence, s, from a set of symptoms S, is:


As in Section 5.1, the “|”s surrounding a set is the cardinality or number of elements in
that set. The right side of this equation is the number of people having both (intersection)
the disease d and the symptom s divided by the total number of people having the symp-
tom s. Figure 5.2 presents a Venn diagram of this situation. We expand the right hand side


p d s( ) d s∩ s⁄=
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of this equation. Since the sample space for determining the probabilities of the numerator
and denominator are the same, we get:


p(d|s) = p(d ∩ s) / p(s).


There is an equivalent relationship for p(s|d); again, see Figure 5.2:


p(s|d) = p(s ∩ d) / p(d).


We next solve the p(s|d) equation to determine the value for p(s ∩ d):


p(s ∩ d) = p(s|d) p(d).


Substituting this result in the previous equation for p(d|s) produces Bayes’ rule for one
disease and one symptom: 


Thus, the posterior probability of the disease given the symptom is the product of the like-
lihood of the symptom given the disease and the likelihood of the disease, normalized by
the probality of that symptom. We generalize this rule in Section 5.4.


We next present the chain rule, an important technique used across many domains of
stochastic reasoning, especially in natural language processing. We have just developed
the equations for any two sets, A1 and A2:


p(A1 ∩ A2) = p(A1 | A2) p(A2) = p(A2 | A1) p(A1).


and now, the generalization to multiple sets Ai, called the chain rule:


p(A1 ∩ A2 ∩ ... ∩ An) = p(A1) p(A2 | A1) p(A3 | A1 ∩ A2) .... p(An | ∩ Ai)


We make an inductive argument to prove the chain rule, consider the nth case:


p d s( )
p s d( )p d( )


p s( )
-----------------------------=


Figure 5.2 A Venn diagram illustrating the calcula-
tions of p(d|s) as a function of p(s|d).


disease d
d ∩ s


symptom s


n 1–


i 1=








CHAPTER 5 / STOCHASTIC METHODS 181


p(A1 ∩ A2 ∩ ... ∩ An-1 ∩ An) = p((A1 ∩ A2 ∩ ... ∩ An-1) ∩ An),


We apply the intersection of two sets rule to get:


p((A1 ∩ A2 ∩ ... ∩ An-1) ∩ An) = p(A1 ∩ A2 ∩ ... ∩ An-1) p(An | A1 ∩ A2 ∩ ... ∩ An-1)


and then reduce again, considering that:


p(A1 ∩ A2 ∩ ... An-1) = p((A1 ∩ A2 ∩ ... ∩  An-2) ∩ An-1)


until p(A1∩ A2) is reached, the base case, which we have already demonstrated.
We close this section with several definitions based on the use of the chain rule rela-


tionship. First, we redefine independent events (see Section 5.2.1) in the context of condi-
tional probabilities, and then we define conditionally independent events, or the notion of
how events can be independent of each other, given some third event.


D E F I N I T I O N


INDEPENDENT EVENTS
Two events A and B are independent of each other if and only if p(A ∩ B) = p(A)
p(B). When p(B) ≠ 0 this is the same as saying that p(A) = p(A|B). That is, knowing
that B is true does not affect the probability of A being true.


CONDITIONALLY INDEPENDENT EVENTS
Two events A and B are said to be conditionally independent of each other, given
event C if and only if p((A ∩ B) | C) = p(A | C) p(B | C).


As a result of the simplification of general chain rule offered by conditionally inde-
pendent events, larger stochastic systems can be built with smaller computational cost;
that is, conditionally independent events simplify joint distributions. An example from our
slow traffic situation: suppose that as we slow down we notice orange traffic control bar-
rels along the side of the road. Besides suggesting that the cause of our slowdown is now
more likely to be from road construction than a traffic accident, the presence of orange
barrels will have its own probabilistic measure. In fact, the variables representing traffic
slowdown and the presence of orange barrels are conditionally independent since they are
both caused by road construction. Thus, we say that the variable road construction sepa-
rates traffic slowdown from orange barrels.


Because of the statistical efficiencies gained by conditional independence, a major
task in the construction of large stochastic computational systems is to break out a com-
plex problem into more weakly connected subproblems. The subproblem interaction rela-
tionships are then controlled by the various conditional separation relationships. We see
this idea further formalized with the definition of d-separation in Section 9.3.


Next, in Section 5.3, we present the general form of Bayes’ theorem and demonstrate
how, in complex situations, the computation necessary to support full Bayesian inference
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can become intractable. Finally, in Section 5.4, we present examples of reasoning based
on Bayesian-based probability measures. 


5.3 Bayes’ Theorem


The Reverend Thomas Bayes was a mathematician and a minister. His famous theorem
was published in 1763, four years after his death. His paper, entitled Essay towards Solv-
ing a Problem in the Doctrine of Chances was published in the Philosophical Transac-
tions of the Royal Society of London. Bayes’ theorem relates cause and effect in such a
way that by understanding the effect we can learn the probability of its causes. As a result
Bayes’ theorem is important both for determining the causes of diseases, such as cancer,
as well as useful for determining the effects of some particular medication on that disease.


5.3.1 Introduction


One of the most important results of probability theory is the general form of Bayes’ theo-
rem. First, we revisit one of the results of Section 5.2.4, Bayes’ equation for one disease
and one symptom. To help keep our diagnostic relationships in context, we rename the
variables used previously to indicate individual hypotheses, hi, from a set of hypotheses,
H, and a set of evidence, E. Furthermore, we will now consider the set of individual
hypotheses hi as disjoint, and having the union of all hi to be equal to H.


p(hi|E) = (p(E|hi) x p(hi)) / p(E)


This equation may be read, “The probability of an hypothesis hi given a set of evi-
dence E is . . .” First, note that the denominator p(E) on the right hand side of the equation
is very much a normalizing factor for any of the hypotheses hi from the set H. It is often
the case that Bayes’ theorem is used to determine which hypothesis out of a set of possible
hypotheses is strongest, given a particular evidence set E. In this case we often drop the
p(E) denominator which is identical for all the hi, with the saving of a possibly large com-
putational cost. Without the denominator, we have created the maximum a posteriori value
for an hypothesis:


arg max(hi) p(E|hi) p(hi)


We read this expression as “The maximum value over all hi of p(E|hi) p(hi)”. The simpli-
fication just described is highly important for diagnostic reasoning as well as in natural
language processing. Of course, the arg max, or maximum likelihood hypothesis, is no
longer a random variable as defined previously.


Next consider the calculation of the denominator p(E) in the situation where the
entire sample space is partitioned by the set of hypotheses hi. The partition of a set is
defined as the split of that set into disjoint non overlapping subsets, the union of which
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make up the entire set. Assuming that the set of hypotheses hi partition the entire sample
space, we get:


p(E) = Σi p(E|hi) p(hi)


This relationship is demonstrated by considering the fact that the set of hypotheses hi
forms a partition of the full set of evidence E along with the rule for the probability of the
intersection of two sets. So:


E = (E ∩ h1) ∪ (E ∩ h2) ∪ ... ∪ (E ∩ hn)


But by the generalized union of sets rule developed in Section 5.2.1:


p(E) = p((E ∩ h1) ∪ (E ∩ h2) ∪ ... ∪ (E ∩ hn))
= p(E ∩ h1) + p(E ∩ h2) + ... + p(E ∩ hn) - p(E ∩ h1 ∩ E ∩ h2 ∩ ... ∩ hn)
= p(E ∩ h1) + p(E ∩ h2) + ... + p(E ∩ hn)


since the set of hypotheses hi partition E and their intersection is empty.
This calculation of p(E) produces the general form of Bayes’ theorem, where we


assume that the set of hypotheses, hi partition the evidence set E:


p(hi⏐E) is the probability that hi is true given evidence E.
p(hi) is the probability that hi is true overall.
p(E⏐hi) is the probability of observing evidence E when hi is true.
n is the number of possible hypotheses. 


Bayes’ theorem provides a way of computing the probability of a hypothesis hi, given a
particular piece of evidence, given only the probabilities with which the evidence follows
from actual causes (the hypotheses). 


As an example, suppose we want to examine the geological evidence at some location
to see whether or not it is suited to finding copper. We must know in advance the probabil-
ity of finding each of a set of minerals and the probability of certain evidence being
present when any particular mineral is found. Then we can use Bayes’ theorem, with evi-
dence found at the particular location, to determine the likelihood of copper. This
approach is used by PROSPECTOR, built at Stanford University and SRI International
and employed in mineral exploration (copper, molybdenum, and other minerals). PROS-
PECTOR has found commercially significant mineral deposits at several sites (Duda et al.
1979a).


p hi E( )
p E hi( ) p hi( )×


p E hk( ) × p hk( )
k 1=


n


∑
---------------------------------------------------------------=
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We next present a simple numerical example demonstrating Bayes’ theorem. Suppose
that you go out to purchase an automobile. The probability that you will go to dealer 1, d1,
is 0.2. The probability of going to dealer 2, d2, is 0.4. There are only three dealers you are
considering and the probability that you go to the third, d3, is also 0.4. At d1 the probabil-
ity of purchasing a particular automobile, a1, is 0.2; at dealer d2 the probability of pur-
chasing a1 is 0.4. Finally, at dealer d3, the probability of purchasing a1 is 0.3. Suppose
you purchase automobile a1. What is the probability that you purchased it at dealer d2?


First, we want to know, given that you purchased automobile a1, that you bought it
from dealer d2, i.e., to determine p(d2|a1). We present Bayes’ theorem in variable form for
determining p(d2|a1) and then with variables bound to the situation in the example.


p(d2|a1) = (p(a1|d2) p(d2)) / (p(a1|d1) p(d1) + p(a1|d2) p(d2) + p(a1|d3) p(d3))
= (0.4) (0.4) / ((0.2) (0.2) + (0.4) (0.4) + (0.4) (0.3)) 
= 0.16 / 0.32 
= 0.5


There are two major commitments in using Bayes’ theorem: first, all the probabilities
on the relationships of the evidence with the various hypotheses must be known, as well as
the probabilistic relationships among the pieces of evidence. Second, and sometimes more
difficult to determine, all the relationships between evidence and hypotheses, or p(E|hk),
must be estimated or empirically sampled. Recall that calculation of p(E) for the general
form of Bayes’ theorem also required that the hypothesis set hi partitioned the set of evi-
dence E. In general, and especially in areas such as medicine and natural language pro-
cessing, an assumption of this partition cannot be justified a priori. 


It is an interesting to note, however, that many situations that violate this assumption
(that the individual pieces of evidence partition the evidence set) behave quite well! Using
this partition assumption, even in situations where it is not justified, is called using naive
Bayes or a Bayes classifier. With naive Bayes, the assumption is, for an hypothesis hj:


n


p(E|hj) ≈ Π p(ei| hj) i = 1
i.e., we assume the pieces of evidence are independent, given a particular hypothesis.


Using Bayes’ theorem to determine the probability of some hypothesis hi given a set
of evidence E, p(hi|E), the numbers on the right-hand side of the equation are often easily
obtainable. This is especially true when compared to obtaining the values for the left-hand
side of the equation, i.e., determining p(hi|E) directly. For example, because the popula-
tion is smaller, it is much easier to determine the number of meningitis patients who have
headaches than it is to determine the percentage of headache sufferers with meningitis.
Even more importantly, for the simple case of a single disease and a single symptom, not
very many numbers are needed. Troubles begin, however, when we consider multiple dis-
eases hi from the domain of diseases H and multiple symptoms en from a set E of possible
symptoms. When we consider each disease from H and each symptom from E singly, we
have m x n measures to collect and integrate. (Actually m x n posterior probabilities plus
m + n prior probabilities.)
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Unfortunately, our analysis is about to get much more complex. To this point, we con-
sidered each symptom ei individually. In actual situations, single isolated symptoms are
rarely the case. When a doctor is considering a patient, for instance, there are often many
combinations of symptoms she must consider. We require a form of Bayes’ theorem to
consider any single hypothesis hi in the context of the union of multiple possible symp-
toms ei.


p(hi|e1 ∪ e2 ∪ ... ∪ en) = (p(hi) p(e1 ∪ e2 ∪ ... ∪ en|hi)) / p(e1 ∪ e2 ∪ ... ∪ en)


With one disease and a single symptom we needed only m x n measurements. Now,
for every pair of symptoms ei and ej and a particular disease hypothesis hi, we need to
know both p(ei ∪ ej | hi) and p(ei ∪ ej). The number of such pairs is n x (n - 1), or
approximately n2, when there are n symptoms in E. Now, if we want to use Bayes, there
will be about (m x n2 conditional probabilities) + (n2 symptom probabilities) + (m disease
probabilities) or about m x n2 + n2 + m pieces of information to collect. In a realistic med-
ical system with 200 diseases and 2000 symptoms, this value is over 800,000,000!


There is some hope, however. As was discussed when we presented conditional inde-
pendence, many of these symptom pairs will be independent, that is p(ei|ej) = p(ei). Inde-
pendence means, of course, that the probability of ei is not affected by the presence of ej.
In medicine, for example, most symptoms are not related, e.g., hair loss and sore elbow.
But even if only ten percent of our example symptoms are not independent, there are still
about 80,000,000 relationships remaining to consider.


In many diagnostic situations, we must also deal with negative information, e.g.,
when a patient does not have a symptom such as bad blood pressure. We require both:


p(ei) = 1 - p(ei) and p(hi|ei) = 1 - p(hi|ei).


We also note that p(ei|hi) and p(hi|ei) are not the same and will almost always have differ-
ent values. These relationships, and the avoidance of circular reasoning, is important for
the design of Bayesian belief networks considered in Section 9.3.1.


A final problem, which again makes keeping the statistics of complex Bayesian sys-
tems virtually intractable, is the need to rebuild probability tables when new relationships
between hypotheses and evidence sets are discovered. In many active research areas such
as medicine, new discoveries happen continuously. Bayesian reasoning requires complete
and up-to-date probabilities, including joint probabilities, if its conclusions are to be cor-
rect. In many domains, such extensive data collection and verification are not possible, or
if possible, quite expensive.


Where these assumptions are met, however, Bayesian approaches offer the benefit of
a mathematically well-founded handling of uncertainty. Most expert system domains do
not meet these requirements and must rely on heuristic approaches, as presented in Chap-
ter 8. Furthermore, due to complexity issues, we know that even fairly powerful comput-
ers cannot use full Bayesian techniques for successful real-time problem solving. We end
this chapter with two examples that show how a Bayesian approach might work to orga-
nize hypothesis/evidence relationships. But first we must define probabilistic finite state
machines/acceptors
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5.4 Applications of the Stochastic Methodology


You say [t ow m ey t ow] and I say [t ow m aa t ow]. . .


—IRA GERSHWIN, “Let’s Call the Whole Thing Off”


In this section we present two examples that use probability measures to reason about the
interpretation of ambiguous information. First, we define an important modeling tool
based on the finite state machine of Section 3.1, the probabilistic finite state machine.


D E F I N I T I O N


PROBABILISTIC FINITE STATE MACHINE


A probabilistic finite state machine is a finite state machine where the next state func-
tion is a probability distribution over the full set of states of the machine. 


PROBABILISTIC FINITE STATE ACCEPTOR


A probabilistic finite state machine is an acceptor, when one or more states are indi-
cated as the start states and one or more as the accept states.


It can be seen that these two definitions are simple extensions to the finite state and
the Moore machines presented in Section 3.1. The addition for non-determinism is that the
next state function is no longer a function in the strict sense. That is, there is no unique
range state for each input value and each state of the domain. Rather, for any state, the
next state function is a probability distribution over all possible next states.


5.4.1 So How Is “Tomato” Pronounced?


Figure 5.3 presents a probabilistic finite state acceptor that represents different pronuncia-
tions of the word “tomato”. A particular acceptable pronunciation for the word tomato is


Figure 5.3 A probabilistic finite state acceptor for the 
pronunciation of tomato , adapted from 
Jurafsky and Martin (2009).
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characterized by a path from the start state to the accept state. The decimal values that
label the arcs of the graph represent the probability that the speaker will make that particu-
lar transition in the state machine. For example, 60% of all speakers in this data set go
directly from the t phone to the m without producing any vowel phone between. 


Besides characterizing the various ways people in the pronunciation database speak
the word “tomato”, this model can be used to help interpret ambiguous collections of pho-
nemes. This is done by seeing how well the phonemes match possible paths through the
state machines of related words. Further, given a partially formed word, the machine can
try to determine the probabilistic path that best completes that word.


In a second example, also adapted from Jurafsky and Martin (2009), we consider the
phoneme recognition problem, often called decoding. Suppose a phoneme recognition
algorithm has identified the phone ni (as in “knee”) that occurs just after the recognized
word (phone) I, and we want to associate ni with either a word or the first part of a word.
In this case we have linguistic corpora, the Brown and Switchboard corpora, to assist us.


The Brown corpus is a one million word collection of sentences from 500 written
texts, including newspapers, novels, and academic writings collected at Brown University
in the 1960s (Kucera and Francis 1967, Francis 1979). The Switchboard corpus is a 1.4
million word collection of telephone conversations. These corpora together contain about
2,500,000 words that let us sample both written and spoken information bases.


There are a number of ways to proceed in identifying the most likely word to associ-
ate with the ni phone. First we can determine which word, with this phone first, is the most
likely to be used. Table 5.2 presents the raw frequencies of these words along with the
probability of their occurrence, that is, the frequency of the word divided by the total num-
ber of words in these combined corpora. (This table is adapted from Jurafsky and Martin
(2009); see their book for a justification that “the” belongs to this collection.) From this
data, the word “the” would seem to be the first choice for matching ni.


We next apply a form of Bayes’ theorem we presented in the previous section. Our
second attempt at analyzing the phone ni following I, uses a simplification of that formula
that ignores its denominator:


p(word | [ni]) ∝ p([ni] | word) x p(word)


word frequency probability


knee         61 .000024
the 114834 .046
neat       338 .00013
need     1417 .00056
new     2625 .001


Table 5.2. The ni words with their frequencies and probabilities
from the Brown and Switchboard corpora of 2.5M
words, adapted from Jurafsky and Martin (2009).
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word    p([ni] | word)      p(word)      p([ni] | word) x p(word)


new                   0.36               0.001            0.00036
neat                   0.52               0.00013        0.000068
need                  0.11               0.00056        0.000062
knee                  1.0                 0.000024      0.000024
the                     0.0                 0.046            0.0


Table 5.3. The ni phone/word probabilities from the Brown and
Switchboard corpora (Jurafsky and Martin 2009).


The results of this calculation, ordered from most recommended to least, are found in
Table 5.3 and explain why p(ni | the) is impossible. The results of Table 5.3 also suggest
that new is the most likely word for decoding ni. But the two-word combination I new
doesn’t seem to make much sense, whereas other combinations, such as I need does. Part
of the problem in this situation is that we are still reasoning on the phone level, that is,
determining the probability p(ni | new). There is, in fact, a straightforward way of
addressing this issue, and that is to look for explicit two word combinations in the corpora.
Following this line of reasoning, it turns out that I need is a much more likely pair of con-
secutive words than is I new, or any of the other I-word combinations, for that matter.


The methodology for deriving probabilities from pairs, or triples, of word combina-
tions in corpora is called n-gram analysis. With two words, we were using bigrams, with
three, trigrams. The probabilities derived from word combinations using n-grams is
important, as we see again in Chapter 15. 


5.4.2 Extending the Road/Traffic Example


We present again and extend the example of Section 5.2.2. Suppose you are driving the
interstate highway system and realize you are gradually slowing down because of
increased traffic congestion. You begin to search for possible explanations of the slow-
down. Could it be road construction? Has there been an accident? Perhaps there are other
possible explanations. After a few minutes you come across orange barrels at the side of
the road that begin to cut off the outside lane of traffic. At this point you determine that the
best explanation of your slow down is road construction. At the same time the alternative
hypothesis of accident is explained away. Similarly if you would have seen flashing lights
in the distance ahead, such as from a police vehicle or an ambulance, the best explanation
given this evidence would be a traffic accident and road construction would have been
explained away. When an hypothesis is explained away that does not mean that it is no
longer possible. Rather, in the context of new evidence, it is simply less likely. 


Figure 5.4 presents a Bayesian account of what we have just seen. road construction
is correlated with orange barrels and bad traffic. Similarly, accident correlates with
flashing lights and bad traffic. We examine Figure 5.4 and build a joint probability distri-
bution for the road construction and bad traffic relationship. We simplify both of these
variables to be either true (t) or false (f) and represent the probability distribution in Table
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5.4. Note that if construction is f there is not likely to be bad traffic and if it is t then bad
traffic is likely. Note also that the probability of road construction on the interstate, C =
true, is .5 and the probability of having bad traffic, T = true, is .4 (this is New Mexico!).


We next consider the change in the probability of road construction given the fact
that we have bad traffic, or p(C|T) or p(C = t | T = t).


p(C|T) = p(C = t , T = t)  / (p(C = t , T = t) + p(C = f , T = t)) = .3 / (.3 + .1) = .75


So now, with the probability of road construction being .5, given that there actually is
bad traffic, the probability for road construction goes up to .75. This probability will
increase even further with the presence of orange barrels, explaining away the hypothe-
sis of accident.


Besides the requirement that we may have knowledge or measurements for any of our
parameters being in a particular state, we also must address, as noted in Section 5.4.1,
complexity issues. Consider the calculation of the joint probability of all the parameters of
Figure 5.4 (using the chain rule and a topologically sorted order of variables):


p(C,A,B,T,L) = p(C) x p(A|C) x p(B|C,A) x p(T|C,A,B) x p(L|C,A,B,T)


This result is a general decomposition of the probability measures that is always true. The
cost of producing this joint probability table is exponential in the number of parameters
involved, and in this case requires a table of size 25 or 32. We are considering a toy prob-
lem, of course, with only five parameters. A situation of interesting size, with thirty or


Table 5.4 The joint probability distribution for the traffic 
and construction variables of Figure 5.4.


Figure 5.4 The Bayesian representation of the traffic 
problem with potential explanations.
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more parameters say, requires a joint distribution table of roughly a billion elements. As
we will see in Section 9.3, Bayesian belief networks and d-separation give us further tools
for addressing this representational and computational complexity.


5.5 Epilogue and References


Games of chance date back, at least, to the Greek and Roman civilizations. It wasn’t until
the European Renaissance, however, that the mathematical analysis of probability theory
began. As noted in the chapter, probabilistic reasoning begins with determining principles
of counting and combinatorics. Actually, one of the first combinatorial “machines” is
attributed to Ramon Llull (Ford et al. 1995), a Spanish philosopher and Franciscan monk,
who created his device, said to automatically enumerate the attributes of God, with the
intention of converting heathens. The first publication on probabilities, De Ratiociniis
Ludo Aleae, was authored by Christian Huygens (1657). Huygens describes earlier results
by Blaise Pascal, including a methodology for calculating probabilities, as well as condi-
tional probabilities. Pascal targeted both the “objective” analysis of the world of games as
well as the more “subjective” analysis of belief systems, including the existence of God.


The definitions of probabilities presented in Section 5.2.1 are based on the formalism
proposed by the French mathematician Pierre Simon Laplace. Laplace’s book Theorie
Analytique des Probabilitees (1816) documents this approach. Laplace’s work was based
on earlier results published by Gotlob Leibnitz and James Bernoulli.


Thomas Bayes was a mathematician and a minister. His famous theorem was pub-
lished in 1764, after his death. His paper, entitled Essay towards Solving a Problem in the
Doctrine of Chances was published in the Philosophical Transactions of the Royal Society
of London. Ironically, Bayes’ theorem is never explicitly stated in this paper, although it is
there! Bayes also has extensive discussion of the “reality” of statistical measures.


Bayes’ research was partly motivated to answer the philosophical skepticism of the
Scots philosopher David Hume. Hume’s dismissal of causality destroyed any foundation
for arguments through miracles for the existence of God. In fact, in a 1763 paper presented
to the British Royal Society, the minister Richard Price used Bayes’ theorem to show there
was good evidence in favor of the miracles described in the New Testament.


The mathematicians of the early twentieth century, including Fisher (1922), Popper
(1959), and Carnap (1948) completed the foundation of modern probability theory con-
tinuing the “subjective/objective” debates on the nature of probabilities. Kolmogorov
(1950, 1965) axiomatized the foundations of probabilistic reasoning (see Section 5.2.1).


It is possible to present the topic of probabilistic reasoning from several vantage
points. The two most popular approaches are based on the propositional calculus and set
theory. For the propositional calculus, Section 2.1, propositions are assigned a confidence
or probabilistic truth value in the range [0.0, 1.0]. This approach offers a natural extension
to the semantics of propositional calculus. We have chosen the second approach to proba-
bilistic reasoning, feeling this orientation is a bit more intuitive, bringing to bear all the
counting and other techniques of set theory, as seen in Section 5.1. In Chapters 9 and 13,
we extend our presentation of stochastic systems to first-order (variable based) representa-
tion schemes.
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Bayes’ theorem has offered a foundation for several expert systems of the 1970s and
1980s, including an extensive analysis of acute abdominal pain at the University of Glas-
gow Hospital (de Dombal et al. 1974), and PROSPECTOR, the system from Stanford
University supporting mineral exploration (Duda et al. 1979a). The naive Bayes approach
has been used in a number of classification problems, including pattern recognition (Duda
and Hart 1973), natural language processing (Mooney 1996), and elsewhere. Domingos
and Pazzani (1997) offer justification for the successes of naive Bayes classifiers in situa-
tions which do not meet Bayesian independence assumptions.


There is a large amount of current research in probabilistic reasoning in artificial
intelligence, some presented in Chapters 9, 13, and 16. Uncertain reasoning makes up a
component of AI conferences, including AAAI, IJCAI, NIPS, and UAI. There are several
excellent introductory texts in probabilistic reasoning (Ross 1988, DeGroot 1989), as well
as several introductions to the use of stochastic methods in artificial intelligence applica-
tions (Russell and Norvig 2003, Jurafsky and Martin 2009, Manning and Schutze 1999).


I am indebted to Dan Pless of Sandia National Laboratories for the general approach
taken in this chapter, for several of the examples, and also for editorial suggestions. 


5.6 Exercises


1. A fair six-sided die is tossed five times and the numbers up are recorded in a sequence.
How many different sequences are there? 


2. Find the number of distinguishable permutations of the letters in the word MISSISSIPPI,
of the letters of the word ASSOCIATIVE.


3. Suppose that an urn contains 15 balls, of which eight are red and seven are black. In how
many ways can five balls be chosen so that:


a. all five are red? all five are black?


b. two are red and three are black


c. at least two are black


4. How many ways can a committee of three faculty members and two students be selected
from a group of five faculty and seven students?


5. In a survey of 250 television viewers, 88 like to watch news, 98 like to watch sports, and
94 like to watch comedy. 33 people like to watch news and sports, 31 like to watch sports
and comedy, and 35 like to watch news and comedy. 10 people like to watch all three.
Suppose a person from this group is picked at random:


a. What is the probability that they watch news but not sports?


b. What is the probability that they watch news or sports but not comedy?


c. What is the probability that they watch neither sports nor news?


6. What is the probability that a four digit integer with no beginning zeros:


a. Has 3, 5, or 7 as a digit?


b. Begins with 3, ends with 5, or has 7 as a digit?


7. Two dice are tossed. Find the probability that their sum is:


a. 4
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b. 7 or an even number


c. 10 or greater


8. A card is drawn from the usual fifty-two card deck. What is the probability of:


a. drawing a face card (jack, queen, king or ace)


b. drawing a queen or a spade


c drawing a face card or a club


9. What is the probability of being dealt the following hands in a five card poker game (from
the normal deck of fifty-two cards)? 


a. A “flush” or all cards from the same suit. 


b. A “full house” or two cards of the same value and three cards of another value.


c. A “royal flush” or the ten, jack, queen, king, and ace all of the same suit. 


10. The expectation is the mean or average of the value of a random variable. In throwing a
die, for example, it can be calculated by totaling up the resulting values from a large num-
ber of throws and then dividing by the number of throws. 


a. What is the expectation from throwing a fair die? 


b. The value of a roulette wheel with 37 equally likely results?


c. The value of a draw from a set of cards (ace is valued at 1, all other face cards as 10)?


11. Suppose that we are playing a game where we toss a die and then receive the amount of
dollars equal to the value of the die. For example, if a 3 comes up we receive $3. If it costs
us $4 to play this game, is this reasonable?


12. Consider the situation where bit strings of length four are randomly generated. Demon-
strate whether or not the event of production of bit strings containing an even number of
1s is independent of the event of producing bit strings that end in a 1.


13. Show that the statement p(A,B|C) = p(A|C) p(B|C) is equivalent to both p(A|B,C) =
p(A|C) and p(B|A,C) = p(B|C).


14. In manufacturing a product, 85% of the products that are produced are not defective. Of
the products inspected, 10% of the good ones are seen as defective and not shipped
whereas only 5% of the defective products are approved and shipped. If a product is
shipped, what is the probability that it is defective?


15. A blood test is 90% effective in detecting a disease. It also falsely diagnoses that a healthy
person has the disease 3% of the time. If 10% of those tested have the disease, what is the
probability that a person who tests positive will actually have the disease?


16. Suppose an automobile insurance company classifies a driver as good, average, or bad. Of
all their insured drivers, 25% are classified good, 50% are average, and 25% are bad. Sup-
pose for the coming year, a good driver has a 5% chance of having an accident, and aver-
age driver has 15% chance of having an accident, and a bad driver has a 25% chance. If
you had an accident in the past year what is the probability that you are a good driver?


17. Three prisoners, A, B, C are in their cells. They are told that one of them will be executed
the next day and the others will be pardoned. Only the governor knows who will be exe-
cuted. Prisoner A asks the guard a favor. “Please ask the governor who will be executed,
and then tell either prisoner B or C that they will be pardoned.” The guard does as was
asked and then comes back and tells prisoner A that he has told prisoner B that he (B) will
be pardoned. What are prisoner A’s chances of being executed, given this message? Is
there more information than before his request to the guard? (Adapted from Pearl 1988).
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BUILDING CONTROL 
ALGORITHMS FOR
STATE SPACE SEARCH


If we carefully factor out the influences of the task environments from the influences of the 
underlying hardware components and organization, we reveal the true simplicity of the 
adaptive system. For, as we have seen, we need postulate only a very simple information 
processing system in order to account for human problem solving in such tasks as chess, 
logic, and cryptarithmetic. The apparently complex behavior of the information 
processing system in a given environment is produced by the interaction of the demands of 
the environment with a few basic parameters of the system, particularly characteristics of 
its memories.


—A. NEWELL AND H. A. SIMON, “Human Problem Solving” (1972)


What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from . . . 


T. S. ELIOT, “Four Quartets”


6.0 Introduction


To this point, Part II has represented problem solving as search through a set of problem
situations or states. Chapter 2 presented the predicate calculus as a medium for describing
states of a problem and sound inference as a method for producing new states. Chapter 3
introduced graphs to represent and link problem situations. The backtrack algorithm, as
well as algorithms for depth-first and breadth-first search can explore these graphs. Chap-
ter 4 presented algorithms for heuristic search. In Chapter 5, given probabilistic states of
the world, stochastic inference was used to produce new states. To summarize, Part II has: 


1. Represented a problem solution as a path in a graph from a start state to a goal.


6
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2. Used search to test systematically alternative paths to goals. 


3. Employed backtracking, or some other mechanism, to allow algorithms to
recover from paths that failed to find a goal. 


4. Used lists to keep explicit records of states under consideration. 


a. The open list allows the algorithm to explore untried states if necessary. 
b. The closed list of visited states allows the algorithm to implement loop


detection and avoid repeating fruitless paths. 


5. Implemented the open list as a stack for depth-first search, a queue for breadth-
first search, and a priority queue for best-first search. 


Chapter 6 introduces further techniques for building search algorithms. In Section
6.1, recursive search implements depth-, breadth-, and best-first search in a more concise
and natural fashion than was done in Chapter 3. Further, recursion is augmented with uni-
fication to search the state space generated by predicate calculus assertions. This pattern-
directed search algorithm is the basis of PROLOG, see Section 14.3, and several of the
expert systems discussed in Chapter 8. In Section 6.2 we introduce production systems, a
general architecture for pattern-directed problem solving that has been used extensively to
model human problem solving, Chapter 16, as well as in other AI applications, including
expert systems, Chapter 7. Finally, in Section 6.3, we present another AI problem-solving
control architecture, the blackboard.


6.1 Recursion-Based Search (optional)


6.1.1 Recursive Search


In mathematics, a recursive definition uses the term being defined as part of its own defi-
nition. In computer science, recursion is used to define and analyze both data structures
and procedures. A recursive procedure consists of: 


1. A recursive step: the procedure calls itself to repeat a sequence of actions. 


2. A terminating condition that stops the procedure from recurring endlessly (the
recursive version of an endless loop). 


Both these components are essential and appear in all recursive definitions and algo-
rithms. Recursion is a natural control construct for data structures that have a regular
structure and no definite size, such as lists, trees, and graphs, and is particularly appropri-
ate for state space search. 


A direct translation of the depth-first search algorithm of Chapter 3 into recursive
form illustrates the equivalence of recursion and iteration. This algorithm uses global vari-
ables closed and open to maintain lists of states. Breadth-first and best-first search can be
designed with virtually the same algorithm, that is, by retaining closed as a global data
structure and by implementing open as a queue or a priority queue rather than as a stack
(build stack becomes build queue or build priority queue):
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function depthsearch; % open & closed global


begin
if open is empty


then return FAIL; 
current_state := the first element of open; 
if current_state is a goal state


then return SUCCESS
else


begin
open := the tail of open;
closed := closed with current_state added;
for each child of current_state


if not on closed or open % build stack
then add the child to the front of open


end;
depthsearch % recur


end.


Depth-first search as just presented does not utilize the full power of recursion. It is
possible to simplify the procedure further by using recursion itself (rather than an explicit
open list) to organize states and paths through the state space. In this version of the algo-
rithm, a global closed list is used to detect duplicate states and prevent loops, and the open
list is implict in the activation records of the recursive environment. Since the open list
can no longer be explicitly manipulated, breadth-first and best-first search are no longer
natural extensions of the following algorithm:


function depthsearch (current_state); % closed is global


begin
if current_state is a goal


then return SUCCESS;
add current_state to closed;
while current_state has unexamined children


begin
child := next unexamined child;
if child not member of closed


then if depthsearch(child) = SUCCESS
then return SUCCESS


end;
return FAIL % search exhausted


end


Rather than generating all children of a state and placing them on an open list, this
algorithm produces the child states one at a time and recursively searches the descendants
of each child before generating its sibling. Note that the algorithm assumes an order to the
state generation operators. In recursively searching a child state, if some descendant of
that state is a goal, the recursive call returns success and the algorithm ignores the siblings.
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If the recursive call on the child state fails to find a goal, the next sibling is generated and
all of its descendants are searched. In this fashion, the algorithm searches the entire graph
in a depth-first order. The reader should verify that it actually searches the graph in the
same order as the depth-first search algorithm of Section 3.2.3. 


The omission of an explicit open list is made possible through recursion. The
mechanisms by which a programming language implements recursion include a separate
activation record (Aho and Ullman 1977) for each recursive call. Each activation record
captures the local variables and state of execution of each procedure call. When the proce-
dure is called recursively with a new state, a new activation record stores its parameters
(the state), any local variables, and the current state of execution. In a recursive search
algorithm, the series of states on the current path are recorded in the sequence of activation
records of the recursive calls. The record of each call also indicates the last operation used
to generate a child state; this allows the next sibling to be generated when needed. 


Backtracking is effected when all descendants of a state fail to include a goal, causing
the recursive call to fail. This returns fail to the procedure expanding the parent state,
which then generates and recurs on the next sibling. In this situation, the internal mecha-
nisms of recursion do the work of the open list used in the iterative version of the algo-
rithm. The recursive implementation allows the programmer to restrict his or her point of
view to a single state and its children rather than having to explicitly maintain an open list
of states. The ability of recursion to express global concepts in a closed form is a major
source of its power. 


As these two algorithms demonstrate, state space search is an inherently recursive
process. To find a path from a current state to a goal, move to a child state and recur. If that
child state does not lead to a goal, try its siblings in order. Recursion breaks a large and
difficult problem (searching the whole space) into smaller, simpler pieces (generate the
children of a single state) and applies this strategy (recursively) to each of them. This pro-
cess continues until a goal state is discovered or the space is exhausted. 


In the next section, this recursive approach to problem solving is extended into a
controller for a logic-based problem solver that uses unification and inference to generate
and search a space of logical relations. The algorithm supports the and of multiple goals
as well as back chaining from a goal to premises.


6.1.2 A Recursive Search Example: Pattern-Driven Reasoning


In Section 6.1.2 we apply recursive search to a space of logical inferences; the result is a
general search procedure for predicate calculus based problem specifications. 


Suppose we want to write an algorithm that determines whether a predicate calculus
expression is a logical consequence of some set of assertions. This suggests a goal-
directed search with the initial query forming the goal, and modus ponens defining the
transitions between states. Given a goal (such as p(a)), the algorithm uses unification to
select the implications whose conclusions match the goal (e.g., q(X)


 


→ p(X)). Because
the algorithm treats implications as potential rules for solving the query, they are often
simply called rules. After unifying the goal with the conclusion of the implication (or rule)
and applying the resulting substitutions throughout the rule, the rule premise becomes a
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new goal (q(a)). This is called a subgoal. The algorithm then recurs on the subgoal. If a
subgoal matches a fact in the knowledge base, search terminates. The series of inferences
that led from the initial goal to the given facts prove the truth of the original goal.


function pattern_search (current_goal);


begin
if current_goal is a member of closed % test for loops


then return FAIL
else add current_goal to closed;


while there remain in data base unifying facts or rules do
begin


case
current_goal unifies with a fact:


return SUCCESS;
current_goal is a conjunction (p 


 


∧ ...):
begin


for each conjunct do
call pattern_search on conjunct; 


if pattern_search succeeds for all conjuncts 
then return SUCCESS 
else return FAIL 


end;
current_goal unifies with rule conclusion (p in q 


 


→ p):
begin


apply goal unifying substitutions to premise (q);
call pattern_search on premise; 
if pattern_search succeeds 


then return SUCCESS 
else return FAIL 


end;
end; % end case


end;
return FAIL


end.


In the function pattern_search, search is performed by a modified version of the
recursive search algorithm that uses unification, Section 2.3.2, to determine when two
expressions match and modus ponens to generate the children of states. The current focus
of the search is represented by the variable current_goal. If current_goal matches with a
fact, the algorithm returns success. Otherwise the algorithm attempts to match
current_goal with the conclusion of some rule, recursively attempting to solve the
premise. If current_goal does not match any of the given assertions, the algorithm returns
fail. This algorithm also handles conjunctive goals.


For simplicity, the algorithm does not address the problem of maintaining consistency
among the variable substitutions produced by unification. This is important when solving
conjunctive queries with shared variables (as in p(X)


 


∧ q(X)). Both conjuncts succeed, but
they must also succeed with the same unifiable binding for X, see Section 2.3.2.
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The major advantage of using general methods such as unification and modus ponens
to generate states is that the resulting algorithm may search any space of logical
inferences where the specifics of a problem are described using predicate calculus asser-
tions. Thus, we have a means of separating problem-solving knowledge from its control
and implementation on the computer. pattern_search provides our first example of the
separation of problem knowledge from control of search. 


Although the initial version of pattern_search defined the behavior of a search
algorithm for predicate calculus expressions, several subtleties must still be addressed.
These include the order with which the algorithm tries alternative matches and proper
handling of the full set of logical operators (


 


∧,


 


∨, and 


 


¬). Logic is declarative, and without
a prescribed search strategy: it defines a space of possible inferences but does not tell a
problem solver how to make the useful ones. 


To reason with predicate calculus, we need a control regime that systematically
searches the space, avoiding meaningless paths and loops. A control algorithm such as
pattern_search must try alternative matches in some sequential order. Knowing this
order allows the program designer to control search by properly ordering rules in the
knowledge base. A simple way to define such an order is to require that the algorithm try
rules and facts in the order that they appear in the knowledge base. 


A second issue is the existence of logical connectives in the rule premises: e.g.,
implications of the form “p


 


← q


 


∧ r” or “p


 


← q


 


∨ (r


 


∧ s).” As will be recalled from the
discussion of and/or graphs, an 


 


∧ operator indicates that both expressions must be shown
to be true for the entire premise to be true. In addition, the conjuncts of the expression
must be solved with consistent variable bindings. Thus, to solve p(X)


 


∧ q(X), it is not
sufficient to solve p(X) with the substitution {a/X} and q(X) with the substitution {b/X}.
Both must be solved with the same unifiable binding for X. An or operator, on the other
hand, indicates that either expression must be found to be true. The search algorithm must
take this into account. 


The last addition to the algorithm is the ability to solve goals involving logical
negation (


 


¬). pattern_search handles negated goals by first solving the operand of the 


 


¬.
If this subgoal succeeds, then pattern_search returns fail. If the operand fails, then
pattern_search returns an empty substitution set, indicating success. Note that even
though a subgoal may contain variables, the result of solving its negation may not contain
any substitutions. This is because 


 


¬ can succeed only if its operand fails; hence, it cannot
return any bindings for the operand. 


Finally, the algorithm should not return success but should return the bindings
involved in the solution. The complete version of pattern_search, which returns the set
of unifications that satisfies each subgoal, is: 


function pattern_search(current_goal); 


begin
if current_goal is a member of closed % test for loops


then return FAIL 
else add current_goal to closed;


while there remain unifying facts or rules do
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begin
case


current_goal unifies with a fact:
return unifying substitutions; 


current_goal is negated (¬ p):
begin


call pattern_search on p;
if pattern_search returns FAIL


then return {}; % negation is true
else return FAIL;


end;


current_goal is a conjunction (p ∧ …):
begin


for each conjunct do
begin


call pattern_search on conjunct; 
if pattern_search returns FAIL


then return FAIL; 
else apply substitutions to other conjuncts;


end;
if pattern_search returns SUCCESS for all conjuncts


then return composition of unifications;
else return FAIL; 


end;


current_goal is a disjunction (p ∨ …):
begin


repeat for each disjunct 
call pattern_search on disjunct 


until no more disjuncts or SUCCESS;
if pattern_search returns SUCCESS 


then return substitutions 
else return FAIL; 


end;


current_goal unifies with rule conclusion (p in p ← q): 
begin


apply goal unifying substitutions to premise (q); 
call pattern_search on premise; 
if pattern_search returns SUCCESS 


then return composition of p and q substitutions 
else return FAIL;


end;
end;    %end case


end    %end while
return FAIL


end.
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This pattern_search algorithm for searching a space of predicate calculus rules and
facts is the basis of Prolog (where the Horn clause form of predicates is used, Section
14.3) and in many goal-directed expert system shells (Chapter 8). An alternative control
structure for pattern-directed search is provided by the production system, discussed in the
next section. 


6.2 Production Systems


6.2.1 Definition and History


The production system is a model of computation that has proved particularly important in
AI, both for implementing search algorithms and for modeling human problem solving. A
production system provides pattern-directed control of a problem-solving process and
consists of a set of production rules, a working memory, and a recognize–act control cycle.


D E F I N I T I O N


PRODUCTION SYSTEM


A production system is defined by: 


1. The set of production rules. These are often simply called productions. A
production is a condition–action pair and defines a single chunk of problem-
solving knowledge. The condition part of the rule is a pattern that deter-
mines when that rule may be applied to a problem instance. The action part
defines the associated problem-solving step(s). 


2. Working memory contains a description of the current state of the world in a
reasoning process. This description is a pattern that is matched against the
condition part of a production to select appropriate problem-solving actions.
When the condition element of a rule is matched by the contents of working
memory, the action(s) associated with that condition may then be performed.
The actions of production rules are specifically designed to alter the contents
of working memory. 


3. The recognize–act cycle. The control structure for a production system is
simple: working memory is initialized with the beginning problem descrip-
tion. The current state of the problem-solving is maintained as a set of pat-
terns in working memory. These patterns are matched against the conditions
of the production rules; this produces a subset of the production rules, called
the conflict set, whose conditions match the patterns in working memory.
The productions in the conflict set are said to be enabled. One of the produc-
tions in the conflict set is then selected (conflict resolution) and the
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production is fired. To fire a rule, its action is performed, changing the con-
tents of working memory. After the selected production is fired, the control
cycle repeats with the modified working memory. The process terminates
when the contents of working memory do not match any rule’s conditions.


Conflict resolution chooses a rule from the conflict set for firing. Conflict resolution
strategies may be simple, such as selecting the first rule whose condition matches the
state of the world, or may involve complex rule selection heuristics. This is an impor-
tant way in which a production system allows the addition of heuristic control to a
search algorithm.


The pure production system model has no mechanism for recovering from dead ends
in the search; it simply continues until no more productions are enabled and halts.
Most practical implementations of production systems allow backtracking to a
previous state of working memory in such situations.


A schematic drawing of a production system is presented in Figure 6.1.


A very simple example of production system execution appears in Figure 6.2. This is
a production system program for sorting a string composed of the letters a, b, and c. In
this example, a production is enabled if its condition matches a portion of the string in
working memory. When a rule is fired, the substring that matched the rule condition is
replaced by the string on the right-hand side of the rule. Production systems are a general
model of computation that can be programmed to do anything that can be done on a com-
puter. Their real strength, however, is as an architecture for knowledge-based systems. 


The idea for the production-based design for computing came originally from writ-
ings of Post (1943), who proposed a production rule model as a formal theory of computa-
tion. The main construct of this theory was a set of rewrite rules for strings in many ways
similar to the parsing rules in Example 3.3.6. It is also closely related to the approach
taken by Markov algorithms (Markov 1954) and, like them, is equivalent in power to a
Turing machine. 


An interesting application of production rules to modeling human cognition is found
in the work of Newell and Simon at the Carnegie Institute of Technology (now Carnegie
Mellon University) in the 1960s and 1970s. The programs they developed, including the
General Problem Solver, are largely responsible for the importance of production systems
in AI. In this research, human subjects were monitored in various problem-solving activi-
ties such as solving problems in predicate logic and playing games like chess. The proto-
col (behavior patterns, including verbal descriptions of the problem-solving process, eye
movements, etc.) of problem-solving subjects was recorded and broken down to its ele-
mentary components. These components were regarded as the basic bits of problem-solv-
ing knowledge in the human subjects and were composed as a search through a graph
(called the problem behavior graph). A production system was then used to implement
search of this graph.


The production rules represented the set of problem-solving skills of the human sub-
ject. The present focus of attention was represented as the current state of the world. In
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executing the production system, the “attention” or “current focus” of the problem solver
would match a production rule, which would change the state of “attention” to match
another production-encoded skill, and so on. 


It is important to note that in this work Newell and Simon used the production system
not only as a vehicle for implementing graph search but also as an actual model of human
problem-solving behavior. The productions corresponded to the problem-solving skills in
the human’s long-term memory. Like the skills in long-term memory, these productions
are not changed by the execution of the system; they are invoked by the “pattern” of a
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Iteration #     Working memory     Conflict set     Rule fired


Production set: 


1.  ba         ab
2.  ca         ac
3.  cb         bc


Figure 6.2 Trace of a simple production system.


Figure 6.1 A production system. Control loops until
working memory pattern no longer matches
the conditions of any productions.
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particular problem instance, and new skills may be added without requiring “recoding” of
the previously existing knowledge. The production system’s working memory corre-
sponds to short-term memory or current focus of attention in the human and describes the
current stage of solving a problem instance. The contents of working memory are gener-
ally not retained after a problem has been solved. 


These origins of the production system technology are further described in Human
Problem Solving by Newell and Simon (1972) and in Luger (1978, 1994). Newell, Simon,
and others have continued to use production rules to model the difference between novices
and experts (Larkin et al. 1980; Simon and Simon 1978) in areas such as solving algebra
word problems and physics problems. Production systems also form a basis for studying
learning in both humans and computers (Klahr et al. 1987); ACT* (Anderson 1983b) and
SOAR (Newell 1990) build on this tradition. 


Production systems provide a model for encoding human expertise in the form of
rules and designing pattern-driven search algorithms, tasks that are central to the design of
the rule-based expert system. In expert systems, the production system is not necessarily
assumed to actually model human problem-solving behavior; however, the aspects of
production systems that make them useful as a potential model of human problem solving
(modularity of rules, separation of knowledge and control, separation of working memory
and problem-solving knowledge) make them an ideal tool for designing and building
expert systems as we see in Sections 8.1 and 8.2. 


An important family of AI languages comes directly out of the production system
language research at Carnegie Mellon. These are the OPS languages; OPS stands for
Official Production System. Although their origins are in modeling human problem
solving, these languages have proved highly effective for programming expert systems
and for other AI applications. OPS5 was the implementation language for the VAX
configurer XCON and other early expert systems developed at Digital Equipment Corpo-
ration (McDermott 1981, 1982; Soloway et al. 1987; Barker and O’Connor 1989). OPS
interpreters are widely available for PCs and workstations. CLIPS, implemented in the C
programming language, is a widely used, object-oriented version of a production system
built by NASA. JESS, a production system implemented in Java, was created by Sandia
National Laboratories.


In the next section we give examples of how the production system may be used to
solve a variety of search problems. 


6.2.2 Examples of Production Systems


EXAMPLE 6.2.1: THE 8-PUZZLE, REVISITED


The search space generated by the 8-puzzle, introduced in Chapter 3, is both complex
enough to be interesting and small enough to be tractable, so it is frequently used to
explore different search strategies, such as depth-first and breadth-first search, as well as
the heuristic strategies of Chapter 4. We now present a production system solution.


Recall that we gain generality by thinking of “moving the blank space” rather than
moving a numbered tile. Legal moves are defined by the productions in Figure 6.3. Of
course, all four of these moves are applicable only when the blank is in the center; when it








204 PART II  / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


is in one of the corners only two moves are possible. If a beginning state and a goal state
for the 8-puzzle are now specified, it is possible to make a production system accounting
of the problem’s search space. 


An actual implementation of this problem might represent each board configuration
with a “state” predicate with nine parameters (for nine possible locations of the eight tiles
and the blank); rules could be written as implications whose premise performs the
required condition check. Alternatively, arrays or list structures could be used for board
states.


An example, taken from Nilsson (1980), of the space searched in finding a solution
for the problem given in Figure 6.3 follows in Figure 6.4. Because this solution path can
go very deep if unconstrained, a depth bound has been added to the search. (A simple
means for adding a depth bound is to keep track of the length/depth of the current path and
to force backtracking if this bound is exceeded.) A depth bound of 5 is used in the solution
of Figure 6.4. Note that the number of possible states of working memory grows exponen-
tially with the depth of the search.


EXAMPLE 6.2.2: THE KNIGHT’S TOUR PROBLEM


In the game of chess, a knight can move two squares either horizontally or vertically fol-
lowed by one square in an orthogonal direction as long as it does not move off the board.
There are thus at most eight possible moves that the knight may make (Figure 6.5).


2


1


7


8


6


3


4


5


1


8


7


2


6


3


4


5


Start state:                                Goal state:


Production set:
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halt
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1.  Try each production in order.
2.  Do not allow loops.
3.  Stop when goal is found.


Figure 6.3 The 8-puzzle as a production system.
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As traditionally defined, the knight’s tour problem attempts to find a series of legal
moves in which the knight lands on each square of the chessboard exactly once. This
problem has been a mainstay in the development and presentation of search algorithms.
The example we use in this chapter is a simplified version of the knight’s tour problem. It
asks whether there is a series of legal moves that will take the knight from one square to
another on a reduced-size (3 × 3) chessboard. 


Figure 6.6 shows a 3 × 3 chessboard with each square labeled with integers 1 to 9.
This labeling scheme is used instead of the more general approach of giving each space a
row and column number in order to further simplify the example. Because of the reduced
size of the problem, we simply enumerate the alternative moves rather than develop a gen-
eral move operator. The legal moves on the board are then described in predicate
calculus using a predicate called move, whose parameters are the starting and ending
squares of a legal move. For example, move(1,8) takes the knight from the upper
left-hand corner to the middle of the bottom row. The predicates of Figure 6.6 enumerate
all possible moves for the 3 × 3 chessboard. 


The 3 × 3 knight’s tour problem may be solved with a production system. Each move
can be represented as a rule whose condition is the location of the knight on a particular
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Figure 6.4 The 8-puzzle searched by a production system with
loop detection and depth bound 5, from Nilsson (1971).
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square and whose action moves the knight to another square. Sixteen productions, pre-
sented in Table 6.1, represent all possible moves of the knight.


We next specify a recursive procedure to implement a control algorithm for the pro-
duction system. Because path(X,X) will unify only with predicates such as path(3,3) or
path(5,5), it defines the desired terminating condition. If path(X,X) does not succeed we
look at the production rules for a possible next state and then recur. The general recursive
path definition is then given by two predicate calculus formulas: 


∀ X path(X,X) 
∀ X,Y [path(X,Y) ← ∃ Z [move(X,Z) ∧ path(Z,Y)


Figure 6.5 Legal moves of a chess knight.


move(1,8)        move(6,1)


move(1,6)        move(6,7)


move(2,9)        move(7,2)


move(2,7)        move(7,6)


move(3,4)        move(8,3)


move(3,8)        move(8,1)


move(4,9)        move(9,2)


move(4,3)        move(9,4)


1      2     3


4      5     6


7      8     9


Figure 6.6 A 3 × 3 chessboard with move rules for
the simplified knight tour problem.
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.


Table 6.1.      Production rules for the 3x3 knight problem.


. Working memory, the parameters of the recursive path predicate, contains both the
current board state and the goal state. The control regime applies rules until the current
state equals the goal state and then halts. A simple conflict resolution scheme would fire
the first rule that did not cause the search to loop. Because the search may lead to dead
ends (from which every possible move leads to a previously visited state and thus a loop),
the control regime must also allow backtracking; an execution of this production system
that determines whether a path exists from square 1 to square 2 is charted in Figure 6.7.
This characterization of the path definition as a production system is given in Figure 6.8. 


Production systems are capable of generating infinite loops when searching a state
space graph. These loops are particularly difficult to spot in a production system because
the rules can fire in any order. That is, looping may appear in the execution of the system,
but it cannot easily be found from a syntactic inspection of the rule set. For example, with
the “move” rules of the knight’s tour problem ordered as in Table 6.1 and a conflict
resolution strategy of selecting the first match, the pattern move(2,X) would match with
move(2,9), indicating a move to square 9. On the next iteration, the pattern move(9,X)
would match with move(9,2), taking the search back to square 2, causing a loop. 


To prevent looping, pattern_search checked a global list (closed) of visited states.
The actual conflict resolution strategy was therefore: select the first matching move that


RULE # CONDITION ACTION


1 knight on square 1 → move knight to square 8


2 knight on square 1 → move knight to square 6


3 knight on square 2 → move knight to square 9


4 knight on square 2 → move knight to square 7


5 knight on square 3 → move knight to square 4


6 knight on square 3 → move knight to square 8


7 knight on square 4 → move knight to square 9


8 knight on square 4 → move knight to square 3


9 knight on square 6 → move knight to square 1


10 knight on square 6 → move knight to square 7


11 knight on square 7 → move knight to square 2


12 knight on square 7 → move knight to square 6


13 knight on square 8 → move knight to square 3


14 knight on square 8 → move knight to square 1


15 knight on square 9 → move knight to square 2


16 knight on square 9 → move knight to square 4
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leads to an unvisited state. In a production system, the proper place for recording such
case-specific data as a list of previously visited states is not a global closed list but the
working memory itself. We can alter the path predicate to use working memory for loop
detection. Assume that our predicate calculus language is augmented by the addition of a
special construct, assert(X), which causes its argument X to be entered into the working
memory. assert is not an ordinary predicate but an action that is performed; hence, it
always succeeds. 


X = Y?
Recursive call to                   causes iteration.path(X,Y)


move(X,Z)Match
against
productions.


Try to unify working
memory with


Use first match that does
not lead to a loop.


Halt


path(X,X).


Working memory


path(X,Y)


Productions


move(1,8).
move(1,6).
move(2,7).
move(2,9).


.


.


.
move (9,2).


Conflict Resolution:


Set     equal to     in
working memory
(i.e., call                 ).


X               Z


path(Z,Y)


Figure 6.8 The recursive path algorithm as production system.
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Figure 6.7 A production system solution to the 3 × 3
knight s tour problem.
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assert is used to place a “marker” in working memory to indicate when a state has
been visited. This marker is represented as a unary predicate, been(X), which takes as its
argument a square on the board. been(X) is added to working memory when a new state X
is visited. Conflict resolution may then require that been(Z) must not be in working
memory before move(X,Z) can fire. For a specific value of Z this can be tested by
matching a pattern against working memory.


The modified recursive path controller for the production system is: 


∀ X path(X,X)
∀ X,Y [path(X,Y) ← ∃ Z [move(X,Z) ∧ ¬ (been(Z)) ∧ assert(been(Z)) ∧ path(Z,Y)]]


In this definition, move(X,Z) succeeds on the first match with a move predicate. This
binds a value to Z. If been(Z) matches with an entry in working memory, ¬(been (Z))
will cause a failure (i.e., it will be false). pattern_search will then backtrack and try
another match for move(X,Z). If square Z is a new state, the search will continue, with
been(Z) asserted to the working memory to prevent future loops. The actual firing of the
production takes place when the path algorithm recurs. Thus, the presence of been
predicates in working memory implements loop detection in this production system. 


EXAMPLE 6.2.3: THE FULL KNIGHT’S TOUR


We may generalize the knight’s tour solution to the full 8 × 8 chessboard. Because it
makes little sense to enumerate moves for such a complex problem, we replace the 16
move facts with a set of 8 rules to generate legal knight moves. These moves (productions)
correspond to the 8 possible ways a knight can move (Figure 6.5).


If we index the chessboard by row and column numbers, we can define a production
rule for moving the knight down two squares and right one square: 


CONDITION: current row  6 ∧ current column  7 
ACTION: new row = current row + 2 ∧ new column = current column + 1


If we use predicate calculus to represent productions, then a board square could be
defined by the predicate square(R,C), representing the Rth row and Cth column of the
board. The above rule could be rewritten in predicate calculus as: 


move(square(Row, Column), square(Newrow, Newcolumn)) ←
less_than_or_equals(Row, 6) ∧
equals(Newrow, plus(Row, 2)) ∧
less_than_or_equals(Column, 7) ∧
equals(Newcolumn, plus(Column, 1)) 


plus is a function for addition; less_than_or_equals and equals have the obvious arith-
metic interpretations. Seven additional rules can be designed that compute the remaining
possible moves. These rules replace the move facts in the 3 × 3 version of the problem. 


The path definition from the 3 × 3 knight’s example offers a control loop for this
problem as well. As we have seen, when predicate calculus descriptions are interpreted


< <
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procedurally, such as through the pattern_search algorithm, subtle changes are made to
the semantics of predicate calculus. One such change is the sequential fashion in which
goals are solved. This imposes an ordering, or procedural semantics, on the interpretation
of predicate calculus expressions. Another change is the introduction of meta-logical pred-
icates such as assert, which indicate actions beyond the truth value interpretation of pred-
icate calculus expressions. 


EXAMPLE 6.2.4: THE FINANCIAL ADVISOR AS A PRODUCTION SYSTEM


In Chapters 2 and 3, we developed a small financial advisor, using predicate calculus to
represent the financial knowledge and graph search to make the appropriate inferences in
a consultation. The production system provides a natural vehicle for its implementation.
The implications of the logical description form the productions. The case-specific infor-
mation (an individual’s salary, dependents, etc.) is loaded into working memory. Rules are
enabled when their premises are satisfied. A rule is chosen from this conflict set and fired,
adding its conclusion to working memory. This continues until all possible top-level
conclusions have been added to the working memory. Indeed, many expert system
“shells”, including JESS and CLIPS, are production systems with added features for sup-
porting the user interface, handling uncertainty in the reasoning, editing the knowledge
base, and tracing execution.


6.2.3 Control of Search in Production Systems


The production system model offers a range of opportunities for adding heuristic control
to a search algorithm. These include the choice of data-driven or goal-driven search strate-
gies, the structure of the rules themselves, and the choice of different options for conflict
resolution.


Control through Choice of Data-Driven or Goal-Driven Search Strategy


Data-driven search begins with a problem description (such as a set of logical axioms,
symptoms of an illness, or a body of data that needs interpretation) and infers new
knowledge from the data. This is done by applying rules of inference, legal moves in a
game, or other state-generating operations to the current description of the world and add-
ing the results to that problem description. This process continues until a goal state is
reached.


This description of data-driven reasoning emphasizes its close fit with the production
system model of computation. The “current state of the world” (data that have been either
assumed to be true or deduced as true with previous use of production rules) is placed in
working memory. The recognize–act cycle then matches the current state against the
(ordered) set of productions. When these data match (are unified with) the condition(s) of
one of the production rules, the action of the production adds (by modifying working
memory) a new piece of information to the current state of the world. 


All productions have the form CONDITION → ACTION. When the CONDITION
matches some elements of working memory, its ACTION is performed. If the production
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rules are formulated as logical implications and the ACTION adds assertions to working
memory, then the act of firing a rule can correspond to an application of the inference rule
modus ponens. This creates a new state of the graph. 


Figure 6.9 presents a simple data-driven search on a set of productions expressed as
propositional calculus implications. The conflict resolution strategy is a simple one of
choosing the enabled rule that has fired least recently (or not at all); in the event of ties, the
first rule is chosen. Execution halts when a goal is reached. The figure also presents the
sequence of rule firings and the stages of working memory in the execution, along with a
graph of the space searched. 


To this point we have treated production systems in a data-driven fashion; however
they may also be used to produce a goal-driven search. As defined in Chapter 3, goal-
driven search begins with a goal and works backward to the facts of the problem to satisfy
that goal. To implement this in a production system, the goal is placed in working memory
and matched against the ACTIONs of the production rules. These ACTIONs are matched
(by unification, for example) just as the CONDITIONs of the productions were matched
in the data-driven reasoning. All production rules whose conclusions (ACTIONs) match
the goal form the conflict set. 


When the ACTION of a rule is matched, the CONDITIONs are added to working
memory and become the new subgoals (states) of the search. The new states are then
matched to the ACTIONs of other production rules. The process continues until facts are
found, usually in the problem’s initial description or, as is often the case in expert systems,
by directly asking the user for specific information. The search stops when CONDITIONs
supporting the productions fired in this backward fashion that link to a goal are found to
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Figure 6.9 Data-driven search in a production system.
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be true. The CONDITIONs and the chain of rule firings leading to the goal form a proof of
its truth through successive inferences such as modus ponens. See Figure 6.10 for an
instance of goal-driven reasoning on the same set of productions used in Figure 6.9. Note
that the goal-driven search fires a different series of productions and searches a different
space than the data-driven version. 


As this discussion illustrates, the production system offers a natural characterization
of both goal-driven and data-driven search. The production rules are the encoded set of
inferences (the “knowledge” in a rule-based expert system) for changing state within the
graph. When the current state of the world (the set of true statements describing the world)
matches the CONDITIONs of the production rules and this match causes the ACTION
part of the rule to create another (true) descriptor for the world, it is referred to as
data-driven search. 


Alternatively, when the goal is matched against the ACTION part of the rules in the
production rule set and their CONDITIONs are then set up as subgoals to be shown to be
“true” (by matching the ACTIONs of the rules on the next cycle of the production sys-
tem), the result is goal-driven problem solving. 


Because a set of rules may be executed in either a data-driven or goal-driven fashion,
we can compare and contrast the efficiency of each approach in controlling search. The
complexity of search for either strategy is measured by such notions as branching factor
or penetrance (Section 4.5). These measures of search complexity can provide a cost esti-
mate for both the data-driven and goal-driven versions of a problem solver and therefore
help in selecting the most effective strategy. 
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Figure 6.10 Goal-driven search in a production system.








CHAPTER 6 / BUILDING CONTROL ALGORITHMS FOR STATE SPACE SEARCH 213


We can also employ combinations of strategies. For example, we can search in a for-
ward direction until the number of states becomes large and then switch to a goal directed
search to use possible subgoals to select among alternative states. The danger in this situa-
tion is that, when heuristic or best-first search (Chapter 4) is used, the parts of the graphs
actually searched may “miss” each other and ultimately require more search than a sim-
pler approach, as in Figure 6.11. However, when the branching of a space is constant and
exhaustive search is used, a combined search strategy can cut back drastically the amount
of space searched, as is seen in Figure 6.12.


Control of Search through Rule Structure


The structure of rules in a production system, including the distinction between the condi-
tion and the action and the order in which conditions are tried, determines the fashion in
which the space is searched. In introducing predicate calculus as a representation lan-
guage, we emphasized the declarative nature of its semantics. That is, predicate calculus
expressions simply define true relationships in a problem domain and make no assertion
about their order of interpretation. Thus, an individual rule might be ∀ X (foo(X) ∧
goo(X) → moo(X)). Under the rules of predicate calculus, an alternative form of the same
rule is ∀ X (foo(X) → moo(X) ∨ ¬ goo(X)). The equivalence of these two clauses is left
as an exercise (Chapter 2). 


Although these formulations are logically equivalent, they do not lead to the same
results when interpreted as productions because the production system imposes an order


Start


Goal


States examined by
forward search


States examined by
backward search


Figure 6.11 Bidirectional search missing in both directions,
resulting in excessive search.








214 PART II  / ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH


on the matching and firing of rules. Thus, the specific form of the rules determines the
ease (or possibility) of matching a rule against a problem instance. This is a result of dif-
ferences in the way in which the production system interprets the rules. The production
system imposes a procedural semantics on the declarative language used to form the rules.


Because the production system tries each of its rules in a specific order, the program-
mer may control search through the structure and order of rules in the production set.
Although logically equivalent, ∀ X (foo(X) ∧ goo(X) → moo(X)) and ∀ X (foo(X) →
moo(X) ∨ ¬ goo(X)) do not have the same behavior in a search implementation. 


Human experts encode crucial heuristics within their rules of expertise. The order of
premises encodes often critical procedural information for solving the problem. It is
important that this form be preserved in building a program that “solves problems like the
expert”. When a mechanic says, “If the engine won’t turn over and the lights don’t come
on, then check the battery”, she is suggesting a specific sequence of actions. This informa-
tion is not captured by the logically equivalent statement “the engine turns over or the
lights come on or check the battery.” This form of the rules is critical in controlling search,
making the system behave logically and making order of rule firings more understandable. 


Control of Search through Conflict Resolution


Though production systems (like all architectures for knowledge-based systems) allow
heuristics to be encoded in the knowledge content of rules themselves, they offer other


Start


Goal


States examined by
forward search only


States examined by
combination of
forward and
backward search


Figure 6.12 Bidirectional search meeting in the middle, eliminating much
of the space examined by unidirectional search.
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opportunities for heuristic control through conflict resolution. Although the simplest such
strategy is to choose the first rule that matches the contents of working memory, any strat-
egy may potentially be applied to conflict resolution. For example, conflict resolution
strategies supported by OPS5 (Brownston et al. 1985) include:


1. Refraction. Refraction specifies that once a rule has fired, it may not fire again
until the working memory elements that match its conditions have been modi-
fied. This discourages looping. 


2. Recency. The recency strategy prefers rules whose conditions match with the
patterns most recently added to working memory. This focuses the search on a
single line of reasoning. 


3. Specificity. This strategy assumes that it is appropriate to use a more specific
problem-solving rule rather than to use a more general one. One rule is more spe-
cific than another if it has more conditions, which implies that it will match fewer
working memory patterns.


6.2.4 Advantages of Production Systems for AI


As illustrated by the preceding examples, the production system offers a general frame-
work for implementing search. Because of its simplicity, modifiability, and flexibility in
applying problem-solving knowledge, the production system has proved to be an impor-
tant tool for the construction of expert systems and other AI applications. The major
advantages of production systems for artificial intelligence include: 


Separation of Knowledge and Control. The production system is an elegant model of
separation of knowledge and control in a computer program. Control is provided by the
recognize–act cycle of the production system loop, and the problem-solving knowledge is
encoded in the rules themselves. The advantages of this separation include ease of
modifying the knowledge base without requiring a change in the code for program control
and, conversely, the ability to alter the code for program control without changing the set
of production rules. 


A Natural Mapping onto State Space Search. The components of a production system
map naturally into the constructs of state space search. The successive states of working
memory form the nodes of a state space graph. The production rules are the set of possible
transitions between states, with conflict resolution implementing the selection of a branch
in the state space. These rules simplify the implementation, debugging, and documenta-
tion of search algorithms. 


Modularity of Production Rules. An important aspect of the production system model
is the lack of any syntactic interactions between production rules. Rules may only effect
the firing of other rules by changing the pattern in working memory; they may not “call”
another rule directly as if it were a subroutine, nor may they set the value of variables in
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other production rules. The scope of the variables of these rules is confined to the individ-
ual rule. This syntactic independence supports the incremental development of expert sys-
tems by successively adding, deleting, or changing the knowledge (rules) of the system.


Pattern-Directed Control. The problems addressed by AI programs often require par-
ticular flexibility in program execution. This goal is served by the fact that the rules in a
production system may fire in any sequence. The descriptions of a problem that make up
the current state of the world determine the conflict set and, consequently, the particular
search path and solution. 


Opportunities for Heuristic Control of Search. (Several techniques for heuristic con-
trol were described in the preceding section.) 


Tracing and Explanation. The modularity of rules and the iterative nature of their exe-
cution make it easier to trace execution of a production system. At each stage of the recog-
nize–act cycle, the selected rule can be displayed. Because each rule corresponds to a
single “chunk” of problem-solving knowledge, the rule content can provide a meaningful
explanation of the system’s current state and action. Furthermore, the chain of rules used
within a solution process reflects both a path in the graph as well as a human expert’s “line
of reasoning”, as we see in detail in Chapter 8. In contrast, a single line of code or proce-
dure in a traditional applicative language such as Pascal, FORTRAN, or Java is virtually
meaningless.


Language Independence. The production system control model is independent of the
representation chosen for rules and working memory, as long as that representation sup-
ports pattern matching. We described production rules as predicate calculus implications
of the form A ⇒ B, where the truth of A and the inference rule modus ponens allow us to
conclude B. Although there are many advantages to using logic as both the basis for repre-
sentation of knowledge and the source of sound inference rules, the production system
model may be used with other representations, e.g., CLIPS and JESS. 


Although predicate calculus offers the advantage of logically sound inference, many
problems require reasoning that is not sound in the logical sense. Instead, they involve
probabilistic reasoning, use of uncertain evidence, and default assumptions. Later chapters
(7, 8, and 9) discuss alternative inference rules that provide these capabilities. Regardless
of the type of inference rules employed, however, the production system provides a vehi-
cle for searching the state space. 


A Plausible Model of Human Problem Solving. Modeling human problem solving
was among the first uses of production systems, see Newell and Simon (1972). They con-
tinue to be used as a model for human performance in many areas of cognitive science
research (Chapter 16).


Pattern-directed search gives us the ability to explore the space of logical inferences
in the predicate calculus. Many problems build on this technique by using predicate calcu-
lus to model specific aspects of the world such as time and change. In the next section
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blackboard systems are presented as a variation of the production system methodology,
where task specific groups of production rules are combined into knowledge sources and
cooperate in problem solving by communication through a global working memory or
blackboard.


6.3 The Blackboard Architecture for Problem Solving


The blackboard is the final control mechanism presented in this chapter. When we want to
examine the states in a space of inferences in a very deterministic fashion, production sys-
tems provide great flexibility by allowing us to represent multiple partial solutions simul-
taneously in working memory and to select the next state through conflict resolution.
Blackboards extend production systems by allowing us to organize production memory
into separate modules, each of which corresponds to a different subset of the production
rules. Blackboards integrate these separate sets of production rules and coordinate the
actions of these multiple problem solving agents, sometimes called knowledge sources,
within a single global structure, the blackboard.


Many problems require the coordination of a number of different types of agents. For
example, a speech understanding program may have to first manipulate an utterance repre-
sented as a digitized waveform. As the decoding process continues, it must find words in
this utterance, form these into phrases and sentences, and finally produce a semantic rep-
resentation of the utterance’s meaning.


A related problem occurs when multiple processes must cooperate to solve a single
problem. An example of this is the sensor fusion problem (Lesser and Corkill 1983).
Assume that we have a network of sensors, each of which is monitored by a separate
process. Assume also that the processes can communicate and that proper interpretation of
each sensor’s data depends on the data received by other sensors in the network. This
problem arises in situations as diverse as tracking airplanes across multiple radar sites to
combining the readings of multiple sensors in a manufacturing process. 


The blackboard architecture is a model of control that has been applied to these and
other problems requiring the coordination of multiple processes or knowledge sources. A
blackboard is a central global data base for the communication of independent asynchro-
nous knowledge sources focusing on related aspects of a particular problem. Figure 6.13
gives a schematic of the blackboard design. 


In Figure 6.13 each knowledge source KSi gets its data from the blackboard, pro-
cesses the data, and returns its results to the blackboard to be used by the other knowledge
sources. Each KSi is independent in that it is a separate process operating according to its
own specifications and, when a multiprocessing or multiprocessor system is used, it is
independent of the other processing in the problem. It is an asynchronous system in that
each KSi begins its operation whenever it finds appropriate input data posted on the black-
board. When it finishes its processing it posts its results to the blackboard and awaits new
appropriate input data. 


The blackboard approach to organizing a large program was first presented in the
HEARSAY-II research (Erman et al. 1980, Reddy 1976). HEARSAY-II was a speech
understanding program; it was initially designed as the front end for a library database of
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computer science articles. The user of the library would address the computer in spoken
English with queries such as, “Are any by Feigenbaum and Feldman?” and the computer
would answer the question with information from the library database. Speech
understanding requires that we integrate a number of different processes, all of which
require very different knowledge and algorithms, all of which can be exponentially com-
plex. Signal processing; recognition of phonemes, syllables, and words; syntactic parsing;
and semantic analysis mutually constrain each other in interpreting speech. 


The blackboard architecture allowed HEARSAY-II to coordinate the several different
knowledge sources required for this complex task. The blackboard is usually organized
along two dimensions. With HEARSAY-II these dimensions were time as the speech act
was produced and the analysis level of the utterance. Each level of analysis was processed
by a different class of knowledge sources. These analysis levels were:


KS1 The waveform of the acoustic signal. 
KS2 The phonemes or possible sound segments of the acoustic signal. 
KS3 The syllables that the phonemes could produce. 
KS4 The possible words as analyzed by one KS.
KS5 The possible words as analyzed by a second KS (usually considering words


from different parts of the data). 
KS6 A KS to try to generate possible word sequences. 
KS7 A KS that puts word sequences into possible phrases. 


We can visualize these processes as components of Figure 6.13. In processing spoken
speech, the waveform of the spoken signal is entered at the lowest level. Knowledge
sources for processing this entry are enabled and post their interpretations to the
blackboard, to be picked up by the appropriate process. Because of the ambiguities of
spoken language, multiple competing hypotheses may be present at each level of the
blackboard. The knowledge sources at the higher levels attempt to disambiguate these
competing hypotheses. 


The analysis of HEARSAY-II should not be seen as simply one lower level producing
data that the higher levels can then analyze. It is much more complex than that. If a KS at
one level cannot process (make sense of) the data sent to it, that KS can request the KS
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blackboard


KS1


KS2
.
.
.


KS i
.
.
.


KSn


Figure 6.13 Blackboard architecture.
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that sent it the data to go back for another try or to make another hypothesis about the data.
Furthermore, different KSs can be working on different parts of the utterance at the same
time. All the processes, as mentioned previously, are asynchronous and data-driven; they
act when they have input data, continue acting until they have finished their task, and then
post their results and wait for their next task. 


One of the KSs, called the scheduler, handles the “consume-data post-result” commu-
nication between the KSs. This scheduler has ratings on the results of each KS’s activity
and is able to supply, by means of a priority queue, some direction in the problem solving.
If no KS is active, the scheduler determines that the task is finished and shuts down. 


When the HEARSAY program had a database of about 1,000 words it worked quite
well, although a bit slowly. When the database was further extended, the data for the
knowledge sources got more complex than they could handle. HEARSAY-III (Balzer et al.
1980, Erman et al. 1981) is a generalization of the approach taken by HEARSAY-II. The
time dimension of HEARSAY-II is no longer needed, but the multiple KSs for levels of
analysis are retained. The blackboard for HEARSAY-III is intended to interact with a gen-
eral-purpose relational database system. Indeed, HEARSAY-III is a shell for the design of
expert systems; see Section 8.1.1. 


An important change in HEARSAY-III has been to split off the scheduler KS (as
described above for HEARSAY-II) and to make it a separate blackboard controller for the
first (or problem domain) blackboard. This second blackboard allows the scheduling pro-
cess to be broken down, just as the domain of the problem is broken down, into separate
KSs concerned with different aspects of the solution procedure (for example, when and
how to apply the domain knowledge). The second blackboard can thus compare and bal-
ance different solutions for each problem (Nii and Aiello 1979, Nii 1986a, 1986b). An
alternative model of the blackboard retains important parts of the knowledge base in the
blackboard, rather than distributing them across knowledge sources (Skinner and Luger
1991, 1992). 


6.4 Epilogue and References


Chapter 6 discussed the implementation of the search strategies of Chapters 3 and 4. Thus,
the references listed in the epilogue to those chapters are also appropriate to this chapter.
Section 6.1 presented recursion as an important tool for programming graph search,
implementing the depth-first and backtrack algorithms of Chapter 3 in recursive form. Pat-
tern-directed search with unification and inference rules, as in Chapter 2, simplifies the
implementation of search through a space of logical inferences.


In Section 6.2 the production system was shown as a natural architecture for model-
ing problem solving and implementing search algorithms. The section concluded with
examples of production system implementations of data-driven and goal-driven search. In
fact, the production system has always been an important paradigm for AI programming,
beginning with work by Newell and Simon and their colleagues at Carnegie Mellon Uni-
versity (Newell and Simon 1976, Klahr et al. 1987, Neches et al. 1987, Newell et al.
1989). The production system has also been an important architecture supporting research
in cognitive science (Newell and Simon 1972, Luger 1994; see also Chapter 16). 
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References on building production systems, especially the OPS languages,  include
Programming Expert Systems in OPS5 by Lee Brownston et al. (1985), and Pattern
Directed Inference Systems by Donald Waterman and Frederick Hayes-Roth (1978). For
modern production systems in C and Java, go to the web sites for CLIPS and JESS. 


Early work in blackboard models is described in HEARSAY-II research (Reddy 1976,
Erman et al. 1980). Later developments in blackboards is described in the HEARSAY-III
work (Lesser and Corkill 1983, Nii 1986a, Nii 1986b), and Blackboard Systems, edited by
Robert Engelmore and Tony Morgan (1988).


Research in production systems, planning, and blackboard architectures remains an
active part of artificial intelligence. We recommend that the interested reader consult
recent proceedings of the American Association for Artificial Intelligence Conference and
the International Joint Conference on Artificial Intelligence. Morgan Kaufmann and AAAI
Press publish conference proceedings, as well as collections of readings on AI topics.


6.5 Exercises


1. a. Write a member-check algorithm to recursively determine whether a given element is
a member of a list. 
b. Write an algorithm to count the number of elements in a list. 
c. Write an algorithm to count the number of atoms in a list. 
(The distinction between atoms and elements is that an element may itself be a list.) 


2. Write a recursive algorithm (using open and closed lists) to implement breadth-first
search. Does recursion allow the omission of the open list when implementing breadth-
first search? Explain. 


3. Trace the execution of the recursive depth-first search algorithm (the version that does not
use an open list) on the state space of Figure 3.14. 


4. In an ancient Hindu tea ceremony, there are three participants: an elder, a servant, and a
child. The four tasks they perform are feeding the fire, serving cakes, pouring tea, and
reading poetry; this order reflects the decreasing importance of the tasks. At the beginning
of the ceremony, the child performs all four tasks. They are passed one at a time to the
servant and the elder until, at the end of the ceremony, the elder is performing all four
tasks. No one can take on a less important task than those they already perform. Generate
a sequence of moves to transfer all the tasks from the child to the elder. Write a recursive
algorithm to perform the move sequence. 


5. Using the move and path definitions for the knight’s tour of Section 6.2.2, trace the
execution of pattern_search on the goals: 


a. path(1,9).
b. path(1,5).
c. path(7,6).


When the move predicates are attempted in order, there is often looping in the search.
Discuss loop detection and backtracking in this situation. 


6. Write the pseudo-code definition for a breadth-first version of pattern_search
(Section 6.1.2). Discuss the time and space efficiency of this algorithm.
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7. Using the rule in Example 6.2.3 as a model, write the eight move rules needed for the full
8 × 8 version of the knight’s tour. 


8. Using the goal and start states of Figure 6.3, hand run the production system solution to
the 8-puzzle: 


a. In goal-driven fashion. 
b. In data-driven fashion. 


9. Consider the financial advisor problem discussed in Chapters 2, 3, and 4. Using predicate
calculus as a representation language: 


a. Write the problem explicitly as a production system. 
b. Generate the state space and stages of working memory for the data-driven solution


to the example in Chapter 3. 
10. Repeat problem 9.b to produce a goal-driven solution. 


11. Section 6.2.3 presented the general conflict resolution strategies of refraction, recency,
and specificity. Propose and justify two more such strategies. 


12. Suggest two applications appropriate for solution using the blackboard architecture.
Briefly characterize the organization of the blackboard and knowledge sources for each
implementation.
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P A R T III


CAPTURING INTELLIGENCE: 
THE AI CHALLENGE


Our age of anxiety is, in great part, the result
of trying to do today’s jobs with yesterday’s tools. . .


—MARSHALL MCLUHAN


Might it not be more fruitful to think of brains as controllers for embodied activity? That 
small shift in perspective has large implications for how we construct a science of the 
mind. It demands, in fact, a sweeping reform in our whole way of thinking about intelli-
gent behavior. It requires us to abandon the ideas (common since Descartes) of the mental 
as a realm distinct from the realm of the body; to abandon the idea of neat dividing lines 
between perception, cognition and action; to abandon the idea of an executive center 
where the brain carries out high-level reasoning; and most of all to abandon research 
methods that artificially divorce thought from embodied action-taking. . .


—ANDY CLARK, Being There (1997).


Representation and Intelligence


The question of representation, or how to best capture critical aspects of intelligent activ-
ity for use on a computer, or indeed, for communication with humans, has been a constant
theme across the more than sixty-year history of AI. We begin Part III with a review of the
three predominant approaches to representation taken by the AI research community over
this time period. The first theme, articulated in the 1950s and 1960s by Newell and Simon
in their work with the Logic Theorist (Newell and Simon 1956, 1963a), is known as weak
method problem-solving. The second theme, common throughout the 1970s and 1980s,
and espoused by the early expert system designers, is strong method problem solving (see
Feigenbaum’s quote at the beginning of Chapter 8). In more recent years, especially in the
domains of robotics and the internet (Brooks 1987, 1989; Clark 1997), the emphasis is on
distributed and embodied or agent-based approaches to intelligence. We next introduce
each of these methodologies for representing intelligence. The three chapters that com-
prise Part III offer more detailed descriptions of each approach.
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In the late 1950s and early 1960s, Alan Newell and Herbert Simon wrote several com-
puter programs to test the hypothesis that intelligent behavior resulted from heuristic
search. The Logic Theorist, developed with J. C. Shaw (Newell and Simon 1963a), proved
theorems in elementary logic using the notation and axioms of Whitehead and Russell’s
(1950) Principia Mathematica. The authors describe their research as aimed at under-
standing


the complex processes (heuristics) that are effective in problem solving. Hence, we are not
interested in methods that guarantee solutions, but which require vast amounts of computation.
Rather we wish to understand how a mathematician, for example, is able to prove a theorem
even though he does not know when he starts how, or if, he is going to succeed.


In a later program, the General Problem Solver or GPS, Newell and Simon (1963b,
1972) continued this effort to find general principles of intelligent problem solving. The
GPS solved problems formulated as state space search; legal problem-solving steps were a
set of operations for modifying state representations. GPS searched for a sequence of
operations that would transform the start state into the goal state, searching in the same
fashion as the algorithms discussed in earlier chapters of this book.


GPS used means–ends analysis, a general heuristic for selecting among alternative
state transformation operations, to guide search through the problem space. Means–ends
analysis examines the syntactic differences between the current state and the goal state
and selects an operator that can reduce these differences. Suppose, for example, that GPS
is attempting to prove the equivalence of two logical expressions. If the current state con-
tains an 


 


∧ operator and the goal does not contain an 


 


∧, then means–ends analysis would
select a transformation such as de Morgan’s law, to remove 


 


∧ from expressions. (For a
more detailed description and examples of this research see Section 14.1.)


By using a heuristic that examines only the syntactic form of states, it was hoped that
GPS would be a general architecture for intelligent problem solving, no matter what the
domain. Programs like GPS, which are restricted to syntax-based strategies and intended
for a wide variety of applications, are known as weak method problem solvers.


Unfortunately, there does not seem to be a single heuristic that can successfully be
applied to all problem domains. In general, the methods we use to solve problems employ
a great deal of knowledge about a situation. Doctors are able to diagnose illness because
they have extensive knowledge of medicine, in addition to their general problem-solving
abilities. Architects design houses because they know about architecture. Indeed, the heu-
ristics used in medical diagnosis would be useless in designing an office building.


Weak methods stand in sharp contrast to strong methods, which use explicit knowl-
edge of a particular problem domain. Consider a rule for diagnostic analysis of automotive
problems:


if
the engine does not turn over, and 
the lights do not come on 
then
the problem is battery or cables (.8)
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This heuristic, phrased as an if... then... rule, focuses search on the battery/cable sub-
system of the automobile, eliminating other components and pruning the search space.
Notice that this particular heuristic, unlike means–ends analysis, uses empirical knowl-
edge of how automobiles function, such as knowledge of the relationships between the
battery, lights, and starter. It is useless in any problem domain except vehicle repair.


Not only do strong method problem solvers use domain-specific knowledge, but they
generally require large amounts of such knowledge to be effective. The bad-battery heuris-
tic, for example, would not be of much use in diagnosing a bad carburetor, and would
likely be useless in other domains. Thus, a major challenge in designing a knowledge-
based program is the acquisition and organization of large amounts of specific domain
knowledge. Domain rules can also contain a measure, .8 in the rule above, to reflect the
diagnostician’s confidence in this piece of domain knowledge.


In using the strong method approach, program designers are making certain assump-
tions about the nature of intelligent systems. These assumptions are formalized by Brian
Smith (1985) as the knowledge representation hypothesis. This hypothesis states that 


any mechanically embodied intelligent process will be comprised of structural ingredients that
(a) we as external observers naturally take to represent a propositional account of the knowl-
edge that the overall process exhibits, and (b) independent of such external semantical attribu-
tion, play a formal role in engendering the behavior that manifests that knowledge.


The important aspects of this hypothesis include the assumption that knowledge will
be represented propositionally, that is, in a form that explicitly represents the knowledge
in question and that may be seen by an outside observer as a “natural” description of that
knowledge. The second major assumption is that the behavior of the system can be seen as
formally caused by the propositions in the knowledge base and that this behavior should
be consistent with our perceived meaning of those propositions.


The final theme for AI representation is often described as agent-based, embodied, or
emergent problem solving. Several researchers working in applied domains such as robot-
ics, game design, and the internet, including Brooks (1987, 1989), Agre and Chapman
(1987), Jennings (1995), Wooldridge (2000), Wooldridge et al. (2006, 2007), Fatima et al.
(2004, 2005, 2006), and Vieira et al. (2007) have challenged the requirement of having
any centralized knowledge base or general-purpose inferencing scheme. Problem solvers
are designed as distributed agents: situated, autonomous, and flexible.


On this viewpoint, problem solving is viewed as distributed, with agents performing
tasks in different subcontexts of their domains, for example, the activity of an internet
browser or security agent. The problem-solving task is laid out into its several components
with little or no general coordination of tasks. The situated agent is able to receive sensory
input from its particular environment, as well as react in that context without waiting for
instructions from some general controller. In interactive game playing, for example, the
agent would be addressing a particular local issue, e.g., defending against a particular
attack or raising a specific alarm, without any general view of the entire problem situation.


Agents are autonomous, in that they are often required to act without direct interven-
tion of humans or some general control process. Autonomous agents thus have control
over their own actions and internal state. Some agent systems are even capable of learning
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from their own experiences. Finally, agents are flexible in that they are responsive to
situations in their local environment. They are also proactive, in that they can anticipate
situations. Finally, they must be able to respond collaboratively with other agents in the
problem domain, communicating about tasks, goals, and appropriate processes.


Several researchers in the domain of robotics have built agent-based systems. Rodney
Brooks (1987, 1989) in the MIT Robotics Laboratory has designed what he terms a sub-
sumption architecture, a layered sequence of finite state machines, each one acting in its
own context but also supporting functionality at higher levels. Manuela Veloso et al.
(2000) working in the Robotics Lab at Carnegie Mellon, have designed a team of robotic
soccer (football) agents that collaborate in the adversarial environment of soccer games.


Finally, this situated and embodied approach to representation is described by several
philosophers of science, including Dan Dennett (1991, 1995) and Andy Clark (1997) as
appropriate characterizations of human intelligence. Later in this book we present further
representational schemes, including connectionist (Chapter 11) and genetic (Chapter 12)
approaches. General representational issues are discussed again in Chapter 16.


In Chapter 7 we examine in detail many of the major approaches the AI community
has taken to representation. We begin with the early use of representations, including
semantic networks, scripts, frames, and objects. We present these schemes from an evolu-
tionary viewpoint, showing how modern tools grew from these early years of AI research.
We next present John Sowa’s conceptual graphs, a representation for use in natural lan-
guage understanding. Finally, we present agent-based and situated approaches to represen-
tation, including Rodney Brooks’ subsumption architecture, which calls into question the
need for a central base of explicit knowledge used with a general purpose controller.


In Chapter 8 we discuss knowledge-intensive systems and examine the problems
involved in the acquisition, formalization, and debugging of a knowledge base. We
present different inference schemes for rule systems, including goal-driven and data-
driven reasoning. Besides rule-based reasoning, we present model-based and case-based
systems. The first of these tries to represent explicitly the theoretical foundations and
functionality of a domain, e.g., an electronic circuit, while the second approach builds a
cummulative database of past successes and failures in a problem domain to assist with
future problem solving. We conclude Chapter 8 with a review of planning, where knowl-
edge is organized to control problem solving in complex domains such as robotics.


In Chapter 9 we present a number of techniques that address the representation prob-
lem for reasoning in situations of vagueness and/or uncertainty. At these times, we try to
reach the best explanation for often ambiguous information. This type of reasoning is
often termed abductive. We first present nonmonotonic and truth-maintenance logics,
where traditional predicate logic is extended to capture situations with uncertainty. How-
ever, much interesting and important problem solving does not fit comfortably under the
umbrella of deductive logic. For reasoning in these situations we introduce a number of
other potent tools, including Bayesian techniques, the Dempster–Shafer approach, and the
Stanford Certainty Factor algebra. We also have a section on fuzzy reasoning. We con-
clude Part III with the stochastic methodology for uncertainty, presenting Bayesian belief
networks, Markov models, hidden Markov models, and related approaches.
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This grand book, the universe, ... is written in the language of mathematics, and its
characters are triangles, circles, and other geometric figures without which it is humanly
impossible to understand a word of it; without these one wanders about in a dark
labyrinth. . .


—GALILEO GALILEI, Discorsi E Dimonstrazioni Matematiche Introno a Due Nuove Scienze (1638)


Since no organism can cope with infinite diversity, one of the basic functions of all 
organisms is the cutting up of the environment into classifications by which non-identical
stimuli can be treated as equivalent. . .


—ELEANOR ROSCH, Principles of Categorization (1978)


We have always two universes of discourse—call them “physical” and “phenomenal”, or 
what you will—one dealing with questions of quantitative and formal structure, the other 
with those qualities that constitute a “world”. All of us have our own distinctive mental 
worlds, our own inner journeyings and landscapes, and these, for most of us, require no 
clear neurological “correlate”. 


—OLIVER SACKS, The Man Who Mistook His Wife for a Hat (1987)


7.0 Issues in Knowledge Representation


The representation of information for use in intelligent problem solving offers important
and difficult challenges that lie at the core of AI. In Section 7.1, we present a brief histori-
cal retrospective of early research in representation; topics include semantic networks,
conceptual dependencies, scripts, and frames. Section 7.2 offers a more modern represen-
tation used in natural language programs, John Sowa’s conceptual graphs. In Section 7.3,
we critique the requirement of creating centralized and explicit representational schemes.
Brooks’ alternative is the subsumption architecture for robots. Section 7.4 presents agents,


7
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another alternative to centralized control. In later chapters we extend our discussion of
representations to include the stochastic (Section 9.3 and Chapter 13), the connectionist
(Chapter 11), and the genetic/emergent (Chapter 12).


We begin our discussion of representation from an historical perspective, where a
knowledge base is described as a mapping between the objects and relations in a problem
domain and the computational objects and relations of a program (Bobrow 1975). The
results of inferences in the knowledge base are assumed to correspond to the results of
actions or observations in the world. The computational objects, relations, and inferences
available to programmers are mediated by the knowledge representation language.


There are general principles of knowledge organization that apply across a variety of
domains and can be directly supported by a representation language. For example, class
hierarchies are found in both scientific and commonsense classification systems. How
may we provide a general mechanism for representing them? How may we represent defi-
nitions? Exceptions? When should an intelligent system make default assumptions about
missing information and how can it adjust its reasoning should these assumptions prove
wrong? How may we best represent time? Causality? Uncertainty? Progress in building
intelligent systems depends on discovering the principles of knowledge organization and
supporting them through higher-level representational tools.


It is useful to distinguish between a representational scheme and the medium of its
implementation. This is similar to the distinction between data structures and program-
ming languages. Programming languages are the medium of implementation; the data
structure is the scheme. Generally, knowledge representation languages are more con-
strained than the predicate calculus or programming languages. These constraints take the
form of explicit structures for representing categories of knowledge. Their medium of
implementation might be Prolog, Lisp, or more common languages such as C++ or Java.


Our discussion to this point illustrates the traditional view of AI representational
schemes, a view that often includes a global knowledge base of language structures
reflecting a static and “preinterpreted bias” of a “real world”. More recent research in
robotics (Brooks 1991a, Lewis and Luger 2000), situated cognition (Agre and Chapman
1987, Lakoff and Johnson 1999), agent-based problem solving (Jennings et al. 1998,
Wooldridge 2000; Fatima et al. 2005, 2006; Vieira et al. 2007), and philosophy (Clark
1997) has challenged this traditional approach. These problem domains require distributed
knowledge, a world that can itself be used as a partial knowledge structure, the ability to
reason with partial information, and even representations that can themselves evolve as
they come to experience the invariants of a problem domain. These approaches are intro-
duced in Sections 7.3 and 7.4. 


7.1 A Brief History of AI Representational Schemes


7.1.1 Associationist Theories of Meaning


Logical representations grew out of the efforts of philosophers and mathematicians to
characterize the principles of correct reasoning. The major concern of logic is the develop-
ment of formal representation languages with sound and complete inference rules. As a
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result, the semantics of predicate calculus emphasizes truth-preserving operations on
well-formed expressions. An alternative line of research has grown out of the efforts of
psychologists and linguists to characterize the nature of human understanding. This work
is less concerned with establishing a science of correct reasoning than with describing the
way in which humans actually acquire, associate, and use knowledge of their world. This
approach has proved particularly useful to the AI application areas of natural language
understanding and commonsense reasoning. 


There are many problems that arise in mapping commonsense reasoning into formal
logic. For example, it is common to think of the operators 


 


∨ and


 


→ as corresponding to
the English “or” and “if ... then ...”. However, these operators in logic are concerned solely
with truth values and ignore the fact that the English “if ... then ...” suggests specific rela-
tionship (often more coorelational than causal) between its premises and its conclusion.
For example, the sentence “If a bird is a cardinal then it is red” (associating the bird cardi-
nal with the color red) can be written in predicate calculus: 


 


∀ X (cardinal(X) 


 


→ red(X)).


This may be changed, through a series of truth-preserving operations, Chapter 2, into the
logically equivalent expression 


 


∀ X (


 


¬ red(X) 


 


→


 


¬ cardinal(X)).


These two expressions have the same truth value; that is, the second is true if and only if
the first is true. However, truth value equivalence is inappropriate in this situation. If we
were to look for physical evidence of the truth of these statements, the fact that this sheet
of paper is not red and also not a cardinal is evidence for the truth of the second expres-
sion. Because the two expressions are logically equivalent, it follows that it is also evi-
dence for the truth of the first statement. This leads to the conclusion that the whiteness of
the sheet of paper is evidence that cardinals are red. 


This line of reasoning strikes us as meaningless and rather silly. The reason for this
incongruity is that logical implication only expresses a relationship between the truth val-
ues of its operands, while the English sentence implied a positive coorelation between
membership in a class and the possession of properties of that class. In fact, the genetic
makeup of a bird causes it to have a certain color. This relationship is lost in the second
version of the expression. Although the fact that the paper is not red is consistent with the
truth of both sentences, it is irrelevant to the causal nature of the color of birds.


Associationist theories, following the empiricist tradition in philosophy, define the
meaning of an object in terms of a network of associations with other objects. For the
associationist, when humans perceive an object, that perception is first mapped into a con-
cept. This concept is part of our entire knowledge of the world and is connected through
appropriate relationships to other concepts. These relationships form an understanding of
the properties and behavior of objects such as snow. For example, through experience, we
associate the concept snow with other concepts such as cold, white, snowman, slippery,
and ice. Our understanding of snow and the truth of statements such as “snow is white”
and  “the snowman is white” manifests itself out of this network of associations. 
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There is psychological evidence that in addition to their ability to associate concepts,
humans also organize their knowledge hierarchically, with information kept at the highest
appropriate levels of the taxonomy. Collins and Quillian (1969) modeled human informa-
tion storage and management using a semantic network (Figure 7.1). The structure of this
hierarchy was derived from laboratory testing of human subjects. The subjects were asked
questions about different properties of birds, such as, “Is a canary a bird?” or “Can a
canary sing?” or “Can a canary fly?”. 


As obvious as the answers to these questions may seem, reaction-time studies indi-
cated that it took longer for subjects to answer “Can a canary fly?” than it did to answer
“Can a canary sing?” Collins and Quillian explain this difference in response time by
arguing that people store information at its most abstract level. Instead of trying to recall
that canaries fly, and robins fly, and swallows fly, all stored with the individual bird,
humans remember that canaries are birds and that birds have (usually) the property of fly-
ing. Even more general properties such as eating, breathing, and moving are stored at the
“animal” level, and so trying to recall whether a canary can breathe should take longer
than recalling whether a canary can fly. This is, of course, because the human must travel
further up the hierarchy of memory structures to get the answer. 


The fastest recall was for the traits specific to the bird, say, that it can sing or is yel-
low. Exception handling also seemed to be done at the most specific level. When subjects
were asked whether an ostrich could fly, the answer was produced faster than when they
were asked whether an ostrich could breathe. Thus the hierarchy ostrich 
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Figure 7.1 Semantic network developed by Collins and Quillian
in their research on human information storage and
response times (Harmon and King 1985).
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seems not to be traversed to get the exception information: it is stored directly with
ostrich. This knowledge organization has been formalized in inheritance systems. 


Inheritance systems allow us to store information at the highest level of abstraction,
which reduces the size of knowledge bases and helps prevent update inconsistencies. For
example, if we are building a knowledge base about birds, we can define the traits com-
mon to all birds, such as flying or having feathers, for the general class bird and allow a
particular species of bird to inherit these properties. This reduces the size of the knowl-
edge base by requiring us to define these essential traits only once, rather than requiring
their assertion for every individual. Inheritance also helps us to maintain the consistency
of the knowledge base when adding new classes and individuals. Assume that we are add-
ing the species robin to an existing knowledge base. When we assert that robin is a sub-
class of songbird; robin inherits all of the common properties of both songbirds and
birds. It is not up to the programmer to remember (or forget!) to add this information.


Graphs, by providing a means of explicitly representing relations using arcs and
nodes, have proved to be an ideal vehicle for formalizing associationist theories of knowl-
edge. A semantic network represents knowledge as a graph, with the nodes corresponding
to facts or concepts and the arcs to relations or associations between concepts. Both nodes
and links are generally labeled. For example, a semantic network that defines the proper-
ties of snow and ice appears in Figure 7.2. This network could be used (with appropriate
inference rules) to answer a range of questions about snow, ice, and snowmen. These
inferences are made by following the links to related concepts. Semantic networks also
implement inheritance; for example, frosty inherits all the properties of snowman.


The term “semantic network” encompasses a family of graph-based representations.
These differ chiefly in the names that are allowed for nodes and links and the inferences
that may be performed. However, a common set of assumptions and concerns is shared by
all network representation languages; these are illustrated by a discussion of the history of
network representations. In Section 7.2 we examine conceptual graphs (Sowa 1984), a
more modern network representation language that integrates many of these ideas. 


7.1.2 Early Work in Semantic Nets


Network representations have almost as long a history as logic. The Greek philosopher
Porphyry created tree-based type hierarchies - with their roots at the top - to describe Aris-
totle’s categories (Porphyry 1887). Frege developed a tree notation for logic expressions.
Perhaps the earliest work to have a direct influence on contemporary semantic nets was
Charles S. Peirce’s system of existential graphs, developed in the nineteenth century (Rob-
erts 1973). Peirce’s theory had all the expressive power of first-order predicate calculus,
with an axiomatic basis and formal rules of inference. 


Graphs have long been used in psychology to represent structures of concepts and
associations. Selz (1913, 1922) pioneered this work, using graphs to represent concept
hierarchies and the inheritance of properties. He also developed a theory of schematic
anticipation that influenced AI work in frames and schemata. Anderson, Norman, Rumel-
hart, and others have used networks to model human memory and intellectual perfor-
mance (Anderson and Bower 1973, Norman et al. 1975). 
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Much of the research in network representations has been done in the arena of natural
language understanding. In the general case, language understanding requires an under-
standing of common sense, the ways in which physical objects behave, the interactions
that occur between humans, and the ways in which human institutions are organized. A
natural language program must understand intentions, beliefs, hypothetical reasoning,
plans, and goals. Because of these requirements language understanding has always been
a driving force for research in knowledge representation. 


The first computer implementations of semantic networks were developed in the early
1960s for use in machine translation. Masterman (1961) defined a set of 100 primitive
concept types and used them to define a dictionary of 15,000 concepts. Wilks (1972) con-
tinued to build on Masterman’s work in semantic network-based natural language sys-
tems. Shapiro’s (1971) MIND program was the first implementation of a propositional
calculus based semantic network. Other early AI workers exploring network representa-
tions include Ceccato (1961), Raphael (1968), Reitman (1965), and Simmons (1966). 
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Figure 7.2 Network representation of properties of snow and ice.
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An influential program that illustrates many of the features of early semantic net-
works was written by Quillian in the late 1960s (Quillian 1967). This program defined
English words in much the same way that a dictionary does: a word is defined in terms of
other words, and the components of the definition are defined in the same fashion. Rather
than formally defining words in terms of basic axioms, each definition simply leads to
other definitions in an unstructured and sometimes circular fashion. In looking up a word,
we traverse this “network” until we are satisfied that we understand the original word.


Each node in Quillian’s network corresponded to a word concept, with associative
links to other word concepts that formed its definition. The knowledge base was organized
into planes, where each plane was a graph that defined a single word. Figure 7.3, taken
from a paper by Quillian (1967), illustrates three planes that capture three different
definitions of the word “plant:” a living organism (plant 1), a place where people work
(plant 2), and the act of putting a seed in the ground (plant 3). 


The program used this knowledge base to find relationships between pairs of English
words. Given two words, it would search the graphs outward from each word in a
breadth-first fashion, searching for a common concept or intersection node. The paths to
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this node represented a relationship between the word concepts. For example, Figure 7.4
from the same paper, shows the intersection paths between cry and comfort.


Using this intersection path, the program was able to conclude: 


cry 2 is among other things to make a sad sound. To comfort 3 can be to make 2 something less
sad (Quillian 1967). 


The numbers in the response indicate that the program has selected from among different
meanings of the words. 


Quillian (1967) suggested that this approach to semantics might provide a natural lan-
guage understanding system with the ability to:


1. Determine the meaning of a body of English text by building up collections of
these intersection nodes. 


2. Choose between multiple meanings of words by finding the meanings with the
shortest intersection path to other words in the sentence. For example, it could
select a meaning for “plant” in “Tom went home to water his new plant” based on
the intersection of the word concepts “water” and “plant.” 


3. Answer a flexible range of queries based on associations between word concepts
in the queries and concepts in the system. 


Although this and other early work established the power of graphs to model associa-
tive meaning, it was limited by the extreme generality of the formalism. Knowledge was
generally structured in terms of specific relationships such as object/property, class/sub-
class, and agent/verb/object.


7.1.3 Standardization of Network Relationships


In itself, a graph notation of relationships has little computational advantage over logic; it
is just another notation for relationships between objects. In fact SNePS, Semantic Net
Processing System (Shapiro 1979, Shapiro et al. 2006),  was a theorem prover in the first-
order predicate calculus. The power of his network representations comes from the defini-
tion of links and associated inference rules such as inheritance. 


Though Quillian’s early work established most of the significant features of the
semantic network formalism, such as labeled arcs and links, hierarchical inheritance, and
inferences along associational links, it proved limited in its ability to deal with the com-
plexities of many domains. One of the main reasons for this failure was the poverty of
relationships (links) that captured the deeper semantic aspects of knowledge. Most of the
links represented extremely general associations between nodes and provided no real basis
for the structuring of semantic relationships. The same problem is encountered in efforts
to use predicate calculus to capture semantic meaning. Although the formalism is highly
expressive and can represent almost any kind of knowledge, it is too unconstrained and
places the burden of constructing appropriate sets of facts and rules on the programmer. 
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Much of the work in network representations that followed Quillian’s focused on
defining a richer set of link labels (relationships) that would more fully model the
semantics of natural language. By implementing the fundamental semantic relationships
of natural language as part of the formalism, rather than as part of the domain knowledge
added by the system builder, knowledge bases require less handcrafting and achieve
greater generality and consistency. 


Brachman (1979) has stated: 


The key issue here is the isolation of the primitives for semantic network languages. The primi-
tives of a network language are those things that the interpreter is programmed in advance to
understand, and that are not usually represented in the network language itself. 


Simmons (1973) addressed this need for standard relationships by focusing on the
case structure of English verbs. In this verb-oriented approach, based on earlier work by
Fillmore (1968), links define the roles played by nouns and noun phrases in the action of
the sentence. Case relationships include agent, object, instrument, location, and time. A
sentence is represented as a verb node, with various case links to nodes representing other
participants in the action. This structure is called a case frame. In parsing a sentence, the
program finds the verb and retrieves the case frame for that verb from its knowledge base.
It then binds the values of the agent, object, etc., to the appropriate nodes in the case
frame. Using this approach, the sentence “Sarah fixed the chair with glue” might be repre-
sented by the network in Figure 7.5.


Thus, the representation language itself captures much of the deep structure of natural
language, such as the relationship between a verb and its subject (the agent relation) or
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that between a verb and its object. Knowledge of the case structure of the English lan-
guage is part of the network formalism itself. When the individual sentence is parsed,
these built-in relationships indicate that Sarah is the person doing the fixing and that glue
is used to put the chair together. Note that these linguistic relationships are stored in a
fashion that is independent of the actual sentence or even the language in which the sen-
tence was expressed. A similar approach was also taken in network languages proposed by
Norman (1972) and Rumelhart et al. (1972, 1973). 


A number of major research endeavors attempted to standardize link names even fur-
ther (Masterman 1961, Wilks 1972, Schank and Colby 1973, Schank and Nash-Webber
1975). Each effort worked to establish a complete set of primitives that could be used to
represent the semantic structure of natural language expressions in a uniform fashion.
These were intended to assist in reasoning with language constructs and to be independent
of the idiosyncrasies of individual languages or phrasing. 


Perhaps the most ambitious attempt to model formally the deep semantic structure of
natural language is Roger Schank’s conceptual dependency theory (Schank and Rieger
1974). Conceptual dependency theory offers a set of four primitive conceptualizations
from which the world of meaning is built. These are equal and independent. They are:


ACTs actions
PPs objects (picture producers)
AAs modifiers of actions (action aiders)
PAs modifiers of objects (picture aiders)


For example, all actions are assumed to reduce to one or more of the primitive ACTs.
The primitives listed below are taken as the basic components of action, with more spe-
cific verbs being formed through their modification and combination.


ATRANS transfer a relationship (give)
PTRANS transfer physical location of an object (go)
PROPEL apply physical force to an object (push)
MOVE move body part by owner (kick)
GRASP grab an object by an actor (grasp)
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Figure 7.5 Case frame representation of the sentence
Sarah fixed the chair with glue.
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INGEST ingest an object by an animal (eat)
EXPEL expel from an animal s body (cry)
MTRANS transfer mental information (tell)
MBUILD mentally make new information (decide)
CONC conceptualize or think about an idea (think)
SPEAK produce sound (say)
ATTEND focus sense organ (listen)


These primitives are used to define conceptual dependency relationships that describe
meaning structures such as case relations or the association of objects and values. Concep-
tual dependency relationships are conceptual syntax rules and constitute a grammar of
meaningful semantic relationships. These relationships can be used to construct an inter-
nal representation of an English sentence. A list of basic conceptual dependencies (Schank
and Rieger 1974) appears in Figure 7.6. These capture, their creators feel, the fundamental
semantic structures of natural language. For example, the first conceptual dependency in
Figure 7.6 describes the relationship between a subject and its verb, and the third describes
the verb–object relation. These can be combined to represent a simple transitive sentence
such as “John throws the ball” (see Figure 7.7). 
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Finally, tense and mode information may be added to the set of conceptualizations.
Schank supplies a list of attachments or modifiers to the relationships. A partial list of
these includes:


John                        *PROPEL*                      Ball
O


Figure 7.7 Conceptual dependency representation of
the sentence John throws the ball.
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p past
f future
t transition
k continuing
ts start transition
? interrogative
tf finish transition
c conditional
/ negative
nil present
delta? timeless


These relations are the first-level constructs of the theory, the simplest semantic rela-
tionships out of which more complex structures can be built. Further examples of how
these basic conceptual dependencies can be composed to represent the meaning of simple
English sentences appear in Figure 7.8.


Based on these primitives, the English sentence “John ate the egg” is represented as
shown in Figure 7.9, where the symbols have the following meanings:


← indicates the direction of dependency
⇔ indicates the agent—verb relationship
p indicates past tense
INGEST is a primitive act of the theory
O object relation
D indicates the direction of the object in the action


Another example of the structures that can be built using conceptual dependencies is
the representation graph for “John prevented Mary from giving a book to Bill” (Figure
7.10). This particular example is interesting because it demonstrates how causality can be
represented.


Conceptual dependency theory offers a number of important benefits. By providing a
formal theory of natural language semantics, it reduces problems of ambiguity. Second,
the representation itself directly captures much of natural language semantics, by attempt-
ing to provide a canonical form for the meaning of sentences. That is, all sentences that
have the same meaning will be represented internally by syntactically identical, not just
semantically equivalent, graphs. This canonical representation is an effort to simplify the
inferences required for understanding. For example, we can demonstrate that two sen-
tences mean the same thing with a simple match of conceptual dependency graphs; a rep-
resentation that did not provide a canonical form might require extensive operations on
differently structured graphs. 


Unfortunately, it is questionable whether a program may be written to reliably reduce
sentences to canonical form. As Woods (1985) and others have pointed out, reduction to a
canonical form is provably uncomputable for monoids, a type of algebraic group that is far
simpler than natural language. There is also no evidence that humans store their knowl-
edge in any such sort of canonical form. 
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Other criticisms of this point of view, besides objecting to the computational price
paid in reducing everything to such low-level primitives, suggest that the primitives them-
selves are not adequate to capture many of the more subtle concepts that are important in
natural language use. For example, the representation of “tall” in the second sentence of
Figure 7.8 does not address the ambiguity of this term as fully as is done in systems such
as fuzzy logic (Zadeh 1983 and Section 9.2.2). 


However, no one can say that the conceptual dependency model has not been exten-
sively studied and well understood. More than a decade of research guided by Schank has
focused on refining and extending the model. Important extensions of conceptual depen-
dencies include research in scripts and memory organization packets, or MOPs. The
research in scripts examines the organization of knowledge in memory and the role this
organization plays in reasoning, see Section 7.1.4. MOPs provided one of the supporting
research areas for the design of case-based reasoners, Section 8.3. Conceptual dependency
theory is a fully developed model of natural language semantics with consistency of pur-
pose and wide applicability. 


7.1.4 Scripts


A natural language understanding program must use a large amount of supporting knowl-
edge to understand even the simplest conversation (Section 15.0). There is evidence that
humans organize this knowledge into structures corresponding to typical situations (Bar-
tlett 1932). If we are reading a story about restaurants, baseball, or politics, we resolve any
ambiguities in the text in a way consistent with restaurants, baseball, or politics. If the
subject of a story changes abruptly, there is evidence that people pause briefly in their
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ate the egg  (Schank and Rieger 1974).
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reading, presumably to change knowledge structures. It is hard to understand a poorly
organized or structured story, possibly because we cannot easily fit it into any of our exist-
ing knowledge structures. There can also be errors in understanding when the subject of a
conversation changes abruptly, presumably because we are confused over which context
to use in resolving pronoun references and other ambiguities in the conversation. 


A script is a structured representation describing a stereotyped sequence of events in a
particular context. The script was originally designed by Schank and his research group
(Schank and Abelson 1977) as a means of organizing conceptual dependency structures
into descriptions of typical situations. Scripts are used in natural language understanding
systems to organize a knowledge base in terms of the situations that the system is to
understand.


Most adults are quite comfortable (i.e., they, as customers, know what to expect and
how to act) in a restaurant. They are either met at the restaurant entrance or see some sign
indicating that they should continue in and find a table. If a menu is not available at the
table or if it is not presented by the waiter, then the customer will ask for one. Similarly,
customers understand the routines for ordering food, eating, paying, and leaving. 


In fact, the restaurant script is quite different from other eating scripts such as the
“fast-food” model or the “formal family meal”. In the fast-food model the customer
enters, gets in line to order, pays for the meal (before eating), waits for a tray with the
food, takes the tray, tries to find a clean table, and so on. These are two different stereo-
typed sequences of events, and each has a potential script. 


The components of a script are:


Entry conditions or descriptors of the world that must be true for the script to be
called. In our example script, these include an open restaurant and a hungry customer
that has some money.


Results or facts that are true once the script has terminated; for example, the customer
is full and poorer, the restaurant owner has more money.


Props or the “things” that support the content of the script. These will include tables,
waiters, and menus. The set of props supports reasonable default assumptions about
the situation: a restaurant is assumed to have tables and chairs unless stated otherwise.


Roles are the actions that the individual participants perform. The waiter takes orders,
delivers food, and presents the bill. The customer orders, eats, and pays.


Scenes. Schank breaks the script into a sequence of scenes each of which presents a
temporal aspect of the script. In the restaurant there is entering, ordering, eating, etc.


The elements of the script, the basic “pieces” of semantic meaning, are represented
using conceptual dependency relationships. Placed together in a framelike structure, they
represent a sequence of meanings, or an event sequence. The restaurant script taken from
this research is presented in Figure 7.11.


The program reads a small story about restaurants and parses it into an internal con-
ceptual dependency representation. Because the key concepts in this internal description
match with the entry conditions of the script, the program binds the people and things
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mentioned in the story to the roles and props mentioned in the script. The result is an
expanded representation of the story contents, using the script to fill in any missing infor-
mation and default assumptions. The program then answers questions about the story by
referring to the script. The script allows the reasonable default assumptions that are essen-
tial to natural language understanding. For example: 


Script:  RESTAURANT


Track:  Coffee Shop


Props:  Tables


             Menu


             F = Food


             Check


             Money


Roles:  S = Customer


            W = Waiter


            C = Cook


            M = Cashier


            O = Owner


Entry conditions:  S is hungry.


                             S has money.


Results:  S has less money


               O has more money


               S is not hungry


               S is pleased (optional)


Scene 1:  Entering


S PTRANS S into restaurant


S ATTEND eyes to tables


S MBUILD where to sit


S PTRANS S to table


S MOVE S to sitting position 


Scene 2:  Ordering


(Menu on table)  (W brings menu)


S PTRANS menu to S
(S asks for menu)


S MTRANS signal to W


W PTRANS W to table


S MTRANS 'need menu' to W


W PTRANS W to menu
W PTRANS W to table


W ATRANS menu to S


  S MTRANS food list to CP (S)


*S MBUILD choice of F


  S MTRANS signal to W


  W PTRANS W to table


  S MTRANS 'I want F' to W


W PTRANS W to C


W MTRANS (ATRANS F) to C


C MTRANS 'no F' to W


W PTRANS W to S


W MTRANS 'no F' to S


(go back to *) or


(go to Scene 4 at no pay path)


C DO (prepare F script)


to Scene 3


Scene 3:  Eating


C ATRANS F to W


W ATRANS F to S


S INGEST F


(Option: Return to Scene 2 to order more;


otherwise, go to Scene 4)


Scene 4:  Exiting


S MTRANS to W


(W ATRANS check to S)


W MOVE (write check)


W PTRANS W to S


W ATRANS check to S


S ATRANS tip to W


S PTRANS S to M


S ATRANS money to M


S PTRANS S to out of restaurant
(No pay path)


Figure 7.11 A restaurant script (Schank and Abelson 1977).
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EXAMPLE 7.1.1


John went to a restaurant last night. He ordered steak. When he paid he noticed he was
running out of money. He hurried home since it had started to rain. 


Using the script, the system can correctly answer questions such as: Did John eat din-
ner last night (the story only implied this)? Did John use cash or a credit card? How could
John get a menu? What did John buy? 


EXAMPLE 7.1.2


Amy Sue went out to lunch. She sat at a table and called a waitress, who brought her a
menu. She ordered a sandwich.


Questions that might reasonably be asked of this story include: Why did the waitress
bring Amy Sue a menu? Was Amy Sue in a restaurant (the example doesn’t say so)? Who
paid? Who was the “she” who ordered the sandwich? This last question is difficult. The
most recently named female is the waitress, an incorrect assumption for pronoun refer-
ence. Script roles help to resolve such references and other ambiguities. 


Scripts can also be used to interpret unexpected results or breaks in the scripted activ-
ity. Thus, in scene 2 of Figure 7.11 there is the choice point of “food” or “no food” deliv-
ered to the customer. This allows the following example to be understood. 


EXAMPLE 7.1.3


Kate went to a restaurant. She was shown to a table and ordered sushi from the waitress.
She sat there and waited for a long time. Finally, she got mad and left.


Questions that can be answered from this story using the restaurant script include:
Who is the “she” who sat and waited? Why did she wait? Who was the “she” who got mad
and left? Why did she get mad? Note that there are other questions that the script cannot
answer, such as why people get upset/mad when the waiter does not come promptly? Like
any knowledge-based system, scripts require the knowledge engineer to correctly antici-
pate the knowledge required. 


Scripts, like frames and other structured representations, are subject to certain prob-
lems, including the script match problem and the between-the-lines problem. Consider
Example 7.1.4, which could call either the restaurant or concert scripts. The choice is crit-
ical because “bill” can refer to either the restaurant check or the playbill of the concert.


EXAMPLE 7.1.4


John visited his favorite restaurant on the way to the concert. He was pleased by the bill
because he liked Mozart.


Since script selection is usually based on matching “key” words, it is often difficult to
determine which of two or more potential scripts should be used. The script match prob-
lem is “deep” in the sense that no algorithm exists for guaranteeing correct choices. It
requires heuristic knowledge about the organization of the world, and perhaps even some
backtracking; scripts assist only in the organization of that knowledge. 
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The between-the-lines problem is equally difficult: it is not possible to know ahead of
time the possible occurrences that can break a script. For instance: 


EXAMPLE 7.1.5


Melissa was eating dinner at her favorite restaurant when a large piece of plaster fell from
the ceiling and landed on her date.


Questions: Was Melissa eating a date salad? Was Melissa’s date plastered? What did
she do next? As this example illustrates, structured representations can be inflexible. Rea-
soning can be locked into a single script, even though this may not be appropriate.


Memory organization packets (MOPs) address the problem of script inflexibility by
representing knowledge as smaller components, MOPs, along with rules for dynamically
combining them to form a schema that is appropriate to the current situation (Schank
1982). The organization of knowledge in memory is particularly important to implementa-
tions of case-based reasoning, in which the problem solver must efficiently retrieve a rele-
vant prior problem solution from memory (Kolodner 1988a, Section 8.3).


The problems of organizing and retrieving knowledge are difficult and inherent to the
modeling of semantic meaning. Eugene Charniak (1972) illustrated the amount of knowl-
edge required to understand even simple children’s stories. Consider a statement about a
birthday party: Mary was given two kites for her birthday so she took one back to the
store. We must know about the tradition of giving gifts at a party; we must know what a
kite is and why Mary might not want two of them; we must know about stores and their
exchange policies. In spite of these problems, programs using scripts and other semantic
representations can understand natural language in limited domains. An example of this
work is a program that interprets messages coming over the news wire services. Using
scripts for natural disasters, coups, or other stereotypic stories, programs have shown
remarkable success in this limited but realistic domain (Schank and Riesbeck 1981).


7.1.5 Frames


Another representational scheme, in many ways similar to scripts, that was intended to
capture in explicitly organized data structures the implicit connections of information in a
problem domain, was called frames. This representation supports the organization of
knowledge into more complex units that reflect the organization of objects in the domain.


In a 1975 paper, Minsky describes a frame: 


Here is the essence of the frame theory: When one encounters a new situation (or makes a sub-
stantial change in one’s view of a problem) one selects from memory a structure called a
“frame”. This is a remembered framework to be adapted to fit reality by changing details as
necessary (Minsky 1975). 


According to Minsky, a frame may be viewed as a static data structure used to repre-
sent well-understood stereotyped situations. Framelike structures seem to organize our
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own knowledge of the world. We adjust to every new situation by calling up information
structured by past experiences. We then specially fashion or revise the details of these past
experiences to represent the individual differences for the new situation.


Anyone who has stayed in one or two hotel rooms has no trouble with entirely new
hotels and their rooms. One expects to see a bed, a bathroom, a place to open a suitcase, a
telephone, price and emergency evacuation information on the back of the entry door, and
so on. The details of each room can be supplied when needed: color of the curtains, loca-
tion and use of light switches, etc. There is also default information supplied with the hotel
room frame: no sheets; call housekeeping; need ice: look down the hall; and so on. We do
not need to build up our understanding for each new hotel room we enter. All of the pieces
of a generic hotel room are organized into a conceptual structure that we access when
checking into a hotel; the particulars of an individual room are supplied as needed. 


We could represent these higher-level structures directly in a semantic network by
organizing it as a collection of separate networks, each of which represents some stereo-
typic situation. Frames, as well as object-oriented systems, provide us with a vehicle for
this organization, representing entities as structured objects with named slots and attached
values. Thus a frame or schema is seen as a single complex entity.


For example, the hotel room and its components can be described by a number of
individual frames. In addition to the bed, a frame could represent a chair: expected height
is 20 to 40 cm, number of legs is 4, a default value, is designed for sitting. A further frame
represents the hotel telephone: this is a specialization of a regular phone except that billing
is through the room, there is a special hotel operator (default), and a person is able to use
the hotel phone to get meals served in the room, make outside calls, and to receive other
services. Figure 7.12 gives a frame representing the hotel room. 


Each individual frame may be seen as a data structure, similar in many respects to the
traditional “record”, that contains information relevant to stereotyped entities. The slots in
the frame contain information such as: 


1. Frame identification information.


2. Relationship of this frame to other frames. The “hotel phone” might be a special
instance of “phone,” which might be an instance of a “communication device.” 


3. Descriptors of requirements for a frame. A chair, for instance, has its seat
between 20 and 40 cm from the floor, its back higher than 60 cm, etc. These
requirements may be used to determine when new objects fit the stereotype
defined by the frame. 


4. Procedural information on use of the structure described. An important feature
of frames is the ability to attach procedural instructions to a slot. 


5. Frame default information. These are slot values that are taken to be true when
no evidence to the contrary has been found. For instance, chairs have four legs,
telephones are pushbutton, or hotel beds are made by the staff. 


6. New instance information. Many frame slots may be left unspecified until given a
value for a particular instance or when they are needed for some aspect of prob-
lem solving. For example, the color of the bedspread may be left unspecified. 
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Frames extend semantic networks in a number of important ways. Although the frame
description of hotel beds, Figure 7.12, might be equivalent to a network description, the
frame version makes it much clearer that we are describing a bed with its various
attributes. In the network version, there is simply a collection of nodes and we depend
more on our interpretation of the structure to see the hotel bed as the primary object being
described. This ability to organize our knowledge into such structures is an important
attribute of a knowledge base. 


Frames make it easier to organize our knowledge hierarchically. In a network, every
concept is represented by nodes and links at the same level of specification. Very often,
however, we may like to think of an object as a single entity for some purposes and only
consider details of its internal structure for other purposes. For example, we usually are
not aware of the mechanical organization of a car until something breaks down; only then
do we pull up our “car engine schema” and try to find the problem. 


Procedural attachment is an important feature of frames because it supports the link-
ing of specific pieces of code to appropriate entities in the frame representation. For exam-
ple, we might want to include the ability to generate graphic images in a knowledge base.
A graphics language is more appropriate for this than a network language. We use proce-
dural attachment to create demons. A demon is a procedure that is invoked as a side effect
of some other action in the knowledge base. For example, we may wish the system to per-
form type checks or to run consistency tests whenever a certain slot value is changed. 


hotel room


specialization of: room


location: hotel


contains: (hotel chair


hotel chair


specialization of: chair


height: 20–40 cm


legs: 4


use: sitting


hotel phone


specialization of: phone


use: (calling
          room service)


billing: through room


mattress


superclass: cushion


firmness: firm


hotel bed


superclass: bed


use: sleeping


size: king


part: (mattress
           frame)


                  hotel phone
                  hotel bed)


Figure 7.12 Part of a frame description of a hotel room. Spe-
cialization  indicates a pointer to a superclass.
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Frame systems support class inheritance. The slots and default values of a class frame
are inherited across the class/subclass and class/member hierarchy. For instance, a hotel
phone could be a subclass of a regular phone except that (1) all out-of-building dialing
goes through the hotel switchboard (for billing) and (2) hotel services may be dialed
directly. Default values are assigned to selected slots to be used only if other information
is not available: assume that hotel rooms have beds and are, therefore, appropriate places
to go if you want to sleep; if you don’t know how to dial the hotel front desk try “zero”;
the phone may be assumed (no evidence to the contrary) to be pushbutton. 


When an instance of the class frame is created, the system will attempt to fill its slots,
either by querying the user, accepting the default value from the class frame, or executing
some procedure or demon to obtain the instance value. As with semantic nets, slots and
default values are inherited across a class/subclass hierarchy. Of course, default informa-
tion can cause the data description of the problem to be nonmonotonic, letting us make
assumptions about default values that may not always prove correct (see Section 9.1). 


Minsky’s own work on vision provides an example of frames and their use in default
reasoning: the problem of recognizing that different views of an object actually represent
the same object. For example, the three perspectives of the one cube of Figure 7.13 actu-
ally look quite different. Minsky (1975) proposed a frame system that recognizes these as
views of a single object by inferring the hidden sides as default assumptions. 


The frame system of Figure 7.13 represents four of the faces of a cube. The broken
lines indicate that a particular face is out of view from that perspective. The links between
the frames indicate the relations between the views represented by the frames. The nodes,
of course, could be more complex if there were colors or patterns that the faces contained.
Indeed, each slot in one frame could be a pointer to another entire frame. Also, because
given information can fill a number of different slots (face E in Figure 7.13), there need be
no redundancy in the information that is stored.


Frames add to the power of semantic nets by allowing complex objects to be repre-
sented as a single frame, rather than as a large network structure. This also provides a very


Figure 7.13 Spatial frame for viewing a cube (Minsky 1975).
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natural way to represent stereotypic entities, classes, inheritance, and default values.
Although frames, like logic and network representations, are a powerful tool, many of the
problems of acquiring and organizing a complicated knowledge base must still be solved
by the programmer’s skill and intuition. Finally, this MIT research of the 1970s, as well as
similar work at Xerox Palo Alto Research Center, led to the “object-oriented” program-
ming design philosophy as well as building important implementation languages, includ-
ing Smalltalk, C++, and Java. 


7.2 Conceptual Graphs: a Network Language


Following on the early research work in AI that developed representational schemes (Sec-
tion 7.1) a number of network languages were created to model the semantics of natural
language and other domains. In this section, we examine a particular formalism in detail,
to show how, in this situation, the problems of representing meaning were addressed. John
Sowa’s conceptual graphs (Sowa 1984) is an example of a network representation lan-
guage. We define the rules for forming and manipulating conceptual graphs and the con-
ventions for representing classes, individuals, and relationships. In Section 15.3.2 we
show how this formalism may be used to represent meaning in natural language under-
standing.


7.2.1 Introduction to Conceptual Graphs


A conceptual graph is a finite, connected, bipartite graph. The nodes of the graph are
either concepts or conceptual relations. Conceptual graphs do not use labeled arcs; instead
the conceptual relation nodes represent relations between concepts. Because conceptual
graphs are bipartite, concepts only have arcs to relations, and vice versa. In Figure 7.14
dog and brown are concept nodes and color a conceptual relation. To distinguish these
types of nodes, we represent concepts as boxes and conceptual relations as ellipses.


In conceptual graphs, concept nodes represent either concrete or abstract objects in
the world of discourse. Concrete concepts, such as a cat, telephone, or restaurant, are char-
acterized by our ability to form an image of them in our minds. Note that concrete con-
cepts include generic concepts such as cat or restaurant along with concepts of specific
cats and restaurants. We can still form an image of a generic cat. Abstract concepts include
things such as love, beauty, and loyalty that do not correspond to images in our minds.


Conceptual relation nodes indicate a relation involving one or more concepts. One
advantage of formulating conceptual graphs as bipartite graphs rather than using labeled
arcs is that it simplifies the representation of relations of any arity. A relation of arity n is
represented by a conceptual relation node having n arcs, as shown in Figure 7.14. 


Each conceptual graph represents a single proposition. A typical knowledge base will
contain a number of such graphs. Graphs may be arbitrarily complex but must be finite.
For example, one graph in Figure 7.14 represents the proposition “A dog has a color of
brown”. Figure 7.15 is a graph of somewhat greater complexity that represents the sen-
tence “Mary gave John the book”. This graph uses conceptual relations to represent the
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cases of the verb “to give” and indicates the way in which conceptual graphs are used to
model the semantics of natural language. 


7.2.2 Types, Individuals, and Names


Many early designers of semantic networks were careless in defining class/member and
class/subclass relationships, with resulting semantic confusion. For example, the relation
between an individual and its class is different from the relation between a class (such as
dog) and its superclass (carnivore). Similarly, certain properties belong to individuals, and
others belong to the class itself; the representation should provide a vehicle for making
this distinction. The properties of having fur and liking bones belong to individual dogs;
the class “dog” does not have fur or eat anything. Properties that are appropriate to the
class include its name and membership in a zoological taxonomy. 


bird                                    flies


Flies is a 1-ary relation.


Color is a 2-ary relation.


Parents is a 3-ary relation.


dog                                    color                              brown


child                                 parents


father


mother


Figure 7.14 Conceptual relations of different arities.


person:mary                               agent                              give                             object


person:john                             recipient                                                                book


Figure 7.15 Graph of Mary gave John the book.
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In conceptual graphs, every concept is a unique individual of a particular type. Each
concept box is labeled with a type label, which indicates the class or type of individual
represented by that node. Thus, a node labeled dog represents some individual of that
type. Types are organized into a hierarchy. The type dog is a subtype of carnivore, which
is a subtype of mammal, etc. Boxes with the same type label represent concepts of the
same type; however, these boxes may or may not represent the same individual concept.


Each concept box is labeled with the names of the type and the individual. The type
and individual labels are separated by a colon, “:”. The graph of Figure 7.16 indicates that
the dog “Emma” is brown. The graph of Figure 7.17 asserts that some unspecified entity
of type dog has a color of brown. If the individual is not indicated, the concept represents
an unspecified individual of that type. 


Conceptual graphs also let us indicate specific but unnamed individuals. A unique
token called a marker indicates each individual in the world of discourse. This marker is
written as a number preceded by a #. Markers are different from names in that they are
unique: individuals may have one name, many names, or no name at all, but they have
exactly one marker. Similarly, different individuals may have the same name but may not
have the same marker. This distinction gives us a basis for dealing with the semantic ambi-
guities that arise when we give objects names. The graph of Figure 7.17 asserts that a par-
ticular dog, #1352, is brown.


dog:emma                                 color                               brown


dog:#1352                                 color                              brown


name                                 "emma"


dog:#1352                                 color                              brown


Figure 7.18 Conceptual graph indicating that a dog
named emma is brown.


Figure 7.16 Conceptual graph indicating that the dog
named emma is brown. 


Figure 7.17 Conceptual graph indicating that a particular
(but unnamed) dog is brown.
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Markers allow us to separate an individual from its name. If dog #1352 is named
“Emma,” we can use a conceptual relation called name to add this to the graph. The result
is the graph of Figure 7.18. The name is enclosed in double quotes to indicate that it is a
string. Where there is no danger of ambiguity, we may simplify the graph and refer to the
individual directly by name. Under this convention, the graph of Figure 7.18 is equivalent
to the graph of Figure 7.16. 


Although we frequently ignore it both in casual conversation and in formal represen-
tations, this distinction between an individual and its name is an important one that should
be supported by a representation language. For example, if we say that “John” is a com-
mon name among males, we are asserting a property of the name itself rather than of any
individual named “John”. This allows us to represent such English sentences as “‘Chim-
panzee’ is the name of a species of primates”. Similarly, we may want to represent the fact
that an individual has several different names. The graph of Figure 7.19 represents the sit-
uation described in the song lyric: “Her name was McGill, and she called herself Lil, but
everyone knew her as Nancy” (Lennon and McCartney 1968). 


As an alternative to indicating an individual by its marker or name, we can also use
the generic marker * to indicate an unspecified individual. By convention, this is often
omitted from concept labels; a node given just a type label, dog, is equivalent to a node
labeled dog:*. In addition to the generic marker, conceptual graphs allow the use of
named variables. These are represented by an asterisk followed by the variable name (e.g.,
*X or *foo). This is useful if two separate nodes are to indicate the same, but unspecified,
individual. The graph of Figure 7.20 represents the assertion “The dog scratches its ear
with its paw”. Although we do not know which dog is scratching its ear, the variable *X
indicates that the paw and the ear belong to the same dog that is doing the scratching.


To summarize, each concept node can indicate an individual of a specified type. This
individual is the referent of the concept. This reference is indicated either individually or
generically. If the referent uses an individual marker, the concept is an individual concept;
if the referent uses the generic marker, then the concept is generic. In Section 7.2.3 we
present the conceptual graph type hierarchy.


name                               person:#941765                              name


"McGill"                                  name                                      "Nancy"


"Lil"


Figure 7.19 Conceptual graph of a person with three names.
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7.2.3 The Type Hierarchy


The type hierarchy, as illustrated by Figure 7.21, is a partial ordering on the set of types,
indicated by the symbol . If s and t are types and t s, then t is said to be a subtype of s
and s is said to be a supertype of t. Because it is a partial ordering, a type may have one or
more supertypes as well as one or more subtypes. If s, t, and u are types, with t  s and t


u, then t is said to be a common subtype of s and u. Similarly, if s v and u  v then v
is a common supertype of s and u.


The type hierarchy of conceptual graphs forms a lattice, a common form of multiple
inheritance system. In a lattice, types may have multiple parents and children. However,
every pair of types must have a minimal common supertype and a maximal common
subtype. For types s and u, v is a minimal common supertype if s  v , u  v, and for any
w, a common supertype of s and u, v  w. Maximal common subtype has a corresponding
definition. The minimal common supertype of a collection of types is the appropriate
place to define properties common only to those types. Because many types, such as
emotion and rock, have no obvious common supertypes or subtypes, it is necessary to
add types that fill these roles. To make the type hierarchy a true lattice, conceptual graphs
include two special types. The universal type, indicated by T, is a supertype of all types.
The absurd type, indicated by ⊥, is a subtype of all types. 


7.2.4 Generalization and Specialization


The theory of conceptual graphs includes a number of operations that create new graphs
from existing graphs. These allow for the generation of a new graph by either specializing
or generalizing an existing graph, operations that are important for representing the
semantics of natural language. The four operations are copy, restrict, join, and simplify, as
seen in Figure 7.22. Assume that g1 and g2 are conceptual graphs. Then:


The copy rule allows us to form a new graph, g, that is the exact copy of g1.


< <


<
< < <


dog:*X                            agent                         scratch                      object                        ear


instrument                                                    part


paw                         part                         dog:*X


Figure 7.20 Conceptual graph of the sentence The dog
scratches its ear with its paw.


< <
<
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Restrict allows concept nodes in a graph to be replaced by a node representing their
specialization. There are two cases: 


1. If a concept is labeled with a generic marker, the generic marker may be replaced
by an individual marker.


2. A type label may be replaced by one of its subtypes, if this is consistent with the
referent of the concept. In Figure 7.22 we can replace animal with dog.


The join rule lets us combine two graphs into a single graph. If there is a concept node
c1 in the graph s1 that is identical to a concept node c2 in s2, then we can form a new graph
by deleting c2 and linking all of the relations incident on c2 to c1. Join is a specialization
rule, because the resulting graph is less general than either of its components.


If a graph contains two duplicate relations, then one of them may be deleted, along
with all its arcs. This is the simplify rule. Duplicate relations often occur as the result of a
join operation, as in graph g4 of Figure 7.22. 


r
v


w


s


t


u


Figure 7.21 A type lattice illustrating subtypes, supertypes,
the universal type, and the absurd type. Arcs
represent the relationship.
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dog                                          color                                         brown


agent                           eat                         object                       boneg :


g :


The restriction of g :


g :


The join of g  and g :


g :


The simplify of g :


g :


animal:"emma"                             location                                      porch


color                                        brown


dog:"emma"                                location                                      porch


color                                        brown


agent                           eat                         object                        bone


dog:"emma"                                location                                      porch


color              color                                        brown
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Figure 7.22 Examples of restrict, join, and simplify operations.
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One use of the restrict rule is to make two concepts match so that a join can be per-
formed. Together, join and restrict allow the implementation of inheritance. For example,
the replacement of a generic marker by an individual implements the inheritance of the
properties of a type by an individual. The replacement of a type label by a subtype label
defines inheritance between a class and a superclass. By joining one graph to another and
restricting certain concept nodes, we can implement inheritance of a variety of properties.
Figure 7.23 shows how chimpanzees inherit the property of having a hand from the class
primates by replacing a type label with its subtype. It also shows how the individual,
Bonzo, inherits this property by instantiating a generic concept. 


Similarly, we can use joins and restrictions to implement the plausible assumptions
that play a role in common language understanding. If we are told that “Mary and Tom
went out for pizza together,” we automatically make a number of assumptions: they ate a
round Italian bread covered with cheese and tomato sauce. They ate it in a restaurant and
must have had some way of paying for it. This reasoning can be done using joins and
restrictions. We form a conceptual graph of the sentence and then join it with the concep-
tual graphs (from our knowledge base) for pizzas and restaurants. The resulting graph lets
us assume that they ate tomato sauce and paid their bill. 


Join and restrict are specialization rules. They define a partial ordering on the set of
derivable graphs. If a graph g1 is a specialization of g2, then we may say that g2 is a gener-
alization of g1. Generalization hierarchies are important in knowledge representation.
Besides providing the basis for inheritance and other commonsense reasoning schemes,
generalization hierarchies are used in many learning methods, allowing us, for instance, to
construct a generalized assertion from a particular training instance. 


These rules are not rules of inference. They do not guarantee that true graphs will be
derived from true graphs. For example, in the restriction of the graph of Figure 7.19, the
result may not be true; Emma may be a cat. Similarly, the joining example of Figure 7.19
is not truth-preserving either: the dog on the porch and the dog that eats bones may be
different animals. These operations are canonical formation rules, and although they do
not preserve truth, they have the subtle but important property of preserving “meaningful-
ness”. This is an important guarantee when we use conceptual graphs to implement natural
language understanding. Consider the three sentences:


Albert Einstein formulated the theory of relativity.


Albert Einstein plays center for the Los Angeles Lakers.


Conceptual graphs are yellow flying popsicles. 


The first of these sentences is true and the second is false. The third sentence, how-
ever, is meaningless; though grammatically correct, it makes no sense. The second sen-
tence, although false, is meaningful. I can imagine Albert Einstein on a basketball court.
The canonical formation rules enforce constraints on semantic meaning; that is, they do
not allow us to form nonsensical graphs from meaningful ones. Although they are not
sound inference rules, canonical formation rules form a basis for much of the plausible
reasoning done in natural language understanding and common sense reasoning. We dis-
cuss approach further in Section 15.5.
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7.2.5 Propositional Nodes


In addition to using graphs to define relations between objects in the world, we may also
want to define relations between propositions. Consider, for example, the statement “Tom
believes that Jane likes pizza”. “Believes” is a relation that takes a proposition as its argu-
ment.


Conceptual graphs include a concept type, proposition, that takes a set of conceptual
graphs as its referent and allows us to define relations involving propositions.
Propositional concepts are indicated as a box that contains another conceptual graph.
These proposition concepts may be used with appropriate relations to represent knowl-
edge about propositions. Figure 7.24 shows the conceptual graph for the above assertion
about Jane, Tom, and pizza. The experiencer relation is loosely analogous to the agent
relation in that it links a subject and a verb. The experiencer link is used with belief states
based on the notion that they are something one experiences rather than does. 


Figure 7.24 shows how conceptual graphs with propositional nodes may be used to
express the modal concepts of knowledge and belief. Modal logics are concerned with the
various ways propositions are entertained: believed, asserted as possible, probably or nec-
essarily true, intended as a result of an action, or counterfactual (Turner 1984). 


7.2.6 Conceptual Graphs and Logic


Using conceptual graphs, we can easily represent conjunctive concepts such as “The dog
is big and hungry”, but we have not established any way of representing negation or dis-
junction. Nor have we addressed the issue of variable quantification. 


We may implement negation using propositional concepts and a unary operation
called neg. neg takes as argument a proposition concept and asserts that concept as false.
The conceptual graph of Figure 7.25 uses neg to represent the statement “There are no
pink dogs”.


primate                            part                                   hand


A conceptual graph


Inheritance of a property by a subclass


Inheritance of a property by an individual


chimpanzee                         part                                  hand


chimpanzee:bonzo                     part                                   hand


Figure 7.23 Inheritance in conceptual graphs.
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Using negation and conjunction, we may form graphs that represent disjunctive asser-
tions according to the rules of logic. To simplify this, we may also define a relation or,
which takes two propositions and represents their disjunction. 


In conceptual graphs, generic concepts are assumed to be existentially quantified. For
example, the generic concept dog in the graph of Figure 7.14 actually represents an exis-
tentially quantified variable. This graph corresponds to the logical expression: 


∃ X ∃ Y (dog(X) ∧ color(X,Y) ∧ brown(Y)).


Using negation and existential quantification, Section 2.2.2, we can also represent univer-
sal quantification. For example, the graph of Figure 7.25 could be thought of as represent-
ing the logical assertion: 


∀ X ∀ Y (¬ (dog(X) ∧ color(X,Y) ∧ pink(Y))).


Conceptual graphs are equivalent to predicate calculus in their expressive power. As
these examples suggest, there is a straightforward mapping from conceptual graphs into
predicate calculus notation. The algorithm, taken from Sowa (1984), for changing a con-
ceptual graph, g, into a predicate calculus expression is: 


1. Assign a unique variable, x1, x2, . . . , xn, to each of the n generic concepts in g.


2. Assign a unique constant to each individual concept in g. This constant may sim-
ply be the name or marker used to indicate the referent of the concept. 


3. Represent each concept node by a unary predicate with the same name as the
type of that node and whose argument is the variable or constant given that node. 


person:Tom                             experiencer                                 believe


object


pizza                              object


proposition


person:jane                          agent                               likes


Figure 7.24 Conceptual graph of the statement Tom believes
that Jane likes pizza,  showing the use of a 
propositional concept.
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4. Represent each n-ary conceptual relation in g as an n-ary predicate whose name
is the same as the relation. Let each argument of the predicate be the variable or
constant assigned to the corresponding concept node linked to that relation. 


5. Take the conjunction of all atomic sentences formed under 3 and 4. This is the
body of the predicate calculus expressions. All the variables in the expression are
existentially quantified. 


For example, the graph of Figure 7.16 may be transformed into the predicate calculus
expression


∃ X1 (dog(emma) ∧ color(emma,X1) ∧ brown(X1))


Although we can reformulate conceptual graphs into predicate calculus syntax, conceptual
graphs also support a number of special-purpose inferencing mechanisms, such as join and
restrict, as presented in Section7.2.4, not normally part of the predicate calculus. 


We have presented the syntax of conceptual graphs and defined the restriction opera-
tion as a means of implementing inheritance. We have not yet examined the full range of
operations and inferences that may be performed on these graphs, nor have we addressed
the problem of defining the concepts and relations needed for domains such as natural lan-
guage. We address these issues again in Section 15.3.2 where we use conceptual graphs to
implement a knowledge base for a simple natural language understanding program. 


7.3 Alternative Representations and Ontologies


In recent years, AI researchers have continued to question the role of explicit representa-
tion in intelligence. Besides the connectionist and emergent approaches of Chapters 11
and 12, a further challenge to the role of traditional representation comes from Rodney
Brooks’ work at MIT (Brooks 1991a). Brooks questions, in designing a robot explorer, the
need for any centralized representational scheme, and with his subsumption architecture,
attempts to show how general intelligence might evolve from lower and supporting forms
of intelligence.


neg


proposition:


dog                          color                               pink


Figure 7.25 Conceptual graph of the proposition There are no
pink dogs.
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A second approach to the problem of explicit and static representations comes from
the work of Melanie Mitchell and Douglas Hofstadter at Indiana University. The Copycat
architecture is an evolving network which adjusts itself to the meaning relationships that it
encounters through experiment with an external world.


Finally, when building problem solvers in complex environments it is often necessary
to employ multiple different representational schemes. Each representational scheme may
be referred to as an ontology. It then becomes necessary to build communication and other
links between these different representations to support knowledge management, commu-
nication, backup, and other aspects of the problem solving. We introduce these issues and
possible solutions under the general heading of knowledge management technology. This
technology can also support agent-based problem solving as presented in Section 7.4.


7.3.1 Brooks’ Subsumption Architecture


Brooks conjectures, and offers examples through his robotic creations, that intelligent
behavior does not come from disembodied systems like theorem provers, or even from tra-
ditional expert systems (Section 8.2). Intelligence, Brooks claims, is the product of the
interaction between an appropriately designed system and its environment. Furthermore,
Brooks espouses the view that intelligent behavior emerges from the interactions of archi-
tectures of organized simpler behaviors: his subsumption architecture.


The subsumption architecture is a layered collection of task-handlers. Each task is
accomplished by a finite state machine that continually maps a perception-based input into
an action-oriented output. This mapping is accomplished through simple sets of condition
→ action production rules (Section 6.2). These rules determine, in a fairly blind fashion,
that is, with no global state knowledge, what actions are appropriate to the current state of
that subsystem. Brooks does allow some feedback to lower level systems.


Figure 7.26, adapted from Brooks (1991a), shows a three-layered subsumption archi-
tecture. Each layer is composed of a fixed topology network of simple finite state
machines, each having a few states, one or two internal registers, one or two internal tim-
ers, and access to simple computational devices, for example, to compute vector sums.
These finite state machines run asynchronously, sending and receiving fixed length mes-
sages over wires. There is no central locus of control. Rather, each finite state machine is
data-driven by the messages it receives. The arrival of a message or the expiration of a
time period causes the machines to change state. There is no access to global data or to any
dynamically created communication links. That is, there is no global control. 


Figure 7.26 presents a subset of the functions of the three-layered architecture that
supported an early robot (Brooks 1991a). The robot had a ring of twelve sonar sensors
around it. At every second these sensors gave twelve radial depth measurements. The low-
est level layer of the subsumption architecture, AVOID, implements a behavior that keeps
the robot from hitting objects, whether these are static or moving. The machine labeled
sonar data emits an instantaneous map that is passed on to collide and feelforce, which
in turn, are able to generate halt messages for the finite state machine in charge of running
the robot forward. When feelforce is activated, it is able to generate either runaway or
avoid instructions for object and threat avoidance.
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The lowest level network of finite state machines in the architecture generates all halt
and avoid instructions for the entire system. The next layer, WANDER, makes the system
move about by generating a random heading for the robot about every ten seconds. The
AVOID (lower level) machine takes the heading from WANDER and couples it with the
forces computed by the AVOID architecture. WANDER uses the result to suppress lower
level behavior, forcing the robot to move in a direction close to what wander decided, but
at the same time avoiding obstacles. Finally, if the turn and forward machines (top level
architecture) are activated, they will suppress any new impulses sent from WANDER.


The top level, EXPLORE, makes the robot explore its environment, looking for dis-
tant places and trying to reach them by planning a path. This layer is able to suppress the
wander instructions and observes how the bottom layer diverts the robot due to obstacles.
It corrects for these divergences and keeps the robot focused on its goal, inhibiting the
wandering behavior but allowing the lowest level object avoidance to continue its func-
tion. When deviations generated at the lower level occur, the EXPLORE level calls plan
to keep the system goal-oriented. The main point of Brook’s subsumption architecture is
that the system requires no centralized symbolic reasoning and takes all its actions without
searching through possible next states. Although the behavior-based finite state machine is
generating suggestions for actions based on its own current state, the global system acts
based on the interactions of the systems layered below it.


The three-layer architecture just presented comes from Brooks’ early design of a wan-
dering, goal-seeking robot. More recently, his research group has built complex systems


Figure 7.26 The functions of the three-layered subsumption architec-
ture from Brooks (1991a). The layers are described by the
AVOID, WANDER, and EXPLORE behaviors.
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with further layers (Brooks 1991a, Brooks and Stein 1994). One system is able to wander
around the MIT Robotics Lab looking for empty aluminum drink cans on people’s desks.
This requires layers for discovering offices, looking for desks, and recognizing drink cans.
Further layers are able to guide the robot arm to collect these cans for recycling.


Brooks insists that top level behavior emerges as a result of the design and testing of
the individual lower level layers of the architecture. The design for coherent final behav-
iors, requiring both inter-layer and between-layer communications, is discovered through
experiment. Despite this simplicity of design, the subsumption architecture has performed
successfully in several applications (Brooks 1989, 1991a, 1997).


There remains, a number of important questions concerning the subsumption archi-
tecture and related approaches to the design of control systems (see also Section 16.2):


1. There is a problem of the sufficiency of information at each system level. Since at
each level, purely reactive state machines make decisions on local information, it
is difficult to see how such decisions can take account of information not at that
level. By definition, it will be myopic.


2. If there exists absolutely no “knowledge” or “model” of the complete environ-
ment, how can the limited input on the local situation be sufficient for determina-
tion of globally acceptable actions? How can top level coherence result?


3. How can a purely reactive component with very limited state learn from its envi-
ronment? At some level in the system, there must be sufficient state for the cre-
ation of learning mechanisms if the overall agent is to be called intelligent.


4. There is a problem of scale. Although Brooks and his associates claim to have
built subsumption architectures of six and even ten layers, what design principles
allow it to scale to further interesting behavior, i.e., to large complex systems?


Finally, we must ask the question what is “emergence”? Is it magic? At this time in
the evolution of science, “emergence” seems to be a word to cover any phenomenon for
which we can, as yet, make no other accounting. We are told to build systems and test
them in the world and they will show intelligence. Unfortunately, without further design
instruction, emergence just becomes a word to describe what we can’t yet understand. As a
result, it is very difficult to determine how we can use this technology to build ever more
complex systems. In the next section we describe copycat, a hybrid architecture that is
able by exploration to discover and use invariances found in a problem domain.


7.3.2 Copycat


An often-heard criticism of traditional AI representation schemes is that they are static and
cannot possibly reflect the dynamic nature of thought processes and intelligence. When a
human perceives a new situation, for example, he or she is often struck by relationships
with already known or analogous situations. In fact, it is often noted that human percep-
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tion is both bottom up, that is, stimulated by new patterns in the environment, and top
down, mediated by what the agent expects to perceive.


Copycat is a problem-solving architecture built by Melanie Mitchell (1993) as a PhD
dissertation under Douglas Hofstadter (1995) at Indiana University. Copycat builds on
many of the representational techniques that preceded it, including blackboards, Section
6.3, semantic networks, Section 7.2, connectionist networks, Chapter 11, and classifier
systems (Holland 1986). It also follows Brooks’ approach to problem solving as active
intervention in a problem domain. In contrast with Brooks and connectionist networks,
however, copycat requires a global “state” to be part of the problem solver. Secondly, rep-
resentation is an evolving feature of that state. Copycat supports a semantic network-like
mechanism that grows and changes with continuing experience within its environment. 


The original problem domain for copycat was the perception and building of simple
analogies. In that sense it is building on earlier work by Evans (1968) and Reitman (1965).
Examples of this domain are completing the patterns: hot is to cold as tall is to {wall,
short, wet, hold} or bear is to pig as chair is to {foot, table, coffee, strawberry}. Copy-
cat also worked to discover appropriate completions for alphabetic string patterns such as:
abc is to abd as ijk is to ? or again, abc is to abd as iijjkk is to ?, Figure 7.27.


Copycat is made up of three components, the workspace, the slipnet, and the coder-
ack. These three are mediated in their interactions by a temperature measure. The temper-
ature captures the degree of perceptual organization in the system, and controls the degree
of randomness used in making decisions. Higher temperatures reflect the fact that there is
little information on which to base decisions and thus they are more random. A tempera-
ture drop indicates the system is building consensus and a low temperature indicates that
an answer is emerging and reflects the program’s “confidence” in that solution.


The workspace is a global structure, similar to the blackboard of Section 6.3, for cre-
ating structures that the other components of the system can inspect. In this sense it is also
much like the message area in Holland’s (1986) classifier system. The workspace is where
perceptual structures are built hierarchically on top of the input (the three strings of alpha-
betic symbols of Figure 7.27) and gives possible states for the workspace, with bonds (the
arrows) built between related components of the strings. 


The slipnet reflects the network of concepts or potential associations for the compo-
nents of the analogy. One view of the slipnet is as a dynamically deformable semantic net-
work, each of whose nodes has an activation level. Links in the network can be labeled by
other nodes. Based on the activation level of the labelling nodes, the linked nodes grow or
shrink. In this way the system changes the degree of association between the nodes as a
function of context. The spreading activation among nodes is encouraged between nodes
that (in the current context) are more closely related.


The coderack is a priority based probabilistic queue containing codelets. Codelets are
small pieces of executable code designed to interact with the objects in the workspace and
to attempt to further some small part of the evolving solution, or, more simply, to explore
different facets of the problem space. Again, the codelets are very much like the individual
classifiers of Holland’s (1986) system.


Nodes in the slipnet generate codelets and post them to the coderack where they have
a probabilistic chance of execution. The system maintains pieces of code in parallel that
compete for the chance to find and build structures in the workspace. These pieces of code
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correspond to the nodes from which they came. This is a top-down activity, seeking more
examples of the things that have already generated interest. Codelets also work bottom up,
identifying and building on relationships already existing in the workspace.


As structures are built in the workspace, an activation measure is added to the nodes
that generated the codelets that built the structures. This allows the system’s behavior in a
context of the current state of the problem/solution to impact its future behavior.


Finally, the temperature serves as a feedback mechanism calculating the “cohesion”
among the structures built in the workspace. With little cohesion, that is, few structures
that offer promise of a solution, the biases of the probabilistic choices made by the system
are less important: one choice is just about as useful as another. When the cohesion is high
with an internally consistent solution evolving, biases become very important in the prob-
abilistic choices: the choices made are more closely linked to the evolving solution.


There are several follow-on projects in the copycat world that test the architecture in
richer settings. Hofstadter and his students (Marshall 1999) continue to model analogical
relationships. Lewis and Luger (2000) have expanded the copycat architecture for use as a
control system for a mobile robot. The robotics domain gives copycat a concrete environ-
ment which supports learning-oriented interactions. Evolving from the robot’s interaction
with its “world” a map of the space is generated and paths are planned and replanned. 


7.3.3 Multiple Representations, Ontologies, and Knowledge Services


Many complex AI applications require that multiple representational schemes be
designed, each set up for specific casks, and then integrated into a user oriented software
platform. A simple example of this might be the creation of a virtual meeting space. The
various attendees, from their remote locations would interact with each other in this virtual


Figure 7.27 A possible state of the copycat workspace. Several
examples of bonds and links between the letters are
shown; adopted from Mitchell (1993).
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“space”. Besides voice technology, the virtual meeting space would require video stream-
ing, text and presentation sharing, records access, and so on. One approach to this task
would be to adapt various off-the-shelf components and then integrate them into a knowl-
edge service that supports the interactions required.


The automated virtual meeting service just described is an example of integrating
multiple representational schemes to provide a service. We often use the term ontology to
characterize the representation scheme of a particular component of that service. The
resulting knowledge service requires the integration of these components. Ontology is
derived from a Greek word, a form of the verb “to be”, that means being or existence.
Thus the term refers to the components of a software module and the structure supporting
the interactions of these components, that is, to their function or “constituent being” as
part of the module.


When the modules are composed to build the knowledge service each of the modules
have to be appropriately linked to form the seamless service. We say that the ontologies of
each module are merged to make a new more complex ontology that supports the full ser-
vice. To create a new knowledge service, such as software to support the virtual meeting,
the ontologies of each of its components must be understood and often exposed for the
integration. There now exists a number of ontology languages designed explicitly for the
creation of knowledge services and other related software products. These include the Owl
family of languages (Mika et al. 2004) as well as the open source Java api SOFA, Simple
Ontology Framework, (see http://sopha.projects.semwebcentral.org/). 


There are if fact multiple ways that ontological information is used in modern com-
puting, some straightforward, such as the optimized access to knowledge stored in a tradi-
tional database, and others quite novel. With the importance of the WWW, sophisticated
web crawlers and search engines are critical support tools. Although most current web spi-
ders apply their search to flat directly linked text files, a more sophisticated crawler can be
envisioned that can traverse the classes and links of particular complex representations as
well as “interpret” more useful entities including graphs and images.


Although full “image interpretation” remains well beyond the current state of our
capabilities, its creation will help support our desires for a more “semantic” web. We may
want to scan our holiday photographs to find all that have a particular person in them, or
any animal, for example. In the larger situation of the WWW we may want to not only
track and find any newspaper stories that describe natural disasters but also locate any
images that present these disasters. Currently we are often limited to the search a figure’s
captions or other (textual) descriptive materials for a hint of their content.


Besides the goal of interpreting graphical and image data, it is also desired to locate
text data on specific topics and produce a summary of its content. For instance, we might
want to search for on line research articles in a certain area and report back their contents.
Although this is another current research topic in the area of natural language understand-
ing, Chapter 15, its implementation remains at the boundary of our computer based
“semantic” skills. Currently we do things such as searching for a few key words that might
be indicative of an article’s content and perhaps print out its abstract, but other than this
our summarization skills are limited (Ciravegna and Wilks 2004, Wilks 2004).


A further web service might be desired to search for “help wanted” advertisement. It
might be launched to search for software professionals, for example, with skills in Java
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and C++ and willing to locate in a specific city. This web crawler would need to know
something about this type advertisement, including the facts that the company name and
its location are usually included. Besides the skills required for the job, these ads often
describe experience needed along with possible salaries and benefits. Thus the employ-
ment web service must have knowledge of and the ability to accesses the ontological
structures used in the design of employment “want ads”. We present an example of such a
knowledge service in Section 15.5.


Perhaps the most important application, however, for ontology based knowledge ser-
vices is in agent-oriented problem solving. Agents by definition are intended to be autono-
mous, independent, flexible when addressing tasks, located in specific situations, and able
to communicate appropriately. Agent-based problem solving is also highly distributed
across environments, such as might be required for constructing an intelligent web ser-
vice. The creation of specific agent skills can be seen as a question for building and link-
ing ontologies. In the next section on agent-based problem solving, we consider further
the distributed and component-oriented view of representation.


7.4 Agent-Based and Distributed Problem Solving


There were two insights in the AI research community in the 1980s that had important
consequences for future research in the analysis of the role of representation in intelligent
problem solving. The first was the research tradition of the “Distributed Artificial Intelli-
gence” or the “DAI” community. The first DAI workshop was held at MIT in 1980 for dis-
cussion of issues related to intelligent problem solving with systems consisting of multiple
problem solvers. It was decided at that time by the DAI community that they were not
interested in low level parallelism issues, such as how to distribute processing over differ-
ent machines or how to parallelize complex algorithms. Rather, their goal was to under-
stand how distributed problem solvers could be effectively coordinated for the intelligent
solution of problems. In fact, there had been an even earlier history of distributed process-
ing in artificial intelligence, with the use and coordination of actors and demons and the
design of blackboard systems, as seen in Section 6.3.


The second AI research insight of the 1980s, already presented in Section 7.3, was
that of Rodney Brooks and his group at MIT. Brooks’ challenge to the AI community’s
traditional view of representation and reasoning had many important consequences (Sec-
tion 7.3.1). First, the conjecture that intelligent problem solving does not require a central-
ized store of knowledge manipulated by some general-purpose inferencing scheme led to
the notion of distributed and cooperative models of intelligence, where each element of
the distributed representation was responsible for its own component of the problem solv-
ing process. Second, the fact that intelligence is situated and active in the context of partic-
ular tasks, allows the problem solver to offload aspects of the solution process into the
environment itself. This allows, for example, an individual solver to address a task at hand
and at the same time have no knowledge whatsoever of the progress towards solution
within the general problem domain. Thus one web agent, say, can check inventory infor-
mation, while another agent checks credit worthiness of a customer, both agents unaware
of the higher level decision making, for example, whether or not to allow a purchase. Both
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of these research emphases of the 1980s brought on the current interest in the design and
use of intelligent agents.


7.4.1 Agent-Oriented Problem Solving: A Definition


Before proceeding further in the discussion of agent research, we define what we mean by
“agent”, “agent-based system”, and “multi-agent system”. There are problems here, how-
ever, as many different groups in the agent research community have differing opinions as
to exactly what agent-based problem solving is about. Our definition and discussion is
based on an extension of the work by Jennings, Sycara, and Wooldridge (1998), Woold-
ridge (2000), Wooldridge et al. (2006, 2007), and Lewis and Luger (2000). 


For us, a multi-agent system is a computer program with problem solvers situated in
interactive environments, which are each capable of flexible, autonomous, yet socially
organized actions that can, but need not be, directed towards predetermined objectives or
goals. Thus, the four criteria for an intelligent agent system include software problem
solvers that are situated, autonomous, flexible, and social.


That an intelligent agent is situated means that the agent receives input from the envi-
ronment in which it is active and can also effect changes within that environment. Exam-
ples of environments for situated agents include the internet, game playing, or a robotics
application. A concrete example might be a soccer player in a ROBOCUP competition
(Veloso et al. 2000) where an agent must interact appropriately with the ball and an oppo-
nent without full knowledge of the locations, challenges, and successes of other players in
the contest. This situatedness can be contrasted with more traditional AI problem solvers,
such as the STRIPS planner, Section 8.4, or the MYCIN expert system, Section 8.3, that
maintain centrally located and exhaustive knowledge of application domains.


An autonomous system is one that can interact with its environment without the direct
intervention of other agents. To do this it must have control over its own actions and inter-
nal state. Some autonomous agents can also learn from their experience to improve their
performance over time (see machine learning, Part IV). For example, on the internet, an
autonomous agent could do a credit card authentication check independent of other issues
in the purchasing transaction. In the ROBOCUP example, an agent could pass the ball to a
teammate or kick it on goal depending on its individual situation.


A flexible agent is both intelligently responsive as well as proactive depending on its
current situation. A responsive agent receives stimuli from its environment and responds
to them in an appropriate and timely fashion. A proactive agent does not simply respond to
situations in its environment but is also able to plan, be opportunistic, goal directed, and
have appropriate alternatives for various situations. A credit agent, for example, would be
able to go back to the user with ambiguous results or find another credit agency if one
alternative is not sufficient. The soccer agent could change its trajectory depending on the
challenge pattern of an opponent.


Finally, an agent is social that can interact, as appropriate, with other software or
human agents. After all, an agent is only part of a complex problem solving process. The
interactions of the social agent are oriented towards the goals of the larger multi-agent
system. This social dimension of the agent system must address many difficult situations.
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These include: How can different agents bid for a subtask in problem solving? How can
agents communicate with each other to facilitate the accomplishment of higher system-
level tasks - in the ROBOCUP example, this might be to score a goal. How can one agent
support another agent’s goals, for example, to handle the security issues of an internet
task? All these questions on the social dimension are the subject of ongoing research.


We have described the basis for creating multi-agent systems. Multi-agent systems
are ideal for representing problems that include many problem-solving methods, multiple
viewpoints, and multiple entities. In these domains, multi-agent systems offer the advan-
tages of distributed and concurrent problem solving along with the advantages of sophisti-
cated schemes for interaction. Examples of interactions include cooperation in working
towards a common goal, coordination in organizing problem-solving activity so that
harmful interactions are avoided and beneficial possibilities exploited, and negotiation of
subproblem constraints so that acceptable performance ensues. It is the flexibility of these
social interactions that distinguishes multi-agent systems from more traditional software
and which provides the power and excitement to the agent paradigm.


In recent years, the term multi-agent system refers to all types of software systems
composed of multiple semi-autonomous components. The distributed agent system con-
siders how a particular problem can be solved by a number of modules (agents) which
cooperate by dividing and sharing the knowledge about the problem and its evolving solu-
tion. Research in multi-agent systems is focused on the behaviors of collections of, some-
times already existing, autonomous agents aimed at solving a given problem. A multi-
agent system can also be seen as a loosely coupled network of problem solvers that work
together on problems beyond the scope of any of the agents individually (Durfee and
Lesser 1989).  See also the design of knowledge services and ontologies, Section 7.3.3.


The problem solvers of a multi-agent system, besides being autonomous, may also be
of heterogeneous design. Based on analysis by Jennings, Sycara, and Wooldridge (1998),
Wooldridge et al. (2006, 2007) there are four important characteristics of multi-agent
problem solving. First, each agent has incomplete information and insufficient capabilities
for solving the entire problem, and thus can suffer from a limited viewpoint. Second, there
is no global system controller for the entire problem solving. Third, the knowledge and
input data for the problem is also decentralized, and fourth, the reasoning processes are
often asynchronous.


Interestingly, traditional object-oriented programmers often fail to see anything new
in an agent-based system. On consideration of the relative properties of agents and
objects, this can be understandable. Objects are defined as computational systems with
encapsulated state, they have methods associated with this state that support interactions
in an environment, and they communicate by message passing. 


Differences between objects and agents include the fact that objects rarely exhibit
control over their own behavior. We do not see agents as invoking methods on one
another, but rather as requesting that service actions be performed. Further, agents are
designed to have flexible, i.e., reactive, proactive, and social behavior. Finally, interacting
agents are often have their own individual threads of control. All these differences are not
to indicate that object-oriented programming languages, such as C++, Java, or CLOS do
not offer a suitable medium for building agent systems; quite to the contrary, their power
and flexibility make them ideal for this task.
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7.4.2 Examples of and Challenges to an Agent-Oriented Paradigm


To make the ideas of the previous section more concrete we next describe a number of
application domains where agent-based problem solving is appropriate. We also include
references to research within these problem areas.


Manufacturing The manufacturing domain can be modeled as a hierarchy of work
areas. There may be work areas for milling, lathing, painting, assembling, and so on.
These work areas may then be grouped into manufacturing subsystems, each sub-
system a function within the larger manufacturing process. These manufacturing sub-
systems may then be grouped into a single factory. A larger entity, the company, may
then control aspects of each of these factories, for instance, to manage orders, inven-
tory, levels of duplication, profits, and so on. References for agent-based manufactur-
ing include work in production sequencing (Chung and Wu 1997), manufacturing
operations (Oliveira et al. 1997), and the collaborative design of products (Cutosky et
al. 1993, Darr and Birmingham 1996, and Woldridge et al. 2007).


Automated Control Since process controllers are autonomous, reactive, and often
distributed systems, it is not surprising that agent models can be important. There is
research in controlling transportation systems (Corera et al. 1996), spacecraft control
(Schwuttke and Quan 1993), particle beam accelerators (Perriolat et al. 1996, Klein et
al. 2000), air traffic control (Ljunberg and Lucas 1992) and others.


Telecommunications Telecommunication systems are large distributed networks of
interacting components that require real-time monitoring and management. Agent-
based systems have been used for network control and management (Schoonder-
woerd et al. 1997, Adler et al. 1989, Fatima et al. 2006), transmission and switching
(Nishibe et al. 1993), and service (Busuoic and Griffiths 1994). See (Veloso et al.
2000) for a comprehensive overview.


Transportation Systems Traffic systems are almost by definition distributed, situ-
ated, and autonomous. Applications include coordinating commuters and cars for car-
pooling (Burmeister et al. 1997) and cooperative transportation scheduling (Fischer et
al. 1996).


Information Management The richness, diversity, and complexity of information
available to current society is almost overwhelming. Agent systems allow the possi-
bility of intelligent information management, especially on the internet. Both human
factors as well as information organization seem to conspire against comfortable
access to information. Two critical agent tasks are information filtering, only a tiny
portion of the information that we have access to do we actually want, and informa-
tion gathering, the task of collecting and prioritizing the pieces of information that we
actually do want. Applications include WEBMATE (Chen and Sycara 1998), elec-
tronic mail filtering (Maes 1994), a web browsing assistant (Lieberman 1995), and an
expert locator agent (Kautz et al. 1997). See also knowledge services, Section 7.3.3.
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E-Commerce Commerce currently seems to be driven by human activity: we decide
when to buy or sell, the appropriate quantities and price, even what information might
be appropriate at the time. Certainly commerce is a domain appropriate for agent
models. Although full development of e-commerce agents may be in the future, sev-
eral systems are already available. For example, programs can now make many buy
and sell decisions in the stock market, based on many diverse pieces of distributed
information. Several agent systems are being developed for portfolio management
(Sycara et al. 1996), shopping assistance (Doorenbos et al. 1997, Krulwich 1996), and
interactive catalogues (Schrooten and van de Velde 1997, Takahashi et al. 1997).


Interactive Games and Theater Game and theater characters provide a rich interac-
tive simulated environment. These agents can challenge us in war games, finance
management scenarios, or even sports. Theater agents play roles analogous to their
human counterparts and can offer the illusion of life for working with emotional situ-
ations, simulating medical emergencies, or training for diverse tasks. Research in this
area includes computer games (Wavish and Graham 1996), interactive personalities
(Hayes-Roth 1995, Trappl and Petta 1997), and negotiation (Fatima et al. 2006).


There are many other domains, of course, where agent-based approaches are appropriate.
Even though the agent technology offers many potential advantages for intelligent


problem solving it still has a number of challenges to overcome. The following research
questions are based on ideas from Jennings et al. (1998) and Bond and Gasser (1988).


How can we systematically formalize, decompose, and allocate problems to
agents? Furthermore, how do we appropriately synthesize their results?


How can we enable agents to communicate and interact? What communication lan-
guages and protocols are available? What and when is communication appropriate?


How can we ensure that agents act coherently in taking actions or making deci-
sions? How can they address nonlocal effects and avoid harmful agent interactions?


How can individual agents represent and reason about the actions, plans, and
knowledge of other agents in order to coordinate with them? How can agents reason
about the state of their coordinated processes?


How can disparate viewpoints and conflicting intentions between agents be recog-
nized and coordinated?


How can harmful overall system behavior, such as chaotic or oscillatory action, be
recognized and avoided?


How can limited resources, both of the individual agent as well as for the full sys-
tem, be allocated and managed?


Finally, what are the best hardware platforms and software technologies for the
support and development of agent systems?
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The intelligent software design skills necessary to support agent problem-solving
technology are found throughout this book. First, the representational requirements for
intelligent problem solving make up a constant theme of our presentation. Second, issues
of search, especially heuristic search, may be found in Part II. Third, the area of planning,
presented in Section 8.4, provides a methodology of ordering and coordinating subgoals in
the process of organizing a problem solution. Fourth, we present the idea of stochastic
agents reasoning under conditions of uncertainty in Section 9.3. Finally, issues in learning,
automated reasoning, and natural language understanding are addressed in Parts V and IV.
These subareas of traditional AI have their roles within the creation of agent architectures. 


There are a number of other design issues for the agent model that go beyond the
scope of this book, for example agent communication languages, bidding schemes, and
techniques for distributed control. These are addressed in the agent literature (Jennings,
1995; Jennings et al. 1998; Wooldridge 1998; Wooldridge et al. 2006, 2007; Fatima et al.
2005, 2006), and in particular in the appropriate conference proceedings (AAAI, IJCAI,
and DAI).


7.5 Epilogue and References


In this chapter, we have examined many of the major alternatives for knowledge represen-
tation, including the use of logic, rules, semantic networks, and frames. We also consid-
ered systems with no centralized knowledge base or general-purpose reasoning scheme.
Finally, we considered distributed problem-solving with agents. The results of careful
study include an increased understanding of the advantages and limitations of each of
these approaches to representation. Nonetheless, debate continues over the relative natu-
ralness, efficiency, and appropriateness of each approach. We close this chapter with a
brief discussion of several important issues in the area of knowledge representation.


The first of these is the selection and granularity of atomic symbols for representing
knowledge. Objects in the world constitute the domain of the mapping; computational
objects in the knowledge base are the range. The nature of the atomic elements in the lan-
guage largely determines what can be described about the world. For example, if a “car” is
the smallest atom of the representation, then the system cannot reason about engines,
wheels, or any of the component parts of a car. However, if the atoms correspond to these
parts, then a larger structure may be required to represent “car” as a single concept, possi-
bly introducing a cost in efficiency in manipulating this larger structure. 


Another example of the trade-off in the choice of symbols comes from work in natu-
ral language understanding. Programs that use single words as elements of meaning may
have difficulty in representing complex concepts that do not have a one-word denotation.
There is also difficulty in distinguishing between different meanings of the same word or
different words with the same meaning. One approach to this problem is to use semantic
primitives or language-independent conceptual units, as the basis for representing the
meaning of language. Although this viewpoint avoids the problem of using single words
as units of meaning, it involves other trade-offs: many words require complex structures
for their definitions; also, by relying on a small set of primitives, many subtle distinctions,
such as push vs. shove or yell vs. scream, are difficult to express. 
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Exhaustiveness is a property of a knowledge base that is assisted by an appropriate
representation. A mapping is exhaustive with respect to a property or class of objects if all
occurrences correspond to an explicit element of the representation. Geographic maps are
assumed to be exhaustive to some level of detail; a map with a missing city or river would
not be well regarded as a navigational tool. Although most knowledge bases are not
exhaustive, exhaustiveness with respect to certain properties or objects is a desirable goal.
For example, the ability to assume that a representation is exhaustive may allow a planner
to ignore possible effects of the frame problem.


When we describe problems as a state of the world that is changed by a series of
actions or events, these actions or events generally change only a few components of the
description; the program must be able to infer side effects and implicit changes in the
world description. The problem of representing the side effects of actions is called the
frame problem. For example, a robot stacking heavy boxes on a truck may have to com-
pensate for the lowering of the truck bed due to the weight of each new box. If a represen-
tation is exhaustive, there will be no unspecified side effects, and the frame problem
effectively disappears. The difficulty of the frame problem results from the fact that it is
impossible to build a completely exhaustive knowledge base for most domains. A repre-
sentation language should assist the programmer in deciding what knowledge may safely
be omitted and help deal with the consequences of this omission. (Section 8.4 discusses
the frame problem in planning.) 


Related to exhaustiveness is the plasticity or modifiability of the representation: the
addition of knowledge in response to deficiencies is the primary solution to a lack of
exhaustiveness. Because most knowledge bases are not exhaustive, it should be easy to
modify or update them. In addition to the syntactic ease of adding knowledge, a represen-
tation should help to guarantee the consistency of a knowledge base as information is
added or deleted. Inheritance, by allowing properties of a class to be inherited by new
instances, is an example of how a representational scheme may help ensure consistency. 


Several systems, including Copycat (Mitchell 1993) and Brooks’ robot, Section 7.3,
have addressed the plasticity issue by designing network structures that change and evolve
as they meet the constraints of the natural world. In these systems, the representation is the
result of bottom-up acquisition of new data, constrained by the expectation of the perceiv-
ing system. An application of this type of system is analogical reasoning.


Another useful property of representations concerns the extent to which the mapping
between the world and the knowledge base is homomorphic. Here, homomorphic implies
a one-to-one correspondence between objects and actions in the world and the computa-
tional objects and operations of the language. In a homomorphic mapping the knowledge
base reflects the perceived organization of the domain and can be organized in a more nat-
ural and intuitive fashion. 


In addition to naturalness, directness, and ease of use, representational schemes may
also be evaluated by their computational efficiency. Levesque and Brachman (1985) dis-
cuss the trade-off between expressiveness and efficiency. Logic, when used as a represen-
tational scheme, is highly expressive as a result of its completeness; however, systems
based on unconstrained logic pay a considerable price in efficiency, see Chapter 14. 


Most of the representation issues just presented relate to any information that is to be
captured and used by a computer. There are further issues that the designers of distributed
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and agent systems must address. Many of these issues relate to making decisions with par-
tial (local) information, distributing the responsibility for accomplishing tasks, agent com-
munication languages, and developing algorithms for the cooperation and information
sharing of agents. Many of these issues are presented in Section 7.4.


Finally, if the philosophical approaches of a distributed environment-based intelli-
gence proposed by Clark (1997), Haugeland (1997), and Dennett (1991, 1995, 2006) are
to be realized, where the so-called “leaky” system utilizes both the environment and other
agents as critical media for knowledge storage and use, it may be that entirely new repre-
sentation languages await invention. Where are the representational tools and support to,
as Brooks (1991a) proposes, “use the world as its own model”?


We conclude with further references for the material presented in Chapter 7. Associa-
tionist theories have been studied as models of computer and human memory and reason-
ing (Selz 1913, 1922; Anderson and Bower 1973; Sowa 1984; Collins and Quillian 1969).


SNePS, (Shapiro 1979, Shapiro et al. 2007), one of the earliest associationist/logic
based representations, see Section 7.1, has been recently extended as a tool for metacogni-
tion, where predicates are allowed to take other predicates as arguments, thus supporting
the ability to reason about the structures of a knowledge base.


Important work in structured knowledge representation languages includes Bobrow
and Winograd’s representation language KRL (Bobrow and Winograd 1977) and Brach-
man’s (1979) representation language KL-ONE, which pays particular attention to the
semantic foundations of structured representations. 


Our overview of conceptual graphs owes a considerable debt to John Sowa’s book
Conceptual Structures (1984). The reader is referred to this book for details that we have
omitted. In its full treatment, conceptual graphs combine the expressive power of predi-
cate calculus, as well as that of modal and higher-order logics, with a rich set of built-in
concepts and relations derived from epistemology, psychology, and linguistics.


There are a number of other approaches of interest to the representation problem. For
example, Brachman, Fikes, and Levesque have proposed a representation that emphasizes
functional specifications; that is, what information can be asked of or told to a knowledge
base (Brachman 1985, Brachman et al. 1985, Levesque 1984). 


A number of books can help with an advanced study of these issues. Readings in
Knowledge Representation by Brachman and Levesque (1985) is a compilation of impor-
tant, but dated articles in this area. Many of the articles referred to in this chapter may be
found there, although we have referenced them in their original source. Representation
and Understanding by Bobrow and Collins (1975), Representations of Commonsense
Knowledge by Davis (1990), Readings in Qualitative Reasoning about Physical Systems
by Weld and deKleer (1990) are all important. Principles of Knowledge Representation
and Reasoning, (Brachman et al. 1990), An Overview of Knowledge Representation
(Mylopoulos and Levesque 1984), and the proceedings of the annual conferences on AI
are helpful resources. 


There is now a considerable number of papers following the directions proposed by
Brooks with his subsumption architecture; see especially Brooks (1991a), Brooks and
Stein (1994), Maes (1994), and Veloso et al. (2000). There are also contrasting positions,
see McGonigle (1990, 1998) and Lewis and Luger (2000). For a philosophical view of
distributed and embodied knowledge and intelligence see Clark’s Being There (1997).
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Agent-based research is widespread in modern AI. See Jennings et al. (1998) for an
introduction to the area. There are now entire sections of the annual AI conferences (IAAI
and IJCAI) devoted to agent research. We recommend reading the recent proceedings of
these conferences for more up-to-date discussions of current research issues. We also
recommend the conference proceedings and readings in the area of distributed artificial
intelligence, or DAI. A summary and references of important application areas for agent-
based research was presented in Section 7.4.


Issues in knowledge representation also lie in the middle ground between AI and Cog-
nitive Science; see Cognitive Science: The Science of Intelligent Systems (Luger 1994)
and Being There (Clark 1997). Computation and Intelligence edited by George Luger
(1995) is a collection of classic papers that emphasizes the development of many different
knowledge representation schemes.


7.6 Exercises


 1. Common sense reasoning employs such notions as causality, analogy, and equivalence but
uses them in a different way than do formal languages. For example, if we say “Inflation
caused Jane to ask for a raise,” we are suggesting a more complicated causal relationship
than that found in simple physical laws. If we say “Use a knife or chisel to trim the wood,”
we are suggesting an important notion of equivalence. Discuss the problems of translating
these and other such concepts into a formal language. 


 2. In Section 7.2.1 we presented some of the arguments against the use of logic for represent-
ing common sense knowledge. Make an argument for the use of logic in representing this
knowledge. McCarthy and Hayes (1969) have an interesting discussion on this. 


 3. Translate each of the following sentences into predicate calculus, conceptual dependen-
cies, and conceptual graphs:


“Jane gave Tom an ice cream cone.” 
“Basketball players are tall.” 
“Paul cut down the tree with an axe.”
“Place all the ingredients in a bowl and mix thoroughly.” 


 4. Read “What’s in a Link” by Woods (1985). Section IV of this article lists a number of
problems in knowledge representation. Suggest a solution to each of these problems using
logic, conceptual graphs, and frame notations. 


 5. Translate the conceptual graphs of Figure 7.28 into English sentences


 6. The operations join and restrict define a generalization ordering on conceptual graphs.
Show that the generalization relation is transitive. 


 7. Specialization of conceptual graphs using join and restrict is not a truth-preserving opera-
tion. Give an example that demonstrates that the restriction of a true graph is not necessar-
ily true. However, the generalization of a true graph is always true; prove this. 


 8. Define a specialized representation language to describe the activities of a public library.
This language will be a set of concepts and relations using conceptual graphs. Do the same
thing for a retail business. What concepts and relations would these two languages have in
common? Which would exist in both languages but have a different meaning? 
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 9. Translate the conceptual graphs of Figure 7.28 into predicate calculus. 


10. Translate the financial advisor knowledge base, Section 2.4, into conceptual graph form.


11. Give evidence from your own experience that suggests a script-like or frame-like organi-
zation of human memory. 


12. Using conceptual dependencies, define a script for: 


a. A fast-food restaurant. 
b. Interacting with a used-car salesperson. 
c. Going to the opera. 


  13. Construct a hierarchy of subtypes for the concept vehicle; for example, subtypes of
vehicle might be land_vehicle or ocean-vehicle. These would have further subtypes. Is
this best represented as a tree, lattice, or general graph? Do the same for the concept
move; for the concept angry.


instrument


part                                hand


proposition:


person: john                         agent                          eat


object                         soup


belief                       experiencer                      kate


object


neg                   proposition:


likes                   experiencer                    john


object                     pizza


Figure 7.28 Two conceptual graphs to be translated into English.
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14. Construct a type hierarchy in which some types do not have a common supertype. Add
types to make this a lattice. Could this hierarchy be expressed using tree inheritance?
What problems would arise in doing so? 


15. Each of the following sequences of characters is generated according to some general rule.
Describe a representation that could be used to represent the rules or relationships required
to continue each sequence: 


a. 2,4,6,8, . . . 
b. 1,2,4,8,16, . . . 
c. 1,1,2,3,5,8, . . . 
d. 1,a,2,c,3,f,4, . . . 
e. o,t,t,f,f,s,s, . . .  


16. Examples of analogical reasoning were presented in Section 7.3.2. Describe an appropri-
ate representation and search strategy that would allow for identification of the best
answer for this type problem. Create two more example analogies that would work with
your proposed representation. Could the two following examples be solved?


a. hot is to cold as tall is to {wall, short, wet, hold}
b. bear is to pig as chair is to {foot, table, coffee, strawberry}


17. Describe a representation that could be used in a program to solve analogy problems like
that in Figure 7.29. This class of problems was addressed by T. G. Evans (1968). The rep-
resentation must be capable of capturing the essential features of size, shape, and relative
position.


18. Brooks’ paper (1991a) offers an important discussion on the role of representation in tra-
ditional AI. Read this paper, and comment on the limitations of explicit, general-purpose
representational schemes. 


19. At the end of Section 7.3.1, there are five potential issues that Brooks’ subsumption archi-
tecture (1991a) must address to offer a successful general-purpose approach to problem-
solving. Pick one or more of these and comment on it (them). 


is to                           as                            is to


Choose one:


       A                       B                        C                       D


Figure 7.29 Example of an analogy test problem.
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20. Identify five properties that an agent language should have to provide an agent-oriented
internet service. Comment on the role of Java as a general-purpose agent language for
building internet services. Do you see a similar role for CLOS? Why or why not? There is
plenty of information on this topic on the internet itself.


21. There were a number of important issues presented near the end of Section 7.4 related to
the creation of an agent-oriented solutions to problems. Pick one of these and discuss the
issue further.


22. Suppose you were designing an agent system to represent an American football or alterna-
tively a soccer team. For agents to cooperate in a defensive or in a scoring maneuver, they
must have some idea of each other’s plans and possible responses to situations. How
might you build a model of another cooperating agent’s goals and plans?


23 Pick one of the application areas for agent architectures summarized in Section 7.4.
Choose a research or application paper in that area. Design an organization of agents that
could address the problem. Break the problem down to specify issues of responsibility for
each agent. List appropriate cooperation procedures.
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STRONG METHOD
PROBLEM SOLVING


The first principle of knowledge engineering is that the problem-solving power exhibited 
by an intelligent agent’s performance is primarily the consequence of its knowledge base, 
and only secondarily a consequence of the inference method employed. Expert systems 
must be knowledge-rich even if they are methods-poor. This is an important result and one 
that has only recently become well understood in AI. For a long time AI has focused its 
attentions almost exclusively on the development of clever inference methods; almost any 
inference method will do. The power resides in the knowledge. 


—EDWARD FEIGENBAUM, Stanford University


Nam et ipsa scientia potestas est (the knowledge is power).


—FRANCIS BACON (1620)


8.0 Introduction


We continue studying issues of representation and intelligence by considering an impor-
tant component of AI: knowledge-intensive or strong method problem solving.


Human experts are able to perform at a successful level because they know a lot about
their areas of expertise. This simple observation is the underlying rationale for the design
of strong method or knowledge-based problem solvers (Introduction, Part III). An expert
system, for example, uses knowledge specific to a problem domain to provide “expert
quality” performance in that application area. Generally, expert system designers acquire
this knowledge with the help of human domain experts, and the system emulates the
human expert’s methodology and performance. As with skilled humans, expert systems
tend to be specialists, focusing on a narrow set of problems. Also, like humans, their
knowledge is both theoretical and practical: the human experts that provide the system’s
knowledge have generally augmented their own theoretical understanding of the problem
domain with tricks, shortcuts, and heuristics for using the knowledge they have gained
through problem-solving experience. 


8
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Because of their heuristic, knowledge-intensive nature, expert systems generally: 


1. Support inspection of their reasoning processes, both in presenting intermediate
steps and in answering questions about the solution process. 


2. Allow easy modification in adding and deleting skills from the knowledge base. 


3. Reason heuristically, using (often imperfect) knowledge to get useful solutions. 


The reasoning of an expert system should be open to inspection, providing information
about the state of its problem solving and explanations of the choices and decisions that
the program is making. Explanations are important for a human expert, such as a doctor or
an engineer, if he or she is to accept the recommendations from a computer. Indeed, few
human experts will accept advice from another human, let alone a machine, without
understanding the justifications for it. 


The exploratory nature of AI and expert system programming requires that programs
be easily prototyped, tested, and changed. AI programming languages and environments
are designed to support this iterative development methodology. In a pure production sys-
tem, for example, the modification of a single rule has no global syntactic side effects.
Rules may be added or removed without requiring further changes to the larger program.
Expert system designers often comment that easy modification of the knowledge base is a
major factor in producing a successful program. 


A further feature of expert systems is their use of heuristic problem-solving methods.
As expert system designers have discovered, informal “tricks of the trade” and “rules of
thumb” are an essential complement to the standard theory presented in textbooks and
classes. Sometimes these rules augment theoretical knowledge in understandable ways;
often they are simply shortcuts that have, empirically, been shown to work. 


Expert systems are built to solve a wide range of problems in domains such as medi-
cine, mathematics, engineering, chemistry, geology, computer science, business, law,
defense, and education. These programs address a variety of problems; the following list,
from Waterman (1986), is a useful summary of general expert system problem categories. 


Interpretation—forming high-level conclusions from collections of raw data. 


Prediction—projecting probable consequences of given situations. 


Diagnosis—determining the cause of malfunctions in complex situations based on
observable symptoms. 


Design—finding a configuration of system components that meets performance goals
while satisfying a set of design constraints. 


Planning—devising a sequence of actions that will achieve a set of goals given cer-
tain starting conditions and run-time constraints. 


Monitoring—comparing a system’s observed behavior to its expected behavior. 


Instruction—assisting in the education process in technical domains. 


Control—governing the behavior of a complex environment. 
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In this chapter we first examine the technology that makes knowledge-based problem
solving possible. Successful knowledge engineering must address a range of problems,
from the choice of an appropriate application domain to the acquisition and formalization
of problem-solving knowledge. In Section 8.2 we introduce rule-based systems and
present the production system as a software architecture for solution and explanation pro-
cesses. Section 8.3 examines techniques for model-based and case-based reasoning. Sec-
tion 8.4 presents planning, a process of organizing pieces of knowledge into a consistent
sequence of actions that will accomplish a goal. Chapter 9 presents techniques for reason-
ing in uncertain situations, an important component of strong method problem solvers.


8.1 Overview of Expert System Technology


8.1.1 The Design of Rule-Based Expert Systems


Figure 8.1 shows the modules that make up a typical expert system. The user interacts
with the system through a user interface that simplifies communication and hides much of
the complexity, such as the internal structure of the rule base. Expert system interfaces
employ a variety of user styles, including question-and-answer, menu-driven, or graphical
interfaces. The final decision on the interface type is a compromise between user needs
and the requirements of the knowledge base and inferencing system. 


The heart of the expert system is the knowledge base, which contains the knowledge
of a particular application domain. In a rule-based expert system this knowledge is most
often represented in the form of if... then... rules, as in our examples of Section 8.2. The
knowledge base contains both general knowledge as well as case-specific information. 


The inference engine applies the knowledge to the solution of actual problems. It is
essentially an interpreter for the knowledge base. In the production system, the inference
engine performs the recognize-act control cycle. The procedures that implement the


User interface 
may employ:


question-and-
answer,


menu-driven,


natural
language, or


graphics
interface
styles


Knowledge-base
editor


Inference engine


Explanation
subsystem


General
knowledge base


Case-specific
data


User


Figure 8.1 Architecture of a typical expert system for
a particular problem domain.
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control cycle are separate from the production rules themselves. It is important to maintain
this separation of the knowledge base and inference engine for several reasons: 


1. This separation makes it possible to represent knowledge in a more natural fash-
ion. If ... then... rules, for example, are closer to the way in which humans
describe their problem-solving skills than is lower-level computer code. 


2. Because the knowledge base is separated from the program’s lower-level control
structures, expert system builders can focus on capturing and organizing prob-
lem-solving knowledge rather than on the details of its computer implementation.


3. Ideally, the separation of knowledge and control allows changes to be made in
one part of the knowledge base without creating side effects in others. 


4. The separation of the knowledge and control elements of the program allows the
same control and interface software to be used in a variety of systems. The expert
system shell has all the components of Figure 8.1 except that the knowledge base
and case-specific data are empty and can be added for a new application. The
broken lines of Figure 8.1 indicate the shell modules. 


The expert system must keep track of case-specific data: the facts, conclusions, and
other information relevant to the case under consideration. This includes the data given in
a problem instance, partial conclusions, confidence measures of conclusions, and dead
ends in the search process. This information is separate from the general knowledge base. 


The explanation subsystem allows the program to explain its reasoning to the user.
These explanations include justifications for the system’s conclusions, in response to how
queries (Section 8.2), explanations of why the system needs a particular piece of data, why
queries (Section 8.2), and, where useful, tutorial explanations or deeper theoretical justifi-
cations of the program’s actions. 


Many systems also include a knowledge-base editor. Knowledge-base editors help the
programmer locate and correct bugs in the program’s performance, often accessing the
information provided by the explanation subsystem. They also may assist in the addition
of new knowledge, help maintain correct rule syntax, and perform consistency checks on
any updated knowledge base. 


An important reason for the decrease in design and deployment times for current
expert systems is the availability of expert system shells. NASA has created CLIPS, JESS
is available from Sandia National Laboratories, and we offer shells in Lisp and Prolog in
our supplementary materials. Unfortunately, shell programs do not solve all of the prob-
lems involved in building expert systems. Although the separation of knowledge and con-
trol, the modularity of the production system architecture, and the use of an appropriate
knowledge representation language all help with the building of an expert system, the
acquisition and formalization of domain knowledge still remain difficult tasks. 


8.1.2 Selecting a Problem and the Knowledge Engineering Process


Expert systems involve a considerable investment of money and human effort. Attempts to
solve a problem that is too complex, too poorly understood, or otherwise unsuited to the
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available technology can lead to costly and embarrassing failures. Researchers have devel-
oped guidelines to determine whether a problem is appropriate for expert system solution:


1. The need for the solution justifies the cost and effort of building an expert
system. Many expert systems have been built in domains such as mineral explo-
ration, business, defense, and medicine where a large potential exists for savings
in terms of money, time, and human life. 


2. Human expertise is not available in all situations where it is needed. In geol-
ogy, for example, there is a need for expertise at remote mining and drilling sites.
Often, geologists and other engineers find themselves traveling large distances to
visit sites, with resulting expense and wasted time. By placing expert systems at
remote sites, many problems may be solved without needing a visit.


3. The problem may be solved using symbolic reasoning. Problem solutions
should not require physical dexterity or perceptual skill. Robots and vision sys-
tems currently lack the sophistication and flexibility of humans. 


4. The problem domain is well structured and does not require common sense
reasoning. Highly technical fields have the advantage of being well studied and
formalized: terms are well defined and domains have clear and specific concep-
tual models. In contrast, common sense reasoning is difficult to automate.


5. The problem may not be solved using traditional computing methods. Expert
system technology should not be used where unnecessary. If a problem can be
solved satisfactorily using more traditional techniques, then it is not a candidate.


6. Cooperative and articulate experts exist. The knowledge used by expert sys-
tems comes from the experience and judgment of humans working in the domain.
It is important that these experts be both willing and able to share knowledge.


7. The problem is of proper size and scope. For example, a program that
attempted to capture all of the expertise of a medical doctor would not be feasi-
ble; a program that advised MDs on the use of a particular piece of diagnostic
equipment or a particular set of diagnoses would be more appropriate.


The primary people involved in building an expert system are the knowledge engi-
neer, the domain expert, and the end user. The knowledge engineer is the AI language and
representation expert. His or her main task is to select the software and hardware tools for
the project, help the domain expert articulate the necessary knowledge, and implement
that knowledge in a correct and efficient knowledge base. Often, the knowledge engineer
is initially ignorant of the application domain. 


The domain expert provides the knowledge of the problem area. The domain expert is
generally someone who has worked in the domain area and understands its problem-solv-
ing techniques, such as shortcuts, handling imprecise data, evaluating partial solutions,
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and all the other skills that mark a person as an expert problem solver. The domain expert
is primarily responsible for spelling out these skills to the knowledge engineer.


As in most applications, the end user determines the major design constraints. Unless
the user is happy, the development effort is by and large wasted. The skills and needs of
the user must be considered throughout the design cycle: Will the program make the user’s
work easier, quicker, more comfortable? What level of explanation does the user need?
Can the user provide correct information to the system? Is the interface appropriate? Does
the user’s work environment place restrictions on the program’s use? An interface that
required typing, for example, would not be appropriate for use in the cockpit of a fighter.


Like most AI programming, building expert systems requires a nontraditional devel-
opment cycle based on early prototyping and incremental revision of the code. Generally,
work on the system begins with the knowledge engineer attempting to gain some familiar-
ity with the problem domain. This helps in communicating with the domain expert. This is
done in initial interviews with the expert and by observing experts during the performance
of their job. Next, the knowledge engineer and expert begin the process of extracting the
expert’s problem-solving knowledge. This is often done by giving the domain expert a
series of sample problems and having him or her explain the techniques used in their solu-
tion. Video and/or audio tapes are often essential for capturing this process.


It is often useful for the knowledge engineer to be a novice in the problem domain.
Human experts are notoriously unreliable in explaining exactly what goes on in solving a
complex problem. Often they forget to mention steps that have become obvious or even
automatic to them after years of work in their field. Knowledge engineers, by virtue of
their relative naiveté in the domain, can spot these conceptual jumps and ask for help. 


Once the knowledge engineer has obtained a general overview of the problem domain
and gone through several problem-solving sessions with the expert, he or she is ready to
begin actual design of the system: selecting a way to represent the knowledge, such as
rules or frames, determining the search strategy, forward, backward, depth-first, best-first
etc., and designing the user interface. After making these design commitments, the knowl-
edge engineer builds a prototype. 


This prototype should be able to solve problems in a small area of the domain and
provide a test bed for preliminary design assumptions. Once the prototype has been imple-
mented, the knowledge engineer and domain expert test and refine its knowledge by giv-
ing it problems to solve and correcting its shortcomings. Should the assumptions made in
designing the prototype prove correct, the prototype can be incrementally extended until it
becomes a final system. 


Expert systems are built by progressive approximations, with the program’s mistakes
leading to corrections or additions to the knowledge base. In a sense, the knowledge base
is “grown” rather than constructed. Figure 8.2 presents a flow chart describing the explor-
atory programming development cycle. This approach to programming was investigated
by Seymour Papert with his LOGO language (Papert 1980) as well as Alan Kay’s work
with Smalltalk at Xerox PARC. The LOGO philosophy argues that watching the computer
respond to the improperly formulated ideas represented by the code leads to their
correction (being debugged) and clarification with more precise code. This process of try-
ing and correcting candidate designs is common to expert systems development, and con-
trasts with such neatly hierarchical processes as top-down design. 
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It is also understood that the prototype may be thrown away if it becomes too cumber-
some or if the designers decide to change their basic approach to the problem. The proto-
type lets program builders explore the problem and its important relationships by actually
constructing a program to solve it. After this progressive clarification is complete, they
can then often write a cleaner version, usually with fewer rules. 


The second major feature of expert system programming is that the program need
never be considered “finished.” A large heuristic knowledge base will always have limita-
tions. The modularity of the production system model make it natural to add new rules or
make up for the shortcomings of the present rule base at any time.


Figure 8.2 Exploratory development cycle.
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8.1.3 Conceptual Models and Their Role in Knowledge Acquisition


Figure 8.3 presents a simplified model of the knowledge acquisition process that will
serve as a useful “first approximation” for understanding the problems involved in acquir-
ing and formalizing human expert performance. The human expert, working in an applica-
tion area, operates in a domain of knowledge, skill, and practice. This knowledge is often
vague, imprecise, and only partially verbalized. The knowledge engineer must translate
this informal expertise into a formal language suited to a computational system. A number
of important issues arises in the process of formalizing human skilled performance:


1. Human skill is often inaccessible to the conscious mind. As Aristotle points out in
his Ethics, “what we have to learn to do, we learn by doing.” Skills such as those
possessed by medical doctors are learned as much in years of internship and resi-
dency, with their constant focus on patients, as they are in physiology lectures,
where emphasis is on experiment and theory. Delivery of medical care is to a
great extent practice-driven. After years of performance these skills become
highly integrated and function at a largely unconscious level. It may be difficult
for experts to describe exactly what they are doing in problem solving.


2. Human expertise often takes the form of knowing how to cope in a situation
rather than knowing what a rational characterization of the situation might be, of
developing skilled performance mechanisms rather than a fundamental under-
standing of what these mechanisms are. An obvious example of this is riding a
unicycle: the successful rider is not, in real time, consciously solving multiple
sets of simultaneous differential equations to preserve balance; rather she is using
an intuitive combination of feelings of “gravity,” “momentum,” and “inertia” to
form a usable control procedure. 
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Figure 8.3 The standard view of building an expert system.
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3. We often think of knowledge acquisition as gaining factual knowledge of an
objective reality, the so-called “real world”. As both theory and practice have
shown, human expertise represents an individual’s or a community’s model of the
world. Such models are as influenced by convention, social processes, and hid-
den agendas as they are by empirical methodologies. 


4. Expertise changes. Not only do human experts gain new knowledge, but also
existing knowledge may be subject to radical reformulation, as evidenced by
ongoing controversies in both scientific and social fields. 


Consequently, knowledge engineering is difficult and should be viewed as spanning
the life cycle of any expert system. To simplify this task, it is useful to consider, as in Fig-
ure 8.4, a conceptual model that lies between human expertise and the implemented pro-
gram. By a conceptual model, we mean the knowledge engineer’s evolving conception of
the domain knowledge. Although this is undoubtedly different from the domain expert’s, it
is this model that actually determines the construction of the formal knowledge base.


Because of the complexity of most interesting problems, we should not take this inter-
mediate stage for granted. Knowledge engineers should document and make public their
assumptions about the domain through common software engineering methodologies. An
expert system should include a requirements document; however, because of the con-
straints of exploratory programming, expert system requirements should be treated as co-
evolving with the prototype. Data dictionaries, graphic representations of state spaces, and
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Figure 8.4 The role of mental or conceptual models in problem solving.
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comments in the code itself are all part of this model. By publicizing these design deci-
sions, we reduce errors in both the implementation and maintenance of the program. 


Knowledge engineers should save recordings of interviews with domain experts.
Often, as knowledge engineers’ understanding of the domain grows, they form new inter-
pretations or discover new information about the domain. The recordings, along with doc-
umentation of the interpretation given them, play a valuable role in reviewing design
decisions and testing prototypes. Finally, this model serves an intermediate role in the for-
malization of knowledge. The choice of a representation language exerts a strong influ-
ence on a knowledge engineer’s model of the domain. 


The conceptual model is not formal or directly executable on a computer. It is an
intermediate design construct, a template to begin to constrain and codify human skill. It
can, if the knowledge engineer uses a predicate calculus model, begin as a number of sim-
ple networks representing states of reasoning through typical problem-solving situations.
Only after further refinement does this network become explicit if... then... rules.


Questions often asked in the context of a conceptual model include: Is the problem
solution deterministic or search-based? Is the reasoning data-driven, perhaps with a gener-
ate and test flavor, or goal-driven, based on a small set of likely hypotheses about situa-
tions? Are there stages of reasoning? Is the domain well understood and capable of
providing deep predictive models, or is all problem-solving knowledge essentially heuris-
tic? Can we use examples of past problems and their solutions to solve future problems
directly, or must we first convert these examples into general rules? Is the knowledge
exact or is it “fuzzy” and approximate, lending itself to numeric ratings of certainty (Chap-
ter 9)? Will reasoning strategies allow us to infer stable facts about the domain, or do
change and uncertainty within the system require nonmonotonic reasoning, that is, the
ability to make assertions about the domain that may later be modified or retracted (Sec-
tion 9.1)? Finally, does the structure of the domain knowledge require us to abandon rule-
based inference for alternative schemes such as neural networks or genetic algorithms
(Part IV)?


The eventual users’ needs should also be addressed in the context of the conceptual
model: What are their expectations of the eventual program? Where is their level of exper-
tise: novice, intermediate, or expert? What levels of explanation are appropriate? What
interface best serves their needs? 


Based on the answers to these and relatd questions, the knowledge obtained from
domain experts, and the resulting conceptual model, we begin development of the expert
system. Because the production system, first presented in Chapter 6, offers a number of
inherent strengths for organizing and applying knowledge, it is often used as the basis for
knowledge representation in rule-based expert systems. 


8.2 Rule-Based Expert Systems


Rule-based expert systems represent problem-solving knowledge as if... then... rules. This
approach lends itself to the architecture of Figure 8.1, and is one of the oldest techniques
for representing domain knowledge in an expert system. It is also one of the most natural,
and remains widely used in practical and experimental expert systems.
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8.2.1 The Production System and Goal-Driven Problem Solving


The architecture of rule-based expert systems may be best understood in terms of the pro-
duction system model for problem solving presented in Part II. The parallel between the
two is more than an analogy: the production system was the intellectual precursor of mod-
ern expert system architectures, where application of production rules leads to refinements
of understanding of a particular problem situation. When Newell and Simon developed the
production system, their goal was to model human performance in problem solving. 


If we regard the expert system architecture in Figure 8.1 as a production system, the
domain-specific knowledge base is the set of production rules. In a rule-based system,
these condition action pairs are represented as if... then... rules, with the premises of the
rules, the if portion, corresponding to the condition, and the conclusion, the then portion,
corresponding to the action: when the condition is satisfied, the expert system takes the
action of asserting the conclusion as true. Case-specific data can be kept in the working
memory. The inference engine implements the recognize-act cycle of the production sys-
tem; this control may be either data-driven or goal-driven.


Many problem domains seem to lend themselves more naturally to forward search. In
an interpretation problem, for example, most of the data for the problem are initially given
and it is often difficult to formulate an hypotheses or goal. This suggests a forward reason-
ing process in which the facts are placed in working memory and the system searches for
an interpretation, as first presented in Section 3.2.


In a goal-driven expert system, the goal expression is initially placed in working
memory. The system matches rule conclusions with the goal, selecting one rule and plac-
ing its premises in the working memory. This corresponds to a decomposition of the prob-
lem’s goal into simpler subgoals. The process continues in the next iteration of the
production system, with these premises becoming the new goals to match against rule con-
clusions. The system thus works back from the original goal until all the subgoals in work-
ing memory are known to be true, indicating that the hypothesis has been verified. Thus,
backward search in an expert system corresponds roughly to the process of hypothesis
testing in human problem solving, as also first presented in Section 3.2.


In an expert system, subgoals can be solved by asking the user for information. Some
expert systems allow the system designer to specify which subgoals may be solved by ask-
ing the user. Others simply ask the user about any subgoals that fail to match rules in the
knowledge base; i.e., if the program cannot infer the truth of a subgoal, it asks the user. 


As an example of goal-driven problem solving with user queries, we next offer a
small expert system for analysis of automotive problems. This is not a full diagnostic sys-
tem, as it contains only four very simple rules. It is intended as an example to demonstrate
goal-driven rule chaining, the integration of new data, and the use of explanation facilities:


Rule 1: if
the engine is getting gas, and
the engine will turn over,
then
the problem is spark plugs.
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Rule 2: if
the engine does not turn over, and
the lights do not come on
then
the problem is battery or cables.


Rule 3: if
the engine does not turn over, and
the lights do come on
then
the problem is the starter motor. 


Rule 4: if
there is gas in the fuel tank, and
there is gas in the carburetor
then
the engine is getting gas. 


To run this knowledge base under a goal-directed control regime, place the top-level
goal, the problem is X, in working memory as shown in Figure 8.5. X is a variable that
can match with any phrase, as an example, the problem is battery or cables; it will
become bound to the solution when the problem is solved.


Three rules match with this expression in working memory: rule 1, rule 2, and rule 3.
If we resolve conflicts in favor of the lowest-numbered rule, then rule 1 will fire. This
causes X to be bound to the value spark plugs and the premises of rule 1 to be placed in
the working memory as in Figure 8.6. The system has thus chosen to explore the possible


Working memory


the problem is X


Production rules


Rule 1


Rule 2


Rule 3


Rule 4


Figure 8.5 The production system at the start of a
consultation in the car diagnostic example.
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hypothesis that the spark plugs are bad. Another way to look at this is that the system has
selected an or branch in an and/or graph (Chapter 3). 


Note that there are two premises to rule 1, both of which must be satisfied to prove the
conclusion true. These are and branches of the search graph representing a decomposition
of the problem (finding whether the problem is spark plugs) into two subproblems
(finding whether the engine is getting gas and whether the engine will turn over). We
may then fire rule 4, whose conclusion matches with the engine is getting gas, causing
its premises to be placed in working memory as in Figure 8.7.
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Figure 8.6 The production system after Rule 1 has fired.
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At this point, there are three entries in working memory that do not match with any
rule conclusions. Our expert system will, in this situation, query the user directly about
these subgoals. If the user confirms all three of these as true, the expert system will have
successfully determined that the car will not start because the spark plugs are bad. In
finding this solution, the system has searched the leftmost branch of the and/or graph pre-
sented in Figure 8.8.


This is, of course, a very simple example. Not only is its automotive knowledge
limited at best, but it also ignores a number of important aspects of real implementations.
The rules are phrased in English, rather than a formal language. On finding a solution, a
real expert system will tell the user its diagnosis (our model simply stops). Also, we
should maintain enough of a trace of the reasoning to allow backtracking if necessary. In
our example, had we failed to determine that the spark plugs were bad, we would have
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Figure 8.8        The and/or graph searched in the car diagnosis example, with
.                       the conclusion of Rule 4 matching the first premise of Rule 1.


the problem is X


Rule 2:
the problem is battery
or cables


Rule 1:
the problem is 
spark plugs


Rule 3:
the problem is 
the starter motor


the engine is
getting gas


the engine 
will turn
over


the engine 
does not
turn over


the lights
do not
come on


the engine 
does not
turn over


the lights
do come 
on


Rule 4:
the engine is
getting gas


gas in fuel tank gas in carburetor








CHAPTER 8 / STRONG METHOD PROBLEM SOLVING 291


needed to back up to the top level and try rule 2 instead. Notice that this information is
implicit in the ordering of subgoals in working memory of Figure 8.7 and in the graph of
Figure 8.8. In spite of its simplicity, however, this example underscores the importance of
production system based search and its representation by the and/or graph as a foundation
for rule-based expert systems.


Earlier we emphasized that an expert system needed to be open to inspection, easily
modified, and heuristic in nature. The production system architecture is an important fac-
tor in each of these requirements. Ease of modification, for example, is supported by the
syntactic independence of production rules: each rule is a chunk of knowledge that can be
independently modified. There are semantic constraints, however, in that the meanings of
the individual rules are related. These must be reconciled in any editing/modification pro-
cess. We next discuss the generation of explanations and the monitoring of inference.


8.2.2 Explanation and Transparency in Goal-Driven Reasoning


The production system implements a graph search. The explanation routines of Figure 8.1
keep track of the graph search and use a trace of the search to answer user queries. The
production rules themselves document each step of the reasoning process. 


In general, the two questions answered by rule-based expert systems are why? and
how? A why query occurs when the program asks the user for information and the user
responds with why, meaning “why did you ask for that information?” The answer is the
current rule that the production system is attempting to fire. The answer to “how did you
get that result?” is the sequence of rules that were used to conclude a goal. 


Suppose our automotive expert system has an explanation facility, and assume that
the consultation has reached the stage represented by the working memory configuration
in Figure 8.7. The following dialogue begins with the computer asking the user about the
goals present in working memory. User responses are in bold type.


gas in fuel tank? 
yes
gas in carburetor? 
yes
engine will turn over? 
why


Here the user enters a why query, i.e., why do you want to know whether the engine will
turn over? The system responds with a literal presentation of the rule under question:


It has been established that: 
1. the engine is getting gas, 
therefore if 
2. the engine will turn over, 
then the problem is spark plugs. 
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Because the user answered yes to the first two questions, rule 4 was able to fire, veri-
fying the first premise of rule 1. When the why query was made, the system was trying to
solve the second premise of rule 1. Note that the explanation for the system’s behavior is
just a restatement of the current rule under consideration. However, this provides an ade-
quate explanation for why the program wants to know whether the engine will turn over.
In the response to the why query, the system states that it has concluded that the engine
is getting gas. Suppose the user then asks:


how the engine is getting gas


The system will respond to how it concluded that the engine is getting gas. The
response is a trace of the reasoning that led to this conclusion, working back from the goal
along the rules that support it to the user responses:


This follows from rule 4: 
if
gas in fuel tank, and 
gas in carburetor 
then
engine is getting gas. 
gas in fuel tank was given by the user 
gas in carburetor was given by the user 


Once again, the production system architecture provides an essential basis for these
explanations. Each cycle of the control loop selects and fires another rule. The program
may be stopped after each cycle and inspected. Because each rule represents a complete
chunk of problem-solving knowledge, the current rule provides a context for the
explanation. Contrast this production system approach with more traditional program
architectures: if we stop a C, C++, or Java program in mid execution, it is doubtful that the
current statement will have much meaning. 


In summary, the knowledge-based system answers why queries by showing the
current rule that it is attempting to fire; it answers how queries by giving a trace of the rea-
soning that led to a goal or subgoal. Although the mechanisms are conceptually simple,
they can exhibit remarkable explanatory power if the knowledge base is organized in a
logical fashion. The supplementary materials in Java, Lisp and Prolog, demonstrate the
use of rule stacks and proof trees to implement these explanations.


If explanations are to behave logically, it is important not only that the knowledge
base gets the correct answer but also that each rule corresponds to a single logical step in
the problem solving process. If a knowledge base combines several steps into a single
rule, or if it breaks up the rules in an arbitrary fashion, it may get correct answers but seem
vague, arbitrary, or illogical in responding to how and why queries. This can not only
undermine the user’s faith in the system but can also make the program much more diffi-
cult for its builders to understand and modify. 
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8.2.3 Using the Production System for Data-Driven Reasoning


The automobile diagnosis demonstration of Section 8.2.1 illustrated the use of a
production system to implement goal-driven search. Search was also depth-first in that it
searched each subgoal found in the rule base exhaustively before moving onto any sibling
goals. As we saw in Section 6.3, however, the production system is also an ideal
architecture for data-driven reasoning. Example 6.3.1 demonstrated this process with the
8-puzzle and Examples 6.3.2 and 6.3.3 with the Knight’s Tour. In each of these problems
we did conflict resolution by taking the first rule found in the knowledge base and then
followed the results of that rule. This gave the search a depth-first flavor, although there
was no mechanism, such as backtracking, to handle the problem of “dead ends” in the
search space.


Breadth-first search is even more common in data-driven reasoning. The algorithm
for this is simple: compare the contents of working memory with the conditions of each
rule in the rule base according to the order of the rules in the rule base. If the data in work-
ing memory supports a rule’s firing the result is placed in working memory and then con-
trol moves on to the next rule. Once all rules have been considered, search starts again at
the beginning of the rule set.


Consider, for example, the automobile diagnosis problem and the rules of Section
8.2.1. If a piece of information that makes up (part of) the premise of a rule is not the con-
clusion of some other rule then that fact will be deemed “askable” when control comes to
the situation (rule) where that information is needed. For example, the engine is getting
gas is not askable in the premise of rule 1, because that fact is a conclusion of another
rule, namely rule 4.


The breadth-first, data-driven example begins as in Figure 8.5, with no information in
working memory, as in Figure 8.9. We first examine premises of the four rules in order to
see what information is “askable”. The premise, the engine is getting gas, is not
askable, so rule 1 fails and control moves to rule 2. The engine does not turn over is
askable. Suppose the answer to this query is false, so the engine will turn over is placed
in working memory, as in Figure 8.10. 


Figure 8.9 The production system at the start of a consultation
for data-driven reasoning.


Rule 1


Rule 2


Rule 3


Rule 4


Working Memory Production Rules








294 PART III / CAPTURING INTELLIGENCE: THE AI CHALLENGE


But rule 2 fails, since the first of two and premises is false, and consideration moves
to rule 3, where again, the first premise fails. At rule 4, both premises are askable. Suppose
the answer to both questions is true. Then there is gas in the fuel tank and there is gas
in the carburetor are placed in working memory, as is the conclusion of the rule, the
engine is getting gas.


At this point all the rules have been considered so search now returns, with the new
contents of working memory, to consider the rules in order a second time. As is seen in
Figure 8.11, when the working memory is matched to rule 1, its conclusion, the problem
is spark plugs, is placed in working memory. In this example no more rules will match
and fire, and the problem-solving session is completed. A graph of the search process,
with the information content of working memory (WM) as the nodes of the graph, is pre-
sented as Figure 8.12.


An important refinement on the breadth-first search strategy used in the previous
example is what is called opportunistic search. This search strategy is simple: whenever a
rule fires to conclude new information, control moves to consider those rules which have


Figure 8.10 The production system after evaluating the first
premise of Rule 2, which then fails.
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Figure 8.11 The data-driven production system after
considering Rule 4, beginning its second
pass through the rules.
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that new information as a premise. This makes any new concluded information (search
does not change as the result of “askable” premises) the controlling force for finding the
next rules to fire. This is termed opportunistic because each conclusion of new informa-
tion drives the search. By the accident of rule ordering, the very simple example just pre-
sented was also opportunistic.


We conclude this section on data-driven reasoning with several comments on
explanation and transparency in forward chaining systems. First, in comparison with
goal-driven systems, Sections 8.2.1–2, data-driven reasoning is much less “focused” in its
search. The reason for this is obvious: in a goal-driven system, reasoning is in pursuit of a
particular goal; that goal is broken into subgoals that support the top-level goal and these
subgoals may be even further broken down. As a result, search is always directed through
this goal and subgoal hierarchy. In data-driven systems this goal orientation does not exist.
Rather, the search moves about the tree depending only on rule order and the discovery of
new information. As a result, the progress of search can often seem to be very diffuse and
unfocused.


Figure 8.12 The search graph as described by the contents of
working memory (WM) for the data-driven breadth-
first search of the rule set of Section 8.2.1.
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Second, and as a direct result of the first point, the explanation available to the user at
any time in the search is quite limited. There is a rule-level accountability in that, when the
user asks why some information is required, the why query in Section 8.2.2, the rule under
consideration is presented. The explanation cannot go much further, however, unless
explicit rule tracking is added into the system, say with opportunistic search. The diffuse
nature of the data-driven search makes this difficult to do. Finally, when a goal is
achieved, getting a full how explanation for that goal is also difficult. About the only thing
that can be used as a partial and very limited explanation is a presentation of the contents
of the working memory or a list of rules fired. But again, these will not offer the consistent
focused accountability we saw with goal-driven reasoning.


8.2.4 Heuristics and Control in Expert Systems


Because of the separation of the knowledge base and the inference engine, and the fixed
control regimes provided by the inference engine, an important method for the program-
mer to control search is through the structuring and ordering of the rules in the knowledge
base. This micro-managing of the rule set offers an important opportunity, especially as
the control strategies required for expert-level problem-solving tend to be domain specific
and knowledge intensive. Although a rule of the form if p, q, and r then s resembles a
logical expression, it may also be interpreted as a series of procedures or steps for solving
a problem: to do s, first do p, then do q, then do r. The role of rule and premise ordering
was implicit in the examples of Section 8.2 just presented.


This procedural method of rule interpretation is an essential component of practical
knowledge use and often reflects the human expert’s solution strategy. For example, we
can order the premises of a rule so that what is most likely to fail or is easiest to confirm is
tried first. This gives the opportunity of eliminating a rule (and hence a portion of the
search space) as early as possible. Rule 1 in the automotive example tries to determine
whether the engine is getting gas before it asks if the engine turns over. This is inefficient,
in that trying to determine whether the engine is getting gas invokes another rule and
eventually asks the user two questions. By reversing the order of the premises, a negative
response to the query “engine will turn over?” eliminates this rule from consideration
before the more involved condition is examined, thus making the system more efficient. 


It also makes more sense to determine whether the engine is turning over before
checking to see whether it is getting gas; if the engine won’t turn over it doesn’t matter
whether or not it is getting gas! In Rule 4, the user is asked to check the fuel tank before
checking the carburetor for gas. In this situation, it is performing the easier check first.
There is an important point here, if the overall system is to be more efficient all aspects
must be considered: rule order, organization of premises, cost of tests, amount of search
eliminated through the answers to tests, the way the majority of cases occur, and so on.


Thus the planning of rule order, the organization of a rule’s premises, and the costs of
different tests are all fundamentally heuristic in nature. In most rule-based expert systems
these heuristic choices reflect the approaches taken by the human expert, and indeed can
have erroneous results. In our example, if the engine is getting gas and turning over, the
problem may be a bad distributor rather than bad spark plugs. 
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Data-driven reasoning provides additional problems and opportunities for control of
reasoning. Some of these include the high-level heuristics, such as refraction, recency
(opportunistic search), and specificity presented in Section 6.3.3. A more domain-specific
approach groups sets of rules according to stages of the solution process. For example, in
diagnosing car problems we might create the four distinct stages of 1) organize situation,
2) collect the data, 3) do the analysis (there may be more than one problem with the car),
and finally, 4) report to the user the conclusions and recommended fixes.


This staged problem solving can be accomplished by creating descriptors for each
stage of the solution and placing that description as the first premise in all rules that
belong to that stage. For example, we might begin by placing the assertion organize situ-
ation in working memory. If no other stage descriptions occur in working memory, then
only rules that have organize situation in their set of premises will fire. Of course, this
should be the first premise for each of these rules. We would move to the next stage by
having the last rule to fire in the organizational stage remove (retract) the fact that stage is
organize solution and assert the new fact that the stage is data collection. All the rules
in the data collection stage would then have their first premise IF stage is data collec-
tion and . . .. When the data collection stage is finished, the last rule would retract this
fact, and assert the data analysis fact into working memory to match only those rules
whose premises begin with the fact IF stage is data analysis . . ..


In our discussion so far, we have described the behavior of the production system in
terms of exhaustive considerations of the rule base. Although this is expensive, it captures
the intended semantics of the production system. There are, however, a number of algo-
rithms such as RETE (Forgy 1982) that can be used to optimize search for all potentially
usable rules. Essentially, the RETE algorithm compiles rules into a network structure that
allows the system to match rules with data by directly following a pointer to the rule. This
algorithm greatly speeds execution, especially for larger rule sets, while retaining the
semantic behavior we have described in this section. 


To summarize, rules are the oldest approach to knowledge representation in expert
systems, and remain an important technique for building knowledge-intensive problem
solvers. An expert system’s rules capture human expert knowledge as it is used in practice;
consequently, they are often a blend of theoretical knowledge, heuristics derived from
experience, and special-purpose rules for handling odd cases and other exceptions to nor-
mal practice. In many situations, this approach has proven effective. Nonetheless, strongly
heuristic systems may fail, either on encountering a problem that does not fit any available
rules, or by misapplying a heuristic rule to an inappropriate situation. Human experts do
not suffer from these problems, because they have a deeper, theoretical understanding of
the problem domain that allows them to apply the heuristic rules intelligently, or resort to
reasoning from “first principles” in novel situations. Model-based approaches, described
next in Section 8.3.1 attempt to give an expert system this power and flexibility.


The ability to learn from examples is another human capability that knowledge-inten-
sive problem solvers emulate. Case-based reasoners, Section 8.3.3, maintain a knowledge
base of example problem solutions, or cases. When confronted with a new problem, the
reasoner selects from this stored set a case that resembles the present problem, and then
attempts to apply a form of its solution strategy to this problem. In legal reasoning, the
argument through precedent is a common example of case-based reasoning.
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8.3 Model-Based, Case-Based, and Hybrid Systems


8.3.1 Introduction to Model-Based Reasoning


Human expertise is an extremely complex amalgamation of theoretical knowledge, expe-
rience-based problem-solving heuristics, examples of past problems and their solutions,
perceptual and interpretive skills and other abilities that are so poorly understood that we
can only describe them as intuitive. Through years of experience, human experts develop
very powerful rules for dealing with commonly encountered situations. These rules are
often highly “compiled”, taking the form of direct associations between observable symp-
toms and final diagnoses, and hiding their more deeply explanatory foundations.


For example, the MYCIN expert system would propose a diagnosis based on such
observable symptoms as “headaches”, “nausea”, or “high fever”. Although these parame-
ters can be indicative of an illness, rules that link them directly to a diagnosis do not
reflect any deeper, causal understanding of human physiology. MYCIN’s rules indicate
the results of an infection, but do not explain its causes. A more deeply explanatory
approach would detect the presence of infecting agents, note the resulting inflammation of
cell linings, the presence of inter-cranial pressures, and infer the causal connection to the
observed symptoms of headache, elevated temperatures, and nausea. 


In a rule-based expert system example for semiconductor failure analysis, a descrip-
tive approach might base a diagnosis of circuit failure on such symptoms as the discolora-
tion of components (possibly indicating a burned-out component), the history of faults in
similar devices, or even observations of component interiors using an electron micro-
scope. However, approaches that use rules to link observations and diagnoses do not offer
the benefits of a deeper analysis of the device’s structure and function. A more robust,
deeply explanatory approach would begin with a detailed model of the physical structure
of the circuit and equations describing the expected behavior of each component and their
interactions. It would base its diagnosis on signal readings from various locations in the
device, using this data and its model of the circuit to determine the exact points of failure. 


Because first-generation expert systems relied upon heuristic rules gained from the
human expert’s description of problem-solving techniques, they exhibited a number of
fundamental limitations (Clancy 1985). If a problem instance did not match their heuris-
tics, they simply failed, even though a more theoretical analysis would have found a solu-
tion. Often, expert systems applied heuristics in inappropriate situations, such as where a
deeper understanding of the problem would have indicated a different course. These are
the limitations that model-based approaches attempt to address. A knowledge-based rea-
soner whose analysis is founded directly on the specification and functionality of a physi-
cal system is called a model-based system. In its design and use, a model-based reasoner
creates a software simulation, often referred to as “qualitative”, of the function of that
which is to be understood or fixed. (There are other types of model-based systems, of
course, in particular, the logic-based and stochastic, which we present in Chapter 9.)


The earliest model-based reasoners appeared in the mid-1970s and continued to
mature through the 1980s (Davis and Hamscher 1992). It is interesting to note that some
of the earliest work was intended to create software models of various physical devices,
such as electronic circuits, for instructional purposes (deKleer 1976, Brown et al. 1982).
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In these early intelligent tutoring situations, the specifications for a device or circuit were
reflected in sets of rules, e.g., Kirchoff’s and Ohm’s laws. The tutoring system both tested
the student’s knowledge of the device or circuit as well as conveyed to the student knowl-
edge he or she might be missing. Rules were both the representation of the functionality of
the hardware as well as the medium for conveying this knowledge to the student.


From these early tutoring systems, where the task was to both model and teach the
functionality of a system, qualitative model-based reasoners moved to trouble-shooting
systems. In trouble-shooting faults in a physical system the model leads to sets of pre-
dicted behaviors. A fault is reflected in the discrepancy between predicted and observed
behavior. The model-based system tells its user what to expect, and when observations
differ from these expectations, how these discrepancies lead to identification of faults. 


Qualitative model-based reasoning includes:


1. A description of each component in the device. These descriptions can simulate
the behavior of the component.


2. A description of the device’s internal structure. This is typically a representation
of its components and their interconnections, along with the ability to simulate
component interactions. The extent of knowledge of internal structure required
depends on the levels of abstraction applied and diagnosis desired.


3. Diagnosis of a particular problem requires observations of the device’s actual
performance, typically measurements of its inputs and outputs. I/O measure-
ments are easiest to obtain, but in fact, any measure could be used.


The task is then to determine which of the components could have failed in a way that
accounts for the observed behaviors. This requires additional rules that describe known
failure modes for the different components and their interconnections. The reasoner must
find the most probable failures that can explain the observed system behavior. 


A number of data structures can be used for representing the causal and structural
information in models. Many model-based program designers use rules to reflect the
causality and functionality of a device. Rules can also be used to capture the relationships
between components. An object-oriented system also offers an excellent representational
tool for reflecting device and component structure within a model, with the slots of an
object representing a device or component’s state, and the object or class methods defin-
ing its functionality.


To be more concrete in the design and evaluation of a model, we now consider several
examples of device and circuit analysis from Davis and Hamscher (1992). Device behav-
ior is represented by a set of expressions that capture the relationships between values on
the terminals of the device. For the adder of Figure 8.13, there will be three expressions:


If we know the values at A and B, the value of C is A + B (the solid line).


If we know C and A the value at B is C − A (the dashed line).


If we know C and B, the value at A is C − B (the dotted line).
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We need not have used an algebraic form to represent these relationships. We could
equally well have used relational tuples or represented the constraints with Lisp functions.
The goal in model-based reasoning is to represent the knowledge that captures the func-
tionality of the adder.


In a second example, consider the circuit of three multipliers and two adders linked as
in Figure 8.14. In this example the input values are given  A to E and the output values at
F and G. The expected output values are given in ( ) and the actual outputs in [ ]. The task
is to determine where the fault lies that will explain this discrepancy. At F we have a con-
flict, expecting a 12 and getting a 10. We check the dependencies at this point and deter-
mine that the value at F is a function of ADD-1 which in turn depends on the outputs of
MULT-1 and MULT-2. One of these three devices must have a fault, and so we have three
hypotheses to consider: either the adder behavior is bad or one of its two inputs was incor-
rect, and the problem lies further back in the circuit. 


Reasoning from the result (10) at F and assuming correct behavior of ADD-1 and one
of its inputs X (6), input Y to ADD-1 must be a 4. But that conflicts with the expectation of
6, which is the correct behavior of MULT-2 and inputs B and D. We have observed these
inputs and know they are correct, so MULT-2 must be faulty. In a parallel argument, our
second hypothesis is that ADD-1 is correct and MULT-1 is faulty.


Continuing this reasoning, if the first input X to ADD-1 is correct and ADD-1 itself  is
correct, then the second input Y must be a 4. If it were a 4, G would be 10 rather than 12,
so the output of MULT-2 must be a 6 and correct. We are left with the hypotheses that the
fault lies in either MULT-1 or ADD-1 and we can continue to constrain these devices with
further testing.


In our reasoning about the situation of Figure 8.14 we had three tasks:


1. Hypothesis generation, in which, given a discrepancy, we hypothesized which
components of the device could have caused it.


2. Hypothesis testing, in which, given a collection of potential faulty components,
we determined which of them could have explained the observed behavior.


Figure 8.13 The behavior description of an adder, 
after Davis and Hamscher (1992).
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3. Hypothesis discrimination, in which when more than one hypothesis survives the
testing phase, as happened in the case of Figure 8.14, we must determine what
additional information can be gathered to continue the search for the fault.


Finally, we should note that in the example of Figure 8.14 there was assumed to be a sin-
gle faulty device. The world is not always this simple, although a single fault assumption
is a useful, and often correct, heuristic.


Because they are based on a theoretical understanding of the devices in question,
qualitative model-based techniques remedy many of the limitations of more heuristic
approaches. Rather than reasoning directly from observed phenomena to causal explana-
tions, model-based approaches attempt to represent devices and configurations of devices
on a causal or functional level. The program code reflects both the function of devices and
the dependencies within a system of devices. Such models are often more robust than heu-
ristic approaches. However, the down side of this explicit modeling of function is that the
knowledge acquisition stage can be quite demanding and the resulting program large,
cumbersome, and slow. Because heuristic approaches “compile” typical cases into a single
rule, they are often more efficient, so long as other system constraints are appropriate.


There are deeper problems, however, with this approach. As with rule-based reason-
ing, the model of a system is just that, a model. It will of necessity be an abstraction of the
system, and at some level of detail, be incorrect. For example, consider the input wires of
Figure 8.14. In our discussion we considered these values as given and correct. We did not
examine the state of the wire itself, and in particular, the other end where it joined the mul-
tipliers. What if the wire were broken, or had a faulty connection to the multiplier? If the
user failed to detect this faulty connection, the model would not match the actual device.


Any model attempts to describe the ideal situation, what the system is supposed to do,
and not necessarily what the system does do. A “bridging” fault is a contact point in the


Figure 8.14 Taking advantage of direction of information flow,
after Davis and Hamscher (1988).
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system where two wires or devices are inadvertently linked, as when a bad solder joint
bridges between two wires that should not be in contact. Most model-based reasoning has
difficulty hypothesizing a bridging fault because of the a priori assumptions underlying
the model and the search methods for determining anomalies. Bridging faults are simply
“new” wires that aren’t part of the original design. There is an implicit “closed world
assumption” (Section 9.1) that the structure description of the model is assumed to be
complete and anything not in the model simply doesn’t exist.


In spite of these shortcomings, model-based reasoning is an important addition to the
knowledge engineer’s tool kit. Researchers continue to expand our understanding of diag-
nosis, both how human experts do it so efficiently, as well as how better algorithms can be
implemented on machines (Stern and Luger 1997, Pless et al. 2006).


8.3.2 Model-Based Reasoning: a NASA Example (Williams and Nayak)


NASA has supported its presence in space by developing a fleet of intelligent space
probes that autonomously explore the solar system (Williams and Nayak 1996a, Bernard
et al. 1998). This effort was begun with software for the first probe in 1997 and the launch
of Deep Space 1 in 1998. To achieve success through years in the harsh conditions of
space travel, a craft needs to be able to radically reconfigure its control regime in response
to failures and then plan around these failures during its remaining flight. To achieve
acceptable cost and fast reconfiguration, one-of-a-kind modules will have to be put
together quickly to automatically generate flight software. Finally, NASA expects that the
set of potential failure scenarios and possible responses will be much too large to use soft-
ware that supports preflight enumeration of all contingencies. Instead, the spacecraft will
have to reactively think through all the consequences of its reconfiguration options.


Livingstone (Williams and Nayak 1996b) is an implemented kernel for a model-based
reactive self-configuring autonomous system. The model-based reasoning representation
language for Livingstone is propositional calculus, a shift from the first-order predicate
calculus (Chapter 2), the traditional representation language for model-based diagnosis.
Williams and Nayak felt, based on their past research on building fast propositional logic
conflict-based algorithms for diagnosis (de Kleer and Williams 1989), that a fast reactive
system, performing significant deduction in the sense/response loop, was possible.


A long-held vision of model-based reasoning has been to use a single centralized
model to support a variety of engineering tasks. For model-based autonomous systems this
means using a single model to support a diversity of execution tasks. These include keep-
ing track of developing plans (Section 8.4), confirming hardware modes, reconfiguring
hardware, detecting anomalies, diagnosis, and fault recovery. Livingstone automates all
these tasks using a single model and a single core algorithm, thus making significant
progress towards achieving the vision for model-based problem solvers.


Figure 8.15 shows an idealized schematic of the main engine subassembly of Cassini,
the most complex spacecraft built to that time. It consists of a helium tank, a fuel tank, an
oxidizer tank, a pair of main engines, regulators, latch valves, pyro valves, and pipes. The
helium tank pressurizes the two propellant tanks, with the regulators acting to reduce the
high helium pressure to a lower working pressure. When propellant paths to a main engine
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are open (the valve icon is unfilled), the pressurized tank forces fuel and oxidizer into the
main engine, where they combine, spontaneously ignite, and produce thrust. The pyro
valves can be fired exactly once, that is, they can change state only once, either going
from open to closed or vice versa. Their function is to isolate parts of the main engine sub-
system until they are needed, or to permanently isolate failed components. The latch
valves are controlled using valve drivers (not shown in Figure 8.15) and the Acc (acceler-
ometer) senses the thrust generated by the main engines.


Starting from the configuration shown in Figure 8.15, the high-level goal of produc-
ing thrust can be achieved using a variety of different configurations: thrust can be pro-
vided by either of the main engines and there are a number of ways of opening propellant
paths to either main engine. For example, thrust can be provided by opening the latch
valves leading to the engine on the left, or by firing a pair of pyros and opening a set of
latch valves leading to the engine on the right. Other configurations correspond to various
combinations of pyro firings. The different configurations have different characteristics
since pyro firings are irreversible actions and since firing pyro valves requires signifi-
cantly more power than opening or closing latch valves.


Suppose the main engine subsystem has been configured to provide thrust from the
left main engine by opening the latch valves leading to it. Suppose that this engine fails,
for example, by overheating, so that it fails to provide the required thrust. To ensure that
the desired thrust is provided even in this situation, the spacecraft must be transitioned to a
new configuration in which thrust is now provided by the main engine on the right side.


Figure 8.15 A schematic of the simplified Livingstone propulsion
system, from Williams and Nayak (1996b).
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Ideally, this is achieved by firing the two pyro valves leading to the right side and opening
the remaining latch valves, rather than firing additional pyro valves.


A configuration manager constantly attempts to move the spacecraft into lowest cost
configurations that achieve a set of high-level dynamically changing goals. When the
spacecraft strays from the chosen configuration due to failures, the manager analyzes sen-
sor data to identify the current configuration of the spacecraft, and then moves the space
craft to a new configuration which, once again, achieves the desired configuration goals. A
configuration manager is a discrete control system that ensures that the spacecraft’s con-
figuration always achieves the set point defined by the configuration goals. The planning
algorithms that support the configuration manager are presented in Section 8.4.4.


Reasoning about the configurations (and autonomous reconfigurations) of a system
requires the concepts of operating and failure modes, reparable failures, and configuration
changes. NASA expresses these concepts in a state space diagram: reparable failures are
transitions from a failure state to a nominal state; configuration changes are between nom-
inal states; and failures are transitions from a nominal to a failure state.


Williams and Nayak (1997) view an autonomous system as a combination of a reac-
tive configuration manager and a high level planner. The planner, for details see Section
8.4, generates a sequence of hardware configuration goals. The configuration manager
evolves the transition system of the application domain, here the propulsion system of the
spacecraft, along the desired trajectory. Thus configuration management is achieved by
sensing and controlling the state of a transition system.


A model-based configuration manager is a configuration manager that uses a specifi-
cation of the transition system to compute the desired sequence of control values. In the
example of Figure 8.15, each hardware component is modeled by a component transition
system. Component communication, denoted by wires (links) in the figure is modeled by
shared propositional terms between the corresponding component transition systems. 


The configuration manager makes extensive use of the model to infer the system’s
current state and to select optimal control actions to meet configuration goals. This is


Figure 8.16 A model-based configuration management system, 
from Williams and Nayak (1996b).
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essential in situations where mistakes can lead to disaster, ruling out simple trial and error
methods. The model-based configuration manager uses a model to determine the desired
control sequence in two stages: mode estimation and mode reconfiguration (ME and MR
in Figure 8.16). ME incrementally generates the set of all system trajectories consistent
with the plant transition model and the sequence of system control and sensed values. MR
uses a plant transition model and the partial trajectories generated by ME up to the current
state to determine a set of control values such that all predicted trajectories achieve the
configuration goal of the next state. Both ME and MR are reactive. ME infers the current
state from knowledge of the previous state and observations within the current state. MR
only considers actions that achieve the configuration goal within the next state.


In the next section we consider case-based reasoning, a knowledge-intensive tech-
nique that supports the reuse of past experience in a problem domain to address new situa-
tions. In Section 8.4 we present planning, and return to the NASA control example.


8.3.3 Introduction to Case-Based Reasoning


Heuristic rules and theoretical models are two types of information human experts use to
solve problems. Another powerful strategy experts use is reasoning from cases, examples
of past problems and their solutions. Case-based reasoning (CBR) uses an explicit data-
base of problem solutions to address new problem-solving situations. These solutions may
be collected from human experts through the knowledge engineering process or may
reflect the results of previous search-based successes or failures. For example, medical
education does not rely solely on theoretical models of anatomy, physiology, and disease;
it also depends heavily on case histories and the intern’s experience with other patients
and their treatment. CASEY (Koton 1988a, b) and PROTOS (Bareiss et al. 1988) are
examples of case-based reasoning applied to medicine.


Lawyers select past law cases that are similar to their client’s and that suggest a favor-
able decision, and try to convince the court that these similarities merit similar findings.
Although general laws are made by democratic processes, their interpretation is usually
based on legal precedents. How a law was interpreted in some earlier situation is critical
for its current interpretation. Thus, an important component of legal reasoning is identify-
ing from case law precedents for decisions in a particular case. Rissland (1983) and Riss-
land and Ashley (1987) have designed case-based reasoners to support legal arguments. 


Computer programmers often reuse their code, adapting an old program to fit a new
situation with similar structure. Architects draw on their knowledge of esthetically pleas-
ing and useful buildings of the past to design new buildings that people find pleasing and
comfortable. Historians use stories from the past to help statesmen, bureaucrats, and citi-
zens understand past events and plan for the future. The ability to reason from cases is fun-
damental to human intelligence. 


Other obvious areas for reasoning from cases include design, where aspects of a suc-
cessfully executed artifact may be appropriate for a new situation, and diagnosis, where
the failures of the past often recur. Hardware diagnosis is a good example of this. An
expert in this area, besides using extensive theoretical knowledge of electronic and
mechanical systems, brings past successful and failed experiences in diagnosis to bear on
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the current problem. CBR has been an important component of many hardware diagnostic
systems, including work on the maintenance of signal sources and batteries in earth orbit-
ing satellites (Skinner and Luger 1992) and the failure analysis of discrete component
semiconductors (Stern and Luger 1997).


CBR offers a number of advantages for the construction of expert systems. Knowl-
edge acquisition can be simplified if we record a human expert’s solutions to a number of
problems and let a case-based reasoner select and reason from the appropriate case. This
would save the knowledge engineer the trouble of building general rules from the expert’s
examples; instead, the reasoner would generalize the rules automatically, through the pro-
cess of applying them to new situations.


Case-based approaches can also enable an expert system to learn from its experience.
After reaching a search-based solution to a problem, a system can save that solution, so
that next time a similar situation occurs, search would not be necessary. It can also be
important to retain in the case base information about the success or failure of previous
solution attempts; thus, CBR offers a powerful model of learning. An early example of
this is Samuel’s (1959, Section 4.1.1) checker-playing program, where board positions
that were found through search or experience to be important are retained in the chance
that this position might occur again in a later game.


Case-based reasoners share a common structure. For each new problem they:


1. Retrieve appropriate cases from memory. A case is appropriate if its solution
may be successfully applied to the new situation. Since reasoners cannot know
this in advance, they typically use the heuristic of choosing cases that are similar
to the problem instance. Both humans and artificial reasoners determine similar-
ity on the basis of common features: for example, if two patients share a number
of common features in their symptoms and medical histories, there is a good
probability that they have the same disease and will respond to the same treat-
ment. Retrieving cases efficiently also requires that the case memory be orga-
nized to aid such retrieval. Typically, cases are indexed by their significant
features, enabling efficient retrieval of cases that have the most features in com-
mon with the current problem. The identification of salient features is highly sit-
uation dependent. 


2. Modify a retrieved case so that it will apply to the current situation. Typi-
cally, a case recommends a sequence of operations that transform a starting state
into a goal state. The reasoner must transform the stored solution into operations
suitable for the current problem. Analytic methods, such as curve fitting the
parameters common to stored cases and new situations can be useful; for exam-
ple, to  determine appropriate temperatures or materials for welding. When ana-
lytic relations between cases are not available more heuristic methods may be
appropriate; for example, in help desks for hardware diagnosis.


3. Apply the transformed case. Step 2 modifies a stored case, which, when
applied, may not guarantee a satisfactory problem solution. This may require
modifications in the solution case, with further iterations of these first three steps.
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4. Save the solution, with a record of success or failure, for future use. Storage
of the new case requires updating of the index structure. There are methods that
can be used to maintain indices, including clustering algorithms (Fisher 1987)
and other techniques from machine learning (Stubblefield and Luger 1996).


The data structures for case-based reasoning can be quite varied. In the simplest situ-
ation, cases are recorded as relational tuples where a subset of the arguments record the
features to be matched and other arguments point to solution steps. Cases can also be rep-
resented as more complex structures, such as proof trees. A fairly common mechanism for
storing cases is to represent cases as a set of large situation–action rules. The facts that
describe the situation of the rule are the salient features of the recorded case and the oper-
ators that make up the action of the rule are the transformations to be used in the new situ-
ation. When this type of rule representation is used algorithms such as RETE (Forgy 1982)
can be used to organize and optimize the search for appropriate cases.


The most difficult issue in case-based problem solving, regardless of the data struc-
ture chosen for case representation, is the selection of salient features for the indexing and
retrieval of cases. Kolodner (1993) and others actively involved in case-based problem
solving set as a cardinal rule that cases be organized by the goals and needs of the problem
solver. That is, that a careful analysis be made of case descriptors in the context of how
these cases will be used in the solution process. 


For example, suppose a weak communication signal problem occurs in a satellite at
10:24:35 GMT. Analysis is made, and it is also determined that the power system is low.
The low power can occur because the solar panels are not properly oriented towards the
sun. The ground controllers make adjustments in the satellite’s orientation, the power
improves, and the communication signal is again strong. There are a number of salient
features that might be used to record this case, the most obvious being that there is a weak
communication signal or that the power supply is low. Another feature to describe this
case is that the time of the problem was 10:24:35 GMT. The goals and needs of the prob-
lem solver in this case suggest that the salient features are weak communication signal
and/or low power supply; the time this all happens may well be irrelevant, unless, of
course, the fault occurs just after the sun disappears over the horizon (Skinner and Luger
1995).


Another essential problem to be addressed in CBR is the representation of such
notions as weak signal or low power. Since the precise situation will probably never again
be matched, e.g., some exact real number describing signal strength, the reasoner will
probably represent the values as a range of real numbers indicating, for example, good,
borderline-good, weak, and danger-alert levels.    


Kolodner (1993) offers a set of possible preference heuristics to help organize the
storage and retrieval of cases. These include:


1. Goal-directed preference. Organize cases, at least in part, by goal descriptions.
Retrieve cases that have the same goal as the current situation.


2. Salient-feature preference. Prefer cases that match the most important features or
those matching the largest number of important features.
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3. Specify preference. Look for as exact as possible matches of features before con-
sidering more general matches.


4. Frequency preference. Check first the most frequently matched cases.


5. Recency preference. Prefer cases used most recently.


6. Ease of adaptation preference. Use first cases most easily adapted to the current
situation.


Case-based reasoning has a number of advantages for the design of expert systems.
Once knowledge engineers have arrived at the proper case representation, continued
knowledge acquisition is straightforward: simply gather and store more cases. Often, case
acquisition can be done from historical records or by monitoring current operations, mini-
mizing demands on the human expert’s time.


In addition, CBR raises a number of important theoretical questions relating to human
learning and reasoning. One of the most subtle and critical issues raised by CBR is the
question of defining similarity. Although the notion that similarity is a function of the
number of features that two cases have in common is quite reasonable, it masks a number
of profound subtleties. For example, most objects and situations have a large number of
potential descriptive properties; case-based reasoners typically select cases on the basis of
a tiny retrieval vocabulary. Typically, case-based reasoners require that the knowledge
engineer define an appropriate vocabulary of highly relevant features. Although there has
been work on enabling a reasoner to determine relevant features from its own experience
(Stubblefield 1995), determining relevance remains a difficult problem.


Another important problem in case-based reasoning deals with store/compute trade-
offs. As a case-based reasoner acquires more cases, it becomes more intelligent and better
able to solve a variety of target problems. Indeed, as we add cases to a reasoner, its perfor-
mance will improve – up to a point. The problem is that as the case base continues to
grow, the time needed to retrieve and process an appropriate case also grows. A decline in
efficiency for large case bases can also be due to overlapping concepts, noise, and the dis-
tribution of problem types. One solution to this problem is to only save the “best” or “pro-
totype” cases, deleting those that are redundant or used infrequently; i.e., forgetting those
cases that fail to prove useful. See Samuel’s (1959) retention algorithm for saving checker
board positions for an important early example of this approach. In general, however, it is
not clear how we can automate such decisions; this remains an active research area
(Kolodner 1993).


An automated explanation for why a solution is recommended is also difficult for a
case-based reasoner. When asked why a solution was selected to remedy a current situa-
tion, the only explanation the system can provide is to say that this particular fix worked at
a previous time period. There may also be weak explanations based on similarities of top-
level goal descriptions between the current situation and a set of stored cases. In the exam-
ple of the satellite communication problem, the relevant case was chosen on the basis of a
weak communication signal. This mode of reasoning has no deeper explanation than that
it worked before in a similar situation. But as noted previously, this may be sufficient
explanation for many situations.
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Many researchers, however, feel that the simple repetition of top-level goals and the
case to be applied offers insufficient explanation (Leake 1992, Stern and Luger 1992),
especially when we need an explanation of why some fix doesn’t work. Take the satellite
situation again. Suppose the solar panel reorientation works but three hours later the signal
again becomes weak. Using both the frequency and recency heuristics, we again reorient
the solar panel. In three hours the weak signal recurs. And again three hours later; we
always apply the same fix. This example is based on an actual satellite situation in which it
was found that a more complex problem existed, namely a gyroscope was overheating and
giving a distorted reading that disoriented the satellite. The system that finally solved the
problem used a model-based reasoner to simulate the behavior of the satellite to determine
the root causes of the weak communication signal (Skinner and Luger 1995).


Case-based reasoning is related to the problem of learning through analogy. To reuse
past experiences we must both recognize the salient features of the past as well as build a
mapping of how that experience may be used in the present situation. Transformational
analogy (Carbonell 1983) is an example of a case-based approach to problem solving. It
solves new problems by modifying existing solutions until they may be applied to the new
instance. Operators that modify complete problem solutions define a higher-level of
abstraction or T-space in which states are problem solutions and operators transform
these solutions, as in Figure 8.17. The goal is to transform a source solution into a possible
solution for the target problem. Operators modify solutions in ways such as inserting or
deleting steps in a solution path, reordering steps in a solution, splicing new solutions into
a portion of an old solution, or changing the bindings of parameters in the current solution. 


Transformational analogy typifies the approach used by case-based problem solving.
Later work has refined the approach, considering such issues as the representation of


Figure 8.17 Transformational analogy, adapted
 from Carbonell (1983).


Original space


T -space
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cases, strategies for organizing a memory of prior cases, retrieval of relevant prior cases,
and the use of cases in solving new problems. For further information on case-based rea-
soning, see Hammond (1989) and Kolodner (1988a, b). Reasoning through analogies is
discussed further in the context of symbol-based machine learning (Section 10.5.4).


8.3.4 Hybrid Design: Strengths/Weaknesses of Strong Method Systems


Successes in building expert systems that solve hard, practical problems have demon-
strated the truth of the central idea behind knowledge-based systems: that the power of a
reasoner is in its domain knowledge rather than the sophistication of its reasoning meth-
ods. This observation, however, raises one of the central issues in artificial intelligence:
that of knowledge representation. At a practical level, every knowledge engineer must
make choices about how to represent domain knowledge in a way that will be most appro-
priate to the given domain. Knowledge representation also raises a number of theoretically
important, intellectually difficult issues, such as the handling of missing and uncertain
information, the measurement of a representation’s expressiveness, the relationship
between a representation language and such issues as learning, knowledge acquisition,
and the efficiency of a reasoner.


In this chapter, we considered a number of basic approaches to knowledge representa-
tion: rule-based expert systems, model-based reasoners, and case-based reasoners. As an
aid to practical knowledge engineering, we summarize the strengths and weaknesses of
each knowledge-intensive approach to problem solving.


Rule-based Reasoning


The advantages of a rule-based approach include:


1. The ability to use, in a very direct fashion, experiential knowledge acquired from
human experts. This is particularly important in domains that rely heavily on
heuristics to manage complexity and/or missing information.


2. Rules map into state space search. Explanation facilities support debugging.


3. The separation of knowledge from control simplifies development of expert sys-
tems by enabling an iterative development process where the knowledge engi-
neer acquires, implements, and tests individual rules.


4. Good performance is possible in limited domains. Because of the large amounts
of knowledge required for intelligent problem solving, expert systems are limited
to narrow domains. However, there are many domains where design of an appro-
priate system has proven extremely useful.


5. Good explanation facilities. Although the basic rule-based framework supports
flexible, problem-specific explanations, it must be mentioned that the ultimate
quality of these explanations depends upon the structure and content of the rules.
Explanation facilities differ widely between data- and goal-driven systems.
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Disadvantages of rule-based reasoning include:


1. Often the rules obtained from human experts are highly heuristic in nature, and
do not capture functional or model-based knowledge of the domain.


2. Heuristic rules tend to be “brittle” and can have difficulty handling missing infor-
mation or unexpected data values.


3. Another aspect of the brittleness of rules is a tendency to degrade rapidly near the
“edges” of the domain knowledge. Unlike humans, rule-based systems are usu-
ally unable to fall back on first principles of reasoning when confronted with
novel problems.


4. Explanations function at the descriptive level only, omitting theoretical explana-
tions. This follows from the fact that heuristic rules gain much of their power by
directly associating problem symptoms with solutions, without requiring (or
suporting) deeper reasoning.


5. The knowledge tends to be very task dependent. Formalized domain knowledge
tends to be very specific in its applicability. Currently, knowledge representation
languages do not approach the flexibility of human reasoning.


Case-based Reasoning


The advantages of case-based reasoning include:


1. The ability to encode historical knowledge directly. In many domains, cases can
be obtained from existing case histories, repair logs, or other sources, eliminating
the need for intensive knowledge acquisition with a human expert.


2. Allows shortcuts in reasoning. If an appropriate case can be found, new problems
can often be solved in much less time than it would take to generate a solution
from rules or models and search. 


3. It allows a system to avoid past errors and exploit past successes. CBR provides a
model of learning that is both theoretically interesting and practical enough to
apply to complex problems.


4. Extensive analysis of domain knowledge is not required. Unlike a rule-based sys-
tem, where the knowledge engineer must anticipate rule interactions, CBR
allows a simple additive model for knowledge acquisition. This requires an
appropriate representation for cases, a useful retrieval index, and a case adapta-
tion strategy.


5. Appropriate indexing strategies add insight and problem-solving power. The
ability to distinguish differences in target problems and select an appropriate case
is an important source of a case-based reasoner’s power; often, indexing algo-
rithms can provide this functionality automatically.








312 PART III / CAPTURING INTELLIGENCE: THE AI CHALLENGE


The disadvantages of case-based reasoning include:


1. Cases do not often include deeper knowledge of the domain. This handicaps
explanation facilities, and in many situations it allows the possibility that cases
may be misapplied, leading to poor quality or wrong advice.


2. A large case base can suffer problems from store/compute trade-offs.


3. It is difficult to determine good criteria for indexing and matching cases. Cur-
rently, retrieval vocabularies and similarity matching algorithms must be care-
fully hand crafted; this can offset many of the advantages CBR offers for
knowledge acquisition.


Model-based Reasoning


The advantages of model-based reasoning include:


1. The ability to use functional/structural knowledge of the domain in problem-
solving. This increases the reasoner’s ability to handle a variety of problems,
including those that may not have been anticipated by the system’s designers.


2. Model-based reasoners tend to be very robust. For the same reasons that humans
often retreat to first principles when confronted with a novel problem, model-
based reasoners tend to be thorough and flexible problem solvers.


3. Some knowledge is transferable between tasks. Model-based reasoners are often
built using scientific, theoretical knowledge. Because science strives for gener-
ally applicable theories, this generality often extends to model-based reasoners. 


4. Often, model-based reasoners can provide causal explanations. These can convey
a deeper understanding of the fault to human users, and can also play an impor-
tant tutorial role.


The disadvantages of model-based reasoning include:


1. A lack of experiential (descriptive) knowledge of the domain. The heuristic
methods used by rule-based approaches reflect a valuable class of expertise.


2. It requires an explicit domain model. Many domains, such as the diagnosis of
failures in electronic circuits, have a strong scientific basis that supports model-
based approaches. However, many domains, such as some medical specialties,
most design problems, or many financial applications, lack a well-defined scien-
tific theory. Model-based approaches cannot be used in such cases. 


3. High complexity. Model-based reasoning generally operates at a level of detail
that leads to significant complexity; this is, after all, one of the main reasons
human experts have developed heuristics in the first place.
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4. Exceptional situations. Unusual circumstances, for example, bridging faults or
the interaction of multiple failures in electronic components, can alter the func-
tionality of a system in ways difficult to predict using an a priori model.


Hybrid Design


An important area of research and application is the combination of different reasoning
models. With a hybrid architecture two or more paradigms are integrated to get a coopera-
tive effect where the strengths of one system can compensate for the weakness of another.
In combination, we can address the disadvantages noted in the previous discussion.


For example, the combination of rule-based and case-based systems can:


1. Offer a natural first check against known cases before undertaking rule-based
reasoning and the associated search costs.


2. Provide a record of examples and exceptions to solutions through retention in the
case base.


3. Record search-based results as cases for future use. By saving appropriate cases,
a reasoner can avoid duplicating costly search.


The combination of rule-based and model-based systems can:


1. Enhance explanations with functional knowledge. This can be particularly useful
in tutorial applications.


2. Improve robustness when rules fail. If there are no heuristic rules that apply to a
given problem instance, the reasoner can resort to reasoning from first principles.


3. Add heuristic search to model-based search. This can help manage the complex-
ity of model-based reasoning and allow the reasoner to choose intelligently
between possible alternatives.


The combination of model-based and case-based systems can:


1. Give more mature explanations to the situations recorded in cases.


2. Offer a natural first check against stored cases before beginning the more exten-
sive search required by model-based reasoning.


3. Provide a record of examples and exceptions in a case base that can be used to
guide model-based inference.


4. Record results of model-based inference for future use.


Hybrid methods deserve the attention of researchers and application developers alike.
However, building such systems is not a simple matter, requiring the resolution of such
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problems as determining which reasoning method to apply in a given situation, deciding
when to change reasoning methods, resolving differences between reasoning methods, and
designing representations that allow knowledge to be shared. 


We next consider planning, or the organization of  procedures into potential solutions.


8.4 Planning


The task of a planner is to find a sequence of actions that allow a problem solver, such as a
a control system, to accomplish some specific task. Traditional planning is very much
knowledge-intensive, since plan creation requires the organization of pieces of knowledge
and partial plans into a solution procedure. Planning plays a role in expert systems in rea-
soning about events occurring over time. Planning has many applications in manufactur-
ing, such as process control. It is also important for designing a robot contrller. 


8.4.1 Introduction to Planning: Robotics


To begin, we consider examples from traditional robotics. (Much of modern robotics uses
reactive control rather than deliberative planning, Sections 7.3.1 and 8.4.3.) The steps of a
traditional robot plan are composed of the robot’s atomic actions. In our example, we do
not describe atomic actions at the micro-level: “turn the sixth stepper motor one revolu-
tion.” Instead, we specify actions at a higher level, such as by their effects on a world. For
example, a blocks world robot might include such actions as “pick up object a” or “go to
location x.” The micro-control is built into these higher-level actions. 


Thus, a sequence of actions to “go get block a from room b” might be: 


1. put down whatever is now held 


2. go to room b


3. go over to block a


4. pick up block a


5. leave room b


6. return to original location 


Plans are created by searching through a space of possible actions until the sequence
necessary to accomplish the task is discovered. This space represents states of the world
that are changed by applying each of the actions. The search terminates when the goal
state (the appropriate description of the world) is produced. Thus, many of the issues of
heuristic search, including finding A* algorithms, are also appropriate in planning. 


The act of planning does not depend on the existence of an actual robot to carry out
the plans, however. In the early years of computer planning (1960s), entire plans were for-
mulated before the robot performed its first act. Thus plans were devised without the pres-
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ence of a robot at all! More recently, with the implementation of sophisticated sensing and
reactive devices, research has focused on more integrated plan/action sequencing. 


Traditional planning relies on search techniques, and raises a number of interesting
issues. For one, the description of the states of the world may be considerably more com-
plex than in previous examples of search. Consider the number of predicates that may be
necessary to describe rooms, corridors, and objects in a robot’s environment. Not only
must we represent the robot’s world; we must also represent the effect of atomic actions
on that world. The full description of each state of the problem space can be large. 


Another difference in planning is the need to characterize what is not changed by a
particular action. Picking up an object does change (a) the location of the object and (b)
the fact that the robot hand is now grasping the object. It does not change (a) the locations
of the doors and the rooms or (b) the locations of other objects. The specification of what
is true in one state of the world and exactly what is changed by performing some action in
the world has become known as the frame problem (McCarthy 1980, McCarthy and Hayes
1969). As the complexity of the problem space increases, the issue of keeping track of the
changes that occur with each action and the features of a state description that remain
unchanged becomes more important. We present two solutions for coping with the frame
problem, but, as will be seen, neither of these is totally satisfactory. 


Other important issues include generating plans, saving and generalizing good plans,
recovering from unexpected plan failures (part of the world might not be as expected, per-
haps by being accidentally moved from its anticipated location), and maintaining consis-
tency between the world and a program’s internal model of the world. 


In the examples of this section, we limit our robot’s world to a set of blocks on a
tabletop and the robot’s actions to an arm that can stack, unstack, and otherwise move the
blocks about the table. In Figure 8.18 we have five blocks, labeled a, b, c, d, e, sitting on
the top of a table. The blocks are all cubes of the same size, and stacks of blocks, as in the
figure, have blocks directly on top of each other. The robot arm has a gripper that can
grasp any clear block (one with no block on top of it) and move it to any location on the
tabletop or place it on top of any other block (with no block on top of it). 


a


b


c d


e


Figure 8.18 The blocks world.
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The robot arm can perform the following tasks (U, V, W, X, Y, and Z are variables):


goto(X,Y,Z) Goto location described by coordinates X, Y, and Z. This location
might be implicit in the command pickup (W) where block W has
location X, Y, Z.


pickup(W) Pick up block W from its current location. It is assumed that
block W is clear on top, the gripper is empty at the time, and the
computer knows the location of block W.


putdown(W) Place block W down at some location on the table and record the
new location for W. W must be held by the gripper at the time.


stack(U,V) Place block U on top of block V. The gripper must be holding U
and the top of V must be clear of other blocks. 


unstack(U,V) Remove block U from the top of V. U must be clear of other
blocks, V must have block U on top of it, and the hand must be
empty before this command can be executed. 


The state of the world is described by a set of predicates and predicate relationships:


location(W,X,Y,Z) Block W is at coordinates X, Y, Z.
on(X,Y) Block X is immediately on top of block Y.
clear(X) Block X has nothing on top of it. 
gripping(X) The robot arm is holding block X.
gripping( ) The robot gripper is empty. 
ontable(W) Block W is on the table. 


ontable(W) is a short form for the predicate location(W,X,Y,Z), where Z is the table
level. Similarly, on(X,Y) indicates that block X is located with its bottom coincident with
the top of block Y. We can greatly simplify the world descriptions by having the computer
record the present location(X,Y,Z) of each block and keep track of its movements to new
locations. With this location assumption, the goto command becomes unnecessary; a
command such as pickup(X) or stack(X) implicitly contains the location of X.


The blocks world of Figure 8.18 may now be represented by the following set of
predicates. We call this collection of predicates STATE 1 for our continuing example.
Because the predicates describing the state of the world for Figure 8.18 are all true at the
same time, the full state description is the conjunction (∧) of all these predicates.


STATE 1


ontable(a). on(b, a). clear(b).


ontable(c). on(e, d). clear(c).


ontable(d). gripping( ). clear(e).
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Next, a number of truth relations (in the declarative sense) or rules for performance
(in the procedural sense) are created for clear(X), ontable(X), and gripping( ):


1. (∀ X) (clear(X) ← ¬ (∃ Y) (on(Y,X)))


2. (∀ Y) (∀ X) ¬ (on(Y,X) ← ontable(Y))


3. (∀ Y) gripping( ) ↔ ¬ (gripping(Y))


The first statement says that if block X is clear, there does not exist any block Y such that
Y is on top of X. Interpreted procedurally, this says “to clear block X go and remove any
block Y that might be on top of X.” 


We now design rules to operate on states and produce new states. In doing so, we
again impute a procedural semantics to a predicate logic-like representation. The operators
(pickup, putdown, stack, unstack) are: 


4. (∀ X) (pickup(X) → (gripping(X) ← (gripping( ) ∧ clear(X) ∧ ontable(X)))).


5. (∀ X) (putdown(X) → ((gripping( ) ∧ ontable(X) ∧ clear(X)) ← gripping(X))).


6. (∀ X) (∀ Y) (stack(X,Y) → ((on(X,Y) ∧ gripping( ) ∧ clear(X)) ← (clear(Y) ∧
gripping(X)))).


7. (∀ X)(∀ Y) (unstack(X,Y) → ((clear(Y) ∧ gripping(X)) ← (on(X,Y) ∧
clear(X) ∧ gripping( ))).


Consider the fourth rule: for all blocks X, pickup(X) means gripping(X) if the hand is
empty and X is clear. Note the form of these rules: A → (B ← C). This says that operator
A produces new predicate(s) B when condition(s) C is(are) true. We use these rules to gen-
erate new states in a space. That is, if predicates C are true in a state, then B is true in its
child state. Thus, operator A can be used to create a new state described by predicates B
when predicates C are true. Alternative approaches to creating these operators include
STRIPS (Nilsson 1980 and Section 8.4.2) and Rich and Knight’s (1991) do function.


We must first address the frame problem before we can use these rule relationships to
generate new states of the blocks world. Frame axioms are rules to tell what predicates
describing a state are not changed by rule applications and are thus carried over intact to
help describe the new state of the world. For example, if we apply the operator pickup
block b in Figure 8.18, then all predicates related to the rest of the blocks remain true in
the child state. For our world of blocks we can specify several such frame rules: 


8. (∀ X) (∀ Y) (∀ Z) (unstack(Y,Z) → (ontable(X) ← ontable(X))).


9. (∀ X) (∀ Y) (∀ Z) (stack(Y,Z) → (ontable(X) ← ontable(X))).


These two rules say that ontable is not affected by the stack and unstack operators. This
is true even when X and Z are identical; if Y = Z either 6 or 7 above won’t be true. 


Other frame axioms say that on and clear are affected by stack and unstack opera-
tors only when that particular on relation is unstacked or when a clear relation is
stacked. Thus, in our example, on(b,a) is not affected by unstack(c,d).
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Similarly, frame axioms say that clear(X) relations are unaffected by gripping(Y)
even when X = Y or gripping( ) is true. More axioms say that gripping does not affect
on(X,Y) relations but affects only the ontable(X) relation where X is gripped. A number
of further frame axioms need to be specified for our example. 


Together, these operators and frame axioms define a state space, as illustrated by the
operator unstack. unstack(X,Y) requires three conditions to be true simultaneously,
namely on(X,Y), gripping( ), and clear(X). When these conditions are met the new pred-
icates gripping(X) and clear(Y) are produced by applying the unstack operator. A num-
ber of other predicates also true for STATE 1 will remain true in STATE 2. These states
are preserved for STATE 2 by the frame axioms. We now produce the nine predicates
describing STATE 2 by applying the unstack operator and the frame axioms to the nine
predicates of STATE 1, where the net result is to unstack block e:


To summarize: 


1. Planning may be seen as a state space search. 


2. New states are produced by general operators such as stack and unstack plus
frame rules. 


3. The techniques of graph search may be applied to find a path from the start state
to the goal state. The operations on this path constitute a plan. 


Figure 8.19 shows an example of a state space searched by applying the operators as
described above. If a goal description is added to this problem-solving process, then a plan
may be seen as a set of operators that produces a path that leads from the present state of
this graph to the goal. (See Section 3.1.2.) 


This characterization of the planning problem defines its theoretical roots in state
space search and predicate calculus representation and inferencing. However, it is impor-
tant to note how complex this manner of solution can be. In particular, using the frame
rules to calculate what remains unchanged between states can add exponentially to the
search, as can be seen from the complexity of our very simple blocks example. In fact,
when any new predicate descriptor is introduced, for color, shape, or size, new frame rules
must be defined to relate it to all other appropriate actions! 


This discussion also assumes that the subproblems that make up a task are indepen-
dent and may thus be solved in an arbitrary order. This is very seldom the case in interest-
ing and/or complex problem domains, where the preconditions and actions required to


STATE 2


ontable(a). on(b,a). clear(b).


ontable(c). clear(c). clear(d).


ontable(d). gripping(e). clear(e).
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achieve one subgoal can often conflict with the preconditions and actions required to
achieve another. Next we illustrate these problems and discuss an approach to planning
that greatly assists in handling this complexity. 


8.4.2 Using Planning Macros: STRIPS


STRIPS, developed at what is now SRI International, stands for STanford Research Insti-
tute Planning System (Fikes and Nilsson 1971, Fikes et al. 1972). This controller was used
to drive the SHAKEY robot of the early 1970s. STRIPS addressed the problem of effi-
ciently representing and implementing the operations of a planner. It addressed the prob-
lem of conflicting subgoals and provided an early model of learning; successful plans
were saved and generalized as macro operators, which could be used in similar future sit-
uations. In the remainder of this section, we present a version of STRIPS-style planning
and triangle tables, the data structure used to organize and store macro operations.


Using our blocks example, the four operators pickup, putdown, stack, and unstack
are represented as triples of descriptions. The first element of the triple is the set of
preconditions (P), or conditions the world must meet for an operator to be applied. The
second element of the triple is the add list (A), or the additions to the state description that


a


b


c d


e


a


b


c d


e


a


b


c d


e


a


b


c


d


e


a


b


c d


e


a


b


c d


e


a bc d


e


Figure 8.19 Portion of the state space for a portion of the blocks world.
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are a result of applying the operator. Finally, there is the delete list (D), or the items that
are removed from a state description to create the new state when the operator is applied.
These lists are intended to eliminate the need for separate frame axioms. We can represent
the four operators in this fashion:


The important thing about the add and delete lists is that they specify everything that
is necessary to satisfy the frame axioms! Some redundancy exists in the add and delete list
approach. For example, in unstack the add of gripping(X) could imply the delete of grip-
ping( ). But the gain of this redundancy is that every descriptor of a state that is not men-
tioned by the add or delete remains the same in the new state description. 


A related weakness of the precondition-add-delete list approach is that we are no
longer using a theorem-proving process to produce (by inference) the new states. This is
not a serious problem, however, as proofs of the equivalence of the two approaches can
guarantee the correctness of the precondition-add-delete method. The precondition-add-
delete list approach may be used to produce the same results we produced with the infer-
ence rules and frame axioms in our earlier example. The state space search, as in Figure
8.19, would be identical for both approaches. 


A number of other problems inherent in planning are not solved by either of the two
approaches presented so far. In solving a goal we often divide it into subproblems, for
instance, unstack(e,d) and unstack(b,a). Attempting to solve these subgoals indepen-
dently can cause problems if the actions needed to achieve one goal actually undo the
other. Incompatible subgoals may result from a false assumption of linearity (indepen-
dence) of subgoals. The non-linearity of a plan/action space can make solution searches
unnecessarily difficult or even impossible. 


pickup(X)
P: gripping( ) ∧ clear(X) ∧ ontable(X)
A: gripping(X)
D: ontable(X) ∧ gripping( )


putdown(X)
P: gripping(X)
A: ontable(X) ∧ gripping( ) ∧ clear(X)
D: gripping(X)


stack(X,Y)
P: clear(Y) ∧ gripping(X)
A: on(X,Y) ∧ gripping( ) ∧ clear(X)
D: clear(Y) ∧ gripping(X)


unstack(X,Y)
P: clear(X) ∧ gripping( ) ∧ on(X,Y)
A: gripping(X) ∧ clear(Y)
D: gripping( ) ∧ on(X,Y)
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We now show a very simple example of an incompatible subgoal using the start state
STATE 1 of Figure 8.18. Suppose the goal of the plan is STATE G as in Figure 8.20, with
on(b,a) ∧ on(a,c) and blocks d and e remaining as in STATE 1. It may be noted that one
of the parts of the conjunctive goal on(b,a) ∧ on(a,c) is true in STATE 1, namely
on(b,a). This already satisfied part of the goal must be undone before the second subgoal,
on(a,c), can be accomplished. 


The triangle table representation (Fikes and Nilsson 1971, Nilsson 1980) is aimed at
alleviating some of these anomalies. A triangle table is a data structure for organizing
sequences of actions, including potentially incompatible subgoals, within a plan. It
addresses the problem of conflicting subgoals within macro actions by representing the
global interaction of sequences of operations. A triangle table relates the preconditions of
one action to the postconditions, the combined add and delete lists, of actions preceding it. 


Triangle tables are used to determine when that macro operator could be used in
building a plan. By saving these macro operators and reusing them, STRIPS increases the
efficiency of its planning search. Indeed, we can generalize a macro operator, using vari-
able names to replace the block names in a particular example. Then we can call the new
generalized macro to prune search. In Chapter 10, with our presentation of learning in
symbol based environments, we discuss techniques for generalizing macro operations. 


The reuse of macro operators also helps to solve the problem of conflicting subgoals.
As the following example illustrates, once the planner has developed a plan for goals of
the form stack(X,Y) ∧ stack(Y,Z), it may store and reuse that plan. This eliminates the
need to break the goal into subgoals and avoids the complications that may follow.


Figure 8.21 presents a triangle table for the macro action stack(X,Y) ∧ stack(Y,Z).
This macro action can be applied to states where on(X,Y) ∧ clear(X) ∧ clear(Z) is true.
This triangle table is appropriate for starting STATE 1 with X = b, Y = a, and Z = c.


The atomic actions of the plan are recorded along the diagonal. These are the four
actions, pickup, putdown, stack, and unstack, discussed earlier in this section. The set
of preconditions of each of these actions are in the row preceding that action, and the
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e


Figure 8.20 Goal state for the blocks world.
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postconditions of each action are in the column below it. For example, row 5 lists the pre-
conditions for pickup(X) and column 6 lists the postconditions (the add and delete lists) of
pickup(X). These postconditions are placed in the row of the action that uses them as pre-
conditions, organizing them in a manner relevant to further actions. The triangle table’s
purpose is to properly interleave the preconditions and postconditions of each of the
smaller actions that make up the larger goal. Thus, triangle tables address non-linearity
issues in planning on the macro operator level; Partial-Order Planners (Russell and Norvig
1995) and other approaches have further addressed these issues. 


One advantage of triangle tables is the assistance they can offer in attempting to
recover from unexpected happenings, such as a block being slightly out of place, or acci-
dents, such as dropping a block. Often an accident can require backing up several steps
before the plan can be resumed. When something goes wrong with a solution the planner
can go back into the rows and columns of the triangle table to check what is true. Once the
planner has figured out what is still true within the rows and columns, it then knows what
the next step must be if the larger solution is to be restarted. This is formalized with the
notion of a kernel.


The nth kernel is the intersection of all rows below and including the nth row and all
columns to the left of and including the nth column. In Figure 8.21 we have outlined the
third kernel in bold. In carrying out a plan represented in a triangle table, the ith operation
(that is, the operation in row i) may be performed only if all predicates contained in the ith
kernel are true. This offers a straightforward way of verifying that a step can be taken and
also supports systematic recovery from any disruption of the plan. Given a triangle table,
we find and execute the highest-numbered action whose kernel is enabled. This not only


gripping()
clear(X)
on(X,Y)


gripping(X)


ontable(Y)       clear(Y)        gripping()


clear(Z) gripping(Y)


clear(X)
ontable(X)


gripping()


 clear(Y)       gripping(X)


on(Y,Z)
on(X,Y)
clear(X)
gripping()


unstack(X,Y)


putdown(X)


pickup(Y)


stack(Y,Z)


pickup(X)


stack(X,Y)


1
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3
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5


6


7


1 2 3 4 5 6 7


Figure 8.21   A triangle table, adapted from Nilsson (1971).
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lets us back up in a plan but also allows for the possibility that an unexpected event might
let us jump forward in a plan. 


The conditions in the leftmost column are the preconditions for the macro action as a
whole. The conditions in the bottom row are the conditions added to the world by the
macro operator. Thus a triangle table may be saved as a macro operator with its own set of
pre and post conditions or add and delete lists. 


Of course, the triangle table approach does lose some of the semantics of the previous
planning models. Notice, for example, that only those postconditions of an act are retained
that are also preconditions of later acts. Thus, if guaranteed correctness is a desired result,
further verification of the triangle tables, perhaps with additional information that might
allow sequences of triangle tables to be composed, might be desirable.


Other problems arise with the use of macro operators in planning. As the number of
macro operators increases, the planner has more powerful operations to use, decreasing
the size of the state space that must be searched. Unfortunately, at each step of the search,
all of these operators must be examined. The pattern matching needed to determine
whether an operator may be applied can add considerable overhead to the search process,
often counteracting the gains made by saving macro operations. The problems of deter-
mining when a macro operation should be saved and how to determine the next operator to
use remain the subject of much research. In the next section we describe an algorithm
under which many subgoals may be simultaneously satisfied, teleo-reactive planning.


8.4.3 Teleo-Reactive Planning (Nilsson 1994, Benson 1995)


Since the early work in planning described in the previous section (Fikes and Nilsson
1971), there have been a number of significant advances. Much of this work has been
done on domain independent planning, but more recently more domain specific planning,
where distributed sense/react mechanisms are employed, has become important. In the
next sections we describe a domain independent system, teleo-reactive planning, as well
as a more domain dependent planner, Burton, from NASA. For a summary of the first two
decades of planning research we recommend (Allen et al. 1990).


Teleo-reactive (TR) planning was first proposed by Nilsson (1994) and Benson
(1995) at Stanford University. TR planning offers a general purpose architecture, with
application to many domains where control of complex subsystems must be coordinated
to accomplish a higher level goal. Thus it combines the top-down approach of hierarchical
control architectures with an “agent-based” (Section 7.4) or bottom-up assist. The result is
a system that can accomplish complex problem solving through the coordination of simple
task-specific agents. The justification for this approach is that simple agents have the
advantage of working in smaller and more constrained problem spaces. The higher level
controller, on the other hand, can make more global decisions about the entire system, for
example, how the current result of a purely local decision can affect the result of the gen-
eral problem-solving task. 


Teleo-reactive control combines aspects of feedback-based control and discrete action
planning. Teleo-reactive programs sequence the execution of actions that have been
assembled into a goal-oriented plan. Unlike more traditional AI planning environments
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(Weld 1994), no assumptions are made that actions are discrete and uninterruptible and
that every action’s effects are completely predictable. To the contrary, teleo-actions can be
sustained over extended periods of time, that is, teleo-actions are executed as long as the
actions’ preconditions are met and the associated goal has not yet been achieved. Nilsson
(1994) refers to this type of action as durative. Durative actions can be interrupted when
some other action closer to the top-level goal is activated. A short sense-react cycle
ensures that when the environment changes the control actions also quickly change to
reflect the new state of the problem solution.


Teleo-reactive action sequences are represented by a data structure called a TR tree as
in Figure 8.22. A TR tree is described by a set of condition → action pairs (or production
rules, Section 6.3). For example:


C0 → A0
C1 → A1
C2 → A2
...
Cn → An


where the Ci are the conditions and the Ai are the associated actions. We refer to C0 as the
top-level goal of the tree and A0 as the null action, indicating that nothing further needs to
be done once the top-level goal is achieved. At each execution cycle of the teleo-reactive
system, each Ci is evaluated from the top of the rules to the bottom (C0, C1, ... Cn) until
the first true condition is found. The action associated with this true condition is then per-
formed. The evaluation cycle is then repeated at a frequency that approximates the reactiv-
ity of circuit-based control.


The Ci → Ai productions are organized in such a way that each action Ai, if continu-
ally executed under normal conditions, will eventually make some condition higher in the
TR rule tree, Figure 8.22, true. TR tree execution may be seen as adaptive in that if some
unanticipated event in the control environment reverses the effect of previous actions, TR
execution will fall back to the lower level rule condition that reflects that condition. From
that point it will restart its work towards satisfying all higher level goals. Similarly, if
something good inadvertently happens, TR execution is opportunistic in that control will
automatically shift to the action of that true condition.


TR trees can be constructed with a planning algorithm that employs common AI goal
reduction methods. Starting from the top-level goal, the planner searches over actions
whose effects include achievement of that goal. The preconditions of those actions gener-
ate a new set of subgoals, and this procedure recurses. Termination is achieved when the
preconditions of the leaf nodes are satisfied by the current state of the environment. Thus
the planning algorithm regresses from the top-level goal through goal reduction to the cur-
rent state. Actions, of course, often have side effects and the planner must be careful to
verify that an action at any level does not alter conditions that are required as precondi-
tions of actions at a higher level in the TR tree. Goal reduction is thus coupled with con-
straint satisfaction, where a variety of action reordering strategies are used to eliminate
possible constraint violations.
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Thus, TR planning algorithms are used to build plans whose leaf nodes are satisfied
by the current state of the problem environment. They usually do not build complete
plans, that is plans that can start from any world state, because such plans are generally too
large to store or to execute efficiently. This final point is important because sometimes an
unexpected environmental event can shift the world to a state in which no action’s precon-
ditions in the TR tree are satisfied and some form of replanning is necessary. This is usu-
ally done by reactivating the TR planner.


Benson (1995) and Nilsson (1994) have used teleo-reactive planning in a number of
application domains including the control of distributed robot agents and building a flight
simulator. Klein et al. (1999, 2000) have used a teleo-reactive planner to build and test a
portable control architecture for the acceleration of a charged particle beam. These latter
researchers gave a number of reasons for the use of a teleo-reactive controller in the
domain of particle beam controllers:


1. Accelerator beams and their associated diagnostics are typically dynamic and
noisy.


2. The achievement of accelerator tuning goals is often affected by stochastic pro-
cesses, RF breakdown, or oscillations in the beam source.


3. Many of the actions required for tuning are durative. This is especially true of
tweaking and optimization operations that need to be continued until specific criteria
are met.


Figure 8.22 A simple TR tree showing condition action rules
supporting a top-level goal, from Klein et al. (2000).
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4. TR trees offer an intuitive framework for encoding tuning plans acquired from
accelerator physicists. In fact with very little help, the physicists themselves were able
to develop their own TR trees.


Further details of these applications can be found by consulting the references. We next
revisit the NASA model-based reasoning example of Section 8.3, to describe control/plan-
ning algorithms for the propulsion system of space vehicles.


8.4.4 Planning: a NASA Example (Williams and Nayak)


In this section we describe how a planner can be implemented in the context of a model-
based reasoner. We continue the NASA example of Williams and Nayak (1996b) intro-
duced in Section 8.3.2. Livingstone is a reactive configuration manager that uses a compo-
sitional, component-based model of the space craft propulsion system to determine
configuration actions, as is seen in Figure 8.23. 


Each propulsion component is modeled as a transition system that specifies the
behaviors of the operating and failure modes of the component, the nominal and failure
transitions between modes, and the costs and likelihoods of transitions, as in Figure 8.24.
In Figure 8.24, open and closed are normal operation modes, but stuck open and stuck
closed are failure modes. The open command has unit cost and causes a mode transition
from closed to open, similarly for the close command. Failure transitions move the
valve from normal operating modes to one of the failure modes with probability 0.01.


Mode behaviors are specified using formulae in propositional logic, but transitions
between modes are specified using formulae in a restricted temporal, propositional logic.
The restricted temporal, propositional logic is adequate for modeling digital hardware,


Figure 8.23 Model-based reactive configuration management,
from Williams and Nayak (1996b).
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analog hardware using qualitative abstractions (de Kleer and Williams 1989, Weld and de
Kleer 1990), and real time software using the models of concurrent reactive systems
(Manna and Pnueli 1992). The spacecraft transition system model is a composition of its
component transition systems in which the set of configurations of the spacecraft is the
cross product of the sets of component modes. We assume that the component transition
systems operate synchronously; that is, for each spacecraft transition every component
performs a transition.


A model-based configuration manager uses its transition-system model to both iden-
tify the current configuration of the spacecraft, called mode estimation ME, and move the
spacecraft into a new configuration that achieves the desired configuration goals, called
mode reconfiguration, MR. ME incrementally generates all spacecraft transitions from the
previous configuration such that the models of the resulting configurations are consistent
with the current observations. Thus, in Figure 8.25, a situation is shown where the left
engine is firing normally in the previous state, but no thrust is observed in the current
state. ME’s must identify the configurations into which the spacecraft has transitioned that
accounts for this observation. The figure shows two possible transitions, corresponding to
one of the main engine valves failing. The failed or stuck closed valves are circled. Many
other transitions, including unlikely double faults, can also account for the observations. 


MR determines the commands to be sent to the spacecraft such that the resulting tran-
sitions put the spacecraft into a configuration that achieves the configuration goal in the
next state, as in Figure 8.26. This figure shows a situation in which mode identification
has identified a failed main engine valve leading to the left engine. MR reasons that nor-
mal thrust can be restored in the next state if an appropriate set of valves leading to the
right engine is opened. The figure shows two of the many configurations that can achieve
the desired goal, when the circled valves are commanded to change state. Transitioning to
the configuration at the top has lower cost because only necessary pyro valves (see the dis-
cussion in Section 8.3.2) are fired. The valves leading to the left engine are turned off to


Figure 8.24 The transition system model of a valve, from
Williams and Nayak (1996a).
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satisfy a constraint that, at most, one engine can fire at a time. The use of a spacecraft
model in both ME and MR ensures that configuration goals are achieved correctly.


Both ME and MR are reactive (see Section 6.4). ME infers the current configuration
from knowledge of the previous configuration and current observations. MR only consid-
ers commands that achieve the configuration goal in the next state. Given these commit-
ments, the decision to model component transitions as synchronous is key. An alternative
is to model multiple component transitions through interleaving. However, interleaving
can place an arbitrary distance between the current configuration and a goal configuration,
defeating the desire to limit inference to a small fixed number of states. Hence model
component transitions are synchronous. If component transitions in the underlying hard-
ware-software are not synchronous, Livingstone’s modeling assumption is that all inter-
leavings of transitions are correct and support achieving the desired configuration. This
assumption is removed in Burton, a follow-on of Livingstone, whose planner determines a
sequence of control actions that produce all desired transitions (Williams and Nayak
1997). NASA  is using the Burton architecture on a mission called Tech Sat 21.   


For Livingstone, ME and MR need not generate all transitions and control commands,
respectively. Rather all that is required is just the most likely transitions and an optimal
control command. These are efficiently regenerated by recasting ME and MR as combina-
torial optimization problems. In this reformulation, ME incrementally tracks the likely
spacecraft trajectories by always extending the trajectories leading to the current configu-
rations by the most likely transitions. MR then identifies the command with the lowest
expected cost that transitions from the likely current configurations to a configuration that
achieves the desired goal. These combinatorial optimization problems are efficiently
solved using a conflict-directed best-first search algorithm. See Williams and Nayak
(1996a, 1996b, 1997) for a more formal characterization of ME and MR as well as a more
detailed description of the search and planning algorithms.


Figure 8.25 Mode estimation (ME), from Williams and Nayak (1996a).
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8.5 Epilogue and References


The architecture for the rule-based expert system is the production system. Whether the
final product is data-driven or goal-driven, the model for the software is production sys-
tem-generated graph search, as presented in Chapter 6. We implement production system-
based expert system shells in Java, Prolog, and Lisp in the auxilliary materials supplied
with this book. The rules of these systems can include certainty measures in a limited form
for design of a heuristic-based search. 


A number of references complement the material presented in this chapter; especially
recommended is a collection of the original MYCIN publications from Stanford entitled
Rule-Based Expert Systems by Buchanan and Shortliffe (1984). Other early expert sys-
tems work is described in Waterman (1968),  Michie (1979), Patil et al. (1981), Clancy
(1983), and Clancy and Shortliffe (1984a, 1984b). For a robust implementation of data-
driven rule-based search, we recommend the CLIPS software, distributed by NASA. An
excellent reference for CLIPS is Giarratano and Riley (1989, 2005).


Other important books on general knowledge engineering include Building Expert
Systems by Hayes-Roth et al. (1984), A Guide to Expert Systems by Waterman (1986),
Expert Systems: Concepts and Examples by Alty and Coombs (1984), Expert Systems
Technology: A Guide by Johnson and Keravnou (1985), and Expert Systems and Fuzzy
Systems by Negoita (1985), Introduction to Expert Systems by Jackson (1986), and Expert
Systems: Tools and Applications by Harmon et al. (1988). See also Introduction to Expert
Systems by Ignizio (1991), An Introduction to Expert Systems by Mockler and Dologite
(1992), Expert Systems: Design and Development by John Durkin (1994), and conference
proceedings in AI applications and expert systems, IEA/AIE (2004 - 2007). 


Figure 8.26 Mode reconfiguration (MR), from Williams and
Nayak (1996a).
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Because of the domain specificity of expert system solutions, case studies are an
important source of knowledge in the area. Books in this category include Expert Systems:
Techniques, Tools and Applications by Klahr and Waterman (1986), Competent Expert
Systems: A Case Study in Fault Diagnosis by Keravnou and Johnson (1986), The CRI
Directory of Expert Systems by Smart and Langeland-Knudsen (1986), Developments in
Expert Systems by Coombs (1984), and Developing and Managing Expert Systems by Pre-
rau (1990). We especially recommend Expert Systems: Design and Development by Dur-
kin (1994) for its vast number of practical suggestions on building systems.


A number of techniques for knowledge acquisition have been developed. For more
information on specific methodologies see Knowledge Acquisition: Principles and
Guidelines by McGraw and Harbison-Briggs (1989) and Knowledge Engineering by
Chorafas (1990), as well as An Introduction to Expert Systems by Mockler and Dologite
(1992), and books and conference proceedings on expert systems IEA/AIE (2004 - 2007). 


Case-based reasoning is an offshoot of earlier research by Schank’s group at Yale and
their work on scripts (see Sections 7.1.3 - 4). Case-Based Reasoning by Kolodner (1993)
is an excellent introduction to the CBR technology. Other CBR-related work from Kolod-
ner and her research group include (Kolodner 1987, 1991). Leake (1992, 1996) offers
important comment on explanations in case-based systems. CBR software is now avail-
able in commercial software products that support the case-based technology.


Model-based reasoning had its origins in the explicit representation of medicine, logic
circuits, and other mathematical domains, often used for teaching purposes (deKleer 1975,
Weiss et al. 1977, Brown and Burton 1978, Brown and VanLehn 1980, Genesereth 1982,
Brown et al. 1982). More modern research issues in MBR are presented in Readings in
Model-Based Diagnosis (edited by Hamscher et al. 1992), Diagnosis Based on Descrip-
tion of Structure and Function (Davis et al. 1982), and diagnosis in the context of multiple
faults (deKleer and Williams 1987, 1989). Skinner and Luger (1995) and other writers on
agent architectures (Russell and Norvig 1995, 2003) describe hybrid expert systems,
where the interactions of multiple approaches to problem solving can create a synergistic
effect with the strengths of one system compensating for the weaknesses of others.


The planning section demonstrates some of the data structures and search techniques
used for general-purpose planners. Further references include ABSTRIPS or ABstract
specification for STRIPS generator relationships (Sacerdotti 1974), Warren’s work (1976),
and NOAH for nonlinear or hierarchical planning (Sacerdotti 1975, 1977). For a more
modern planner see teleo-reactive planning, Section 15.3 (Benson and Nilsson 1995).


Meta-planning is a technique for reasoning not just about the plan but also about the
process of planning. This can be important in expert systems solutions. References include
Meta-DENDRAL for DENDRAL solutions (Lindsay et al. 1980) and Teiresias for
MYCIN solutions (Davis 1982). For plans that interact continuously with the world, that
is, model a changing environment, see McDermott (1978). 


Further research includes opportunistic planning using blackboards and planning
based on an object-oriented specification (Smoliar 1985). There are several surveys of
planning research in the Handbook of Artificial Intelligence (Barr and Feigenbaum 1989,
Cohen and Feigenbaum 1982) and the Encyclopedia of Artificial Intelligence (Shapiro
1992). Non-linearity issues and partial-order planning are presented in Russell and Norvig
(1995). Readings in Planning (Allen et al. 1990) is relevant to this chapter.
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Our description and analysis of the NASA model-based reasoning and planning algo-
rithms was taken from Williams and Nayak (1996a, 1996b, 1997). We thank Williams and
Nayak, as well as AAAI Press, for allowing us to cite their research.


8.6 Exercises


 1. In Section 8.2 we introduced a set of rules for diagnosing automobile problems. Identify
possible knowledge engineers, domain experts, and potential end users for such an
application. Discuss the expectations, abilities, and needs of each of these groups. 


 2. Take Exercise 1 above. Create in English or pseudocode 15 if-then rules (other than those
prescribed in Section 8.2) to describe relations within this domain. Create a graph to
represent the relationships among these 15 rules. 


 3. Consider the graph of Exercise 2. Do you recommend data-driven or goal-driven search?
breadth-first or depth-first search? In what ways could heuristics assist the search? Justify
your answers to these questions.


 4. Pick another area of interest for designing an expert system. Answer Exercises 1–3 for this
application.


 5. Implement an expert system using a commercial shell program. These are widely avail-
able for personal computers as well as larger machines. We especially recommend CLIPS
from NASA (Giarratano and Riley 1989) or JESS from Sandia National Laboratories.


 6. Critique the shell you used for Exercise 5. What are its strengths and weaknesses? What
would you do to improve it? Was it appropriate to your problem? What problems are best
suited to that tool?


 7. Create a model-based reasoning system for a simple electronic device. Combine several
small devices to make a larger system. You can use if... then... rules to characterize the
system functionality.


 8. Read and comment on the paper Diagnosis based on description of structure and function
(Davis et al., 1982).


 9. Read one of the early papers using model-based reasoning to teach children arithmetic
(Brown and Burton 1978) or electronic skills (Brown and VanLehn 1980). Comment on
this approach.


10. Build a case-based reasoner for an application of your choice. One area might be for
selecting computer science and engineering courses to complete an undergraduate major
or a MS degree.


11. Use commercial software (check the WWW) for building the case-based reasoning system
of Exercise 10. If no software is available, consider building such a system in Prolog,
Lisp, or Java.


12. Read and comment on the survey paper Improving Human Decision Making through
Case-Based Decision Aiding by Janet Kolodner (1991).


13. Create the remaining frame axioms necessary for the four operators pickup, putdown,
stack, and unstack described in rules 4 through 7 of Section 8.4.
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14. Use the operators and frame axioms of the previous question to generate the search space
of Figure 8.19.


15. Show how the add and delete lists can be used to replace the frame axioms in the
generation of STATE 2 from STATE 1 in Section 8.4. 


16. Use add and delete lists to generate the search space of Figure 8.19.


17.  Design an automated controller that could use add and delete lists to generate a graph
search similar to that of Figure 8.19.


18. Show two more incompatible (precondition) subgoals in the blocks world operators of
Figure 8.19.


19. Read the ABSTRIPS research (Sacerdotti 1974) and show how it handles the linearity (or
incompatible subgoal) problem in planning.


20. In Section 8.4.3 we presented a planner created by Nilsson and his students at Stanford
(Benson and Nilsson 1995). Teleo-reactive planning allows actions described as durative,
i.e., that must continue to be true across time periods. Why might teleo-reactive planning
be preferred over a STRIPS-like planner? Build a teleo-reactive planner in Prolog, Lisp or
Java.


21. Read Williams and Nayak (1996, 1996a) for a more complete discussion of their model-
based planning system.


22. Expand the propositional calculus representation scheme introduced by Williams and
Nayak (1996a, p. 973) for describing state transitions for their propulsion system.
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REASONING IN
UNCERTAIN SITUATIONS


All traditional logic habitually assumes that precise symbols are being employed. It is 
therefore not applicable to this terrestrial life but only to an imagined celestial existence. 


—BERTRAND RUSSELL


It is the mark of an instructed mind to rest satisfied with that degree of precision which the
nature of the subject admits, and not to seek exactness where only an approximation of the
truth is possible. 


—ARISTOTLE


So far as the laws of mathematics refer to reality they are not certain. And so far as they
are certain they do not refer to reality.


—ALBERT EINSTEIN


9.0 Introduction


Through most of Parts I, II, and III, our inference procedures followed the model of rea-
soning used in the predicate calculus: from correct premises, sound inference rules pro-
duce new, guaranteed correct conclusions. As we saw in Chapters 5 and 7 however, there
are many situations that will not fit this approach; that is, we must draw useful conclusions
from poorly formed and uncertain evidence using unsound inference rules.


Drawing useful conclusions from incomplete and imprecise data with unsound rea-
soning is not an impossible task; we do it very successfully in almost every aspect of our
daily life. We deliver correct medical diagnoses and recommend treatment from ambigu-
ous symptoms; we analyze problems with our cars or stereos; we comprehend language


9
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statements that are often ambiguous or incomplete; we recognize friends from their voices
or their gestures; and so on. 


To demonstrate the problem of reasoning in ambiguous situations, consider Rule 2
from the automobile expert system presented in Section 8.2:


if
the engine does not turn over, and 
the lights do not come on 
then
the problem is battery or cables. 


On the surface, this rule looks like a normal predicate relation to be used in sound infer-
encing (modus ponens). It is not, however; it is heuristic in nature. It could be possible,
though very unlikely, that the battery and cables are fine but that the car simply has a bad
starter motor and burned-out headlights. Failure of the engine to turn over and the lights to
come on does not necessarily imply that the battery and cables are bad. 


It is interesting that the converse of the rule is true:


if
the problem is battery or cables 
then
the engine does not turn over, and 
the lights do not come on. 


Barring the supernatural, with a dead battery, neither the lights nor the starter will work! 
Our expert system offers an example of abductive reasoning. Formally, abduction


states that from P


 


→ Q and Q it is possible to infer P. Abduction is an unsound rule of
inference, meaning that the conclusion is not necessarily true for every interpretation in
which the premises are true (Section 2.3). 


Although abduction is unsound, it is often essential to solving problems. The “logi-
cally correct” version of the battery rule is not very useful in diagnosing car troubles since
its premise, the bad battery, is our goal and its conclusions are the observable symptoms
with which we must work. The rule can be used in an abductive fashion, however, as are
rules in many diagnostic expert systems. Faults or diseases cause (imply) symptoms, not
the other way around; but diagnosis must work from symptoms back to their causes. 


In knowledge-based systems, we often attach a certainty factor to the rule to measure
confidence in its conclusion. For example, the rule, P


 


→ Q (.9), expresses the belief “If
you believe P to be true, then you believe Q will happen 90% of the time”. Thus, heuristic
rules can express an explicit policy for belief.


Another issue for expert system reasoning is how to draw useful results from data
with missing, incomplete, or incorrect information. We may use certainty measures to
reflect our belief in the quality of data, for example, asserting that the lights have full
power (.2) can indicate that the headlights do come on, but are weak and barely visible.
Beliefs and imperfect data can be propagated through rules to constrain conclusions.
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In this chapter, we discuss several ways of managing abductive inference and uncer-
tainty, especially as it is required for knowledge-intensive problem solving. In Section 9.1,
we show how logic-based formalisms can be extended to address the abductive task,
including the use of nonmonotonic systems supported by truth-maintenance algorithms. In
Section 9.2, we consider several alternatives to logic, including the Stanford certainty fac-
tor algebra, “fuzzy” reasoning, and the Dempster–Shafer theory of evidence. These simple
calculi are often utliized to address some of the complexity issues of using the full Baye-
sian approach for building expert systems. 


In Section 9.3, we introduce stochastic approaches to uncertain reasoning. These tech-
niques are founded on Bayes’ theorem for reasoning about the frequency of events, based
on prior information about these events. We conclude 9.3 by introducing graphical mod-
els, including Bayesian belief networks and observable and hidden Markov models. We
present stochastic approaches to learning in Chapter 13.


9.1 Logic-Based Abductive Inference


We first present logic-based approaches to abduction. With logic, pieces of knowledge are
explicitly used in reasoning, and, as we saw in Chapter 8, can be part of the explanations
of derived conclusions. But traditional logic also has its limitations, especially in areas
where information is missing, changing, or uncertain; in these situations traditional infer-
ence procedures may not be usable. In Section 9.1 we present several extensions to tradi-
tional logic that allow it to support abductive inference.


In Section 9.1.1, we extend logic to let it describe a world of changing information
and beliefs. Traditional mathematical logic is monotonic: it begins with a set of axioms,
assumed to be true, and infers their consequences. If we add new information to this sys-
tem, it may cause the set of true statements to increase. Adding knowledge will never
make the set of true statements decrease. This monotonic property leads to problems when
we attempt to model reasoning based on beliefs and assumptions. In reasoning with uncer-
tainty, humans draw conclusions based on their current set of beliefs; however, unlike
mathematical axioms, these beliefs, along with their consequences, may change over time
as more information becomes available. 


Nonmonotonic reasoning addresses the problem of changing beliefs. A nonmonotonic
reasoning system handles uncertainty by making the most reasonable assumptions in light
of uncertain information. It then proceeds with its reasoning as if these assumptions were
true. At a later time a belief may change, necessitating a re-examination of any conclu-
sions derived from that belief. Truth maintenance algorithms, Section 9.1.2, may then be
employed to keep the knowledge base consistent. Other abductive extensions to logic
include “minimum models”, Section 9.1.3, and the “set cover” approach, Section 9.1.4.


9.1.1 Logics for Nonmonotonic Reasoning


Nonmonotonicity is an important feature of human problem solving and common sense
reasoning. In most planning, for example when we drive to work, we make numerous
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assumptions about the roads and traffic. If we find that one of these assumptions is vio-
lated, perhaps by construction or an accident on our usual route, we change our plans and
find an alternative route.


Conventional reasoning using predicate logic is based on three important assump-
tions. First, the predicate descriptions must be sufficient with respect to our application
domain. That is, all the information necessary to solve the problem must be represented.
Second, the information base must be consistent; that is, pieces of knowledge cannot con-
tradict each other. Finally, through the use of inference rules, the known information
grows monotonically. If any of these three assumptions is not satisfied, the conventional
logic-based approach will not work.


Nonmonotonic systems address each of these three issues. First, reasoning systems
are often faced with a lack of knowledge about a domain. There is an important issue here:
suppose we have no knowledge about the predicate p; does lack of knowledge mean that
we are not sure whether p is true or we are sure that not p is true? This question can be
answered in a number of ways. Prolog, see Section 14.3, uses the closed world assumption
to determine as false anything that its reasoning system cannot prove to be true. As
humans, we often take the alternative approach of assuming something to be true unless it
can be explicitly shown to be false. 


Another approach to the lack of knowledge problem is to make explicit assumptions
of truth. In human reasoning, we assume the innocence of people not directly connected to
a crime. We would probably even go further and assume the innocence of those that could
not benefit from the crime. The result of these assumptions is to effectively fill in missing
details of knowledge and extend our reasoning to reach new conclusions based on these
assumptions. We discuss the closed world assumption and its alternatives in Section 9.1.3.


Humans reason based on how the world usually works. Most birds fly. Parents usually
love and support their children. We make inferences based on the consistency of reasoning
with our assumptions about the world. In this section we discuss the addition of modal
operators, such as is consistent with and unless, to perform assumption-based reasoning.


The second assumption required of traditional logic-based systems is that the knowl-
edge supporting reasoning must be consistent. For human reasoners this would be a very
limiting assumption. In diagnosing a problem we often entertain multiple possible expla-
nations for a situation, assuming something is true until an alternative assumption proves
to be more fruitful. In analysis of an airline accident, for example, a crash expert will con-
sider a number of alternative causes, only eliminating (explaining away) some as new
information is discovered. We humans use knowledge of the world as it usually is to try to
direct reasoning through alternative scenarios. We would like logic systems to be able to
entertain alternative hypotheses.


Finally, if we wish to use logic we must address the problem of how a knowledge
base is updated. There are two issues here: first, how can we possibly add knowledge that
is based on assumption only, and secondly, what can we do when one of our assumptions
is later shown to be incorrect. To address the first issue, we can allow the addition of new
knowledge based on assumptions. This new knowledge is assumed to be correct and so it
may, in turn, be used to infer more new knowledge. The cost of this practice is that we
must keep track of all reasoning and proofs that are based on assumptions: we must be
prepared to reconsider any knowledge based on these assumptions.
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Nonmonotonic reasoning, because conclusions must sometimes be reconsidered, is
called defeasible; that is, new information may sometimes invalidate previous results.
Representations and search procedures that keep track of the reasoning steps of a logic
system are called truth maintenance systems or TMSs. In defeasible reasoning, the TMS
preserves the consistency of the knowledge base, keeping track of conclusions that might
later need to be questioned. We consider several approaches to truth maintenance in Sec-
tion 9.1.2. We first consider operators that can make traditional logic-based reasoning sys-
tems defeasible.


In implementing nonmonotonic reasoning, we may extend our logic with the operator
unless. unless supports inferences based on the belief that its argument is not true.
Suppose we have the following set of predicate logic sentences: 


p(X) unless q(X) 


 


→ r(X) 
p(Z)
r(W)


 


→ s(W)


The first rule means that we may infer r(X) if p(X) is true and we do not believe q(X) to be
true. When these conditions are met, we infer r(X) and, using r(X), can then infer s(X).
Subsequently, if we change our belief, or find that q(X) is true, r(X) and also s(X) must be
retracted. Note that unless deals with matters of belief rather than truth. Consequently,
changing the value of its argument from “either unknown or believed false” to “believed
or known to be true” can cause us to retract all inferences that depend upon these beliefs.
By extending our logic to reason with beliefs that may later be retracted, we introduce
nonmonotonicity into the system. 


The reasoning scheme just described can also be used to encode default rules (Reiter
1980). If we replace p(X) unless q(X)


 


→ r(X) with p(X) unless ab p(X)


 


→ r(X), where ab
p(X) represents abnormal p(X), we state that unless we have an abnormal instance of p,
such as a bird with a broken wing, we can make the inference that if X is a bird then X can
fly.


A second modal operator for extending logic systems is suggested by McDermott and
Doyle (1980). They augment first-order predicate logic with the modal operator M, which
placed before a predicate is read as is consistent with. For example:


 


∀ X good_student(X)


 


∧ M study_hard(X) 


 


→ graduates(X)


This clause can be read: For all X where X is a good student, and if the fact that X studies
hard is consistent with everything else we know, then X will graduate. Of course, the diffi-
cult part here is defining precisely what is consistent with everything else we know might
in fact mean.


We first note that is consistent with everything else we know may not be decidable.
The reason is that a modal operator forms a superset of an already undecidable system, see
Section 2.2.2, and will thus be undecidable. There are two ways to address undecidability.
First, we can use a negation as failure proof to demonstrate is consistent with. In our
example, we would attempt the proof of not(study_hard(X)) and if we couldn’t prove
that X doesn’t study, then we assume that X does study. We often use this approach in a
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Prolog-like approximation of predicate logic. Unfortunately, negation as failure may
unduly restrict our domain of interpretation. 


A second approach to the is consistent with problem is to make a heuristic-based and
limited (time or memory limited) search for the truth of the predicate, in our example
study_hard(X), and then, if there is no contrary evidence, assume it to be true with the
understanding that we may have to later retract the graduates conclusion and all further
conclusions based on it. 


We can also produce potentially contradictory results using the is consistent with
operator. Suppose a person, Peter, is a good student but also seriously enjoys parties. We
might then have the following set of predicates that describe the situation:


∀ X good_student(X) ∧ M study_hard(X) → graduates(X)
∀ Y party_person(Y) ∧ M not(study_hard(Y)) → not(graduates(Y))
good_student(peter)
party_person(peter)


With this set of clauses, where we have no further information about Peter’s study habits,
whether he studies hard or not, we can infer both that Peter will and will not graduate!


One reasoning method that guards against such contradictory results is to keep track
of the variable bindings used with the modal operator is consistent with. Thus, once Peter
was bound to either the study_hard or the not(study_hard) predicate, the system would
prevent the binding of Peter to the other predicate. Other nonmonotonic logic systems
(McDermott and Doyle 1980) are even more conservative and prevent any conclusions
from such potentially contradictory clause sets. We can create another anomaly:


∀ Y very_smart(Y) ∧ M not(study_hard(Y)) → not(study_hard(Y))
∀ X not(very_smart(X)) ∧ M not(study_hard(X)) → not(study_hard(X))


From these clauses we can infer a new clause:


∀ Z M not(study_hard(Z)) → not(study_hard(Z))


Further developments of the semantics of the is consistent with operator address such
anomalous reasoning. One further extension is autoepistemic logic (Moore 1985).


Another nonmonotonic logic system is default logic, created by Reiter (1980). Default
logic employs a new set of inference rules of the form:


A(Z) ∧ : B(Z) → C(Z)


which is read: If A(Z) is provable and it is consistent with what we know to assume B(Z)
then we can conclude C(Z).


To this point default logic sounds much like McDermott and Doyle’s nonmonotonic
logic just described. An important difference between the two is the method in which rea-
soning is performed. In default logic, these special inference rules are used to infer sets of
plausible extensions of the original axiom/theorem set. Each extension is created by using
one of the default logic inferencing rules on the knowledge represented by the original
axiom/theorem set. Thus, it would be natural to have a number of plausible extensions to
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an original knowledge base. This can be seen with the graduates clauses:


∀ X good_student(X) ∧ : study_hard(X) → graduates(X)
∀ Y party(Y) ∧ : not(study_hard(Y)) → not(graduates(Y))


Each clause could be used to create a unique plausible extension based on the original set
of knowledge.


Default logic then allows any theorem inferred in a plausible extension to be admitted
as an axiom for further reasoning. There must be some decision-making guide to finally
determine which extension is to be used for further problem solving. Default logic says
nothing about how to choose among possible plausible extensions of a knowledge base.
Reiter (1978), Reiter and Criscuolo (1981), and Touretzky (1986) develop these issues.


Finally, there is also a nonmonotonic reasoning situation created by inheritance
search over representations where objects can inherit from more than one parent. Peter, the
party-loving good student mentioned earlier, could inherit one set of properties from being
a good student, i.e., that he would most likely graduate. Peter could also inherit other, and
in this case partially conflicting, properties from being a party person, that is, that he
would not graduate. 


An important problem facing nonmonotonic reasoning systems is the task of effi-
ciently revising a set of conclusions in the light of changing beliefs. If, for example, we
use the predicate r to infer s, then removing r removes also the support for s, as well as
every other conclusion that used s. Unless there is an independent set of inferences
supporting s, it must be retracted. Implementing this retraction process requires, in the
worst case, that we recompute all conclusions each time a belief changes. Truth mainte-
nance systems, presented next, offer mechanisms for maintaining the consistency of
knowledge bases.


9.1.2 Truth Maintenance Systems


A truth maintenance system (TMS) can be employed to protect the logical integrity of the
conclusions of an inferencing system. As pointed out in the previous section, it is neces-
sary to recompute support for items in a knowledge base whenever beliefs expressed by
the clauses of the knowledge base are revised. Truth maintenance systems address this
issue by storing justifications for each inference and then reconsidering support for con-
clusions in the light of new beliefs.


One way of viewing this problem is to review the backtrack algorithm first presented
in Section 3.2.2. Backtracking is a systematic method for exploring all the alternatives for
decision points in search-based problem solving. An important shortcoming of the back-
track algorithm, however, is the way it systematically (and blindly) backs out of dead end
states of the space and looks for alternatives from its most recent choices. This approach is
sometimes called chronological backtracking. We grant that chronological backtracking
will systematically check all alternatives in the space; however, the way it proceeds is
time-consuming, inefficient, and in a very large space, useless.


What we really want in logic-based search is the ability to backtrack directly to the
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point in the space where the problem occurs, and to make adjustments to the solution at
that state. This approach is called dependency-directed backtracking. Consider an exam-
ple from nonmonotonic reasoning. We need to find out about p, which we cannot directly
infer. There is, however, a plausible assumption q, which, if true, will support p. So we
assume q and derive p. Our reasoning continues and based on p we conclude r and s. We
continue on in our reasoning and conclude without the support of p, r, or s the results t and
u. Finally, we prove that our earlier assumption of q is false. What are we to do?


Chronological backtracking would revisit our reasoning steps in the reverse order in
which they were made. Dependency-directed backtracking would go immediately back to
the source of the contradictory information, namely the first assumption of q. Then it
would go forward retracting p, r, and s. We may, at this time check to see if r and s can be
derived independently of p and q. Just because they were originally produced with an
incorrect assumption, does not mean that they are not otherwise supported. Finally,
because t and u were derived without p, r, or s, we would not need to reconsider them. 


In order to use dependency-directed backtracking in a reasoning system, we must:


1. Associate with the production of each conclusion its justification. This justifica-
tion indicates the derivation process for that conclusion. The justification must
contain all the facts, rules, and assumptions used to produce the conclusion.


2. Provide a mechanism that, when given a contradiction along with its justifica-
tion, finds the set of false assumptions within that justification that led to the con-
tradiction.


3. Retract the false assumption(s).


4. Create a mechanism that follows up the retracted assumption(s) and retracts any
conclusion that uses within its justifications the retracted false assumption. 


Of course, all retracted conclusions are not necessarily false, so they must be rechecked to
see if they can be justified independent of the retracted clauses. We next present two
methods for building dependency directed backtracking systems.


Jon Doyle (1979) created one of the earliest truth maintenance systems, called a justi-
fication-based truth maintenance system or JTMS. Doyle was the first researcher to
explicitly separate the truth maintenance system, a network of propositions and their justi-
fications, from the reasoning system operating in a domain. The result of this split is that
the JTMS communicates with the problem solver, perhaps an automated theorem prover,
receiving information about new propositions and justifications and in turn supplying the
problem solver with information about which propositions should be believed based on
the current existing justifications. 


There are three main operations that are performed by the JTMS. First, the JTMS
inspects the network of justifications. This inspection can be triggered by queries from the
problem solver such as: Should I believe in proposition p? Why should I believe proposi-
tion p? What assumptions underlie proposition p?


The second operation of JTMS is to modify the dependency network, where
modifications are driven by information supplied by the problem solver. Modifications
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include adding new propositions, adding or removing premises, adding contradictions,
and justifying the belief in a proposition. The final operation of the JTMS is to update the
network. This operation is executed whenever a change is made in the dependency net-
work. The update operation recomputes the labels of all propositions in a manner that is
consistent with existing justifications.


To demonstrate the JTMS we construct a simple dependency network. Consider the
modal operator M presented in Section 9.1.1, which placed before a predicate is read as is
consistent with. For example:


∀ X good_student(X) ∧ M study_hard(X) → study_hard(X)
∀ Y party_person(Y) → not (study_hard(Y))
good_student(david)


We now make this set of propositions into a justification network.
In a JTMS, each predicate representing a belief is associated with two other sets of


beliefs. The first set, labeled IN in Figure 9.1, is the set of propositions that should be
believed for the proposition to hold. The second, labeled OUT, are propositions that
should not be believed for the proposition to hold. Figure 9.1 represents the justification
that supports study_hard(david) derived from the predicates just listed. The notations of 
Figure 9.1 are adapted from Goodwin (1982) and explained in Figure 9.2. The premises of
justifications are labeled as in Figure 9.2(a) and the combinations of propositions that
support a conclusion are labeled as in Figure 9.2(b).


Figure 9.1 A justification network to believe that 
David studies hard.


good_student(david)


not(study_hard (Y))


party_person(Y)


study_hard(david)


IN


OUT


OUT


Figure 9.2 9.2(a) is a premise justification, and
9.2(b) the ANDing of two beliefs, a and
not b, to support c (Goodwin 1982).


a. b.


a
c


not(b)
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With the information of the network of Figure 9.1, the problem solver can reason that
study_hard(david) is supported, because the premise good_student(david) is consid-
ered true and it is consistent with the fact that good students study hard. There is also no
evidence or other indication in this example that David does not study hard.


Suppose we add the premise party_person(david). This addition enables the deriva-
tion not(study_hard(david)), and the belief study_hard(david) is no longer supported.
The justifications of this situation is in Figure 9.3; note the relabeling of IN and OUT.


As Figures 9.1 and 9.3 demonstrate, the JTMS does not directly represent the predi-
cate relationships as expressed in the original set of propositions. Rather the JTMS is a
simple network that only considers the relations between atomic propositions and their
negation and organizes these into support relationships for beliefs. The full set of predicate
connectives and inferencing schemes (∀X, ∧, ∨, →, etc.) are used within the problem
solver itself. The systems of McAllester (1978) and Martins and Shapiro (1988) merged
the TMS and the problem solver into a single representation.


A JTMS is only concerned with the dependencies among beliefs and has no concern
with the contents of these beliefs. Therefore, we can replace the beliefs by identifiers,
often of the form n1, n2, ..., which are associated with objects in the network called
nodes. Then the algebra of INs and OUTs that we saw implemented in the study_hard
example allows the JTMS to reason about the support for beliefs.


To summarize, a JTMS works with sets of nodes and justifications. Nodes stand for
beliefs, and justifications support belief in nodes. Associated with nodes are the labels IN
and OUT, which indicate the belief status of the associated node. We can reason about the
support for any node by relating it to the INs and OUTs of the other nodes that make up its
justification(s). The primary operations of the JTMS algebra is to accomplish the
inspection, modification, and updating of operators noted above. Finally, since justifica-
tion checking is enforced by backing over the links of the justification network itself, we
have an example of dependency-based backtracking. For further information on this
approach to JTMS see Doyle (1983) or Reinfrank (1989).


A second type truth maintenance system is the assumption-based truth maintenance
system (ATMS). The term assumption-based was first introduced by deKleer (1984),
although similar ideas may be found in Martins and Shapiro (1983). In these systems, the
labels for nodes in the network are no longer IN and OUT but rather the sets of premises
(assumptions) underlying their derivation. deKleer also makes a distinction between
premise nodes that hold universally and nodes that can be assumptions made by the prob-
lem solver and that may later be retracted. 


An advantage of ATMS over JTMS stems from the additional flexibility the ATMS
provides in dealing with multiple possible states of belief. By labeling beliefs with the sets
of premises under which they hold, there is no longer a single state of belief (in JTMS all
the nodes labeled IN), but rather a number of possible states, the set of all subsets of the
supporting premises. The creation of different belief sets, or possible worlds, allows a
comparison of results from different choices of premises, the existence of different
solutions for the problem, and the detection of and recovery from contradictions. The
disadvantages of ATMS include the inability to represent premise sets that are themselves
nonmonotonic and the control over the problem solver. However, see Dressler (1988) and
Forbus and deKleer (1988) for alternatives.








CHAPTER 9 / REASONING IN UNCERTAIN SITUATIONS 343


The communication between the ATMS and the problem solver is similar to that
between JTMS and its problem solver with operators for inspection, modification, and
updating. The only difference is that with the ATMS there is no longer a single state of
belief but rather subsets of potential supporting premises. The goal of computation within
the ATMS is to find minimal sets of premises sufficient for the support of each node. This
computation is done by propagating and combining labels, beginning with the labels for
the premises. 


We next present a detailed example adapted from Martins (1991). Suppose we have
the ATMS network of Figure 9.4. In this network, n1, n2, n4, and n5 are premises and
assumed true. The dependency network also reflects the relations that from premise n1
and n2 we support n3, with n3 we support n7, with n4 we support n7, with n4 and n5 we
support n6, and finally, with n6 we support n7.


Figure 9.5 presents the subset/superset lattice for the premise dependencies found in
Figure 9.4. This lattice of subsets of premises offers a useful way to visualize the space of
combinations of premises. Thus, if some premise is found to be suspect, the ATMS will be
able to determine how that premise relates to other premise support subsets. For
example, node n3 in Figure 9.4 will be supported by all sets of premises that are above
{n1,n2} in the lattice of Figure 9.5.


The ATMS reasoner removes contradictions by removing from the nodes those sets of
premises that are discovered to be inconsistent. Suppose, for example, we revise the
support for the reasoning reflected by Figure 9.4 to make n3 a contradiction node. Since
the label for n3 is {n1, n2}, this set of premises is determined to be inconsistent. When
this inconsistency is discovered, all the sets of premises that are in the superset relation to
{n1, n2} in Figure 9.5 are marked as inconsistent (wwe have circled these) and removed
from the dependency network. In this situation, one of the possible labellings supporting
n7 will also have to be removed. A full description of the contradiction-removal algorithm
may be obtained from deKleer (1986).


There are several other important contributions to TMS reasoning. Logic-based TMS
is based on the work of McAllester (1978). In LTMS, relationships between propositions


Figure 9.3 The new labeling of Figure 9.1
associated with the new premise
party_person(david).


good_student(david)


party_person(david)


not(study hard (david))


OUT


IN


IN
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are represented by clauses which can be used to deduce the truth values of any of the
propositions they describe. Another approach, the multiple belief reasoner (MBR) is simi-
lar to the ATMS reasoner except that the problem solver and the truth maintenance system
are merged into a single system. MBR is based on a logic language called SWM* which
describes knowledge states. Each knowledge state is composed of a pair of descriptors, the
first reflecting a knowledge base and the second a set of sets of known inconsistent pre-
mises within the knowledge base. Algorithms for checking inconsistencies during reason-
ing may be found in Martins (1991). Further discussion on truth maintanence systems may
be found in The Encyclopedia of Artificial Intelligence (Shapiro 1992).


Figure 9.5 The lattice for the premises of the
network of Figure 9.4. Circled sets
indicate the hierarchy of inconsis-
tencies, after Martins (1991).


Figure 9.4 An ATMS labeling of nodes
in a dependency network.
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9.1.3 Logics Based on Minimum Models


In the previous sections, we extended logic by several different modal operators that were
specifically designed to reason about the world as it usually is, relaxing the requirement
that our knowledge of the world be somehow complete. These operators were born of the
necessity of creating a more flexible and revisable view of the world. In this section we
present logics designed specifically for two situations: first, to reason where a set of asser-
tions specifies only those things that are true, and second, to reason where, because of the
nature of a problem-solving task, sets of conjectures are usually true. In the first situation
we use the closed world assumption and in the second circumscription. Both of these
approaches to logic are often referred to as reasoning over minimal models.


We saw in Section 2.3 that a model is an interpretation that satisfies S, a set of predi-
cate expressions, for all variable assignments. There are a number of ways of defining
what is meant by a minimum model. We define a minimum model as a model such that
there are no smaller models that can satisfy the set of expressions S for all variable
assignments.


The idea that makes minimum models important for reasoning is this: there are a
(potentially) infinite number of predicates that can be used to describe situations in the
world. Consider, for example, the limitless predicates that can be used to describe the situ-
ation for the farmer-wolf-goat-cabbage problem (Section 3.5, Exercise 2): the boat is not
slowly sinking, the river banks are close enough that rowing will get the boat across, the
wind and current are not relevant factors, and so on. When we describe a problem we are
usually quite parsimonious in our descriptions. We create only those predicates that are
both relevant and needed to solve the problem.


The closed world assumption is based on this minimum model of the world. Exactly
those predicates that are necessary for a solution are created. The closed world assumption
effects the semantics of negation in reasoning. For example, if we wanted to determine
whether a student is an enrolled member of a class, we could go to the enrolment database,
and if the student is not explicitly listed in that database (the minimal model), he or she
would not be enrolled. Similarly, if we wanted to know if two cities were directly con-
nected by a plane flight, we would go to the listing of all airline connections. We would
infer, if the direct flight is not listed there (the minimal model), that it does not exist. 


The closed world assumption is a statement that if our computational system cannot
conclude that p(X) is true, then not(p(X)) must be true. As we will see in Section 14.4, the
closed world assumption supports Prolog inferencing. In Section 14.4 we see the three
assumptions (axioms) implicit in the use of minimal models. These axioms are the unique
name, i.e., that all atoms with distinct names are distinct; the closed world, i.e., the only
instances of a relation are those implied by the clauses present; and domain closure. i.e.,
the atoms of the domain are exactly those of the model. When these three are satisfied, a
minimum model becomes a full logic-based specification. If the axioms are not satisfied,
some form of a truth maintenance algorithm is required.


If the closed world requires that all the predicates that make up a model be stated, cir-
cumscription (McCarthy 1980, Lifschitz 1984, McCarthy 1986) requires that only those
predicates relevant to the problem solving are stated. In circumscription, axioms are added
to a system that forces a minimal interpretation on the predicates of the knowledge base.
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These meta-predicates (predicates about the problem statement’s predicates) describe the
manner in which particular predicates are to be interpreted. That is, they delimit, or cir-
cumscribe, the possible interpretations of predicates.


McCarthy (1980) introduced the idea of circumscription with a thought experiment
on the missionaries and cannibals problem. The problem statement asks the solver to
devise a series of moves in which six characters, under a set of constraints, can use a boat
to cross a river. McCarthy brings up a large number of absurd situations that, quite legiti-
mately, can be asked about the problem statement. A number of these, such as a slowly
sinking boat or a wind factor, were presented earlier in this section. Although humans
regard these situations as absurd, the reasoning we use to do so is not obvious. The cir-
cumscription axioms that McCarthy would add to the problem specification, would pre-
cisely delimit the predicates that describe the problem.


As another example of circumscription, consider a predicate expression from an
object-oriented common sense reasoning specification; see discussion, Section 9.4: 


∀ X bird(X) ∧ not (abnormal(X)) → flies(X)


This expression might occur in reasoning where one of the properties of bird is flies. But
what could possibly limit the definition of the predicate abnormal? That the bird is not a
penguin, that it does not have a broken wing, that it is not dead? The specification of the
predicate abnormal is potentially undecidable.


Circumscription uses an axiom schema, or set of meta rules, within first-order predi-
cate calculus to generate predicates for the problem domain. The schema rules cause cer-
tain formulae to have the smallest possible extensions. For example, if B is a belief
system including world knowledge K and domain knowledge A(p) about a predicate p,
then we may consider p to be minimized, in that as few atoms ai as possible satisfy p(ai)
as is consistent with A(p) and K. The world knowledge K together with A(p) and the cir-
cumscription schema are used to derive conclusions in standard first-order predicate cal-
culus. These conclusions are then added to B, the belief system.


As an example, suppose in the blocks world, Section 8.4, we have the expression:


isblock(a) ∧ isblock(b) ∧ isblock(c)


asserting that a, b, and c are blocks. Circumscribing the predicate isblock gives:


∀X (isblock(X) ← ((X = a) v (X = b) v (X = c)))


This expression asserts that only blocks a, b, and c, i.e., just those objects that the isblock
predicate requires, are blocks in this domain. Similarly, the predicate:


isblock(A) v isblock(B)


can be circumscribed to: 


∀X (isblock(X) ← ((X = a) v (X = b)))
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For full details, including the schema axioms used to derive these results, see McCarthy
(1980, Section 4).


Circumscription, when used with operators such as abnormal, is much like the closed
world assumption in that it produces exactly those variable bindings that abnormal can
support. The circumscription algebra, however, allows us to extend this reasoning across
predicate representations in that, as we just noted, if we have the predicate p(X) v q(X),
we may circumscribe either predicate p or q or both. Thus, unlike the closed world
assumption, circumscription allows us to describe the instantiations possible across sets of
predicate descriptions.


Further research in circumscriptive logics may be found in Genesereth and Nilsson
(1987). Lifschitz (1986) has made an important contribution by proposing a point-wise
circumscription in which the minimum model can be carried out for particular predicates
and their possible instantiations, rather than for the full domain. Another important contri-
bution is that of Perlis (1988) where reasoning can be about a particular agent’s lack of
knowledge. For further discussion see also (Shapiro 1992).


9.1.4 Set Cover and Logic-Based Abduction (Stern 1996)


As noted in the introduction of this chapter, in abductive reasoning, we have rules of the
form p → q, along with a reasonable belief in q. We wish then to make a case for the truth
of predicate p. Abductive reasoning is not sound, but what is often called reasoning to the
best explanation for the presence of the data q. In this section, we look more closely at the
generation of explanations in domains of abductive inference.


In addition to the accounts of abductive reasoning already presented, AI researchers
have also used set cover and logic supported analyses. The set cover approach to abduc-
tion attempts to explain the act of adopting a revocable belief in some explanatory hypo-
thesis on the grounds that it explains an otherwise unexplainable set of facts. The logic-
based approach to abduction describes inference rules for abduction along with a defini-
tion of their legitimate form(s) for use.


The set cover approach, defines an abductive explanation as a covering of predicates
describing observations by predicates describing hypotheses. Reggia et al. (1983) describe
a cover based on a binary causal relation R where R is a subset of {Hypotheses X
Observations}. Thus, an abductive explanation of a set of observations S2 is another set
of hypotheses S1 sufficient to cause S2. An optimal explanation according to the set
cover approach, is the minimal set cover of S2. The weakness of this approach is that it
reduces explanation to a simple list of causal hypotheses (from S1). In situations where
there are interrelated or interacting causes or where an understanding of the structure or
sequencing of causal interactions is required, the set cover model is inadequate. 


Logic-based approaches to abduction on the other hand, rest on a more sophisticated
notion of explanation. Levesque (1989) defines an abductive explanation of some previ-
ously unexplained set of observations O as a minimal set of hypotheses H consistent with
an agent’s background knowledge K. The hypotheses H together with the background
knowledge K must entail O. More formally:
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abduce(K, O) = H, if and only if


1. K does not entail O
2. H ∪ K entails O
3. H ∪ K is consistent, and
4. No subset of H has properties 1, 2, and 3.


Note that in general many sets of hypotheses may exist; that is, there may be many poten-
tial abductive sets of explanations for a given set of observations O.


The logic-based definition of abductive explanation suggests a corresponding mecha-
nism for explanation discovery in the context of a knowledge-based system. If the explan-
atory hypotheses must entail the observations O, then the way to construct a complete
explanation is to reason backwards from O. As we saw in Sections 3.3 and 8.2, we may
start from the conjunctive components of O and reason back from consequents to their
antecedents.


This backchaining approach also seems natural because the conditionals which
support the backchaining can readily be thought of as causal laws, thus capturing the
pivotal role which causal knowledge plays in the construction of explanations. The model
is also convenient because it fits nicely something with which the AI community already
has experience: backchaining and computational models for deduction.


There are also clever ways of finding the complete set of abductive explanations.
Assumption-based truth-maintenance systems ATMS (deKleer 1986, Section 9.2.3),
contain an algorithm for computing minimal support sets, the set of (non-axiom)
propositions that logically entail a given proposition in a theory. To find all possible
abductive explanations for a set of observations, we merely take the Cartesian product
over the support sets.


As simple, precise, and convenient as the logic-based account of abduction is, there
are two related shortcomings: high computational complexity and semantic weakness.
Selman and Levesque (1990) found the complexity of abduction tasks similar to that
involved in computing support sets for an ATMS. The standard proof that the ATMS prob-
lem is NP-hard depends on the existence of problem instances with an exponential number
of solutions. Selman and Levesque avoid the number of potential solutions complexity
issue by asking whether finding a smaller set of solutions is also NP-hard. Given a Horn
clause knowledge base, see Section 14.2, Selman and Levesque produce an algorithm that
finds a single explanation in order O(k*n) where k indicates the number of propositional
variables and n the number of occurrences of literals. However, when restrictions are
placed on the kinds of explanations sought, the problem again becomes NP-hard, even for
Horn clauses.


One interesting result from the Selman and Levesque (1990) analysis is the fact that
adding certain kinds of goals or restrictions to the abduction task actually makes computa-
tion significantly harder. From the naive viewpoint of the human problem solver, this
added complexity is surprising: the human assumes that the addition of further constraints
to the search for relevant explanations makes the task easier. The reason the abduction task
is harder in the logic-based model is that it only contributes additional clauses to the prob-
lem, not additional structure useful for deriving a solution.
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Explanation discovery in the logic-based model is characterized as the task of finding
a set of hypotheses with certain logical properties. These properties, including consistency
with the background knowledge and entailment of what is to be explained, are meant to
capture the necessary conditions of explanations: the minimal conditions which a set of
explanatory hypotheses must satisfy in order to count as an abductive explanation.
Proponents of this approach believe that by adding additional constraints, the approach
can be extended to provide a characterization of good or reasonable explanations.


One simple strategy for producing quality explanations is to define a set of fact
clauses that are abducible, that is, from which candidate hypotheses must be chosen. This
clause set allows search to be restricted in advance to those factors that can potentially
play a causal role in the chosen domain. Another strategy is to add selection criteria for
evaluating and choosing between explanations. Various selection criteria have been pro-
posed, including set minimality, which prefers one hypothesis set over another, where both
are consistent and entail what is to be explained, if the first is contained in the second. A
simplicity criterion gives preference to parsimonious hypothesis sets, those containing
fewer unverified assumptions (Levesque 1989).


Both minimality and simplicity can be seen as applications of Occam’s razor. Unfor-
tunately, set minimality is of limited power as a search pruning tool; it only eliminates
final explanations which are supersets of existing explanations. Simplicity alone is also of
questionable validity as a search selection criterion. It is not difficult to construct exam-
ples in which an explanation requiring a larger hypothesis set is preferable to some sim-
pler but shallower set of hypotheses. Indeed, complex causal mechanisms will usually
require larger hypothesis sets; however, the abduction of such causal mechanisms may
well be justified, particularly when the presence of certain key elements of that mecha-
nism have already been verified by observation.


Two other mechanisms for explanation selection are also interesting because they
take into account both properties of the hypothesis set as well as properties of the proof
procedure. First, cost-based abduction places a cost on potential hypotheses as well as a
cost on rules. The total cost of the explanation is computed on the basis of the total cost of
the hypotheses plus the cost of the rules used to abduce the hypotheses. Competing
hypothesis sets are then compared according to cost. One natural heuristic that can be
attached to this scheme is the probabilistic one (Charniak and Shimony 1990). Higher
costs for hypotheses represent less likely events; higher costs for rules represent less prob-
able causal mechanisms. Cost-based metrics can be combined with least-cost search algo-
rithms, such as best-first search, Chapter 4, considerably reducing the computational
complexity of the task.


A second mechanism, coherence-based selection, is particularly appealing when what
is to be explained is not a simple proposition but rather a set of propositions. Ng and
Mooney (1990) have argued that a coherence metric is superior to a simplicity metric for
choosing explanations in the analysis of natural language text. They define coherence as a
property of a proof graph where explanations with more connections between any pair of
observations and fewer disjoint partitions are more coherent. The coherence criterion is
based on the heuristic assumption that what we are asked to explain is a single event or
action with multiple aspects. The justification for a coherence metric in natural language
understanding is based on Gricean felicity conditions, that is, the speaker’s obligation to
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be coherent and pertinent (Grice 1975). It is not difficult to extend their argument to a
variety of other situations. For example, in diagnosis, the observations which comprise the
initial set of things to be explained are brought together because they are believed to be
related to the same underlying fault or failure mechanism.


In Section 9.1 we considered extensions to traditional logic that supported reasoning
with uncertain or missing data. We next describe non-logic alternatives for reasoning in
situations of uncertainty, including the Stanford certainty factor algebra, reasoning with
fuzzy sets, and the Dempster-Shafer theory of evidence.


9.2 Abduction: Alternatives to Logic


The logic-based approaches of Section 9.1 are cumbersome and computationally intracta-
ble for many applications, especially expert systems. Alternatively, several early expert
system projects, e.g., PROSPECTOR, attempted to adapt Bayesian techniques, Section
9.3, for abductive inference. The independence assumptions, continuous updates of statis-
tical data, and the calculations required to support stochastic inference algorithms limits
this approach. An alternative inference mechanism, designed to aliminate these con-
straints, was used at Stanford for the development of early expert systems, including
MYCIN (Buchanan and Shortliffe 1984). 


When reasoning with heuristic knowledge, human experts are able to give adequate
and useful estimates of their confidences in rule relationships. Humans weight conclusions
with terms like highly probable, unlikely, almost certainly, or possible. These weights are
clearly not based in careful analysis of probabilities. Instead, they are themselves heuris-
tics derived from experience in reasoning about the problem domain. In Section 9.2 we
introduce three methodologies for abductive inference: Stanford certainty theory, fuzzy
reasoning, and the Dempster–Shafer theory of evidence. In Section 9.3 we present sto-
chastic approaches to uncertainty.


9.2.1 The Stanford Certainty Factor Algebra


Stanford certainty theory is based on a number of observations. The first is that in tradi-
tional probability theory, the sum of confidence for a relationship and confidence against
the same relationship must add to one. However, it is often the case that a human expert
might have confidence 0.7 (of 1.0) that some relationship is true and have no feeling at all
of it being not true. A further assumption that underpins certainty theory is that the knowl-
edge content of the rules is much more important than the algebra for computing the con-
fidences. Confidence measures correspond to the informal evaluations that human experts
attach to their conclusions, such as “it is probably true”, “it is almost certainly true”, or “it
is highly unlikely”. 


The Stanford certainty theory makes some simple assumptions for creating confi-
dence measures and has some equally simple rules for combining these confidences as the
program moves toward its conclusion. The first assumption is to split “confidence for”
from “confidence against” a relationship:
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Call MB(H⏐E) the measure of belief of a hypothesis H given evidence E.
Call MD(H⏐E) the measure of disbelief of a hypothesis H given evidence E.


Now either:


1 > MB(H⏐E) > 0 while MD(H⏐E) = 0, or
1 > MD(H⏐E) > 0 while MB(H⏐E) = 0. 


These two measures constrain each other in that a given piece of evidence is either for or
against a particular hypothesis, an important difference between certainty theory and
probability theory. Once the link between measures of belief and disbelief has been
established, they may be tied together again, by:


CF(H⏐E) = MB(H⏐E) − MD(H⏐E).


As the certainty factor (CF) approaches 1, the evidence is stronger for a hypothesis;
as CF approaches −1, the confidence against the hypothesis gets stronger; and a CF
around 0 indicates that either little evidence exists for or against the hypothesis or that the
evidence for and against the hypothesis is balanced. 


When experts put together a rule base, they must agree on a CF to go with each rule.
This CF reflects their confidence in the rule’s reliability. Certainty measures may be
adjusted to tune the system’s performance, although slight variations in the confidence
measure have been shown to have little effect on the overall running system. This role of
certainty measures also confirms the belief that “the knowledge gives the power,” that is,
the integrity of the knowledge itself best supports the production of correct diagnoses. 


The premises for each rule are formed of ands and ors of a number of facts. When a
production rule is used, the certainty factors associated with each condition of the premise
are combined to produce a certainty measure for the overall premise as follows. For P1
and P2, premises of the rule:


CF(P1 and P2) = MIN(CF(P1), CF(P2)), and 
CF(P1 or P2) = MAX(CF(P1), CF(P2)).


The combined CF of the premises, using the above rules, is then multiplied by the CF
of the rule itself to get the CF for the conclusions of the rule, given those premises. For
example, consider the rule in a knowledge base:


(P1 and P2) or P3 → R1 (.7) and R2 (.3) 


where P1, P2, and P3 are premises and R1 and R2 are the conclusions of the rule, having
CFs 0.7 and 0.3, respectively. These numbers are added to the rule when it is designed and
represent the expert’s confidence in the conclusion if all the premises are known with
complete certainty. If the running program has produced P1, P2, and P3 with CFs of 0.6,
0.4, and 0.2, respectively, then R1 and R2 may be added to the collected case-specific
results with CFs 0.28 and 0.12, respectively. Here are the calculations for this example:
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CF(P1(0.6) and P2(0.4)) = MIN(0.6,0.4) = 0.4.
CF((0.4) or P3(0.2)) = MAX(0.4,0.2) = 0.4.


The CF for R1 is 0.7 in the rule, so R1 is added to the set of case-specific knowledge 
with the associated CF of (0.7) × (0.4) = 0.28.
The CF for R2 is 0.3 in the rule, so R2 is added to the set of case-specific knowledge
with the associated CF of (0.3) × (0.4) = 0.12. 


One further measure is required: how to combine multiple CFs when two or more
rules support the same result R. This rule reflects the certainty theory analog of the
probability theory procedure of multiplying probability measures to combine independent
evidence. By using this rule repeatedly one can combine the results of any number of rules
that are used for determining a result R. Suppose CF(R1) is the present certainty factor
associated with result R and a previously unused rule produces result R (again) with
CF(R2); then the new CF of R is calculated by:


CF(R1) + CF(R2) − (CF(R1) × CF(R2)) when CF(R1) and CF(R2) are positive,
CF(R1) + CF(R2) + (CF(R1) × CF(R2)) when CF(R1) and CF(R2) are negative,


and


otherwise, where ⏐X⏐ is the absolute value of X.
Besides being easy to compute, these combination equations have other desirable


properties. First, the CFs that result from applying this rule are always between 1 and −1.
Second, the result of combining contradictory CFs is that they cancel each other, as is
desired. Finally, the combined CF measure is a monotonically increasing (decreasing)
function in the manner one would expect for combining evidence.


Finally, the confidence measures of the Stanford certainty factor tradition are a human
(subjective) estimate of symptom/cause probability measures. As noted in Section 5.4, in
the Bayesian tradition if A, B, and C all influence D, we need to isolate and appropriately
combine all the prior and posterior probabilities, including P(D), P(D|A), P(D|B),
P(D|C), P(D|A,B), etc. when we want to reason about D. The Stanford Certainty Factor
tradition allows the knowledge engineer to wrap all these relationships together into one
confidence factor, CF, attached to the rule; that is, if A and B and C then D (CF). It is
felt that this simple algebra better reflects how human experts combine and propagate
multiple sets of beliefs.


Certainty theory may be criticized as being excessively ad hoc. Although it is defined
in a formal algebra, the meaning of the certainty measures is not as rigorously founded as
is formal probability theory. However, certainty theory does not attempt to produce an
algebra for “correct” reasoning. Rather it is the “lubrication” that lets the expert system
combine confidences as it moves along through the search space. Its measures are ad hoc
in the same sense that a human expert’s confidence in his or her results is


CF R1( ) CF R2( )+
1 MIN | CF(R1( )–  | , | CF(R2) | )---------------------------------------------------------------------------------------
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approximate, heuristic, and informal. When MYCIN is run, the CFs are used in the heuris-
tic search to give a priority for goals to be attempted and a cutoff point when a goal need
not be considered further. But even though the CF is used to keep the program running
and collecting information, the power of the program remains invested in the quality of
the rules.


9.2.2 Reasoning with Fuzzy Sets


There are two assumptions that are essential for the use of formal set theory. The first is
with respect to set membership: for any element and a set belonging to some universe, the
element is either a member of the set or else it is a member of the complement of that set.
The second assumption, referred to as the law of excluded middle, states that an element
cannot belong to both a set and also to its complement. Both these assumptions are
violated in Lotfi Zadeh’s fuzzy set theory. In fact, the sets and reasoning laws of traditional
set theory are referred to as crisp, from the fuzzy set viewpoint.


Zadeh’s main contention (Zadeh 1983) is that, although probability theory is
appropriate for measuring randomness of information, it is inappropriate for measuring
the meaning of information. Indeed, much of the confusion surrounding the use of English
words and phrases is related to lack of clarity (vagueness) rather than randomness. This is
a crucial point for analyzing language structures and can also be important in creating a
measure of confidence in production rules. Zadeh proposes possibility theory as a measure
of vagueness, just as probability theory measures randomness. 


Zadeh’s theory expresses lack of precision in a quantitative fashion by introducing a
set membership function that can take on real values between 0 and 1. This notion of a
fuzzy set can be described as follows: let S be a set and s a member of that set. A fuzzy
subset F of S is defined by a membership function mF(s) that measures the “degree” to
which s belongs to F.


A standard example of a fuzzy set, as presented in Figure 9.6, is for S to be the set of
positive integers and F to be the fuzzy subset of S called small integers. Now various
integer values can have a “possibility” distribution defining their “fuzzy membership” in
the set of small integers: mF (1) = 1.0, mF (2) = 1.0, mF (3) = 0.9, mF(4) = 0.8, ... ,
mF (50) = 0.001, etc. For the statement that positive integer X is a small integer, mF
creates a possibility distribution across all the positive integers (S).


Fuzzy set theory is not concerned with how these possibility distributions are created,


Figure 9.6 The fuzzy set representation 
for small integers.
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but rather with the rules for computing the combined possibilities over expressions that
contain fuzzy variables. Thus, it includes rules for combining possibility measures for
expressions containing fuzzy variables; in fact, the laws for the or, and, and not of these
expressions are similar to those just presented for the Stanford certainty factor algebra; see
Section 9.2.1. 


For the fuzzy set representation of the set of small integers, Figure 9.6, each integer
belongs to this set with an associated confidence measure. In the traditional logic of
“crisp” sets, the confidence of an element being in a set must be either 1 or 0. Figure 9.7
offers a set membership function for the concept of short, medium, and tall male humans.
Note that any one person can belong to more than one set, for example, a 5' 9" male
belongs to both the set of medium as well as to the set of tall males.


We next demonstrate rules for combining and propagating fuzzy measures by present-
ing part of a problem, now classic in the fuzzy set literature, a control regime for an
inverted pendulum. Figure 9.8 presents a pendulum, inverted, which we desire to keep in
balance and pointing upward. We keep the pendulum in balance by moving the base of the
system to offset the force of gravity acting on the pendulum. There are sets of differential
equations that can deterministically keep the pendulum in equilibrium (Ross 1995). The


Figure 9.7 A fuzzy set representation 
for the sets short, median, 
and tall males.
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Figure 9.8 The inverted pendulum
and the angle θ and dθ/dt
input values.
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advantage of the fuzzy approach to controlling this pendulum system is that an algorithm
may be established to control the system efficiently and in real time. We next describe this
control regime.


We simplify the pendulum problem by presenting it in two dimensions. These two
measurements are used as input values to the controller, as may be seen in Figure 9.9:
First, the angle θ, the deviation of the pendulum from the vertical, and second, the speed,
dθ/dt, at which the pendulum is moving. Both these measures are positive in the quadrant
to the right of vertical and negative to the left. These two values are given to the fuzzy
controller at each iteration of the system. The output of the controller is a movement and a
direction for the base of the system, instructions that are intended to keep the pendulum in
balance.


To clarify the actions of the fuzzy controller we describe the fuzzy set solution pro-
cess. Data describing the state of the pendulum, θ and dθ/dt, are interpreted as fuzzy mea-
sures, see Figure 9.9, and presented to a fuzzy rule set. This step is often made very
efficient by use of a structure called a fuzzy associative matrix or FAM, Figure 9.12, where
input/output relations are directly encoded. Rules are not chained together as in traditional
rule-based problem solving. Rather, all matched rules fire and then their results are com-
bined. This result, usually represented by an area of the fuzzy output parameter space, Fig-
ure 9.10, is then defuzzified to return the control response. Note that both the original input
and eventual output of the controller are crisp values. These are exact readings of some
monitor, the inputs, and precise instructions for control actions, the output.


Figure 9.9 The fuzzy regions for the input
values θ (a) and dθ/dt (b).
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Figure 9.10 The fuzzy regions of the output
value u, indicating the movement
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We next describe the fuzzy regions for the input values, θ and dθ/dt. This example
simplifies the situation, for example, in the number of fuzzy regions of input values, but
shows the full cycle of rule application and the response of the controller. The input value
θ is partitioned into three regions, Negative, Zero, and Positive, where θ ranges between
−2 and +2 radians, as may be seen in Figure 9.9a. Figure 9.9b represents the three regions
into which the second input value, dθ/dt, is partitioned, again Negative, Zero, and Posi-
tive, ranging between −5 and +5 degrees per second.


Figure 9.10 represents the partitioning of the output space, where we use the middle
five regions, Negative Big, Negative, Zero, Positive, and Positive Big. The measure,
between −24 and +24 represents the movement and direction of each response. 


Suppose the simulation begins and the first values given to the controller are θ = 1
and dθ/dt = −4. Figure 9.11 reflects the fuzzification of these input measures. In each situ-
ation, the input value impacts two regions of the fuzzy input space. For θ, the values are
Zero, with 0.5, and Positive, with 0.5 possibility measures. For dθ/dt, they are Negative
with 0.8, and Zero with 0.2 possibility measures.


Figure 9.12 presents a simplified form of the fuzzy associative matrix for this prob-
lem. The input values to the table for θ, or x1, are down the left side, and for dθ/dt, or x2,


Figure 9.11 The fuzzification of the input 
measures x1=1, x2 = -4.
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are across the top of the matrix. The 3 × 3 table of the lower right corner of the FAM then
gives the output values. For example, if the θ is Positive, and dθ/dt is Negative, the FAM
returns the value of Zero movement of the pendulum system. Note that the response still
must be defuzzified using the Zero output region of Figure 9.10.


In this case, because each input value touched on two regions of the input space, four
rules must be applied. As noted above, the combination rules for fuzzy systems are similar
to those of the Stanford certainty factor algebra. In fact, Zadeh (Buchanan and Shortliffe
1984) was the first (historically) to propose these combination rules for the algebra of
fuzzy reasoning. If the measures of two premises are ANDed together, the minimum of
their measures is taken as the measure of the rule. If two premises are ORed, the maxi-
mum of their measures is taken.


In our example, all the premise pairs are ANDed together, so the minimum of their
measures is taken as the measure of the rule result:


IF x1 = P AND x2 = Z THEN u = P
min(0.5, 0.2) = 0.2 P


IF x1 = P AND x2 = N THEN u = Z
min(0.5, 0.8) = 0.5 Z


IF x1 = Z AND x2 = Z THEN u = Z
min(0.5, 0.2) = 0.2 Z


IF x1 = Z AND x2 = N THEN u = N
min(0.5, 0.8) = 0.5 N


Next the output results are combined. In this example, we union together the two
areas of Figure 9.10, indicated by the results of this set of two rules firing. There are a
number of possible defuzzification techniques (Ross 1995). We have choosen one of the
commonest, the centroid method. To use this method the centroid of the union of the areas
of the output values becomes the final value the controller applies to the pendulum. The
union, as well as the centroid for the union, are presented in Figure 9.13. After this output
or result is applied to the system, θ and dθ/dt are sampled again and the control cycle is
repeated.


There are a number of issues we have not addressed in describing fuzzy reasoning sys-
tems, including patterns of oscillations within the convergence process and optimum sam-
pling rates. Fuzzy systems, especially in the area of control, offer engineers a powerful and
efficient tool for dealing with imprecision in measurement. 


9.2.3 The Dempster–Shafer Theory of Evidence


To this point in our discussion of reasoning under uncertainty, we described techniques
which consider individual propositions and assign to each a causal influence or a numeric
estimate of the degree of belief that we might have, given sets of evidence. One of the lim-
itations of probabilistic approaches to uncertainty is their use of a single quantity to mea-
sure what may be a very complex situation. Often, uncertainty results from a combination
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of missing evidence, the inherent limitations of heuristic rules, and the limitations of our
own knowledge. 


An alternative approach, called the Dempster–Shafer theory of evidence, considers
sets of propositions and assigns to each of them an interval [belief, plausibility] within
which the degree of belief for each proposition must lie. This belief measure, denoted bel,
ranges from zero, indicating no evidence of support for a set of propositions, to one,
denoting certainty. The plausibility of a proposition p, pl(p), is defined:


pl(p) = 1 − bel(not (p))


Thus, plausibility also ranges between zero and one and reflects how evidence of not (p)
relates to the possibility for belief in p. If we have certain evidence of not (p) then


Figure 9.13 The fuzzy consequents (a) and their
union (b). The centroid of the union
(−2) is the crisp output.
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bel(not(p)) will be one and pl(p) will be zero. The only possible value for bel(p) is
also zero.


Suppose we have two competing hypotheses h1 and h2. When we have no information
supporting either hypothesis, they each have the belief/plausibility range [0,1]. As evi-
dence is gathered, we expect these intervals to shrink, representing the increased confi-
dence for the hypotheses. In a Bayesian domain, we would probably begin (with no
evidence) by distributing the prior probabilities equally among the two hypotheses, giving
each p(hi) = 0.5, say. Dempster–Shafer makes it clear that we have no evidence when we
start; the Bayesian approach, on the other hand, can result in the same probability measure
no matter how much data we have. Thus, Dempster–Shafer can be very useful when it is
important to make a decision based on the amount of evidence that has been collected.


To summarize, Dempster and Shafer address the problem of measuring certainty by
making a fundamental distinction between lack of certainty and ignorance. In probability
theory we are forced to express the extent of our knowledge about an hypothesis h in a
single number, p(h). The problem with this approach, say Dempster and Shafer, is that we
simply cannot always know the values of its supporting probabilities, and therefore, any
particular choice of p(h) may not be justified.


The Dempster–Shafer belief functions satisfy axioms that are weaker than those of
probability theory, that is, it reduces to probability theory when all probabilities are
obtainable. Belief functions allow us to use our knowledge to bound the assignment of
probabilities to events in the absence of exact probabilities.


The Dempster–Shafer theory is based on two ideas: first, the idea of obtaining
degrees of belief for one question from subjective probabilities for related questions, and
second, the use of a rule for combining these degrees of belief when they are based on
independent items of evidence. This combination rule was originally proposed by Demp-
ster (1968). Next, we present an informal example of Dempster–Shafer reasoning, then
present Dempster’s rule, and finally, apply that rule to a more realistic situation.


Suppose I have subjective probabilities for the reliability of my friend Melissa. The
probability that she is reliable is 0.9, and that she is unreliable, 0.1. Suppose Melissa tells
me that my computer was broken into. This statement is true if Melissa is reliable, but it is
not necessarily false if she is unreliable. So Melissa’s testimony alone justifies a degree of
belief of 0.9 that my computer was broken into and a 0.0 belief that it was not. Belief of
0.0 does not mean that I am sure that my computer was not broken into, as a probability of
0.0 would. It merely means that Melissa’s testimony gives me no reason to believe that my
computer was not broken into. The plausibility measure, pl, in this situation is:


pl(computer_broken_into) = 1 − bel(not (computer_broken_into)) = 1 − 0.0


or 1.0, and my belief measure for Melissa’s testimony is [0.9 1.0]. Note that there is still
no evidence that my computer was not broken into.


We next consider Dempster’s rule for combining evidence. Suppose my friend Bill
also tells me that my computer was broken into. Suppose the probability that Bill is reli-
able is 0.8 and that he is unreliable is 0.2. I also must suppose that Bill’s and Melissa’s tes-
timonies about my computer are independent of each other; that is, they have separate
reasons for telling me that they think my computer was broken into. The event that Bill is
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reliable must also be independent of Melissa’s reliability. The probability that both Bill
and Melissa are reliable is the product of their reliabilities, or 0.72; the probability that
they both are unreliable is the product 0.02. The probability that at least one of the two is
reliable is 1 − 0.02, or 0.98. Since they both said that my computer was broken into and
there is a probability of 0.98 that at least one of them is reliable, I will assign to the event
of my computer being broken into a [0.98 1.0] degree of belief.


Suppose that Bill and Melissa disagree on whether my computer was broken into:
Melissa says that it was, and Bill says that it was not. In this case, they cannot both be cor-
rect and they cannot both be reliable. Either both are unreliable or only one is reliable. The
prior probability that only Melissa is reliable is 0.9 × (1 − 0.8) = 0.18, that only Bill is reli-
able is 0.8 × (1 − 0.9) = 0.08, and that neither is reliable is 0.2 × 0.1 = 0.02. Given that at
least one is not reliable, (0.18 + 0.08 + 0.02) = 0.28, we can also compute the posterior
probability that only Melissa is reliable as 0.18 / 0.28 = 0.643 and my computer was bro-
ken into, or the posterior probability that only Bill was right, 0.08 / 0.28 = 0.286, and my
computer was not broken into.


We have just used the Dempster rule to combine beliefs. When Melissa and Bill both
reported the computer break-in, we summed the three hypothetical situations that sup-
ported the break-in: Bill and Melissa are both reliable; Bill is reliable and Melissa not; and
Melissa is reliable and Bill not. The belief, 0.98, was the sum of these possible supporting
hypothetical scenarios. In the second use of the Dempster rule, the witnesses disagreed.
Again we summed all possible scenarios. The only impossible situation was that they were
both reliable; thus either Melissa was reliable and Bill not, Bill was reliable and Melissa
not, or neither was reliable. The sum of these three gives a belief of break-in of 0.64. The
belief that my computer was not broken into (Bill’s opinion) was 0.286; since the plausi-
bility of break-in is 1 − bel(not(break in)) or 0.714, the belief measure is [0.28 0.714].


To use the Dempster rule, we obtain degrees of belief for one question (Was my com-
puter broken into?) from probabilities for another question (Are the witnesses reliable?).
The rule begins with the assumption that the questions for which we have probabilities are
independent, but that this independence is only a priori. It disappears when we have con-
flict between the different items of evidence.


Using the Dempster–Shafer approach in a specific situation involves solving two
related problems. First, we sort the uncertainties of the situation into a priori independent
pieces of evidence. Second, we carry out Dempster’s rule. These two tasks are related:
Suppose, again, that Bill and Melissa told me, independently, that they believed my com-
puter was broken into. Suppose also that I had called a repair person to check my com-
puter, and that both Bill and Melissa had witnessed this. Because of this common event, I
can no longer compare degrees of belief. However, if I consider explicitly the possibility
of the repair person’s working on my computer, then I have three independent items of
evidence: Melissa’s reliability, Bill's reliability, and evidence for the presence of the repair
person, which I can then combine with Dempster’s rule. 


Suppose we have an exhaustive set of mutually exclusive hypotheses we call Q. Our
goal is to attach some measure of belief, m, to the various subsets Z of Q; m is sometimes
called the probability density function for a subset of Q. Realistically, not all evidence is
directly supportive of individual elements of Q. In fact, evidence most often supports dif-
ferent subsets Z of Q. In addition, since the elements of Q are assumed to be mutually
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exclusive, evidence in favor of some may have an effect on our belief in others. In a purely
Bayesian system, Section 9.3, we address both of these situations by listing all the combi-
nations of conditional probabilities. In the Dempster–Shafer system we handle these inter-
actions by directly manipulating the sets of hypotheses. The quantity mn(Z) measures the
amount of belief that is assigned to the subset Z of hypotheses, and n represents the num-
ber of sources of evidence.


Dempster’s rule states: 


For example, the belief in an hypothesis Z, with n = 3 sources of evidence, m3(Z), is the
sum of the products of the hypothetical situations, m1(X) and m2(Y), whose co-occurrence
supports Z, that is, X ∩ Y = Z. The denominator of Dempster’s rule acknowledges, as we
see in the following example, that X and Y can have an empty intersection, and the sum of
the confidences must be normalized by one minus the sum of these values.


We next apply Dempster’s rule to a situation of medical diagnosis. Suppose Q repre-
sents the domain of our focus, containing four hypotheses: that a patient has a cold (C), flu
(F), migraine headaches (H), or meningitis (M). Our task is to associate measures of belief
with hypothesis sets within Q. As just noted, these are hypothesis sets since evidence need
not support individual hypotheses exclusively. For example, having a fever could support
{C,F,M}. Since the elements of Q are treated as mutually exclusive hypotheses, evidence
in favor of some may affect belief in others. As already noted, the Dempster–Shafer
approach addresses interactions by handling the sets of hypotheses directly.


For the probability density function, m, and all subsets Z of the set Q, the quantity
m(qi) represents the belief that is currently assigned to each qi of Q with the sum of all the
m(qi) equal to one. If Q contains n elements, then there are 2n subsets of Q. Even though
addressing 2n values may appear daunting, it usually turns out that many of the subsets
will never occur. Thus, there is some simplification of the solution process since these val-
ues can be ignored, because they have no utility in the problem domain. Finally, the plau-
sibility of Q is pl(Q) = 1 − Σ m(qi), where the qi are the sets of hypotheses that have some
supporting belief. If we have no information about any hypotheses, as is often the case
when we start a diagnosis, then pl(Q) = 1.0.


Suppose the first piece of evidence is that our patient has a fever, and that this
supports {C,F,M} at 0.6. We call this first belief m1. If this is our only hypothesis, then
m1{C,F,M} = 0.6, where m1(Q) = 0.4, to account for the remaining distribution of belief. It
is crucial to note that m1(Q) = 0.4 represents the remainder of our belief distribution, that
is, all other possible beliefs across Q and not our belief in the complement of {C,F,M}.


Suppose that we now acquire some new data for our diagnosis, say that the patient has
extreme nausea, which suggests {C,F,H} with support level 0.7. For this belief, call it m2,
we have m2{C,F,H} = 0.7 and m2(Q) = 0.3. We use Dempster’s rule to combine these two
beliefs, m1 and m2. Let X be the set of subsets of Q to which m1 assigns a nonzero value
and Y be the set of subsets of Q to which m2 assigns a nonzero value. We then create a
combination belief, m3 defined on subsets Z of Q by using Dempster’s rule.


mn Z( )
Σx Y∩ Z= mn 2– X( )mn 1– Y( )


1 Σx Y∩ φ= mn 2– X( )mn 1– Y( )–
------------------------------------------------------------------------------=
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In applying Dempster’s rule to the diagnoses, first note that there are no sets X ∩ Y
that are empty, so the denominator is 1. The belief distribution for m3 is seen in Table 9.1.


m1 m2 m3


m1{C,F,M} = 0.6 m2{C,F,H} = 0.7 m3{C,F} = 0.42


m1(Q) = 0.4 m2{C,F,H} = 0.7 m3{C,F,H} = 0.28


m1{C,F,M} = 0.6 m2(Q) = 0.3  m3{C,F,M} = 0.18


m1(Q) = 0.4 m2(Q) = 0.3  m3(Q) = 0.12


Table 9.1      Using Dempster s rule to obtain a belief distribution for m3.


Using Dempster’s rule, the four sets Z, all possible ways of intersecting X and Y, make up
the rightmost column of Table 9.1. Their belief level is computed by multiplying the
beliefs for the corresponding elements of X and Y under m1 and m2 respectively. Note also
that, in this example, each set in Z is unique, which is often not the case.


We extend our example one final time to show how empty belief sets are factored into
the analysis. Suppose we have a new fact, the results of a lab culture that are associated
with meningitis. We now have m4{M} = 0.8 and m4(Q) = 0.2. We may use Dempster’s for-
mula to combine m3, the results of our previous analysis, with m4 to get m5, as can be seen
in Table 9.2.


m3 m4          m5 (without denominator)


m3{C,F} = 0.42 m4{M} = 0.8 m5{ } = 0.336


m3(Q) = 0.12 m4{M} = 0.8 m5{M} = 0.096


m3{C,F} = 0.42 m4(Q) = 0.2  m5{C,F} = 0.084


m3(Q) = 0.12 m4(Q) = 0.2  m5(Q) = 0.024


m3{C,F,H} = 0.28 m4{M} = 0.8 m5{ } = 0.224


m3(C,F,M) = 0.18 m4{M} = 0.8 m5{M} = 0.144


m3{C,F,H} = 0.28 m4(Q) = 0.2  m5{C,F,H} = 0.056


m3(C.F,M) = 0.18 m4(Q) = 0.2  m5{C,F,M} = 0.036


Table 9.2     Using Dempster s rule to combine m3 and m4 to get m5.


First, note that m5{M} is produced by the intersections of two different pairs of sets,
so the total m5{M} = 0.240. We also have the case where several set intersections produce
the empty set, {}. Thus the denominator for Dempster’s equation is    1  −  (0.336 + 0.224)
=  1 − 0.56 = 0.44. The final combined belief function for m5 is:


m5{M} = 0.545 m5{C,F} = 0.191 m5{ } = 0.56
m5{C,F,H} = 0.127 m5{C,F,M} = 0.082 m5(Q) = 0.055
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Three final comments. First, a large belief assigned to the empty set, as in this final
m5{ } = 0.56, indicates that there is conflicting evidence within the belief sets mi. In fact,
we designed our example to show several features of Dempster–Shafer reasoning, and, as
a consequence, sacrificed medical integrity. Second, when there are large hypothesis sets
as well as complex sets of evidence, the calculations for belief sets can get cumbersome,
even though, as pointed out earlier, the amount of computation is still considerably less
than that for Bayesian reasoning. Finally, the Dempster–Shafer approach is a very useful
tool when the stronger Bayesian assumptions may not be justified.


Dempster–Shafer is an example of an algebra supporting the use of subjective proba-
bilities in reasoning. It is sometimes felt that these subjective probabilities better reflect
human expert reasoning. In the final section of Chapter 9 we consider further reasoning
techniques based on extensions of Bayes’ rule, first introduced in Section 5.3.


9.3 The Stochastic Approach to Uncertainty


Using probability theory, we can determine, often from a priori argument, the chances of
events occurring. We can also describe how combinations of events are able to influence
each other. Although the final touches on probability theory awaited the mathematicians of
the early twentieth century, including Fisher, Neyman, and Pearson, the attempt to create a
combinatorial algebra goes back through the middle ages to the Greeks, including Llull,
Porphyry, and Plato (Glymour et al. 1995a). The insight supporting probability theory is
that if we can understand the frequency with which events have occurred in the past we
can use this information (as an inductive bias) to interpret and reason about present data.


In Chapter 5, we noted that there are a number of situations when probabilistic analy-
sis is appropriate. For example, when the world is genuinely random, as in playing a game
with well-shuffled cards, or spinning a fair roulette wheel. Further, when many events in
the world may not be truly random, but it is impossible to know and measure all their
causes and interactions well enough to predict events; statistical correlations are a useful
support for interpreting the world. A further role for statistics is as a basis for automated
induction and machine learning (for example, the ID3 algorithm of Section 10.3). Finally,
recent work has attempted to directly link the notions of probability and causality (Gly-
mour and Cooper 1999, Pearl 2000).


The primary inference mechanism in stochastic domains is some form of Bayes’ rule.
As we noted in Section 5.3, however, the full use of Bayesian inference in complex
domains quickly becomes intractable. Probabilistic graphical models are specifically
designed to address this complexity. Probabilistic graphical models are “...  a marriage
between probability theory and graph theory” (Jordan 1999). 


Probabilistic graphical models are also becoming more important in machine learning
(Chapter 13) because they can address the problems of uncertainty and complexity, prob-
lems that are present, and can be fundamentally limiting, for modern AI. Jordan points out
that the problem of modularity is the cornerstone of graphical modules: simple parts of a
model are combined together using probability theory which supports the consistency of
the system as a whole and at the same time integrates the graphical model with the data of
an application (Jordan 1999). At the same time graph theory offers graphical models both
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an intuitive way of representing highly interacting sets of components as well as a data
structure that supports efficient inference algorithms. 


In Section 9.3 and again in Chapter 13 we consider two types of probabilistic graphi-
cal models: the directed, Bayesian belief networks and various forms of Markov models,
and undirected, clique trees and Markov random fields. Markov fields and other undi-
rected graphical models are able to represent many cyclic dependencies that are not possi-
ble to represent with directed graphs. On the other hand, Bayesian belief networks are
directed graphical models that are able to capture implicit inferred relationships and
dependencies more precisely and efficiently than with undirected graphical models.


In the following sections we present Bayesian belief networks and several inference
techniques specifically designed to address the computational complexity of undirected
graphs and/or full Baysian reasoning. Later, in Section 9.3.5, we introduce Markov pro-
cesses and mention several important representational variations. One of these is the
dynamic Bayesian network and another the discrete Markov process.


One of the major limitations of BBNs and traditional HMMs is their inherent proposi-
tional nature. To address this limitation, several attempts have been made to merge prepo-
sitional logic, the full variable-based predicate calculus; with probabilistic graphical
models. We summarize several of these efforts in Section 9.3.7, and visit first-order prob-
abilistic systems again in Chapter 13. 


9.3.1 A Directed Graphical Model: The Bayesian Belief Network


Although Bayesian probability theory, as presented in Chapter 5, offers a mathematical
foundation for reasoning under uncertain conditions, the complexity encountered in apply-
ing it to realistic problem domains can be prohibitive. Fortunately, we can often prune this
complexity by focusing search on a smaller set of more highly relevant events and evi-
dence. One approach, Bayesian belief networks or BBNs (Pearl 1988), offers a computa-
tional model for reasoning to the best explanation of a set of data in the context of the
expected causal relationships of a problem domain.


Bayesian belief networks can dramatically reduce the number of parameters of the
full Bayesian model and show how the data of a domain (or even the absence of data) can
partition and focus reasoning. Furthermore, the modularity of a problem domain often
allows the program designer to make many independence assumptions not allowed in a
full Bayesian treatment. In most reasoning situations, it is not necessary to build a large
joint probability table in which the probabilities for all possible combinations of events
and evidence are listed. Rather, human experts are able to select the local phenomena that
they know will interact and obtain probability or influence measures that reflect only these
clusters of events. Experts assume all other events are either conditionally independent or
that their correlations are so small that they may be ignored. BBNs make these intuitions
precise.


As an example Bayesian belief network, consider again the traffic problem of Section
5.4, represented by Figure 9.14. Recall that road construction was C, an accident, A, the
presence of orange barrels, B, bad traffic, T, and flashing lights was L. To calculate the
joint probability of all the parameters of the example, taking the full Bayesian approach,
required knowledge or measurements for all parameters being in particular states. Thus,
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the joint probability, using a topologically sorted order for variables, is: 


p(C,A,B,T,L) = p(C) p(A|C) p(B|C,A) p(T|C,A,B) p(L|C,A,B,T)


The number of parameters in this joint probability is 25 or 32. This table is exponential in
the number of parameters involved. For a problem of any complexity, say with thirty or
more parameters, the joint distribution table would have more than a billion elements! 


Note, however, that if we can support the assumption that the parameters of this prob-
lem are only dependent on the probabilities of their parents, that is, we can assume that
nodes are independent of all non-descendents, given knowledge of their parents, the calcu-
lation of p(C,A,B,T,L) becomes:


p(C,A,B,T,L) = p(C) * p(A) * p(B|C) * p(T|C,A) * p(L|A)


To better see the simplifications we have made, consider p(B|C,A) from the previous
equation. We have reduced this to p(B|C) in our most recent equation. This is based on the
assumption that road construction is not a causal effect of there being an accident. Sim-
ilarly, the presence of orange barrels is not a cause of bad traffic, but construction and
accident are, giving as a result p(T|C,A) rather than p(T|C,A,B). Finally, the probabilistic
relationship p(L|C,A,B,T) is reduced to p(L|A). The probability distribution for
p(C,A,B,T,L) now has only 20 (rather than 32) parameters. If we move to a more realistic
problem, with 30 variables say, and if each state has at most two parents, there will be at
most 240 elements in the distribution. If each state has three parents, the maximum is 490
elements in the distribution: considerably less than the billion required for the full Baye-
sian approach!


We need to justify this dependence of a node in a belief network on its parents alone.
Links between the nodes of a belief network represent the conditioned probabilities for
causal influence. Implicit in expert reasoning using causal inference is the assumption that
these influences are directed, that is, the presence of some event somehow causes other
events in the network. Further, causal influence reasoning is not circular in that some
effect cannot circle back to cause itself. For these reasons, Bayesian belief networks will
have a natural representation as a directed acyclic graph or DAG (Section 3.1.1), where
coherent patterns of reasoning are reflected as paths through cause/effect relationships.
Bayesian belief networks are one instance of what are often called graphical models.


Figure 9.14 The graphical model for the traffic problem 
first introduced in Section 5.3.
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In the case of the traffic example we have an even stronger situation, with no undi-
rected cycles. This allows us to calculate very simply the probability distribution at every
node. The distribution of nodes with no parents are directly looked up. The values of child
nodes are computed using only the probability distributions of each child’s parents by
doing the appropriate computations on the child’s conditional probability table and the
parent’s distributions. This is possible because we don’t have to worry about correlations
between the parents of other non-descendent nodes. This produces a natural abductive
separation where accident has no correlation at all with the presence of orange barrels,
as is seen in Figure 9.14. 


We summarize our discussion of BBNs with the following definition.


D E F I N I T I O N


BAYESIAN BELIEF NETWORK


A graphical model is called a Bayesian belief network (BBN) if its graph, annotated
with conditional probabilities, is directed and acyclic. Furthermore, BBNs assume
nodes are independent of all their non-descendents, given knowledge of their parents. 


A dynamic (or temporal) Bayesian network (DBN) is a sequence of identical Bayesian
networks whose nodes are linked in the (directed) dimension of time. We consider the
general DBM further in Section 9.3.4 and in Chapter 13; see also Friedman (1998) or
Ghahramani and Jordan (1997).


In the next section we consider an assumption implicit in much of expert human rea-
soning: that the presence or absence of data in a (implicitly causal) domain can partition
and focus the search for explanations within that domain. This fact also has important
complexity implications for exploring a search space. 


9.3.2 Directed Graphical Models: d-separation


An important advantage of representing application domains as graphical models is that
the presence or absence of information can lead to partitioning the model and as a result
controlling the complexity of the search. We next present several examples of this, and
then offer the definition of d-separation that supports these intuitions.


Let us consider the diagnosis of oil problems in a car engine: suppose that worn pis-
ton rings cause excessive oil consumption which in turn causes a low oil level reading
for the car. This situation is reflected by Figure 9.15a, where A is worn piston rings, V is
excessive oil consumption, and B is low oil level. Now, if we do not know anything
about excessive oil consumption, then we have a causal relationship between worn
piston rings and low oil level. However, if some test gives knowledge of the state of
excessive oil consumption, then worn piston rings and low oil level are independent
of each other.
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In a second example: suppose that worn piston rings can cause both blue exhaust
as well as low oil level. This situation is shown in Figure 9.15b, with V as worn piston
rings, A as blue exhaust, and B is low oil level. If we know that worn piston rings is
either true or false then we don’t know whether blue exhaust and low oil level are cor-
related; if we have no information on worn piston rings then blue exhaust and low oil
level are correlated. 


Finally, if low oil level can be caused by either excessive oil consumption or by an
oil leak then, given knowledge of whether there is low oil level, its two possible causes
are correlated. If the state of low oil level is unknown, then its two possible causes are
independent. Furthermore, if low oil level is true then establishing oil leak as true will
explain away excessive oil consumption. In either case, information on low oil level is
a key element in the reasoning process. We see this situation in Figure 9.15c, with A as
excessive oil consumption, B as oil leak, and V as low oil level.


We make these intuitions precise by defining the d-separation of nodes in a belief net-
work or other graphical model (after Pearl 1988):


D E F I N I T I O N


d-SEPARATION


Two nodes A and B in a directed acyclic graph are d-separated if every path between
them is blocked. A path is any continuous series of connections in the graph (linking
nodes in any direction, e.g., there is a path from A to B in Figure 9.15b). A path is
blocked if there is an intermediate node V in the path with either of the properties:


Figure 9.15 Figure 9.15a is a serial connection of nodes where influence
runs between A and B unless V is instantiated. Figure 9.15b is
a diverging connection, where influence runs between V s chil-
dren, unless V is instantiated. In Figure 9.15c, a converging
connection, if nothing is known about V then its parents are
independent, otherwise correlations exist between its parents.


A V B V


A B
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the connection is serial or diverging and the state of V is known, or


the connection is converging and neither V nor any of V’s children have evidence.


We give further instances of serial, diverging, and converging node relationships, as well
as how d-separation influences argument paths in the example of Figure 9.16.


Before leaving the graphs of Figure 9.15, we demonstrate how the assumptions of a
Bayesian belief network can simplify the computation of conditional probabilities. Using
Bayes law, any joint probability distribution can be decomposed into a product of condi-
tional probabilities. Thus, in Figure 9.15a. the joint probability of the three variables A, V,
B is:


p(A,V,B) = p(A) p(V|A) p(B|A,V).


We use the assumption of a Bayesian belief network, that the conditional probability
of a variable given knowledge of all its predecessors is equal to its conditional probability
given knowledge of only its parents. As a result, in the equation above p(B|A,V) becomes
p(B|V) because V is a direct parent of B and A is not. The joint probability distributions
for the three networks of Figure 9.15 are:


a) p(A,V,B) = p(A) p(V|A) p(B|V),
b) p(V,A,B) = p(V) p(A|V) p(B|V), and
c) p(A,B,V) = p(A) p(B) p(V|A,B).


As the traffic example showed (Figure 9.14), for larger Bayesian belief networks, many
more variables in the conditional probabilities can be eliminated. It is this simplification
that makes Bayesian belief networks and other graphical models far more statistically
tractable than a full Bayesian analysis. We next present a more complex graphical model,
one containing an undirected cycle, and propose an efficient inference algorithm, clique
tree propagation.


9.3.3 Directed Graphical Models: An Inference Algorithm


The next example, adapted from Pearl (1988), shows a more complex Bayesian network.
In Figure 9.16, the season of the year determines the probability of rain as well as the
probability of water from a sprinkler system. The wet sidewalk will be correlated with
rain or water from the sprinkler. Finally, the sidewalk will be slick depending on whether
or not it is a wet sidewalk. In the figure we have expressed the probability relationship
that each of these parameters has with its parents. Note also that, as compared with the
traffic example, the slippery sidewalk example has a cycle if the graph is undirected.


We now ask the question, how can the probability of wet sidewalk, p(WS), be
described? It can’t be done as previously, where p(W) = p(W|S) p(S) or p(R) = p(R|S)
p(S). The two causes of WS are not mutually independent; for example, if S = summer,
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then p(W) and p(R) could both go up. Thus the complete correlations of the two variables,
along with their further correlation with S, must be calculated. In this situation we can do
it, but, as we will see, this calculation is exponential in the number of possible causes of
WS. The calculation is represented in Table 9.4. We now calculate one entry in that table,
x, where R and W are both true; to make life simpler we assume the season S is either
hot or cold.


x = p( R = t, W = t) for the two (hot, cold) conditions of S, season
  = p( S = hot) p( R = t | S = hot) p( W = t | S = hot) + 
      p( S = cold) p( R = t | S = cold) p( W = t | S = cold)


In a similar fashion the remainder of Table 9.4 can be completed. This makes up the
joint probability for rain and water from the sprinkler. This larger “macro element” repre-
sents p(WS) = p(WS | R,W) p(R,W). We have gotten away with a rather reasonable
calculation here; the problem is, as noted above, that this calculation is exponential in the
number of parents of the state. 


Table 9.4 The probability distribution for p(WS), a function of p(W)
and p(R), given the effect of S. We calculate the effect for x,
where R = t and W = t.


{
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Figure 9.16 An example of a Bayesian probabilistic network, where the
probability dependencies are located next to each node.
This example is from Pearl (1988).
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We call this macro element the combined variable, or clique, for the calculation of
p(WS). We employ this concept of a clique in order to replace the constraint propagation
of the DAG of Figure 9.16 with an acyclic clique tree, as seen in Figure 9.17. The rectan-
gular boxes of Figure 9.17a reflect the variables that the cliques above and below it share.
The table that passes the relevant parameters through to the next clique is exponential in
the number of these parameters. It should also be noted that a linking variable along with
all its parents must be present in the clique. Thus, in setting up a belief network or other
graphical model (the knowledge engineering process), we ought to be careful how many
variables are parents of any state. The cliques will also overlap, as seen in Figure 9.17b, to
pass information through the full tree of cliques, called the junction tree. We next present a
algorithm developed by Laurintzen and Spiegelhalter (1988) that creates a junction tree
from any Bayesian belief network.


1. For all nodes in the belief network make all directed links undirected.


2. For any node draw links between all its parents (the dashed line between R and W
in Figure 9.17b).


3. Look for any cycle in the resulting graph of length more than three and add fur-
ther links that reduce that cycle to three. This process is called triangulation and
is not necessary in the example of Figure 9.17b.


4. Form the junction tree with the resulting triangulated structure. This is done by
finding the maximal cliques (cliques that are complete subgraphs and not sub-
graphs of a larger clique).The variables in these cliques are put into junctions and
the resulting junction tree is created by connecting any two junctions that share at
least one variable, as in Figure 9.17a.


The triangulation process described in step 3 above is critical, as we want the result-
ing junction tree to have minimal computational cost when propagating information.


Figure 9.17 A junction tree (a) for the Bayesian probabilistic network of
(b). Note that we started to construct the transition table for
the rectangle R,W.
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Unfortunately, this decision of deigning optimal cost junction trees is NP hard. Often, for-
tunately, a simple greedy algorithm can be sufficient for producing useful results. Note
that the sizes of the tables required to convey information across the junction tree of Fig-
ure 9.17 are 2*2*2, 2*2*2, and 2*2.


Finally, we take the example network of Figure 9.16 and return to the issue of d-sepa-
ration. Remember, the point of d-separation is that with some information, parts of the
belief network can be ignored in calculating probability distributions.


1. SL is d-separated from R, S, and W, given that WS is known.


2. d-separation is symmetric, that is, S is also d-separated from (and not a possible
explanation of SL), given knowledge of WS.


3. R and W are dependent because of S, but knowing S, R and W are d-separated.


4. If we know WS, then R and W are not d-separated; if we don’t know S, then R
and W are.


5. Given the chain R -> WS -> SL, if we know WS, then R and SL are d-separated.


We must be careful when we know information about the descendents of a particular state.
For example, if we know SL, then R and W are NOT d-separated, since SL is correlated
with WS, and knowing WS, R and W are not d-separated.


A final comment: Bayesian belief networks seem to reflect how humans reason in
complex domains where some factors are known and related a priori to others. As reason-
ing proceeds by progressive instantiation of information, search is further restricted, and
as a result, more efficient. This search efficiency stands in strong contrast to the approach
supported by using a full joint distribution, where more information requires an exponen-
tially larger need for statistical relations and a resulting broader search.


There are a number of algorithms available for building belief networks and propagat-
ing arguments as new evidence is acquired. We recommend especially Pearl’s (1988)
message passing approach and the clique tree triangulation method proposed by Lau-
ritzen and Spiegelhalter (1988). Druzdel and Henrion (1993) have also proposed algo-
rithms for propagating influence in a network. Dechter (1996) presents the bucket
elimination algorithm as a unifying framework for probabilistic inference.


In the next section we introduce dynamic Bayesian networks.


9.3.4 Directed Graphical Models: Dynamic Bayesian Networks


We next consider a generalization of Bayesian belief networks, the dynamic (or temporal)
Bayesian network, or DBN. The idea supporting DBNs is to represent a state of the
domain or an observation time with a set of random variables, not just with a single ran-
dom variable. With this extension Bayesian belief networks can be used to represent the
conditional independence between variables from different perspectives, for example,
across time periods.


Most of the events that we humans encounter, and to which we are expected to react
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intelligently, are temporal: they present themselves across periods of time. Two examples
can be seen in Figures 9.18 and 9.19. In Figure 9.18 we have taken our traffic model of
Figure 9.14 and mapped it across time periods. This might capture a driver’s changing
viewpoint across time, every minute say, is captured by the changing parameters of a
Bayesian network. At the first time period the driver is just aware of slowing down, at the
second time period she notices the presence of orange barrels, at the third time period,
there are even more barrels, etc. The DBN is expected to capture the growing awareness
of road construction, along with a (much) lesser confidence of an accident.


Figure 9.19 is sample data of signals coming from a complex environment. (These are
actually multiple heat, vibration, and other signals coming from the rotor system of a heli-
copter). What the DBN in this situation must measure is how these signals change over
time and advise the controller of the current “running health” of the system. We consider
this example further, as well as define the DBN more precisely, in Section 13.2.


DBNs are most often employed to track two types of time varying systems. First, time
dependent sequences such as described in Figures 9.18 and 9.19, and second phenomena
naturally occurring across time such as phoneme or word sampling in a natural language
analysis application. Note that it is possible to represent correlations between random vari-
ables in the same time slice (instantaneous correlations) with both the directed and undi-
rected edges of graphical models. However, correlations between elements of graphs
reflecting time series data must be captured with directed graphical models.


To summarize: If every edge connecting a series of graphical models representing
time-related data is directed to reflect the time dimension, the model is called a dynamic
Bayesian network. The DBN can also capture non-temporal sequential data such as lan-
guage where the new information reflects change of state of processing. For further detail
on DBNs see Friedman (1998) or Ghahramani and Jordan (1997) and Section 13.2.


Figure 9.19 Typical time series data to be analyzed by 
a dynamic Bayesian network.


Figure 9.18 The traffic problem, Figure 9.14, repre-
sented as a dynamic Bayesian network.
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9.3.5 Markov Models: The Discrete Markov Process


In Section 3.1.2 we presented finite state machines as graphical representations where
states are transitioned depending on the content of an input stream. The states and their
transitions reflect properties of a formal language. We then presented a finite state accep-
tor (the Moore machine), a state machine that was able to “recognize” strings having vari-
ous properties. In Section 5.3 we presented the probabilistic finite state machine, a state
machine where the next state function was represented by a probability distribution on the
current state. The discrete Markov process is a specialization of this approach, where the
system ignores its input values.


Figure 9.20 is a Markov state machine, sometimes called a Markov chain, with four
distinct states. This general class of system may be described at any time period as being
in one of a set of S distinct states, s1, s2, s3, ... , sn. The system undergoes changes of
state, with the possibility of it remaining in the same state, at regular discrete time inter-
vals. We describe the ordered set of times T that are associated with the discrete intervals
as t1, t2, t3, ... , tt. The system changes state according to the distribution of probabilities
associated with each state. We denote the actual state of the machine at time t as σt.


A full probabilistic description of this system requires, in the general case, the specifi-
cation of the present state σt, in terms of all its predecessor states. Thus, the probability of
the system being in any particular state σt is:


p(σt) = p(σt | σt - 1 , σt - 2 , σt - 3 , ...)


where the σt - i are the predecessor states of σt. In a first-order Markov chain, the probabil-
ity of the present state is a function only of its direct predecessor state:


p(σt) = p(σt | σt - 1 )


where σt - 1 precedes σt. (In general, a state in a Markov chain of order n, is dependant on
its preceding n states.) We also assume the right side of this equation is time invariant, i.e.,
we hypothesize that across all time periods of the system, the transitions between


Figure 9.18 A Markov state machine or Markov chain with four states,
s1,...,s4.
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specific states retain the same probabilistic relationships. Based on these assumptions, we
now can create a set of state transition probabilities aij between any two states si and sj:


aij  = p(σt = si | σt - 1 = sj),   1 ≤ i,j ≤ N


Recall that i can equal j, in which case the system remains in the same state. The tradi-
tional constraints remain on these probability distributions; for each state si:


aij ≥ 0, and 


The system we have just described is called a first-order observable Markov model
since the output of the system is the set of states at each discrete time interval, and each
state of the system corresponds to a physical (observable) event. We make the observable
Markov model more formal with a definition and then give an example.


D E F I N I T I O N


(OBSERVABLE) MARKOV MODEL


A graphical model is called an (observable) Markov model if its graph is directed and
the probability of arriving at any state st from the set of states S at a discrete time t is
a function of the probability distributions of its being in previous states of S at previ-
ous times. Each state st of S corresponds to a physically observable situation.


An observable Markov model is first-order if the probability of it being in the present
state st at any time t is a function only of its being in the previous state st - 1 at the
time t - 1, where st and st - 1 belong to the set of observable states S.


Note that any probability distribution has the property of being a Markov model. The
power of this approach comes from the first-order assumptions. As an example of an
observable first-order Markov model, consider the weather at noon, say, for a particular
location. We assume this location has four different discrete states for the variable
weather: s1 = sun, s2 = cloudy, s3 = fog, s4 = precipitation. The time intervals for the
Markov model will be noon each consecutive day. We also assume the transitions between
the states of weather remain constant across time (not true for most locations!), and that
the observable, weather, can remain in the same state over multiple days. This situation is
represented by Figure 9.20, and is supported by the matrix of state transitions aij:


In this aij transition matrix, similar to the finite state machine in Section 3.1.2, the first
row represents the transitions from s1 to each of the states, including staying in the same
state; the second row is the transitions from s2, and so on. The properties required for the
transitions to be probability distributions from each state are met (they sum to 1.0).


aij
i 1=


N


∑ 1=
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s1 s2 s3 s4
s1 0.4    0.3    0.2    0.1


aij      = s2 0.2    0.3    0.2    0.3
s3 0.1    0.3    0.3    0.3
s4 0.2    0.3    0.3    0.2


We now ask questions of our model. Suppose today, s1, is sunny; what is the proba-
bility of the next five days remaining sunny? Or what is the probability of the next five
days being sunny, sunny, cloudy, cloudy, precipitation? To solve this second problem,
we determine the probability and that the first day, s1, is today’s observed sunshine:


O = s1, s1, s1, s2, s2, s4


The probability of these observed states, given the first-order Markov model, M, is:


p(O | M) = p(s1, s1, s1, s2, s2, s4 | M)
= p(s1) x p(s1 | s1) x p(s1 | s1) x p(s2 | s1) x p(s2 | s2) x p(s4 | s2)
= 1 x a11 x a11 x a12 x a22 x a24


              = 1 x (.4) x (.4) x (.3) x (.3) x (.3)
              = .00432


This follows from the first-order Markov assumption where weather each day is a function
(only) of the weather the day before. We also observe the fact that today is sunshine.


We can extend this example to determine, given that we know today’s weather, the
probability that the weather will be the same for exactly the next t days, i.e., that the
weather remains the same until the t + 1 day at which time it is different. For any weather
state si, and Markov model M, we have the observation O:


O = {si, si, si, ... , si, sj}, where there are exactly (t + 1) si, and where si ≠ sj, then:


p(O | M) = 1 x aii
t x (1 - aii)


where aii is the transition probability of taking state si to itself. This value is called the dis-
crete probability density function for the duration of t time periods in state si of model M.
This duration density function is indicative of the state duration in a Markov model. Based
on this value we can calculate, within model M, the expected number of observations of,
or duration di within any state si, given that the first observation is in that state:


where n approaches ∞, or:


=     1


                  1 - aii


di d aii( )
d 1–( ) 1 aii–( )


d 1=


n
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For example, the expected number of consecutive precipitation days, given this model, is
1/(1 - .3) or 1.43. Similarly, the number of consecutive sunny days one might expect with
this model is 1.67. We next summarize various forms of Markov models, many of which
we see in more detail in Chapter 13.


9.3.6 Markov Models: Variations


In the Markov models we have seen to this point, each state corresponds to a discrete
physical - and observable - event, such as the value of weather at a certain time of day.
This class of model is really fairly limited and we now generalize it to a wider class of
models. We describe several of these approaches briefly. Section 13.1 offers a more com-
prehensive presentation of hidden Markov models, along with several important varia-
tions.


Hidden Markov Models


In the Markov models already presented, each state corresponds to a discrete physical and
observable event. In a hidden Markov model, or HMM, the observed values are assumed to
be probabilistic functions of a current hidden state. 


For example, an observed human’s speech sound is a reflection of some phone the
speaker is intending to produce. The uttered sound is only probabilistically related to the
actual state or intent of the speaker. Thus, the HMM is a doubly embedded stochastic pro-
cess where the observable stochastic process (the speaker’s noise) is supported by an
unobservable stochastic process (the speaker’s state or intent). The HMM is a special case
of the DBNs as we see in Section 9.3.2. For more detail on HMMs see Section 13.1 and
13.2 and Rabiner (1989).


Semi-Markov Models


A semi-Markov model is a two-component Markov chain. The first component is respon-
sible for the choice of the next state transition and the second component is responsible
for the transition time. When a semi-Markov model enters a state si it remains in that state
for time ti, which is taken from a state duration probability distribution. Once time ti is
passed, the process transitions to the next state si+1 according to the state transition proba-
bility distribution, and a state transition time, ti+1 is selected again. A semi-Markov model
supports arbitrary state duration probability distributions as compared to the fixed time
transitions specified by traditional Markov models.


Markov Decision Processes


Two other variants of Markov models, used extensively in reinforcement learning, are the
Markov decision process, or MDP, and the partially observable markov decision process,
or POMDP. The MDP is defined on two spaces: the state space for the problem under con-
sideration and the space of possible actions. The transition to a new state in the state space
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is dependent on the current state and current action and is guided by a conditional proba-
bility distribution. At each state a reward is computed given the current state and an action.
Typically, the task of reinforcement learning is to maximize a cumulative reward function
under current conditions. 


While the MDP works with an observed (deterministic) state before using a probabil-
ity based transition matrix to select its next state, the POMDP has only probabilistic
knowledge of its current state (as well as the probabilistic matrix for determining its next
state). Thus the POMDP can prove computationally intractable for complex environ-
ments. We consider MDPs and POMDPs further and reinforcement learning in Sections
10.7 and 13.3.


9.3.7 First-Order Alternatives to BBNs for Probabilistic Modeling


To this point in Section 9.3 we have presented propositional calculus based representa-
tions for reasoning with uncertainty. It is only natural to ask in what sense probabilistic
predicate logic based models might be used for reasoning. The strength of the full predi-
cate logic representation is a declarative semantics along with a variable-based representa-
tional framework.The representational limitations of the traditional propositional logic
based approaches include a limited ability to cope with noise and uncertainty as well as a
static view of representations. 


Thus the Baysian and Markovian models presented in Section 9.3 are limited to a
propositional level representation, where it can be cumbersome to represent general (vari-
able based) relationships with a distribution, for example, ∀X male(X) → smart(X) (0.49
0.51). Many complex problem domains require this level of expressiveness. 


It is also important for complex domains, especially in the areas of diagnosis and
prognosis, to be able to represent repetitive, recursive, and (potentially) infinite structures.
Therefore, if we want to represent systems that change state over time we must have that
representational power. This requires a recursive, or repeat-until-done type control regime.
If we wish to dynamically rebuild a traditional BBN, we are forced to reconstruct the
entire network over time periods because these structures lack a declarative and time-ori-
ented semantics.


Recent research activity has created a variety of important extensions to graphical
models, including a number of first-order (variable-based and recursive) systems. There
are also a number of hierarchical and decomposable Bayesian models. We list several of
these new modeling formalisms that support such a representation. We give examples of
several of these representations when we present probabilistic approaches incorporated
with machine learning in Chapter 13.


Bayesian Network Construction from Knowledge Bases (Haddawy 1994, Ngo and
Haddawy 1997, Ngo et al. 1997).


Haddawy, Ngo and colleagues merge together a first-order logic system with Bayesian
belief networks. As a result, they create a first-order probabilistic logic used as a represen-
tational language to specify a certain class of networks in the form of a knowledge base.
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The formal semantics of the (Bayesian) knowledge base is enforced by using a strictly
defined representational language specifying the sentences of the base. Haddawy and Ngo
provided a provably correct Bayesian network generation algorithm implementing a com-
bination of a formal semantics for the underlying logical language as well as an indepen-
dence semantics for the knowledge base. One feature of the generating algorithm is that it
avoids producing irrelevant nodes for the network by using user specified evidence.


Haddawy and Ngo argue that reasoning becomes very inefficient when a knowledge
base becomes very large. As a remedy they propose to use context information to index
the probabilistic sentences of a knowledge base. When a model generation algorithm con-
structs a network, it omits the sentences from the knowledge base whose context is not rel-
evant to a current task. The resulting model is significantly smaller than if the entire
knowledge base is used for model construction. This approach by Haddawy, Ngo, and col-
leagues is one of the first research attempts in the field of stochastic logic modeling that
explicitly uses contextual information about a domain as a way to focus the knowledge
base on the relevant information and reduce the size of a model necessary to solve a par-
ticular reasoning task.


Bayesian Logic Programs, BLPs (Kersting and DeRaedt 2000).


Bayesian logic programs offer a representational framework including logic programming
and graphical models. More specifically, BLPs combine Bayesian belief networks with
Horn clause logic (Prolog, see Section 14.3). Given a specific query the system generates
a Bayesian network to answer the query using a set of first-order rules with uncertainty
parameters. The resulting representation is easy to interpret and its designers assign it a
model theoretic semantics similar to that seen in Section 2.3.


Probabilistic Relational Models, PRMs (Friedman et al. 1999, Getoor et al. 2001)


Friedman, Getoor, and their colleagues have developed another approach to first-order
probabilistic systems. Rather than creating a declarative logic-like language, PRMs spec-
ify a probability model on classes of objects. PRMs define probability constraints at the
class level so that these constraints can be used with any object from that class. With
PRMs it is also possible to specify probabilistic dependencies between attributes of related
classes. A number of extensions to PRMs allow sub-classing that supports probabilistic
dependencies at appropriate levels of detail (Getoor et al. 2001). Class hierarchies allow
modeling both at the level of individuals (the traditional Bayesian belief network) as well
as for classes. A further extension of PRMs is to treat the relational structures of models
themselves as uncertain rather than fixed. From this perspective there is a close relation-
ship between PRMs and relational databases, as they can have similar structures.


Markov Logic Networks, MLNs (Richardson and Domingos 2006).


Richardson and Domingos propose another probabilistic logic-based system called
Markov logic networks (MLNs). Most of the previous logic-based approaches to stochas-
tic modeling use restricted subsets of general logic, with Horn clauses being the most
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usual representation. In order to remove restrictions on logic, Richardson and Domingos
use the general first-order logic, whose sentences are converted into a conjunctive normal
form (CNF). They also use Markov random fields (Pearl 1988) as a probabilistic counter-
part of logic, another major difference from the previously described systems (Bayesian
belief networks are by far the most used representation). Consequently, the mapping from
logical sentences in CNF to Markov random fields is straightforward. MLNs are the first
theoretical framework with a complete mapping from the first-order predicate calculus
with function symbols to probability distributions.


Loopy Logic (Pless et al. 2006, Chakrabarti et. al. 2006, Sakhanenko et al. 2006)


Loopy logic is a first-order and Turing-complete declarative probabilistic language. It gets
its name from its use of the loopy belief propagation algorithm, Pearl (1998), for infer-
ence. Its logic-based declarative representations are first translated into Markov random
fields. Parameter learning with the expectation maximization (EM) algorithm meshes well
with loopy belief propagation. We demonstrate the loopy logic system, together with its
use of the Markov random field and EM-based parameter learning in Section 13.2.


There are a number of further extensions to traditional BBNs, that make them first-
order and Turing complete. Further examples of first-order stochastic modeling include
the IBAL language of Pffefer (2001), and the Stochastic Lambda Calculus of Pless and
Luger (2002). Object-oriented stochastic representations include (Koller and Pfeffer 1997,
1998; Pfeffer et al 1999; Xiang et al. 2000; Pless et al. 2000). Stochastic methods are
important across the field of AI; see, for example, probabilistic agents (Kosoresow 1993).
We see stochastic methods applied to machine learning in Chapter 13 and to natural lan-
guage processing in Section 15.4. 


9.4 Epilogue and References


From the beginning of the AI research enterprise, there has been an important subset of the
community that feels logic and its extensions offer a sufficient representation for the
characterization of intelligence. Important alternatives to first-order predicate calculus
have been proposed for describing reasoning under conditions of uncertainty:


1. Multiple-valued logics. These extend logic by adding new truth values such as
unknown to the standard values of true and false. This can, for example,
provide a vehicle for distinguishing between assertions that are known to be
false and those that are simply not known to be true.


2. Modal logics. Modal logic adds operators that enable a logic system to deal with
problems of knowledge and belief, necessity and possibility. We discussed modal
operators for unless and is consistent with in the present chapter.


3. Temporal logics. Temporal logics enable logic to quantify expressions with
regard to time, indicating, for example, that an expression is always true or will
be true at some time in the future.
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4. Higher-order logics. Many categories of knowledge involve higher-order con-
cepts, where predicates, and not just variables, may be quantified. Do we really
need higher-order logics to deal with this knowledge, or can it all be done in first-
order logic? If higher-order logics are needed, how may they best be formulated? 


5. Logical formulations of definitions, prototypes, and exceptions. Exceptions
are often seen as a necessary feature of a definitional system. However, careless
use of exceptions undermines the semantics of a representation. Another issue is
the difference between a definition and a prototype, or representation of a typical
individual. What is the exact difference between the properties of a class and the
properties of a typical member? How should prototypical individuals be repre-
sented? When is a prototype more appropriate than a definition?


Logic-based representations continue to be an important area for research (McCarthy
1968, Hayes 1979, Weyhrauch 1980, Moore 1982, Turner 1984). 


There are several other important contributions to truth maintenance system (TMS)
reasoning. Logic-based TMS is based on the work of McAllester (1978). In LTMS rela-
tionships between propositions are represented by clauses which can be used to deduce the
truth values of any of the propositions they describe. Another approach, the multiple belief
reasoner MBR is like the ATMS reasoner (deKleer 1984); similar ideas may be found in
Martins and Shapiro (1983). MBR is based on a logic language called SWM* which
describes knowledge states. Algorithms for inconsistency checking across reasoning in the
knowledge base may be found in Ginsburg (1997) and Martins (1990, 1991). For further
information on the node algebra support for JTMS see Doyle (1983) or Reinfrank (1989).
Default logic allows any theorem inferred in an extension of a system to be admitted as an
axiom for further reasoning. Reiter and Criscuolo (1981) and Touretzky (1986) develop
these issues.


There is a rich literature on nonmonotonic reasoning, belief logics, and truth mainte-
nance, besides the original papers in the area (Doyle 1979; Reiter 1985; deKleer 1986;
McCarthy 1977, 1980). For stochastic models see Probabilistic Reasoning in Intelligent
Systems by Pearl (1988), Readings in Uncertain Reasoning by Shafer and Pearl (1990),
Representations of Commonsense Knowledge by Davis (1990), and numerous articles in
recent AAAI, UAI, and IJCAI proceedings. We recommend The Encyclopedia of Artificial
Intelligence, by Stuart Shapiro (2nd edition, 1992), for coverage of many of the reasoning
models of this chapter. Josephson and Josephson (1994) have edited a collection of papers
in Abductive Inference: Computation, Philosophy, and Technology. Also see Formal Theo-
ries of the Commonsense World (Hobbs and Moore 1985). In Causality, Pearl (2000)
makes a contribution to understanding the notion of cause-effect relations in the world.


Further research in circumscriptive and minimum model logics may be found in Gen-
esereth and Nilsson (1987), Lifschitz (1986), and McCarthy (1986). Another contribution
to circumscriptive inference is Perlis’ (1988) reasoning about a particular agent's lack of
knowledge. Ginsburg (1987), has edited a collection of papers on nonmonotonic systems,
Readings in Nonmonotonic Reasoning.


For further reading on fuzzy systems we recommend the original paper by Lotfi
Zadeh (1983) and the more modern integrations of this technology found in Fuzzy Sets,
Neural Networks and Soft Computing by Yager and Zadeh (1994), and Fuzzy Logic with
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Engineering Applications by Timothy Ross (1995). The solution to the inverted pendulum
problem presented in Section 9.2.2 was adapted from Ross.


Algorithms for Bayesian belief network inference include Pearl’s (1988) message
passing and clique tree triangulation (Lauritzen and Spiegelhalter 1988, see Section 9.3).
For further discussion of these algorithms see the Encyclopedia of AI (Shapiro 1992) and
(Huang and Darwiche 1996). The spring 1996 issue of the AISB Quarterly contains an
introduction to Bayesian belief networks (van der Gaag 1996); we also recommend the
discussions of qualitative probabilistic networks by Wellman (1990) and  Druzdel (1996).


Stochastic representations and algorithms continue to be a very active research area
(Xiang et al. 1993, Laskey and Mahoney 1997). Limitations of Bayesian representations
have motivated research in hierarchical and composable Bayesian models (Koller and
Pfeffer 1997, 1998, Pfeffer et al. 1999, Xiang et al. 2000). Further extensions of the prop-
ositional based graphic models we have presented can be found in the literature. We rec-
ommend reading Koller and Pfeffer (1998) and Pless et al. (2000) for ideas on object-
oriented stochastic representations. The IBAL language of Pfeffer (2001) and the Stochas-
tic Lambda Calculus of Pless and Luger (2002) are examples of first-order stochastic
functional languages. Cussens (2001), and Pless and Luger (2003) have created first-order
logic-based (declarative) languages for stochastic inference. See also the many references
given in Section 9.3.7, which have not been repeated here.


We see many issues from Section 9.3 again, especially in Part IV, Chapter 13, the pre-
sentation of probabilistic approaches to machine learning.


9.5 Exercises


 1. Identify three application domains where reasoning under conditions of uncertainty is nec-
essary. Pick one of these areas and design six inference rules reflecting reasoning in that
domain.


 2. Given the following rules in a “back-chaining” expert system application:


A ∧ not(B) ⇒ C (.9)
C v D ⇒ E (.75)
F ⇒ A (.6)
G ⇒ D (.8)
The system can conclude the following facts (with confidences):


F(.9)


B(−.8)
G(.7)


Use the Stanford certainty factor algebra to determine E and its confidence. 


 3. Consider the simple MYCIN-like rule: if A ∧ (B v C) ⇒ D (.9) ∧ E (.75). Discuss the
issues that arise in capturing these uncertainties in a Bayesian context. How might this
rule be handled in Dempster–Shafer reasoning?
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 4. Create a new example of diagnostic reasoning and use the Dempster–Shafer equations of
Section 9.2.3 to obtain belief distributions as in Table 9.1 and 9.2.


 5. Use the schema axioms presented in McCarthy (1980, Section 4) to create the circum-
scription results presented in Section 9.1.3.


 6. Create another reasoning network similar to that of Figure 9.4 and show the dependency
lattice for its premises, as was done in Figure 9.5.


 7. Reasoning by assumption of a minimum model is important in human everyday life. Work
out two more examples that assume minimum models.


 8. Continue the inverted pendulum example of Section 9.2.2 with two more iterations of the
controller where the output of one iteration provides the input values for the next iteration.


 9. Write a program that implements the fuzzy controller of Section 9.2.2.


10. Go to the literature, for example Ross (1995), and describe two other areas where fuzzy
control might be appropriate. Construct a set of fuzzy rules for those domains.


11.  Tom has invested some of his savings in a portfolio of five stocks, H = {Bank of China,
Citibank, Intel, Nokia, Legend}. These stocks can be classified into Bank stocks (Bank of
China and Citibank), Hi-tech stocks (Intel, Nokia, and Legend) and China stocks (Bank of
China and Legend). You have offered to build an expert system that can give him advice
as to how he should manage his stock portfolio. To do so, you interviewed many financial
consultants and came up with a set of rules for the expert system. These rules tell Tom
how he should divide up his money among the different stocks in his portfolio. The pro-
portions recommended are directly proportional to the probability of the increase of the
price of the stocks or the type of stock concerned:


R1: IF the interest rate goes up THEN buy Bank Stocks, Hi-tech stocks and Nokia in     the
proportion of  0.8, 0.15, and 0.05 respectively.


R2: IF employment rate goes up THEN buy Bank of China, Intel and the Hi-Tech stocks
in the proportion of  0.5, 0.2, and 0.3 respectively.


R3: IF the inflation rate comes down THEN buy Intel, Citibank and Hi-Tech stocks in the
proportion of  0.1, 0.4 and 0.5 respectively


David noticed that the interest rate has just gone up, using Dempster-Shafer's theory of
evidence, calculate the belief intervals for the three types of stock, i.e., the Bank stock, the
China stock, and the Hi-Tech stock, and for Nokia. Is there any difference in the belief and
the belief intervals between Nokia and the Hi-Tech stocks? Why or why not? (This prob-
lem was proposed by James Liu Nga Kwok at Hong Kong Polytechnic University, The
solution in the Instructor Guide is by a student, Qi Xianming).


12. Put another link in Figure 9.16, say connecting season directly to slick sidewalk and
then create a clique tree to represent this situation. Compare the complexity issues with
those of the clique tree of Figure 9.17.


13. Complete the symbolic evaluations that are required to finish Table 9.4.


14. Create an algorithm for Bayesian belief propagation and apply it to the slippery sidewalk
domain of Section 9.3.2. You might use Pearl’s (1988) message passing approach or the
clique triangulation method proposed by Lauritzen and Spiegelhalter (1988).
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15. Create a Bayesian belief diagram for another application, for example medical diagnosis,
geological discovery, or automobile fault analysis. Point out examples of d-separation and
create a clique tree for this network.


16. Create cliques and a junction tree for the following situation (seen in Figure 9.23). Rob-
bery, vandalism and an earthquake can all set off (cause) a house alarm. There is also a
measure of the potential dangers in the neighborhood of the house.


17. Take the diagnostic reasoning situation developed in Table 9.1 and 9.2 of the Dempster–
Shafer model of Section 9.2.3 and recast it as a Bayesian Belief network. Compare and
contrast these two approaches to diagnosis.


18. Given that you wanted to design a second-order Markov model, i.e., where each observ-
able state would be dependent on the previous two observable states. How would you do
this? What would the transition probability matrix look like?


19. Given the observable Markov model of weather of Section 9.3.4:


a. Determine the probability that (exactly) the next five days will be sun.


b. What is the probability of exactly three days of sun, then one day of precipitation,
and then exactly one day of sun?


Figure 9.23 A belief network representing the possibility of a house
alarm in a dangerous neighborhood.
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P A R T IV


MACHINE LEARNING


Logic is not the end of wisdom, it is the beginning. . . 


—SPOCK, “Star Trek VI”


“I know what you’re thinking about”, said Tweedledum, but it ain’t so, nohow”.
“Contrariwise”, continued Tweedledee, “if it was so, it might be; and if it were so, it 
would be; but as it isn’t, it ain’t. That’s logic”.


—LEWIS CAROLL, “Through the Looking Glass” (1871)


Let us teach guessing. . .


—GEORGE POLYA


Symbol-Based, Connectionist, Genetic, and
Stochastic Approaches to Machine Learning


When asked what intellectual skills are most essentially human and most difficult to com-
puterize, besides artistic creativity, ethical decision making, and social responsibility, peo-
ple usually mention language and learning. Over the years, these two areas have
functioned as goals, challenges, and as touchstones for the progress of AI. One of the rea-
sons language and learning are difficult yet important research areas is that they encom-
pass many other human intelligent capabilities. If we are ever to make claims of creating
an artificial intelligence, we must address issues in natural language, automated reasoning,
and machine learning. In Part IV we consider several approaches to machine learning; Part
V presents topics in automated reasoning and natural language understanding


In Chapter 10, we consider symbol-based learning methods, beginning with a set of
symbols that represent the entities and relationships of a problem domain. Symbolic
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learning algorithms attempt to infer novel, valid, and useful generalizations that can be
expressed using these symbols. 


The connectionist approaches discussed in Chapter 11 represent knowledge as pat-
terns of activity in networks of small, individual processing units. Inspired by the architec-
ture of animal brains, connectionist networks learn by modifying their structure and
weights in response to training data. Rather than searching through the possible generali-
zations afforded by a symbolic representation language, connectionist models recognize
invariant patterns in data and represent these patterns within their own structure. 


Just as connectionist networks are inspired by the biological neural system, the emer-
gent models of Chapter 12 are inspired by genetic and evolutionary analogs. Genetic algo-
rithms begin with a population of candidate problem solutions. Candidate solutions are
evaluated according to their ability to solve problem instances: only the fittest survive and
combine with each other to produce the next generation of possible solutions. Thus,
increasingly powerful solutions emerge as in a Darwinian universe. It is oddly fitting that
these approaches should seek the origins of intelligence in the same processes that, it may
be argued, gave rise to life itself.


Finally, in Chapter 13, we present stochastic approaches to machine learning. The
basis for the stochastic learning is the insight that supports Bayes’ rule: experience of situ-
ations in a domain conditions the knower’s expectations for interpreting new data in that
(and other) domains. The primary approach we take is through the presentation and dis-
cussion of various Markovian processes. We use these models to demonstrate the interpre-
tation of several data sets in diagnostic reasoning and the machine interpretation of
language. We also present reinforcement learning which reflects how an agent’s response
in problem solving can be supported or discouraged by feedback from that problem’s
domain.


There are a number of important philosophical/epistemological issues that underlie
research in machine learning. These include the problem of generalization or how a
machine can identify invariant patterns in data in a matter sufficient to use these invariants
for further intelligent problem solving, for example, as a fit for newer previously unseen
data. A second problem for machine learning is the nature of an inductive bias in learning.
This bias refers to how program designers use their own intuitions and heuristics in the
design of representations, models, and algorithms that support the learning process. Exam-
ples of this include the identification of “important” concepts within the problem domain,
the use of “a particular search or reward algorithm”, or the selection of a particular neural
net architecture for learning. The issue here is that these inductive biases both enable the
learning process as well as limit what can be learned by that system. A final philosophical
issue, called the empiricist’s dilemma, looks at the opposite side of things: if there are no
predetermined biases in the learning system, how can anything useful be learned, or even
worse, how can we even know when something IS learned? This issue often arises in
unsupervised and emergent models of machine learning. These three issues are discussed
again in Section 16.2.
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MACHINE LEARNING:
SYMBOL-BASED


The mind being, as I have declared, furnished with a great number of the simple ideas 
conveyed in by the senses, as they are found in exterior things, or by reflection on its own 
operations, takes notice, also, that a certain number of these simple ideas go constantly 
together . . . which, by inadvertency, we are apt afterward to talk of and consider as one 
simple idea. 


—JOHN LOCKE, Essay Concerning Human Understanding


The mere observing of a thing is no use whatever. Observing turns into beholding, behold-
ing into thinking, thinking into establishing connections, so that one may say that every 
attentive glance we cast on the world is an act of theorizing. However, this ought to be 
done consciously, with self criticism, with freedom, and to use a daring word, with irony. 


—GOETHE


10.0 Introduction


The ability to learn must be part of any system that would claim to possess general
intelligence. Indeed, in our world of symbols and interpretation, the very notion of an
unchanging intellect seems a contradiction in terms. Intelligent agents must be able to
change through the course of their interactions with the world, as well as through the
experience of their own internal states and processes. We present four chapters on
machine learning, reflecting four approaches to the problem: first, the symbol-based, sec-
ond, the connectionist, third, the genetic/evoltionary, and finally, the dynamic/stochastic. 


Learning is important for practical applications of artificial intelligence. Feigenbaum
and McCorduck (1983) have called the “knowledge engineering bottleneck” the major
obstacle to the widespread use of intelligent systems. This “bottleneck” is the cost and
difficulty of building systems using the traditional knowledge acquisition techniques of
Section 7.1. One solution to this problem would be for programs to begin with a minimal


10
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amount of knowledge and learn from examples, high-level advice, or their own explora-
tions of the application domain. 


Herbert Simon defines learning as: 


any change in a system that allows it to perform better the second time on repetition of the same
task or on another task drawn from the same population (Simon, 1983). 


This definition, although brief, suggests many of the issues involved in developing pro-
grams that learn. Learning involves generalization from experience: performance should
improve not only on the “repetition of the same task,” but also on similar tasks in the
domain. Because interesting domains tend to be large, a learner usually only examines a
fraction of all possible examples; from this limited experience, the learner must generalize
correctly to unseen instances of the domain. This is the problem of induction, and it is cen-
tral to learning. In most learning problems, the available data are not sufficient to guaran-
tee optimal generalization, no matter what algorithm is used. Learners must generalize
heuristically, that is, they must select those aspects of their experience that are most likely
to prove effective in the future. Such selection criteria are known as inductive biases.


Simon’s definition describes learning as allowing the system to “perform better the
second time.” As the previous paragraph indicates, selecting the possible changes to a sys-
tem that will allow it to improve is a difficult task. Learning research must address the
possibility that changes may actually degrade performance. Preventing and detecting such
problems is another issue for a learning algorithm. 


Learning involves changes in the learner; this is clear. However, the exact nature of
those changes and the best way to represent them are far from obvious. One approach
models learning as the acquisition of explicitly represented domain knowledge. Based on
its experience, the learner constructs or modifies expressions in a formal language, such as
logic, and retains this knowledge for future use. Symbolic approaches, characterized by
the algorithms of Chapter 10, are built on the assumption that the primary influence on the
program’s behavior is its collection of explicitly represented domain knowledge. 


Neural or connectionist networks, Chapter 11, do not learn by acquiring sentences in
a symbolic language. Like an animal brain, which consists of a large number of intercon-
nected neurons, connectionist networks are systems of interconnected, artificial neurons.
Knowledge is implicit in the organization and interaction of these neurons. Neural nets do
not learn by adding representations to a knowledge base, but by modifying their overall
structure to adapt to the contingencies of the world they inhabit. In Chapter 12, we con-
sider genetic and evolutionary learning. This model of learning we have may be seen in
the human and animal systems that have evolved towards equilibration with the world.
This approach to learning through adaptation is reflected in genetic algorithms, genetic
programming, and artificial life research. 


Finally, in Chapter 13 we present dynamic and probabilistic approaches to learning.
Many complex or not fully understood situations in the world, such as the generation and
understanding of human language, can best be “understood” with probabilistic tools. Sim-
ilarly, dynamical systems, like faults in a running mechanical engine, can be diagnosed.  


In Chapter 10 we begin our exploration of machine learning with the symbol based
approach where algorithms vary in their goals, in the available training data, and in the
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learning strategies and knowledge representation languages they employ. However, all of
these algorithms learn by searching through a space of possible concepts to find an accept-
able generalization. In Section 10.1, we outline a framework for symbol-based machine
learning that emphasizes the common assumptions behind all of this work. 


Although Section 10.1 outlines a variety of learning tasks, the full chapter focuses
primarily on inductive learning. Induction, which is learning a generalization from a set of
examples, is one of the most fundamental learning tasks. Concept learning is a typical
inductive learning problem: given examples of some concept, such as “cat”, “soybean dis-
ease”, or “good stock investment”, we attempt to infer a definition that will allow the
learner to correctly recognize future instances of that concept. Sections 10.2 and 10.3
examine two algorithms used for concept induction, version space search and ID3.


Section 10.4 considers the role of inductive bias in learning. The search spaces
encountered in learning tend to be extremely large, even by the standards of search-based
problem solving. These complexity problems are exacerbated by the problem of choosing
among the different generalizations supported by the training data. Inductive bias refers to
any method that a learning program uses to constrain the space of possible generalizations.


The algorithms of Sections 10.2 and 10.3 are data-driven. They use no prior knowl-
edge of the learning domain but rely on large numbers of examples to define the essential
properties of a general concept. Algorithms that generalize on the basis of patterns in
training data are referred to as similarity-based.


In contrast to similarity-based methods, a learner may use prior knowledge of the
domain to guide generalization. For example, humans do not require large numbers of
examples to learn effectively. Often, a single example, analogy, or high-level bit of advice
is sufficient to communicate a general concept. The effective use of such knowledge can
help an agent to learn more efficiently, and with less likelihood of error. Section 10.5
examines explanation-based learning, learning by analogy and other techniques using
prior knowledge to learn from limited training data.


The algorithms presented in Sections 10.2 through 10.5, though they differ in search
strategies, representation languages, and the amount of prior knowledge used, all assume
that the training data are classified by a teacher or some other means. The learner is told
whether an instance is a positive or negative example of a target concept. This reliance on
training instances of known classification defines the task of supervised learning.


Section 10.6 continues the study of induction by examining unsupervised learning,
which addresses how an intelligent agent can acquire useful knowledge in the absence of
correctly classified training data. Category formation, or conceptual clustering, is a funda-
mental problem in unsupervised learning. Given a set of objects exhibiting various proper-
ties, how can an agent divide the objects into useful categories? How do we even know
whether a category will be useful? In this section, we examine CLUSTER/2 and COB-
WEB, two category formation algorithms. 


Finally, in Section 10.7, we present reinforcement learning. Here, an agent is situated
in an environment and receives feedback from that context. Learning requires the agent to
act and then to interpret feedback from those actions. Reinforcement learning differs from
supervised learning in that there is no “teacher” directly responding to each action; rather
the agent itself must create a policy for interpreting all feedback. Reinforcement learning
fits comfortably with a constructivist epistemology, as described in Section 16.2.
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All learning presented in this chapter has one thing in common: it is seen as a variety
of state space search. Even reinforcement learning derives a value function over a state
space. We next outline a general search-based framework for work in machine learning. 


10.1 A Framework for Symbol-Based Learning


Learning algorithms may be characterized along several dimensions, as is shown in Figure
10.1:


1. The data and goals of the learning task. One of the primary ways in which we
characterize learning problems is according to the goals of the learner and the
data it is given. The concept learning algorithms of Sections 10.2 and 10.3, for
example, begin with a collection of positive (and usually negative) examples of a
target class; the goal is to infer a general definition that will allow the learner to
recognize future instances of the class. In contrast to the data-intensive approach
taken by these algorithms, explanation-based learning (Section 10.5), attempts to
infer a general concept from a single training example and a prior base of
domain-specific knowledge. The conceptual clustering algorithms discussed in
Section 10.6 illustrate another variation on the induction problem: instead of a set
of training instances of known categorization, these algorithms begin with a set
of unclassified instances. Their task is to discover categorizations that may have
some utility to the learner. 


Representation language   Concept space


Data and goals of
the learning task


Heuristic search


Acquired knowledge


Operations


Figure 10.1      A general model of the learning process.
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Examples are not the only source of training data. Humans, for instance,
often learn from high-level advice. In teaching programming, professors gener-
ally tell their students that all loops must achieve a terminating condition. This
advice, though correct, is not directly useful: it must be translated into specific
rules for manipulating loop counters or logical conditions in a programming lan-
guage. Analogies (Section 10.5.4) are another type of training data that must be
correctly interpreted before they can be of use. If a teacher tells a student that
electricity is like water, the student must infer the correct intent of the analogy: as
water flows through a pipe, electricity flows through a wire. As with flowing
water, we may measure the amount of electricity (amperage) and the pressure
behind the flow (voltage). Unlike water, however, electricity does not make
things wet or help us wash our hands. The interpretation of analogies involves
finding the meaningful similarities and avoiding false or meaningless inferences.


We may also characterize a learning algorithm by the goal, or target, of the
learner. The goal of many learning algorithms is a concept, or a general
description of a class of objects. Learning algorithms may also acquire plans,
problem-solving heuristics, or other forms of procedural knowledge.


The properties and quality of the training data itself are another dimension
along which we classify learning tasks. The data may come from a teacher from
the outside environment, or it may be generated by the program itself. Data may
be reliable or may contain noise. It can be presented in a well-structured fashion
or consist of unorganized data. It may include both positive and negative exam-
ples or only positive examples. Data may be readily available, the program may
have to construct experiments, or perform some other form of data acquisition. 


2. The representation of learned knowledge. Machine learning programs have
made use of all the representation languages discussed in this text. For example,
programs that learn to classify objects may represent these concepts as expres-
sions in predicate calculus or they may use a structured representation such as
frames or objects. Plans may be described as a sequence of operations or a
triangle table. Heuristics may be represented as problem-solving rules. 


A simple formulation of the concept learning problem represents instances
of a concept as conjunctive sentences containing variables. For example, two
instances of “ball” (not sufficient to learn the concept) may be represented by: 


size(obj1, small) 


 


∧ color(obj1, red) 


 


∧ shape(obj1, round) 
size(obj2, large) 


 


∧ color(obj2, red) 


 


∧ shape(obj2, round)


The general concept of “ball” could be defined by: 


size(X, Y) 


 


∧ color(X, Z) 


 


∧ shape(X, round)


where any sentence that unifies with this general definition represents a ball. 


3. A set of operations. Given a set of training instances, the learner must construct
a generalization, heuristic rule, or plan that satisfies its goals. This requires the
ability to manipulate representations. Typical operations include generalizing or
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specializing symbolic expressions, adjusting the weights in a neural network, or
otherwise modifying the program’s representations.


In the concept learning example just introduced, a learner may generalize a
definition by replacing constants with variables. If we begin with the concept: 


size(obj1, small) 


 


∧ color(obj1, red) 


 


∧ shape(obj1, round) 


replacing a single constant with a variable produces the generalizations: 


size(obj1, X) 


 


∧ color(obj1, red) 


 


∧ shape(obj1, round) 
size(obj1, small) 


 


∧ color(obj1, X) 


 


∧ shape(obj1, round) 
size(obj1, small) 


 


∧ color(obj1, red) 


 


∧ shape(obj1, X) 
size(X, small) 


 


∧ color(X, red) 


 


∧ shape(X, round) 


4. The concept space. The representation language, together with the operations
described above, defines a space of potential concept definitions. The learner
must search this space to find the desired concept. The complexity of this concept
space is a primary measure of the difficulty of a learning problem. 


5. Heuristic search. Learning programs must commit to a direction and order of
search, as well as to the use of available training data and heuristics to search
efficiently. In our example of learning the concept “ball,” a plausible algorithm
may take the first example as a candidate concept and generalize it to include
subsequent examples. For instance, on being given the single training example


size(obj1, small) 


 


∧ color(obj1, red) 


 


∧ shape(obj1, round) 


the learner will make that example a candidate concept; this concept correctly
classifies the only positive instance seen.


If the algorithm is given a second positive instance 


size(obj2, large) 


 


∧ color(obj2, red) 


 


∧ shape(obj2, round) 


the learner may generalize the candidate concept by replacing constants with
variables as needed to form a concept that matches both instances. The result is a
more general candidate concept that is closer to our target concept of “ball.”


size(X, Y) 


 


∧ color(X, red) 


 


∧ shape(X, round)


Patrick Winston’s work (1975a) on learning concepts from positive and negative
examples illustrates these components. His program learns general definitions of
structural concepts, such as “arch,” in a blocks world. The training data is a series of
positive and negative examples of the concept: examples of blocks world structures that fit
in the category, along with near misses. The latter are instances that almost belong to the
category but fail on one property or relation. The near misses enable the program to single
out features that can be used to exclude negative instances from the target concept.
Figure 10.2 shows positive examples and near misses for the concept “arch.” 
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The program represents concepts as semantic networks, as in Figure 10.3. It learns by
refining a candidate description of the target concept as training instances are presented.
Winston’s program refines candidate descriptions through generalization and specializa-
tion. Generalization changes the graph to let it accommodate new examples of the con-
cept. Figure 10.3a shows an arch built of three bricks and a graph that describes it. The
next training example, Figure 10.3b is an arch with a pyramid rather than a brick on top.
This example does not match the candidate description. The program matches these
graphs, attempting to find a partial isomorphism between them. The graph matcher uses
the node names to guide the matching process. Once the program matches the graphs, it
may detect differences between them. In Figure 10.3, the graphs match on all components
except that the top element in the first graph is brick and the corresponding node of the
second example is pyramid. Part of the program’s background knowledge is a
generalization hierarchy of these concepts, Figure 10.3c. The program generalizes the
graph by replacing this node with the least common supertype of brick and pyramid; in
this example, it is polygon. The result is the concept of Figure 10.3d. 


When presented with a near miss, an example that differs from the target concept in a
single property, the program specializes the candidate description to exclude the example.
Figure 10.4a is a candidate description. It differs from the near miss of Figure 10.4b in the


Arch Arch


Near missNear miss


Figure 10.2 Examples and near misses for the concept arch.
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touch relations of the near-miss example. The program specializes the graph by adding
must-not-touch links to exclude the near miss, Figure 10.4c. Note that the algorithm
depends heavily upon the closeness of the negative examples to the target concept. By
differing from the goal in only a single property, a near miss helps the algorithm to
determine exactly how to specialize the candidate concept. 
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part


part


brick


brick


brick


supports


supportsarch


part


part


part


brick


brick


supports


supportsarch
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part


part


brick


brick


supports


supportsarch


polygon


pyramid


polygon


pyramidbrick


isa isa


a. An example of an arch and its network description


b. An example of another arch and its network description


c. Given background knowledge that bricks and pyramids are both types of
polygons


d. Generalization that includes both examples


Figure 10.3 Generalization of descriptions to include
multiple examples.
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These operations—specializing a network by adding links and generalizing it by
replacing node or link names with a more general concept—define a space of possible
concept definitions. Winston’s program performs a hill climbing search on the concept
space guided by the training data. Because the program does not backtrack, its perfor-
mance is highly sensitive to the order of the training examples; a bad ordering can lead the
program to dead ends in the search space. Training instances must be presented to the pro-
gram in an order that assists learning of the desired concept, much as a teacher organizes
lessons to help a student learn. The quality and order of the training examples are also
important to the program’s graph matching algorithm; efficient matching requires that the
graphs not be too dissimilar. 


part


part


part


brick


brick


supports


supportsarch


polygon
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part


part


brick


brick


supports
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arch


polygon
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brick


supports


supports


arch


polygon


must-not-touch must-not-touch


touch touch


a. Candidate description of an arch


b. A near miss and its description


c. Arch description specialized to exclude the near miss


Figure 10.4 Specialization of a description to exclude a
near miss. In 10.4c we add constraints to
10.4a so that it can t match with 10.4b. 
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Although an early example of inductive learning, Winston’s program illustrates the
features and problems shared by the majority of machine learning techniques of Chapter
10: the use of generalization and specialization operations to define a concept space, the
use of data to guide search through that space, and the sensitivity of the learning algorithm
to the quality of the training data. The next sections examine these problems and the tech-
niques that machine learning has developed for their solution. 


10.2 Version Space Search


Version space search (Mitchell 1978, 1979, 1982) illustrates the implementation of induc-
tive learning as search through a concept space. Version space search takes advantage of
the fact that generalization operations impose an ordering on the concepts in a space, and
then uses this ordering to guide the search. 


10.2.1 Generalization Operators and the Concept Space


Generalization and specialization are the most common types of operations for defining a
concept space. The primary generalization operations used in machine learning are:


1. Replacing constants with variables. For example, 


color(ball, red) 


generalizes to 


color(X, red) 


2. Dropping conditions from a conjunctive expression. 


shape(X, round) ∧ size(X, small) ∧ color(X, red) 


generalizes to 


shape(X, round) ∧ color(X, red) 


3. Adding a disjunct to an expression. 


shape(X, round) ∧ size(X, small) ∧ color(X, red) 


generalizes to 


shape(X, round) ∧ size(X, small) ∧ (color(X, red) ∨ color(X, blue)) 


4. Replacing a property with its parent in a class hierarchy. If we know that
primary_color is a superclass of red, then
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color(X, red) 


generalizes to 


color(X, primary_color) 


We may think of generalization in set theoretic terms: let P and Q be the sets of
sentences matching the predicate calculus expressions p and q, respectively. Expression p
is more general than q iff P ⊇ Q. In the above examples, the set of sentences that match
color(X, red) contains the set of elements that match color(ball, red). Similarly, in
example 2, we may think of the set of round, red things as a superset of the set of small,
red, round things. Note that the “more general than” relationship defines a partial ordering
on the space of logical sentences. We express this using the “≥” symbol, where p ≥ q
means that p is more general than q. This ordering is a powerful source of constraints on
the search performed by a learning algorithm. 


We formalize this relationship through the notion of covering. If concept p is more
general than concept q, we say that p covers q. We define the covers relation: let p(x) and
q(x) be descriptions that classify objects as being positive examples of a concept. In other
words, for an object x, p(x) → positive(x) and q(x) → positive(x). p covers q iff q(x) →
positive(x) is a logical consequence of p(x) → positive(x).


For example, color(X, Y) covers color(ball, Z), which in turn covers color(ball, red).
As a simple example, consider a domain of objects that have properties and values:


Sizes = {large, small} 
Colors = {red, white, blue} 
Shapes = {ball, brick, cube}


These objects can be represented using the predicate obj(Sizes, Color, Shapes).
The generalization operation of replacing constants with variables defines the space of
Figure 10.5. We may view inductive learning as searching this space for a concept that is
consistent with all the training examples. 


10.2.2 The Candidate Elimination Algorithm


This section presents three algorithms (Mitchell 1982) for searching the concept space.
These algorithms rely upon the notion of a version space, which is the set of all concept
descriptions consistent with the training examples. These algorithms work by reducing the
size of the version space as more examples become available. The first two algorithms
reduce the version space in a specific to general direction and a general to specific direc-
tion, respectively. The third algorithm, called candidate elimination, combines these
approaches into a bi-directional search. We next describe and evaluate these algorithms.


These algorithms are data driven: they generalize based on regularities found in the
training data. Also, in using training data of known classification, these algorithms
perform a variety of supervised learning.
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As with Winston’s program for learning structural descriptions, version space search
uses both positive and negative examples of the target concept. Although it is possible to
generalize from positive examples only, negative examples are important in preventing the
algorithm from overgeneralizing. Ideally, the learned concept must be general enough to
cover all positive examples and also must be specific enough to exclude all negative
examples. In the space of Figure 10.5, one concept that would cover all sets of exclusively
positive instances would simply be obj(X, Y, Z). However, this concept is probably too
general, because it implies that all instances belong to the target concept. One way to
avoid overgeneralization is to generalize as little as possible to cover positive examples;
another is to use negative instances to eliminate overly general concepts. As Figure 10.6
illustrates, negative instances prevent overgeneralization by forcing the learner to special-
ize concepts in order to exclude negative instances. The algorithms of this section use both
of these techniques. We define specific to general search, for hypothesis set S, as:


Begin
Initialize S to the first positive training instance; 
N is the set of all negative instances seen so far; 


For each positive instance p
Begin
For every s ∈ S, if s does not match p, replace s with its most specific


generalization that matchs p;
Delete from S all hypotheses more general than some other hypothesis in S;
Delete from S all hypotheses that match a previously observed negative


instance in N;
End;


obj(X, Y, Z)


obj(small, white, ball)


obj(X, Y, ball) obj(X, red, Y) obj(small, X, Y) · · ·


obj(X, red, ball) obj(small, X, ball) obj(small, red, X) · · ·


obj(small, red, ball) obj(large, red, ball) · · ·
Figure 10.5 A concept space.
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For every negative instance n
Begin
Delete all members of S that match n;
Add n to N to check future hypotheses for overgeneralization; 
End;


End


Specific to general search maintains a set, S, of hypotheses, or candidate concept def-
initions. To avoid overgeneralization, these candidate definitions are the maximally spe-
cific generalizations from the training data. A concept, c, is maximally specific if it covers
all positive examples, none of the negative examples, and for any other concept, c′, that
covers the positive examples, c  c′. Figure 10.7 shows an example of applying this algo-
rithm to the version space of Figure 10.5. The specific to general version space search
algorithm is built in Prolog in our auxiliary materials.


We may also search in a general to specific direction. This algorithm maintains a set,
G, of maximally general concepts that cover all of the positive and none of the negative
instances. A concept, c, is maximally general if it covers none of the negative training
instances, and for any other concept, c′, that covers no negative training instance, c ≥ c′.
In this algorithm, negative instances lead to the specialization of candidate concepts; the
algorithm uses positive instances to eliminate overly specialized concepts. 


Begin
Initialize G to contain the most general concept in the space; 
P contains all positive examples seen so far;


For each negative instance n
Begin
For each g ∈ G that matches n, replace g with its most general specializations 


that do not match n;
Delete from G all hypotheses more specific than some other hypothesis in G;
Delete from G all hypotheses that fail to match some positive example in P;
End;


For each positive instance p
Begin
Delete from G all hypotheses that fail to match p;
Add p to P;
End;


End


Figure 10.8 shows an example of applying this algorithm to the version space of
Figure 10.5. In this example, the algorithm uses background knowledge that size may
have values {large, small}, color may have values {red, white, blue}, and shape may
have values {ball, brick, cube}. This knowledge is essential if the algorithm is to
specialize concepts by substituting constants for variables. 


The candidate elimination algorithm combines these approaches into a bi-directional
search. This bi-directional approach has a number of benefits for learning. The algorithm


<
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maintains two sets of candidate concepts: G, the set of maximally general candidate con-
cepts, and S, the set of maximally specific candidates. The algorithm specializes G and
generalizes S until they converge on the target concept. The algorithm is defined: 


Begin
Initialize G to be the most general concept in the space; 
Initialize S to the first positive training instance; 


+ +


+
++


+


+


?
?


?


+ +


+
++


+


−
− −


+


Concept induced from
positive examples only


Concept induced from
positive and negative examples


S: {} Positive: obj(small, red, ball)


Positive: obj(small, white, ball)


Positive: obj(large, blue, ball)


S: {obj(small, red, ball)}


S: {obj(small, X, ball)}


S: {obj(Y, X, ball)}


Figure 10.6 The role of negative examples in
preventing overgeneralization.


Figure 10.7 Specific to general search of the version
space learning the concept ball.
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For each new positive instance p
Begin
Delete all members of G that fail to match p; 
For every s ∈ S, if s does not match p, replace s with its most specific 


generalizations that match p;
Delete from S any hypothesis more general than some other hypothesis in S;
Delete from S any hypothesis more general than some hypothesis in G;
End;


For each new negative instance n 
Begin
Delete all members of S that match n;
For each g ∈ G that matches n, replace g with its most general specializations 


that do not match n;
Delete from G any hypothesis more specific than some other hypothesis in G;
Delete from G any hypothesis more specific than some hypothesis in S;
End;


If G = S and both are singletons, then the algorithm has found a single concept that 
is consistent with all the data and the algorithm halts; 


If G and S become empty, then there is no concept that covers all positive instances
and none of the negative instances; 


End


Negative: obj(small, red, brick)


Positive: obj(large, white, ball)


Negative: obj(large, blue, cube)


Positive: obj(small, blue, ball)


G: {obj(X,Y,Z)}


G: {obj(large, Y, Z), obj(X, white, Z),
obj(X, blue, Z), obj(X, Y, ball), obj(X, Y, cube)}


G: {obj(large, Y, Z),
obj(X, white, Z), obj(X, Y, ball)}


G: {obj(large, white, Z),
obj(X, white, Z), obj(X, Y, ball)}


G: {obj(X, Y, ball)}


Figure 10.8 General to specific search of the version
space learning the concept ball.
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Figure 10.9 illustrates the behavior of the candidate elimination algorithm in
searching the version space of Figure 10.5. Note that the figure does not show those
concepts that were produced through generalization or specialization but eliminated as
overly general or specific. We leave the elaboration of this part of the algorithm as
an exercise and show a partial implementation in Prolog in our auxiliary materials. 


Combining the two directions of search into a single algorithm has several benefits.
The G and S sets summarize the information in the negative and positive training
instances respectively, eliminating the need to save these instances. For example, after
generalizing S to cover a positive instance, the algorithm uses G to eliminate concepts in
S that do not cover any negative instances. Because G is the set of maximally general
concepts that do not match any negative training instances, any member of S that is more
general than any member of G must match some negative instance. Similarly, because S is
the set of maximally specific generalizations that cover all positive instances, any new
member of G that is more specific than a member of S must fail to cover some positive
instance and may also be eliminated.


Figure 10.10 gives an abstract description of the candidate elimination algorithm. The
“+” signs represent positive training instances; “−” signs indicate negative instances. The


Positive: obj(small, red, ball)


Negative: obj(small, blue, ball)


Positive: obj(large, red, ball)


Negative: obj(large, red, cube)


G: {obj(X, Y, Z)}
S: {}


G: {obj(X, Y, Z)}
S: {obj(small, red, ball)}


G: {obj(X, red, Z)}
S: {obj(small, red, ball)}


G: {obj(X, red, Z)}
S: {obj(X, red, ball)}


G: {obj(X, red, ball)}
S: {obj(X, red, ball)}


Figure 10.9 The candidate elimination algorithm
learning the concept red ball.
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innermost circle encloses the set of known positive instances covered by the concepts in
S. The outermost circle encloses the instances covered by G; any instance outside this cir-
cle is negative. The shaded portion of the graphic contains the target concept, along with
concepts that may be overly general or specific (the ?s). The search “shrinks” the outer-
most concept as necessary to exclude negative instances; it “expands” the innermost con-
cept to include new positive instances. Eventually, the two sets converge on the target
concept. In this fashion, candidate elimination can detect when it has found a single,
consistent target concept. When both G and S converge to the same concept the algorithm
may halt. If G and S become empty, then there is no concept that will cover all positive
instances and none of the negative instances. This may occur if the training data is
inconsistent or if the goal concept may not be expressed in the representation language
(Section 10.2.4). 


An interesting aspect of candidate elimination is its incremental nature. An incremen-
tal learning algorithm accepts training instances one at a time, forming a usable, although
possibly incomplete, generalization after each example. This contrasts with batch algo-
rithms, (see for example ID3, Section 10.3), which require all training examples to be
present before they may begin learning. Even before the candidate elimination algorithm
converges on a single concept, the G and S sets provide usable constraints on that con-
cept: if c is the goal concept, then for all g ∈ G and s ∈ S, s  c  g. Any concept that
is more general than some concept in G will cover negative instances; any concept that is
more specific than some concept in S will fail to cover some positive instances. This
suggests that instances that have a “good fit” with the concepts bounded by G and S are at
least plausible instances of the concept. 


In the next section, we clarify this intuition with an example of a program that uses
candidate elimination to learn search heuristics. LEX (Mitchell et al. 1983) learns
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Figure 10.10 Converging boundaries of the G and S sets in
the candidate elimination algorithm.
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heuristics for solving symbolic integration problems. Not only does this work demonstrate
the use of G and S to define partial concepts, but it also illustrates such additional issues
as the complexities of learning multistep tasks, credit/blame assignment, and the relation-
ship between the learning and problem-solving components of a complex system. 


10.2.3 LEX: Inducing Search Heuristics


LEX learns heuristics for solving symbolic integration problems. LEX integrates algebraic
expressions through heuristic search, beginning with the expression to be integrated and
searching for its goal: an expression that contains no integral signs. The learning
component of the system uses data from the problem solver to induce heuristics that
improve the problem solver’s performance. 


LEX searches a space defined by operations on algebraic expressions. Its operators
are the typical transformations used in performing integration. They include:


OP1: ∫ r f(x) dx → r ∫ f(x) dx 
OP2: ∫ u dv → uv − ∫ v du 
OP3: 1∗f(x) → f(x) 
OP4: ∫ (f1(x) + f2(x)) dx → ∫ f1(x) dx + ∫ f2(x) dx


Operators are rules, whose left-hand side defines when they may be applied. Although
the left-hand side defines the circumstances under which the operator may be used, it does
not include heuristics for when the operator should be used. LEX must learn usable
heuristics through its own experience. Heuristics are expressions of the form: 


If the current problem state matches P then apply operator O with bindings B.


For example, a typical heuristic that LEX might learn is: 


If a problem state matches ∫ x transcendental(x) dx, 
then apply OP2 with bindings


u = x
dv = transcendental(x) dx


Here, the heuristic suggests applying integration by parts to solve the integral of x times
some transcendental function, e.g., a trigonometric function in x.


LEX’s language for representing concepts consists of the symbols described in
Figure 10.11. Note that the symbols exist in a generalization hierarchy, with any symbol
matching any of its descendants in the hierarchy. LEX generalizes expressions by
replacing a symbol with its ancestor in this hierarchy.


For example, given the expression: 


∫ 3x cos(x) dx


LEX may replace cos with trig. This yields the expression:
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∫ 3x trig(x) dx


Alternatively, it may replace 3 with the symbol k, which represents any integer: 


∫ kx cos(x) dx


Figure 10.12 shows a version space for OP2 as defined by these generalizations. 
The overall architecture of LEX consists of four components: 


1. a generalizer that uses candidate elimination to find heuristics 


2. a problem solver that produces traces of problem solutions 


3. a critic that produces positive and negative instances from a problem trace 


4. a problem generator that produces new candidate problems 


expr


r


k


(op expr expr) (f arg)


prim (comb f f)


oppolytransc


trig explog


expIntancossin


−1        0       1    1.5     2      3.1416 . . .


+  −     *     /


Figure 10.11 A portion of LEX s hierarchy of symbols.
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LEX maintains a set of version spaces. Each version space is associated with an oper-
ator and represents a partially learned heuristic for that operator. The generalizer updates
these version spaces using positive and negative examples of the operator’s application, as
generated by the critic. On receiving a positive instance, LEX determines whether a ver-
sion space associated with that operator includes the instance. A version space includes a
positive instance if the instance is covered by some of the concepts in G. LEX then uses
the positive instance to update that heuristic. If no existing heuristic matches the instance,
LEX creates a new version space, using that instance as the first positive example. This
can lead to creating multiple version spaces, for different heuristics, and one operator.


LEX’s problem solver builds a tree of the space searched in solving an integration
problem. It limits the CPU time the problem solver may use to solve a problem. LEX per-
forms best-first search, using its own developing heuristics. An interesting aspect of
LEX’s performance is its use of G and S as partial definitions of a heuristic. If more than
one operator may apply to a given state, LEX chooses the one that exhibits the highest
degree of partial match to the problem state. Degree of partial match is defined as the
percentage of all the concepts included between G and S that match the current state.
Because the computational expense of testing the state against all such candidate concepts
would be prohibitive, LEX estimates the degree of match as the percentage of entries
actually in G and S that match the state. Note that performance should improve steadily as
LEX improves its heuristics. Empirical results have confirmed this conjecture. 


   S: ∫ 3x cos(x) dx apply OP2


G: ∫ f1(x) f2(2) dx          apply OP2


∫ poly(x) f2(x) dx
  apply OP2


∫ kx cos(x) dx
apply OP2


∫ 3x trig(x) dx
  apply OP2


∫ transc(x) f2(x) dx
  apply OP2


· · ·· · ·


Figure 10.12 A version space for OP2, adapted from
Mitchell et al. (1983).
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LEX obtains positive and negative examples of operator applications from the
solution trace generated by the problem solver. In the absence of a teacher, LEX must
classify operator applications as positive or negative; this is an example of the credit
assignment problem. When learning is undertaken in the context of multistep problem
solving, it is often unclear which action in a sequence should be given responsibility for
the result. If a problem solver arrives at a wrong answer, how do we know which of sev-
eral steps actually caused the error? LEX’s critic approaches this problem by assuming
that the solution trace returned by the problem solver represents a shortest path to a goal.
LEX classifies applications of operators along this (assumed) shortest path as positive
instances; operator applications that diverge from this path are treated as negative
instances.


However, in treating the problem solver’s trace as a shortest path solution, the critic
must address the fact that LEX’s evolving heuristics are not guaranteed to be admissible
(Section 4.3). The solution path found by the problem solver may not actually be a short-
est path solution. To ensure that it has not erroneously classified an operator application as
negative, LEX first extends the paths begun by such operators to make sure they do not
lead to a better solution. Usually, a problem solution produces 2 to 20 training instances.
LEX passes these positive and negative instances on to the generalizer, which uses them to
update the version spaces for the associated operators. 


The problem generator is the least developed part of the program. Although various
strategies were used to automate problem selection, most examples involved hand-chosen
instances. However, a problem generator was constructed that explored a variety of
strategies. One approach generates instances that were covered by the partial heuristics for
two different operators, in order to make LEX learn to discriminate between them.


Empirical tests show that LEX is effective in learning useful heuristics. In one test,
LEX was given 5 test problems and 12 training problems. Before training, it solved the 5
test problems in an average of 200 steps; these solutions used no heuristics to guide the
search. After developing heuristics from the 12 training problems, it solved these same test
problems in an average of 20 steps. 


LEX addresses a number of issues in learning, including such problems as credit
assignment, the selection of training instances, and the relationship between the problem
solving and generalization components of a learning algorithm. LEX also underscores the
importance of an appropriate representation for concepts. Much of LEX’s effectiveness
stems from the hierarchical organization of concepts. This hierarchy is small enough to
constrain the space of potential heuristics and to allow efficient search, while being rich
enough to represent effective heuristics. 


10.2.4 Evaluating Candidate Elimination


The candidate elimination algorithm demonstrates the way in which knowledge
representation and state space search can be applied to the problem of machine learning.
However, as with most important research, the algorithm should not be evaluated in terms
of its successes alone. It raises problems that continue to form a sizeable portion of
machine learning’s research agenda. 
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Search-based learning, like all search problems, must deal with the combinatorics of
problem spaces. When the candidate elimination algorithm performs breadth-first search,
it can be inefficient. If an application is such that G and S grow excessively, it may be use-
ful to develop heuristics for pruning states from G and S, implementing best first, or even
better a beam search (see Section 4.5) of the space. 


Another approach to this problem, discussed in Section 10.4, involves using an
inductive bias to further reduce the size of the concept space. Such biases constrain the
language used to represent concepts. LEX imposed a bias through the choice of concepts
in its generalization hierarchy. Though not complete, LEX’s concept language was strong
enough to capture many effective heuristics; of equal importance, it reduced the size of the
concept space to manageable proportions. Biased languages are essential in reducing the
complexity of the concept space, but they may leave the learner incapable of representing
the concept it is trying to learn. In this case, candidate elimination would fail to converge
on the target concept, leaving G and S empty. This trade-off between expressiveness and
efficiency is an essential issue in learning. 


Failure of the algorithm to converge may also be due to some noise or inconsistency
in the training data. The problem of learning from noisy data is particularly important in
realistic applications, where data cannot be guaranteed to be complete or consistent. Can-
didate elimination is not at all noise resistant. Even a single misclassified training instance
can prevent the algorithm from converging on a consistent concept. One solution to this
problem maintains multiple G and S sets. In addition to the version space derived from all
training instances, it maintains additional spaces based on all but one of the training
instances, all but two of the training instances, etc. If G and S fail to converge, the algo-
rithm can examine these alternatives to find those that remain consistent. Unfortunately,
this approach leads to a proliferation of candidate sets and is too inefficient to be practical
in most cases. 


Another issue raised by this research is the role of prior knowledge in learning. LEX’s
concept hierarchy summarized a great deal of knowledge about algebra; this knowledge
was essential to the algorithm’s performance. Can greater amounts of domain knowledge
make learning even more effective? Section 10.5 examines this problem by using prior
domain knowledge to guide generalizations. 


An important contribution of this work is its explication of the relationship between
knowledge representation, generalization, and search in inductive learning. Although
candidate elimination is only one of many learning algorithms, it raises general questions
concerning complexity, expressiveness, and the use of knowledge and data to guide
generalization. These problems are central to all machine learning algorithms; we
continue to address them throughout this chapter.


10.3 The ID3 Decision Tree Induction Algorithm


ID3 (Quinlan 1986a), like candidate elimination, induces concepts from examples. It is
particularly interesting for its representation of learned knowledge, its approach to the
management of complexity, its heuristic for selecting candidate concepts, and its potential
for handling noisy data. ID3 represents concepts as decision trees, a representation that
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allows us to determine the classification of an object by testing its values for certain
properties. 


For example, consider the problem of estimating an individual’s credit risk on the
basis of such properties as credit history, current debt, collateral, and income. Table 10.1
lists a sample of individuals with known credit risks. The decision tree of Figure 10.13
represents the classifications in Table 10.1, in that this tree can correctly classify all the
objects in the table. In a decision tree, each internal node represents a test on some
property, such as credit history or debt; each possible value of that property corresponds
to a branch of the tree. Leaf nodes represent classifications, such as low or moderate risk.
An individual of unknown type may be classified by traversing this tree: at each internal
node, test the individual’s value for that property and take the appropriate branch. This
continues until reaching a leaf node and the object’s classification.


Note that in classifying any given instance, this tree does not use all the properties
present in Table 10.1. For instance, if a person has a good credit history and low debt, we
may, according to the tree, ignore her collateral and income and classify her as a low risk.
In spite of omitting certain tests, this tree correctly classifies all the examples.


Table 10.1 Data from credit history of loan applications


NO. RISK
CREDIT


HISTORY DEBT COLLATERAL INCOME


1. high bad high none $0 to $15k


2. high unknown high none $15 to $35k


3. moderate unknown low none $15 to $35k


4. high unknown low none $0 to $15k


5. low unknown low none over $35k


6. low unknown low adequate over $35k


7. high bad low none $0 to $15k


8. moderate bad low adequate over $35k


9. low good low none over $35k


10. low good high adequate over $35k


11. high good high none $0 to $15k


12. moderate good high none $15 to $35k


13. low good high none over $35k


14. high bad high none $15 to $35k
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In general, the size of the tree necessary to classify a given set of examples varies
according to the order with which properties are tested. Figure 10.14 shows a tree that is
considerably simpler than that of Figure 10.13 but that also classifies correctly the exam-
ples in Table 10.1.


Given a set of training instances and a number of different decision trees that cor-
rectly classify them, we may ask which tree has the greatest likelihood of correctly


credit history?


debt? collateral? debt?


high risk high risk


high risk high risk


low risk


low risk low risk


low risk low risk


moderate risk


moderate risk moderate risk


collateral? collateral?


income? income?


unknown bad good


high low


none adequate


$0 to $15k  $15 to $35k    over $35k $0 to $15k  $15 to $35k    over $35k


none adequate


none adequate high low


Figure 10.14 A simplified decision tree for credit risk assessment.


Figure 10.13 A decision tree for credit risk assessment.
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classifying unseen instances of the population. The ID3 algorithm assumes that this is the
simplest decision tree that covers all the training examples. The rationale for this assump-
tion is the time-honored heuristic of preferring simplicity and avoiding unnecessary
assumptions. This principle, known as Occam’s Razor, was first articulated by the medi-
eval logician William of Occam in 1324: 


It is vain to do with more what can be done with less. . . . Entities should not be multiplied
beyond necessity. 


A more contemporary version of Occam’s Razor argues that we should always accept the
simplest answer that correctly fits our data. In this case, it is the smallest decision tree that
correctly classifies all given examples. 


Although Occam’s Razor has proven itself as a general heuristic for all manner of
intellectual activity, its use here has a more specific justification. If we assume that the
given examples are sufficient to construct a valid generalization, then our problem
becomes one of distinguishing the necessary properties from the extraneous ones. The
simplest decision tree that covers all the examples should be the least likely to include
unnecessary constraints. Although this idea is intuitively appealing, it is an assumption
that must be empirically tested; Section 10.3.3 presents some of these empirical results.
Before examining these results, however, we present the ID3 algorithm for inducing
decision trees from examples.


10.3.1 Top-Down Decision Tree Induction


ID3 constructs decision trees in a top-down fashion. Note that for any property, we may
partition the set of training examples into disjoint subsets, where all the examples in a
partition have a common value for that property. ID3 selects a property to test at the
current node of the tree and uses this test to partition the set of examples; the algorithm
then recursively constructs a subtree for each partition. This continues until all members
of the partition are in the same class; that class becomes a leaf node of the tree. Because
the order of tests is critical to constructing a simple decision tree, ID3 relies heavily on its
criteria for selecting the test at the root of each subtree. To simplify our discussion, this
section describes the algorithm for constructing decision trees, assuming an appropriate
test selection function. In Section 10.3.2, we present the selection heuristic of the
ID3 algorithm. 


For example, consider the way in which ID3 constructs the tree of Figure 10.14 from
Table 10.1. Beginning with the full table of examples, ID3 selects income as the root
property using the selection function described in Section 10.3.2. This partitions the
example set as shown in Figure 10.15, with the elements of each partition being listed by
their number in the table. 


The induction algorithm begins with a sample of the correctly classified members of
the target categories. ID3 then constructs a decision tree according to the following algo-
rithm:
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function induce_tree (example_set, Properties) 


begin
if all entries in example_set are in the same class 


then return a leaf node labeled with that class 
else if Properties is empty 


then return leaf node labeled with disjunction of all classes in example_set 
else begin 


select a property, P, and make it the root of the current tree; 
delete P from Properties; 


for each value, V, of P, 
begin


create a branch of the tree labeled with V; 
let partitionv be elements of example_set with values V for property P; 
call induce_tree(partitionv, Properties), attach result to branch V 


end
end


end


ID3 applies the induce_tree function recursively to each partition. For example, the
partition {1, 4, 7, 11} consists entirely of high-risk individuals; ID3 creates a leaf node
accordingly. ID3 selects the credit history property as the root of the subtree for the
partition {2, 3, 12, 14}. In Figure 10.16, credit history further divides this four element
partition into {2, 3}, {14}, and {12}. Continuing to select tests and construct subtrees in
this fashion, ID3 eventually produces the tree of Figure 10.14. The reader can work
through the rest of this construction; we present a Lisp implementation in the auxiliary
material.


Before presenting ID3’s test selection heuristic, it is worth examining the relationship
between the tree construction algorithm and our view of learning as search through a
concept space. We may think of the set of all possible decision trees as defining a version
space. Our operations for moving through this space consist of adding tests to a tree. ID3
implements a form of greedy search in the space of all possible trees: it adds a subtree to
the current tree and continues its search; it does not backtrack. This makes the algorithm
highly efficient; it also makes it dependent upon the criteria for selecting properties to test. 


10.3.2 Information Theoretic Test Selection


We may think of each property of an instance as contributing a certain amount of informa-
tion to its classification. For example, if our goal is to determine the species of an animal,
the discovery that it lays eggs contributes a certain amount of information to that goal. ID3
measures the information gained by making each property the root of the current subtree.
It then picks the property that provides the greatest information gain. 


Information theory (Shannon 1948) provides a mathematical basis for measuring the
information content of a message. We may think of a message as an instance in a universe
of possible messages; the act of transmitting a message is the same as selecting one of
these possible messages. From this point of view, it is reasonable to define the information
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content of a message as depending upon both the size of this universe and the frequency
with which each possible message occurs. 


The importance of the number of possible messages is evident in an example from
gambling: compare a message correctly predicting the outcome of a spin of the roulette
wheel with one predicting the outcome of a toss of an honest coin. Because roulette can
have more outcomes than a coin toss, a message concerning its outcome is of more value
to us: winning at roulette also pays better than winning at a coin toss. Consequently, we
should regard this message as conveying more information. 


The influence of the probability of each message on the amount of information is
evident in another gambling example. Assume that I have rigged a coin so that it will
come up heads 3/4 of the time. Because I already know enough about the coin to wager
correctly 3/4 of the time, a message telling me the outcome of a given toss is worth less to
me than it would be for an honest coin. 


Shannon formalized this by defining the amount of information in a message as a
function of the probability of occurrence p of each possible message, namely, -log2 p.
Given a universe of messages, M = {m1, m2, ... mn} and a probability, p(mi), for the occur-
rence of each message, the expected information content of a message M is given by:


Figure 10.16 Another partially constructed decision tree.
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Figure 10.15 A partially constructed decision tree.
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The information in a message is measured in bits. For example, the information
content of a message telling the outcome of the flip of an honest coin is:


However, if the coin has been rigged to come up heads 75 per cent of the time, then
the information content of a message is:


This definition formalizes many of our intuitions about the information content of
messages. Information theory is widely used in computer science and telecommunica-
tions, including such applications as determining the information-carrying capacity of
communications channels, developing data compression algorithms, and developing noise
resistant communication strategies. ID3 uses information theory to select the test that
gives the greatest information gain in classifying the training examples. 


We may think of a decision tree as conveying information about the classification of
examples in the decision table; the information content of the tree is computed from the
probabilities of the different classifications. For example, if we assume that all the exam-
ples in Table 10.1 occur with equal probability, then:


p(risk is high) = 6/14, p(risk is moderate) = 3/14, p(risk is low) = 5/14


It follows that the distribution described in Table 10.1, D9.1, and, consequently, any
tree that covers those examples, is:
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The information gain provided by making a test at the root of the current tree is equal
to the total information in the tree minus the amount of information needed to complete
the classification after performing the test. The amount of information needed to complete
the tree is defined as the weighted average of the information in all its subtrees. We com-
pute the weighted average by multiplying the information content of each subtree by the
percentage of the examples present in that subtree and summing these products.


Assume a set of training instances, C. If we make property P, with n values, the root
of the current tree, this will partition C into subsets, {C1, C2, . . . Cn}. The expected
information needed to complete the tree after making P the root is:


The gain from property P is computed by subtracting the expected information to
complete the tree from the total information content of the tree: 


gain(P) = I[C] − E[P]


In the example of Table 10.1, if we make income the property tested at the root of the
tree, this partitions the table of examples into the partitions C1 = {1,4,7,11}, C2 =
{2,3,12,14}, and C3 = {5,6,8,9,10,13}. The expected information needed to complete the
tree is:


The information gain for the distribution of Table 10.1 is:


gain(income) = I[D9.1] - E[income]
= 1.531 - 0.564
= 0.967 bits


Similarly, we may show that


gain(credit history) = 0.266
gain(debt) = 0.063


gain (collateral) = 0.206


Because income provides the greatest information gain, ID3 will select it as the root
of the tree. The algorithm continues to apply this analysis recursively to each subtree until
it has completed the tree.
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10.3.3 Evaluating ID3


Although the ID3 algorithm produces simple decision trees, it is not obvious that such
trees will be effective in predicting the classification of unknown examples. ID3 has been
evaluated in both controlled tests and applications and has proven to work well in practice.


Quinlan, for example, has evaluated ID3’s performance on the problem of learning to
classify boards in a chess endgame (Quinlan 1983). The endgame involved white, playing
with a king and a rook, against black, playing with a king and a knight. ID3’s goal was to
learn to recognize boards that led to a loss for black within three moves. The attributes
were different high-level properties of boards, such as “an inability to move the king
safely.” The test used 23 such attributes. 


Once board symmetries were taken into account, the entire problem domain consisted
of 1.4 million different boards, of which 474,000 were a loss for black in three moves. ID3
was tested by giving it a randomly selected training set and then testing it on 10,000
different boards, also randomly selected. Quinlan’s tests gave the results found in
Table 10.2. The predicted maximum errors were derived from a statistical model of ID3’s
behavior in the domain. For further analysis and details see Quinlan (1983). 


These results are supported by further empirical studies and by anecdotal results from
further applications. Variations of ID3 have been developed to deal with such problems as
noise and excessively large training sets. For more details, see Quinlan (1986a, b).


Table 10.2 The evaluation of ID3


10.3.4 Decision Tree Data Issues: Bagging, Boosting 


Quinlan (1983) was the first to suggest the use of information theory to produce subtrees
in decision tree learning and his work was the basis for our presentation. Our examples
were clean, however, and their use straightforward. There are a number of issues that we
did not address, each of which often occurs in a large data set:


1. The data is bad. This can happen when two (or more) identical attribute sets give
different results. What can we do if we have no a priori reason to get rid of data?


Size of Training Set
Percentage of 


Whole Universe
Errors in 10,000 


Trials
Predicted


Maximum Errors


200 0.01 199 728


1,000 0.07 33 146


5,000 0.36 8 29


25,000 1.79 6 7


125,000 8.93 2 1
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2. Data from some attribute sets is missing, perhaps because it is too expensive to
obtain. Do we extrapolate? Can we create a new value “unknown?” How can we
smooth over this irregularity?


3. Some of the attribute sets are continuous. We handled this by breaking the
continuous value “income” into convenient subsets of values, and then used
these groupings. Are there better approaches?


4. The data set may be too large for the learning algorithm. How do you
handle this? 


Addressing these issues produced new generations of decision tree learning
algorithms after ID3. The most notable of these is C4.5 (Quinlan 1996). These issues also
led to techniques such as bagging and boosting. Since the data for classifier learning
systems are attribute-value vectors or instances, it is tempting to manipulate the data to see
if different classifiers are produced.


Bagging produces replicate training sets by sampling with replacement from the
training instances. Boosting uses all instances at each replication, but maintains a weight
for each instance in the training set. This weight is intended to reflect that vector’s
importance. When the weights are adjusted, different classifiers are produced, since the
weights cause the learner to focus on different instances. In either case, the multiple
classifiers produced are combined by voting to form a composite classifier. In bagging,
each component classifier has the same vote, while boosting assigns different voting
strengths to the component classifiers on the basis of their accuracy.


In working with very large sets of data, it is common to divide the data into subsets,
build the decision tree on one subset, and then test its accuracy on other subsets. The
literature on decision tree learning is now quite extensive, with a number of data sets
on-line, and a number of empirical results published showing the results of using various
versions of decision tree algorithms on this data.


Finally, it is straightforward to convert a decision tree into a comparable rule set.
What we do is make each possible path through the decision tree into a single rule. The
pattern for the rule, its left-hand side, consists of the decisions leading to the leaf node.
The action or right-hand side is the leaf node or outcome of the tree. This rule set may be
further customized to capture subtrees within the decision tree. This rule set may then be
run to classify new data.


10.4 Inductive Bias and Learnability


So far, our discussion has emphasized the use of empirical data to guide generalization.
However, successful induction also depends upon prior knowledge and assumptions about
the nature of the concepts being learned. Inductive bias refers to any criteria a learner uses
to constrain the concept space or to select concepts within that space. In the next section,
we examine the need for bias and the types of biases that learning programs typically








418 PART IV / MACHINE LEARNING


employ. Section 10.4.2 introduces theoretical results in quantifying the effectiveness of
inductive biases. 


10.4.1 Inductive Bias


Learning spaces tend to be large; without some way of pruning them, search-based learn-
ing would be a practical impossibility. For example, consider the problem of learning a
classification of bit strings (strings of 0s and 1s) from positive and negative examples.
Because a classification is simply a subset of the set of all possible strings, the total num-
ber of possible classifications is equal to the power set, or set of all subsets, of the entire
population. If there are m instances, there are 2m possible classifications. But for strings of
n bits, there are 2n different strings. Thus, there are 2 to the power 2n different classifica-
tions of bit strings of length n. For n = 50, this number is larger than the number of
molecules in the known universe! Without some heuristic constraints, it would be impos-
sible for a learner to effectively search such spaces in all but the most trivial domains.


Another reason for the necessity of bias is the nature of inductive generalization itself.
Generalization is not truth preserving. For example, if we encounter an honest politician,
are we justified in assuming that all politicians are honest? How many honest politicians
must we encounter before we are justified in making this assumption? Hume discussed
this problem, known as the problem of induction, several hundred years ago: 


You say that the one proposition is an inference from the other; but you must confess that the
inference is not intuitive, neither is it demonstrative. Of what nature is it then? To say it is
experimental is begging the question. For all inferences from experience suppose, as their
foundation, that the future will resemble the past and that similar powers will be conjoined with
similar sensible qualities (Hume 1748). 


Incidentally, in the eighteenth century Hume’s work was seen as an intellectual threat,
especially to the religious community’s attempts to mathematically prove the existence
and attributes of the deity. Among the counter theories proposed to rescue “certainty” was
that of Rev. Bayes, an English cleric, see Chapter 5, 9, and 13. But back to induction.


In inductive learning, the training data are only a subset of all instances in the domain;
consequently, any training set may support many different generalizations. In our example
of a bit string classifier, assume that the learner has been given the strings {1100, 1010} as
positive examples of some class of strings. Many generalizations are consistent with these
examples: the set of all strings beginning with “1” and ending with “0,” the set of all
strings beginning with “1,” the set of all strings of even parity, or any other subset of the
entire population that includes {1100, 1010}. What can the learner use to choose from
these generalizations? The data alone are not sufficient; all of these choices are consistent
with the data. The learner must make additional assumptions about “likely” concepts.


In learning, these assumptions often take the form of heuristics for choosing a branch
of the search space. The information theoretic test selection function used by ID3
(Section 10.3.2) is an example of such a heuristic. ID3 performs a hill-climbing search
through the space of possible decision trees. At each stage of the search, it examines all the
tests that could be used to extend the tree and chooses the test that gains the most
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information. This is a “greedy” heuristic: it favors branches of the search space that seem
to move the greatest distance toward a goal state. 


This heuristic allows ID3 to search efficiently the space of decision trees, and it also
addresses the problem of choosing plausible generalizations from limited data. ID3
assumes that the smallest tree that correctly classifies all the given examples will be the
most likely to classify future training instances correctly. The rationale for this assumption
is that small trees are less likely to make assumptions not supported by the data. If the
training set is large enough and truly representative of the population, such trees should
include all and only the essential tests for determining class membership. As discussed in
Section 10.3.3, empirical evaluations have shown this assumption to be quite justified.
This preference for simple concept definitions is used in a number of learning algorithms,
such as the CLUSTER/2 algorithm of Section 10.6.2. 


Another form of inductive bias consists of syntactic constraints on the representation
of learned concepts. Such biases are not heuristics for selecting a branch of the concept
space. Instead, they limit the size of the space itself by requiring that learned concepts be
expressed in a constrained representation language. Decision trees, for example, are a
much more constrained language than full predicate calculus. The corresponding
reduction in the size of the concept space is essential to ID3’s efficiency. 


An example of a syntactic bias that might prove effective in classifying bit strings
would limit concept descriptions to patterns of symbols from the set {0, 1, #}. A pattern
defines the class of all matching strings, where matching is determined according to the
following rules: 


If the pattern has a 0  in a certain position, then the target string must have a 0  in the
corresponding position. 


If the pattern has a 1  in a certain position, then the target string must have a 1  in the
corresponding position. 


A # in a given position can match either a 1  or a 0 .


For example, the pattern, “1##0” defines the set of strings {1110, 1100, 1010, 1000}. 
Considering only those classes that could be represented as a single such pattern


reduces the size of the concept space considerably. For strings of length n, we may define
3n different patterns. This is considerably smaller than the 2 to the power 2n possible con-
cepts in the unconstrained space. This bias also allows straightforward implementation of
version space search, where generalization involves replacing a 1 or a 0 in a candidate pat-
tern with a #. However, the cost we incur for this bias is the inability to represent (and
consequently learn) certain concepts. For example, a single pattern of this type cannot rep-
resent the class of all strings of even parity. 


This trade-off between expressiveness and efficiency is typical. LEX, for example,
does not distinguish between odd or even integers in its taxonomy of symbols.
Consequently, it cannot learn any heuristic that depends upon this distinction. Although
work has been done in programs that can change their bias in response to data (Utgoff
1986), most learning programs assume a fixed inductive bias. 
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Machine learning has explored a number of representational biases: 


Conjunctive biases restrict learned knowledge to conjunctions of literals. This is
particularly common because the use of disjunction in concept descriptions creates
problems for generalization. For example, assume that we allow arbitrary use of dis-
juncts in the representation of concepts in the candidate elimination algorithm.
Because the maximally specific generalization of a set of positive instances is simply
the disjunction of all the instances, the learner will not generalize at all. It will add
disjuncts ad infinitum, implementing a form of rote learning (Mitchell 1980). 


Limitations on the number of disjuncts. Purely conjunctive biases are too limited for
many applications. One approach that increases the expressiveness of a representation
while addressing the problems of disjunction is to allow a small, bounded number of
disjuncts.


Feature vectors are a representation that describes objects as a set of features whose
values differ from object to object. The objects presented in Table 10.1 are repre-
sented as sets of features.


Decision trees are a concept representation that has proven effective in the
ID3 algorithm.


Horn clauses require a restriction on the form of implications that has been used in
automated reasoning as well as by a number of programs for learning rules from
examples. We present Horn clauses in detail in Section 14.2.


In addition to the syntactic biases discussed in this section, a number of programs use
domain-specific knowledge to consider the known or assumed semantics of the domain.
Such knowledge can provide an extremely effective bias. Section 10.5 examines these
knowledge-based approaches. However, before considering the role of knowledge in
learning, we briefly examine theoretical results quantifying inductive bias. We also
present a summary discussion of inductive bias in learning systems in Section 16.2.


10.4.2 The Theory of Learnability


The goal of inductive bias is to restrict the set of target concepts in such a way that we may
both search the set efficiently and find high-quality concept definitions. An interesting
body of theoretical work addresses the problem of quantifying the effectiveness of an
inductive bias. 


We define the quality of concepts in terms of their ability to correctly classify objects
that were not included in the set of training instances. It is not hard to write a learning
algorithm that produces concepts that will correctly classify all the examples that it has
seen; rote learning would suffice for this. However, due to the large number of instances in
most domains, or the fact that some instances are not available, algorithms can only afford
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to examine a portion of the possible examples. Thus, the performance of a learned concept
on new instances is critically important. In testing learning algorithms, we generally
divide the set of all instances into nonintersecting sets of training instances and test
instances. After training a program on the training set, we test it on the test set. 


It is useful to think of efficiency and correctness as properties of the language for
expressing concepts, i.e., the inductive bias, rather than of a particular learning algorithm.
Learning algorithms search a space of concepts; if this space is manageable and contains
concepts that perform well, then any reasonable learning algorithm should find these defi-
nitions; if the space is highly complex, an algorithm’s success will be limited. An extreme
example will clarify this point. 


The concept of ball is learnable, given a suitable language for describing the proper-
ties of objects. After seeing a relatively small number of balls, a person will be able to
define them concisely: balls are round. Contrast this with a concept that is not learnable:
suppose a team of people runs around the planet and selects a set of several million objects
entirely at random, calling the resulting class bunch_of_stuff. Not only would a concept
induced from any sample of bunch_of_stuff require an extremely complex representa-
tion, but it also is unlikely that this concept would correctly classify unseen members of
the set. 


These observations make no assumption about the learning algorithms used, just that
they can find a concept in the space consistent with the data. ball is learnable because we
can define it in terms of a few features: the concept can be expressed in a biased language.
Attempting to describe the concept bunch_of_stuff would require a concept definition as
long as the list of all the properties of all the objects in the class. 


Thus, rather than defining learnability in terms of specific algorithms, we define it in
terms of the language used to represent concepts. Also, to achieve generality, we do not
define learnability over specific problem domains, such as learning bunch_of_stuff.
Instead we define it in terms of the syntactic properties of the concept definition language.


In defining learnability, we must not only take efficiency into account; we must also
deal with the fact that we have limited data. In general we cannot hope to find the exactly
correct concept from a random sample of instances. Rather, just as in estimating the mean
of a set in statistics, we try to find a concept which is very likely to be nearly correct. Con-
sequently, the correctness of a concept is the probability, over the entire population of
instances, that it will correctly classify an instance. 


In addition to the correctness of learned concepts, we must also consider the likeli-
hood that an algorithm will find such concepts. That is, there is a small chance that the
samples we see are so atypical that learning is impossible. Thus, a particular distribution
of positive instances, or a particular training set selected from these instances, may or may
not be sufficient to select a high-quality concept. We are therefore concerned with two
probabilities: the probability that our samples are not atypical and the probability that the
algorithm will find a quality concept, the normal estimation error. These two probabilities
are bounded by δ and ε, respectively, in the definition of PAC learability we give below.


To summarize, learnability is a property of concept spaces and is determined by the
language required to represent concepts. In evaluating these spaces, we must take into
account both the probability that the data is by coincidence quite impoverished and the
probability with which the resulting concept will correctly classify the unseen instances.
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Valiant (1984) has formalized these intuitions in the theory of probably approximately
correct (PAC) learning. 


A class of concepts is PAC learnable if an algorithm exists that executes efficiently
and has a high probability of finding an approximately correct concept. By approximately
correct, we mean that the concept correctly classifies a high percentage of new instances.
Thus, we require both that the algorithm find, with a high probability, a concept that is
nearly correct and that the algorithm itself be efficient. An interesting aspect of this defini-
tion is that it does not necessarily depend upon the distribution of positive examples in the
instance space. It depends upon the nature of the concept language, that is, the bias, and
the desired degree of correctness. Finally, by making assumptions about the example dis-
tributions, it is often possible to get better performance, that is, to make do with fewer
samples than the theory requires.


Formally, Valiant defines PAC learnability as follows. Let C be a set of concepts c
and X a set of instances. The concepts may be algorithms, patterns, or some other means
of dividing X into positive and negative instances. C is PAC learnable if there exists an
algorithm with the following properties: 


1. If for concept error ε and failure probability δ, there exists an algorithm which,
given a random sample of instances of size n = |X| polynomial in 1/ε, and 1/δ,
the algorithm produces a concept c, an element of C, such that the probability
that c has a generalization error greater than ε is less than δ. That is, for y drawn
from the same distribution that the samples in X were drawn from:


P[P[y is misclassified by c] ≥ ε] ≤ δ.


2. The execution time for the algorithm is polynomial in n, 1/ε, and 1/δ.


Using this definition of PAC learnability, researchers have shown the tractability of
several inductive biases. For example, Valiant (1984) proves that the class of k-CNF
expressions is learnable. k-CNF expressions are sentences in conjunctive normal form
with a bound on the number of disjuncts; expressions are formed of the conjunction of
clauses, c1 ∧ c2 ∧ . . . cn, where each ci is the disjunction of no more than k literals. This
theoretical result supports the common restriction of concepts to conjunctive form used in
many learning algorithms. We do not duplicate the proof here but refer the reader to
Valiant’s paper, where he proves this result, along with the learnability of other biases. For
additional results in learnability and inductive bias see Haussler (1988) and Martin (1997). 


10.5 Knowledge and Learning


ID3 and the candidate elimination algorithm generalize on the basis of regularities in
training data. Such algorithms are often referred to as similarity based, in that
generalization is primarily a function of similarities across training examples. The biases
employed by these algorithms are limited to syntactic constraints on the form of learned
knowledge; they make no strong assumptions about the semantics of the domains. In this
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section, we examine algorithms, such as explanation-based learning, that use prior
domain knowledge to guide generalization.


Initially, the idea that prior knowledge is necessary for learning seems contradictory.
However, both machine learning and cognitive scientist researchers have made a case for
exactly that notion, arguing that the most effective learning occurs when the learner
already has considerable knowledge of the domain. One argument for the importance of
knowledge in learning is the reliance of similarity-based learning techniques on relatively
large amounts of training data. Humans, in contrast, can form reliable generalizations
from as few as a single training instance, and many practical applications require that a
learning program do the same. 


Another argument for the importance of prior knowledge recognizes that any set of
training examples can support an unlimited number of generalizations, most of which are
either irrelevant or nonsensical. Inductive bias is one means of making this distinction. In
this section, we examine algorithms that go beyond purely syntactic biases to consider the
role of strong domain knowledge in learning. 


10.5.1 Meta-DENDRAL


Meta-DENDRAL (Buchanan and Mitchell 1978) is one of the earliest and still one of the
best examples of the use of knowledge in inductive learning. Meta-DENDRAL acquires
rules to be used by the DENDRAL program for analyzing mass spectrographic data.
DENDRAL infers the structure of organic molecules from their chemical formula and
mass spectrographic data. 


A mass spectrograph bombards molecules with electrons, causing some of the
chemical bonds to break. Chemists measure the weight of the resulting pieces and
interpret these results to gain insight into the structure of the compound. DENDRAL
employs knowledge in the form of rules for interpreting mass spectrographic data. The
premise of a DENDRAL rule is a graph of some portion of a molecular structure. The con-
clusion of the rule is that graph with the location of the cleavage indicated. 


Meta-DENDRAL infers these rules from spectrographic results on molecules of
known structure. Meta-DENDRAL is given the structure of a known compound, along
with the mass and relative abundance of the fragments produced by spectrography. It
interprets these, constructing an account of where the breaks occurred. These explanations
of breaks in specific molecules are used as examples for constructing general rules. 


In determining the site of a cleavage in a training run, DENDRAL uses a “half-order
theory” of organic chemistry. This theory, though not powerful enough to support the
direct construction of DENDRAL rules, does support the interpretation of cleavages
within known molecules. The half-order theory consists of rules, constraints, and heuris-
tics such as:


Double and triple bonds do not break. 


Only fragments larger than two carbon atoms show up in the data.
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Using the half-order theory, meta-DENDRAL constructs explanations of the cleavage.
These explanations indicate the likely sites of cleavages along with possible migrations of
atoms across the break. 


These explanations become the set of positive instances for a rule induction program.
This component induces the constraints in the premises of DENDRAL rules through a
general to specific search. It begins with a totally general description of a cleavage:
X1∗X2. This pattern means that a cleavage, indicated by the asterisk, can occur between
any two atoms. It specializes the pattern by: 


adding atoms: X1∗X2 → X3 − X1∗X2


where the “−” operator indicates a chemical bond, or 


instantiating atoms or attributes of atoms: X1∗X2 → C∗X2


Meta-DENDRAL learns from positive examples only and performs a hill-climbing
search of the concept space. It prevents overgeneralization by limiting candidate rules to
cover only about half of the training instances. Subsequent components of the program
evaluate and refine these rules, looking for redundant rules or modifying rules that may be
overly general or specific. 


The strength of meta-DENDRAL is in its use of domain knowledge to change raw
data into a more usable form. This gives the program noise resistance, through the use of
its theory to eliminate extraneous or potentially erroneous data, and the ability to learn
from relatively few training instances. The insight that training data must be so interpreted
to be fully useful is the basis of explanation-based learning. 


10.5.2 Explanation-Based Learning


Explanation-based learning uses an explicitly represented domain theory to construct an
explanation of a training example, usually a proof that the example logically follows from
the theory. By generalizing from the explanation of the instance, rather than from the
instance itself, explanation-based learning filters noise, selects relevant aspects of
experience, and organizes training data into a systematic and coherent structure. 


There are several alternative formulations of this idea. For example, the STRIPS
program for representing general operators for planning (see Section 8.4) has exerted a
powerful influence on this research (Fikes et al. 1972). Meta-DENDRAL, as we saw in
Section 10.5.1, established the power of theory-based interpretation of training instances.
More recently, a number of authors (DeJong and Mooney 1986, Minton 1988) have pro-
posed alternative formulations of this idea. The Explanation-Based Generalization algo-
rithm of Mitchell et al. (1986) is also typical of the genre. In this section, we examine a
variation of the explanation-based learning (EBL) algorithm developed by DeJong and
Mooney (1986).


EBL begins with: 
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1. A target concept. The learner’s task is to determine an effective definition of this
concept. Depending upon the specific application, the target concept may be a
classification, a theorem to be proven, a plan for achieving a goal, or a heuristic
for a problem solver. 


2. A training example, an instance of the target. 


3. A domain theory, a set of rules and facts that are used to explain how the training
example is an instance of the goal concept. 


4. Operationality criteria, some means of describing the form that concept defini-
tions may take. 


To illustrate EBL, we present an example of learning about when an object is a cup.
This is a variation of a problem explored by Winston et al. (1983) and adapted to
explanation-based learning by Mitchell et al. (1986). The target concept is a rule that may
be used to infer whether an object is a cup: 


premise(X) → cup(X)


where premise is a conjunctive expression containing the variable X.
Assume a domain theory that includes the following rules about cups: 


liftable(X) ∧ holds_liquid(X) → cup(X) 
part(Z, W) ∧ concave(W) ∧ points_up(W) → holds_liquid(Z)
light(Y) ∧ part(Y, handle) → liftable(Y) 
small(A) → light(A) 
made_of(A, feathers) → light(A)


The training example is an instance of the goal concept. That is, we are given: 


cup(obj1)
small(obj1)
part(obj1, handle) 
owns(bob, obj1) 
part(obj1, bottom) 
part(obj1, bowl)
points_up(bowl)
concave(bowl)
color(obj1, red)


Finally, assume the operationality criteria require that target concepts be defined in terms
of observable, structural properties of objects, such as part and points_up. We may
provide domain rules that enable the learner to infer whether a description is operational,
or we may simply list operational predicates. 


Using this theory, a theorem prover may construct an explanation of why the example
is indeed an instance of the training concept: a proof that the target concept logically
follows from the example, as in the first tree in Figure 10.17. Note that this explanation
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eliminates such irrelevant concepts as color(obj1, red) from the training data and captures
those aspects of the example known to be relevant to the goal. 


The next stage of explanation-based learning generalizes the explanation to produce a
concept definition that may be used to recognize other cups. EBL accomplishes this by
substituting variables for those constants in the proof tree that depend solely on the
particular training instance, as in Figure 10.17. Based on the generalized tree, EBL defines
a new rule whose conclusion is the root of the tree and whose premise is the conjunction
of the leaves: 


small(X) ∧ part(X, handle) ∧ part(X, W) ∧ concave(W) ∧ points_up(W) → cup(X).


In constructing a generalized proof tree, our goal is to substitute variables for those
constants that are part of the training instance while retaining those constants and
constraints that are part of the domain theory. In this example, the constant handle


cup(obj1)


liftable(obj1)                                                  holds  liquid(obj1)


light(obj1)                part(obj1, handle)                part(obj1, bowl)    concave(bowl)       points_up(bowl)


small(obj1)


cup(X)


liftable(X)                                                  holds  liquid(X)


light(X)                    part(X, handle)                part(X, W)            concave(W)            points_up(W)


small(X)


Generalized proof that X is a cup


Proof that obj1 is a cup


Figure 10.17 Specific and generalized proof that an object, X, is a cup.
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originated in the domain theory rather than the training instance. We have retained it as an
essential constraint in the acquired rule.


We may construct a generalized proof tree in a number of ways using a training
instance as a guide. Mitchell et al. (1986) accomplish this by first constructing a proof tree
that is specific to the training example and subsequently generalizing the proof through a
process called goal regression. Goal regression matches the generalized goal (in our
example, cup(X)) with the root of the proof tree, replacing constants with variables as
required for the match. The algorithm applies these substitutions recursively through the
tree until all appropriate constants have been generalized. See Mitchell et al. (1986) for a
detailed description of this process. 


DeJong and Mooney (1986) propose an alternative approach that essentially builds
the generalized and the specific trees in parallel. This is accomplished by maintaining a
variation of the proof tree consisting of the rules used in proving the goal distinct from the
variable substitutions used in the actual proof. This is called an explanation structure, as in
Figure 10.18, and represents the abstract structure of the proof. The learner maintains two
distinct substitution lists for the explanation structure: a list of the specific
substitutions required to explain the training example and a list of general substitutions
required to explain the generalized goal. It constructs these substitution lists as it builds
the explanation structure. 


We construct the lists of general and specific substitutions as follows: let ss and sg be
the lists of specific and general substitutions, respectively. For every match between


Figure 10.18 An explanation structure of the cup example.
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expressions e1 and e2 in the explanation structure, update ss and sg according to the
following rule: 


if e1 is in the premise of a domain rule and e2 is the conclusion of a domain rule 


then begin 
Ts = the most general unifier of e1ss and e2ss % unify e1 and e2 under ss


ss  = ssTs % update ss by composing it with Ts


Tg = the most general unifier of e1sg and e2sg % unify e1 and e2 under sg


sg = sgTg % update sg by composing it with Tg


end


if e1 is in the premise of a domain rule and e2 is a fact in the training instance 


then begin % only update ss


Ts = the most general unifier of e1ss and e2ss % unify e1 and e2 under ss


ss = ss Ts % update ss by composing it with Ts


end


In the example of Figure 10.18: 


ss = {obj1/X, obj1/Y, obj1/A, obj1/Z, bowl/W} 


sg = {X/Y, X/A, X/Z}


Applying these substitutions to the explanation structure of Figure 10.18 gives the specific
and general proof trees of Figure 10.17.


Explanation-based learning offers a number of benefits: 


1. Training examples often contain irrelevant information, such as the color of the
cup in the preceding example. The domain theory allows the learner to select the
relevant aspects of the training instance. 


2. A given example may allow numerous possible generalizations, most of which
are either useless, meaningless, or wrong. EBL forms generalizations that are
known to be relevant to specific goals and that are guaranteed to be logically
consistent with the domain theory. 


3. By using domain knowledge EBL allows learning from a single training instance.


4. Construction of an explanation allows the learner to hypothesize unstated
relationships between its goals and its experience, such as deducing a definition
of a cup based on its structural properties. 


EBL has been applied to a number of learning problems. For instance, Mitchell et al.
(1983) discuss the addition of EBL to the LEX algorithm. Suppose that the first positive
example of the use of OP1 is in solving the instance ∫ 7 x2 dx. LEX will make this instance
a member of S, the set of maximally specific generalizations. However, a human would
immediately recognize that the techniques used in solving this instance do not depend
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upon the specific values of the coefficient and exponent but will work for any real values,
so long as the exponent is not equal to −1. The learner is justified in inferring that OP1
should be applied to any instance of the form ∫ r1 x(r2≠−1) dx, where r1 and r2 are any real
numbers. LEX has been extended to use its knowledge of algebra with explanation-based
learning to make this type of generalization. Finally, we implement an explanation base
learning algorithm in Prolog in the auxiliary material for this book.


10.5.3 EBL and Knowledge-Level Learning


Although it is an elegant formulation of the role of knowledge in learning, EBL raises a
number of important questions. One of the more obvious ones concerns the issue of what
an explanation-based learner actually learns. Pure EBL can only learn rules that are within
the deductive closure of its existing theory. This means the learned rules could have been
inferred from the knowledge base without using the training instance at all. The sole
function of the training instance is to focus the theorem prover on relevant aspects of the
problem domain. Consequently, EBL is often viewed as a form of speed up learning or
knowledge base reformulation; EBL can make a learner work faster, because it does not
have to reconstruct the proof tree underlying the new rule. However, because it could
always have reconstructed the proof, EBL cannot make the learner do anything new. This
distinction has been formalized by Dietterich in his discussion of knowledge-level
learning (1986). 


EBL takes information implicit in a set of rules and makes it explicit. For example,
consider the game of chess: a minimal knowledge of the rules of chess, when coupled with
an ability to perform unlimited look-ahead on board states, would allow a computer to
play extremely well. Unfortunately, chess is too complex for this approach. An explana-
tion-based learner that could master chess strategies would indeed learn something that
was, for all practical purposes, new.


EBL also allows us to abandon the requirement that the learner have a complete and
correct theory of the domain and focus on techniques for refining incomplete theories
within the context of EBL. Here, the learner constructs a partial solution tree. Those
branches of the proof that cannot be completed indicate deficiencies in the theory. A num-
ber of interesting questions remain to be examined in this area. These include the develop-
ment of heuristics for reasoning with imperfect theories, credit assignment methodologies,
and choosing which of several failed proofs should be repaired. 


A further use for explanation-based learning is to integrate it with similarity-based
approaches to learning. Again, a number of basic schemes suggest themselves, such as
using EBL to refine training data where the theory applies and then passing this partially
generalized data on to a similarity-based learner for further generalization. Alternatively,
we could use failed explanations as a means of targeting deficiencies in a theory, thereby
guiding data collection for a similarity-based learner.


Other issues in EBL research include techniques for reasoning with unsound theories,
alternatives to theorem proving as a means of constructing explanations, methods of
dealing with noisy or missing training data, and methods of determining which generated
rules to save. 
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10.5.4 Analogical Reasoning


Whereas “pure” EBL is limited to deductive learning, analogies offer a more flexible
method of using existing knowledge. Analogical reasoning assumes that if two situations
are known to be similar in some respects, it is likely that they will be similar in others. For
example, if two houses have similar locations, construction, and condition, then they
probably have about the same sales value. Unlike the proofs used in EBL, analogy is not
logically sound. In this sense it is like induction. As Russell (1989) and others have
observed, analogy is a species of single instance induction: in our house example, we are
inducing properties of one house from what is known about another. 


As we discussed in our presentation of case-based reasoning (Section 7.3), analogy is
very useful for applying existing knowledge to new situations. For example, assume that a
student is trying to learn about the behavior of electricity, and assume that the teacher tells
her that electricity is analogous to water, with voltage corresponding to pressure, amper-
age to the amount of flow, and resistance to the capacity of a pipe. Using analogical rea-
soning, the student may more easily grasp such concepts as Ohm’s law. 


The standard computational model of analogy defines the source of an analogy to be a
problem solution, example, or theory that is relatively well understood. The target is not
completely understood. Analogy constructs a mapping between corresponding elements of
the target and source. Analogical inferences extend this mapping to new elements of the
target domain. Continuing with the “electricity is like water” analogy, if we know that this
analogy maps switches onto valves, amperage onto quantity of flow, and voltage onto
water pressure, we may reasonably infer that there should be some analogy to the capacity
(i.e., the cross-sectional area) of a water pipe; this could lead to an understanding of
electrical resistance. 


A number of authors have proposed a unifying framework for computational models
of analogical reasoning (Hall 1989, Kedar-Cabelli 1988, Wolstencroft 1989). A typical
framework consists of the following stages: 


1. Retrieval. Given a target problem, it is necessary to select a potential source
analog. Problems in analogical retrieval include selecting those features of the
target and source that increase the likelihood of retrieving a useful source analog
and indexing knowledge according to those features. Generally, retrieval
establishes the initial elements of an analogical mapping. 


2. Elaboration. Once the source has been retrieved, it is often necessary to derive
additional features and relations of the source. For example, it may be necessary
to develop a specific problem-solving trace (or explanation) in the source domain
as a basis for analogy with the target. 


3. Mapping and inference. This stage involves developing the mapping of source
attributes into the target domain. This involves both known similarities and
analogical inferences. 


4. Justification. Here we determine that the mapping is indeed valid. This stage may
require modification of the mapping. 
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5. Learning. In this stage the acquired knowledge is stored in a form that will be
useful in the future. 


These stages have been developed in a number of computational models of analogical
reasoning. For example, structure mapping theory (Falkenhainer 1990, Falkenhainer et al.
1989, Gentner 1983) not only addresses the problem of constructing useful analogies but
also provides a plausible model of how humans understand analogies. A central question
in the use of analogy is how we may distinguish expressive, deep analogies from more
superficial comparisons. Gentner argues that true analogies should emphasize systematic,
structural features of a domain over more superficial similarities. For example, the
analogy, “the atom is like the solar system” is deeper than “the sunflower is like the sun,”
because the former captures a whole system of causal relations between orbiting bodies
whereas the latter describes superficial similarities such as the fact that both sunflowers
and the sun are round and yellow. This property of analogical mapping is called
systematicity.


Structure mapping formalizes this intuition. Consider the example of the atom/solar
system analogy, as in Figure 10.19 as explicated by Gentner (1983). The source domain
includes the predicates: 


yellow(sun)
blue(earth)
hotter-than(sun, earth) 
causes(more-massive(sun, earth), attract(sun, earth)) 
causes(attract(sun, earth), revolves-around(earth, sun))


The target domain that the analogy is intended to explain includes 


more-massive(nucleus, electron) 
revolves-around(electron, nucleus)


Structure mapping attempts to transfer the causal structure of the source to the target.
The mapping is constrained by the following rules: 


1. Properties are dropped from the source. Because analogy favors systems of
relations, the first stage is to eliminate those predicates that describe superficial
properties of the source. Structure mapping formalizes this by eliminating
predicates of a single argument (unary predicates) from the source. The rationale
for this is that predicates of higher arity, by virtue of describing a relationship
between two or more entities, are more likely to capture the systematic relations
intended by the analogy. In our example, this eliminates such assertions as
yellow(sun) and blue(earth). Note that the source may still contain assertions,
such as hotter-than(sun, earth), that are not relevant to the analogy. 


2. Relations map unchanged from the source to the target; the arguments to the
relations may differ. In our example, such relations as revolves-around and
more-massive are the same in both the source and the target. This constraint is
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used by many theories of analogy and greatly reduces the number of possible
mappings. It is also consistent with the heuristic of giving relations preference in
the mapping. 


3. In constructing the mapping, higher-order relations are preferred as a focus of the
mapping. In our example, causes is such a higher-order relation, because it
takes other relations as its arguments. This mapping bias is called the systematic-
ity principle.


These constraints lead to the mapping: 


sun → nucleus 
earth → electron


Extending the mapping leads to the inference: 


causes(more-massive(nucleus, electron), attract(nucleus, electron))
causes(attract(nucleus, electron), revolves-around(electron, nucleus))


Structure mapping theory has been implemented and tested in a number of domains.
Though it remains far from a complete theory of analogy, failing to address such problems
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Figure 10.19 An analogical mapping.
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as source analog retrieval, it has proven both computationally practical and able to explain
many aspects of human analogical reasoning. Finally, as we noted in our presentation of
case-based reasoning, Section 7.3, there is an essential role for analogy in creating and
applying a useful case base. 


10.6 Unsupervised Learning


The learning algorithms discussed so far implement forms of supervised learning. They
assume the existence of a teacher, some fitness measure, or other external method of clas-
sifying training instances. Unsupervised learning eliminates the teacher and requires that
the learners form and evaluate concepts on their own. Science is perhaps the best example
of unsupervised learning in humans. Scientists do not have the benefit of a teacher.
Instead, they propose hypotheses to explain observations; evaluate their hypotheses using
such criteria as simplicity, generality, and elegance; and test hypotheses through experi-
ments of their own design. 


10.6.1 Discovery and Unsupervised Learning


AM (Davis and Lenat 1982, Lenat and Brown 1984) is one of the earliest and most
successful discovery programs, deriving a number of interesting, even if not original,
concepts in mathematics. AM began with the concepts of set theory, operations for creat-
ing new knowledge by modifying and combining existing concepts, and a set of
heuristics for detecting “interesting” concepts. By searching this space of mathematical
concepts, AM discovered the natural numbers along with several important concepts of
number theory, such as the existence of prime numbers. 


For example, AM discovered the natural numbers by modifying its notion of “bags.”
A bag is a generalization of a set that allows multiple occurrences of the same element.
For example, {a, a, b, c, c} is a bag. By specializing the definition of bag to allow only a
single type of element, AM discovered an analogy of the natural numbers. For example,
the bag {1, 1, 1, 1} corresponds to the number 4. Union of bags led to the notion of
addition: {1,1} ∪ {1,1} = {1,1,1,1}, or 2 + 2 = 4. Exploring further modifications of these
concepts, AM discovered multiplication as a series of additions. Using a heuristic that
defines new operators by inverting existing operators, AM discovered integer division. It
found the concept of prime numbers by noting that certain numbers had exactly two
divisors (themselves and 1). 


On creating a new concept, AM evaluates it according to a number of heuristics,
keeping those concepts that prove “interesting”. AM determined that prime numbers were
interesting based on the frequency with which they occur. In evaluating concepts using
this heuristic, AM generates instances of the concept, testing each to see whether the
concept holds. If a concept is true of all instances it is a tautology, and AM gives it a low
evaluation. Similarly, AM rejects concepts that are true of no instances. If a concept is true
of a significant portion of the examples (as is the case with prime numbers), AM evaluates
it as interesting and selects it for further modification. 
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Although AM discovered prime numbers and several other interesting concepts, it
failed to progress much beyond elementary number theory. In a later analysis of this work,
Lenat and Brown (1984) examine the reasons for the program’s success and its limitations.
Although Lenat originally believed that AM’s heuristics were the prime source of its
power, this later evaluation attributed much of the program’s success to the language used
to represent mathematical concepts. AM represented concepts as recursive structures in a
variation of the Lisp programming language. Because of its basis in a well-designed
programming language, this representation defined a space that contained a high density
of interesting concepts. This was particularly true in the early stages of the search. As
exploration continued, the space grew combinatorially, and the percentage of interesting
concepts “thinned out.” This observation further underscores the relationship between
representation and search.


Another reason AM failed to continue the impressive pace of its early discoveries is
its inability to “learn to learn.” It did not acquire new heuristics as it gained mathematical
knowledge; consequently, the quality of its search degraded as its mathematics grew more
complex. In this sense, AM never developed a deep understanding of mathematics. Lenat
has addressed this problem in later work on a program called EURISKO, which attempts
to learn new heuristics (Lenat 1983). 


A number of programs have continued to explore the problems of automatic discov-
ery. IL (Sims 1987) applies a variety of learning techniques to mathematical discovery,
including methods such as theorem proving and explanation-based learning (Section
10.5). See also the automated invention of integer sequences in Cotton et al. (2000).


BACON (Langley et al. 1986, 1987) has developed computational models of the for-
mation of quantitative scientific laws. For example, using data that related the distances of
the planets from the sun and the period of the planets’ orbits, BACON “re-discovered”
Kepler’s laws of planetary motion. By providing a plausible computational model of how
humans may have achieved discovery in a variety of domains, BACON has provided a
useful tool and methodology for examining the process of human scientific discovery.
SCAVENGER (Stubblefield 1995, Stubblefield and Luger 1996) used a variation of the
ID3 algorithm to improve its ability to form useful analogies. Shrager and Langley (1990)
describe a number of other discovery systems. 


Although scientific discovery is an important research area, progress to date has been
slight. A more basic, and perhaps more fruitful problem in unsupervised learning,
concerns the discovery of categories. Lakoff (1987) suggests that categorization is
fundamental to human cognition: higher-level theoretical knowledge depends upon the
ability to organize the particulars of our experience into coherent taxonomies. Most of our
useful knowledge is about categories of objects, such as cows, rather than about specific
individual cows, such as Blossom or Ferdinand. Nordhausen and Langley have empha-
sized the formation of categories as the basis for a unified theory of scientific discovery
(Nordhausen and Langley 1990). In developing explanations of why chemicals react in
the ways they do, chemistry built on prior work in classifying compounds into categories
such as “acid” and “alkaline.” 


In the next section, we examine conceptual clustering, which is the problem of dis-
covering useful categories in unclassified data. 
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10.6.2 Conceptual Clustering


The clustering problem begins with a collection of unclassified objects and a means for
measuring the similarity of objects. The goal is to organize the objects into classes that
meet some standard of quality, such as maximizing the similarity of objects in the same
class.


Numeric taxonomy is one of the oldest approaches to the clustering problem. Numeric
methods rely upon the representation of objects as a collection of features, each of which
may have some numeric value. A reasonable similarity metric treats each object (a vector
of n feature values) as a point in n-dimensional space. The similarity of two objects is the
euclidean distance between them in this space. 


Using this similarity metric, a common clustering algorithm builds clusters in a
bottom-up fashion. This approach, often called an agglomerative clustering strategy,
forms categories by: 


1. Examining all pairs of objects, selecting the pair with the highest degree of
similarity, and making that pair a cluster. 


2. Defining the features of the cluster as some function, such as average, of the
features of the component members and then replacing the component objects
with this cluster definition. 


3. Repeating this process on the collection of objects until all objects have been
reduced to a single cluster. 


4. Many unsupervised learning algorithms can be viewed as performing maximum
liklihood density estimations, which means finding a distribution from which the
data is most likely to have been drawn. An example is the interpretation of a set
of phonemes in a natural language application, see Chapter 15.


The result of this algorithm is a binary tree whose leaf nodes are instances and whose
internal nodes are clusters of increasing size. 


We may extend this algorithm to objects represented as sets of symbolic, rather than
numeric, features. The only problem is in measuring the similarity of objects defined
using symbolic rather than numeric values. A reasonable approach defines the similarity
of two objects as the proportion of features that they have in common. Given the objects 


object1 = {small, red, rubber, ball} 
object2 = {small, blue, rubber, ball} 
object3 = {large, black, wooden, ball}


this metric would compute the similarity values: 


similarity(object1, object2) = 3/4
similarity(object1, object3) = similarity(object2, object3) = 1/4


However, similarity-based clustering algorithms do not adequately capture the
underlying role of semantic knowledge in cluster formation. For example, constellations
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of stars are described both on the basis of their closeness in the sky as well as by way of
existing human concepts, such as “the big dipper”.


In defining categories, we cannot give all features equal weight. In any given context,
certain of an object’s features are more important than others; simple similarity metrics
treat all features equally. Human categories depend upon the goals of the categorization
and prior knowledge of the domain much more than on surface similarity. Consider, for
example, the classification of whales as mammals instead of fish. Surface similarities
cannot account for this classification, which depends upon the wider goals of biological
classification and extensive physiological and evolutionary evidence. 


Traditional clustering algorithms not only fail to take goals and background knowl-
edge into account, but they also fail to produce meaningful semantic explanations of the
resulting categories. These algorithms represent clusters extensionally, which means by
enumerating all of their members. The algorithms produce no intensional definition, or no
general rule that defines the semantics of the category and that may be used to classify
both known and future members of the category. For example, an extensional definition of
the set of people who have served as secretary-general of the United Nations would sim-
ply list those individuals. An intensional definition, such as: 


{X ⏐ X has been elected secretary-general of the United Nations}


would have the added benefits of defining the class semantically and allowing us to
recognize future members of the category. 


Conceptual clustering addresses these problems by using machine learning
techniques to produce general concept definitions and applying background knowledge to
the formation of categories. CLUSTER/2 (Michalski and Stepp 1983) is a good example
of this approach. It uses background knowledge in the form of biases on the language used
to represent categories. 


CLUSTER/2 forms k categories by constructing individuals around k seed objects. k
is a parameter that may be adjusted by the user. CLUSTER/2 evaluates the resulting
clusters, selecting new seeds and repeating the process until its quality criteria are met.
The algorithm is defined: 


1. Select k seeds from the set of observed objects. This may be done randomly or
according to some selection function. 


2. For each seed, using that seed as a positive instance and all other seeds as
negative instances, produce a maximally general definition that covers all of the
positive and none of the negative instances. Note that this may lead to multiple
classifications of other, nonseed, objects. 


3. Classify all objects in the sample according to these descriptions. Replace each
maximally general description with a maximally specific description that covers
all objects in the category. This decreases likelihood that classes overlap on
unseen objects. 


4. Classes may still overlap on given objects. CLUSTER/2 includes an algorithm
for adjusting overlapping definitions. 
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5. Using a distance metric, select an element closest to the center of each class. The
distance metric could be similar to the similarity metric discussed above. 


6. Using these central elements as new seeds, repeat steps 1–5. Stop when clusters
are satisfactory. A typical quality metric is the complexity of the general
descriptions of classes. For instance, a variation of Occam’s Razor might prefer
clusters that yield syntactically simple definitions, such as those with a small
number of conjuncts. 


7. If clusters are unsatisfactory and no improvement occurs over several iterations,
select the new seeds closest to the edge of the cluster, rather than those at
the center. 


Figure 10.20 shows the stages of a CLUSTER/2 execution. 


10.6.3 COBWEB and the Structure of Taxonomic Knowledge


Many clustering algorithms, as well as many supervised learning algorithms such as ID3,
define categories in terms of necessary and sufficient conditions for membership. These
conditions are a set of properties possessed by all members of a category and only by
members of the category. Though many categories, such as the set of all United Nations
delegates, may be so defined, human categories do not always fit this model. Indeed,
human categorization is characterized by greater flexibility and a much richer structure
than we have so far examined. 


For example, if human categories were indeed defined by necessary and sufficient
conditions for membership, we could not distinguish degrees of category membership.
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Figure 10.20 The steps of a CLUSTER/2 run.
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However, psychologists have noted a strong sense of prototypicality in human
categorization (Rosch 1978). For instance, we generally think of a robin as a better
example of a bird than a chicken; an oak is a more typical example of a tree than a palm
(at least in northern latitudes). 


Family resemblance theory (Wittgenstein 1953) supports these notions of prototypi-
cality by arguing that categories are defined by complex systems of similarities between
members, rather than by necessary and sufficient conditions for membership. Such cate-
gories may not have any properties shared by all of their members. Wittgenstein cites the
example of games: not all games require two or more players, such as solitaire; not all
games are fun for the players, such as rochambeau; not all games have well-articulated
rules, such as children’s games of make believe; and not all games involve competition,
such as jumping rope. Nonetheless, we consider the category to be well-defined and
unambiguous.


Human categories also differ from most formal inheritance hierarchies in that not all
levels of human taxonomies are equally important. Psychologists (Rosch 1978) have dem-
onstrated the existence of base-level categories. The base-level category is the classifica-
tion most commonly used in describing objects, the terminology first learned by children,
and the level that in some sense captures the most fundamental classification of an object.
For example, the category “chair” is more basic than either its generalizations, such as
“furniture,” or its specializations, such as “office chair.” “Car” is more basic than either
“sedan” or “vehicle.” 


Common methods of representing class membership and hierarchies, such as logic,
inheritance systems, feature vectors, or decision trees, do not account for these effects. Yet
doing so is not only important to cognitive scientists, whose goal is the understanding of
human intelligence; it is also valuable to the engineering of useful AI applications. Users
evaluate a program in terms of its flexibility, its robustness, and its ability to behave in
ways that seem reasonable by human standards. Although we do not require that AI
algorithms parallel the architecture of the human mind, any algorithm that proposes to
discover categories must meet user expectations as to the structure and behavior of
those categories. 


COBWEB (Fisher 1987) addresses these issues. Although it is not intended as a
model of human cognition, it does account for base-level categorization and degrees of
category membership. In addition, COBWEB learns incrementally: it does not require that
all instances be present before it begins learning. In many applications, the learner
acquires data over time. In these situations, it must construct usable concept descriptions
from an initial collection of data and update those descriptions as more data become
available. COBWEB also addresses the problem of determining the correct number of
clusters. CLUSTER/2 produced a prespecified number of categories. Although the user
could vary this number or the algorithm could try different values in an effort to improve
categorization, such approaches are not particularly flexible. COBWEB uses global
quality metrics to determine the number of clusters, the depth of the hierarchy, and the
category membership of new instances. 


Unlike the algorithms we have seen so far, COBWEB represents categories
probabilistically. Instead of defining category membership as a set of values that must be
present for each feature of an object, COBWEB represents the probability with which
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each feature value is present. p(fi = vij⏐ck) is the conditional probability (Section 5.2) with
which feature fi will have value vij, given that an object is in category ck.


Figure 10.21 illustrates a COBWEB taxonomy taken from Gennari et al. (1989). In
this example, the algorithm has formed a categorization of the four single-cell animals at
the bottom of the figure. Each animal is defined by its value for the features: color, and
numbers of tails and nuclei. Category C3, for example, has a 1.0 probability of having 2
tails, a 0.5 probability of having light color, and a 1.0 probability of having 2 nuclei.


As the figure illustrates, each category in the hierarchy includes probabilities of
occurrence for all values of all features. This is essential to both categorizing new
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Figure 10.21 A COBWEB clustering for four one-celled
organisms, adapted from Gennari et al.(1989).
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instances and modifying the category structure to better fit new instances. Indeed, as an
incremental algorithm, COBWEB does not separate these actions. When given a new
instance, COBWEB considers the overall quality of either placing the instance in an
existing category or modifying the hierarchy to accommodate the instance. The criterion
COBWEB uses for evaluating the quality of a classification is called category utility
(Gluck and Corter 1985). Category utility was developed in research on human
categorization. It accounts for base-level effects and other aspects of human category
structure.


Category utility attempts to maximize both the probability that two objects in the
same category have values in common and the probability that objects in different
categories will have different property values. Category utility is defined: 


This sum is taken across all categories, ck, all features, fi, and all feature values, vij.
p(fi = vij ⏐ ck), called predictability, is the probability that an object has value vij for feature
fi given that the object belongs to category ck. The higher this probability, the more likely
two objects in a category share the same feature values. p(ck⏐fi = vij), called
predictiveness, is the probability with which an object belongs to category ck given that it
has value vij for feature fi. The greater this probability, the less likely objects not in the
category will have those feature values. p(fi = vij) serves as a weight, assuring that
frequently occurring feature values will exert a stronger influence on the evaluation. By
combining these values, high category utility measures indicate a high likelihood that
objects in the same category will share properties, while decreasing the likelihood of
objects in different categories having properties in common. 


The COBWEB algorithm is defined: 


cobweb(Node, Instance) 
begin


if Node is a leaf 
then begin 


create two children of Node, L1 and L2;
set the probabilities of L1 to those of Node; 
initialize the probabilities for L2 to those of Instance; 
add Instance to Node, updating Node s probabilities; 


end
else begin 


add Instance to Node, updating Node s probabilities; 
for each child, C, of Node, compute the category utility of the clustering


achieved by placing Instance in C; 
let S1 be the score for the best categorization, C1;
let S2 be the score for the second best categorization, C2;
let S3 be the score for placing instance in a new category; 
let S4 be the score for merging C1 and C2 into one category; 
let S5 be the score for splitting C1 (replacing it with its child categories) 


end


p fi=vij( )p fi=vij ck( )p ck fi=vij( )
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If S1 is the best score 
then cobweb(C1, Instance) % place the instance in C1
else if S3 is the best score 


then initialize the new category s probabilities to those of Instance 
else if S4 is the best score 


then begin 
let Cm be the result of merging C1 and C2;
cobweb(Cm, Instance) 


end
else if S5 is the best score


then begin
split C1;
cobweb(Node, Instance)


end;
end


COBWEB performs a hill-climbing search of the space of possible taxonomies using
category utility to evaluate and select possible categorizations. It initializes the taxonomy
to a single category whose features are those of the first instance. For each subsequent
instance, the algorithm begins with the root category and moves through the tree. At each
level it uses category utility to evaluate the taxonomies resulting from: 


1. Placing the instance in the best existing category. 


2. Adding a new category containing only the instance. 


3. Merging of two existing categories into one new one and adding the instance to
that category.


4. Splitting of an existing category into two and placing the instance in the best new
resulting category. 


Figure 10.22 illustrates the processes of merging and splitting nodes. To merge two
nodes, the algorithm creates a new node and makes the existing nodes children of that
node. It computes the probabilities for the new node by combining the probabilities for the
children. Splitting replaces a node with its children.


This algorithm is efficient and produces taxonomies with a reasonable number of
classes. Because it allows probabilistic membership, its categories are flexible and robust.
In addition, it has demonstrated base-level category effects and, through its notion of par-
tial category matching, supports notions of prototypicality and degree of membership.
Instead of relying on two-valued logic, COBWEB, like fuzzy logic, views the “vague-
ness” of category membership as a necessary component for learning and reasoning in a
flexible and intelligent fashion.


We next present reinforcement learning which, like the classifier systems of Section
11.2, interprets feedback from an environment to learn optimal sets of condition/response
relationships for problem solving within that environment.
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10.7 Reinforcement Learning


We humans (usually!) learn from interacting with our environment. A moment of thought,
however, reminds us that feedback from our actions in the world is not always immediate
and straightforward. In human relationships, for example, it often takes some time to
appreciate fully the results of our actions. Interaction with the world demonstrates for us
cause and effect (Pearl 2000), the consequences of our actions, and even how to achieve
complex goals. As intelligent agents, we make policies for working in and through our
world. “The world” is a teacher, but her lessons are often subtle and sometimes hard won!


10.7.1 The Components of Reinforcement Learning


In reinforcement learning, we design computational algorithms for transforming world sit-
uations into actions in a manner that maximizes a reward measure. Our agent is not told
directly what to do or which action to take; rather, the agent discovers through exploration
which actions offer the most reward. Agents’ actions affect not just immediate reward, but
also impact subsequent actions and eventual rewards. These two features, trial-and-error
search and delayed reinforcement, are the two most important characteristics of
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Figure 10.22 Merging and splitting of nodes.
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reinforcement learning. Consequently, reinforcement learning is a more general methodol-
ogy than the learning seen earlier in this chapter.


Reinforcement learning is not defined by particular learning methods, but by actions
within and responses from an environment. Any learning method creating this interaction
is an acceptable reinforcement learning method. Reinforcement learning is also not super-
vised, as seen throughout our chapters on machine learning. In supervised learning, a
“teacher” uses examples to directly instruct or train the learner. In reinforcement learning,
the learning agent itself, through trial, error, and feedback, learns an optimal policy for
accomplishing goals within its environment. (See classifier learning , Section 11.2.)


Another trade-off that the reinforcement learner must consider is between using only
what it presently knows and further exploring its world. To optimize its reward possibili-
ties, the agent must not just do what it already knows, but also explore those parts of its
world that are still unknown. Exploration allows the agent to (possibly) make better selec-
tions in the future; thus obviously, the agent that either always or never explores will usu-
ally fail. The agent must explore a variety of options and at the same time favor those that
appear to be best. On tasks with stochastic parameters, exploratory actions must often be
made multiple times to gain reliable estimates of rewards. (See Chapter 13 for details on
stochastic aspects of reinforcement learning.)


Many of the problem-solving algorithms presented earlier in this book, including
planners, decision makers, and search algorithms can be viewed in the context of rein-
forcement learning. For example, we can create a plan with a teleo-reactive controller
(Section 7.4) and then evaluate its success with a reinforcement learning algorithm. In
fact, the DYNA-Q reinforcement algorithm (Sutton 1990, 1991) integrates model learning
with planning and acting. Thus reinforcement learning offers a method for evaluating both
plans and models and their utility for accomplishing tasks in complex environments.


We now introduce some terminology for reinforcement learning:


t is a discrete time step in the problem solving process
st is the problem state at t, dependent on st -1 and at -1
at is the action at t, dependent on st
rt is the reward at t, dependent on st -1 and at -1
π is a policy for taking an action in a state. Thus π is a mapping from states to actions
π* is the optimal policy
V maps a state to its value. Thus, Vπ(s) is the value of state s under policy π


In Section 10.7.2, temporal difference learning learns a V for each s with static π.
There are four components of reinforcement learning, a policy π, a reward function r,


a value mapping V, and quite often, a model of the environment. The policy defines the
learning agent’s choices and method of action at any given time. Thus the policy could be
represented by a set of production rules or a simple lookup table. The policy for a particu-
lar situation, as just noted, could also be the result of extensive search, consulting a model,
or of a planning process. It could also be stochastic. The policy is the critical component
of the learning agent in that it alone is sufficient to produce behavior at any time.


The reward function rt defines the state/goal relationships of the problem at time t. It
maps each action, or more precisely each state-response pair, into a reward measure,
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indicating the desirability of that action for achieving the goal. The agent in reinforcement
learning has the task of maximizing the total reward it receives in accomplishing its task. 


The value function V is a property of each state of the environment indicating the
reward the system can expect for actions continuing on from that state. While the reward
function measures the immediate desirability of state-response pairs, the value function
indicates the long-term desirability of a state of the environment. A state gets its value
from both its own intrinsic quality as well as from the quality of states likely to follow
from it, i.e., the reward of being in those states. For example, a state/action might have a
low immediate reward, but have a high value because it is usually followed by other states
that do yield a high reward. A low value could also indicate states that are not associated
with eventually successful solution paths. 


Without a reward function there are no values and the only purpose of estimating val-
ues is to gain more rewards. In making decisions, however, it is values that most interest
us, as values indicate states and combinations of states that bring highest rewards. It is
much harder to determine values for states, however, than to determine rewards. Rewards
are given directly by the environment, while values are estimated and then re-estimated
from the successes and failures over time. In fact, the most critical as well as most difficult
aspect of reinforcement learning is creating a method for efficiently determining values.
We demonstrate one method, a temporal difference learning rule, in Section 10.7.2.


A final − and optional − element for reinforcement learning is the model of the envi-
ronment. A model is a mechanism for capturing aspects of the behavior of the environ-
ment. As we saw in Section 7.3, models can be used not only for determining faults as in
diagnostic reasoning but also as part of determining a plan of action. Models let us evalu-
ate possible future actions without actually experiencing them. Model-based planning is a
recent addition to the reinforcement learning paradigm, as early systems tended to create
reward and value parameters based on the pure trial and error actions of an agent.


10.7.2 An Example: Tic-Tac-Toe Revisited


We next demonstrate a reinforcement learning algorithm for tic-tac-toe, a problem we
have already considered (Chapter 4), and one dealt with in the reinforcement learning lit-
erature by Sutton and Barto (1998). It is important to compare and contrast the reinforce-
ment learning approach with other solution methods, for example, mini-max.


As a reminder, tic-tac-toe is a two-person game played on a 3x3 grid, as in Figure II.5.
The players, X and O, alternate putting their marks on the grid, with the first player that
gets three marks in a row, either horizontal, vertical, or diagonal, the winner. As the reader
is aware, when this game is played using perfect information and backed up values, Sec-
tion 4.3, it is always a draw. With reinforcement learning we will be able to do something
much more interesting, however. We will show how we can capture the performance of an
imperfect opponent, and create a policy that allows us to maximize our advantage over
this opponent. Our policy can also evolve as our opponent improves her game, and with
the use of a model we will be able to generate forks and other attacking moves!


First, we must set up a table of numbers, one for each possible state of the game.
These numbers, that state’s value, will reflect the current estimate of the probability of
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winning from that state. This will support a policy for a strictly winning strategy, i.e.,
either a win by our opponent or a drawn game will be considered a loss for us. This draw-
as-loss approach allows us to set up a policy focused on winning, and is different from our
perfect information win-lose-draw model of Section 4.3. This is an important difference,
actually; we are attempting to capture the skill of an actual opponent and not the perfect
information of some idealized opponent. Thus, we will initialize our value table with a 1
for each win position for us, a 0 for each loss or drawn board, and a 0.5 everywhere else,
reflecting the initial guess that we have a 50 per cent chance of winning from those states.


We now play many games against this opponent. For simplicity, let us assume that we
are the X and our opponent 0. Figure 10.23 reflects a sequence of possible moves, both
those considered and those chosen, within a game situation. To generate a move, we first
consider each state that is a legal move from our present state, that is, any open state that
we can possibly claim with our X. We look up the current value measure for that state kept
in our table. Most of the time we can make a greedy move, that is, taking the state that has
the best value function. Occasionally, we will want to make an exploratory move and
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Figure 10.23 A sequence of tic-tac-toe for moves. Dashed arrows indicate pos-
sible move choices, down solid arrows indicate selected moves,
up solid arrows indicate reward, when reward function changes
state s value.
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select randomly from the other states. These exploratory moves are to consider alterna-
tives we might not see within the game situation, expanding possible value optimizations.


While we are playing, we change the value functions of each of the states we have
selected. We attempt to make their latest values better reflect the probability of their being
on a winning path. We earlier called this the reward function for a state. To do this we back
up the value of a state we have selected as a function of the value of the next state we
choose. As can be seen with the “up arrows” of Figure 10.23, this back-up action skips the
choice of our opponent, and yet it does reflect the set of values that she has directed us
towards for our next choice of a state. Thus, the current value of an earlier state we choose
is adjusted to better reflect the value of the later state (and ultimately, of course, of the
winning or losing value). We usually do this by moving the previous state some fraction of
the value difference between itself and the newer state we have selected. This fractional
measure, called the step-size parameter, is reflected by the multiplier c in the equation: 


V(sn) = V(sn) + c(V(sn + 1) − V(sn))


In this equation, sn represents the state chosen at time n and sn+1 the state chosen at time
n+1. This update equation is an example of a temporal difference learning rule, since its
changes are a function of the difference, V(sn + 1) − V(sn), between value estimates at two
different times, n and n +1. We will discuss these learning rules further in the following
section.


The temporal difference rule performs quite well for tic-tac-toe. We want to reduce
the step size parameter c over time, so that as the system learns, successively smaller
adjustments are made to the state values. This will guarantee convergence of the value
functions for each state to the probability of winning, given our opponent. Also, except for
periodic exploratory moves, the choices made will in fact be the optimal moves, that is,
the optimal policy, against this opponent. What is even more interesting, however, is the
fact that if the step size never really gets to zero this policy will continually change to
reflect any changes/improvements in the opponent’s play.


Our tic-tac-toe example illustrates many of the important features of reinforcement
learning. First, there is learning while interacting with the environment, here our oppo-
nent. Second, there is an explicit goal (reflected in a number of goal states) and optimal
behavior requires planning and look ahead that makes allowance for delayed effects of
particular moves. For example, the reinforcement learning algorithm in effect sets up
multi move traps for the naive opponent. It is an important feature of reinforcement learn-
ing that the effects of look ahead and planning can be in fact achieved, without either an
explicit model of the opponent or through extended search.


In our tic-tac-toe example, learning began with no prior knowledge beyond the
game’s rules. (We simply initialized all non-terminal states to 0.5.) Reinforcement learn-
ing certainly does not require this “blank slate” view. Any prior information available can
be built into the initial state values. It is also possible to deal with states where there is no
information available. Finally, if a model of a situation is available, the resulting model
based information can be used for the state values. But it is important to remember that
reinforcement learning can be applied in either situation: no model is required, but models
can be used if they are available or if they can be learned.
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In the tic-tac-toe example, the reward was amortized over each state-action decision.
Our agent was myopic, concerned with maximizing only immediate rewards. Indeed, if
we use deeper lookahead with reinforcement learning, we will need to measure the dis-
counted return of an eventual reward. We let the discount rate γ represent the present value
of a future reward: a reward received k time steps in the future is worth only γk -1 times
what it would be worth if it were received immediately. This discounting of the reward
measure is important in using the dynamic programming approach to reinforcement learn-
ing presented in the next section.


Tic-tac-toe was an example of a two-person game. Reinforcement learning can also
be used for situations where there are no opponents, just feedback from an environment.
The tic-tac-toe example also had a finite (and actually fairly small) state space. Reinforce-
ment learning can also be employed when the state space is very large, or even infinite. In
the later case, state values are generated only when that state is encountered and used in a
solution. Tesauro (1995) for example, used the temporal difference rule we just described,
built into a neural network, to learn to play backgammon. Even though the estimated size
of the backgammon state space is 1020 states, Tesauro’s program plays at the level of the
best human players.


10.7.3 Inference Algorithms and Applications for Reinforcement Learning


According to Sutton and Barto (1998) there are three different families of reinforcement
learning inference algorithms: temporal difference learning, dynamic programming, and
Monte Carlo methods. These three form a basis for virtually all current approaches to rein-
forcement learning. Temporal difference methods learn from sampled trajectories and
back up values from state to state. We saw an example of temporal difference learning
with tic-tac-toe in the previous section. 


Dynamic programming methods compute value functions by backing up values from
successor states to predecessor states. Dynamic programming methods systematically
update one state after another, based on a model of the next state distribution. The
dynamic programming approach is built on the fact that for any policy π and any state s
the following recursive consistency equation holds:


Vπ(s) = Σπ(a | s) * Σπ(s → s  | a) * (Ra(s → s ) + γ(Vπ(s ))
     a                   s


π(a | s) is the probability of action a given state s under stochastic policy π. π(s → s  | a)
is the probability of s going to s under action a. This is the Bellman (1957) equation for
Vπ. It expresses a relationship between the value of a state and the recursively calculated
values of its successor states. (See dynamic programming in Section 4.1.) In Figure 10.24a
we present the first step calculation, where, from state s, we look forward to three possible
successor states. With policy π, action a has probability π(a | s) of occurring. From each
of these three states the environment could respond with one of several states, say s with
reward r. The Bellman equation averages over all these possibilities, weighting each by its
probability of happening. It states that the value of the start state s must equal the dis-
counted, γ, value of the expected next states plus the reward generated along the path.
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Classical dynamic programming models are of limited utility because of their
assumption of a perfect model. If n and m denote the number of states and actions a
dynamic programming method is guaranteed to find an optimal policy in polynomial time,
even though the total number of deterministic policies is nm. In this sense dynamic pro-
gramming is exponentially faster than any direct search in policy space could be, because
direct search would have to evaluate each policy exhaustively to give the same guarantee.


Monte Carlo methods do not require a complete model. Instead they sample the entire
trajectories of states to update the value function based on the episodes’ final outcomes.
Monte Carlo methods do require experience, that is, sample sequences of states, actions,
and rewards from on-line or simulated interactions with the environment. On-line experi-
ence is interesting because it requires no prior knowledge of the environment, yet can still
be optimal. Learning from simulated experience is also powerful. A model is required, but
it can be generative rather than analytical, that is, a model able to generate trajectories but
not able to calculate explicit probabilities. Thus, it need not produce the complete proba-
bility distributions of all possible transitions that are required in dynamic programming.


Thus, Monte Carlo methods solve the reinforcement learning problem by averaging
sample returns. To ensure well defined returns, Monte Carlo methods are defined only for
full episodes, that is, all episodes must eventually terminate. Furthermore, it is only on
completion of an episode that the value estimates and policies are changed. Thus, Monte
Carlo methods are incremental in an episode by episode sense and not step by step. The
term “Monte Carlo” is often used more broadly for any estimation method whose opera-
tion involves a significant random component. Here it is used specifically for methods
based on averaging complete returns. We consider Monte Carlo reinforcement methods
again in Chapter 13.


There are other methods used for reinforcement learning, the most important being Q-
learning (Watkins 1989), a variant of the temporal difference approach. In Q-learning, Q is
a function of state-action pairs to learned values. For all states and actions:


Q: (state x action) → value


For one step Q-learning: 


Q(st,at) ← (1 − c) * Q(st,at) + c * [rt + 1 + γ * max Q(st + 1,a) − Q(st,at)]
a


where both c and γ are ≤ 1 and rt + 1 is the reward at st + 1. We can visualize the Q approach
in Figure 10.24b, and contrast it with Figure 10.24a, where the start node is a state-action
situation. This backup rule updates state-action pairs, so that the top state of Figure
10.24b, the root of the backup, is an action node coupled with the state that produced it. 


In Q-learning, the backup is from action nodes, maximizing over all the actions possi-
ble from the next states, along with their rewards. In full recursively defined Q-learning,
the bottom nodes of the backup tree are all terminal nodes reachable by a sequence of
actions starting from the root node, together with the rewards of these successor actions.
On-line Q-learning, expanding forward from possible actions, does not require building a
full world model. Q-learning can also be performed off-line. As one can see, Q-learning is
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a kind of temporal difference approach. Further details may be found in Watkins (1989)
and Sutton and Barto (1998). Q-learning is discussed again in Chapter 13.


There are now a number of significant problems solved with reinforcement learning,
including Backgammon (Tesauro 1994, 1995). Sutton and Barto (1998) also analyze Sam-
uel’s checker program, Section 4.3, from the reinforcement learning viewpoint. They also
discuss the reinforcement learning approach to the acrobat, elevator dispatching, dynamic
channel allocation, job shop scheduling, and other classic problem areas (Sutton and
Barto 1998).


10.8 Epilogue and References


Machine learning is one of the most exciting subfields in artificial intelligence, addressing
a problem that is central to intelligent behavior and raising a number of questions about
knowledge representation, search, and even the basic assumptions of AI itself. Surveys of
machine learning include Pat Langley’s (1995) Elements of Machine Learning, Tom
Mitchell’s (1997) book Machine Learning, and Anthony Martin’s (1997) Computational
Learning Theory: An Introduction. An Introduction to Machine Learning by Nils Nilsson
http://robotics.stanford.edu/people/nilsson/mlbook.html. See also Section 16.2.


An early surveys of learning include Machine Learning: An Artificial Intelligence
Approach (Kodratoff and Michalski 1990, Michalski et al. 1983, 1986). Readings in
Machine Learning (Shavlik and Dietterich 1990) collects papers in the field, back as far as
1958. By placing all this research in a single volume, the editors have provided a very
valuable service to both researchers and those seeking an introduction to the field. Induc-
tive learning is presented by Vere (1975, 1978) and Dietterich and Michalski (1981, 1986).
Production System Models of Learning and Development (Klahr et al. 1987) collects a
number of papers in machine learning, including work (SOAR) reflecting a more cogni-
tive science approach to learning. 


Computer Systems That Learn (Weiss and Kulikowski 1991) is an introductory sur-
vey of the whole field, including treatments of neural networks, statistical methods, and


Figure 10.24    Backup diagrams for (a) V∗ and (b) Q∗, adapted
from Sutton and Barto (1998).
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machine learning techniques. Readers interested in a deeper discussion of analogical rea-
soning should examine Carbonell (1983, 1986), Holyoak (1985), Kedar-Cabelli (1988),
and Thagard (1988). For those interested in discovery and theory formation, see Scientific
Discovery: Computational Explorations of the Creative Processes (Langley et al. 1987)
and Computational Models of Scientific Discovery and Theory Formation (Shrager and
Langley 1990). Concept Formation: Knowledge and Experience in Unsupervised Learn-
ing (Fisher et al. 1991) presents a number of papers on clustering, concept formation, and
other forms of unsupervised learning. 


ID3 has a long history within the machine learning community. EPAM, the Elemen-
tary Perceiver And Memorizer in (Feigenbaum and Feldman 1963), used a type of deci-
sion tree, called a discrimination net, to organize sequences of nonsense syllables. Quinlan
was the first to use information theory to generate children in the decision tree. Quinlan
(1993) and others extended ID3 to C4.5, and address issues such as noise and continuous
attributes in data (Quinlan 1996, Auer et al. 1995). Stubblefield and Luger (1996) have
applied ID3 to the problem of improving the retrieval of sources in an analogical reason-
ing system.


Michie (1961) and Samuel (1959) offer early examples of reinforcement learning.
Sutton and Barto’s (1998) Reinforcement Learning was the source of much of our presen-
tation on this topic. We recommend Watkins (1989) thesis for a more detailed presentation
of Q-learning, Sutton’s (1988) original paper for analysis of temporal difference learning,
and Bertsekas and Tsitsiklis (1996), Neuro-Dynamic Programming, for a more formal pre-
sentation of all reinforcement learning algorithms. We discuss reinforcemnt learning again
in the context of probabilistic learning, Chapter 13. 


Machine Learning is the primary journal of the field. Other sources of current
research include the yearly proceedings of the International Conference on Machine
Learning and the European Conference on Machine Learning as well as the proceedings
of the American Association of Artificial Intelligence (now Association for the Advance-
ment of Artificial Intelligence) conference as well as proceedings of the International
Joint Conference on Artificial Intelligence. for the latest update on topics in machine
Learning.


We present connectionist learning in Chapter 11, social and emergent approaches to
learning in Chapter 12, and dynammic and probabilistic learning in Chapter 13. We dis-
cuss inductive bias, generalization, and other limitations on learning in Section 16.2.


10.9 Exercises


   1. Consider the behavior of Winston’s concept learning program when learning the concept
“step,” where a step consists of a short box and a tall box placed in contact with each
other, as in Figure 10.25. Create semantic net representations of three or four examples
and near misses and show the development of the concept.


 2. The run of the candidate elimination algorithm shown in Figure 10.9 does not show
candidate concepts that were produced but eliminated because they were either overly
general, overly specific, or subsumed by some other concept. Re-do the execution trace,
showing these concepts and the reasons each was eliminated. 
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 3. Build the version space search algorithms in Prolog, or the language of your choice. If you
use Prolog or Java, see hints for version space search in the auxiliary materials.


 4. Using the information theoretic selection function of Section 10.4.3, show in detail how
ID3 constructs the tree of Figure 10.14 from examples in Table 10.1. Be sure to show the
calculations used in computing the information gain for each test and the resulting
test selections. 


 5. Using Shannon’s formula, show whether or not a message about the outcome of a spin of
a roulette wheel has more information than one about the outcome of a coin toss. What if
the roulette wheel message is “not 00”?


 6. Develop a simple table of examples in some domain, such as classifying animals by
species, and trace the construction of a decision tree by the ID3 algorithm. 


 7. Implement ID3 in a language of your choice and run it on the credit history example from
the text. If you use LISP, consider the algorithms and data structures developed in Section
15.13 for suggestions. 


 8. Discuss problems that can arise from using continuous attributes in data, such as a mon-
etary cost, dollars and cents, or the height, a real number, of an entity. Suggest some
method for addressing this problem of continuous data.


 9. Other problems of ID3 are bad or missing data. Data is bad if one set of attributes has two
different outcomes. Data is missing if part of the attribute is not present, perhaps because
it was too expensive to obtain. How might these issues be dealt with in development of
ID3 algorithms?


10. From Quinlan (1993) obtain the C4.5 decision tree algorithm and test it on a data set.There
are complete programs and data sets for C4.5 available from this reference.


11. Develop a domain theory for explanation-based learning in some problem area of your
choice. Trace the behavior of an explanation-based learner in applying this theory to sev-
eral training instances.


12) Develop an explanation-based learning algorithm in the language of your choice. If you
use Prolog, consider the algorithms developed in the auxiliary material. 


13. Consider the tic-tac-toe example of Section 10.7.2. Implement the temporal difference
learning algorithm in the language of your choice. If you designed the algorithm to take
into account problem symmetries, what do you expect to happen? How might this limit
your solution?


14. What happens if the temporal difference algorithm of Problem 13 plays tic-tac-toe against
itself?


Figure 10.25 A step.
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15. Analyze Samuel’s checker playing program from a reinforcement learning perspective.
Sutton and Barto (1998, Section 11.2) offer suggestions in this analysis.


16. Can you analyze the inverted pendulum problem, Figure 8.8, presented in Section 8.2.2
from a reinforcement learning perspective? Build some simple reward measures and use
the temporal difference algorithm in your analysis.


17. Another problem type excellent for reinforcement learning is the so-called gridworld. We
present a simple 4 x 4 gridworld in Figure 10.26. The two greyed corners are the desired
terminal states for the agent. From all other states, agent movement is either up, down,
left, or right. The agent cannot move off the grid: attempting to, leaves the state
unchanged. The reward for all transitions, except to the terminal states is −1. Work
through a sequence of grids that produce a solution based on the temporal difference algo-
rithm presented in Section 10.7.2. See Chapter 13 for more discussion of the gridworld
problem.  


Figure 10.26    An example of a 4 x 4 grid world, adapted
                      from Sutton and Barto (1998).
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MACHINE LEARNING:
CONNECTIONIST


A cat that once sat on a hot stove will never again sit on a hot stove or on a cold one 
either. . . 


—MARK TWAIN


Everything is vague to a degree you do not realize till you have tried to make it precise. . .


—BERTRAND RUSSELL


. . . as if a magic lantern threw the nerves in patterns on a screen. . .


—T. S. ELIOT, The Love Song of J. Alfred Prufrock


11.0 Introduction


In Chapter 10 we emphasized a symbol-based approach to learning. A central aspect of
this hypothesis is the use of symbols to refer to objects and relations in a domain. In the
present chapter, we introduce neurally or biology inspired approaches to learning. 


Neurally inspired models, sometimes known as parallel distributed processing (PDP)
or connectionist systems, de-emphasize the explicit use of symbols in problem solving.
Instead, they hold that intelligence arises in systems of simple, interacting components
(biological or artificial neurons) through a process of learning or adaptation by which the
connections between components are adjusted. Processing in these systems is distributed
across collections or layers of neurons. Problem solving is parallel in the sense that all the
neurons within the collection or layer process their inputs simultaneously and indepen-
dently. These systems also tend to degrade gracefully because information and processing
are distributed across the network’s nodes and layers.


In connectionist models there is, however, a strong representational character both in
the creation of input parameters as well as in the interpretation of output values. To build a


11
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neural network, for example, the designer must create a scheme for encoding patterns in
the world into numerical quantities in the net. The choice of an encoding scheme can play
a crucial role in the eventual success or failure of the network to learn.


In connectionist systems, processing is parallel and distributed with no manipulation
of symbols as symbols. Patterns in a domain are encoded as numerical vectors. The con-
nections between components, are also represented by numerical values. Finally, the trans-
formation of patterns is the result of a numerical operations, usually, matrix
multiplications. These “designer’s choices” for a connectionist architecture constitute the
inductive bias of the system.


The algorithms and architectures that implement these techniques are usually trained
or conditioned rather than explicitly programmed. Indeed, this is a major strength of the
approach: an appropriately designed network architecture and learning algorithm can
often capture invariances in the world, even in the form of strange attractors, without
being explicitly programmed to recognize them. How this happens makes up the material
of Chapter 11.


The tasks for which the neural/connectionist approach is well suited include:


classification, deciding the category or grouping to which an input value belongs;
pattern recognition, identifying structure or pattern in data;
memory recall, including the problem of content addressable memory;
prediction, such as identifying disease from symptoms, causes from effects;
optimization, finding the “best” organization of constraints; and
noise filtering, or separating signal from background, factoring out the irrelevant


components of a signal


The methods of this chapter work best on those tasks that can be difficult to formulate for
symbolic models. This typically includes tasks in which the problem domain requires per-
ception-based skills, or lacks a clearly defined syntax.


In Section 11.1 we introduce neurally inspired learning models from an historical
viewpoint. We present the components of neural network learning, including the “mechan-
ical” neuron, and describe some historically important early work, including the McCul-
loch


 


−Pitts (1943) neuron. The evolution of the network training paradigms over the past
60 years offers important insights into the present state of the discipline. 


In Section 11.2, we continue the historical presentation with the introduction of per-
ceptron learning, and the delta rule. We present an example of the perceptron used as a
classifier. In Section 11.3 we introduce neural nets with hidden layers, and the backpropa-
gation learning rule. These innovations were introduced for artificial neural networks to
overcome problems the early systems had in generalizing across data points that were not
linearly separable. Backpropagation is an algorithm for apportioning “blame” for incorrect
responses to the nodes of a multilayered system with continuous thresholding.


In Section 11.4 we present models for competitive learning developed by Kohonen
(1984) and Hecht-Nielsen (1987). In these models, network weight vectors are used to
represent patterns rather than connection strengths. The winner-take-all learning algo-
rithm selects the node whose pattern of weights is most like the input vector and adjusts it
to make it more like the input vector. It is unsupervised in that winning is simply
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identifying the node whose current weight vector most closely resembles the input vector.
The combination of Kohonen with Grossberg (1982) layers in a single network offers an
interesting model for stimulus


 


−response learning called counter propagation learning.
In Section 11.5 we present Hebb’s (1949) model of reinforcement learning. Hebb


conjectured that each time one neuron contributes to the firing of another neuron, the
strength of the pathway between the neurons is increased. Hebbian learning is modeled by
a simple algorithm for adjusting connection weights. We present both unsupervised and
supervised versions of Hebbian learning. We also introduce the linear associator, a Heb-
bian based model for pattern retrieval from memory.


Section 11.6 introduces a very important family of networks called attractor net-
works. These networks employ feedback connections to repeatedly cycle a signal within
the network. The network output is considered to be the network state upon reaching equi-
librium. Network weights are constructed so that a set of attractors is created. Input pat-
terns within an attractor basin reach equilibrium at that attractor. The attractors can
therefore be used to store patterns in a memory. Given an input pattern, we retrieve either
the closest stored pattern in the network or a pattern associated with the closest stored pat-
tern. The first type of memory is called autoassociative, the second type heteroassocia-
tive. John Hopfield (1982), a theoretical physicist, defined a class of attractor networks
whose convergence can be represented by energy minimization. Hopfield networks can be
used to solve constraint satisfaction problems, such as the traveling salesperson problem,
by mapping the optimization function into an energy function (Section 11.6.4).


In Chapter 12, we present evolutionary models of learning, including genetic algo-
rithms and artificial life. Chapter 13 presents dynamic and stochastic models of learning.
We discuss representational issues and bias in learning as well as the strengths of each
learning paradigm in Section 16.3.


11.1 Foundations for Connectionist Networks


11.1.1 Early History


Connectionist architectures are often thought of as a recent development, however we can
trace their origins to early work in computer science, psychology, and philosophy. John
von Neumann, for example, was fascinated by both cellular automata and neurally
inspired approaches to computation. Early work in neural learning was influenced by psy-
chological theories of animal learning, especially that of Hebb (1949). In this section, we
outline the basic components of neural network learning, and present historically impor-
tant early work in the field.


The basis of neural networks is the artificial neuron, as in Figure 11.1. An artificial
neuron consists of:


Input signals, xi. These data may come from the environment, or the activation of
other neurons. Different models vary in the allowable range of the input values; typi-
cally inputs are discrete, from the set {0, 1} or {


 


−1, 1}, or real numbers. 
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Figure 11.1 An artificial neuron, input vector xi, weights on each input line, and a
thresholding function f that determines the neuron s output value.
Compare this figure with the actual neuron of Figure 1.2.


A set of real valued weights, wi. The weights describe connection strengths. 


An activation level 


 


Σwixi. The neuron’s activation level is determined by the cumula-
tive strength of its input signals where each input signal is scaled by the connection
weight wi along that input line. The activation level is thus computed by taking the
sum of the weighted inputs, that is, 


 


Σwixi.


A threshold function, f. This function computes the neuron’s final or output state by
determining how far the neuron’s activation level is below or above some threshold
value. The threshold function is intended to produce the on/off state of actual neurons.


In addition to these properties of individual neurons, a neural network is also charac-
terized by global properties such as:


The network topology. The topology of the network is the pattern of connections
between the individual neurons. This topology is a primary source of the nets induc-
tive bias. 


The learning algorithm used. A number of algorithms for learning are presented in
this chapter.


The encoding scheme. This includes the interpretation placed on the data to the net-
work and the results of its processing. 


The earliest example of neural computing is the McCulloch


 


−Pitts neuron (McCulloch
and Pitts 1943). The inputs to a McCulloch


 


−Pitts neuron are either excitatory (+1) or
inhibitory (


 


−1). The activation function multiplies each input by its corresponding weight
and sums the results; if the sum is greater than or equal to zero, the neuron returns 1, oth-
erwise,


 


−1. McCulloch and Pitts showed how these neurons could be constructed to com-
pute any logical function, demonstrating that systems of these neurons provide a complete
computational model.
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Figure 11.2 McCulloch


 


−Pitts neurons to calculate the logic functions and and or.


Figure 11.2 shows the McCulloch-Pitts neurons for computing logical functions. The
and neuron has three inputs: x and y are the values to be conjoined; the third, sometimes
called a bias, has a constant value of +1. The input data and bias have weights of +1, +1,
and


 


−2, respectively. Thus, for any values of x and y, the neuron computes the value of x
+ y


 


− 2: if this value is less than 0, it returns 


 


−1, otherwise a 1. Table 11.1 illustrates the
neuron computing x y. In a similar fashion, the weighted sum of input data for the or
neuron, see Figure 11.2, is greater than or equal to 0 unless both x and y equal 


 


−1.


Table 11.1  The McCulloch


 


−Pitts model for logical and.


Although McCulloch and Pitts demonstrated the power of neural computation, inter-
est in the approach only began to flourish with the development of practical learning algo-
rithms. Early learning models drew heavily on the work of the psychologist D. O. Hebb
(1949), who speculated that learning occurred in brains through the modification of syn-
apses. Hebb theorized that repeated firings across a synapse increased its sensitivity and
the future likelihood of its firing. If a particular stimulus repeatedly caused activity in a
group of cells, those cells come to be strongly associated. In the future, similar stimuli
would tend to excite the same neural pathways, resulting in the recognition of the stimuli.
(See Hebb’s actual description, Section 11.5.1.) Hebb’s model of learning worked purely
on reinforcement of used paths and ignored inhibition, punishment for error, or attrition.
Modern psychologists attempted to implement Hebb’s model but failed to produce general
results without addition of an inhibitory mechanism (Rochester et al. 1988, Quinlan 1991).
We consider the Hebbian model of learning in Section 11.5.


In the next section we extend the McCulloch


 


−Pitts neural model by adding layers of
connected neural mechanisms and algorithms for their interactions. The first version of
this was called the perceptron.
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11.2 Perceptron Learning


11.2.1 The Perceptron Training Algorithm


Frank Rosenblatt (1958, 1962) devised a learning algorithm for a type of single layer net-
work called a perceptron. In its signal propagation, the perceptron was similar to the
McCulloch−Pitts neuron, which we will see in Section 11.2.2. The input values and acti-
vation levels of the perceptron are either −1 or 1; weights are real valued. The activation
level of the perceptron is given by summing the weighted input values, Σxiwi. Perceptrons
use a simple hard-limiting threshold function, where an activation above a threshold
results in an output value of 1, and −1 otherwise. Given input values xi, weights wi, and a
threshold, t, the perceptron computes its output value as:


1  if Σxiwi t
−1   if Σxiwi  < t


The perceptron uses a simple form of supervised learning. After attempting to solve a
problem instance, a teacher gives it the correct result. The perceptron then changes its
weights in order to reduce the error. The following rule is used. Let c be a constant whose
size determines the learning rate and d be the desired output value. The adjustment for the
weight on the ith component of the input vector, Δwi, is given by:


Δwi = c(d − sign(Σxiwi)) xi


The sign(Σxiwi) is the perceptron output value. It is +1 or −1. The difference between
the desired output and the actual output values will thus be 0, 2, or −2. Therefore for each
component of the input vector:


If the desired output and actual output values are equal, do nothing.


If the actual output value is −1 and should be 1, increment the weights on the ith line
by 2cxi.


If the actual output value is 1 and should be −1, decrement the weights on the ith line
by 2cxi.


This procedure has the effect of producing a set of weights which are intended to mini-
mize the average error over the entire training set. If there exists a set of weights which
give the correct output for every member of the training set, the perceptron learning proce-
dure will learn it (Minsky and Papert 1969). 


Perceptrons were initially greeted with enthusiasm. However, Nils Nilsson (1965)
and others analyzed the limitations of the perceptron model. They demonstrated that
perceptrons could not solve a certain difficult class of problems, namely problems in
which the data points are not linearly separable. Although various enhancements of the


≥
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perceptron model, including multilayered perceptrons, were envisioned at the time, Mar-
vin Minsky and Seymour Papert, in their book Perceptrons (1969), argued that the linear
separability problem could not be overcome by any form of the perceptron network.


An example of a nonlinearably separable classification is exclusive-or. Exclusive-or
may be represented by the truth table:


Table 11.2  The truth table for exclusive-or.


Consider a perceptron with two inputs, x1, x2, two weights, w1, w2, and threshold t. In
order to learn this function, a network must find a weight assignment that satisfies the fol-
lowing inequalities, seen graphically in Figure 11.3:


w1*1 + w2*1 < t, from line 1 of the truth table.
w1*1 + 0 > t, from line 2 of the truth table.
0 + w2*1 > t, from line 3 of the truth table.
0 + 0 < t, or t must be positive, from the last line of the table.


This series of equations on w1, w2, and t has no solution, proving that a perceptron
that solves exclusive-or is impossible. Although multilayer networks would eventually be
built that could solve the exclusive-or problem, see Section 11.3.3, the perceptron learning
algorithm only worked for single layer networks.


What makes exclusive-or impossible for the perceptron is that the two classes to be
distinguished are not linearly separable. This can be seen in Figure 11.3. It is impossible
to draw a straight line in two dimensions that separates the data points {(0,0), (1,1)} from
{(0,1), (1,0)}.


We may think of the set of data values for a network as defining a space. Each param-
eter of the input data corresponds to one dimension, with each input value defining a point
in the space. In the exclusive-or example, the four input values, indexed by the x1, x2
coordinates, make up the data points of Figure 11.3. The problem of learning a binary
classification of the training instances reduces to that of separating these points into two
groups. For a space of n dimensions, a classification is linearly separable if its classes can
be separated by an n − 1 dimensional hyperplane. (In two dimensions an n-dimensional
hyperplane is a line; in three dimension it is a plane, etc.).


As a result of the linear separability limitation, research shifted toward work in sym-
bol-based architectures, slowing progress in the connectionist methodology. Subsequent
work in the 1980s and 1990s has shown these problems to be solvable, however see (Ack-
ley et al. 1985, Hinton and Sejnowski 1986, 1987).


x1 x2 Output


1 1 0


1 0 1


0 1 1


0 0 0
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Figure 11.3  The exclusive-or problem. No straight line in two-dimensions can 
 separate the (0, 1) and (1, 0) data points from (0, 0) and (1, 1).


In Section 11.3 we discuss backpropagation, an extension of perceptron learning that
works for multilayered networks. Before examining backpropagation, we offer an exam-
ple of a perceptron network that performs classifications. We end Section 11.2 by defining
the generalized delta rule, a generalization of the perceptron learning algorithm that is
used in many neural network architectures, including backpropagation.


11.2.2 An Example: Using a Perceptron Network to Classify


Figure 11.4 offers an overview of the classification problem. Raw data from a space of
possible points are selected and transduced to a new data/pattern space. In this new pattern
space features are identified, and finally, the entity these features represent is classified.
An example would be sound waves recorded on a digital recording device. From there the
acoustic signals are translated to a set of amplitude and frequency parameters. Finally, a
classifier system might recognize these feature patterns as the voiced speech of a particu-
lar person. Another example is the capture of information by medical test equipment, such
as heart defibrilators. The features found in this pattern space would then be used to clas-
sify symptom sets into different disease categories.


In our classification example, the transducer and feature extractor of Figure 11.4
translates the problem information into parameters of a two-dimensional Cartesian space.
Figure 11.5 presents the two-feature perceptron analysis of the information in Table 11.3.
The first two columns of the table present the data points on which the network was
trained. The third column represents the classification, +1 or −1, used as feedback in net-
work training. Figure 11.5 is a graph of the training data of the problem, showing the lin-
ear separation of data classes created when the trained network was run on each data point. 


We discuss first the general theory of classification. Each data grouping that a classi-
fier identifies is represented by a region in multidimensional space. Each class Ri has a
discriminant function gi measuring membership in that region. Within the region Ri, the
ith discriminant function has the largest value:


gi(x) > gj(x) for all j, 1 < j < n.


x2


(0, 1) (1, 1)


(0, 0) (1, 0)


x1
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Figure 11.4 A full classification system.


In the simple example of Table 11.3, the two input parameters produce two obvious
regions or classes in the space, one represented by 1, the other by −1.


Table 11.3 A data set for perceptron classification.


An important special case of discriminant functions is one which evaluates class
membership based on the distance from some central point in the region. Classification
based on this discriminant function is called minimum distance classification. A simple
argument shows that if the classes are linearly separable there is a minimum distance clas-
sification.


If the regions of Ri and Rj are adjacent, as are the two regions in Figure 11.5, there is
a boundary region where the discriminant functions are equal:


gi(x) = gj(x) or gi(x) − gj(x) = 0.
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Figure 11.5   A two-dimensional plot of the data points in Table 11.3. The percep-
tron of Section 11.2.1 provides a linear separation of the data sets. 


If the classes are linearly separable, as in Figure 11.5, the discriminant function sepa-
rating the regions is a straight line, or gi(x) - gj(x) is linear. Since a line is the locus of
points equally distant from two fixed points, the discriminant functions, gi(x) and gj(x),
are minimum distance functions, measured from the Cartesian center of each of the
regions.


The perceptron of Figure 11.6 will compute this linear function. We need two input
parameters and will have a bias with a constant value of 1. The perceptron computes:


f(net) = f(w1*x1 + w2*x2 + w3*1), where f(x) is the sign of x.


When f(x) is +1, x is interpreted as being in one class, when it is −1, x is in the other
class. This thresholding to +1 or −1 is called linear bipolar thresholding (see Figure 11.7a).
The bias serves to shift the thresholding function on the horizontal axis. The extent of this
shift is learned by adjusting the weight w3 during training.


We now use the data points of Table 11.3 to train the perceptron of Figure 11.6. We
assume random initialization of the weights to [.75, .5, −.6] and use the perceptron training
algorithm of Section 11.2.1. The superscripts, e.g., the 1 in f(net)1, represent the current
iteration number of the algorithm. We start by taking the first data point in the table:


f(net)1 = f(.75* 1 + .5*1 - .6*1) = f(.65) = 1


Since f(net)1 = 1, the correct output value, we do not adjust the weights. Thus W2 =
W1. For our second data point:


f(net)2 = f(.75* 9.4 + .5*6.4 - .6*1) = f(9.65) = 1
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Figure 11.6  The perceptron net for the example data of Table 11.3. The 
 thresholding function is linear and bipolar (see Figure 11.7a).


This time our result should have been −1 so we have to apply the learning rule,
described in Section 11.1.1: 


Wt = Wt -1 + c(dt -1 − sign (Wt -1* Xt -1)) Xt -1


where c is the learning constant, X and W are the input and weight vectors, and t the itera-
tion of the net. dt -1 is the desired result at time t − 1, or in our situation, at t = 2. The net
output at t = 2 is 1. Thus the difference between the desired and actual net output, d2 −
sign (W2*X2), is −2. In fact, in a hard limited bipolar perceptron, the learning increment
will always be either +2c or else −2c times the training vector. We let the learning constant
be a small positive real number, 0.2. We update the weight vector:


We now consider the third data point with the newly adjusted weights:


f(net)3 = f(− 3.01* 2.5 − 2.06*2.1 − 1.0*1) = f(−12.84) = −1


Again, the net result is not the desired output. We show the W4 adjustment:


After 10 iterations of the perceptron net, the linear separation of Figure 11.5 is pro-
duced. After repeated training on the data set, about 500 iterations in total, the weight vec-
tor converges to [−1.3, −1.1, 10.9]. We are interested in the line separating the two classes.
In terms of the discriminant functions gi and gj, the line is defined as the locus of points at
which gi (x) = gj (x) or gi (x) − gj (x) = 0, that is, where the net output is 0. The equation
for the net output is given in terms of the weights. It is:


output = w1x1 + w2x2 + w3.
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Figure 11.7 Thresholding functions.


Consequently, the line separating the two classes is defined by the linear equation:


−1.3*x1 + −1.1*x2 + 10.9 = 0.


11.2.3 The Generalized Delta Rule


A straightforward way to generalize the perceptron network is to replace its hard limiting
thresholding function with other types of activation functions. For example, continuous
activation functions offer the possibility of more sophisticated learning algorithms by
allowing for a finer granularity in error measurement.


Figure 11.7 shows the graph of some thresholding functions: a linear bipolar thresh-
old function, Figure 11.7a, similar to that used by the perceptron, and a number of sigmoi-
dal functions. Sigmoidal functions are so called because their graph is an “S”-shaped
curve, as in Figure 11.7b. A common sigmoidal activation function, called the logistic
function, is given by the equation:


f(net) = 1/(1 + e -λ*net), where net  = Σxiwi


As with previously defined functions, xi is the input on line i, wi is the weight on line
i, and λ a “squashing parameter” used to fine-tune the sigmoidal curve. As λ gets large, the
sigmoid approaches a linear threshold function over {0,1}; as it gets closer to 1 it
approaches a straight line. 


These threshold graphs plot the input values, the activation level of the neuron,
against the scaled activation or output of the neuron. The sigmoidal activation function is
continuous, which allows a more precise measure of error. Like the hard limiting thresh-
olding function, the sigmoidal activation function maps most values in its domain into
regions close to 0 or 1. However, there is a region of rapid but continuous transition
between 0 and 1. In a sense, it approximates a thresholding behavior while providing a
continuous output function. The use of λ in the exponent adjusts the slope of the sigmoid
shape in the transition region. A weighted bias shifts the threshold along the x-axis.
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Figure 11.8 An error surface in two dimensions (more realistically must be visu-
alized in n dimensions). Constant c is the size of the learning step.


The historical emergence of networks with continuous activation functions suggested
new approaches to error reduction learning. The Widrow−Hoff (1960) learning rule is
independent of the activation function, minimizing the squared error between the desired
output value and the network activation, neti = WXi. Perhaps the most important learning
rule for continuous activation functions is the delta rule (Rumelhart et al. 1986a).


Intuitively, the delta rule is based on the idea of an error surface, as illustrated in Fig-
ure 11.8. This error surface represents cumulative error over a data set as a function of net-
work weights. Each possible network weight configuration is represented by a point on
this n-dimensional error surface. Given a weight configuration, we want our learning algo-
rithm to find the direction on this surface which most rapidly reduces the error. This
approach is called gradient descent learning because the gradient is a measure of slope, as
a function of direction, from a point on a surface. 


To use the delta rule, the network must use an activation function which is continuous
and therefore differentiable. The logistic formula just presented has this property. The
delta rule learning formula for weight adjustment on the jth input to the ith node is:


c (di − Oi) f ’ (neti) xj,


where c is the constant controlling the learning rate, di and Oi are the desired and actual
output values of the ith node. The derivative of the activation function for the ith node is f',
and xj is the jth input to node i. We now show the derivation of this formula.


The mean squared network error is found by summing the squared error for each
node:


where di is the desired value for each output node and Oi is the actual output of the node.
We square each error so that the individual errors, some possibly with negative and others
with positive values, will not, in summation, cancel each other out. 
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We consider here the case where the node is in the output layer; we describe the gen-
eral case when we present networks with hidden layers in Section 11.3. We want first to
measure the rate of change of network error with respect to output of each node. To do this
we use the notion of a partial derivative, which gives us the rate of change of a multivari-
able function with respect to a particular variable. The partial derivative of the total error
with respect to each output unit i is:


The second simplification is possible because we are considering a node on the output
layer, where its error will not affect any other node. Taking the derivative of this quantity,
we get:


What we want is the rate of change of network error as a function of change in the
weights at node i. To get the change in a particular weight, wk, we rely on the use of the
partial derivative, this time taking the partial derivative of the error at each node with
respect to the weight, wk, at that node. The expansion on the right side of the equal sign is
given us by the chain rule for partial derivatives:


This gives us the pieces we need to solve the equation. Using our earlier result, we obtain:


We continue by considering the right most factor, the partial derivative of the actual
output at the ith node taken with respect to each weight at that node. The formula for the
output of node i as a function of its weights is:


 Oi = f(WiXi), where WiXi = neti.


Since f is a continuous function, taking the derivative we get:


Substituting in the previous equation:
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The minimization of the error requires that the weight changes be in the direction of
the negative gradient component. Therefore: 


We observe that the delta rule is like hill-climbing, Section 4.1, in that at every step, it
attempts to minimize the local error measure by using the derivative to find the slope of
the error space in the region local to a particular point. This makes delta learning vulnera-
ble to the problem of distinguishing local from global minima in the error space.


The learning constant, c, exerts an important influence on the performance of the
delta rule, as further analysis of Figure 11.8 illustrates. The value of c determines how
much the weight values move in a single learning episode. The larger the value of c, the
more quickly the weights move toward an optimal value. However, if c is too large, the
algorithm may overshoot the minimum or oscillate around the optimal weights. Smaller
values of c are less prone to this problem, but do not allow the system to learn as quickly.
The optimal value of the learning rate, sometimes enhanced with a momentum factor
(Zurada 1992), is a parameter adjusted for a particular application through experiment.


Although the delta rule does not by itself overcome the limitations of single layer net-
works, its generalized form is central to the functioning of the backpropagation algorithm,
an algorithm for learning in a multilayer network. This algorithm is presented in the next
section.


11.3 Backpropagation Learning


11.3.1 Deriving the Backpropagation Algorithm 


As we have seen, single layer perceptron networks are limited as to the classifications that
they can perform. We show in Sections 11.3 and 11.4 that the addition of multiple layers
can overcome many of these limitations. In Section 16.3 we observe that multilayered net-
works are computationally complete, that is, equivalent to the class of Turing machines.
Early researchers, however, were not able to design a learning algorithm for their use. We
present in this section the generalized delta rule, which offers one solution to this problem.


The neurons in a multilayer network, as in Figure 11.9, are connected in layers, with
units in layer n passing their activations only to neurons in layer n + 1. Multilayer signal
processing means that errors deep in the network can spread and evolve in complex, unan-
ticipated ways through successive layers. Thus, the analysis of the source of error at the
output layer is complex. Backpropagation provides an algorithm for apportioning blame
and adjusting weights accordingly.


The approach taken by the backpropagation algorithm is to start at the output layer
and propagate error backwards through the hidden layers. When we analyzed learning
with the delta rule, we saw that all the information needed to update the weights on a neu-
ron was local to that neuron, except for the amount of error. For output nodes, this is easily
computed as the difference between the desired and actual output values. For nodes in the


Δwk c∂Error
∂wk


----------------– c di Oi–( )*f′ neti( )*xk–[ ]– c di Oi–( )f′ neti( )*xk= = =








468 PART IV / MACHINE LEARNING


Figure 11.9 Backpropagation in a connectionist network having a hidden layer.


hidden layers, it is considerably more difficult to determine the error for which a node is
responsible. The activation function for backpropagation is usually the logistic function:


f(net) = 1/(1 + e −λ*net), where net = Σxiwi.


This function is used for four reasons: First, it has the sigmoid shape. Second, as a contin-
uous function, it has a derivative everywhere. Third, since the value of the derivative is
greatest where the sigmoidal function is changing most rapidly, the assignment of the most
error is attributed to those nodes whose activation was least certain. Finally, the derivative
is easily computed by a subtraction and multiplication:


f (net) = (1/(1 + e −λ*net))  = λ(f(net) * (1 − f(net))).


Backpropagation training uses the generalized delta rule. This uses the same gradient
descent approach presented in Section 11.2. For nodes in the hidden layer we look at their
contribution to the error at the output layer. The formulas for computing the adjustment of
the weight wki on the path from the kth to the ith node in backpropagation training are:


1) Δwki = −c(di − Oi) * Oi (1 − Oi) xk, for nodes on the output layer, and


2) Δwki = −c * Oi (1 − Oi) Σ (− deltaj * wij) xk, for nodes on hidden layers.
     j


In 2), j is the index of the nodes in the next layer to which i’s signals fan out and:


We now show the derivation of these formulae. First we derive 1), the formula for
weight adjustment on nodes in the output layer. As before, what we want is the rate of
change of network error as a function of change in the kth weight, wk, of node i. We
treated this situation in the derivation of the delta rule, Section 11.2.3, and showed that:
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Figure 11.10 is the total contribution of node i to the error at the 
 output. Our derivation gives the adjustment for wki.


Since f, which could be any function, is now the logistic activation function, we have:


f ' (net) = f ' (1/(1 + e−λ * net)) = f (net) * (1 − f (net)).


Recall that f (neti) is simply Oi. Substituting in the previous equation, we get:


Since the minimization of the error requires that the weight changes be in the direc-
tion of the negative gradient component, we multiply by −c to get the weight adjustment
for the ith node of the output layer:


Δwk = c(di − Oi) * Oi * (1 − Oi) * xk.


We next derive the weight adjustment for hidden nodes. For the sake of clarity we ini-
tially assume a single hidden layer. We take a single node i on the hidden layer and ana-
lyze its contribution to the total network error. We do this by initially considering node i’s
contribution to the error at a node j on the output layer. We then sum these contributions
across all nodes on the output layer. Finally, we describe the contribution of the kth input
weight on node i to the network error. Figure 11.10 illustrates this situation.


We first look at the partial derivative of the network error with respect to the output of
node i on the hidden layer. We get this by applying the chain rule:
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The negative of the first term on the right-hand side, (δError) / (δnetj), is called
deltaj.Therefore, we can rewrite the equation as:


Recall that the activation of node j, netj, on the output layer is given by the sum of the
product of its own weights and of the output values coming from the nodes on the hidden
layer: 


Since we are taking the partial derivative with respect to only one component of the
sum, namely the connection between node i and node j, we get:


where wij is the weight on the connection from node i in the hidden layer to node j in the
output layer. Substituting this result:


 Now we sum over all the connections of node i to the output layer:


This gives us the sensitivity of network error to the output of node i on the hidden layer.
We next determine the value of deltai, the sensitivity of network error to the net activation
at hidden node i. This gives the sensitivity of network error to the incoming weights of
node i. Using the chain rule again: 


Since we are using the logistic activation function,


We now substitute this value in the equation for deltai to get:
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Finally, we can evaluate the sensitivity of the network error on the output layer to the
incoming weights on hidden node i. We examine the kth weight on node i, wk. By the
chain rule:


where xk is the kth input to node i.
We substitute into the equation the value of −deltai:


Since the minimization of the error requires that the weight changes be in the direction of
the negative gradient component, we get the weight adjustment for the kth weight of i by
multiplying by the negative of the learning constant:


For networks with more than one hidden layer, the same procedure is applied recursively
to propagate the error from hidden layer n to hidden layer n − 1.


Although it provides a solution to the problem of learning in multilayer networks,
backpropagation is not without its own difficulties. As with hillclimbing, it may converge
to local minima, as in Figure 11.8. Finally, backpropagation can be expensive to compute,
especially when the network converges slowly.


11.3.2 Backpropagation Example 1: NETtalk


NETtalk is an interesting example of a neural net solution to a difficult learning problem
(Sejnowski and Rosenberg 1987). NETtalk learned to pronounce English text. This can be
a difficult task for an explicit symbol approach, for example a rule-based system, since
English pronunciation is highly irregular.


NETtalk learned to read a string of text and return a phoneme and an associated stress
for each letter in the string. A phoneme is the basic unit of sound in a language; the stress
is the relative loudness of that sound. Because the pronunciation of a single letter depends
upon its context and the letters around it, NETtalk was given a seven character window.
As the text moves through this window, NETtalk returns a phoneme/stress pair for each
letter. 


Figure 11.11 shows the architecture of NETtalk. The network consists of three layers
of units. The input units correspond to the seven character window on the text. Each posi-
tion in the window is represented by 29 input units, one for each letter of the alphabet, and
3 for punctuation and spaces. The letter in each position activates the corresponding unit.
The output units encode phonemes using 21 different features of human articulation. The
remaining five units encoded stress and syllable boundaries. NETtalk has 80 hidden units,
26 output values, and 18,629 connections. 
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                Figure 11.11     The network topology of NETtalk.


NETtalk is trained by giving it a seven character window and letting it attempt to pro-
nounce the middle character. Comparing its attempted pronunciation to the correct pro-
nunciation, it adjusts its weights using backpropagation. 


This example illustrates a number of interesting properties of neural networks, many
of which reflect the nature of human learning. For example, learning, when measured as a
percentage of correct responses, proceeds rapidly at first, and slows as the percentage cor-
rect increases. As with humans, the more words the network learns to pronounce, the bet-
ter it is at correctly pronouncing new words. Experiments in which some of the weights in
a fully trained network were randomly altered showed the network to be damage resistant,
degrading gracefully as weights were altered. Researchers also found that relearning in a
damaged network was highly efficient. 


Another interesting aspect of multilayered networks is the role of the hidden layers.
Any learning algorithm must learn generalizations that apply to unseen instances in the
problem domain. The hidden layers play an important role in allowing a neural network to
generalize. NETtalk, like many backpropagation networks, has fewer neurons in the hid-
den layer than in the input layer. This means that since fewer nodes on the hidden layer are
used to encode the information in the training patterns, some form of abstraction is taking
place. The shorter encoding implies that different patterns on the input layer can be
mapped into identical patterns at the hidden layer. This reduction is a generalization. 


NETtalk learns effectively, although it requires a large number of training instances,
as well as repeated passes through the training data. In a series of empirical tests compar-
ing backpropagation and ID3 on this problem, Shavlik et al. (1991) found that the algo-
rithms had equivalent results, although their training and use of data was quite different.
This research evaluated the algorithms by dividing the total set of examples into separate
training and test sets. Both ID3 (Section 9.3) and NETtalk were able to correctly pro-
nounce about 60 per cent of the test data after training on 500 examples. But, where ID3
required only a single pass through the training data, NETtalk required many repetitions of
the training set. In this research, NETtalk had 100 passes through the training data.


As our example demonstrates, the relationship between connectionist and symbolic
learning is more complicated than it might seem at first. In our next example we work
through the details of a backpropagation solution to the exclusive-or problem.


taca -- -
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Figure 11.12 A backpropagation net to solve the exclusive-or problem.
The Wij are the weights and H is the hidden node.


11.3.3 Backpropagation Example 2: Exclusive-or


We end this section by presenting a simple hidden layer solution to the exclusive-or prob-
lem. Figure 11.12 shows a network with two input nodes, one hidden node and one output
node. The network also has two bias nodes, the first to the hidden node and the second to
the output node. The net values for the hidden and output nodes are calculated in the usual
manner, as the vector product of the input values times their trained weights. The bias is
added to this sum. The weights are trained by backpropagation and the activation function
is sigmoidal.


It should be noted that the input nodes are also directly linked, with trained weights,
to the output node. This additional linking can often let the designer get a network with
fewer nodes on the hidden layer and quicker convergence. In fact there is nothing unique
about the network of Figure 11.12; any number of different networks could be used to
compute exclusive-or. 


We trained our randomly initialized network with multiple instances of the four pat-
terns that represent the truth values of exclusive-or:


(0, 0) → 0; (1, 0) → 1; (0, 1) → 1; (1, 1) → 0


A total of 1400 training cycles using these four instances produced the following values,
rounded to the nearest tenth, for the weight parameters of Figure 11.12:


WH1 = −7.0 WHB = 2.6 WO1 = −5.0 WOH = −11.0
WH2 = −7.0 WOB = 7.0 WO2 = −4.0


With input values (0, 0), the output of the hidden node is:


f(0*(−7.0) + 0*(−7.0) + 1*2.6) = f(2.6) → 1


The output of the output node for (0,0) is:


f(0*(−5.0) + 0*(−4.0) + 1*(−11.0) + 1*(7.0)) = f(−4.0) → 0
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With input values (1, 0), the output of the hidden node is:


f(1*(−7.0) + 0*(−7.0) + 1*2.6) = f(−4.4) → 0


The output of the output node for (1,0) is:


f(1*(−5.0) + 0*(−4.0) + 0*(−11.0) + 1*(7.0)) = f(2.0) →1


The input value of (0, 1) is similar. Finally, let us check our exclusive-or network
with input values of (1, 1). The output of the hidden node is:


f(1*(−7.0) + 1*(−7.0) + 1*2.6) = f(−11.4) → 0


The output of the output node for (1,1) is:


f(1*(−5.0) + 1*(−4.0) + 0*(−11.0) + 1*(7.0)) = f(−2.0) →0


The reader can see that this feedforward network with backpropagation learning made
a nonlinear separation of these data points. The threshold function f is the sigmoidal of
Figure 11.7b, the learned biases have translated it very slightly in the positive direction on
the x-axis.


We next consider models of competitive learning.


11.4 Competitive Learning


11.4.1  Winner-Take-All Learning for Classification


The winner-take-all algorithm (Kohonen 1984, Hecht-Nielsen 1987) works with the single
node in a layer of nodes that responds most strongly to the input pattern. Winner-take-all
may be viewed as a competition among a set of network nodes, as in Figure 11.13. In this 
figure we have a vector of input values, X=(x1, x2, ..., xm), passed into a layer of network
nodes, A, B,..., N. The diagram shows node B the winner of the competition, with an out-
put signal of 1.


Learning for winner-take-all is unsupervised in that the winner is determined by a
“maximum activation” test. The weight vector of the winner is then rewarded by bringing
its components closer to those of the input vector. For the weights, W, of the winning node
and components X of the input vector, the increment is:


ΔW t = c(Xt -1 − Wt -1),


where c is a small positive learning constant that usually decreases as the learning pro-
ceeds. The winning weight vector is then adjusted by adding ΔW t.
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Figure 11.13 A layer of nodes for application of a winner-take-all algorithm. 
The old input vectors support the winning node.


This reward increments or decrements each component of the winner’s weight vector
by a fraction of the xi − wi difference. The effect is, of course, to make the winning node
match more closely the input vector. The winner-take-all algorithm does not need to
directly compute activation levels to find the node with the strongest response. The activa-
tion level of a node is directly related to the closeness of its weight vector to the input vec-
tor. For a node i with a normalized weight vector Wi, the activation level, WiX, is a
function of the Euclidean distance between Wi and the input pattern X. This can be seen
by calculating the Euclidean distance, with normalized Wi:


From this equation it can be seen that for a set of normalized weight vectors, the
weight vector with the smallest Euclidean distance, || X − W ||, will be the weight vector
with the maximum activation value, WX. In many cases it is more efficient to determine
the winner by calculating Euclidean distances rather than comparing activation levels on
normalized weight vectors. 


We consider the “winner-take-all” Kohonen learning rule for several reasons. First,
we consider it as a classification method and compare it to perceptron classification. Sec-
ond, it may be combined with other network architectures to offer more sophisticated
models of learning. We look at the combination of Kohonen prototype learning with an
outstar, supervised learning network. This hybrid, first proposed by Robert Hecht-Nielsen
(1987, 1990), is called a counterpropagation network. We see, in Section 11.4.3, how we
can describe conditioned learning using counterpropagation.


Before we leave this introduction, there are a number of issues important for “winner-
take-all” algorithms. Sometimes a “conscience” parameter is set and updated at each itera-
tion to keep individual nodes from winning too often. This ensures that all network nodes
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eventually participate in representing the pattern space. In some algorithms, rather than
identifying a winner that takes all, a set of closest nodes are selected and the weights of
each are differentially incremented. Another approach is to differentially reward the
neighboring nodes of the winner. Weights are typically initialized at random values and
then normalized during this learning method (Zurada 1992). Hecht-Nielsen (1990) shows
how “winner-take-all” algorithms may be seen as equivalent to the k-means analysis of a
set of data. In the next section we present Kohonen’s winner-take-all unsupervised method
for the learning of clusters.


11.4.2 A Kohonen Network for Learning Prototypes


Classification of data and the role of prototypes in learning are constant concerns of psy-
chologists, linguists, computer scientists, and cognitive scientists (Wittgenstein 1953,
Rosch 1978, Lakoff 1987). The role of prototypes and classification in intelligence is also
a constant theme of this book. We demonstrated symbol based-classification and probabi-
listic clustering algorithms with COBWEB and CLUSTER/2 in Section 9.5. In connec-
tionist models, we demonstrated perceptron-based classification in Section 11.2 and now
show a Kohonen (1984) winner-take-all clustering algorithm.


Figure 11.14 presents again the data points of Table 11.3. Superimposed on these
points are a series of prototypes created during network training. The perceptron training
algorithm converged after a number of iterations, resulting in a network weight configura-
tion defining a linear separation between the two classes. As we saw, the line defined by
these weights was obtained by implicitly computing the Euclidean “center” of each clus-
ter. This center of a cluster serves in perceptron classification as a prototype of the class.


Kohonen learning, on the other hand, is unsupervised, with a set of prototypes ran-
domly created and then refined until they come to explicitly represent the clusters of data.
As the algorithm continues, the learning constant is progressively reduced so that each
new input vector will cause less perturbation in the prototypes.


Kohonen learning, like CLUSTER/2, has a strong inductive bias in that the number of
desired prototypes is explicitly identified at the beginning of the algorithm and then con-
tinuously refined. This allows the net algorithm designer to identify a specific number of
prototypes to represent the clusters of data. Counterpropagation (Section 11.4.3) allows
further manipulation of this selected number of prototypes.


Figure 11.15 is a Kohonen learning network for classification of the data of Table
11.3. The data are represented in Cartesian two dimensional space, so prototypes to repre-
sent the data clusters will also be ordered pairs. We select two prototypes, one to represent
each data cluster. We have randomly initialized node A to (7, 2) and node B to (2, 9). Ran-
dom initialization only works in simple problems such as ours; an alternative is to set the
weight vectors equal to representatives of each of the clusters.


The winning node will have a weight vector closest to that of the input vector. This
weight vector for the winning node will be rewarded by being moved even closer to the
input data, while the weights on the losing nodes are left unchanged. Since we are explic-
itly calculating the Euclidean distance of the input vector from each of the prototypes we
will not need to normalize the vectors, as described in Section 11.4.1.
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     Figure 11.14 The use of a Kohonen layer, unsupervised, to generate a 
sequence of prototypes to represent the classes of Table 11.3.


Kohonen learning is unsupervised, in that a simple measure of the distance between
each prototype and the data point allows selection of the winner. Classification will be
“discovered” in the context of this self-organizing network. Although Kohonen learning
selects data points for analysis in random order, we take the points of Table 11.3 in top to
bottom order. For point (1, 1), we measure the distance from each prototype: 


||(1, 1) − (7, 2)|| = (1 − 7)2 + (1 − 2)2 = 37, and 
||(1, 1) − (2, 9)|| = (1 − 2)2 + (1 − 9)2 = 65.


Node A (7, 2) is the winner since it is closest to (1, 1). ||(1, 1) − (7, 2)|| represents the
distance between these two points; we do not need to apply the square root function in the
Euclidean distance measure because the relation of magnitudes is invariant. We now
reward the winning node, using the learning constant c set to 0.5. For the second iteration:


W2 = W1 + c(X1 − W1)
= (7, 2) + .5((1, 1) − (7, 2)) = (7, 2) + .5((1 − 7), (1 − 2)) 
= (7, 2) + (−3, −.5) = (4, 1.5)


At the second iteration of the learning algorithm we have, for data point (9.4, 6.4):


||(9.4, 6.4) − (4, 1.5)|| = (9.4 − 4)2 + (6.4 − 1.5)2 = 53.17 and
||(9.4, 6.4) − (2, 9)|| = (9.4 − 2)2 + (6.4 − 9)2 = 60.15


Again, node A is the winner. The weight for the third iteration is:
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Figure 11.15 The architecture of the Kohonen based learning network for the 
data of Table 11.3 and classification of Figure 11.14.


W3 = W2 + c(X2 − W2)
= (4, 1.5) + .5((9.4, 6.4) − (4, 1.5))
= (4, 1.5) + (2.7, 2.5) = (6.7, 4)


At the third iteration we have, for data point (2.5, 2.1):


||(2.5, 2.1) − (6.7, 4)|| = (2.5 − 6.7)2 + (2.1 − 4)2 = 21.25, and
||(2.5, 2.1) − (2, 9)|| = (2.5 − 2)2 + (2.1 − 9)2 = 47.86.


Node A wins again and we go on to calculate its new weight vector. Figure 11.14
shows the evolution of the prototype after 10 iterations. The algorithm used to generate the
data of Figure 11.14 selected data randomly from Table 11.3, so the prototypes shown will
differ from those just created. The progressive improvement of the prototypes can be seen
moving toward the centers of the data clusters. Again, this is an unsupervised, winner-
take-all reinforcement algorithm. It builds a set of evolving and explicit prototypes to rep-
resent the data clusters. A number of researchers, including Zurada (1992) and
Hecht-Nielsen (1990), point out that Kohonen unsupervised classification of data is basi-
cally the same as k-means analysis.


We next consider, with a Grossberg, or outstar, extension of Kohonen winner-take-all
analysis, an algorithm that will let us extend the power of prototype selection.


11.4.3 Outstar Networks and Counterpropagation


To this point we considered the unsupervised clustering of input data. Learning here
requires little a priori knowledge of a problem domain. Gradually detected characteristics
of the data, as well as the training history, lead to the identification of classes and the dis-
covery of boundaries between them. Once data points are clustered according to similari-
ties in their vector representations, a teacher can assist in calibrating or giving names to
data classes. This is done by a form of supervised training, where we take the output nodes
of a “winner-take-all” network layer and use them as input to a second network layer. We
will then explicitly reinforce decisions at this output layer.
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Figure 11.16 The outstar  of node J, the winner  in a winner-take-all net
work. The Y vector supervises the response on the output layer in
Grossberg training. The outstar  is bold with all weights 1; all
other weights are 0.


This supervised training and then reinforced output allows us, for example, to map
the results of a Kohonen net into an output pattern or class. A Grossberg (1982, 1988)
layer, implementing an algorithm called outstar, allows us to do this. The combined net-
work, a Kohonen layer joined to a Grossberg layer, is called counterpropagation and was
first proposed by Robert Hecht-Nielsen (1987, 1990).


In Section 11.4.2 we considered in some detail the Kohonen layer; here we consider
the Grossberg layer. Figure 11.16 shows a layer of nodes, A, B, ..., N, where one node, J, is
selected as the winner. Grossberg learning is supervised in that we wish, with feedback
from a teacher, represented by vector Y, to reinforce the weight connecting J to the node I
in the output layer which is supposed to fire. With outstar learning, we identify and
increase the weight wJI on the outbound link of J to I.


To train the counterpropagation net we first train the Kohonen layer. When a winner
is found, the values on all the links going out from it will be 1, while all the output values
of its competitors remain 0. That node, together with all the nodes on the output layer to
which it is connected, form what is called an outstar (see Figure 11.16). Training for the
Grossberg layer is based on outstar components. 


If each cluster of input vectors represents a single class and we want all members of a
class to map onto the same value at the output layer, we do not need an iterative training.
We need only determine which node in the winner-take-all layer is linked to which class
and then assign weights from those nodes to output nodes based on the association
between classes and desired output values. For example, if the Jth winner-take-all unit
wins for all elements of the cluster for which I = 1 is the desired output of the network, we
set wJI = 1 and wJK = 0 for all other weights on the outstar of J.
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Figure 11.17 A counterpropagation network to recognize the classes in Table
11.3. We train the outstar weights of node A, wSA and wDA.


If the desired output for elements of a cluster vary, then there is an iterative proce-
dure, using the supervision vector Y, for adjusting outstar weights. The result of this train-
ing procedure is to average the desired output values for elements of a particular cluster.
We train the weights on the outstar connections from the winning node to the output nodes
according to the equation:


W t + 1 = W t + c(Y − W t)


where c is a small positive learning constant, W t is the weight vector of the outstar com-
ponent, and Y is the desired output vector. Note that this learning algorithm has the effect
of increasing the connection between node J on the Kohonen layer and node I on the out-
put layer precisely when I is a winning node with an output of 1 and the desired output of
J is also 1. This makes it an instance of Hebbian learning, a form of learning in which a
neural pathway is strengthened every time one node contributes to the firing of another.
We discuss Hebbian learning in more detail in Section 11.5. 


We next apply the rule for training a counterpropagation network to recognize the
data clusters of Table 11.3. We also show with this example how counterpropagation nets
implement conditioned learning. Suppose the x1 parameter in Table 11.3 represents engine
speed in a propulsion system. x2 represents engine temperature. Both the speed and the
temperature of the system are calibrated to produce data points in the range [0, 10]. Our
monitoring system samples data points at regular intervals. Whenever speed and tempera-
ture are excessively high, we want to broadcast a warning. Let us rename the output values
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of Table 11.3 from +1 to “safe” and from −1 to “dangerous.” Our counterpropagation net-
work will look like Figure 11.17.


Since we know exactly what values we want each winning node of the Kohonen net
to map to on the output layer of the Grossberg net, we could directly set those values. To
demonstrate outstar learning, however, we will train the net using the formula just given.
If we make the (arbitrary) decision that node S on the output layer should signal safe situ-
ations and node D dangerous, then the outstar weights for node A on the output layer of
the Kohonen net should be [1, 0] and the outstar weights for B should be [0, 1]. Because of
the symmetry of the situation, we show the training of the outstar for node A only.


The Kohonen net must have stabilized before the Grossberg net can be trained. We
demonstrated the Kohonen convergence of this same net in Section 11.4.2. The input vec-
tors for training the A outstar node are of the form [x1, x2, 1, 0]. x1 and x2 are values from
Table 11.3 that are clustered at Kohonen output node A and the last two components indi-
cate that when A is the Kohonen winner, safe is “true” and dangerous is “false,” as in Fig-
ure 11.15. We initialize the outstar weights of A to [0, 0] and use .2 as the learning
constant:


W1 = [0, 0] + .2[[1, 0] − [0, 0]] = [0, 0] + [.2, 0] = [.2, 0]
W2 = [.2, 0] + .2[[1, 0] − [.2, 0]] = [.2, 0] + [.16, 0] = [.36, 0]
W3 = [.36, 0] + .2[[1, 0] − [.36, 0]] = [.36, 0] + [.13, 0] = [.49, 0]
W4 = [.49, 0] + .2[[1, 0] − [.49, 0]] = [.49, 0] + [.10, 0] = [.59, 0]
W5 = [.59, 0] + .2[[1, 0] − [.59, 0]] = [.59, 0] + [.08, 0] = [.67, 0].


As we can see, with training these weights are moving toward [1, 0]. Of course, since in
this case elements of the cluster associated with A always map into [1,0], we could have
used the simple assignment algorithm rather than used the averaging algorithm for
training.


We now show that this assignment gives the appropriate response from the counter-
propagation net. When the first input vector from Table 11.3 is applied to the network in
Figure 11.17, we get activation of [1, 1] for the outstar weights of node A and [0, 0] for the
outstar of B. The dot product of activation and weights for node S of the output layer is [1,
0] * [1, 0]; this gives activation 1 to the S output node. With outstar weights of B trained
to [0, 1], the activation for node D is [1, 0] * [0, 1]; these are the values that we expect.
Testing the second row of data points on Table 11.3, we get activation [0, 0] from the A
node and [1,1] from the B at the winner-take-all level. The dot product of these values and
the trained weights gives 0 to the S node and 1 to D, again what is expected. The reader
may continue to test other data from Table 11.3.


From a cognitive perspective, we can give an associationist interpretation to the coun-
terpropagation net. Consider again Figure 11.17. The learning on the Kohonen layer can
be seen as acquiring a conditioned stimulus, since the network is learning patterns in
events. The learning on the Grossberg level, on the other hand, is an association of nodes
(unconditioned stimuli) to some response. In our situation the system learns to broadcast a
danger warning when data fit into a certain pattern. Once the appropriate response is
learned, then even without the continued coaching of a teacher, the system responds
appropriately to new data. 
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A second cognitive interpretation of counterpropagation is as the reinforcement of
memory links for pattern of phenomena. This is similar to building a lookup table for
responses to data patterns.


Counterpropagation has, in certain cases, a considerable advantage over backpropa-
gation. Like backpropagation it is capable of learning nonlinearly separable classifica-
tions. It does this, however, by virtue of the preprocessing which goes on in the Kohonen
layer, where the data set is partitioned into clusters of homogenous data. This partitioning
can result in a significant advantage over backpropagation in learning rate since the
explicit partitioning of data into separate clusters replaces the often extensive search
required on the hidden layers in backpropagation networks. 


11.4.4 Support Vector Machines (Harrison and Luger 2002)


Support vector machines (SVM), offer another example of competitive learning. In the
support vector approach, statistical measures are used to determine a minimum set of data
points (the support vectors) that maximally separate the positive and negative instances of
a learned concept. These support vectors, representing selected data points from both the
positive and negative instances of the concept, implicitly define a hyperplane separating
these two data sets. For example, running the SVM algorithm identifies points (2.5, 2.1)
and (1.2, 3.0) as support vectors for the positive instances and (7.0, 7.0) and (7.8. 6.1) as
support vectors for the negative instances of the data of Table 11.3 and Figure 11.5. Once
the support vectors are learned other data points need no longer be retained, the support
vectors alone are sufficient to determine the separating hyperplane.


The support vector machine is a linear classifier where the learning of the support
vectors is supervised. The data for SVM learning is assumed to be produced indepen-
dently and identically from a fixed, although unknown, distribution of data. The hyper-
plane, implicitly defined by the support vectors themselves, divides the positive from the
negative data instances. Data points nearest the hyperplane are in the decision margin
(Burges 1998). Any addition or removal of a support vector changes the hyperplane
boundary. As previously noted, after training is complete, it is possible to reconstruct the
hyperplane and classify new data sets from the support vectors alone. 


The SVM algorithm classifies data elements by computing the distance of a data point
from the separating hyperplane as an optimization problem. Successfully controlling the
increased flexibility of feature spaces, the (often transformed) parameters of the instances
to be learned requires a sophisticated theory of generalization. This theory must be able to
precisely describe the features that have to be controlled to form a good generalization.
Within statistics, this issue is known as the study of the rates of uniform convergence. We
have already seen an example of this in Section 10.4.2, where the probably approximately
correct, or PAC model of learning is presented. The results of PAC learning can be seen as
establishing bounds on the number of examples required to guarantee a specific error
bound. For this generalization task Bayesian or other data compression techniques are
employed. In SVM learning the theory of Vapnik and Chervonenkis is often used.


The Vapnik Chervonenkis (VC) dimension is defined as the maximum number of
training points that can be divided into two categories by a set of functions (Burges 1998).
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Figure 11.18 A SVM learning the boundaries of a chess board from points gen-
erated according to the uniform distribution using Gaussian ker-
nels. The dots are the data points with the larger dots comprising
the set of support vectors, the darker areas indicate the confi-
dence in the classification. Adapted from (Cristianini and Shawe-
Taylor 2000).


Thus VC theory provides a distribution free bound on the generalization of  the consistent
hypothesis (Cristianini and Shawe-Taylor 2000). The SVM algorithm uses this VC theory
to compute the hyperplane and controls the margin of error for the generalizations accu-
racy, sometimes called the capacity of the function. 


SVMs use a dot product similarity measure to map data from a feature space. Dot
product results representing mapped vectors are linearly combined by weights found by
solving a quadratic program (Scholkopf et al. 1998). A kernel function, such as a polyno-
mial, spline, or Gaussian, is used to create the feature vector mapping, where kernel
choice is determined by the problem distribution. SVMs compute distances to determine
data element classification. These decision rules created by the SVM represent statistical
regularities in the data. Once the SVM is trained, classification of new data points is sim-
ply a matter of comparison with the support vectors. In the support vectors, critical fea-
tures characterizing the learned concept are clustered on one side of the hyperplane, those
describing its negation on the other, and features that don’t discriminate aren’t used.


For the perceptron algorithm of Section 11.2, the linear separability of data is impor-
tant: if the data is not separable the algorithm will not converge. The SVM, alternatively,
attempts to maximize the decision margin and is more robust in its ability to handle poor
separation caused by overlapping data points. It is able to use slack variables to relax the
linear constraints to find a soft margin, with values that denote the confidence level of the
classification boundary (Cristianini and Shawe-Taylor 2000). As a result some support
vectors that are outliers may be misclassified to produce the hyperplane and as a result the
decision margin will be narrowed when the data is noisy.


SVMs may be generalized from two category classification problems to the discrimi-
nation of multiple classes by repeatedly running the SVM on each category of interest








484 PART IV / MACHINE LEARNING


against all the other categories. SVMs are best suited to problems with numerical data
rather than categorical; as a result their applicability for many classic categorization prob-
lems with qualitative boundaries is limited. Their strength lies in their mathematical foun-
dations: minimization of a convex quadratic function under linear inequality constraints.


SVMs are applied to many learning situations, including the classification of web
pages. In text categorization, the presence of search or other related words are weighted.
Each document then becomes input data for the SVM to categorize on the basis of word
frequency information (Harrison and Luger 2002). SVMs are also used for image recogni-
tion, focusing on edge detection and shape description using gray scale or color intensity
information (Cristianini and Shawe-Taylor 2000). In Figure 11.18, adapted from Cristia-
nini and Shawe-Taylor (2000), the support vector machine discriminates boundaries on a
chess board. More details on SVMs and the full SVM learning algorithm may be found in
(Burges 1998).


11.5 Hebbian Coincidence Learning


11.5.1 Introduction


Hebb’s theory of learning is based on the observation that in biological systems when one
neuron contributes to the firing of another neuron, the connection or pathway between the
two neurons is strengthened. Hebb (1949) stated: 


When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes place in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.


Hebbian learning is appealing because it establishes behavior-based reward concepts
on the neuronal level. Neural physiological research has confirmed that Hebb’s idea that
temporal proximity of the firing of connected neurons can modify synaptic strength, albeit
in a much more complex fashion that Hebb’s simple “increase in efficiency”, is at least
approximately correct. The particular learning law presented in this section is now
referred to as Hebbian learning, even though his ideas were somewhat more abstract. This
learning belongs to the coincidence category of learning laws which cause weight changes
in response to localized events in neural processing. We describe the learning laws of this
category by their local time and space properties.


Hebbian learning has been used in a number of network architectures. It is used in
both supervised and unsupervised learning modes. The effect of strengthening the connec-
tion between two neurons, when one contributes to the firing of another, may be simulated
mathematically by adjusting the weight on their connection by a constant times the sign of
the product of their output values. 


Let’s see how this works. Suppose neurons i and j are connected so that the output of i
is an input of j. We can define the weight adjustment on the connection between them, ΔW,
as the sign of c * (oi*oj), where c is a constant controlling the learning rate. In Table 11.4,
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Oi is the sign of the output value of i and Oj of the output of j. From the first line of the
table we see that when Oi and Oj are both positive, the weight adjustment, ΔW, is positive.
This has the effect of strengthening the connection between i and j when i has contributed
to j’s “firing.”


Table 11.4 The signs and product of signs of node output values.


In the second and third rows of Table 11.4, i and j have opposite signs. Since their
signs differ, we want to inhibit i’s contribution to j’s output value. Therefore we adjust the
weight of the connection by a negative increment. Finally, in the fourth row, i and j again
have the same sign. This means that we increase the strength of their connection. This
weight adjustment mechanism has the effect of reinforcing the path between neurons
when they have similar signals and inhibiting them otherwise.


In the next sections we consider two types of Hebbian learning, unsupervised and
supervised. We begin by examining an unsupervised form. 


11.5.2 An Example of Unsupervised Hebbian Learning


Recall that in unsupervised learning a critic is not available to provide the “correct” output
value; thus the weights are modified solely as a function of the input and output values of
the neuron. The training of this network has the effect of strengthening the network’s
responses to patterns that it has already seen. In the next example, we show how Hebbian
techniques can be used to model conditioned response learning, where an arbitrarily
selected stimulus can be used as a condition for a desired response.


Weight can be adjusted, ΔW, for a node i in unsupervised Hebbian learning with:


ΔW = c * f(X, W) * X


where c is the learning constant, a small positive number, f(X, W) is i’s output, and X is
the input vector to i.


We now show how a network can use Hebbian learning to transfer its response from a
primary or unconditioned stimulus to a conditioned stimulus. This allows us to model the
type of learning studied in Pavlov’s experiments, where by simultaneously ringing a bell
every time food was presented, a dog’s salivation response to food was transferred to the
bell. The network of Figure 11.19 has two layers, an input layer with six nodes and an out-
put layer with one node.The output layer returns either +1, signifying that the output neu-
ron has fired, or a −1, signifying that it is quiescent.


Oi Oj Oi*Oj
+ + +


+ − −
− + −
− − +
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Figure 11.19 An example neuron for application of a hybrid Hebbian node
where learning is supervised.


We let the learning constant be the small positive real number 0.2. In this example we
train the network on the pattern [1, −1, 1, −1, 1 −1] which is the concatenation of the two
patterns, [1, −1, 1] and [−1, 1, −1]. The pattern [1, −1, 1] represents the unconditioned
stimulus and [−1, 1, −1] represents the new stimulus. 


We assume that the network already responds positively to the unconditioned stimu-
lus but is neutral with respect to the new stimulus. We simulate the positive response of
the network to the unconditioned stimulus with the weight vector [1, −1, 1], exactly
matching the input pattern, while the neutral response of the network to the new stimulus
is simulated by the weight vector [0, 0, 0]. The concatenation of these two weight vectors
gives us the initial weight vector for the network, [1, −1, 1, 0, 0, 0]. 


We now train the network on the input pattern, hoping to induce a configuration of
weights which will produce a positive network response to the new stimulus. The first iter-
ation of the network gives:


W * X = (1 * 1) + (−1 * −1) + (1 * 1) + (0 * −1) + (0 * 1) + (0 * −1)
= (1) + (1) + (1) = 3 


      f(3) = sign(3) = 1.


We now create the new weight W2:


W2 = [1, −1, 1, 0, 0, 0] + .2 * (1) * [1, −1, 1, −1, 1, −1]
= [1, −1, 1, 0, 0, 0] + [.2, −.2, .2, −.2, .2, −.2]
= [1.2, −1.2, 1.2, −.2, .2, −.2.]


We expose the adjusted network to the original input pattern:


W * X = (1.2 * 1) + (−1.2 * −1) + (1.2 * 1) + (−.2 * −1) + (.2 * 1) + (−.2 * −1)
= (1.2) + (1.2) + (1.2) + (+.2) + (.2) + (.2) = 4.2 and


     sign(4.2) = 1.


We now create the new weight W3:


x


x


x


1


2


3


1


2


3


w


w


w


x


x


x


4


5


6


4


5


6


w


w


w


f(x) = sign (x)


Supervise


wΔ


⎫


⎬


⎭


⎫


⎬


⎭


Auditory
Information


Visual
Information


f(Σ xiwi)








CHAPTER 11 / MACHINE LEARNING: CONNECTIONIST 487


W3 = [1.2, −1.2, 1.2, −.2, .2, −.2] + .2 * (1) * [1, −1, 1, −1, 1 −1]
= [1.2, −1.2, 1.2, −.2, .2, −.2] + [.2, −.2, .2, −.2, .2, −.2]
= [1.4, −1.4, 1.4, −.4, .4, −.4.]


It can now be seen that the vector product, W * X, will continue to grow in the positive
direction, with the absolute value of each element of the weight vector increasing by .2 at
each training cycle. After 10 more iterations of Hebbian training the weight vector will be:


W13 = [3.4, −3.4, 3.4, −2.4, 2.4, −2.4].


We now use this trained weight vector to test the network’s response to the two partial
patterns. We would like to see if the network continues to respond to the unconditioned
stimulus positively and, more importantly, if the network has now acquired a positive
response to the new, conditioned stimulus. We test the network first on the unconditioned
stimulus [1, –1, 1]. We fill out the last three arguments of the input vector with random 1,
and –1 assignments. For example, we test the network on the vector [1, –1, 1, 1, 1, –1]:


sign(W*X) = sign((3.4*1) + (−3.4*−1) + (3.4*1)
       + (−2.4*1) + (2.4*1) + (−2.4*−1))
= sign(3.4 + 3.4 + 3.4 − 2.4 + 2.4 + 2.4)
= sign(12.6) = +1.


The network thus still responds positively to the original unconditioned stimulus. We now
do a second test using the original unconditioned stimulus and a different random vector
in the last three positions [1, –1, 1, 1, –1, –1]:


sign(W*X) = sign((3.4*1) + (−3.4*−1) + (3.4*1)
      + (−2.4*1) + (2.4*−1) + (−2.4*−1))
= sign(3.4 + 3.4 + 3.4 − 2.4 − 2.4 + 2.4)
= sign(7.8) = +1.


The second vector also produces a positive network response. In fact we note in these
two examples that the network’s sensitivity to the original stimulus, as measured by its
raw activation, has been strengthened, due to repeated exposure to that stimulus.


We now test the network’s response to the new stimulus pattern, [–1, 1, –1], encoded
in the last three positions of the input vector. We fill the first three vector positions with
random assignments from the set {1,–1} and test the network on the vector [1, 1, 1, –1, 1,
–1]:


sign(W*X) = sign((3.4*1) + (−3.4*−1) + (3.4*1)
      + (−2.4*1) + (2.4*1) + (−2.4*−1))
= sign(3.4 − 3.4 + 3.4 + 2.4 + 2.4 + 2.4)
= sign(10.6) = +1.


The pattern of the secondary stimulus is also recognized! 
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We do one final experiment, with the vector patterns slightly degraded. This could
represent the stimulus situation where the input signals are slightly altered, perhaps
because a new food and a different sounding bell are used. We test the network on the
input vector [1, –1, –1, 1, 1, –1], where the first three parameters are one off the original
unconditioned stimulus and the last three parameters are one off the conditioned stimulus:


sign(W*X) = sign((3.4*1) + (–3.4*–1) + (3.4*1)
      + (–2.4*1) + (2.4*1) + (–2.4*–1))
= sign(3.4 + 3.4 – 3.4 – 2.4 + 2.4 + 2.4)
= sign(5.8) = +1.


Even the partially degraded stimulus is recognized!
What has the Hebbian learning model produced? We created an association between a


new stimulus and an old response by repeatedly presenting the old and new stimulus
together. The network learns to transfer its response to the new stimulus without any
supervision. This strengthened sensitivity also allows the network to respond in the same
way to a slightly degraded version of the stimuli. This was achieved by using Hebbian
coincidence learning to increase the strength of the network’s response to the total pattern,
an increase which has the effect of increasing the strength of the network’s response to
each individual component of the pattern.


11.5.3 Supervised Hebbian Learning


The Hebbian learning rule is based on the principle that the strength of the connection
between neurons is increased whenever one neuron contributes to the firing of another.
This principle can be adapted to a supervised learning situation by basing the connection
weight adjustment on the desired output of the neuron rather than the actual output. For
example, if the input of neuron A to neuron B is positive, and the desired response of neu-
ron B is a positive output, then the weight on the connection from A to B is increased.


We examine an application of supervised Hebbian learning showing how a network
can be trained to recognize a set of associations between patterns. The associations are
given by a set of ordered pairs, {<X1, Y1>, <X2, Y2>, ..., <Xt, Yt>}, where Xi and Yi are
the vector patterns to be associated. Suppose that the length of the Xi is n and the Yi is m.
We design the network to explicitly fit this situation. Therefore, it has two layers, an input
layer of size n and an output layer of size m, as in Figure 11.20.


The learning formula for this network can be derived by starting with the Hebbian
learning formula from the previous section:


ΔW = c * f(X, W) * X


where f(X, W) is the actual output of the network node. In supervised learning, we replace
this actual output of a node with the desired output vector D, giving us the formula:


ΔW = c * D * X
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Figure 11.20   A supervised Hebbian network for learning pattern association.


Given a vector pair, <X,Y> from the set of associated pairs, we apply this learning rule to
the kth node in the output layer:


ΔWik = c * dk* xi,


where ΔWik is the weight adjustment on the ith input to the kth node in the output layer, dk
is the desired output of the kth node, and xi is the ith element of X. We apply this formula
to adjust all the weights on all the nodes in the output layer. The vector <x1, x2, .., xn> is
just the input vector X and the vector <d1, d2, .., dm> is the output vector Y. Applying the
formula for individual weight adjustments across the entire output layer and collecting
terms, we can write the formula for the weight adjustment on the output layer as:


ΔW = c * Y* X,


where the vector product Y*X is the outer vector product. The outer vector product YX is
defined in general as the matrix:


To train the network on the entire set of associated pairs, we cycle through these pairs,
adjusting the weight for each pair <Xi, Yi> according to the formula:


W t + 1 = W t + c*Yi*Xi.


For the entire training set we get:
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W1 = W 0 + c (Y1* X1 + Y2 * X2 + ... + Yt * Xt),


where W 0 is the initial weight configuration. If we then initialize W 0 to the 0 vector, <0,
0, ...,0>, and set the learning constant c to 1, we get the following formula for assigning
network weights:


W = Y1* X1 + Y2 * X2 + ... + Yt * Xt.


A network which maps input vectors to output vectors using this formula for weight
assignment is called a linear associator. We have shown that linear associator networks
are based on the Hebbian learning rule. In practice this formula can be applied directly to
initialize network weights without explicit training.


We next analyze the properties of the linear associator. This model, as we have just
seen, stores multiple associations in a matrix of weight vectors. This raises the possibility
of interactions between stored patterns. We analyze the problems created by these interac-
tions in the next sections.


11.5.4 Associative Memory and the Linear Associator 


The linear associator network was first proposed by Tuevo Kohonen (1972) and James
Anderson et al. (1977). In this section we present the linear associator network as a
method for storing and recovering patterns from memory. We examine different forms of
memory retrieval, including the heteroassociative, autoassociative, and the interpolative
models. We analyze the linear associator network as an implementation of interpolative
memory based on Hebbian learning. We end this section by considering problems with
interference or crosstalk. This problem can arise when encoding multiple patterns in
memory. 


We begin our examination of memory with some definitions. Patterns and memory
values are represented as vectors. There is always an inductive bias in reducing the repre-
sentation of a problem to a set of feature vectors. The associations which are to be stored
in memory are represented as sets of vector pairs, {<X1, Y1>, <X2, Y2>, ..., <Xt, Yt>}. For
each vector pair <Xi, Yi>, the Xi pattern is a key for retrieval of the Yi pattern. There are
three types of associative memories:


1. Heteroassociative: This is a mapping from X to Y such that if an arbitrary vector
X is closer to the vector Xi than any other exemplar, then the associated vector Yi
is returned.


2. Autoassociative: This mapping is the same as the heteroassociative except that Xi
= Yi for all exemplar pairs. Since every pattern Xi is related to itself, this form of
memory is primarily used when a partial or degraded stimulus pattern serves to
recall the full pattern.
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Figure 11.21 The linear association network. The vector Xi is entered as input 
and the associated vector Y’ is produced as output.  is a 
linear combination of the x input. In training each  is supplied 
with its correct output signals.


3. Interpolative: This is a mapping Φ of X to Y such that when X differs from an
exemplar, that is, X = Xi + Δi, then the output of the Φ(X) = Φ(Xi + Δi) = Yi + E,
where E = Φ(Δi). If the input vector is one of the exemplars Xi the associ-
ated Yi is retrieved. If it differs from an exemplar by the vector Δ, then the
output vector also differs by the vector difference E, where E = Φ(Δ).


The autoassociative and heteroassociative memories are used for retrieval of one of
the original exemplars. They constitute memory in the true sense, in that the pattern that is
retrieved is a literal copy of the stored pattern. We also may want to construct an output
pattern that differs from the patterns stored in memory in some systematic way. This is the
function of an interpolative memory.


The linear associator network in Figure 11.21 implements a form of interpolative
memory. As shown in Section 11.5.3, it is based on the Hebbian learning model. The net-
work weight initialization is described by the equation derived in Section 11.5.3: 


W =Y1* X1 + Y2 * X2 + ... + Yt *Xt.


Given this weight assignment, the network will retrieve with an exact match one of the
exemplars; otherwise it produces an interpolative mapping. 


We next introduce some concepts and notation to help us analyze the behavior of this
network. First we want to introduce a metric that allows us to define precisely distance
between vectors. All our pattern vectors in the examples are Hamming vectors, that is vec-
tors composed of +1 and –1 values only. We use Hamming distance to describe the dis-
tance between two Hamming vectors. Formally, we define a Hamming space:
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Hn = {X = (x1, x2, ..., xn)}, where each xi is from the set {+1, –1}.


Hamming distance is defined for any two vectors from a Hamming space as:


||X, Y|| = the number of components by which X and Y differ.


For example, the Hamming distance, in four-dimensional Hamming space, between:


(1, –1, –1, 1) and (1, 1, –1, 1) is 1
(–1, –1, –1, 1) and (1, 1, 1, –1) is 4
(1, –1, 1, –1) and (1, –1, 1, –1) is 0.


We need two further definitions. First, the complement of a Hamming vector is that
vector with each of its elements changed: +1 to –1 and –1 to +1. For example, the comple-
ment of (1, –1, –1, –1) is (–1, 1, 1, 1). 


Second, we define the orthonormality of vectors. Vectors that are orthonormal are
orthogonal, or perpendicular, and of unit length. Two orthonormal vectors, when multi-
plied together with the dot product, have all their cross-product terms go to zero. Thus, in
an orthonormal set of vectors, when any two vectors, Xi and Xj, are multiplied the product
is 0, unless they are the same vector: 


XiXj = δij where δij = 1 when i = j and 0 otherwise.


We next demonstrate that the linear associator network defined above has the follow-
ing two properties, with Φ(X) representing the mapping function of the network. First, for
an input pattern Xi which exactly matches one of the exemplars, the network output,
Φ(Xi), is Yi, the associated exemplar. Second, for an input pattern Xk, which does not
exactly match one of the exemplars, the network output, Φ(Xk), is Yk, that is the linear
interpolation of Xk. More precisely, if Xk = Xi +Δi, where Xi is an exemplar, the network
returns:


Yk = Yi + E, where E = Φ(Δi).


We first show that, when the network input Xi is one of the exemplars, the network returns
the associated exemplar. 


Φ(Xi) = WXi, by the definition of the network activation function.


Since W = Y1X1 + Y2X2 + ... + YiXi + ... + YnXn, we get:


Φ(Xi)  = (Y1X1 + Y2X2 + ... + YiXi + ... + YnXn)Xi
    = Y1X1Xi + Y2X2Xi + ... +YiXiXi + ... + YnXnXi, by distributivity.


Since, as defined above, XiXj = δij:
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Figure 11.22 A linear associator network for the example in Section 11.5.4. 
The weight matrix is calculated using the formula presented 
in the previous section.


 Φ(Xi) = Y1δ1i + Y2δ2i + ... + Yiδii + ... + Ynδni.


By the orthonormality condition, δij = 1 when i = j and 0 otherwise. Thus we get:


Φ(Xi) = Y1*0 + Y2*0 + ... + Yi*1 + ... + Yn*0  = Yi.


It can also be shown that, for Xk not equal to any of the exemplars, the network per-
forms an interpolative mapping. That is, for Xk = Xi + Δi, where Xi is an exemplar,


Φ(Xk) = Φ(Xi + Δi)
= Yi + E,


where Yi is the vector associated with Xi and


E = Φ(Δi) = (Y1X1+ Y2X2 + ... + YnXn) Δi.


We omit the details of the proof.
We now give an example of linear associator processing. Figure 11.22 presents a sim-


ple linear associator network that maps a four-element vector X into a three-element vec-
tor Y. Since we are working in a Hamming space, the network activation function f is the
sign function used earlier. 


If we want to store the following two vector associations <X1, Y1>, <X2, Y2> and: 


X1 = [1, –1, –1, –1] ↔ Y1 = [–1, 1, 1],
X2 = [–1, –1, –1, 1] ↔ Y2 = [1, –1, 1].


Using the weight initialization formula for linear associators, with the outer vector product
as defined in the previous section:


W = Y1X1 + Y2X2 + Y3X3 + ... + YnXn,
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We can now calculate Y1X1 + Y2X2, the weight matrix for the network:


We run the linear associator on one of the exemplars. We start with X = [1, –1, –1, –1]
from the first exemplar pair to get back the associated Y:


y1 = (–2*1) + (0*–1) + (0*–1) + (2*–1) = –4, and sign(–4) = –1,
y2 = (2*1) + (0*–1) + (0*–1) + (–2*–1) = 4, and sign(4) = 1, and
y3 = (0*1) + (–2*–1) + (–2*–1) + (0*–1) = 4, and sign(4) = 1.


Thus Y1 = [–1, 1, 1], the other half of the exemplar pair, is returned. 
We next show an example of linear interpolation of an exemplar. Consider the X vec-


tor [1, –1, 1, –1]:


y1 = (–2*1) + (0*–1) + (0*1) + (2*–1) = –4, and sign(–4) = –1,
y2 = (2*1) + (0*–1) + (0*1) + (–2*–1) = 4, and sign(4) = 1, and
y3 = (0*1) + (–2*–1) + (–2*1) + (0*–1) = 0, and sign(0) = 1.


Notice that Y = [–1, 1, 1] is not one of the original Y exemplars. Notice that the mapping
preserves the values which the two Y exemplars have in common. In fact [1, –1, 1, –1],
the X vector, has a Hamming distance of 1 from each of the two X exemplars; the output
vector [–1, 1, 1] also has a Hamming distance of 1 from each of the other Y exemplars.


We summarize with a few observations regarding linear associators. The desirable
properties of the linear associator depend on the requirement that the exemplar patterns
comprise an orthonormal set. This restricts its practicality in two ways. First, there may be
no obvious mapping from situations in the world to orthonormal vector patterns. Second,
the number of patterns which can be stored is limited by the dimensionality of the vector
space. When the orthonormality requirement is violated, interference between stored pat-
terns occurs, causing a phenomenon called crosstalk.


Observe also that the linear associator retrieves an associated Y exemplar only when
the input vector exactly matches an X exemplar. When there is not an exact match on the
input pattern, the result is an interpolative mapping. It can be argued that interpolation is
not memory in the true sense. We often want to implement a true memory retrieval func-
tion where an approximation to an exemplar retrieves the exact pattern that is associated
with it. What is required is a basin of attraction to capture vectors in the surrounding
region. 


In the next section, we demonstrate an attractor version of the linear associator net-
work.
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11.6 Attractor Networks or “Memories”


11.6.1 Introduction


The networks discussed to this point are feedforward. In feedforward networks informa-
tion is presented to a set of input nodes and the signal moves forward through the nodes or
layers of nodes until some result emerges. Another important class of connectionist net-
works are feedback networks. The architecture of these nets is different in that the output
signal of a node can be cycled back, directly or indirectly, as input to that node. 


Feedback networks differ from feedforward networks in several important ways:


1. the presence of feedback connections between nodes, 
2. a time delay, i.e., noninstantaneous signal propagation,
3. output of the network is the network’s state upon convergence,
4. network usefulness depends on convergence properties.


When a feedback network reaches a time in which it no longer changes, it is said to be
in a state of equilibrium. The state which a network reaches on equilibrium is considered
to be the network output. 


In the feedback networks of Section 11.6.2, the network state is initialized with an
input pattern. The network processes this pattern, passing through a series of states until it
reaches equilibrium. The network state on equilibrium is the pattern retrieved from mem-
ory. In Section 11.6.3, we consider networks that implement a heteroassociative memory,
and in Section 11.6.4, an autoassociative memory. 


The cognitive aspects of these memories are both interesting and important. They
offer us a model for content addressable memory. This type of associator can describe the
retrieval of a phone number, the feeling of sadness from an old memory, or even the rec-
ognition of a person from a partial facial view. Researchers have attempted to capture
many of the associative aspects of this type of memory in symbol-based data structures,
including semantic networks, frames, and object systems, as seen in Chapter 6. 


An attractor is defined as a state toward which states in a neighboring region evolve
across time. Each attractor in a network will have a region where any network state inside
that region evolves toward that attractor. That region is called its basin. An attractor can
consist in a single network state or a series of states through which the network cycles.


Attempts to understand attractors and their basins mathematically have given rise to
the notion of a network energy function (Hopfield 1984). Feedback networks with an
energy function that has the property that every network transition reduces total network
energy are guaranteed to converge. We describe these networks in Section 11.6.3.


Attractor networks can be used to implement content addressable memories by
installing the desired patterns as attractors in memory. They can also be used to solve opti-
mization problems, such as the traveling salesperson problem, by creating a mapping
between the cost function in the optimization problem and the network energy. The solu-
tion of the problem then comes through the reduction of total network energy. This type of
problem solving is done with what is called a Hopfield network.
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Figure 11.23 A BAM network for the examples of Section 11.6.2. Each node 
may also be connected to itself.


11.6.2 BAM, the Bi-directional Associative Memory


The BAM network, first described by Bart Kosko (1988), consists of two fully intercon-
nected layers of processing elements. There can also be a feedback link connecting each
node to itself. The BAM mapping of an n dimensional input vector Xn into the m dimen-
sional output vector Ym is presented in Figure 11.22. Since each link from X to Y is bi-
directional, there will be weights associated with the information flow going in each direc-
tion.


Like the weights of the linear associator, the weights on the BAM network can be
worked out in advance. In fact we use the same method for calculating network weights as
that used in the linear associator. The vectors for the BAM architecture are taken from the
set of Hamming vectors. 


Given the N vector pairs that make up the set of exemplars we wish to store, we build
the matrix as we did in Section 11.5.4:


W =Y1* X1 + Y2 * X2 + ... + Yt * Xt.


This equation gives the weights on the connections from the X layer to the Y layer, as can
be seen in Figure 11.23. For example, w32 is the weight on the connection from the second
unit on the X layer to the third unit on the Y layer. We assume that any two nodes only
have one pathway between them. Therefore, the weights connecting nodes on the X and Y
layers are identical in both directions. Thus, the weight matrix from Y to X is the transpose
of the weight matrix W.


The BAM network can be transformed into an autoassociative network by using the
same weight initialization formula on the set of associations <X1, X1>, <X2, X2>, .. . Since
the X and Y layers resulting from this procedure are identical we can eliminate the Y layer,
resulting in a network which looks like Figure 11.24. We look at an example of an autoas-
sociative network in Section 11.6.4.
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Figure 11.24 An autoassociative network with an input vector Ii. We 
assume single links between nodes with unique indices, 
thus wij = wji and the weight matrix is symmetric.


The BAM network is used to retrieve patterns from memory by initializing the X
layer with an input pattern. If the input pattern is a noisy or incomplete version of one of
the exemplars, the BAM can often complete the pattern and retrieve the associated pattern. 


To recall data with BAM, we do the following:


1. Apply an initial vector pair (X, Y) to the processing elements. X is the pattern for which
we wish to retrieve an exemplar. Y is randomly initialized.


2. Propagate the information from the X layer to the Y layer and update the values at the Y
layer.


3. Send the updated Y information back to the X layer, updating the X units.


4. Continue the preceding two steps until the vectors stabilize, that is until there is no further
changes in the X and Y vector values.


The algorithm just presented gives BAM its feedback flow, its bidirectional move-
ment toward equilibrium. The preceding set of instructions could have begun with a pat-
tern at the Y level leading, upon convergence, to the selection of an X vector exemplar. It
is fully bidirectional: we can take an X vector as input and can get a Y association on con-
vergence or we can take a Y vector as input and get back a X association. We will see
these issues worked through with an example in the next section. 


Upon convergence, the final equilibrium state gives back one of the exemplars used
to build the original weight matrix. If all goes as expected, we take a vector of known
properties, either identical to or slightly different, from one of the exemplar vector pairs.
We use this vector to retrieve the other vector in the exemplar pair. The distance is Ham-
ming distance measured by component-wise comparison of the vectors, counting one for
each element difference. Because of the orthonormality constraints, when BAM converges
for a vector, it also converges for its complement. Thus we note that the complement of
the vector also becomes an attractor. We give an example of this in the next section.


There are several things that can interfere with the BAM convergence. If too many
exemplars are mapped into the weight matrix, the exemplars themselves can be too close
together and produce pseudo-stabilities in the network. This phenomenon is called
crosstalk, and occurs as local minima in the network energy space.


We next consider briefly the BAM processing. The multiplication of an input vector
by the weight matrix computes the sums of the pairwise vector products of the vectors for
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Figure 11.25 A BAM network for the examples of Section 11.6.3.


each element of the output vector. A simple thresholding function then translates the
resultant vector back to a vector in the Hamming space. Thus:


net (Y) = WX, or for each Yi component, net (Yi) = Σwij*xj,


with similar relationships for the X layer. The thresholding function f for net(Y) at the
time t +1 is also straightforward:


In the next section we illustrate this bidirectional associative memory processing with
several examples.


11.6.3 Examples of BAM Processing


Figure 11.25 presents a small BAM network, a simple variation of the linear associator
presented in Section 11.5.4. This network maps a four element vector X into a three ele-
ment vector Y and vice versa. Suppose we want to create the two vector pair exemplars:


x1 = [1, –1, –1, –1] ↔ y1 = [1, 1, 1], and
x2 = [–1, –1, –1, 1] ↔ y2 = [1, –1, 1].


We now create the weight matrix using the formula presented in the previous section:


W = Y1X1
t + Y2X2


t + Y3X3
t + ... + YNXN


t


f nett 1+( )
+1


f nett( )
1–


⎩
⎪
⎨
⎪
⎧


=


if net > 0
if net = 0
if net < 0
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The weight vector for the mapping from Y to X is the transpose of W, or:


We now select several vectors and test the BAM associator. Let’s start with an exem-
plar pair, choosing the X component and seeing if we get the Y. Let X = [1, –1, –1, –1]:


Y1 = (1*0) + (–1*–2) + (–1*–2) + (0*–1) = 4, and f(4) = 1,
Y2 = (1*2) + (–1*0) + (–1*0) + (–1*–2) = 4, and f(4) = 1, and
Y3 = (1*0) + (–1*–2) + (–1*–2) + (–1*0) = 4, and f(4) = 1.


Thus the other half of the exemplar pair is returned. The reader can make this Y vector an
input vector and verify that the original X vector [1, –1, –1, –1] is returned.


For our next example, consider the X vector [1, 1, 1, –1], with Y randomly initialized.
We map X with our BAM network:


Y1 = (1*0) + (1*–2) + (1*–2) + (–1*0) = –4, and f(4) = –1,
Y2 = (1*2) + (1*0) + (1*0) + (–1*–2) = 4, and f(4) = 1,
Y3 = (1*0) + (1*–2) + (1*–2) + (–1*0) = –4, and f(4) = –1.


This result, with the thresholding function f applied to [–4, 4, –4], is [–1, 1, –1]. Mapping
back to X gives:


X1 = (–1*0) + (1*2) + (–1* 0) = 2,
X2 = (–1*–2) + (1*0) + (–1*–2) = 4,
X3 = (–1*–2) + (1*0) + (–1*–2) = 4,
X4 = (–1*0) + (1*–2) + (–1*0) = –2.


The threshold function applied, again as above, gives the original vector [1, 1, 1, –1].
Since the starting vector produced a stable result with its first translation, we might think
we have just discovered another prototype exemplar pair. In fact, the example we selected
is the complement of the original <X2, Y2> vector exemplar! It turns out that in a BAM
network, when a vector pair is established as an exemplar prototype, so is its complement.
Therefore, our BAM network includes two more prototypes: 


X3 = [–1, 1, 1, 1] ↔ Y3 = [–1, –1, –1], and
X4 = [1, 1, 1, –1] ↔ Y4 = [–1, 1, –1].


Let us next select a vector near an X exemplar, [1, –1, 1, –1]. Note that the Hamming dis-
tance from the closest of the four X exemplars is 1. We next randomly initialize the vector
Y to [–1, –1, –1]:


0 2 0
2– 0 2–
2– 0 2–
0 2– 0
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Y1
t+1 = (1*0) + (–1*—2) + (1*–2) + (–1*0) = 0,


Y2
t+1 = (1*2) + (–1*0) + (1*0) + (–1*–2) = 4,


Y3
t+1 = (1*0) + (–1*–2) + (1*–2) + (–1*0) = 0.


The evaluation of the net function f(Yi
t+1) = f(Yi


t) when yi
t+1 = 0, from the threshold equa-


tion at the end of Section 11.6.2. Thus, Y is [–1, 1, –1] due to the random initialization of
the first and third parameters of the YT to –1. We now take Y back to X:


X1 = (–1*0) + (1*2) + (–1* 0) = 2,
X2 = (–1*–2) + (1*0) + (–1*–2) = 4,
X3 = (–1*–2) + (1*0) + (–1*–2) = 4, 
X4 = (–1*0) + (1*–2) + (–1*0) = –2.


The threshold function maps this result to the vector X = [1, 1, 1, –1]. We repeat the
process taking this vector back to Y:


Y1 = (1*0) + (1*–2) + (1*–2) + (–1*0) = –4,
Y2 = (1*2) + (1*0) + (1*0) + (–1*–2) = 4,
Y3 = (1*0) + (1*–2) + (1*–2) + (–1*0) = –4.


The threshold function applied to [–4, 4, –4] again gives Y = [–1, 1, –1]. This vector
is identical to the most recent version of Y, so the network is stable. This demonstrates that
after two passes through the BAM net, a pattern that was close to X4 converged to the
stored exemplar. This would be similar to recognizing a face or other stored image with
part of the information missing or obscured. The Hamming distance between the original
X vector [1, –1, 1, –1] and the X4 prototype [1, 1, 1, –1] was 1. The vector settled into the
<X4, Y4> exemplar pair.


In our BAM examples we started processing with the X element of the exemplar pair.
Of course, we could have designed the examples from the Y vector, initializing X when
necessary. 


Hecht-Nielsen (1990, p. 82) presents an interesting analysis of the BAM network. He
demonstrates that the orthonormal property for the linear associator network support for
BAM is too restrictive. He gives an argument showing that the requirement for building
the network is that the vectors be linearly independent, that is, that no vector can be cre-
ated from a linear combination of other vectors in the space of exemplars. 


11.6.4 Autoassociative Memory and Hopfield Nets


The research of John Hopfield, a physicist at California Institute of Technology, is a major
reason connectionist architectures have their current credibility. He studied network con-
vergence properties, using the concept of energy minimization. He also designed a family
of networks based on these principles. As a physicist, Hopfield understood stabilities of
physical phenomena as energy minimization points of the physical system. An example of
this approach is the simulated annealing analysis of the cooling of metals.








CHAPTER 11 / MACHINE LEARNING: CONNECTIONIST 501


Let us first review the basic characteristics of feedback associative networks. These
networks begin with an initial state consisting of the input vector. The network then pro-
cesses this signal through feedback pathways until it reaches a stable state. To use this
architecture as an associative memory we would like the network to have two properties.
First, starting from any initial state we would like a guarantee that the network will con-
verge on some stable state. Second, we would like this stable state to be the one closest to
the input state by some distance metric. 


We look first at an autoassociative network built on the same principles as the BAM
network. We noted in the previous section that BAM networks can be transformed into
autoassociative networks by using identical vectors in the X and Y positions. The result of
this transformation, as we see next, is a symmetric square weight matrix. Figure 11.23 of
Section 11.6.2 offered an example.


The weight matrix for the autoassociative network that stores a set of vector exem-
plars {X1, X2, ..., Xn} is created by:


W = ΣXiXit for i = 1, 2, ..., n.


When we create the autoassociative memory from the heteroassociative, the weight
from node xi to xj will be identical to that from xj to xi and so the weight matrix will be
symmetric. This assumption only requires that the two processing elements be connected
by one path having a single weight. We may also have the special case, again with neural
plausibility, that no network node is directly linked to itself, that is, there are no xi to xi
links. In this situation the main diagonal of the weight matrix, wij where i = j, is all zeros.


As with BAM, we work out the weight matrix based on the patterns to be stored in
memory. We clarify this with a simple example. Consider the three vector exemplar set:


X1 = [1, –1, 1, –1, 1],
X2 = [–1, 1, 1, –1, –1],
X3 = [1, 1, –1, 1, 1].


We next calculate the weight matrix using W = ΣXiXit for i = 1, 2, 3:


W


1 1– 1 1– 1


1– 1 1– 1 1–


1 1– 1 1– 1


1– 1 1– 1 1–


1 1– 1 1– 1


1 1– 1– 1 1


1– 1 1 1– 1–


1– 1 1 1– 1–


1 1– 1– 1 1


1 1– 1– 1 1


1 1 1– 1 1


1 1 1– 1 1


1– 1– 1 1– 1–


1 1 1– 1 1


1 1 1– 1 1


+ +=


W


3 1– 1– 1 3
1– 3 1– 1 1–
1– 1– 3 3– 1–
1 1 3– 3 1
3 1– 1– 1 3


=
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We use the thresholding function:


We first test the network with an exemplar, X3 = [1, 1, –1, 1, 1], and obtain:


X3 * W = [7, 3, –9, 9, 7],


and with the threshold function, [1, 1, –1, 1, 1]. We see this vector stabilizes immediately
on itself. This illustrates that the exemplars are themselves stable states or attractors.


We next test a vector which is Hamming distance 1 from the exemplar X3. The net-
work should return that exemplar. This is equivalent to retrieving a memory pattern from
partially degraded data. We select X = [1, 1, 1, 1, 1]:


X * W = [5, 1, –3, 3, 5].


Using the threshold function gives the X3 vector [1, –1, –1, 1, 1].
We next take a third example, this time a vector whose Hamming distance is 2 away


from its nearest prototype, let X = [1, –1, –1, 1, –1]. It can be checked that this vector is 2
away from X3, 3 away from X1, and 4 away from X2. We begin:


X * W = [3, –1, –5, 5, 3], which with threshold yields [1, –1, –1, 1, 1].


This doesn’t seem to resemble anything, nor is it a stability point, since:


[1, –1, –1, 1, 1] * W = [9, –3, –7, 7, 9], which is [1, –1, –1, 1, 1].


The net is now stable, but not with one of the original stored memories! Have we found
another energy minimum? On closer inspection we note that this new vector is the com-
plement of the original X2 exemplar [–1, 1, 1, –1, –1]. Again, as in the case of the het-
eroassociative BAM network, our autoassociative network creates attractors for the
original exemplars as well as for their complements, in this case we will have six attrac-
tors in all.


To this point in our presentation, we have looked at autoassociative networks based
on a linear associator model of memory. One of John Hopfield’s goals was to give a more
general theory of autoassociative networks which would apply to any single-layer feed-
back network meeting a certain set of simple restrictions. For this class of single layer
feedback networks Hopfield proved that there would always exist a network energy func-
tion guaranteeing convergence.


A further goal of Hopfield was to replace the discrete time updating model used pre-
viously with one that more closely resembles the continuous time processing of actual
neurons. A common way to simulate continuous time asynchronous updating in Hopfield
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networks is to update nodes individually rather than as a layer. This is done using a ran-
dom selection procedure for picking the next node to be updated, while also applying
some method for ensuring that on average all the nodes in the network will be updated
equally often.


The structure of a Hopfield network is identical to that of the autoassociative network
above: a single layer of nodes completely connected (see Figure 11.23). The activation
and thresholding also work as before. For node i, 


Given this architecture, only one further restriction is required to characterize a
Hopfield net. If wij is the weight on the connection into node i from node j, we define a
Hopfield network as one which respects the weight restrictions:


wii = 0 for all i,
wij = wji for all i, j.


The Hopfield network does not typically have a learning method associated with it. Like
the BAM, its weights are usually calculated in advance.


The behavior of Hopfield networks is now better understood than any other class of
networks except perceptrons. This is because its behavior can be characterized in terms of
a concise energy function discovered by Hopfield:


We will now show that this energy function has the property that every network tran-
sition reduces the total network energy. Given the fact that H has a predetermined mini-
mum and that each time H decreases it decreases by at least a fixed minimum amount, we
can infer that from any state the network converges. 


We first show that for an arbitrary processing element k which is the most recently
updated, k changes state if and only if H decreases. The change in energy ΔH is:


ΔH = H(Xnew) − H(Xold).


Expanding this equation using the definition of H, we get:
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Since only xk has changed,  for i not equal to k. This means that the terms of
the sum that do not contain xk cancel each other out. Rearranging and collecting terms:


Using the fact that wii = 0 and wij = wji we can finally rewrite this as:


To show that ΔH is negative we consider two cases. First, suppose xk has changed
from –1 to +1. Then the term in square brackets must have been positive to make  be
+1. Since  is equal to –2, ΔH must be negative. Suppose that xk has changed
from 1 to –1. By the same line of reasoning, ΔH must again be negative. If xk has not
changed state, =0 and ΔH = 0.


Given this result, from any starting state the network must converge. Furthermore, the
state of the network on convergence must be a local energy minimum. If it were not then
there would exist a transition that would further reduce the total network energy and the
update selection algorithm would eventually choose that node for updating. 


We have now shown that Hopfield networks have one of the two properties which we
want in a network that implements associative memory. It can be shown, however, that
Hopfield networks do not, in general, have the second desired property: they do not
always converge on the stable state nearest to the initial state. There is no general known
method for fixing this problem.


Hopfield networks can also be applied to the solution of optimization problems, such
as the traveling salesperson problem. To do this the designer needs to find a way to map
the cost function of the problem to the Hopfield energy function. By moving to an energy
minimum the network will then also be minimizing the cost with respect to a given prob-
lem state. Although such a mapping has been found for some interesting problems, includ-
ing the traveling salesperson problem, in general, this mapping from problem states to
energy states is very difficult to discover.


In this section we introduced heteroassociative and autoassociative feedback net-
works. We analyzed the dynamical properties of these networks and presented very simple
examples showing evolution of these systems toward their attractors. We showed how the
linear associator network could be modified into an attractor network called the BAM. In
our discussion of continuous time Hopfield networks, we saw how network behavior
could be described in terms of an energy function. The class of Hopfield networks have
guaranteed convergence because every network transition can be shown to reduce total
network energy.


There still remain some problems with the energy-based approach to connectionist
networks. First, the energy state reached need not be a global minimum of the system.
Second, Hopfield networks need not converge to the attractor nearest to the input vector.
This makes them unsuitable for implementing content addressable memories. Third, in
using Hopfield nets for optimization, there is no general method for creating a mapping of
constraints into the Hopfield energy function. Finally, there is a limit to the total number
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of energy minima that can be stored and retrieved from a network, and even more impor-
tantly, this number cannot be set precisely. Empirical testing of these networks shows that
the number of attractors is a small fraction of the number of nodes in the net. These and
other topics are ongoing issues for research (Hecht-Nielsen 1990, Zurada 1992, Freeman
and Skapura 1991).


Biology-based approaches, such as genetic algorithms and cellular automata, attempt
to mimic the learning implicit in the evolution of life forms. Processing in these models is
also parallel and distributed. In the genetic algorithm model, for example, a population of
patterns represents the candidate solutions to a problem. As the algorithm cycles, this pop-
ulation of patterns “evolves” through operations which mimic reproduction, mutation, and
natural selection. We consider these approaches next, in Chapter 12.


11.7 Epilogue and References


We introduced connectionist learning in this chapter. We took an historical perspective in
Section 11.1. For further historical perspective see McCulloch and Pitts (1943), Oliver
Selfridge (1959), Claude Shannon (1948), and Frank Rosenblatt (1958). Early psycholog-
ical models are also important, especially those of Donald Hebb (1949). Cognitive scien-
tists continue to explore the relationship between cognition and brain architecture. Sources
include An Introduction to Natural Computation (Ballard 1997), Artificial Minds (Frank-
lin 1995), The Cognitive Neuroscience of Action (Jeannerod 1997), and Rethinking Innate-
ness: A Connectionist Perspective on Development (Elman et al. 1996).


We have not addressed many important mathematical as well as computational
aspects of connectionist architectures. For an overview, we recommend Robert Hecht-
Nielsen (1990), James Freeman and David Skapura (1991), Jacek Zurada (1992), and
Nello Cristianini and John Shawe-Taylor 2000). An excellent tutorial on Support Vector
Machines is presented by Christopher Burges (1988). Neuro-dynammic programming is
described by Bertsekas and Tsitsiklis (1996). For connectionist applications consider Pat-
tern Recognition in Industry by P. M. Bhagat (2005)


There are many issues, both representational and computational, that the learning
research scientist must consider. These include architecture and connectivity selection for
the network as well as determining what cognitive parameters of the environment are to be
processed and what the results might “mean.” There is also the issue of neural−symbol
hybrid systems and how these might reflect different aspects of intelligence.


The backpropagation network is probably the most commonly used connectionist
architecture, and thus we gave considerable space to its origins, use, and growth. The two
volumes of Parallel Distributed Processing (Rumelhart et al.1986b) give an introduction
to neural networks both as computational and cognitive tools. Neural Networks and Natu-
ral Intelligence (Grossberg 1988) is another thorough treatment of the subject. 


There are also further questions for use of the backpropagation networks, including
the number of hidden nodes and layers, selecting the training set, fine-tuning the learning
constant, the use of bias nodes, and so on. Many of these issues come under the general
heading of inductive bias: the role of the knowledge, expectations, and tools that the prob-
lem solver brings to problem solving. We address many of these issues in Chapter 16.
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Many of the original connectionist architecture designers have described their work.
These include John Anderson et al. (1977), Stephan Grossberg (1976, 1988), Geoffrey
Hinton and Terrance Sejnowski (1986), Robert Hecht-Nielsen (1989, 1990), John
Hopfield (1982, 1984), Tuevo Kohonen (1972, 1984), Bart Kosko (1988), and Carver
Mead (1989). More recent approaches, including graphical models, are presented by
Michael Jordan (1999) and Brendan Frey (1998). A good modern textbook is written by
Christopher Bishop (1995). 


11.8 Exercises


1. Make a McCulloch−Pitts neuron that can calculate the logic function implies, ⇒.


2. Build a perceptron net in LISP and run it on the classification example of Section 11.2.2. 


a. Generate another data set similar to that of Table 11.3 and run your classifier on it. 
b. Take the results of running the classifier and use the weights to determine the specifi-


cation for the line separating the sets.


3. Build a backpropagation network in LISP or C++ and use it to solve the exclusive-or prob-
lem of Section 11.3.3. Solve the exclusive-or problem with a different backpropagation
architecture, perhaps having two hidden nodes and no bias nodes. Compare the conver-
gence speeds using the different architectures. 


4. Write a Kohonen net in LISP or C++ and use it to classify the data of Table 11.3. Compare
your results with those of Sections 11.2.2 and 11.4.2.


5. Write a counterpropagation net to solve the exclusive-or problem. Compare your results
with those of backpropagation net of Section 11.3.3. Use your counterpropagation net to
discriminate between the classes of Table 11.3.


6. Use a backpropagation net to recognize the ten (hand drawn) digits. One approach would
be to build a 4 x 6 array of points. When a digit is drawn on this grid it will cover some
elements, giving them value 1, and miss others, value 0. This 24 element vector would be
the input value for your net. You would build your own training vectors. Do the same task
with a counterpropagation net; compare your results. 


7. Select a different input pattern than that we used in Section 11.5.2. Use the unsupervised
Hebbian learning algorithm to recognize that pattern.


8. Section 11.5.4, used the linear associator algorithm to make two vector pair associations.
Select three (new) vector pair associations and solve the same task. Test whether your lin-
ear associator is interpolative; that is, can it associate near misses of the exemplars? Make
your linear associator autoassociative. 


9. Consider the bidirectional associative memory (BAM) of Section 11.6.3. Change the asso-
ciation pairs given in our example and create the weight matrix for the associations. Select
new vectors and test your BAM associator. 


10. Describe the differences between the BAM memory and the linear associator. What is
crosstalk and how can it be prevented?


11. Write a Hopfield net to solve the traveling salesperson problem for ten cities. 
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MACHINE LEARNING:
GENETIC AND EMERGENT


What limit can we put to this power, acting during long ages and rigidly scrutinizing the 
whole constitution, structure and habits of each creature - favoring the good and rejecting 
the bad? I can see no limit to this power in slowly and beautifully adapting each form to 
the most complex relations of life. 


—CHARLES DARWIN, On the Origin of Species


The First Law of Prophecy:
When a distinguished but elderly scientist states that something is possible, he is almost 
certainly right. When he states that something is impossible, he is very probably wrong.


The Second Law:
The only way of discovering the limits of the possible is to venture a little way past them 
into the impossible.


The Third Law:
Any sufficiently advanced technology is indistinguishable from magic.


—ARTHUR C. CLARKE, Profiles of the Future


12.0 Social and Emergent Models of Learning


Just as connectionist networks received much of their early support and inspiration from
the goal of creating an artificial neural system, so also have a number of other biological
analogies influenced the design of machine learning algorithms. This chapter considers
learning algorithms patterned after the processes underlying evolution: shaping a popula-
tion of individuals through the survival of its most fit members. The power of selection
across a population of varying individuals has been demonstrated in the emergence of spe-
cies in natural evolution, as well as through the social processes underlying cultural
change. It has also been formalized through research in cellular automata, genetic


12
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algorithms, genetic programming, artificial life, and other forms of emergent computation.
Emergent models of learning simulate nature’s most elegant and powerful form of


adaptation: the evolution of plant and animal life forms. Charles Darwin saw “...no limit to
this power of slowly and beautifully adapting each form to the most complex relations of
life...”. Through this simple process of introducing variations into successive generations
and selectively eliminating less fit individuals, adaptations of increasing capability and
diversity emerge in a population. Evolution and emergence occur in populations of
embodied individuals, whose actions affect others and that, in turn, are affected by others.
Thus, selective pressures come not only from the outside environment, but also from inter-
actions between members of a population. An ecosystem has many members, each with
roles and skills appropriate to their own survival, but more importantly, whose cumulative
behavior shapes and is shaped by the rest of the population.


Because of their simplicity, the processes underlying evolution have proven
remarkably general. Biological evolution produces species by selecting among changes in
the genome. Similarly, cultural evolution produces knowledge by operating on socially
transmitted and modified units of information. Genetic algorithms and other formal
evolutionary analogs produce increasingly capable problem solutions by operating on
populations of candidate problem solutions.


When the genetic algorithm is used for problem solving, it has three distinct stages:
first, the individual potential solutions of the problem domain are encoded into
representations that support the necessary variation and selection operations; often, these
representations are as simple as bit strings. In the second stage, mating and mutation
algorithms, analogous to the sexual activity of biological life forms, produce a new gener-
ation of individuals that recombine features of their parents. Finally, a fitness function
judges which individuals are the “best” life forms, that is, most appropriate for the even-
tual solution of the problem. These individuals are favored in survival and reproduction,
shaping the next generation of potential solutions. Eventually, a generation of individuals
will be interpreted back to the original problem domain as solutions for the problem.


Genetic algorithms are also applied to more complex representations, including pro-
duction rules, to evolve rule sets adapted to interacting with an environment. For example,
genetic programming combines and mutates fragments of computer code in an attempt to
evolve a program for solving problems such as capturing the invariants in sets of data.


An example of learning as social interaction leading to survival can be found in
games such as The Game of Life, originally created by the mathematician John Horton
Conway and introduced to the larger community by Martin Gardner in Scientific American
(1970, 1971). In this game, the birth, survival, or death of individuals is a function of their
own state and that of their near neighbors. Typically, a small number of rules, usually three
or four, are sufficient to define the game. In spite of this simplicity, experiments with the
game of life have shown it to be capable of evolving structures of extraordinary complex-
ity and ability, including self replicating, multi-cellular “organisms” (Poundstone 1985).


An important approach for artificial life, or a-life, is to simulate the conditions of bio-
logical evolution through the interactions of finite state machines, complete with sets of
states and transition rules. These automata are able to accept information from outside
themselves, in particular, from their closest neighbors. Their transition rules include
instructions for birth, continuing in life, and dying. When a population of such automata is
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set loose in a domain and allowed to act as parallel asynchronous cooperating agents, we
sometimes witness the evolution of seemingly independent “life forms.” 


As another example, Rodney Brooks (1986, 1987) and his students have designed and
built simple robots that interact as autonomous agents solving problems in a laboratory sit-
uation. There is no central control algorithm; rather cooperation emerges as an artifact of
the distributed and autonomous interactions of individuals. The a-life community has reg-
ular conferences and journals reflecting their work (Langton 1995).


In Section 12.1 we introduce evolutionary or biology-based models with genetic
algorithms (Holland 1975), an approach to learning that exploits parallelism, mutual
interactions, and often a bit-level representation. In Section 12.2 we present classifier
systems and genetic programming, relatively new research areas where techniques from
genetic algorithms are applied to more complex representations, such as to build and
refine sets of production rules (Holland et al. 1986) and to create and adapt computer
programs (Koza 1992). In Section 12.3 we present artificial life (Langton 1995). We begin
12.3 with an introduction to “The Game of Life.” We close with an example of emergent
behavior from research at the Santa Fe Institute (Crutchfield and Mitchell 1995).


Chapter 13 presents stochastic and dynamic forms of machine learning.


12.1 The Genetic Algorithm


Like neural networks, genetic algorithms are based on a biological metaphor: They view
learning as a competition among a population of evolving candidate problem solutions. A
“fitness” function evaluates each solution to decide whether it will contribute to the next
generation of solutions. Then, through operations analogous to gene transfer in sexual
reproduction, the algorithm creates a new population of candidate solutions.


Let P(t) define a population of candidate solutions, , at time t:


We now present a general form of the genetic algorithm:


procedure genetic algorithm;


begin
set time t:= 0;
initialize the population P(t);
while the termination condition is not met do


begin
evaluate fitness of each member of the population P(t);
select members from population P(t) based on fitness;
produce the offspring of these pairs using genetic operators;
replace, based on fitness, candidates of P(t), with these offspring;
set time t := t +1


end
end.


xit


P t( ) x1t ,x2t ,...xnt{ }=
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This algorithm articulates the basic framework of genetic learning; specific imple-
mentations of the algorithm instantiate that framework in different ways. What percentage
of the population is retained? What percentage mate and produce offspring? How often
and to whom are the genetic operators applied? The procedure “replace the weakest candi-
dates of P(t)” may be implemented in a simple fashion, by eliminating a fixed percentage
of the weakest candidates. More sophisticated approaches may order a population by fit-
ness and then associate a probability measure for elimination with each member, where
the probability of elimination is an inverse function of its fitness. Then the replacement
algorithm uses this measure as a factor in selecting candidates to eliminate. Although the
probability of elimination would be very low for the fittest members of the society, there is
a chance that even the best individuals could be removed. The advantage of this scheme is
that it may save some individuals whose overall fitness is poor but that include some com-
ponent that may contribute to a more powerful solution. This replacement algorithm has
many names, including Monte Carlo, fitness proportionate selection, and roulette wheel.


Although the examples of Section 12.1.3 introduce more complex representations, we
will introduce the representation issues related to genetic algorithms using simple bit
strings to represent problem solutions. For example, suppose we want a genetic algorithm
to learn to classify strings of 1s and 0s. We can represent a population of bit strings as a
pattern of 1s, 0s, and #s, where # is a “don’t care,” that may match with either 0 or 1. Thus,
the pattern 1##00##1 represents all strings of eight bits that begin and end with 1 and that
have two 0s in the middle. 


The genetic algorithm initializes P(0) to a population of candidate patterns. Typically,
initial populations are selected randomly. Evaluation of candidate solutions assumes a
fitness function,  that returns a measure of the candidate’s fitness at time t. A
common measure of a candidate’s fitness tests it on a set of training instances and returns
the percentage of correct classifications. Using such a fitness function, an evaluation
assigns each candidate solution the value:


where m(P,t) is the average fitness over all members of the population. It is also common
for the fitness measure to change across time periods, thus fitness could be a function of
the stage of the overall problem solution, or .


After evaluating each candidate, the algorithm selects pairs for recombination.
Recombination uses genetic operators to produce new solutions that combine components
of their parents. As with natural evolution, the fitness of a candidate determines the extent
to which it reproduces, with those candidates having the highest evaluations being given a
greater probability of reproducing. As just noted, selection is often probabilistic, where
weaker members are given a smaller likelihood of reproducing, but are not eliminated
outright. That some less fit candidates survive is important since they can still contain
some essential component of a solution, for instance part of a bit pattern, and reproduction
may extract this component.


There are a number of genetic operators that produce offspring having features of
their parents; the most common of these is crossover. Crossover takes two candidate solu-
tions and divides them, swapping components to produce two new candidates. Figure 12.1
illustrates crossover on bit string patterns of length 8. The operator splits them in the


f xi
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f xi
t( )/m P t,( )


f xi
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middle and forms two children whose initial segment comes from one parent and whose
tail comes from the other. Note that splitting the candidate solution in the middle is an
arbitrary choice. This split may be at any point in the representation, and indeed, this split-
ting point may be randomly adjusted or changed during the solution process.


For example, suppose the target class is the set of all strings beginning and ending
with a 1. Both the parent strings in Figure 12.1 would have performed relatively well on
this task. However, the first offspring would be much better than either parent: it would
not have any false positives and would fail to recognize fewer strings that were actually in
the solution class. Note also that its sibling is worse than either parent and will probably be
eliminated over the next few generations.


Mutation is another important genetic operator. Mutation takes a single candidate and
randomly changes some aspect of it. For example, mutation may randomly select a bit in
the pattern and change it, switching a 1 to a 0 or #. Mutation is important in that the initial
population may exclude an essential component of a solution. In our example, if no
member of the initial population has a 1 in the first position, then crossover, because it
preserves the first four bits of the parent to be the first four bits of the child, cannot
produce an offspring that does. Mutation would be needed to change the values of these
bits. Other genetic operators, for example inversion, could also accomplish this task, and
are described in Section 12.1.3.


The genetic algorithm continues until some termination requirement is met, such as
having one or more candidate solutions whose fitness exceeds some threshold. In the next
section we give examples of genetic algorithm encodings, operators, and fitness evalua-
tions for two situations: the CNF constraint satisfaction and the traveling salesperson
problems.


12.1.3 Two Examples: CNF Satisfaction and the Traveling Salesperson


We next select two problems and discuss representation issues and fitness functions
appropriate for their solutions. Three things should be noted: first, all problems are not
easily or naturally encoded as bit level representations. Second, the genetic operators must
preserve crucial relationships within the population, for example, the presence and
uniqueness of all the cities in the traveling salesperson tour. Finally, we discuss an impor-
tant relationship between the fitness function(s) for the states of a problem and the encod-
ing of that problem.


Figure 12.1 Use of crossover on two bit strings of length eight. # is don t care.


Input Bit Strings:


Resulting New Strings:


1 1 # 0 1 0 1 # # 1 1 0 # 0 # 1


1 1 # 0 # 0 # 1 # 1 1 0 1 0 1 #
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EXAMPLE 12.2.1: THE CNF-SATISFACTION PROBLEM


The conjunctive normal form (CNF) satisfiability problem is straightforward: an expres-
sion of propositions is in conjunctive normal form when it is a sequence of clauses joined
by an and (


 


∧ ) relation. Each of these clauses is in the form of a disjunction, the or (


 


∨ ),
of literals. For example, if the literals are, a, b, c, d, e, and f, then the expression
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is in CNF. This expression is the conjunction of five clauses, each clause is the disjunction
of two or more literals. We introduced propositions and their satisfaction in Chapter 2. We
discussed the CNF form of propositional expressions, and offered a method of reducing
expressions to CNF, when we presented resolution inferencing in Section 14.2.


CNF satisfiability means that we must find an assignment of true or false (1 or 0) to
each of the six literals, so that the CNF expression evaluates to true. The reader should
confirm that one solution for the CNF expression is to assign false to each of a, b, and e.
Another solution has e false and c true.


A natural representation for the CNF satisfaction problem is a sequence of six bits,
each bit, in order, representing true (1) or false (0) for each of the six literals, again in the
order of a, b, c, d, e, and f. Thus:


1 0 1 0 1 0


indicates that a, c, and e are true and b, d, and f are false, and the example CNF
expression is therefore false. The reader can explore the results of other truth assignments
to the literals of the expression.


We require that the actions of each genetic operator produce offspring that are truth
assignments for the CNF expression, thus each operator must produce a six-bit pattern of
truth assignments. An important result of our choice of the bit pattern representation for
the truth values of the literals of the CNF expression is that any of the genetic operators
discussed to this point will leave the resulting bit pattern a legitimate possible solution.
That is, crossover and mutation leave the resulting bit string a possible solution of the
problem. Even other less frequently used genetic operators, such as inversion (reversing
the order of the bits within the six-bit pattern) or exchange (interchanging two different
bits in the pattern) leave the resulting bit pattern a legitimate possible solution of the CNF
problem. In fact, from this viewpoint, it is hard to imagine a better suited representation
than a bit pattern for the CNF satisfaction problem.


The choice of a fitness function for this population of bit strings is not quite as
straightforward. From one viewpoint, either an assignment of truth values to literals will
make the expression true or else the expression will be false. If a specific assignment
makes the expression true, then the solution is found; otherwise it is not. At first glance it
seems difficult to determine a fitness function that can judge the “quality” of bit strings as
potential solutions.


There are a number of alternatives, however. One would be to note that the full CNF
expression is made up of the conjunction of five clauses. Thus we can make up a rating








CHAPTER 12 / MACHINE LEARNING: SOCIAL AND EMERGENT 513


system that will allow us to rank potential bit pattern solutions in a range of 0 to 5,
depending on the number of clauses that pattern satisfies. Thus the pattern:


1 1 0 0 1 0 has fitness 1,
0 1 0 0 1 0 has fitness 2,
0 1 0 0 1 1 has fitness 3, and
1 0 1 0 1 1 has fitness 5, and is a solution.


This genetic algorithm offers a reasonable approach to the CNF satisfaction problem. One
of its most important properties is the use of the implicit parallelism afforded by the
population of solutions. The genetic operators have a natural fit to this representation.
Finally, the solution search seems to fit naturally a parallel “divide and conquer” strategy,
as fitness is judged by the number of problem components that are satisfied. In the chapter
exercises the reader is encouraged to consider other aspects of this problem.


EXAMPLE 12.2.2: THE TRAVELING SALESPERSON PROBLEM


The traveling salesperson problem (TSP) is classic to AI and computer science. We
introduced it with our discussion of graphs in Section 3.1. Its full state space requires the
consideration of N! states where N is the number of cities to be visited. It has been shown
to be NP-hard, with many researchers proposing heuristic approaches for its solution. The
statement of the problem is simple:


A salesperson is required to visit N cities as part of a sales route. There is a cost (e.g., mileage, 
air fare) associated with each pair of cities on the route. Find the least cost path for the salesper-
son to start at one city, visit all the other cities exactly once and return home.


The TSP has some very nice applications, including circuit board drilling, X-ray
crystallography, and routing in VLSI fabrication. Some of these problems require visiting
tens of thousands of points (cities) with a minimum cost path. One very interesting
question in the analysis of the TSP class of problems is whether it is worth running an
expensive workstation for many hours to get a near optimal solution or run a cheap com-
puter for a few minutes to get “good enough” results for these applications. TSP is an
interesting and difficult problem with many ramifications of search strategies.


How might we use a genetic algorithm to solve this problem? First, the choice of a
representation for the path of cities visited, as well as the creation of a set of genetic
operators for this path, is not trivial. The design of a fitness function, however, is very
straightforward: all we need do is evaluate the path length cost. We could then order the
paths by their cost, the cheaper the better.


Let’s consider some obvious representations that turn out to have complex
ramifications. Suppose we have nine cities to visit,1, 2,..., 9, so we make the representa-
tion of a path the ordered listing of these nine integers. Suppose we simply make each city
a four-bit pattern, 0001, 0010, . . . 1001. Thus, the pattern:


0001 0010 0011 0100 0101 0110 0111 1000 1001
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represents a visit to each city in the order of its numbering. We have inserted blanks into
the string only to make it easier to read. Now, what about the genetic operators? Crossover
is definitely out, since the new string produced from two different parents would most
probably not represent a path that visits each city exactly once. In fact, with crossover,
some cities could be removed while others are visited more than once. What about
mutation? Suppose the leftmost bit of the sixth city, 0110, is mutated to 1? 1110, or 14, is
no longer a legitimate city. Inversion, and the swapping of cities (the four bits in the city
pattern) within the path expression would be acceptable genetic operators, but would these
be powerful enough to obtain a satisfactory solution? In fact, one way to look at the search
for the minimum path would be to generate and evaluate all possible permutations of the
N elements of the city list. The genetic operators must be able to produce all permutations.


Another approach to the TSP would be to ignore the bit pattern representation and
give each city an alphabetic or numeric name, e.g., 1, 2, ..., 9; make the path through the
cities an ordering of these nine digits, and then select appropriate genetic operators for
producing new paths. Mutation, as long as it was a random exchange of two cities in the
path, would be okay, but the crossover operator between two paths would be useless. The
exchange of pieces of a path with other pieces of the same path, or any operator that
shuffled the letters of the path (without removing, adding, or duplicating any cities) would
work. These approaches, however, make it difficult to combine into offspring the “better”
elements of patterns within the paths of cities of the two different parents. 


A number of researchers (Davis 1985, Oliver et al. 1987) have created crossover
operators that overcome these problems and let us work with the ordered list of cities vis-
ited. For example, Davis has defined an operator called order crossover. Suppose we have
nine cities, 1, 2, ..., 9, and the order of the integers represents the order of visited cities.


Order crossover builds offspring by choosing a subsequence of cities within the path
of one parent. It also preserves the relative ordering of cities from the other parent. First,
select two cut points, indicated by a “|”, which are randomly inserted into the same
location of each parent. The locations of the cut points are random, but once selected, the
same locations are used for both parents. For example, for two parents p1 and p2, with cut
points after the third and seventh cities:


p1 = (1 9 2 | 4 6 5 7 | 8 3)
p2 = (4 5 9 | 1 8 7 6 | 2 3)


two children c1 and c2 are produced in the following way. First, the segments between cut
points are copied into the offspring:


c1 = (x x x | 4 6 5 7 | x x)
c2 = (x x x | 1 8 7 6 | x x)


Next, starting from the second cut point of one parent, the cities from the other parent
are copied in the same order, omitting cities already present. When the end of the string is
reached, continue on from the beginning. Thus, the sequence of cities from p2 is:


2 3 4 5 9 1 8 7 6
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Once cities 4, 6, 5, and 7 are removed, since they are already part of the first child, we get
the shortened list 2, 3, 9, 1, and 8, which then makes up, preserving the ordering found in
p2, the remaining cities to be visited by c1:


c1 = (2 3 9 | 4 6 5 7 | 1 8)


In a similar manner we can create the second child c2:


c2 = (3 9 2 | 1 8 7 6 | 4 5)


To summarize, in order crossover, pieces of a path are passed on from one parent, p1,
to a child, c1, while the ordering of the remaining cities of the child c1 is inherited from
the other parent, p2. This supports the obvious intuition that the ordering of cities will be
important in generating the least costly path, and it is therefore crucial that pieces of this
ordering information be passed on from fit parents to children.


The order crossover algorithm also guarantees that the children would be legitimate
tours, visiting all cities exactly once. If we wished to add a mutation operator to this result
we would have to be careful, as noted earlier, to make it an exchange of cities within the
path. The inversion operator, simply reversing the order of all the cities in the tour, would
not work (there is no new path when all cities are inverted). However, if a piece within the
path is cut out and inverted and then replaced, it would be an acceptable use of inversion.
For example, using the cut | indicator as before, the path:


c1 = (2 3 9 | 4 6 5 7 | 1 8), 


becomes under inversion of the middle section,


c1 = (2 3 9 | 7 5 6 4 | 1 8)


A new mutation operator could be defined that randomly selected a city and placed it
in a new randomly selected location in the path. This mutation operator could also operate
on a piece of the path, for example, to take a subpath of three cities and place them in the
same order in a new location within the path. Other suggestions are in the exercises.


12.1.4 Evaluating the Genetic Algorithm


The preceding examples highlight genetic algorithm’s unique problems of knowledge
representation, operator selection, and the design of a fitness function. The representation
selected must support the genetic operators. Sometimes, as with the CNF satisfaction
problem, the bit level representation is natural. In this situation, the traditional genetic
operators of crossover and mutation could be used directly to produce potential solutions.
The traveling salesperson problem was an entirely different matter. First, there did not
seem to be any natural bit level representations for this problem. Secondly, new mutation
and crossover operators had to be devised that preserved the property that the offspring
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had to be legal paths through all the cities, visiting each only once.
Finally, genetic operators must pass on “meaningful” pieces of potential solution


information to the next generation. If this information, as in CNF satisfiability, is a truth
value assignment, then the genetic operators must preserve it in the next generation. In the
TSP problem, path organization was critical, so as we discussed, components of this path
information must be passed on to descendants. This successful transfer rests both in the
representation selected as well as in the genetic operators designed for each problem.


We leave representation with one final issue, the problem of the “naturalness” of a
selected representation. Suppose, as a simple, if somewhat artificial, example, we want
our genetic operators to differentiate between the numbers 6, 7, 8, and 9. An integer repre-
sentation gives a very natural and evenly spaced ordering, because, within base ten inte-
gers, the next item is simply one more than the previous. With change to binary, however,
this naturalness disappears. Consider the bit patterns for 6, 7, 8, and 9:


0110 0111 1000 1001


Observe that between 6 and 7 as well as between 8 and 9 there is a 1 bit change.
Between 7 and 8, however, all four bits change! This representational anomaly can be
huge in trying to generate a solution that requires any organizing of these four bit patterns.
A number of techniques, usually under the general heading of gray coding, address this
problem of non-uniform representation. For instance, a gray coded version of the first
sixteen binary numbers may be found in Table 12.1. Note that each number is exactly one
bit different from its neighbors. Using gray coding instead of standard binary numbers, the
genetic operator’s transitions between states of near neighbors is natural and smooth.


Binary Gray


0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000


Table 12.1 The gray coded bit patterns for the binary numbers 0, 1, . . ., 15.
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An important strength of the genetic algorithm is in the parallel nature of its search.
Genetic algorithms implement a powerful form of hill climbing that maintains multiple
solutions, eliminates the unpromising, and improves good solutions. Figure 12.2, adapted
from Holland (1986), shows multiple solutions converging toward optimal points in a
search space. In this figure, the horizontal axis represents the possible points in a solution
space, while the vertical axis reflects the quality of those solutions. The dots on the curve
are members of the genetic algorithm’s current population of candidate solutions. Initially,
the solutions are scattered through the space of possible solutions. After several
generations, they tend to cluster around areas of higher solution quality.


When we describe our genetic search as “hill climbing” we implicitly acknowledge
moving across a “fitness landscape.” This landscape will have its valleys, peaks, with
local maxima and minima. In fact, some of the discontinuities in the space will be artifacts
of the representation and genetic operators selected for the problem. This discontinuity, for
example, could be caused by a lack of gray coding, as just discussed. Note also that
genetic algorithms, unlike sequential forms of hill climbing, as in Section 4.1, do not
immediately discard unpromising solutions. Through genetic operators, even weak
solutions may continue to contribute to the makeup of future candidate solutions.


Another difference between genetic algorithms and the state space heuristics pre-
sented in Chapter 4 is the analysis of the present-state/goal-state difference. The informa-
tion content supporting the A* algorithm, as in Section 4.2, required an estimate of
“effort” to move between the present state and a goal state. No such measure is required
with genetic algorithms, simply some measure of fitness of each of the current generation
of potential solutions. There is also no strict ordering required of next states on an open list
as we saw in state space search; rather, there is simply a population of fit solutions to a
problem, each potentially available to help produce new possible solutions within a
paradigm of parallel search.


An important source of the genetic algorithm’s power is the implicit parallelism
inherent in evolutionary operators. In comparison with state space search and an ordered
open list, search moves in parallel, operating on entire families of potential solutions. By


Figure 12.2 Genetic algorithms visualized as parallel hill 
climbing, adapted from Holland (1986).
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restricting the reproduction of weaker candidates, genetic algorithms may not only elimi-
nate that solution, but all of its descendants. For example, the string, 101#0##1, if broken
at its midpoint, can parent a whole family of strings of the form 101#____. If the parent is
found to be unfit, its elimination can also remove all of these potential offspring and, per-
haps, the possibility of a solution as well.


As genetic algorithms are more widely used in applied problem solving as well as in
scientific modeling, there is increasing interest in attempts to understand their theoretical
foundations. Several questions that naturally arise are:


1. Can we characterize types of problems for which GAs will perform well?


2. For what problem types do they perform poorly?


3. What does it even “mean” for a GA to perform well or poorly for a problem type?


4. Are there any laws that can describe the macrolevel of behavior of GAs? In
particular, are there any predictions that can be made about the changes in fitness
of subgroups of the population over time? 


5. Is there any way to describe the differential effects of different genetic operators,
crossover, mutation, inversion, etc., over time?


6. Under what circumstances (what problems and what genetic operators) will GAs
perform better than traditional AI search methods?


Addressing many of these issues goes well beyond the scope of our book. In fact, as
Mitchell (1996) points out, there are still more open questions at the foundations of
genetic algorithms than there are generally accepted answers. Nonetheless, from the
beginning of work in GAs, researchers, including Holland (1975), have attempted to
understand how GAs work. Although they address issues on the macro level, such as the
six questions just asked, their analysis begins with the micro or bit level representation.


Holland (1975) introduced the notion of a schema as a general pattern and a “building
block” for solutions. A schema is a pattern of bit strings that is described by a template
made up of 1, 0, and # (don’t care). For example, the schema 1 0 # # 0 1, represents the
family of six-bit strings beginning with a 1 0 and ending with a 0 1. Since, the middle
pattern # # describes four bit patterns, 0 0, 0 1, 1 0, 1 1, the entire schema represents four
patterns of six 1s and 0s. Traditionally, each schema is said to describe a hyperplane
(Goldberg 1989); in this example, the hyperplane cuts the set of all possible six-bit
representations. A central tenet of traditional GA theory is that schemata are the building
blocks of families of solutions. The genetic operators of crossover and mutation are said to
manipulate these schemata towards potential solutions. The specification describing this
manipulation is called the schema theorem (Holland 1975, Goldberg 1989). According to
Holland, an adaptive system must identify, test, and incorporate structural properties
hypothesized to give better performance in some environment. Schemata are meant to be a
formalization of these structural properties.


Holland’s schema analysis suggests that the fitness selection algorithm increasingly
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focuses the search on subsets of the search space with estimated best fitness; that is, the
subsets are described by schemas of above average fitness. The genetic operator crossover
puts high fitness building blocks together in the same string in an attempt to create ever
more fit strings. Mutation helps guarantee that (genetic) diversity is never removed from
the search; that is, that we continue to explore new parts of the fitness landscape. The
genetic algorithm can thus be seen as a tension between opening up a general search
process and capturing and preserving important (genetic) features in that search space.
Although Holland’s original analysis of GA search focused at the bit level, more recent
work has extended this analysis to alternate representational schemes (Goldberg 1989). In
the next section we apply GA techniques to more complex representations.


12.2 Classifier Systems and Genetic Programming


Early research in genetic algorithms focused almost exclusively on low-level representa-
tions, such as strings of {0, 1, #}. In addition to supporting straightforward instantiations
of genetic operators, bit strings and similar representations give genetic algorithms much
of the power of other subsymbolic approaches, such as connectionist networks. There are
problems, however, such as the traveling salesperson, that have a more natural encoding at
a more complex representational level. We can further ask whether genetic algorithms can
be defined for still richer representations, such as if... then... rules or pieces of computer
code. An important aspect of such representations is their ability to combine distinct,
higher level knowledge sources through rule chaining or function calls to meet the
requirements of a specific problem instance. 


Unfortunately, it is difficult to define genetic operators that capture the syntactic and
semantic structure of logical relationships while enabling effective application of opera-
tors such as crossover or mutation. One possible way to marry the reasoning power of
rules with genetic learning is to translate logical sentences into bit strings and use the stan-
dard crossover operator. Unfortunately, under many translations most of the bit strings
produced by crossover and mutation will fail to correspond to meaningful logical sen-
tences. As an alternative to representing problem solutions as bit strings, we may define
variations of crossover that can be applied directly to higher level representations such as
if... then... rules or chunks of code in a higher level programming language. This section
discusses examples of each approach to extending the power of genetic algorithms.


12.2.1 Classifier Systems


Holland (1986) developed a problem-solving architecture called classifier systems that
applies genetic learning to rules in a production system. A classifier system (Figure 12.3)
includes the familiar elements of a production system: production rules (here called
classifiers), working memory, input sensors (or decoders), and outputs (or effectors).
Unusual features of a classifier system include the use of competitive bidding for conflict
resolution, genetic algorithms for learning, and the bucket brigade algorithm to assign
credit and blame to rules during learning. Feedback from the outside environment
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provides a means of evaluating the fitness of candidate classifiers, as required in genetic
learning. The classifier system of Figure 12.3 has the following major components:


1. Detectors of input messages from the environment.


2. Detectors of feedback messages from the environment.


3. Effectors translating results of rule applications back to the environment.


4. A production rule set made up of a population of classifiers. Each classifier has
an associated fitness measure.


5. A working memory for the classifier rules. This memory integrates the results of
production rule firing with input information.


6. A set of genetic operators for production rule modification.


7. A system for giving credit to rules involved in producing successful actions.


In problem solving, the classifier performs as a traditional production system. The
environment sends a message, perhaps a move in a game, to the classifier system’s
detectors. This event is decoded and placed as a pattern on the internal message list, the
working memory for the production system. These messages, in the normal action of
data-driven production system, match the condition patterns of the classifier rules. The
selection of the “strongest activated classifiers” is determined by a bidding scheme, where


Figure 12.3 A classifier system interacting with the environment, 
adapted from Holland (1986).
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a bid is a function of both the accumulated fitness of the classifier and the quality of the
match between the input stimulus and its condition pattern. The classifiers with the closest
match add messages (the action of the fired rules) to working memory. The revised
message list may send messages to the effectors which act upon the environment or
activate new classifier rules as the production system processing continues. 


Classifier systems implement a form of reinforcement learning, Section 10.7. Based
on feedback from a teacher or fitness evaluation function, the learner computes the fitness
of a population of candidate rules and adapts this population using a variation of genetic
learning. Classifier systems learn in two ways. First, there is a reward system that adjusts
the fitness measures of the classifier rules, rewarding successful rule firings and penalizing
errors. The credit assignment algorithm passes part of the reward or penalty back to any
classifier rules that have contributed to the final rule firing. This distribution of differential
rewards across interacting classifiers, as well as those that enabled their firing, is often
implemented in a bucket brigade algorithm. The bucket brigade algorithm addresses the
problem of assigning credit or blame in situations where the system’s output may be the
product of a sequence of rule firings. In the event of an error, how do we know which rule
to blame? Is the responsibility that of the last rule to fire, or of some previous rule that pro-
vided it with faulty information? The bucket brigade algorithm allocates both credit and
blame across a sequence of rule applications according to measures of each rule’s contri-
bution to the final conclusion. (An analogous assignment of blame for error was described
with the backpropagation algorithm of Section 11.3; see Holland (1986) for more details.)


The second form of learning modifies the rules themselves using genetic operators
such as mutation and crossover. This allows the most successful rules to survive and
combine to make new classifiers, while unsuccessful rule classifiers disappear. 


Each classifier rule consists of three components: the rule’s condition matches data in
the working memory in the typical production system sense. In learning, genetic operators
can modify both the conditions and the actions of the production rules. The second com-
ponent of the rule, the action, can have the effect of changing the internal message list (the
production memory). Finally, each rule has a fitness measure. This parameter is changed,
as just noted, both by successful as well as by unsuccessful activity. This measure is origi-
nally assigned to each rule on its creation by the genetic operators; for example, it may be
set as the average fitness of its two parents.


A simple example illustrates the interactions of these components of a classifier sys-
tem. Assume that a set of objects to be classified are defined by six attributes (conditions
c1, c2, ..., c6), and further suppose that each of these attributes can have five different val-
ues. Although the possible values of each attribute are of course different (for example, the
value of c3 might be color, while c5 might describe the weather) we will, without loss of
generality, give each attribute an integer value from {1, 2, ..., 5}. Suppose the conditions
of these rules place their matching object in one of four classes: A1, A2, A3, A4. 


Based on these constraints, each classifier will have the form:


(c1 c2 c3 c4 c5 c6) → Ai, where i = 1, 2, 3, 4.


where each ci in the condition pattern denotes the value {1, 2, ..., 5} of the ith attribute of
the condition. Usually, conditions can also assign a value of # or “don’t care” to an
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attribute. Ai denotes the classification, A1, A2, A3, or A4. Table 12.2 presents a set of clas-
sifiers. Note that different condition patterns can have the same classification, as in rules 1
and 2, or the same patterns, as in rules 3 and 5, can lead to different classifications. 


Condition (Attributes)     Action (Classification)    Rule Number


(1 # # # 1 #) →         A1                                1
(2 # # 3 # #) →         A1                                2
(# # 4 3 # #) →         A2                                3
(1 # # # # #) →         A2                                4
(# # 4 3 # #) →         A3                                5
etc.


Table 12.2 A set of condition → action classifiers to be learned.


As described so far, a classifier system is simply another form of the ubiquitous
production system. The only really novel feature of classifier rules in this example is their
use of strings of digits and #s to represent condition patterns. It is this representation of
conditions that constrains the application of genetic algorithms to the rules. The remainder
of the discussion describes genetic learning in classifier systems. 


In order to simplify the remainder of the example, we will only consider the classifier
system’s performance in learning the classification A1. That is, we will ignore the other
classifications, and assign condition patterns a value of 1 or 0 depending on whether or not
they support classification A1. Note that there is no loss of generality in this simplifica-
tion; it may be extended to problems of learning more than one classification by using a
vector to indicate the classifications that match a particular condition pattern. For exam-
ple, the classifiers of Table 12.2 may be summarized by:


(1 # # # 1 #) → (1 0 0 0)
(2 # # 3 # #) → (1 0 0 0)
(1 # # # # #) → (0 1 0 0)
(# # 4 3 # #) → (0 1 1 0) 


In this example, the last of these summaries indicates that the condition attributes support
classification rules A2 and A3 and not A1 or A4. By replacing the 0 or 1 assignment with
these vectors, the learning algorithm can evaluate the performance of a rule across multi-
ple classifications.


In this example, we will use the rules in Table 12.2 to indicate the correct classifica-
tions; essentially, they will function as teachers or evaluators of the fitness of rules in the
learning system. As with most genetic learners, we begin with a random population of
rules. Each condition pattern is also assigned a strength, or fitness, parameter (a real num-
ber between 0.0, no strength, and 1.0, full strength. This strength parameter, s, is com-
puted from the fitness of each rule’s parents, and measures its historical fitness. 


At each learning cycle, the rules attempt to classify the inputs and are then ranked by
the teacher or fitness metric. For example, assume that at some cycle, the classifier has the
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following population of candidate classification rules, where the conclusion of 1 indicates
that the pattern led to a correct classifcation and 0 that it did not:


(# # # 2 1 #) → 1 s = 0.6 
(# # 3 # # 5) → 0 s = 0.5
(2 1 # # # #) → 1 s = 0.4
(# 4 # # # 2) → 0 s = 0.23


Suppose a new input message arrives from the environment: (1 4 3 2 1 5), and the
teacher (using the first rule of Table 12.2) classifies this input vector as a positive example
of A1. Let’s consider what happens when working memory receives this pattern and the
four candidate classifier rules try to match it. Rules 1 and 2 match. Conflict resolution is
done through competitive bidding among matching rules. In our example, bidding is a
function of the sum of the matches of the attribute values times the strength measure of the
rule. “Don’t care” matches have the value 0.5, while exact matches have value 1.0. To nor-
malize we divide this result by the length of the input vector. Since the input vector
matches the first classifier with two exact and four “don’t cares,” its bid is ((4 * 0.5 + 2 *
1) * 0.6) / 6, or 0.4. The second classifier also matches two attributes and has four “don’t
cares,” so its bid is 0.33. In our example, only the classifier making the highest bid fires,
but in more complex situations, it may be desirable for a percentage of the bids to be
accepted.


The first rule wins and posts its action, a 1, indicating that this pattern is an example
of A1. Since this action is correct, the fitness measure of rule 1 is increased to between its
present value and 1.0. Had the action of this rule been incorrect, the fitness measure would
have been lowered. If the system required multiple firings of the rule set to produce some
result on the environment, all the rules responsible for this result would receive some pro-
portion of the reward. The exact procedure by which the rule’s fitness is calculated varies
across systems and may be fairly complex, involving the use of the bucket brigade algo-
rithm or some similar credit assignment technique. See Holland (1986) for details.


Once the fitness of the candidate rules has been computed, the learning algorithm
applies genetic operators to create the next generation of rules. First, a selection algorithm
will decide the most fit members of the rule set. This selection is based on the fitness mea-
sure, but may also include an additional random value. The random value gives rules with
a poor fitness the opportunity to reproduce, helping to avoid a too hasty elimination of
rules that, while performing poorly overall, may incorporate some element of the desired
solution. Suppose the first two classifier rules of the example are selected to survive and
reproduce. Randomly selecting a crossover position between the fourth and fifth elements,


(# # # 2 | 1 #) → 1 s = 0.6 
(# # 3 # | # 5) → 0  s = 0.5 


produces the offspring:


(# # 3 # | 1 #) → 0 s = 0.53 
(# # # 2 | # 5) → 1 s = 0.57
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The fitness measure of the children is a weighted function of the fitness of the parents.
The weighting is a function of where the crossover point lies. The first offspring has 1/3 of
the original 0.6 classifier and 2/3 of the original 0.5 classifier. Thus, the first offspring has
strength of (1/3 * 0.6) + (2/3 * 0.5) = 0.53. With a similar calculation, the fitness of the
second child is 0.57. The result of firing the classifier rule, always 0 or 1, goes with the
majority of the attributes, thus preserving the intuition that these patterns are important in
the outcomes of the rules. In a typical classifier system these two new rules, along with
their parents, would make up the subset of classifiers for the operation of the system at the
next time step.


A mutation operator may also be defined. A simple mutation rule would be to ran-
domly change any attribute pattern to some other valid attribute pattern; for example, a 5
could be mutated to 1, 2, 3, 4 or #. Again, as noted in our discussion of GAs, mutation
operators are seen as forcing diversity into the search for classifiers, while crossover
attempts to preserve and build new children from successful pieces of parental patterns. 


Our example was simple and intended primarily for illustrating the main components
of the classifier system. In an actual system, more than one rule might fire and each pass
their results along to the production memory. There is often a taxation scheme that keeps
any classifier from becoming too prominent in the solution process by lowering its fitness
each time it wins a bid. We also did not illustrate the bucket brigade algorithm, differen-
tially rewarding rules supporting successful output messages to the environment. Also, the
genetic operators do not usually rework the classifiers at every operation of the system.
Rather, there is some general parameter for each application that decides, perhaps on anal-
ysis of feedback from the environment, when the classifiers should be evaluated and the
genetic operators applied.


Finally, our example is taken from the classifier systems that Holland (1986) at the
University of Michigan proposed. The Michigan approach can be viewed as a computa-
tional model of cognition, where the knowledge, (the classifiers), of a cognitive entity are
exposed to a reacting environment and as a result undergo modification over time. We
evaluate the success of the entire system over time, while the importance of the individual
classifier is minimal. Alternative classifier systems have also been investigated, including
work at the University of Pittsburgh (Michalski et al. 1983). The Pittsburgh classifier
focuses on the roles of individual rules in producing new generations of classifiers. This
approach implements a model of inductive learning proposed by Michalski.


In the next section we consider a different and particularly exciting application for
GAs, the evolution of computer programs.


12.2.2 Programming with Genetic Operators


Through the last several subsections we have seen GAs applied to progressively larger
representational structures. What began as genetic transformations on bit strings evolved
to operations on if . . . then . . . rules. It can quite naturally be asked if genetic and evolu-
tionary techniques might be applied to the production of other larger scale computational
tools. There have been two major examples of this: the generation of computer programs
and the evolution of systems of finite state machines.
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Koza (1991, 1992, 2005) has suggested that a successful computer program might
evolve through successive applications of genetic operators. In genetic programming, the
structures being adapted are hierarchically organized segments of computer programs.
The learning algorithm maintains a population of candidate programs. The fitness of a
program will be measured by its ability to solve a set of tasks, and programs are modified
by applying crossover and mutation to program subtrees. Genetic programming searches a
space of computer programs of varying size and complexity; in fact, the search space is
the space of all possible computer programs composed of functions and terminal symbols
appropriate to the problem domain. As with all genetic learners, this search is random,
largely blind and yet surprisingly effective.


Genetic programming starts with an initial population of randomly generated pro-
grams made up of appropriate program pieces. These pieces, suitable for a problem
domain, may consist of standard arithmetic operations, other related programming opera-
tions, and mathematical functions, as well as logical and domain-specific functions. Pro-
gram components include data items of the usual types: boolean, integer, floating point,
vector, symbolic, or multiple-valued. 


After initialization, thousands of computer programs are genetically bred. The
production of new programs comes with application of genetic operators. Crossover,
mutation, and other breeding algorithms must be customized for the production of com-
puter programs. We will see several examples shortly. The fitness of each new program is
then determined by seeing how well it performs in a particular problem environment. The
nature of the fitness measure will vary according to the problem domain. Any program
that does well on this fitness task will survive to help produce the children of the next gen-
eration.


To summarize, genetic programming includes six components, many very similar to
the requirements for GAs:


1. A set of structures that undergo transformation by genetic operators.


2. A set of initial structures suited to a problem domain.


3. A fitness measure, again domain dependent, to evaluate structures.


4. A set of genetic operators to transform structures.


5. Parameters and state descriptions that describe members of each generation.


6. A set of termination conditions.


In the following paragraphs we address each of these topics in more detail.
Genetic programming manipulates hierarchically organized program modules. Lisp


was (and still remains) the primary representation for the programming language compo-
nents: Koza represents program segments as Lisp symbol expressions, or s-expressions.
(See the auxiliary material for a discussion of s-expressions, their natural representation as
tree structures, and their evaluation as programs.)
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Genetic operators manipulate s-expressions. In particular, operators map tree
structures of s-expressions, (Lisp program segments), into new trees, (new Lisp program
segments). Although this s-expression is the basis for Koza’s early work, other researchers
have more applied this approach to different programming languages/paradigms.


Genetic programming will construct useful programs, given that the atomic pieces
and evaluable predicates of the problem domain are available. When we set up a domain
for the generation of a programs sufficient to address a set of problems, we must first ana-
lyze what terminals are required for units in its solution as well as what functions are nec-
essary to produce these terminals. As Koza notes (1992, p.86) “... the user of genetic
programming should know ... that some composition of the functions and terminals he
supplies can yield a solution of the problem.”


To initialize the structures for adaptation by genetic operators, we must create two
sets: F, the set of functions and T, the set of terminal values required for the domain. F can
be as simple as {+, *, −, /} or may require more complex functions such as sin(X), cos(X),
or functions for matrix operations. T may be the integers, reals, matrices, or more complex
expressions. The symbols in T must be closed under the functions defined in F.


Next, a population of initial “programs” is generated by randomly selecting elements
from the union of sets F and T. For example, if we begin by selecting an element of T, we
have a degenerate tree of a single root node. More interestingly, when we start with an
element from F, say +, we get a root node of a tree with two potential children. Suppose
the initializer next selects * (with two potential children) from F, as the first child, and
then terminal 6 from T as the second child. Another random selection might yield the ter-
minal 8, and then the function + from F. Assume it concludes by selecting 5 and 7 from T.


The program we have randomly produced is represented in Figure 12.4. Figure 12.4a
gives the tree after the first selection of +, 15.4b after selecting the terminal 6, and 15.4c
the final program. A population of similar programs is created to initialize the genetic pro-
gramming process. Sets of constraints, such as the maximum depth for programs to
evolve, can help prune this population. Descriptions of these constraints, as well as differ-
ent methods for generating initial populations, may be found in Koza (1992).


The discussion to this point addresses the issues of representation (s-expressions) and
the set of tree structures necessary to initialize a situation for program evolution. Next, we
require a fitness measure for populations of programs. The fitness measure is problem
domain dependent and usually consists of a set of tasks the evolved programs must
address. The fitness measure itself is a function of how well each program does on these
tasks. A simple raw fitness score would add the differences between what the program
produced and the results that the actual task from the problem domain required. Thus, raw
fitness could be seen as the sum of errors across a set of tasks. Other fitness measures are
possible, of course. Normalized fitness divides raw fitness by the total sum of possible
errors and thus puts all fitness measures within the range of 0 to 1. Normalization can have
an advantage when trying to select from a large population of programs. A fitness measure
can also include an adjustment for the size of the program, for example, to reward smaller,
more parsimonious programs.


Genetic operators on programs include both transformations on a tree itself as well as
the exchange of structures between trees. Koza (1992) describes the primary transforma-
tions as reproduction and crossover. Reproduction simply selects programs from the
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present generation and copies them (unchanged) into the next generation. Crossover
exchanges subtrees between the trees representing two programs. For example, suppose
we are working with the two parent programs of Figure 12.5, and that the random points
indicated by | in parent a and parent b are selected for crossover. The resulting children are
shown in Figure 12.6. Crossover can also be used to transform a single parent, by inter-
changing two subtrees from that parent. Two identical parents can create different children
with randomly selected crossover points. The root of a program can also be selected as a
crossover point.


There are a number of secondary, and much less used, genetic transforms of program
trees. These include mutation, which simply introduces random changes in the structures
of a program. For example, replacing a terminal value with another value or a function
subtree. The permutation transform, similar to the inversion operator on strings, also
works on single programs, exchanging terminal symbols, or subtrees, for example. 


The state of the solution is reflected by the current generation of programs. There is
no record keeping for backtrack or any other method for skipping around the fitness land-
scape. In this aspect genetic programming is much like the hill-climbing algorithm
described in Section 4.1. The genetic programming paradigm parallels nature in that the
evolution of new programs is a continuing process. Nonetheless, lacking infinite time and
computation, termination conditions are set. These are usually a function both of program
fitness and computational resources.


The fact that genetic programming is a technique for the computational generation of
computer programs places it within the automatic programming research tradition. From
the earliest days of AI, researchers have worked to automatically produce computer
programs from fragmentary information (Shapiro 1992). Genetic programming can be
seen as another tool for this important research domain. We conclude this section with a
simple example of genetic programming taken from Mitchell (1996).


Figure 12.4 The random generation of a program to initialize. 
The circled nodes are from the set of functions.
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EXAMPLE 3.2.1: EVOLVING A PROGRAM FOR KEPLER’S THIRD LAW OF PLANETARY MOTION


Koza (1992, 2005) describes many applications of genetic programming to solve interest-
ing problems, but most of these examples are large and too complex for our present pur-
poses. Mitchell (1996), however, has created a simple example that illustrates many of the
concepts of genetic programming. Kepler’s Third Law of Planetary Motion describes the
functional relationship between the orbital period, P, of a planet and its average distance,
A, from the sun. 


Figure 12.5 Two programs, selected on fitness for crossover. Point | 
from a and b are randomly selected for crossover.


* +


+


*


−


 6


6  84 10


 3 


a. b.


SIN COS


|


|


Figure 12.6 The child programs produced by cross-
over of the points in Figure 12.5.


*


+


+


*


−


8


6
6


8


4


10
3


a. b.


SIN


COS


8








CHAPTER 12 / MACHINE LEARNING: SOCIAL AND EMERGENT 529


The function for Kepler’s Third Law, with c a constant is:


P2 = cA3


If we assume that P is expressed in units of earth years, and A is expressed in units of
earth’s average distance from the sun, then c = 1. The s-expression of this relationship is:


P = (sqrt (* A (* A A)))


And so the program we want to evolve is represented by the tree structure of Figure 12.7.
The selection of the set of terminal symbols in this example is simple; it is the single


real value given by A. The set of functions could be equally simple, say {+, −, *, /, sq,
sqrt}. Next we will create a beginning random population of programs. The initial popula-
tion might include:


(* A (− (* A A) (sqrt A))) fitness: 1
(/ A (/ (/ A A) (/ A A))) fitness: 3
(+ A (* (sqrt A) A)) fitness: 0


(We explain the attached fitness measures shortly). As noted earlier in this section this ini-
tializing population often has a priori limits both of size and search depth, given knowl-
edge of the problem. These three examples are described by the program trees of Figure
12.8.


Next we determine a suite of tests for the population of programs. Suppose we know
some planetary data we want our evolved program to explain. For example, we have the
planetary data in Table 12.3, taken from Urey (1952), which gives a set of data points that
the evolving programs must explain.


Planet A (input) P (output)


Venus 0.72 0.61
Earth 1.0 1.0
Mars 1.52 1.87
Jupiter 5.2 11.9
Saturn 9.53 29.4
Uranus 19.1 83.5


Table 12.3 A set of fitness cases, with planetary data taken from Urey (1952). A is
Earth s semi-major axis of orbit and P is in units of earth-years.


Since the fitness measure is a function of the data points we want to explain, we
define fitness as the number of outputs of the program that come within 20 per cent of the
correct output values. We use this definition to create the fitness measures of the three pro-
grams of Figure 12.8. It remains for the reader to create more members of this initial pop-
ulation, to build crossover and mutation operators that can produce further generations of
programs, and to determine termination conditions.
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12.3 Artificial Life and Society-Based Learning


Earlier in this chapter, we described a simplified version of “The Game of Life.” This
game, most effectively shown in computational visual simulations where succeeding
generations rapidly change and evolve on a screen display, has a very simple specification.
It was first proposed as a board game by the mathematician John Horton Conway, and
made famous through Martin Gardner’s discussion of it in Scientific American (1970,
1971). The Game of Life is a simple example of a model of computation called cellular
automata (CA). Cellular automata are families of simple, finite-state machines that exhibit
interesting, emergent behaviors through their interactions in a population. 


Figure 12.8 Members from the initial population of pro-
grams to solve the orbital period problem.
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D E F I N I T I O N


FINITE-STATE MACHINE or CELLULAR AUTOMATON


1. A set I called the input alphabet.
2. A set S of states that the automaton can be in.
3. A designated state s0, the initial state.
4. A next state function N: S x I → S, that assigns a next state to each


ordered pair consisting of a current state and a current input. 


The output of a Finite State Machine, as presented previously in Section 3.1, is a
function of its present state and input values. The cellular automata makes the input to the
present state a function of its “neighbor” states. Thus, the state at time (t + 1) is a function
of its present state and the state of its neighbors at time t. It is through these interactions
with neighbors that collections of cellular automata achieve much richer behaviors than
simple finite state machines. Because the output of all states of a system is a function of
their neighboring states, we can describe the evolution of a set of neighboring FSMs as
society-based adaptation and learning.


For the societies described in this section, there is no explicit evaluation of the fitness
of individual members. Fitness results from interactions in the population, interactions
that may lead to the “death” of individual automata. Fitness is implicit in the survival of
individuals from generation to generation. Learning among cellular automata is typically
unsupervised; as occurs in natural evolution, adaptation is shaped by the actions of other,
co-evolving members of the population.


A global, or society-oriented viewpoint also allows an important perspective on learn-
ing. We no longer need to focus exclusively on the individual, but can rather see invari-
ances and regularities emerging within the society as a whole. This is an important aspect
of the Crutchfield−Mitchell research presented in Section 12.3.2. 


Finally, unlike supervised learning, evolution need not be “intentional”. That is, the
society of agents need not be seen as “going somewhere”, say to some “omega” point. We
did have a convergence bias when we used the explicit fitness measures in the earlier sec-
tions of this chapter. But as Stephen Jay Gould (1977, 1996) points out, evolution need not
be viewed as making things “better”, rather it just favors survival. The only success is con-
tinued existence, and the patterns that emerge are the patterns of a society.


12.3.1 The “Game of Life”


Consider the simple two-dimensional grid or game board of Figure 12.9. Here we have
one square “occupied” - having bit value 1 -  in black, with its eight nearest neighbors
indicated by gray shading. The board is transformed over time periods, where the state of
each square at time t + 1 is a function of its state and the state of these indicated nearest
neighbors at time t. Three simple rules can drive evolution in the game: First, if any
square, occupied or not, has exactly three of its nearest neighbors occupied, it will be
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occupied at the next time period. Second, if any occupied square has exactly two of its
nearest neighbors occupied, it will be occupied in the next time period. Finally, for all
other situations the square will not be occupied at the next time period.


One interpretation of these rules is that, for each generation or time period, life at any
location, i.e., whether or not the square is occupied (has state value 1) is a result of its own
as well as its neighbors’ life during the previous generation. Specifically, too dense a pop-
ulation of surrounding neighbors (more than three) or too sparse a neighboring population
(less than two) at any time period will not allow life for the next generation. 


Consider, for example, the state of life for Figure 12.10a. Here exactly two squares,
indicated by an x, have exactly three occupied neighbors. At the next life cycle Figure
12.10b will be produced. Here again there are exactly two squares, indicated by y, with
exactly three occupied neighbors. It can be seen that the state of the world will cycle back
and forth between Figures 12.10a and 12.10b. The reader can determine what the next
state will be for Figures 12.11a and 12.11b and examine other possible “world” configura-
tions. Poundstone (1985) describes the extraordinary variety and richness of the structures
that can emerge in the game of life, such as gliders, patterns of cells that move across the
world through repeated cycles of shape changes, as is seen in Figure 12.12.


Because of their ability to produce rich collective behaviors through the interactions
of simple cells, cellular automata have proven a powerful tool for studying the mathemat-
ics of the emergence of life from simple, inanimate components. Artificial life is defined
as life made by human effort rather than by nature. As can be seen in the previous exam-
ple, artificial life has a strong “bottom up” flavor; that is, the atoms of a life-system are
defined and assembled and their physical interactions “emerge”. Regularities of this life
form are captured by the rules of the finite state machine.


But how might a-life constructs be used? In biology, for example, the set of living
entities provided by nature, as complex and diverse as they may be, are dominated by
accident and historical contingency. We trust that there are logical regularities at work in
the creation of this set, but there need not be, and it is unlikely that we will discover many
of the total possible regularities when we restrict our view to the set of biological entities
that nature actually provides. It is critical to explore the full set of possible biological


Figure 12.9 The shaded region indicates the set 
of neighbors for the game of life.
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regularities, some of which may have been eliminated by historical accident. We can
always wonder what the present world would be like had not the dinosaurs’ existence been
peremptorily terminated. To have a theory of the actual, it is necessary to understand the
limits of the possible.


Besides the determined effort of anthropologists and other scientists to fill in the gaps
in knowledge of our actual evolution, there is continued speculation about rerunning the
story of evolution itself. What might happen if evolution started off with different initial
conditions? What if there were alternative intervening “accidents” within our physical and
biological surroundings? What might emerge? What would remain constant? The
evolutionary path that actually did occur on earth is but one of many possible trajectories.
Some of these questions might be addressed if we could generate some of the many
biologies that are possible. (See as an example PACE, Programmable Artificial Cell Evo-
lution in Section 12.3.3.)


A-life technology is not just an artifact of computational or biological domains.
Research scientists from areas as diverse as chemistry and pharmacology have built
synthetic artifacts, many related to the knowledge of actual entities existing in our world.
For example, in the field of chemistry, research into the constitution of matter and the


Figure 12.10 A set of neighbors generating the blinking  
light phenomenon.
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Figure 12.11 What happens to these patterns at the next 
time cycle?


a. b.
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many compounds that nature provides has led to analysis of these compounds, their
constituent pieces, and their bonds. This analysis and recombination has led to the creation
of numerous compounds that do not exist naturally. Our knowledge of the building blocks
of nature has led us to our own synthetic versions, putting components of reality together
in new and different patterns. It is through this careful analysis of natural chemical com-
pounds that we come to some understanding of the set of possible compounds.


One tool for understanding possible worlds is to simulate and analyze society based
movement and interaction effects. We have simple examples of this in the Game of Life.
The sequence of time cycles demonstrated in Figure 12.12 implements the glider that was
mentioned earlier. The glider sweeps across the game space by cycling among a small
number of patterns. Its action is simple as it moves, in four time periods, to a new location
one row further to the right and one row closer to the bottom of the grid.


An interesting aspect of the game of life is that entities such as the glider persist until
interacting with other members of their society; what then happens can be difficult to
understand and predict. For example, in Figure 12.13, we see the situation where two glid-
ers emerge and engage. After four time periods, the glider moving down and to the left is
“consumed” by the other entity. It is interesting to note that our ontological descriptions,
that is, our use of terms such as “entity”, “blinking light”, “glider”, “consumed”, reflects
our own anthropocentric biases on viewing life forms and interactions, whether artificial
or not. It is very human of us to give names to regularities as they emerge within our social
structures.


12.3.2 Evolutionary Programming


The “Game of Life” is an intuitive, highly descriptive example of cellular automata. We
can generalize our discussion of cellular automata by characterizing them as finite state


Figure 12.12 A glider  moves across the display.


Figure 12.13 A glider  is consumed  by another entity.
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machines. We now discuss societies of linked FSMs and analyze them as emergent enti-
ties. This study is sometimes called evolutionary programming.


The history of evolutionary programming goes back to the beginning of computers
themselves. John von Neumann, in a series of lectures in 1949, explored the question of
what level of organizational complexity was required for self-replication to occur (Burks
1970). Burks cites von Neumann’s goal as “...not trying to simulate the self-reproduction
of a natural system at the level of genetics and biochemistry. He wished to abstract from
the natural self-reproduction problem its logical form”.


By removing chemical, biological, and mechanical details, von Neumann was able to
represent the essential requirements for self-replication. von Neumann went on to design
(it was never built) a self-reproducing automaton consisting of a two-dimensional cellular
arrangement containing a large number of individual 29-state automata, where the next
state for each automaton was a function of its current state and the states of its four
immediate neighbors (Burks 1970, 1987).


Interestingly, von Neumann designed his self-replicating automaton, estimated to
contain at least 40,000 cells, to have the functionality of a Universal Turing Machine. This
universal computation device was also construction universal, in the sense that it was
capable of reading an input tape, interpreting the data on the tape, and, through use of a
construction arm, building the configuration described on the tape in an unoccupied part
of the cellular space. By putting a description of the constructing automaton itself on the
tape, von Neumann created a self-reproducing automaton (Arbib 1966). 


Later Codd (1968) reduced the number of states required for a computationally
universal, self-reproducing automaton from 29 to 8, but required an estimated
100,000,000 cells for the full design. Later Devore simplified Codd’s machine to occupy
only about 87,500 cells. In modern times, Langton created a self-replicating automaton,
without computational universality, where each cell had only eight states and occupied
just 100 cells (Langton 1986, Hightower 1992, Codd 1992). Current descriptions of these
research efforts may be found in the proceedings of the a-life conferences (Langton 1989,
Langton et al. 1992).


Thus, the formal analysis of self-replicating machines has deep roots in the theory of
computation. Perhaps even more exciting results are implicit in empirical studies of a-life
forms. The success of these programs is not indicated by some a priori fitness function,
but rather by the simple fact that they can survive and replicate. Their mark of success is
that they survive. On the darker side, we have experienced the legacy of computer viruses
and worms that are able to work their way into foreign hosts, replicate themselves (usually
destroying any information in the memory required for replication), and move on to infect
yet other foreign hosts. 


We conclude this section by discussing several research projects that can be seen as
examples of a-life computing. The final section of Chapter 12 is a detailed example of
emergent computation by Melanie Mitchell and her colleagues from the Sante Fe Institute.
We first present two projects already discussed in our earlier chapters, that of Rodney
Brooks at MIT and Nils Nilsson and his students at Stanford. In the earlier presentations,
Brooks’ work came under the general heading of alternative representations, Section 6.3,
and Nilsson’s under the topic of planning, Section 7.4.3. In the context of the present
chapter, we recast their work in the context of artificial life and emergent phenomena.
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Rodney Brooks (1991a, b) at MIT has built a research program based on the premise
of a-life, namely that intelligence emerges through the interactions of a number of simple
autonomous agents. Brook’s describes his approach as “intelligence without representa-
tion”, building a series of robots able to sense obstacles and move around the offices and
hallways at MIT. Based on the subsumption architecture these agents can wander, explore,
and avoid other objects. The intelligence of this system is an artifact of simple organiza-
tion and embodied interactions with their environment. Brooks states “We wire finite state
machines together into layers of control. Each layer is built on top of existing layers.
Lower level layers never rely on the existence of higher level layers.” Further references
include McGonigle (1990, 1998), Brooks (1987, 1991a); Lewis and Luger (2000).


Nils Nilsson and his students (Nilsson 1994, Benson 1995, Benson and Nilsson 1995)
designed a teleo-reactive (T-R) program for agent control, a program that directs an agent
towards a goal in a manner that continuously takes into account changing environmental
circumstances. This program operates very much with the flavor of a production system
but also supports durative action, or action that takes place across arbitrary time periods,
such as go forward until.... Thus, unlike ordinary production systems, conditions must be
continuously evaluated, and the action associated with the current highest true condition is
always the one being executed. For further detail, the interested reader is directed to Nils-
son (1994), Benson (1995), Benson and Nilsson (1995), Klein et al. (2000).


The European commission is supporting the PACE, Programmable Artificial Cell
Evolution, project. This research has produced a new generation of synthetic chemical
cells. The focus is that life evolves around living computational systems, that are self-
organizing as well as self-repairing. The complete artificial cells are also self-reproducing,
capable of evolution, can maintain their complex structure using simpler environmental
resources. For more details see the PACE website http://www.istpace.org/
research_overview/artificial_cells_in_pace.html.


The John Koza research effort in genetic programming at Stanford University contin-
ues to publish its many successes. Recent advances include the automatic development of
circuits and controllers, the synthesis of circuit topology, sizing, placement and routing, as
well as other engineering artifacts. References may be found in Koza (2005).


These four research efforts are samples from a very large population of automaton-
based research projects. These projects are fundamentally experimental. They ask ques-
tions of the natural world. The natural world responds with survival and growth for suc-
cessful algorithms as well as the annihilation of a system incapable of adaptation. 


Finally, we consider research from the Santa Fe Institute: a case study in emergence.


12.3.3 A Case Study in Emergence (Crutchfield and Mitchell 1995)


Crutchfield and Mitchell explore the ability of evolution and interaction within simple
systems to create higher-level collective information processing relationships. Their




http://www.istpace.org/research_overview/artificial_cells_in_pace.html



http://www.istpace.org/research_overview/artificial_cells_in_pace.html
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research offers an example of the emergence of instances of global computation across a
spatial system consisting of distributed and locally interacting processors. The term emer-
gent computation describes the appearance of global information processing structures in
these systems. The goal of the Crutchfield and Mitchell research is to describe an architec-
ture and mechanisms sufficient to evolve and support methods for emergent computation.


Specifically, a cellular automaton (CA) is made up of a number of individual cells; in
fact, there are 149 cells in each automaton of the examples we present. These binary-state
cells are distributed across a one-dimensional space with no global coordination. Each cell
changes state as a function of its own state and the states of its two immediate neighbors.
The CA forms a two-dimensional lattice as it evolves across time periods. The lattice
starts out with an initial randomly generated set of N cells. In the example of Figure 12.14,
there are 149 cells and 149 time steps of their evolution. (There is a zero time period and
the cells are numbered from 0, 1, ..., 148). Two examples of these cellular automata’s
behavior may be seen in the space-time diagrams of Figure 12.14. In these diagrams the 1s
are given as black cells and the 0s as white cells. Of course, different rules for the cell
neighborhoods will produce different patterns in the space-time diagram of the CA.


Next we describe the rule set that determines the activity of the cells that make up
each CA. Figure 12.15 presents a one-dimensional binary-state nearest neighbor CA, with
N = 11 cells. Both the lattice and the rule table for updating the lattice are presented. The
lattice is shown changing across one time step. The lattice is actually a cylinder, with the
left end and the right end of the lattice at each time period being neighbors (this is impor-
tant for applying the rule set). The rule table supports the local majority vote rule: if a local
neighborhood of three cells has a majority of ones, then the center cell becomes a one at
the next time step; otherwise, it becomes a zero at the next time step.


0


Time


148
148Site0


0


Time


148
148Site0


(a) (b)
Figure 12.14 Space-time diagrams showing the behavior of two As,


discovered by the genetic algorithm on different runs.
They employ embedded particles for the non local
computation or general emerging patterns seen.
Each space-time diagram iterates over a range of
time steps, with 1s given as black cells, 0s as white
cells; time increases down the page, from Crutchfield
and Mitchell (1995).


a. b.
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Crutchfield and Mitchell want to find a CA that performs the following collective
computation, here called majority wins: if the initial lattice contains a majority of ones, the
CA should evolve across time to all ones; otherwise, it should evolve to all zeros. They
use CAs with neighborhoods containing seven cells, a center cell with three neighbors on
each side. An interesting aspect of this research is that it is difficult to design a CA rule
that performs the majority wins computation. In fact, in Mitchell et al. (1996), they show
that the simple seven-neighbor “majority vote” rule does not perform the “majority wins”
computation. The GA is used to search for a rule that will.


The genetic algorithm (GA), Section 12.1, is used to create the rule tables for differ-
ent experiments with the CAs. Specifically, a GA is used to evolve the rules for the
one-dimensional binary-state cell population that makes up each CA. A fitness function is
designed to reward those rules that support the majority wins result for the CA itself.
Thus, over time, the GA built a rule set whose fitness was a function of its eventual suc-
cess in enforcing global majority rules. The fittest rules in the population were selected to
survive and randomly combined by crossover to produce offspring, with each offspring
subject to a small probability of mutation. This process was iterated for 100 generations,
with fitness estimated for a new set of initial cells at each generation. Full details may be
found in Crutchfield and Mitchell (1995).


How can we quantify the emergent computation the more successful CAs are
supporting? Like many spatially extended natural processes, the cell configurations often
organize over time into spatial regions that are dynamically homogenous. Ideally, the
analysis and determination of underlying regularities should be an automated process. In
fact, Hanson and Crutchfield (1992) have created a language for minimal deterministic
finite automaton and use it for describing the attractor-basins within each cellular automa-
ton. This language can be used to describe our example.


Figure 12.15 Illustration of a one-dimensional, binary-state, nearest-neighbor
cellular automaton with N = 11. Both the lattice and the rule table
for updating the lattice are illustrated. The lattice configuration is
shown over one time step. The cellular automaton is circular in
that the two end values are neighbors.
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Sometimes, as in Figure 12.14a, these regions are obvious to the human viewer as
invariant domains, that is, regions in which the same pattern recurs. We will label these
domains as Λ values, and then filter out the invariant elements, in order to better describe
the interactions (computations) effected by the intersections of these domains. Table 12.4


describes three Λ regions: Λ0, the repeated 0s; Λ1, the repeated 1s; and Λ2, the repeated
pattern 10001. There are other Λ regions in Figure 12.14a, but we will only discuss this
subset.


With the filtering out of invariant elements of the Λ domains, we can see the
interactions of these domains. In Table 12.4, we describe the interaction of six Λ areas, for
example, the particles at the frontiers of the Λ1 and Λ0 domains. The frontier, where the all
1 domain meets the all 0 domain, is called the embedded particle α. Crutchfield and
Mitchell claim that the collection of embedded particles is a primary mechanism for carry-
ing information (or signals) over long space-time continua. Logical operations on these
particles or signals occur when they collide. Thus the collection of domains, domain walls,
particles, and the particle interactions for a CA represent the basic information-processing
elements that are embedded in the CAs behavior, that is, that make up the CA’s intrinsic
computation.


As an example, Figure 12.16 describes the emergent logic of Figure 12.14a. The Λ
domain areas have been filtered of their invariant content to allow the domain wall parti-
cles to be easily observed. Each of the magnified regions of Figure 12.16 demonstrates the
logic of two of the interacting embedded particles. The particle interaction α + δ → μ,


Table 12.4 Catalog of regular domains, particles (domain boundaries),
particle velocities (in parentheses), and particle interactions of
the space-time behavior of the CA of Figure 12.14a. The nota-
tion p ~ ΛxΛy means that p is the particle forming the boundary
between regular domains Λx and Λy.


Regular Domains


Λ0 = 0* Λ1 = 1* Λ2 = (10001)*


Particles (Velocities)


α ~ Λ1Λ0 (1) β ~ Λ0Λ1 (0)


γ ~ Λ2Λ0 (−2) δ ~ Λ0Λ2 (1/2)


η ~ Λ2Λ1 (4/3) μ ~ Λ1Λ2 (3)


Interactions


decay


react


annihilate


α → γ + μ


α + δ → μ,  η + α → γ,  μ + γ → α


η + μ → Ø1 , γ + δ → Ø0
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shown in the upper right, implements the logic of mapping a spatial configuration repre-
senting signals α and δ into the signal μ. Similar detail is shown for the particle interaction
μ + γ → α, that maps a configuration representing μ and γ to the signal α. A more com-
plete listing of the particle interactions of Figure 12.16 may be found in Table 12.4.


To summarize, an important result of the Crutchfield−Mitchell research is the
discovery of methods for describing emergent computation within a spatially distributed
system consisting of locally interacting cell processors. The locality of communication in
the cells imposes a constraint of global communication.The role of the GAs is to discover
local cell rules whose effect is to perform information processing over “large” space-time
distances. Crutchfield and Mitchell have used ideas adopted from formal language theory
to characterize these space-time patterns. 


For Crutchfield and Mitchell, the result of the evolving automaton reflects an entirely
new level of behavior that is distinct from the lower level interactions of the distributed
cells. Global particle-based interactions demonstrate how complex coordination can
emerge within a collection of simple individual actions. The result of the GA operating on
local cell rules showed how an evolutionary process, by taking advantage of certain non-
linear pattern-forming actions of cells, produced a new level of behavior and the delicate
balance necessary for effective emergent computation.


The results of the Crutchfield−Mitchell research are important in that they have, with
GA support, demonstrated the emergence of higher level invariances within a cellular
automaton world. Furthermore, they present computational tools, adapted from formal
language theory, that can be used to describe these invariances. Continued research in this
domain has the potential to elucidate the emergence of complexity: the defining character-
istic of living things, and fundamental to understanding the origins of minds, species, and
ecosystems.


Figure 12.16 Analysis of the emergent logic for density classification of
12.14a. This CA has three domains, six particles, and six
particle iterations, as noted in Table 12.3. The domains have
been filtered out using an 18-state nonlinear transducer;
adapted from Crutchfield and Mitchell (1995).
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12.4 Epilogue and References


Research on genetic algorithms and biology-based learning began with John Holland’s
design of genetic algorithms. His early research includes Adaptation in Natural and
Artificial Systems (1975), a study on emergent phenomena in self-replicating systems
(1976), and Escaping Brittleness: The possibilities of general purpose learning algorithms
applied to parallel rule-based systems (1986), introducing classifiers. Some examples of
work on the analysis of genetic systems can be found in Forrest and Mitchell (Forrest
1990, Mitchell 1996, Forrest and Mitchell 1993a, 1993b). Other researchers, especially
Goldberg (1989), Mitchell (1996), and Koza (1992, 1994) have continued the formal anal-
ysis of genetic algorithms and learning.


As noted above, Holland (1986) was also responsible for the original design of
classifier systems. Classifiers create a macro or complete-system viewpoint of learning.
Another similar view is represented by the SOAR project (Laird et al. 1986a, 1986b;
Rosenbloom and Newell 1987; Rosenbloom et al. 1993).


A number of popular books, including Chaos, by James Gleick (1987) have helped
establish the importance of emergent and chaotic systems. Concepts from these systems,
such a strange attractors, have found a role in connectionist architectures (Chapter 11). 


John Koza is the primary designer of the genetic programming research area. His
major contributions are described in: Genetic Programming: On the programming of com-
puters by means of natural selection (1992) and Genetic Programming II: Automatic dis-
covery of reusable programs (1994). Kosa (2005) uses genetic programming to build
engineering tools, including control systems. The example of using genetic programs to
learn Kepler’s Third Law, Section 12.2.2, was suggested by Mitchell (1996).


The Game of Life was originally presented by the mathematician John Horton
Conway, but made famous by Martin Gardner’s discussion of it in Scientific American
(1970, 1971). Research in the computational power of finite state machines goes back to
the design of the first digital computers. John von Neumann was very active in this
research, and in fact was the first to show that the FSM had the computational power of
Turing’s Universal Machine. Most of von Neumann’s early research is presented in the
writings of Arthur Burks (1966, 1970, 1987). Other researchers (Hightower 1992, Koza
1992) describe how a-life research evolved from this early work on FSMs. Other research-
ers in artificial life include Langton (1986) and Ackley and Littmann (1992). Proceedings
of the early a-life conferences were edited by Langton (1989, 1990). 


Dennett, Darwin’s Dangerous Ideas (1995) and Sweet Dreams (2006) and other phi-
losophers have addressed the importance of evolutionary concepts in philosophy. We also
recommend Full House: The Spread of Excellence from Plato to Darwin (Gould 1996).


Besides the brief descriptions of agent research is Section 12.3 (Brooks 1986, 1987,
1991a, 1991b; Nilsson 1994; Benson and Nilsson 1995), there are many other projects in
this domain, including Maes (1989, 1990) model of spreading activation in behavior net-
works, and the extension of the blackboard architecture by Hayes-Roth et al. (1993).The
proceedings of the AAAI, IJCAI, and a-life conferences contain multiple articles from this
important research domain. Crutchfield and Mitchell (1995) supported our presentation of
Section 12.3.3.
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12.5 Exercises


 1. The genetic algorithm is intended to support the search for genetic diversity along with the
survival of important skills (represented by genetic patterns) for a problem domain.
Describe how different genetic operators can simultaneously support both these goals.


 2. Discuss the problem of designing representations for genetic operators to search for
solutions in different domains? What is the role of inductive bias here? 


 3. Consider the CNF-satisfaction problem of Section 12.1.3. How does the role of the
number of disjuncts in the CNF expression bias the solution space? Consider other
possible representations and genetic operators for the CNF-satisfaction problem. Can you
design another fitness measure? 


 4. Build a genetic algorithm in the language to solve the CNF-satisfaction problem. 


 5. Consider the traveling salesperson problem of Section 12.1.3. Discuss the problem of
selecting an appropriate representation for this problem. Design other appropriate genetic
operators and fitness measures for this problem. 


 6. Build a genetic algorithm to search for a solution for the traveling salesperson problem. 


 7. Discuss the role of techniques such as gray coding for shaping the search space of the
genetic algorithm. Describe two other areas where similar techniques may be important. 


 8. Read Holland’s Schema Theorem (Mitchell 1996, Koza 1992). How does Holland’s
schema theory describe the evolution of the GA solution space? What does it have to say
about problems not encoded as bit strings? 


 9. How does the Bucket Brigade Algorithm (Holland 1986) relate to the backpropagation
algorithm (Section 14.3)?


10. Write a program to solve Kepler’s Third Law of Motion Problem, described with a
preliminary representation offered in Section 12.2.2. 


11. Discuss the constraints (presented in Section 12.2.2) on using genetic programming
techniques to solve problems. For example, what components of a solution cannot be
evolved within the genetic programming paradigm? 


12. Read the early discussion of the Game of Life in Gardner’s column of Scientific American
(1970, 1971). Discuss other a-life structures, similar to the glider, of Section 12.3.1.


13. Write an a-life program that implements the functionality of Figures 12.10−12.13.


14. The area of agent-based research was introduced in Section 12.3. We recommend further
reading on any of the projects mentioned, but especially the Brooks, Nilsson and Benson,
or Crutchfield and Mitchell research. Write a short paper on one of these topics.


15. Discuss the role of inductive bias in the representations, search strategies, and operators
used in the models of learning presented in Chapter 12. Is this issue resolvable? That is,
does the genetic model of learning work solely because of its representational assumptions
or can it be translated into broader domains? 


16. For further insights into evolution and complexity, read and discuss Darwin’s Dangerous
Idea (Dennett 1995) or Full House: The Spread of Excellence from Plato to Darwin
(Gould 1996). 
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MACHINE LEARNING:
PROBABILISTIC


Probability theory is nothing but common sense reduced to calculation....


—LAPLACE


The purpose of computing is insight, not numbers...


—RICHARD HAMMING


13.0 Stochastic and Dynamic Models of Learning


As noted in earlier chapters, there are two primary reasons for using probabilistic tools to
understand and predict phenomena in the world: first, events may be genuinely probabilis-
tically related to each other, and second, deterministic causal relationships between situa-
tions in the changing world may be so complex that their interactions are best captured by
stochastic models. The AI community has adopted and deployed probabilistic models for
both of these reasons, and these stochastic technologies have had a very important influ-
ence on the design, power, and flexibility of machine learning algorithms.


Bayes' rule, first presented in Section 5.3, is the basis for probabilistic models of
machine learning. Bayesian approaches support interpretation of new experiences based
on prior learned relationships: understanding present events is a function of learned expec-
tations from prior events. Similarly, Markov models and their variants offer a basis for sto-
chastic approaches to learning. In a Markov chain the probability of an event at any point
in time is a function of the probability with which events occurred at previous time peri-
ods. In a first-order Markov chain, introduced in Section 9.3, the probability of an event at
time t is a function only of the probability of its predecessor at time t - 1.


Chapter 13 has three sections, first Section 13.1 continues the presentation of Markov
models introducing Hidden Markov Models (or HMMs) and several important variants
and extensions. Section 13.2 extends the presentation of Bayesian networks began in
Chapter 9.3, focusing especially on dynamic Bayesian networks (or DBNs) and several


13
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extensions. Section 13.3 continues the presentation of reinforcement learning started in
Section 10.7, with the addition of probabilistic measures for reinforcement.


13.1 Hidden Markov Models (HMMs)


In the early twentieth century the Russian mathematician Andrey Markov proposed a
mathematics for modeling probabilistically related discrete stepped events. As compared
with a deterministic sequence of events, as one might expect when a computer executes a
fixed set of instructions, Markov's formalisms supported the idea that each event can be
probabilistically related to the events that preceded it, as in patterns of phonemes or words
in a spoken sentence. In our attempts to program computers to learn phenomena in a
changing world, Markov's insights have proved exceedingly important.


13.1.1 Introduction to and Definition of Hidden Markov Models


A hidden Markov model (or HMM) is a generalization of the traditional Markov chain (or
process) introduced in Section 9.3. In the Markov chains seen to this point, each state cor-
responded to a discrete physical - and observable - event, such as the weather at a certain
time of day. This class of models is fairly limited and we now generalize it to a wider class
of problems. In this section we extend the Markov model to situations where observations
are themselves probabilistic functions of current hidden states. Thus, the resulting model,
called a hidden Markov model, is a doubly embedded stochastic process. 


An HMM may be described as an observable stochastic process supported by a fur-
ther non-observable, or hidden, stochastic process. An example use for an HMM would be
to support computer based word recognition through the interpretation of noisy acoustic
signals. The phone patterns themselves, that is, the phonemes that the speaker intends to
use as a part of producing particular words of a language, make up the hidden level of the
Markov model. The observations, that is, the noisy acoustic signals that are heard, are a
stochastic function of these intended phonemes. The phonemes that the speaker intended
can be seen only probabilistically through the top level (observable) stream of the noisy
acoustic signals. We define an HMM:


D E F I N I T I O N


HIDDEN MARKOV MODEL


A graphical model is called a hidden Markov model (HMM) if it is a Markov model
whose states are not directly observable but are hidden by a further stochastic system
interpreting their output. More formally, given a set of states S = s1, s2, ..., sn, and
given a set of state transition probabilities A = a11, a12, ..., a1n, a21, a22, ..., ..., ann,
there is a set of observation likelihoods, O = pi(ot), each expressing the probability of
an observation ot (at time t) being generated by a state st.
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We now give two examples of HMMs, adapted from Rabiner (1989). First, consider
the situation of coin flipping. Suppose there is a person in a room flipping coins one at a
time. We have no idea what is going on in the room, there may in fact be multiple coins,
randomly selected for flipping, and each of the coins may have its own biased outcomes,
i.e., they may not be fair coins. All we observe outside the room is a series of outcomes
from flipping, e.g., observable O = H, H, T, H, T, H, ... . Our task is to design a model of
coins flipped inside the room that produces the resulting observable string.


Given this situation, we now attempt to model the resulting set of observations ema-
nating from the room. We begin with a simple model; suppose there is but one coin being
flipped. In this case we only have to determine the bias of the coin as it is flipped over
time producing the set of head/tail observations. This approach results in a directly observ-
able (zero-order) Markov model, which is just a set of Bernoulli trials. This model may, in
fact, be too simple to capture reliably what is going on in the coin flipping problem.


We next consider a two coin model, with two hidden states s1 and s2, as seen in Fig-
ure 13.1. A probabilistic transition matrix, A, controls which state the system is in, i.e.,
which coin is flipped, at any time. Each coin has a different H/T bias, b1 and b2. Suppose
we observed the string of coin flips: O = H, T, T, H, T, H, H, H, T, T, H. This set of obser-
vations could be accounted for by the following path through the state transition diagram
of Figure 13.1: s2, s1, s1, s2, s2, s2, s1, s2, s2, s1, s2.


A third model is presented in Figure 13.2, where three states (three coins) are used to
capture the coin flip output. Again, each coin/state, si, has its own bias, bi, and the state of
the system (which coin is flipped) is a function of some probabilistic event such as the roll
of a die and the transition matrix, A. The three state machine could account for the H/T
output with the state sequence: s3, s1, s2, s3, s3, s1, s1, s2, s3, s1, s3.


The difficult issue for the coin flipping problem is the choice of an optimal model.
The simplest model has one parameter, the bias of a single coin. The two state model has
four parameters, the state transitions and the biases of each coin. The three state model of
Figure 13.2 has nine parameters. With more degrees of freedom, the larger model is more
powerful for capturing a (possibly) more complex situation. However, the complexity
issues of determining the parameters for the larger model can doom the exercise. For
example, the actual observables might be produced by a simpler situation, in which case
the larger model would be incorrect, under specified, and would require much more data


Figure 13.1 A state transition diagram of a hidden Markov model of two
states designed for the coin flipping problem. The aij are
determined by the elements of the 2 x 2 transition matrix, A.


S1 S2


p(H) = b1 p(H) = b2
p(T) = 1 - b1 p(T) = 1 - b2


a11


a12 = 1 - a11


a21 = 1 - a22


a22








546 PART IV / MACHINE LEARNING


to establish any degree of confidence. Similar problems, such as overfitting, also haunt
smaller models. Finally, in each model there is an implicit assumption of stationarity, that
is, that the transition and bias probabilities of the system do not change across time.


For a second example, consider the problem of N urns, each urn containing a collec-
tion of M differently colored balls. The physical process of obtaining observations is,
according to some random process, to pick one of the N urns. Once an urn is selected a
ball is removed and its color is recorded in the output stream. The ball is then replaced and
the random process associated with the current urn selects the next (which might be the
same) urn to continue the process. This process generates an observation sequence con-
sisting of colors of the balls. It is obvious that the simplest HMM corresponding to this
process is the model in which each state corresponds to a specific urn, the values of the
transition matrix for that state produce the next state choice, and finally, a model in which
the ball color probability is defined by the number and color of balls for each state (urn).
However, unless the modeler has some prior information, it would be a very difficult task
indeed to determine all the parameters required to select an optimal HMM.


In the next section we consider several variant forms of HMMs.


13.1.2 Important Variants of Hidden Markov Models


In the previous section, we observed that HMMs are extremely powerful yet simple mod-
els that can represent uncertain domains. The computational simplicity of the HMMs seen
so far follows from the Markovian principle of a first-order system: that the present state
depends only on the previous state. In this section, we explore how we can modify the
basic principles of an HMM to achieve even richer representational capabilities. The regu-
lar HMMs of Section 13.1.1 have limitations in specific domains and we next demonstrate
HMM variants that can address many of these limitations.


A widely used extension to HMMs is called the auto-regressive HMM where a previ-
ous observation can also influence the value of the current observation. This extension is
used to capture more information from the past and factor it into the interpretation of the
present state. In order to model complex processes made up of combinations of sets of
simpler subprocesses factorial HMMs are often used. One extension of HMMs, hierarchi-


Figure 13.2 The state transition diagram for a three state hidden Markov
model of coin flipping. Each coin/state, Si, has its bias, bi.
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cal HMMs or (HHMS), assumes that each state of a system is itself an HMM. We next
consider these and other extensions of HMMs in more detail. 


Auto-regressive HMMs (AR-HMMs)


In hidden Markov models the first-order property hypothesizes that the present state is
only dependent on the immediate previous state and that the observed variables are not
corelated. This can be a limitation, in which the present state does not adequately capture
the information available in previous states. In diagnostic reasoning, for example, this can
lead to inferior generalizations, especially when modeling time-series data. The fact is that
in complex environments the observable values at one time period often do correlate with
subsequent observations. This must be factored into the structure of the HMM. 


We overcome this aspect of limited generalization by allowing the previous observa-
tion to influence the interpretation of the current observation along with the usual HMM
influences of the previous state. This HMM model is called the auto-regressive hidden
Markov model whose emission model is defined by the non-zero probability model:


p(Ot | St  , Ot - 1).


where O is the emit or observation state and S represents the hidden layer, as seen in Fig-
ure 13.3a. The difference between the traditional HMM and the AR-HMM is the existence
of a link (influence) between Ot-1 and Ot.. The motivation for this influence is straightfor-
ward: the observation state at one time period will be an indicator of what the next obser-
vation will likely be. In other words, the observed output values of a time-series analysis
will change according to some underlying distribution.


The AR-HMM often leads to models with a higher likelihood of convergence than
regular HMMs, especially while modeling extremely complex and noisy time-series data.
We demonstrate the AR-HMM with an example adapted from the work of Chakrabarti et
al. (2007). The task is to monitor the running health of a helicopter rotor system. Figure
13.4 represents a sample of the data that is observed from the running system. The data is


a. b.


 Figure 13.3.      a. The hidden, S, and observable, O, states of the AR-HMM where 
                              p(Ot | St , Ot -1).


b. The values of the hidden St of the example AR-HMM: safe, unsafe, 
    and faulty.
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the output of a number of sensors, including information from heat and vibration measures
on multiple components. Figure 13.5 shows the results of processing the data of Figure
13.4 using a fast Fourier transform (FFT), to produce equivalent data on the frequency
domain. These data points are then used to train an AR-HMM. The three states of the hid-
den node, St, in Figure 13.3, are safe, unsafe, and faulty.


The goal of this project was to investigate techniques for fault detection and diagnosis
in mechanical systems. Using a set of time series data from sensors monitoring mechani-
cal processes, the task was to build a quantitative model of the entire process and to train it
on data sets (seeded faults such as a cracked shaft) for later use in the real-time diagnosis
and prediction of future faults. After the AR-HMM was trained it was released to work in
real-time. Although the reported accuracy (Chakrabarti et al. 2006) was just over 75%, it is
important to see how such prognostic tools can be designed.


Factorial HMMs


In our previous discussions on HMMs and their variants, we described systems whose
state space was partially hidden. We could only get clues to the state space through a series
of observations. We tried to infer the sequence of underlying hidden states using informa-
tion from the observed sequence of data emitted by the system. 


But what happens if the underlying process is very complex and cannot be efficiently


Figure 13.4   A selection of the real-time data across multiple time 
periods, with one time slice expanded, for the AR-HMM.


Figure 13.5  The time-series data of Figure 13.4 processed by a fast 
Fourier transform on the frequency domain. This was
the data submitted to the AR-HMM for each time period.
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represented as a simple set of states? What happens if the underlying process is actually a
combination of several sub-processes? Our regular HMM cannot sufficiently capture the
information about processes in these situations. We need a richer model to represent more
complex situations.


Factorial HMMs are a possible solution. Figure 13.6 shows an auto-regressive facto-
rial HMM. We see that the underlying process can be split into n sub-processes, where
each of these n processes influences the current observation, Ot. Also, each sub-process
follows the first-order Markov property, that is, its current state depends only on its previ-
ous state(s). This relation to the observable random variable can be defined by the CPD: 


p(Ot | Ot-1 , S
1


t , S
2


t  , ... , S
i
t)


Hierarchical HMMs (HHMMs)


Hierarchical HMMs are used to model extremely complex systems. In the hierarchical
hidden Markov model (or HHMM) each individual state is considered a self contained
probabilistic model. More precisely, each state of the HHMM can itself be an HHMM.
This implies that states of the HHMM emit sequences of observations rather than just sin-
gle observations as is the case for the standard HMMs and the variants seen to this point.


When a state in an HHMM is reached, it will activate its own probabilistic model, i.e.,
it will activate one of the states of the underlying HHMM, which in turn may activate its
underlying HHMM, and so on, the base case being the traditional HMM. The process is
repeated until a state, called a production state, is activated. Only production states emit
observation symbols in the sense of the usual hidden Markov model. When the production
state has emitted a symbol, control returns to the state that activated the production state.
The states that do not directly emit observation symbols are called internal states. The
activation of a state in an HHMM under an internal state is called a vertical transition.
After a vertical transition is completed a horizontal transition occurs to a state at the same
level. When a horizontal transition leads to a terminating state, control is returned to the


Figure 13.6    An auto regressive factorial HMM, where the observable state Ot,
 at time t is dependent on multiple (St) subprocess, S


i
t, and Ot-1.
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state in the HHMM higher up in the hierarchy, that produced the last vertical transition.
It should be noted that a vertical transition can result in more vertical transitions


before reaching a sequence of production states and finally returning to the top level. Thus
the production states visited give rise to a sequence of observation symbols that are pro-
duced by the state at the top level.


N-Gram HMMs


As noted earlier, in traditional first-order Markov models the current state, given the
immediately previous state, is independent of all earlier states. Although this rule reduces
the computational complexity for using Markov processes, it may be the case that the pre-
vious state alone cannot completely capture important information available in the prob-
lem domain. We explicitly address this situation with the n-gram hidden Markov model
(or N-gram HMM). These models, especially in their bi-gram and tri-gram forms, are
especially important in stochastic approaches to natural language understanding, pre-
sented in more detail in Section 15.4.


With bi-gram Markov models the interpretation of the observable current state
depends only on interpretation of the previous state, as p(Ot | Ot-1); this is equivalent to
the traditional first-order Markov chain. Even though the first-order Markov assumption is
obvious, it is interesting to think about what bi-gram processing means, for example, in
natural language understanding. It hypothesizes that, for word or phoneme recognition,
given a sequence of previous words, the probability of a particular word occurring is best
estimated when we use only the interpretation of the immediately previous word. The bi-
gram is thus hypothesized to give better results than knowledge of no previous word infor-
mation or knowledge of a larger sequence of previous words. For example, given a collec-
tion of language data, p(lamb | little) is a better predictor of the current observed word
being lamb, than either p(lamb | a little), p(lamb | had a little), or p(lamb | Mary had a
little).


Similarly, tri-gram models are Markov models in which the interpretation of the
observable current state depends on the previous two states. The tri-gram model is repre-
sented by P(Ot | Ot-1, Ot-2). Continuing the natural language example, the use of tri-gram
models imply that p(lamb | a little) is a better predictor of the current word being lamb
than p(lamb | little), or of more previous words, including p(lamb | Mary had a little).


We can extend the n-gram Markov model to any length n that we feel captures the
invariances present in the data we are trying to model. An n-gram Markov model is a
Markov chain in which the probability of the current state depends on exactly the n-1 pre-
vious states. 


As we see in more detail in Chapter 15, n-gram models are especially useful for cap-
turing sequences of phones, syllables, or words in speech understanding or other language
recognition tasks. We can set the value of n depending on the desired complexity of the
domain we want to represent. If n is too small, we may have poorer representational
power and miss the ability to capture the predictive power of longer strings. On the other
hand, if the value of n is too large, then the computational cost of validating the model can
be very high or even impossible. The main reason for this is that the prior expectations for
phone or word combinations are taken from large data bases (often combined data bases)
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of collected language phenomena called a corpus. We simply may not have enough data to
validate an n-gram with a very large n. For example, we may have no information at all on
p(lamb | Mary had a little) while we have lots of information of p(lamb | little), p(lamb
| a little), or p(lamb | the). Typically, in speech or text recognition tasks, we use n-grams
with the value of n no higher than 3.


There are a number of other variants of HMMs that we have not described here,
including mixed-memory HMMs that use several low order Markov models to overcome
the complexity issues. A further extension of auto-regressive HMMs, called buried
Markov models, allows for nonlinear dependencies between the observable nodes. Input-
output HMMs are used for mapping sequences of inputs to a sequence of outputs. In situa-
tions where interactions between subprocesses of a complex process are more complicated
than just a composition, a coupled HMM is often used. A hidden semi-Markov model gen-
eralizes an HMM to avoid the geometric decay effect of HMMs by making the probability
of transitions between hidden states depend on the amount of time that has passed since
the last state transition. We refer to Section 13.4 for references.


In the next section, we apply the bi-gram HMM technology to the problem of inter-
preting English phoneme combinations, and use dynamic programming with the Viterbi
algorithm to implement an HMM search.


13.1.3 Using HMMs and Viterbi to Decode Strings of Phonemes


Our final section on hidden Markov models demonstrates an important use of the HMM
technology: identifying patterns in spoken natural language. We will assume the presence
of a large language corpus that supports prior expectations on phone combinations.
Finally, we use dynamic programming algorithms, introduced in Section 4.1, for imple-
menting HMM inference. When dynamic programming is used to find the maximum
probability of an a posteriori string, it is often called the Viterbi algorithm.


The following example of computational analysis of human speech patterns and the
use of the Viterbi algorithm to interpret strings of phonemes is adapted from Jurafsky and
Martin (2008). The input into this probabilistic machine is a string of phones, or basic
speech sounds. These are derived from the decomposition of the acoustic signal produced
through spoken language use. It is unusual in automated speech understanding that acous-
tic signals would be unambiguously captured as a string of phonemes. Rather speech sig-
nals are interpreted as specific phones probabilistically. We assume unambiguous
interpretation of signals to simplify our presentation of the Viterbi algorithm processing of
the HMM.


Figure 13.7 presents a segment of a database of words, related by the closeness of the
sets of phonemes that make up their acoustic components. Although this set of words,
neat, new, need, and knee, is but a small piece of the full English vocabulary, it can be
imagined that a very large number of these related clusters could support a speech under-
standing system. Figure 13.7 is an example of a probabilistic finite state machine, as first
introduced in Section 5.3. We assume our language corpus to be a collection of similar
probabilistic finite state machines that can give prior probability measures of different








552 PART IV / MACHINE LEARNING


possible phone combinations, and how finally, these phones can be seen as parts of words.
The goal of the analysis is to determine which English word from our database of


words best represents the input of an acoustic signal. This requires use of the HMM tech-
nology, because the representation of possible words is itself stochastic. In the non-deter-
ministic finite state machine of Figure 13.7, the string of phones gives us the set of
observations to interpret. Suppose the string of observations is made up of the phones #,
n, iy, #; where # indicates a pause of break between sounds. We use the Viterbi algorithm
to see which path through the probabilistic finite state machine best captures these obser-
vations. In the forward mode Viterbi iteratively finds the next best state and its value, and
then sets a pointer to it. In the backward mode we retrace these pointers to obtain the best
path. Thus, the output of Viterbi is one of the optimal paths of states through the graph
associated with the probability of that path.


Using Viterbi, each state of the search is associated with a value. The value for being
in state si at time t is viterbi[si, t]. The value associated with the next state sj in the state
machine at time t + 1 is viterbi[sj, t + 1]. The value for the next state is computed as the
product of the score of the present state, viterbi[si, t], times the transition probability of
going from the present state to the next state, path[si, sj], times the probability of observa-
tion sj given si, p(sj | si). The transition probability, path[si, sj], is taken from the non-
deterministic finite state machine and p(sj | si) is taken from known observation likeli-
hoods of pairs of phones occurring in the English language.


We next present pseudocode for the Viterbi algorithm. Note its similarity with
dynamic programming, Section 4.1. The array for storing and coordinating values must
support iteration over R rows - equal to the number of phones in the probabilistic finite
state machine (PFSM) plus two, to handle each state plus the start and end states. It must
also iterate over C columns - equal to the number of observations plus two, to handle use
of the empty phone #. The columns also indicate the time sequence for observations and
each state must be linked with the appropriate observed phone, as seen in Figure 13.8.


Figure 13.7 A PFSM representing a set of phonetically related English
words. The probability of each word occurring is below that
word. Adapted from Jurasky and Martin (2008).
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function Viterbi(Observations of length T, Probabilistic FSM)
begin


number := number of states in FSM
create probability matrix viterbi[R = N + 2, C = T + 2];
viterbi[0, 0] := 1.0;
for each time step (observation) t from 0 to T do


for each state si from i = 0 to number do
for each transition from si to s


j in the Probabilistic FSM do
begin


new-count := viterbi[si, t] x path[si, s
j] x p(sj | si);


if ((viterbi[sj, t + 1] = 0) or (new-count > viterbi[sj, t + 1]))
then
      begin
              viterbi[si, t + 1] := new-count
              append back-pointer [sj , t + 1] to back-pointer list
       end;


end;
return viterbi[R, C];
return back-pointer list


end.


Figure 13.8, adapted from Jurafsky and Martin (2008) presents a trace of the Viterbi
algorithm processing a component of the probabilistic finite state machine of Figure 13.7


Figure 13.8 A trace of the Viterbi algorithm on several of the paths of 
Figure 13.7. Rows report the maximum value for Viterbi 
on each word for each input value (top row). Adapted from 
Jurafsky and Martin (2008).
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and the phone sequence #, n, iy, # (the observations of length T = 4). The back trace links
indicate the optimal path through the probabilistic finite state machine. This path indicates
that the most likely interpretation of the string of observed phones is the word new.


In the next section we present another graphical model, a generalization of Markov 
models, called the dynamic Bayesian network (or DBN).


13.2 Dynamic Bayesian Networks and Learning


We often encounter problems in modeling where the underlying process to be character-
ized is best described as a sequence or progression of states. Data collected from sequen-
tial processes are typically indexed by a parameter such as the time stamp of data
acquisition or a position in a string of text. Such sequential dependencies can be both
deterministic and stochastic. Dynamic processes that are inherently stochastic demand
models that are capable of modeling their non-determinism. 


Although most deterministic sequences can be characterized well by finite state
machines (FSMs, Section 3.1), some important sequences can be arbitrarily long. There-
fore, modeling each instance of these sequences as sets of individual states becomes prob-
lematic as the numbers of state transitions grow exponentially with respect to the number
of states at any given instant. Probabilistic modeling of such sequences, therefore, enables
us to keep models tractable, while still capturing sequence information relevant to the
problem at hand. 


In Section 13.2 we describe two different approaches to learning, structure learning
and parameter learning, in the context of graphical models. We briefly describe techniques
for structure learning including the use of Markov chain Monte Carlo (or MCMC) sam-
pling. We also detail a popular meta-algorithm called Expectation Maximization (or EM)
for parameter learning. We show how a recursive dynamic programming algorithm called
the Baum-Welch algorithm adapts the EM meta-algorithm for use with both DBMs and
HMMs.


In Section 13.3 we explain how Markov models can be used for decision support by
introducing the Markov decision process (or MDP) and the partially observed MDP (or
POMDP). We then take reinforcement learning (as originally introduced in Section 10.7)
and supplement it with probabilistic state and feedback models. Finally, we end Chapter
13 using reinforcement learning using an MDP to design a robot navigation system.


13.2.1 Dynamic Bayesian Networks


In Section 9.3 we introduced the Bayesian belief network, a very popular and successfully
applied formalism for probabilistic modeling. However, for modeling dynamic or sequen-
tial processes BBNs are quite inflexible. They do not have the provision to model time
series data including the causal processes or sequential data correlations that are often
encountered in complex tasks, including natural language understanding and real-time
diagnostics. The problem is that the conditional dependencies of a BBN are all assumed to
be active at the same instant. 
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In Section 9.3 we introduced the dynamic Bayesian network (or DBN), although we
deferred detailed discussion to this chapter. Briefly, a dynamic, sometimes called tempo-
ral, Bayesian network is a sequence of identical Bayesian networks whose nodes are
linked in the (directed) dimension of time. dynamic Bayesian networks are a sequence of
directed graphical models of stochastic processes. They are generalizations of popular sto-
chastic tools like hidden Markov models (HMMs) and linear dynamical systems (LDSs)
that represent hidden (and observed) states as state variables, which can have complex
interdependencies across periods of time. The graphical structure provides a way to spec-
ify conditional dependencies, and hence offers a compact parameterization for the model. 


The individual BNs that make up the DBNs are not dynamic in the sense that they
themselves do not change with time, the stationarity assumption, but they still support the
modeling of dynamic processes. Thus DBNs work under the assumption that their defin-
ing parameters are time-invariant. However, as we will see, hidden nodes can be added to
represent current operating conditions, thereby creating mixtures of models to capture
periodic non-invariances in the time dimension. 


At each time period (slice), a DBN is akin to a static BBN that has a set Qt, of Nh ran-
dom variables representing the hidden states and a set Ot of No random variables repre-
senting the states that are observable. Each random variable can either be discrete or
continuous. We have to define a model that represents the conditional probability distribu-
tions between states in a single time slice and a transition model that represents the rela-
tionship between the BBNs for consecutive time slices. Therefore, if Zt = {Qt ∪  Ot} is
the union of both sets of variables, the transition and observation models can be defined as
the product of the conditional probability distributions in a two time period BBN with no
cycles, call it Bt. The notation (1:N) means for all variables 1 through N:


N


p(Zt (1:N) | Zt-1(1:N)) = Π p(Zt(i) | Pa(Zt(i))),
i=1


where Zt(i) is the ith node in time slice t, Pa(Zt(i)) are the parents of Zt(i) and N = Nh +
No. Note that here, for simplicity, we have restricted the definition to first-order Markov
processes where variables at time t are influenced only by their predecessor at time t - 1.
We can represent the unconditional initial state distribution p(Z1(1:N)), as an uncondi-
tional Bayes net B1. B1 and Bt, for all t, define the DBN. We show two time slices of a
simple DBN in Figure 13.9.


As should be obvious, the dynamic Bayesian network is a generalization of the hid-
den Markov models presented in Section 13.1. In Figure 13.9 the Bayesian networks are
linked between times t and t+1. At least one node of the two networks must be linked
across time.


13.2.2 Learning Bayesian Networks


Learning is central to intelligent action. Intelligent agents often record events observed in
the past in the expectation that this information might serve some utility in the future.
Over its lifetime an intelligent agent encounters many events, perhaps many more than it
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has resources for storing. Therefore, it becomes necessary to encode event information
with a concise abstraction rather than with a full documentation of every observation.
Moreover, compaction of information assists quicker retrieval. Learning, therefore, can be
viewed as a combination of data compression, indexing, and storage for efficient recovery. 


Any new observation by an agent may be slightly different from previous observa-
tions, but may still belong to a general class of prior events. In that case it is desirable to
learn this event as an instance of the prior class, ignoring the less important details of the
specific event. A new event might also be very different from all prior events, and then the
agent will need to learn it as a new class or as a specific classless anomaly. An agent needs
to create a sufficient number of classes that fully characterize the parameter space, as well
as be able to successfully handle new anomalous events. Thus, good learning is a balance
of both generality and specificity.


In the context of probabilistic graphical models, we encounter two general learning
problems that fit our previous discussion, structure learning where entire new relation-
ships (graphical models) are learned and parameter learning where components of an
existing model are recalibrated.


Structure Learning and Search 


Structure learning addresses the general problem of determining the existence of statistical
dependencies among variables. For example, the answers to the following questions
would help determine the structure of a probabilistic graphical model of the weather. Are
dark clouds related to the chances of rain? Is there a correlation between the position of
Saturn and the number of hurricanes on any particular day? Is global warming related to
the presence of typhoons? Is weather in the Arctic related to changing boundaries of the
Sahara desert? As is evident, in a probabilistic model, a positive answer to such questions
would warrant a conditional dependency between the variables in question and a negative
answer would permit us to treat these variables as independent.


In designing a probabilistic graphical model, every variable could be dependent on
every other variable, while preserving the constraint that the resulting network is a
directed acyclic graph. In the worst case then, we end up with a fully connected DAG as


Figure 13.9      A DBN example of two time slices. The set Q of random
variables are hidden, the set O observed, t indicates time. 
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the model. However, this is very uncommon in most practical applications of any size,
because the creation of the conditional probability tables becomes intractable. An impor-
tant insight supporting the design of graphical models is that we can very often determine
that several variables exhibit independencies with respect to each other in the context of
the problem being modeled. Since the complexity of inference in Bayesian belief net-
works depends on the number of dependencies between variables in the model, we wish to
have as few dependencies as possible while still preserving the validity of the model. In
other words, we want to prune away as many (unnecessary) dependencies as possible from
the fully connected graph. 


Structure learning can thus be thought of as a problem of the search for the optimal
structure in the space of all possible structures for a given set of variables representing
some application domain. As noted by Chickering et al. (1994), an optimal solution for
this search across existing data sets is NP-hard. The optimal structure describes the data
well while remaining as simple as possible. 


However, this learned structure must describe both previously observed data and also
fit new, possibly relevant, information. Thus, when we create (learn) a complex structure
that characterizes the accumulated data exactly, we may end up with a structure that is too
specific and as a result fails to generalize well on new data. In the optimization literature,
this situation is sometimes called over-fitting.


Although searching the exponential space of possible directed acyclic graph struc-
tures by brute force methods is rather unrealistic for practical applications with many vari-
ables, there are some principles that do help tackle this problem. The first rule of thumb is
Occam's razor, or the principle of parsimony. Among two competing structures that per-
form comparably, the simpler structure should be preferred over the more complex.
Occam's razor would dictate, that in some cases, it might be a good idea to search for pos-
sible structures going from the simple to the complex, terminating search when we find a
structure that is simple enough yet succeeds in being a suitable model for the task at hand.
Using this simplicity heuristic imposes a Bayesian prior on the structure search. 


It is often difficult, however, to define a priori a measure of complexity for a struc-
ture. The choice of a reasonable measure of complexity that imposes a total order on pos-
sible structures is not obvious. There might be classes of structures that are equally
complex, in which case we might be able to impose a partial order on the structure space.
Even among structures of the same class, however, an exhaustive search through all the
possibilities is often impractical. 


As with many difficult problems in AI, structure induction in the general case is sim-
ply not possible for reasonably complex situations. As a result, we apply heuristics in an
attempt to make structure search tractable. Given a working, although unsatisfactory,
model of a situation, one heuristic method is to perform a greedy local search close to the
failed components of the model. Given that the goal is to find only a local optimization
within the graphical structure, this might offer a good enough solution to the modeling
problem. Another heuristic would be to rely on the human expert in the problem domain
for advice to help rethink the structure of the model. Again the human expert might focus
on the breakdown points of the current model. A more general approach to the problem of
model induction is through sampling the space of possible models. We present next a pop-
ular technique for this type sampling, Markov chain Monte Carlo.
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Markov Chain Monte Carlo (MCMC)


Markov chain Monte Carlo (or MCMC) is a class of algorithms for sampling from proba-
bility distributions. MCMC is based on constructing a Markov chain that has the desired
distribution as its equilibrium distribution. The state of the chain after a large number of
steps, sometimes called burn in time, is then used as a sample for the desired distributions
of a possible DAG structure for the application domain. Of course, the quality of the
Markov chain sample improves as a function of the number of samples taken. 


In the context of structure search we assume that the possible structures for a given set
of variables form the state space of a Markov chain. The transition matrix for these states
is populated by some weight based technique. Weights may start as uniform, where a
Monte Carlo random walk among these structures would weigh all structural modifica-
tions equally likely. 


Over time, of course, higher weights are used for transitions between closely related
structures. If structure A is different from structure B in only one link, then a Monte Carlo
walk of this space is a search in the heuristically organized neighborhoods of these struc-
tures. Each structure, when sampled, is associated with a score, typically a maximum a
posteriori (or MAP) based score, the p(structure | data). The Monte Carlo sampling tech-
nique traverses across the structure space, choosing with a higher probability the transi-
tions that improve the likelihood of the data, rather than transitions that make the score
worse. After multiple iterations, the MCMC approach converges on better structures,
improving the posterior distribution of p(structure | data) when compared to its starting
point. Again, there is the problem of discovering local maxima in the sampled space; this
problem can be handled by techniques such as random restart or simulated annealing.


Parameter Learning and Expectation Maximization (EM)


Parametric learning may be contrasted with structure learning across the space of graphi-
cal models. Given an existing model of a problem domain, parameter learning attempts to
infer the optimal joint distribution for a set of variables given a set of observations. Param-
eter learning is often used as a subroutine within a general structure search. When a com-
plete data set exists, parameter learning for a distribution reduces to counting. 


In many interesting applications of graphical models, however, there can be a prob-
lem of having an incomplete set of data for a variable. A further - and related - problem is
the existence of possible hidden or latent variables within the model. In cases like these
the expectation maximization (or EM) algorithm serves as a powerful tool to infer the
likely estimates for joint distributions. The EM algorithm was first explained, and given
its name, in a classic paper by A. Dempster, N. Laird, and D. Rubin (1977). This paper
generalized the methodology and developed the theory behind it.


EM has proven to be one of the most popular methods of learning in statistical and
probabilistic modeling. The EM algorithm is used in statistics for finding maximum likeli-
hood estimates of parameters in probabilistic models, where the model depends on possi-
ble unobserved latent variables. EM is an iterative algorithm which alternates between
performing an expectation (E) step, that computes an expectation of the likelihood of a
variable by including latent variables as if they were observed, and the maximization (M)
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step, which computes the maximum likelihood estimates of the parameters from the
expected likelihood found in the E step. The parameters found on the M step are then used
to begin another E step, and the process is repeated until convergence, that is, until there
remains very little oscillation between the values at the E and M steps. We present an
example of the expectation maximization algorithm in Section 13.2.3.


Expectation Maximization for HMMs (Baum-Welch)


An important tool for parameter learning is Baum-Welch, a variant of the EM algorithm. It
computes maximum likelihood estimates and posterior mode estimates for parameters
(transition and emission probabilities) of an HMM or other temporal graphical model,
when given only the sets of emission (observable) training data. The Baum-Welch algo-
rithm has two steps:


      1. Calculate the forward and the backward probabilities for each temporal state;


2. On the basis of 1, determine the frequency of the transition-emission pair values and
           divide this by the probability of the entire sequence. 


Step 1 of Baum-Welch uses the forward-backward algorithm. This is the algorithm
supporting dynamic programming, as we first saw in Section 4.1 and have seen several
times since, including in Section 13.1.3, when it was used to interpret strings of phones.


Step 2 of the Baum-Welch algorithm is used to compute the probability of a particular
output sequence, given the parameters of the model, in the context of hidden Markov or
other temporal models. Step 2 amounts to calculating the expected count of the particular
transition-emission pair. Each time a transition is found, the value of the ratio of the transi-
tion over the probability of the entire sequence increases and this value can then be made
the new value of the transition.


A brute force procedure for solving the problem of HMM parameter learning is the
generation of all possible sequences of observed events and hidden states with their prob-
abilities using two transition matrices. The joint probability of two sequences, given the
model, is calculated by multiplying the corresponding probabilities in the matrices. This


procedure has a time complexity of O(2TNT), where T is the length of the sequences of
observed events and N the total number of symbols in the state alphabet. This time com-
plexity cost is intractable for realistic problems, thus the method of choice for implement-
ing Baum-Welch utilizes dynamic programming.


We next demonstrate a simple example of parameter learning using loopy belief prop-
agation (Pearl 1988) with the expectation maximization algorithm (Dempster et al. 1977).


13.2.3 Expectation Maximization: An Example


We illustrate expectation maximization (EM) with an example and use Pearl's (1988)
loopy belief propagation algorithm to show the inference steps. This example has been
implemented in, and the Markov random field representation is taken from loopy logic
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(Pless et al. 2006), a first-order stochastic modeling language discussed briefly in Section
9.3. Although simpler methods are available for solving the constraints of the burglar
alarm example we present, our goal is to demonstrate an important inference scheme for
BBNs, loopy belief propagation, and the EM algorithm, in an understandable setting.


Consider the Bayesian belief network of Figure 13.10, a BBN with 3 nodes, alarm A,
burglary B, and earthquake Q. This model describes a burglar alarm system At, active at
an observation time t, causally dependent on there being a possible burglary Bt, or an
earthquake Qt. This model, with some assumed probability measures, can be described in
loopy logic by the program: 


At | Bt , Qt = [[[.999,.001],[.7,.3]],[[.8,.2],[.1,.9]]]


We have simplified the actual loopy logic syntax to make the presentation clearer.
In this program we assume that all of the variables are boolean. We also assume that


the BBN from Figure 13.10 contains the conditional probability distribution (CPD) speci-
fied above. For example, the table specifies that the probability for the alarm not to go off,
given that there is a burglary and an earthquake, is .001; the probability for the alarm to go
off, given neither a burglary nor that an earthquake occurred, is .1. 


Note also that this program specifies a general class of BBNs, or rather a BBN for
every time t. This is somewhat similar to the representational approach taken by Kersting
and DeRaedt (2000). However, loopy logic (Pless et al. 2006) extends the approach taken
by Kersting and DeRaedt in several ways. For instance, loopy logic converts probabilistic
logic sentences, like the one above, into a Markov random field to apply the inference
algorithm, loopy belief propagation (Pearl 1988).


A Markov random field, or Markov network, is a probabilistic graphical model (see
Section 9.3) whose structure is an undirected graph (as compared to the directed graphical
models of Bayesian belief networks). The nodes of the structure graph of the Markov ran-
dom field correspond to random variables and the links between the nodes correspond to
the dependencies between the connected random variables. In loopy logic the Markov ran-
dom field is used as an intermediate and equivalent representation for the original graphi-
cal model (just as the clique tree was used in Section 9.3), The Markov random field
supports probabilistic inference, in our case loopy belief propagation (Pearl 1988).


The quantitative components of the Markov random field are specified by a set of
potential functions, whose domain is a clique of the graph structure of the Markov random


Figure 13.10    A Bayesian belief net for the burglar alarm, earthquake, 
burglary example.
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field, and that define a correspondence between the set of all possible joint assignments to
the variables from the clique and the set of nonnegative real numbers.


In the loopy logic system, a special version of a Markov random field is used. A
potential function is assigned to each dependency between random variables. Conse-
quently, the Markov random field can be represented by a bipartite graph with two types
of nodes, variable nodes and cluster nodes. Variable nodes correspond to random vari-
ables, while cluster nodes correspond to potential functions on random variables specified
by the neighbors of the cluster node. Figure 13.11 illustrates the bipartite Markov random
field that captures the potential functions of the BBN of Figure 13.10.


In loopy logic we can specify facts about the model and ask queries; for instance, we
can state:


B1 = t.
Q1 = f.
A1 = ?


An interpretation of these three statements is that we know that at time 1 there was a bur-
glary, that there was no earthquake, and that we would like to know the probability of the
alarm going off. Using these three statements along with At | Bt , Qt = [[[.999,.001], [.7,.3]],
[[.8,.2], [.1,.9]]], the loopy logic system constructs the Markov random field with the facts
and potential functions incorporated as in Figure 13.11.


Note that in Figure 13.11 the facts from the program are incorporated into the Markov
random field as leaf cluster nodes and the conditional probability distribution (CPD) table
is encoded in the cluster node connecting the three variable nodes. In order to infer the
answer for this query, the system applies the loopy belief propagation algorithm to the
Markov random field. Since we specified simple deterministic facts, and the original
graphical model has no loops, the inference algorithm is exact (Pearl 1988) and converges
in one iteration returning the distribution for alarm, [0.8,0.2]. 


Figure 13.11       A Markov random field reflecting the potential functions of the 
 random variables in the BBN of Figure 13.10, together with the
two observations about the system.
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In addition, loopy logic supports learning by allowing its users to assign learnable dis-
tributions to selected rules of a loopy logic program. These parameters can be estimated
using a message passing algorithm derived from expectation maximization (Dempster et
al. 1977). To demonstrate this, we next assume that we do not have knowledge of the con-
ditional probability distribution of the BBN of Figure 13.10. In loopy logic, to obtain val-
ues for this distribution, the user sets the CPD to be a learnable distribution at an arbitrary
time t. To denote this we use the variable L in the program:


At | Bt, Qt = L


We can now present a collected set of observations to the loopy logic interpreter over
a set of time periods using the fact representation, below. For simplicity, we collect only
three data points at each of three time intervals:


Q1 = f
B1 = t
A1 = t
Q2 = t
B2 = f
A2 = t
Q3 = f
B3 = f
A3 = f


Loopy logic uses a combination of the loopy belief propagation inference scheme
coupled with expectation maximization to estimate the learnable parameters of a model.
To accomplish this, the interpreter constructs the Markov random field for the model, as
before. For the alarm BBN shown in Figure 13.10, its corresponding Markov random
field, with the learnable parameter L linked to each cluster node whose rule unifies with
the learnable rule presented earlier (At | Bt, Qt = L), is presented in Figure 13.12. 


We next populate the known distributions of the BBN, and make a random initializa-
tion to the cluster nodes R1, R2, and R3 as well as to the learnable node L. Finally, this
system is presented with the data representing the three time periods, where known facts
are incorporated into the leaf cluster nodes as before. Figure 13.12 shows the result.


The expectation maximization algorithm is an iterative process implemented through
message passing. After each iteration the current approximation of the conditional proba-
bility table is the learnable node's message to each of its linked cluster nodes. When the
learnable node is updated, each neighboring cluster node sends a message to L (dash-dot
arrows labeled M in Figure 13.12). This message is the product of all messages coming
into that cluster node from the neighboring variable nodes. These (unnormalized) tables
are an estimate of the joint probability at each cluster node. This is a distribution over all
states of the conditioned and conditioning variables. The learnable node takes the sum of
all these cluster messages and converts them to a normalized conditional probability table.


By doing inference (loopy belief propagation) on the cluster and variable nodes, we
compute the message for the learnable nodes. Reflecting the bipartite structure of the
underlying Markov random field, loopy belief propagation is done with two stages of
message passing: sending messages from all cluster nodes to their neighboring variable
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nodes, the solid arrows labeled E.1 in Figure 13.12, and then back again, the dashed
arrows labeled E.2 in Figure 13.12. 


Applying this belief propagation algorithm until convergence yields an approxima-
tion of the expected values. This is equivalent to the expectation step in the EM algorithm.
The averaging that takes place over all learnable cluster nodes corresponds to the maximi-
zation step returning a maximum likelihood estimate of the parameters in a learnable
node. Iteration that supports convergence in the variable and cluster nodes followed by
updating the learnable nodes and then continuing to iterate is equivalent to the full EM
algorithm.


To summarize the algorithm, and as displayed in Figure 13.12:


In the expectation or E step:
1. All cluster nodes send their messages to the variable nodes.
2. All variable nodes send their messages back to the cluster nodes updating the 
    information of the cluster nodes.


In the maximization or M step:
1. The cluster nodes send messages, updated in the E step. to learnable nodes 
    where they are averaged.


In the algorithm just described, the nodes can be changed in any order, and updates of
cluster and variable nodes may be overlapped with the updates of learning nodes. This


Figure 13.12.      A learnable node L is added to the Markov random field of Figure 
13.11. The Markov random field iterates across three time periods.
For simplicity, the EM iteration is only indicated at time 1.
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iterative update process represents a family of EM style algorithms, some of which may
be more efficient than standard EM (Pless et al. 2006, Dempster et al., 1977) for certain
domains. An algorithmic extension that this framework also supports is the generalized
belief propagation algorithm proposed by Yedidia et al.(2000).


13.3 Stochastic Extensions to Reinforcement Learning 


In Section 10.7 we first introduced reinforcement learning, where with reward reinforce-
ment, an agent learns to take different sets of actions in an environment. The goal of the
agent is to maximize its long-term reward. Generally speaking, the agent wants to learn a
policy, or a mapping between reward states of the world and its own actions in the world. 


To illustrate the concepts of reinforcement learning, we consider the example of a
recycling robot (adapted from Sutton and Barto 1998). Consider a mobile robot whose job
is to collect empty soda cans from business offices. The robot has a rechargeable battery. It
is equipped with sensors to find cans as well as with an arm to collect them. We assume
that the robot has a control system for interpreting sensory information, for navigating,
and for moving its arm to collect the cans. The robot uses reinforcement learning, based
on the current charge level of its battery, to search for cans. The agent must make one of
three decisions:


1. The robot can actively search for a soda can during a certain time interval;


2. The robot can pause and wait for someone to bring it a can; or


3. The robot can return to the home base to recharge its batteries.


The robot makes decisions either in some fixed time period, or when an empty can is
found, or when some other event occurs. Consequently, the robot has three actions while
its state is being determined by the charge level of the battery. The reward is set to zero
most of the time, it becomes positive once a can is collected, and the reward is negative if
the the battery runs out of energy. Note that in this example the reinforcement-based learn-
ing agent is a part of the robot that monitors both the physical state of the robot as well as
the situation (state) of its external environment: the robot-agent monitors both the state of
the robot as well as its external environment.


There is a major limitation of the traditional reinforcement learning framework that
we have just described: it is deterministic in nature. In order to overcome this limitation
and to be able to use reinforcement learning in a wider range of complex tasks, we extend
the deterministic framework with a stochastic component. In the following sections we
consider two examples of stochastic reinforcement learning: the Markov decision process
and the partially observable Markov decision process.


13.3.1 The Markov Decision Process (or MDP)


The examples of reinforcement learning presented thus far, both in Section 10.7 and in the
introduction of Section 13.3, have been deterministic in nature. In effect, when the agent








CHAPTER 13 / MACHINE LEARNING: PROBABILISTIC 565


executes an action from a specific state at time t, it always results in a deterministically
specified new state at time t +1: the system is completely deterministic. 


However, in many actual reinforcement learning applications, this might not be the
situation: the agent does not have complete knowledge or control over the next state of the
world. Specifically, taking an action from state st might lead to more than one possible
resulting state at time t+1. For example, in the game of chess, when we make a certain
move, we often do not know what move our opponent will take. We do not have complete
knowledge of what state the world will be in as a result of taking our move. In fact, this
uncertainty is true for many multi-person games. A second example is playing the lottery
or other games of chance. We select a move uncertain of the likely reward. A third exam-
ple is in single agent decision making (not a contest against one or more other agents)
when the world is so complex that a deterministic response to the choice of a state is not
computable. Again, in this situation a response based on probabilities might be the best we
can justify. In all these situations, we need a more powerful framework for setting up the
reinforcement learning problem. One such framework is the Markov decision process (or
MDP).


MDPs are based on the first-order Markov property, which states that a transition to a
next state is represented by a probability distribution that depends only on the current state
and possible actions. It is independent of all states prior to the current state. MDPs are dis-
crete-time stochastic processes consisting of a set of states, a set of actions that can be exe-
cuted from each state, and a reward function associated with each state. As a consequence,
MDPs provide a very powerful framework that can be used to model a wide class of rein-
forcement learning situations. We next define the MDP:


D E F I N I T I O N


A MARKOV DECISION PROCESS, or MDP


A Markov Decision Process is a tuple <S, A, P, R> where:
S is a set of states, and
A is a set of actions.
pa(st , st+1) = p(st+1  | st , at = a) is the probability that if the agent executes 


action a ∈ A from state st at time t, it results in state st+1 at time t+1. Since
the probability, pa ∈ P is defined over the entire state-space of actions, it is
often represented with a transition matrix.


R(s) is the reward received by the agent when in state s.


We should observe that the only difference between the MDP framework for rein-
forcement learning and the reinforcement learning presentation of Section 10.7 is that the
transition function is now replaced by a probability distribution function. This is an impor-
tant modification in our theory enabling us to capture uncertainty in the world, when the
world is either non-computably complex or is in fact stochastic. In such cases the reward
response to an agent’s action is best represented as a probability distribution.
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13.3.2 The Partially Observable Markov Decision Process (POMDP)


We observed that MDPs can be used to model a game like chess, in which the next state of
the world can be outside an agent's deterministic control. When we make a move in chess
the resulting state of the game depends on our opponent's move. Thus, we are aware of the
current state we are in, we are aware of which action (move) we are taking, but the result-
ant state is not immediately accessible to us. We only have a probability distribution over
the set of possible states that we are likely to be in, depending on our opponent's move.


Let's now consider the game of poker. Here, we are not even certain of our current
state! We know the cards we hold, but we do not have perfect knowledge of our oppo-
nent’s cards. We can only guess, perhaps with knowledge from bidding, which cards our
opponent has. The world is even more uncertain than the world of MDPs. Not only do we
not know which state we are in, but we must also execute an action based on our guess of
the actual state of the world. As a result, our guess of the action-induced new state of the
world will be even more uncertain. Hence, we need a richer framework than the MDP to
model this doubly uncertain situation. One framework for accomplishing this task is the
partially observable Markov decision process (or POMDP). It is called a POMDP because
we can only partially observe the state we are in as well as what our opponent's response
will be. Instead of perfect knowledge of our current state, we only have a probability dis-
tribution over the possible set of states we could possibly be in. We define the POMDP:


D E F I N I T I O N


A PARTIALLY OBSERVABLE MARKOV DECISION PROCESS, or POMDP


A Partially Observable Markov Decision Process is a tuple <S, A, O, P, R> where:
S is a set of states, and
A is a set of actions.
O is the set of observations denoting what the agent can see about its world.


Since the agent cannot directly observe its current state, the observations are
probabilistically related to the underlying actual state of the world.


pa(st, o, st+1) = p(st+1 , ot = o | st , at = a) is the probability that when the agent 
executes action a from state st at time t, it results in an observation o that
leads to an underlying state st +1 at time t+1.


R(st, a, st+1) is the reward received by the agent when it executes action a in 
state st and transitions to state st+1.


To summarize, the MDP can be considered to be a special case of the POMDP, when
the observation o gives us an accurate indication of the current state s. An analogy can be
helpful in understanding this distinction: the MDP is related to the Markov chain as the
POMDP is related to the hidden Markov model.


There are several algorithms for building MDPs and POMDPs. The complexity of
these algorithms is obviously greater than that encountered in the purely deterministic
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cases presented earlier. In fact the algorithms for solving POMDPs are computationally
intractable. That is, it can be impossible to find an optimal solution for a problem using a
POMDP in polynomial time, and a solution may indeed be uncomputable. As a result, we
address these problems with algorithms that approximate an optimal solution. References
for solution algorithms for MDPs and POMDPs include Sutton and Barto (1998) and
Puterman (1998). We next present an example implementation of an MDP.


13.3.3 An Example Implementation of the Markov Decision Process


To illustrate a simple MDP, we take up again the example of the recycling robot (adapted
from Sutton and Barto 1998) introduced at the beginning of Section 13.3. Recall that each
time this reinforcement learning agent encounters an external event it makes a decision to
either actively search for a soda can for recycling, we call this search, wait for someone
to bring it a can, we call this wait, or return to the home base to recharge its battery,
recharge. These decisions are made by the robot based only on the state of the energy
level of the battery. For simplicity, two battery levels are distinguished, low and high: the
state space of S = {low, high}. If the current state of the battery is high, the battery is
charged, otherwise it’s state is low. Therefore the action sets of the agent are A(low) =
{search, wait, recharge} and A(high) = {search, wait}. If A(high) included recharge,
we would expect the agent to learn that a policy using that action would be suboptimal!


The state of the battery is determined independent of actions taken. If it is high, then
we expect that the robot will be able to complete a period of active search without the risk
of running down the battery. Thus, if the state is high, then the agent stays in that state
with probability a and changes its state to low with probability 1- a. If the agent decides to
perform an active search while being in state low, the energy level of the battery remains
the same with probability b and the battery runs out of energy with probability 1- b.


We next create a reward system: once the battery is run down, S = low, the robot is
rescued, its battery is recharged to high, and it gets a reward of -3. Each time the robot
finds a soda can, it receives a reward of 1. We denote the expected amount of cans the
robot will collect (the expected reward the agent will receive) while actively searching and
while it is waiting by R_search and R_wait, and assume that R_search > R_wait. We
also assume that the robot cannot collect any soda cans while returning for recharging and
that it cannot collect any cans during a step in which the battery is low. The system just
described may be represented by a finite MDP whose transition probabilities (pa(st, st+1))
and expected rewards are given in Table 13.1.


To represent the dynamics of this finite MDP we can use a graph, such as Figure
13.13, the transition graph of the MDP for the recycling robot. A transition graph has two
types of nodes: state nodes and action nodes. Each state of the agent is represented by a
state node depicted as a large circle with the state's name, s, inside. Each state-action pair
is represented by an action node connected to the state node denoted as a small black cir-
cle. If the agent starts in state s and takes action a, it moves along the line from state node
s to action node (st , a). Consequently, the environment responds with a transition to the
next state's node via one of the arrows leaving action node (st, a), where each arrow corre-
sponds to a triple (st, a, st+1), where st+1 is the next state. The arrow is labeled with the
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transition probability, pa(st , st+1), and the expected reward for the transition, Ra(st ,
st+1), is represented by the arrow. Note that the transition probabilities associated with the
arrows leaving an action node always sum to 1.


We see several of the stochastic learning techniques described in this chapter again in
Chapter 15, Understanding Natural Language.


13.4 Epilogue and References


This chapter presented machine learning algorithms from the dynamic and stochastic per-
spective. The heart of probabilistic machine learning is Bayes' and Markov's algorithms.
Both these tools have been simplified (the Bayesian belief net and first-order Markov
chains) to make stochastic approaches to machine learning both powerful and tractable.


st st+1 at  pa(st,st+1) Ra(st,st+1)


high           high            search           a                     R_search
high           low              search          1 - a                R_search
low            high             search          1 - b               -3
low            low              search           b                     R_search
high           high             wait              1                     R_wait
high           low              wait               0                     R_wait
low            high             wait               0                     R_wait
low            low    wait               1                     R_wait
low            high             recharge       1                     0
low            low     recharge       0                     0


         rewards possible from the current state at.
         nations of the current state, st, next state, st+1, the actions and


Table 13.1.   Transition probabilities and expected rewards for the finite MDP of 
the recycling robot example. The table contains all possible combi-


Figure 13.13.  The transition graph for the recycling robot. The state nodes are
the large circles and the action nodes are the small black states.
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Bayes' theorem was first presented in Section 5.3 and the Bayesian belief network in Sec-
tion 9.3. Markov chains as well as the first-order Markov assumption was presented in
Section 9.3. Their uses and extensions make up the material of Chapter 13.


There are a number of introductory texts and tutorials in stochastic approaches to
modeling and learning. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference by J. Pearl (1988), is an early seminal presentation that clearly focused the
field of graphical models. We also recommend Bayesian Networks and Decision Graphs
by F.V. Jensen (1996), Probabilistic Networks and Expert Systems by R.G. Cowell et al.
(1999), Graphical Models by S. Lauritzen (1996), An Introduction to Bayesian Networks
by F. Jensen (2001), and Learning in Graphical Models by M.I. Jordan (1998). 


Several further authors present probabilistic learning from a more statistical view-
point, including J. Whittaker (1990), Graphical Models in Applied Multivariate Statistics
and D. Edwards (2000), Introduction to Graphical Modeling. An engineering/communica-
tion perspective is taken by B. Frey (1998), Graphical Models for Machine Learning and
Digital Communication.


J. Pearl's (2000) Causality is an important contribution to the philosophy supporting
graphical models. Along with attempting to clarify the notion of causality itself, he delin-
eates its importance and utility within the design of probabilistic models. 


Tutorial introductions to graphical models include E. Charniak (1991) Bayesian Net-
works without Tears, and P. Smyth (1997) Belief Networks, Hidden Markov Models, and
Markov Random Fields: A Unifying View. Excellent on-line tutorial introductions to the
field include K. Murphy's A Brief Introduction to Graphical Models and Bayesian Net-
works [www.cs.ubc.ca/~murphyk/Bayes/bnintro.html#appl] as well as Murphy's A Brief
Introduction to Bayes' Rule at [www.cs.ubc.ca/~murphyk/Bayes/bayesrule.html]. A more
complete listing of tutorials can be found at [www.cs.engr.uky.edu/~dekhtyar/dblab/
resources.html#bnets].


The EM algorithm was explained and given its name in a classic 1977 paper by A.
Dempster, N. Laird, and D. Rubin. They pointed out that method had been “proposed
many times in special circumstances” by other authors, but their 1977 paper generalized
the method and developed the theory behind it.


Inference in Markov and dynamic Bayesian networks comes in two forms, exact,
where results can be computationally expensive but are demonstrably correct, and approx-
imate, where their cost is less but the results are approximate, and can be local maxima.
For exact reasoning see S.M Aji and R. McEliece (2000) The Generalized Distributive
Law and F. Kschischang et al. (2000) Factor Graphs and the Sum Product Algorithm. For
approximate algorithms see M.I. Jordan et al. (1999) An Introduction to Variational Meth-
ods for Graphical Models, T. Jaakkola and M.I. Jordan (1998) Variational Probabilistic
Inference and the QMR-DT Database, and J. Yedidia et al. (2000) Generalized Belief
Propagation. Loopy belief propagation, an approximation algorithm for graphical models
is described in J. Pearl (1988) Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.


In recent years the creation of various forms of first-order stochastic reasoning lan-
guages has offered an important research area. We suggest D. Koller and A. Pfeffer (1998)
Probabilistic Frame-Based Systems, N. Friedman et al. (1999) Learning Probabilistic
Relational Models, K. Kersting and L. DeRaedt (2000) Bayesian Logic Programs, R. Ng




www.cs.ubc.ca/~murphyk/Bayes/bnintro.html#appl



www.cs.ubc.ca/~murphyk/Bayes/bayesrule.html



www.cs.engr.uky.edu/~dekhtyar/dblab/resources.html#bnets



www.cs.engr.uky.edu/~dekhtyar/dblab/resources.html#bnets
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and V. Subrahmanian (1992) Probabilistic Logic Programming, and Pless et al. (2006) The
Design and Testing of a First-Order Stochastic Modeling Language.


Important contributors to reinforcement learning include R.S. Sutton (1988) Learning
to Predict by the method of Temporal Differences, R.S. Sutton and A.G. Barto (1998)
Reinforcement Learning: An Introduction, and M. L. Puterman (1994) Markov Decision
Processes.


The author wishes to thank several of his present and recent graduate students, espe-
cially Dan Pless, the creator of the first-order stochastic inference language loopy logic
(Pless et al. 2006), Chayan Chakrabarti (Chakrabarti et al. 2006), Roshan Rammohan, and
Nikita Sakhanenko (Sakhanenko et al. 2007) for many of the ideas, figures, examples, and
exercises of Chapter 13.


13.5 Exercises


1. Create a hidden Markov model to represent the scoring sequence of an American football
game where touchdowns are 6 points which can be followed by either a 0, 1, or 2 extra
point attempt. Of course, there are two teams and either can score. If a team has the ball
and does not score they emit a 0. So suppose the emit stream of scores is
6,1,6,0,3,0,6,1,0,3,0; what would your HMM look like? 


a. Discuss this problem and what the best HMM might look like.


b. Test your HMM on two more made up streams of scores. 


c. Track an actual game and see how well your system predicts the scoring stream. 


2. Create a hidden Markov model to predict the half inning score sequence of an American
baseball game. Suppose the half inning sequence is 0, 0, 0, 1, 0, 1, 1, 2, 2, 0, 0, 0, 0, 2, 0, 0,
0, 0. For simplicity, constrain the scoring for each team to 0, 1, or 2 runs during their half
inning at bat.


a. How would you change the model to allow any number of runs per half inning?


b. How might you train your system to obtain more realistic score values? 


3.    Create a figure to represent the hierarchical hidden Markov model of Section 13.1.2. What
type problem situation might your HHMM be appropriate for? Discuss the issue of fitting
the structures of HMMs to application domains.


4. Given the example of the Viterbi algorithm processing the probabilistic finite state
machine of Figure 13.7 and 13.8:


a. Why is new seen as a better interpretation than knee for the observed phones?


b. How are alternative states in the probabilistic finite state machine handled by the Vit-
erbi algorithm, for example, the choice of the phones uw and iy in the word new?


5. Given the hidden Markov model and Viterbi algorithm of Section 9.3.6, perform a full
trace, including setting up the appropriate back pointers, that shows how the observation
#, n, iy, t, # would be processed.
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6. Hand run the robot described in the Markov decision process example of Section 13.3.3.
Use the same reward mechanism and select probabilistic values for a and b for the deci-
sion processing.


a. Run the robot again with different values for a and b. What policies give the robot
the best chances for reward?


7. Program the MDP supported robot of Section 13.3.3 in the language of your choice.
Experiment with different values of a and b that can optimize the reward. There are sev-
eral interesting possible policies: If recharge is a policy of A(high), would your robot
learn that this policy is suboptimal? Under what circumstances would the robot always
search for empty cans, i.e., the policy for A(low) = recharge is suboptimal?


8.    Jack has a car dealership and is looking for a way to maximize his profits. Every week,
Jack orders a stock of cars, at the cost of d dollars per car. These cars get delivered
instantly. The new cars get added to his inventory. Then during the week, he sells some
random number of cars, k, at a price of c each. Jack also incurs a cost u for every unsold
car that he has to keep in inventory. Formulate this problem as a Markov decision process.
What are the states and actions? What are the rewards? What are the transition probabili-
ties? Describe the long-term return.


      9.    Consider the general domain of grid-world navigation tasks, where there is a goal state,
obstacles, and a discount factor γ < 1. The actions are stochastic, so the agent may slip into
a different cell when trying to move. There are five possible actions: go north, south,
east, west, or stay in the same location. Consider the situation in which negative costs
are incurred when bumping into walls. Can you draw a 3x3 example environment in
which the best action in at least one state is to stay? If so, specify the actions, rewards and
transition probabilities. If not, explain why. 


10.    When we go out to dinner, we always like to park as close as possible to the restaurant.
Assume the restaurant is situated on a very long street running east to west, which allows
parking on one side only. The street is divided into one-car-length sections. We approach
the restaurant from the east, starting D units away. The probability that a parking spot at
distance s from the restaurant is unoccupied is ps, independent of all other spots. Formu-
late this problem as a Markov decision process. Be sure to specify all the elements of your
MDP! (Adapted from Puterman, 1994). 


11. How would you change the MDP representation of Section 13.3 to a POMDP? Take the
simple robot problem and its Markov transition matrix created in Section 13.3.3 and
change it into a POMDP. Hint: think of using a probability matrix for the partially observ-
able states.


12. We discussed the card game Poker briefly in Section 13.3. Given that the present (probabi-
listic) state of a player is either good bet, questionable bet, or bad bet, work out a
POMDP to represent this situation. You might discuss this using the probabilities that cer-
tain possible poker hands can be dealt. 


13. Work out the complexity cost for finding an optimal policy for the POMDP problem
exhaustively.
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P A R T V


ADVANCED TOPICS FOR
AI PROBLEM SOLVING


Precision is not truth. . . 


—HENRI MATISSE


Time present and time past
are both perhaps present in time future
and time future is contained in time past. . .


—T. S. ELIOT, “Burnt Norton”


. . .each larger pattern comes into being as the end product of a long sequence of tiny acts.


—CHRISTOPHER ALEXANDER


Automated Reasoning and Natural Language 


Part V examines two important artificial intelligence applications: natural language under-
standing and automated reasoning. If we are ever to make claims of creating an artificial
intelligence, we must address language, reasoning, and learning. Our solutions to these
problems build on the tools and techniques introduced in the earlier sections of this book.
Also, because of their importance, these problems have exerted a profound influence on
the development of those tools and the overall direction of AI itself.


In the introduction to Part III we discussed the pluses and minuses of weak method
problem solvers. The problems of using weak methods include the complexity of search
spaces and the difficulties of representing specific knowledge of the world with general
representations. In spite of the successes of expert systems and similar strong method
solvers, many domains require general methods; in fact, the control strategies of expert
systems themselves depend on good weak problem-solving methods. Much promising
work on weak method problem solvers continues to be done by the automated reasoning
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or theorem proving community. These techniques have found application in a number of
important areas including integrated circuit design and verification, proofs of program
correctness, and indirectly, the creation of the Prolog programming language. In Chapter
14 we address issues surrounding automated reasoning.


There are many reasons why natural language understanding has proven a difficult
task for the AI community. Among the most important are the amounts of knowledge,
ability, and experience required to support language use. Successful language comprehen-
sion requires an understanding of the natural world, human psychology, and social con-
vention. It draws on skills as varied as logical reasoning and metaphor interpretation.
Because of the complexity and ambiguity of human language, natural language under-
standing has motivated much of the research in knowledge representation. To date, these
efforts have been only partly successful: using a knowledge-based approach, researchers
have successfully developed programs that understand natural language in specific
domains. Whether these techniques will eventually solve the language understanding
problem itself continues to be a subject of debate.


The representational techniques presented in Chapter 7, such as semantic networks,
scripts, and frames have dominated early AI work in natural language. More recently, the
correlational analysis of language patterns has played a role in language understanding.
Language utterances are not random creations of sounds or words, but happen in patterns.
Bayesian techniques can model these language constructs. The probabilistic machine
learning chapter (13) offers several models, including bi-grams and tri-grams, important
for understanding language phoneme and word combinations. In Chapter 15 we examine
knowledge-based, syntactic, semantic, and stochastic techniques for natural language
understanding.


With the advent of the World Wide Web and the extensive use of search engines by
the general population, issues in natural language processing are even more important.
Text mining, or the general search for useful information in unstructured text and informa-
tion summarization, or the ability to “understand” text and extract its critical issues are
important new technologies. The foundations for these software tools, symbol-based and
stochastic pattern recognition, are presented in Chapter 15.


Finally, we build many of the data structures supporting natural language understand-
ing in the auxiliary materials for this book, including semantic net and frame systems in
Prolog, Lisp, and Java. We also create a recursive descent semantic net parser as well as a
parser based on the Earley algorithm and dynamic programming in Prolog and Java. We
discuss some of our current limitations in understanding language, learning, and complex
problem solving in the Epilog and Chapter 16.
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AUTOMATED
REASONING


For how is it possible, says that acute man, that when a concept is given me, I can go 
beyond it and connect with it another which is not contained in it, in such a manner as if 
the latter necessarily belonged to the former? 


—IMMANUEL KANT, “Prolegomena to a Future Metaphysics”


Any rational decision may be viewed as a conclusion reached from certain premises. . . . 
The behavior of a rational person can be controlled, therefore, if the value and factual 
premises upon which he bases his decisions are specified for him. 


—SIMON, Decision-Making and Administrative Organization, 1944 


Reasoning is an art and not a science. . . . 


—WOS ET AL., Automated Reasoning, 1984


14.0 Introduction to Weak Methods 
in Theorem Proving


Wos et al. (1984) describe an automated reasoning program as one that “employs an
unambiguous and exacting notation for representing information, precise inference rules
for drawing conclusions, and carefully delineated strategies to control those inference
rules.” They add that applying strategies to inference rules to deduce new information is
an art: “A good choice for representation includes a notation that increases the chance for
solving a problem and includes information that, though not necessary, is helpful. A good
choice of inference rules is one that meshes well with the chosen representation. A good
choice for strategies is one that controls the inference rules in a manner that sharply
increases the effectiveness of the reasoning program.” 


14
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Automated reasoning, as just described, uses weak problem-solving methods. It uses
a uniform representation such as the first-order predicate calculus (Chapter 2), the Horn
clause calculus (Section 14.3), or the clause form used for resolution (Section 14.2). Its
inference rules are sound and, whenever possible, complete. It uses general strategies such
as breadth-first, depth-first, or best-first search and, as we see in this chapter, heuristics
such as set of support and unit preference to combat the combinatorics of exhaustive
search. The design of search strategies, and especially heuristic search strategies, is very
much an art; we cannot guarantee that they will find a useful solution to a problem using
reasonable amounts of time and memory. 


Weak method problem solving is an important tool in its own right as well as an
essential basis for strong method problem solving. Production systems and rule-based
expert system shells are both examples of weak method problem solvers. Even though the
rules of the production system or rule-based expert system encode strong problem-solving
heuristics, their application is usually supported by general (weak method) inference strat-
egies.


Techniques for weak method problem solving have been the focus of AI research
from its beginning. Often these techniques come under the heading of theorem proving,
although we prefer the more generic title automated reasoning. We begin this chapter
(Section 14.1) with an early example of automated reasoning, the General Problem
Solver, and its use of means


 


−ends analysis and difference tables to control search.
In Section 14.2 we present an important product of research in automated reasoning,


the resolution refutation system. We discuss the representation language, the resolution
inference rule, the search strategies, and the answer extraction processes used in resolution
theorem proving. As an example of Horn clause reasoning, in Section 14.3 we describe the
inference engine for Prolog, and show how that language contributes to a philosophy of
declarative programming with an interpreter based on a resolution theorem prover. We
conclude this chapter (Section 14.4) with some brief comments on natural deduction,
equality handling, and more sophisticated inference rules. 


14.1 The General Problem Solver 
and Difference Tables


The General Problem Solver (GPS) (Newell and Simon 1963b; Ernst and Newell 1969)
came out of research by Allen Newell and Herbert Simon at Carnegie Mellon University,
then Carnegie Institute of Technology. Its roots are in an earlier computer program called
the Logic Theorist (LT) of Newell, Shaw, and Simon (Newell and Simon 1963a). The LT
program proved many of the theorems in Russell and Whitehead’s Principia Mathematica
(Whitehead and Russell 1950). 


As with all weak method problem solvers, the Logic Theorist employed a uniform
representation medium and sound inference rules and adopted several strategies or
heuristic methods to guide the solution process. The Logic Theorist used the propositional
calculus (Section 2.1) as its representation medium. The inference rules were substitution,
replacement, and detachment.
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Substitution allows any expression to be substituted for every occurrence of a symbol
in a proposition that is an axiom or theorem already known to be true. For instance,
(B


 


∨ B) 


 


→ B may have the expression 


 


¬ A substituted for B to produce (


 


¬ A


 


∨


 


¬ A)


 


→ ¬ A.
Replacement allows a connective to be replaced by its definition or an equivalent


form. For example, the logical equivalence of 


 


¬ A


 


∨ B and A 


 


→ B can lead to the
replacement of (


 


¬ A


 


∨


 


¬ A) with (A 


 


→


 


¬ A).
Detachment is the inference rule we called modus ponens (Chapter 2). 
The LT applies these inference rules in a breadth-first, goal-driven fashion to the


theorem to be proved, attempting to find a series of operations that lead to axioms or
theorems known to be true. The strategy of LT consists of four methods organized in an
executive routine:


First, the substitution method is directly applied to the current goal, attempting to
match it against all known axioms and theorems.


Second, if this fails to lead to a proof, all possible detachments and replacements are
applied to the goal and each of these results is tested for success using substitution. If
substitution fails to match any of these with the goal, then they are added to a
subproblem list.


Third, the chaining method, employing the transitivity of implication, is used to find a
new subproblem that, if solved, would provide a proof. Thus, if a


 


→ c is the problem
and b


 


→ c is found, then a


 


→ b is set up as a new subproblem.


Fourth, if the first three methods fail on the original problem, go to the subproblem
list and select the next untried subproblem. 


The executive routine continues to apply these four methods until either the solution
is found, no more problems remain on the subproblem list, or the memory and time
allotted to finding the proof are exhausted. In this fashion, the logic theorist executes a
goal-driven, breadth-first search of the problem space. 


Part of the executive routine that enables the substitution, replacement, and
detachment inference rules is the matching process. Suppose we wish to prove
p


 


→ (q 


 


→ p). The matching process first identifies one of the axioms, p


 


→ (q


 


∨ p), as
more appropriate than the others


 


−that is, more nearly matching in terms of a domain-
defined difference


 


−because the main connective, here 


 


→, is the same in both expressions.
Second, the matching process confirms that the expressions to the left of the main
connective are identical. Finally, matching identifies the difference between expressions to
the right of the main connective. This final difference, between 


 


→ and


 


∨, suggests the
obvious replacement for proving the theorem. The matching process helps control the
(exhaustive) search that would be necessary for applying all substitutions, replacements,
and detachments. In fact, the matching eliminated enough of the trial and error to make the
LT into a successful problem solver. 


A sample LT proof shows the power of the matching process. Theorem 2.02 of
Principia Mathematica is p


 


→ (q


 


→ p). Matching finds the axiom p


 


→ (q 


 


∨ p) as
appropriate for replacement. Substitution of 


 


¬ q for q proves the theorem. Matching,
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controlling substitution, and replacement rules proved this theorem directly without any
search through other axioms or theorems. 


In another example, suppose we wish LT to prove: 


(p


 


→


 


¬ p) 


 


→


 


¬ p.


1. ( A 


 


∨ A)


 


→ A Matching identifies best  axiom of five available.
2. (


 


¬ A 


 


∨


 


¬ A)


 


→ ¬ A Substitution of ¬ A for A in order to apply
3. (A → ¬ A) → ¬ A replacement of → for ∨ and ¬, followed by
4. (p → ¬ p) → ¬ p substitution of p for A.
QED


The original LT proved this theorem in about 10 seconds using five axioms. The actual
proof took two steps and required no search. Matching selected the appropriate axiom for
the first step because its form was much like the conclusion it was trying to establish:
(expression) → proposition. Then ¬ A was substituted for A. This allowed the
replacement of the second and final step, which was itself motivated by the goal requiring
a → rather than a ∨.


The Logic Theorist not only was the first example of an automated reasoning system
but also demonstrated the importance of search strategies and heuristics in a reasoning
program. In many instances LT found solutions in a few steps that exhaustive search might
never find. Some theorems were not solvable by the LT, and Newell et al. pointed out
improvements that might make their solution possible. 


At about this time, researchers at Carnegie and others at Yale (Moore and Anderson
1954) began to examine think-aloud protocols of human subjects solving logic problems.
Although their primary goal was to identify human processes that could solve this class of
problem, researchers began to compare human problem solving with computer programs,
such as the Logic Theorist. This was to become the first instance of what is now referred
to as information processing psychology, where an explanation of the observed behavior
of an organism is provided by a program of primitive information processes that generates
that behavior (Newell et al. 1958). This research was also some of the first work that
founded the modern discipline of Cognitive Science (see Section 16.2, Luger 1994). 


Closer scrutiny of these first protocols showed many ways that LT’s solutions differed
from those of the human subjects. The human behavior showed strong evidence of a
matching and difference reduction mechanism referred to as a means−ends analysis. In
means−ends analysis the difference reduction methods (the means) were strongly linked to
the specific differences to be reduced (the ends): the operators for difference reduction
were indexed by the differences they could reduce. 


In a very simple example, if the start statement was p → q and the goal was ¬ p ∨ q,
the differences would include the → symbol in the start and ∨ in the goal, as well as the
difference of p in the start and ¬ p in the goal. The difference table would contain the
different ways that a → could be replaced by a ∨ and that ¬ could be removed. These
transformations would be attempted one at a time until the differences were removed and
the theorem was proven. 








CHAPTER 13/ AUTOMATED REASONING 579


In most interesting problems the differences between start and goal could not be
directly reduced. In this case an operator (from the table) was sought to partially reduce
the difference. The entire procedure was applied recursively to these results until no
differences existed. This might also require following different search paths, represented
by different applications of reductions. 


Figure 14.1a, from Newell and Simon (1963b), presents twelve transformation rules,
the middle column, for solving logic problems. The right column gives directives as to
when the transformations are to be used.


Figure 14.1a Transformation rules for logic problems, from
Newell and Simon (1961).


R 1. A ⋅ B → B ⋅ A
A ∨ Β → Β ∨ Α


Applies to main 
expression only.


R 2. A ⊃ Β → ∼Β ⊃ ∼Α Applies to main 
expression only.


R 3. A ⋅ A ↔ A
A ∨ A ↔ A


A and B are two 
main expressions.


R 4. A ⋅ (B ⋅ C) ↔ (A ⋅ Β) ⋅ C
A ∨ (B ∨ C) ↔ (A ∨ Β) ∨ C


A and A ⊃ B are two 
main expressions.


R 5. A ∨ B ↔ ~(~A ⋅ ~B) A ⊃ B and B ⊃ C are two 
main expressions.


R 6. A ⊃ B ↔ ~A ∨ B


R 7. A ⋅ (B ∨ C) ↔ (A ⋅ B) ∨ (A ⋅ C)
A ∨ (B ⋅ C) ↔ (A ∨ B) ⋅ (A ∨ C)


R 8. A ⋅ B → A
A ⋅ B → B


Applies to main 
expression only.


R 9. A → A ∨ X Applies to main 
expression only.


R 10. A and B are two 
main expressions.


R 11. A and A ⊃ B are two 
main expressions.


R 12. A ⊃ B and B ⊃ C are two 
main expressions.


A
B}→ A ⋅ B


A B⊃ ΒΑ }→


A A⊃ CB }→B⊃ ⊃ C
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Figure 14.1b A proof of a theorem in propositional
calculus, from Newell and Simon (1961).


Figure 14.1b presents a proof, from Newell and Simon (1963b), generated by a
human subject. Before the proof, the transformation rules of Figure 14.1a are available to
the subject, who, without experience in formal logic, is asked to change the expression
(R ⊃ ¬ P) • (¬ R ⊃ Q) to ¬ ( ¬ Q • P). In the notation of Chapter 2 ~ is ¬, • is ∧, and ⊃
is →. The → or ↔ in Figure 14.1a indicates a legal replacement. The rightmost column of
Figure 14.1b indicates the rule of Figure 14.1a that is applied at each step of the proof.


Newell and Simon (1963b) called the problem-solving strategies of the human subject
difference reduction and the general process of using transformations appropriate for
reducing specific problem differences means−ends analysis. The algorithm for applying
means−ends analysis using difference reductions is the General Problem Solver (GPS).


Figure 14.2 presents the control diagram and the table of connections for GPS. The
goal is to transform expression A into expression B. The first step is to locate a difference
D between A and B. The subgoal, reduce D, is identified in the second box of the first line;
the third box indicates that difference reduction is recursive. The “reduction” is the second
line, where an operator Q is identified for the difference D. Actually, a list of operators is
identified from the table of connections. This list provides ordered alternatives for differ-
ence reduction should the chosen operator not be acceptable, for example, by not passing
the feasibility test. In the third line of Figure 14.2 the operator is applied and D is reduced. 


1. (R ⊃ ~ P) ⋅ (~ R ⊃ Q) ~ (~ Q⋅ P)


2. (~ R ∨ ~ P) ⋅ (R ∨ Q) Rule 6 applied to left and right of 1.


3. (~ R ∨ ~ P) ⋅ (~ R ⊃ Q) Rule 6 applied to left of 1.


4. R ⊃ ~ P Rule 8 applied to 1.


5. ~ R ∨ ~ P Rule 6 applied to 4.


6. ~ R ⊃ Q Rule 8 applied to 1.


7. R ∨ Q Rule 6 applied to 6.


8. (~ R ∨ ~ P) ⋅ (R ∨ Q) Rule 10 applied to 5. and 7.


9. P ⊃ ~ R Rule 2 applied to 4.


10. ~ Q ⊃ R Rule 2 applied to 6.


11. P ⊃ Q Rule 12 applied to 6. and 9.


12. ~ P ∨ Q Rule 6 applied to 11.


13. ~ (P ⋅ ~ Q) Rule 5 applied to 12.


14. ~ (~ Q ⋅ P) Rule 1 applied to 13. QED.
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The GPS model of problem solving requires two components. The first is the general
procedure just described for comparing two state descriptions and reducing their differ-
ences. The second component of GPS is the table of connections, giving the links between
problem differences and the specific transformations that reduce them, appropriate to an
application area. Figure 14.2, gives differences and their reductions (the twelve transfor-
mations from Figure 14.1a) for propositional calculus expressions. Other tables of connec-
tions could be built for reducing differences in algebraic forms, or for tasks such as
Towers of Hanoi, or for more complex games such as chess. Because of this modularity of
the table of differences, i.e., the tables are changed out for different applications, the prob-


Match A to B
to find difference D


Subgoal:
Reduce D


Subgoal:
Transform A' into B


success SA'D


Success


none


Fail


fail


Fail


fail


Goal:  Transform object A into object B


Test if feasible
(preliminary)


Subgoal:
Apply Q to A
producing A'


A' SyesQ


Fail


none no fail


Goal:  Reduce difference D between object A and object B
Search for


operator Q relevant
to reducing D


Match condition
of Q to A to


find difference D


Subgoal:
Reduce D


Subgoal:
Apply Q to A'


A'' SA'D


none


Fail


fail


Fail


fail


Goal:  Apply operator Q to object A


Produce result A'' Success


For the logic task of the text:


Feasibility test (preliminary)
Is the mean connective the same (e.g., A•B     B fails against P  Q)?
Is the operator too big (e.g., (A  B)•(A  C)    A  (B•C) fails against P•Q)?


→ ∨
∨→∨ ∨


Is the operator too easy (e.g., A    A•A applies to anything)?
Are the side conditions satisfied (e.g., R8 applies only to main expressions)?


→


Table of connections


Add terms
Delete terms
Change connective
Change sign
Change lower sign
Change grouping
Change position


R1 R2
X


R4 R5 R6 R7 R8 R9 R10 R11R12


X


X


XX
X


X
X
X X


X X
X
X


X


X
X X X X


X X


R3


X means some variant of the rule is relevant.  GPS will pick the appropriate variant.


Figure 14.2 Flow chart and difference reduction table for the General
Problem Solver, from Newell and Simon (1963b).
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lem solver was called general. A number of the different application areas of  GPS are
described by Ernst and Newell (1969).


The actual structuring of the difference reductions of a particular problem domain
helps organize the search for that domain. A heuristic or priority order for reduction of dif-
ferent difference classes is implicit in the order of the transformations within the differ-
ence reduction table. This priority order might put the more generally applicable
transformations before the specialized ones or give whatever order some domain expert
might deem most appropriate. 


A number of research directions evolved from work in the General Problem Solver.
One of these is the use of AI techniques to analyze human problem-solving behavior. In
particular, the production system replaced the means−ends methods of GPS as the
preferred form for modeling human information processing (Chapter 16). The production
rules in modern rule-based expert systems replaced the specific entries in GPS’s table of
differences (Chapter 8). 


In another interesting evolution of GPS, the difference table itself evolved in a further
fashion, becoming the operator table for planning such as STRIPS and ABSTRIPS.
Planning is important in robot problem solving. To accomplish a task, such as to go to the
next room and bring back an object, the computer must develop a plan. This plan
orchestrates the actions of the robot: put down anything it is now holding, go to the door
of the present room, go through the door, find the required room, go through the door, go
over to the object, and so on. Plan formation for STRIPS, the Stanford Research Institute
Problem Solver (Fikes and Nilsson 1971, Fikes et al. 1972, Sacerdotti 1974) uses an oper-
ator table not unlike the GPS table of differences. Each operator (primitive act of the
robot) in this table has an attached set of preconditions that are much like the feasibility
tests of Figure 14.2. The operator table also contains add and delete lists, these are used to
update the model of the “world” once the operator itself has been applied. We presented a
STRIPS-like planner in Section 7.4. and then build it in Prolog in the auxiliary software
materials.


To summarize, the first models of automated reasoning in AI are found in the Logic
Theorist and General Problem Solver developed at Carnegie Institute. Already these
programs offered the full prerequisites for weak method problem solving: a uniform
representation medium, a set of sound inference rules, and a set of methods or strategies
for applying these rules. The same components make up the resolution proof procedures, a
modern and more powerful basis for automated reasoning. 


14.2 Resolution Theorem Proving


14.2.1 Introduction


Resolution is a technique for proving theorems in the propositional or predicate calculus
that has been a part of AI problem-solving research from the mid-1960s (Bledsoe 1977,
Robinson 1965, Kowalski 1979b). Resolution is a sound inference rule that, when used to
produce a refutation (Section 14.2.3), is also complete. In an important practical
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application, resolution theorem proving, particularly the resolution refutation system, has
made the current generation of Prolog interpreters possible (Section 14.3). 


The resolution principle, introduced in an important paper by Robinson (1965),
describes a way of finding contradictions in a database of clauses with minimum use of
substitution. Resolution refutation proves a theorem by negating the statement to be
proved and adding this negated goal to the set of axioms that are known (have been
assumed) to be true. It then uses the resolution rule of inference to show that this leads to a
contradiction. Once the theorem prover shows that the negated goal is inconsistent with
the given set of axioms, it follows that the original goal must be consistent. This proves
the theorem. 


Resolution refutation proofs involve the following steps: 


1. Put the premises or axioms into clause form (14.2.2). 


2. Add the negation of what is to be proved, in clause form, to the set of axioms. 


3. Resolve these clauses together, producing new clauses that logically follow from
them (14.2.3). 


4. Produce a contradiction by generating the empty clause. 


5. The substitutions used to produce the empty clause are those under which the
opposite of the negated goal (what was originally to be proven) is true (14.2.4). 


Resolution is a sound inference rule in the sense of Chapter 2. However, it is not
complete. Resolution is refutation complete; that is, the empty or null clause can always
be generated whenever a contradiction in the set of clauses exists. More is said on this
topic when we present strategies for refutation in Section 14.2.4. 


Resolution refutation proofs require that the axioms and the negation of the goal be
placed in a normal form called clause form. Clause form represents the logical database as
a set of disjunctions of literals. A literal is an atomic expression or the negation of an
atomic expression. 


The most common form of resolution, called binary resolution, is applied to two
clauses when one contains a literal and the other its negation. If these literals contain
variables, the literals must be unified to make them equivalent. A new clause is then
produced consisting of the disjuncts of all the predicates in the two clauses minus the
literal and its negative instance, which are said to have been “resolved away.” The
resulting clause receives the unification substitution under which the predicate and its
negation are found as “equivalent”. 


Before this is made more precise in the subsequent subsections, we take a simple
example. Resolution produces a proof similar to one produced already with modus
ponens. This is not intended to show that these inference rules are equivalent (resolution is
actually more general than modus ponens) but to give the reader a feel for the process. 


We wish to prove that “Fido will die” from the statements that “Fido is a dog” and “all
dogs are animals” and “all animals will die.” Changing these three premises to predicates
and applying modus ponens gives: 
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1. All dogs are animals: ∀(X) (dog (X) → animal (X)).
2. Fido is a dog: dog (fido). 


3. Modus ponens and {fido/X} gives:  animal (fido). 


4. All animals will die: ∀(Y) (animal (Y) → die (Y)). 
5. Modus ponens and {fido/Y} gives: die (fido). 


Equivalent reasoning by resolution converts these predicates to clause form:


PREDICATE FORM CLAUSE FORM


1. ∀(X) (dog) (X) → animal (X)) ¬ dog (X) ∨ animal (X)
2. dog (fido) dog (fido)


3. ∀(Y) (animal (Y) → die (Y)) ¬ animal (Y) ∨ die (Y)


Negate the conclusion that Fido will die: 


4. ¬ die (fido) ¬ die (fido)


Resolve clauses having opposite literals, producing new clauses by resolution as in
Figure 14.3. This process is often called clashing.


The symbol  in Figure 14.3 indicates that the empty clause is produced and the
contradiction found. The  symbolizes the clashing of a predicate and its negation: the
situation where two mutually contradictory statements are present in the clause space.
These are clashed to produce the empty clause. The sequence of substitutions (unifica-
tions) used to make predicates equivalent also gives us the value of variables under which
a goal is true. For example, had we asked whether something would die, our negated goal
would have been ¬ (∃ (Z) die (Z)), rather than ¬ die(fido). The substitution {fido/Z} in
Figure 14.3 would determine that fido is an instance of an animal that will die. The issues
implicit in this example are made clear in the remainder of Section 14.2. 


14.2.2 Producing the Clause Form for Resolution Refutations


The resolution proof procedure requires all statements in the database describing a situa-
tion to be converted to a standard form called clause form. This is motivated by the fact
that resolution is an operator on pairs of disjuncts to produce new disjuncts. The form the
database takes is referred to as a conjunction of disjuncts. It is a conjunction because all
the clauses that make up the database are assumed to be true at the same time. It is a dis-
junction in that each of the individual clauses is expressed with disjunction (or ∨) as the
connective. Thus the entire database of Figure 14.3 may be represented in clause form as:


(¬ dog (X) ∨ animal (X)) ∧ (¬ animal (Y) ∨ die (Y)) ∧ (dog (fido)).
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To this expression we add (by conjunction) the negation of what we wish to prove, in this
case ¬ die(fido). Generally, the database is written as a set of disjunctions and the ∧
operators are omitted.


We now present an algorithm, consisting of a sequence of transformations, for
reducing any set of predicate calculus statements to clause form. It has been shown
(Chang and Lee 1973) that these transformations may be used to reduce any set of
predicate calculus expressions to a set of clauses that are inconsistent if and only if the
original set of expressions is inconsistent. The clause form will not be strictly equivalent
to the original set of predicate calculus expressions in that certain interpretations may be
lost. This occurs because skolemization restricts the possible substitutions for existentially
quantified variables (Chang and Lee 1973). It will, however, preserve unsatisfiability.
That is, if there was a contradiction (a refutation) within the original set of predicate calcu-
lus expressions, a contradiction exists in the clause form. The transformations do not sac-
rifice completeness for refutation proofs. 


We demonstrate this process of conjunctive normal form reduction through an
example and give a brief description rationalizing each step. These are not intended to be
proofs of the equivalence of these transformations across all predicate calculus
expressions.


In the following expression, according to the conventions of Chapter 2, uppercase
letters indicate variables (W, X, Y, and Z); lowercase letters in the middle of the alphabet
indicate constants or bound variables (l, m, and n); and early alphabetic lowercase letters


¬ dog(X) ∨ animal(X)                        ¬ animal(Y) ∨ die(Y)


{Y/X}


dog(fido)                                    ¬ dog(Y) ∨ die(Y)


{fido/Y}


die(fido)                                      ¬ die(fido)


Figure 14.3 Resolution proof for the dead dog  problem.
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indicate the predicate names (a, b, c, d, and e). To improve readability of the expressions,
we use two types of brackets: ( ) and [ ], and remove redundant brackets. As an example,
consider the following expression, where X, Y, and Z are variables and l a constant: 


(i) (∀X)([a(X) ∧ b(X)] → [c(X,l) ∧ (∃Y)((∃Z)[c(Y,Z)] → d(X,Y))]) ∨ (∀X)(e(X))


1. First we eliminate the → by using the equivalent form  proved in Chapter 2: a →  b ≡
¬ a ∨ b. This transformation reduces the expression in (i) above: 


(ii) (∀X)(¬ [a(X) ∧ b(X)] ∨ [c(X,l) ∧ (∃Y)((∃Z)[¬ c(Y,Z)] ∨ d(X,Y))] ∨ (∀X)(e(X))


2. Next we reduce the scope of negation. This may be accomplished using a number of
the transformations of Chapter 2. These include: 


¬ (¬ a) ≡ a


¬ (∃X) a(X) ≡ (∀X) ¬ a(X)


¬ (∀X) b(X) ≡ (∃X) ¬ b(X)


¬ (a ∧ b) ≡ ¬ a ∨ ¬ b


¬ (a ∨ b) ≡ ¬ a ∧ ¬ b


Using the fourth equivalences (ii) becomes: 


(iii) (∀X)([¬ a(X) ∨ ¬ b(X)] ∨ [c(X,l) ∧ (∃Y)((∃Z)[ ¬ c(Y,Z)] ∨ d(X,Y))]) ∨ (∀X)(e(X))


3. Next we standardize by renaming all variables so that variables bound by different
quantifiers have unique names. As indicated in Chapter 2, because variable names are
“dummies” or “place holders,” the particular name chosen for a variable does not
affect either the truth value or the generality of the clause. Transformations used at
this step are of the form: 


((∀X)a(X) ∨ (∀X)b(X)) ≡ (∀X)a(X) ∨ (∀Y)b(Y)


Because (iii) has two instances of the variable X, we rename: 


(iv) (∀X)([¬ a(X) ∨ ¬ b(X)] ∨ [c(X,l) ∧ (∃Y)((∃Z) [¬ c(Y,Z)] ∨ d(X,Y))]) ∨ (∀W)(e(W))


4. Move all quantifiers to the left without changing their order. This is possible because
step 3 has removed the possibility of any conflict between variable names. (iv) now
becomes:


(v) (∀X)(∃Y)(∃Z)(∀W)([¬ a(X) ∨ ¬ b(X)] ∨ [c(X,l) ∧ (¬ c(Y,Z) ∨ d(X,Y))] ∨ e(W))


After step 4 the clause is said to be in prenex normal form, because all the quantifiers
are in front as a prefix and the expression or matrix follows after. 
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5. At this point all existential quantifiers are eliminated by a process called
skolemization. Expression (v) has an existential quantifier for Y. When an
expression contains an existentially quantified variable, for example, (∃Z)(foo(…,
Z,…)), it may be concluded that there is an assignment to Z under which foo is true.
Skolemization identifies such a value. Skolemization does not necessarily show how
to produce such a value; it is only a method for giving a name to an assignment that
must exist. If k represents that assignment, then we have foo(…,k,…). Thus: 


(∃X)(dog(X)) may be replaced by dog(fido)


where the name fido is picked from the domain of definition of X to represent that
individual X. fido is called a skolem constant. If the predicate has more than one
argument and the existentially quantified variable is within the scope of universally
quantified variables, the existential variable must be a function of those other
variables. This is represented in the skolemization process: 


(∀X) (∃Y) (mother(X,Y))


This expression indicates that every person has a mother. Every person is an X and the
existing mother will be a function of the particular person X that is picked. Thus
skolemization gives: 


(∀X) mother(X, m(X))


which indicates that each X has a mother (the m of that X). In another example: 


(∀X)(∀Y)(∃Z)(∀W)(foo(X,Y,Z,W))


is skolemized to: 


(∀X)(∀Y)(∀W)(foo(X,Y,f(X,Y),W)).


The existentially quantified Y and Z are within the scope (to the right of) universally
quantified X but not within the scope of W. Thus each will be replaced by a skolem
function of X. Replacing Y with the skolem function f(X) and Z with g(X), (v)
becomes:


(vi) (∀X)(∀W)([¬ a(X) ∨ ¬ b(X)] ∨ [c(X,l) ∧ (¬ c(f(X),g(X)) ∨ d(X,f(X)))]) ∨ e(W))


After skolemization, step 6 can take place, which simply drops the prefix. 


6. Drop all universal quantification. By this point only universally quantified variables
exist (step 5) with no variable conflicts (step 3). Thus all quantifiers can be dropped,
and any proof procedure employed assumes all variables are universally quantified.
Formula (vi) now becomes: 
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(vii) [¬ a(X) ∨ ¬ b(X)] ∨ [c(X,l) ∧ (¬ c(f(X),g(X)) ∨ d(X,f(X)))] ∨ e(W)


7. Next we convert the expression to the conjunct of disjuncts form. This requires using
the associative and distributive properties of ∧ and ∨. Recall from Chapter 2 that 


a ∨ (b ∨ c) = (a ∨ b) ∨ c 


a ∧ (b ∧ c) = (a ∧ b) ∧ c


which indicates that ∧ or ∨ may be grouped in any desired fashion. The distributive
property of Chapter 2 is also used, when necessary. Because 


a ∧ (b ∨ c)


is already in clause form, ∧ is not distributed. However, ∨ must be distributed across
∧ using: 


a ∨ (b ∧ c) = (a ∨  b) ∧ (a ∨ c)


The final form of (vii) is: 


(viii) [¬ a(X) ∨ ¬ b(X) ∨ c(X,l) ∨ e(W)] ∧
[¬ a(X) ∨ ¬ b(X) ∨ ¬ c(f(X),g(X)) ∨ d(X,f(X)) ∨ e(W)]


8. Now call each conjunct a separate clause. In the example (viii) above there are
two clauses:


(ixa) ¬ a(X) ∨ ¬ b(X) ∨ c(X,l) ∨ e (W) 


(ixb) ¬ a(X) ∨ ¬ b(X) ∨ ¬ c (f(X),g(X)) ∨ d (X,f(X)) ∨ e (W)


9. The final step is to standardize the variables apart again. This requires giving the
variable in each clause generated by step 8 different names. This procedure arises
from the equivalence established in Chapter 2 that 


(∀X) (a(X) ∧ b(X)) ≡ (∀X) a (X) ∧ (∀Y) b(Y)


which follows from the nature of variable names as place holders. (ixa) and (ixb) now
become, using new variable names U and V:


(xa) ¬ a(X) ∨ ¬ b(X) ∨ c(X,l) ∨ e (W) 


(xb) ¬ a(U) ∨ ¬ b(U) ∨ ¬ c(f(U),g(U)) ∨ d (U,f(U)) ∨ e (V)


The importance of this final standardization becomes apparent only as we present the
unification steps of resolution. We find the most general unification to make two predi-
cates within two clauses equivalent, and then this substitution is made across all the vari-
ables of the same name within each clause. Thus, if some variables (needlessly) share
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names with others, these may be renamed by the unification process with a subsequent
(possible) loss of generality in the solution. 


This nine-step process is used to change any set of predicate calculus expressions to
clause form. The completeness property of resolution refutations is not lost. Next we dem-
onstrate the resolution procedure for generating proofs from these clauses. 


14.2.3 The Binary Resolution Proof Procedure


The resolution refutation proof procedure answers a query or deduces a new result by
reducing a set of clauses to a contradiction, represented by the null clause ( ). The
contradiction is produced by resolving pairs of clauses from the database. If a resolution
does not produce a contradiction directly, then the clause produced by the resolution, the
resolvent, is added to the database of clauses and the process continues. 


Before we show how the resolution process works in the predicate calculus, we give
an example from the propositional or variable-free calculus. Consider two parent clauses
p1 and p2 from the propositional calculus: 


p1: a1 ∨ a2 ∨ ⋅ ⋅ ⋅ ∨ an
p2: b1 ∨ b2 ∨ ⋅ ⋅ ⋅ ∨ bm


having two literals ai and bj , where 1 < i  n and 1 j m, such that ¬ ai = bj. Binary
resolution produces the clause: 


a1 ∨ ⋅ ⋅ ⋅ ∨ ai − 1 ∨ ai + 1∨ ⋅ ⋅ ⋅ ∨ an ∨ b1 ∨ ⋅ ⋅ ⋅ ∨ bj − 1 ∨ bj + 1∨ ⋅ ⋅ ⋅ ∨ bm.


The notation above indicates that the resolvent is made up of the disjunction of all the
literals of the two parent clauses except for the literals ai and bj .


A simple argument can give the intuition behind the resolution principle. Suppose 


a ∨ ¬ b and b ∨ c


are both true statements. Observe that one of b and ¬ b must always be true and one
always false (b ∨ ¬ b is a tautology). Therefore, one of 


a ∨ c


must always be true. a ∨ c is the resolvent of the two parent clauses a ∨ ¬ b and b ∨ c.
Consider now an example from the propositional calculus, where we want to prove a


from the following axioms (of course, l ← m ≡ m → l for all propositions l and m):


a ← b ∧ c 


b


c ← d ∧ e 


< < <
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e ∨ f 


d ∧ ¬ f


We reduce the first axiom to clause form: 


a ← b ∧ c 


a ∨ ¬ (b ∧ c)         by l → m ≡ ¬ l ∨ m 


a ∨ ¬ b ∨ ¬ c         by de Morgan’s law


The remaining axioms are reduced, and we have the following clauses:


a ∨ ¬ b ∨ ¬ c 


b


c ∨ ¬ d ∨ ¬ e 


e ∨ f 


d


¬ f


The resolution proof is found in Figure 14.4. First, the goal to be proved, a, is negated
and added to the clause set. The derivation of  indicates that the database of clauses is
inconsistent.


To use binary resolution in the predicate calculus, where each literal may contain
variables, there must be a process under which two literals with different variable names,
or one with a constant value, can be seen as equivalent. Unification was defined in Section
2.3.2 as the process for determining consistent and most general substitutions for making
two predicates equivalent. 


The algorithm for resolution on the predicate calculus is very much like that on the
propositional calculus except that: 


1. A literal and its negation in parent clauses produce a resolvent only if they unify
under some substitution σ. σ is then applied to the resolvent before adding it to
the clause set. We require that σ be the most general unifer of the parent clauses.


2. The unification substitutions used to find the contradiction offer variable bind-
ings under which the original query is true. We explain this process, called
answer extraction, in Section 14.2.5. 


Occasionally, two or more literals in one clause have a unifying substitution. When
this occurs there may not exist a refutation for a set of clauses containing that clause, even
though the set may be contradictory. For instance, consider the clauses: 


p(X) ∨ p(f(Y)) 


¬ p(W) ∨ ¬ p(f(Z))
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The reader should note that with simple resolution these clauses can be reduced only to
equivalent or tautological forms but not to a contradiction, that is, no substitution can
make them inconsistent. 


This situation may be handled by factoring such clauses. If a subset of the literals in a
clause has a most general unifier (Section 2.3.2), then the clause is replaced by a new
clause, called a factor of that clause. The factor is the original clause with the most general
unifier substitution applied and then redundant literals removed. For example, the two lit-
erals of the clause p(X) ∨ p(f(Y)) will unify under the substitution {f(Y)/X}. We make the
substitution in both literals to obtain the clause p(f(Y)) ∨ p(f(Y)) and then replace this
clause with its factor: p(f(Y)). Any resolution refutation system that includes factoring is
refutation complete. Standardizing variables apart, Section 14.2.2 step 3, can be inter-
preted as a trivial application of factoring. Factoring may also be handled as part of the
inference process in hyperresolution described in Section 14.4.2. 


We now present an example of a resolution refutation for the predicate calculus.
Consider the following story of the “happy student”: 


Anyone passing his history exams and winning the lottery is happy. But anyone who studies or
is lucky can pass all his exams. John did not study but he is lucky. Anyone who is lucky wins
the lottery. Is John happy? 


First change the sentences to predicate form:


¬ a                    a ∨ ¬ b ∨ ¬ c


¬ b ∨ ¬ c                      b


¬ c                    c ∨ ¬ d ∨ ¬ e


e ∨ f                   ¬ d ∨ ¬ e


d                        f ∨ ¬ d


f                          ¬ f


Figure 14.4 One resolution proof for an example
from the propositional calculus.
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Anyone passing his history exams and winning the lottery is happy.


∀ X (pass (X,history) ∧ win (X,lottery) → happy (X))


Anyone who studies or is lucky can pass all his exams.


∀ X ∀ Y (study (X) ∨ lucky (X) → pass (X,Y))


John did not study but he is lucky.


¬ study (john) ∧ lucky (john)


Anyone who is lucky wins the lottery.


∀ X (lucky (X) → win (X,lottery))


These four predicate statements are now changed to clause form (Section 14.2.2): 


1. ¬ pass (X, history) ∨ ¬ win (X, lottery) ∨ happy (X) 
2. ¬ study (Y) ∨ pass (Y, Z) 
3. ¬ lucky (W) ∨ pass (W, V) 
4. ¬ study (john) 
5. lucky (john) 


6. ¬ lucky (U) ∨ win (U, lottery) 


Into these clauses is entered, in clause form, the negation of the conclusion: 


7. ¬ happy (john) 


The resolution refutation graph of Figure 14.5 shows a derivation of the contradiction and,
consequently, proves that John is happy. 


As a final example in this subsection we present the “exciting life” problem; suppose: 


All people who are not poor and are smart are happy. Those people who read are smart. John
can read and is not poor. Happy people have exciting lives. Can anyone be found with an excit-
ing life? 


We assume ∀X (smart (X) ≡ ¬ stupid (X)) and ∀Y (wealthy (Y) ≡ ¬ poor (Y)), and get:


∀X (¬ poor (X) ∧ smart (X) → happy (X)) 


∀Y (read (Y) → smart (Y)) 


read (john) ∧ ¬ poor (john) 


∀Z (happy (Z) → exciting (Z))
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The negation of the conclusion is: 


¬ ∃ W (exciting (W))


These predicate calculus expressions for the “exciting life” problem are transformed into
the following clauses: 


poor (X) ∨ ¬ smart (X) ∨ happy (X) 


¬ read (Y) ∨ smart (Y) 


read (john)


¬ poor (john) 


¬ happy (Z) ∨ exciting (Z) 


¬ exciting (W)


The resolution refutation for this example is found in Figure 14.6.


¬ pass(X, history) ∨ ¬ win(X, lottery) ∨ happy(X)             ¬ lucky(U) ∨ win(U, lottery)


{U/X}


¬ pass(U, history) ∨ happy(U) ∨ ¬ lucky(U)             ¬ happy(john)


{john/U}


lucky(john)                            ¬ pass(john, history) ∨ ¬ lucky(john)


¬ pass(john, history)                      ¬ lucky(V) ∨ pass(V, W)


{john/V, history/W}


¬ lucky(john)                       lucky(john)


{ }


{ }


Figure 14.5 One resolution refutation for the happy student  problem.
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14.2.4 Strategies and Simplification Techniques for Resolution


A different proof tree within the search space for the problem of Figure 14.6 appears in
Figure 14.7. There are some similarities in these proofs; for example, they both took five
resolution steps. Also, the associative application of the unification substitutions found
that john was the instance of the person with the “exciting life” in both proofs. 


However, even these two similarities need not have occurred. When the resolution
proof system was defined (Section 14.2.3) no order of clause combinations was implied.
This is a critical issue: when there are N clauses in the clause space, there are N2 ways of
combining them or checking to see whether they can be combined at just the first level!
The resulting set of clauses from this comparison is also large; if even 20% of them
produce new clauses, the next round of possible resolutions will contain even more
combinations than the first round. In a large problem this exponential growth will quickly
get out of hand. 


For this reason search heuristics are very important in resolution proof procedures, as
they are in all weak method problem solving. As with the heuristics we considered in
Chapter 4, there is no science that can determine the best strategy for any particular prob-
lem. Nonetheless, some general strategies can address the exponential combinatorics.


¬ exciting(W)                  ¬ happy(Z) ∨ exciting(Z)


{Z/W}


¬ happy(Z)                   poor(X) ∨ ¬ smart(X) ∨ happy(X)


{X/Z}


poor(X) ∨ ¬ smart(X)                       ¬ read(Y) ∨ smart(Y)


{Y/X}


¬ poor(john)                         poor(Y) ∨ ¬ read(Y)


{john/Y}


¬ read(john)                      read(john)


{ }


Figure 14.6 Resolution proof for the exciting life  problem.
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Before we describe our strategies, we need to make several clarifications. First, based
on the definition of unsatisfiability of an expression in Chapter 2, a set of clauses is unsat-
isfiable if no interpretation exists that establishes the set as satisfiable. Second, an infer-
ence rule is refutation complete if, given an unsatisfiable set of clauses, the unsatisfiability
can be established by use of this inference rule alone. Resolution with factoring has this
property (Chang and Lee 1973). Finally, a strategy is complete if by its use with a refuta-
tion-complete inference rule we can guarantee finding a refutation whenever a set of
clauses is unsatisfiable. Breadth-first is an example of a complete strategy. 


The Breadth-First Strategy The complexity analysis of exhaustive clause comparison
just described was based on breadth-first search. Each clause in the clause space is
compared for resolution with every clause in the clause space on the first round. The
clauses at the second level of the search space are generated by resolving the clauses
produced at the first level with all the original clauses. We generate the clauses at the nth
level by resolving all clauses at level n − 1 against the elements of the original clause set
and all clauses previously produced.


This strategy can quickly get out of hand for large problems. It does have an
interesting property, however. Like any breadth-first search, it guarantees finding the


¬ happy(Z) ∨ exciting(Z)                        poor(X) ∨ ¬ smart(X) ∨ happy(X)


¬ read(Y) ∨ smart(Y)                      exciting(Z) ∨ poor(Z) ∨ ¬ smart(Z)


¬ read(Y) ∨ exciting(Y) ∨ poor(Y)                        ¬ poor(john)


read(john)                      ¬ read(john) ∨ exciting(john)


exciting(john)                       ¬ exciting(W)


{Z/X}


{Y/Z}


{john/Y}


{ }


{john/W}


Figure 14.7 Another resolution refutation for the example
of Figure 14.6.
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shortest solution path, because it generates every search state for each level before going
any deeper. It also is a complete strategy in that, if it is continued long enough, it is
guaranteed to find a refutation if one exists. Thus, when the problem is small, as are the
ones we have presented as examples, the breadth-first strategy can be a good one.
Figure 14.8 applies the breadth-first strategy to the “exciting life” problem. 


The Set of Support Strategy An excellent strategy for large clause spaces is called the
set of support (Wos and Robinson 1968). For a set of input clauses, S, we can specify a
subset, T of S, called the set of support. The strategy requires that one of the resolvents in
each resolution have an ancestor in the set of support. It can be proved that if S is
unsatisfiable and S − T is satisfiable, then the set of support strategy is refutation complete
(Wos et al. 1984). 


If the original set of clauses is consistent, then any set of support that includes the
negation of the original query meets these requirements. This strategy is based on the
insight that the negation of what we want to prove true is going to be responsible for
causing the clause space to be contradictory. The set of support forces resolutions between
clauses of which at least one is either the negated goal clause or a clause produced by
resolutions on the negated goal. 


Figure 14.6 is an example of the set of support strategy applied to the exciting life
problem. Because a set of support refutation exists whenever any refutation exists, the set
of support can be made the basis of a complete strategy. One way to do this is to perform a
breadth-first search for all possible set of support refutations. This, of course, will be much
more efficient than breadth-first search of all clauses. One need only be sure that all
resolvents of the negated goal clause are examined, along with all their descendants. 


The Unit Preference Strategy Observe that in the resolution examples seen so far, the
derivation of the contradiction is indicated by the clause with no literals. Thus, every time


          poor(X) v ¬ smart(X)         ¬ read(Y)                   ¬ poor(john)                     ¬ happy(Z)   read(john)                    ¬ exciting(W)
          v happy(X)                         v smart(Y)


        ¬ read(john) v       poor(X)         ¬ read(john)         ¬ smart(john)       poor(Z)         happy(john)      poor(john)     poor(X)    ¬ smart(john)     poor(john)
         happy(john)      v ¬ read(X)      v happy(john)     v exciting(john)      v ¬ read(Z)    v happy(john)   v ¬ smart(X)              v exciting(john)


v exciting(Z)


            poor(X) v ¬ read(X)                    ¬ smart(john)                         poor(X) v ¬ smart(X)           smart(john)                ¬ happy(Z)
           v happy(X)                                  v happy(john)                           v exciting(X)


                             v exciting(X)


Figure 14.8 Complete state space for the exciting life  problem
generated by breadth-first search (to two levels).
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we produce a resultant clause that has fewer literals than the clauses that are resolved to
create it, we are closer to producing the clause of no literals. In particular, resolving with a
clause of one literal, called a unit clause, will guarantee that the resolvent is smaller than
the largest parent clause. The unit preference strategy uses units for resolving whenever
they are available. Figure 14.9 uses the unit preference strategy on the exciting life
problem. The unit preference strategy along with the set of support can produce a more
efficient complete strategy. 


Unit resolution is a related strategy that requires that one of the resolvents always be a
unit clause. This is a stronger requirement than the unit preference strategy. We can show
that unit resolution is not complete using the same example that shows the incompleteness
of linear input form.


The Linear Input Form Strategy The linear input form strategy is a direct use of the
negated goal and the original axioms: take the negated goal and resolve it with one of the
axioms to get a new clause. This result is then resolved with one of the axioms to get
another new clause, which is again resolved with one of the axioms. This process contin-
ues until the empty clause is produced. 


¬ exciting(W)                    ¬ happy(Z) ∨ exciting(Z)


¬ happy(Z)                     poor(X) ∨ ¬ smart(X) ∨ happy(X)


{X/Z}


¬ poor(john)                        poor(X) ∨ ¬ smart(X)


{john/X}


¬ smart(john)                     ¬ read(Y) ∨ smart(Y)


{john/Y}


read(john)                    ¬ read(john)


{Z/W}


{ }


Figure 14.9 Using the unit preference strategy on the
exciting life  problem.
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At each stage we resolve the clause most recently obtained with an axiom derived
from the original problem statement. We never use a previously derived clause, nor do we
resolve two of the axioms together. The linear input form is not a complete strategy, as can
be seen by applying it to the following set of four clauses (which are obviously unsatisfi-
able). Regardless of which clause is taken as the negation of the goal, the linear input strat-
egy cannot produce a contradiction: 


¬ a ∨ ¬ b 


a ∨ ¬ b 


¬ a ∨ b 


a ∨ b


Other Strategies and Simplification Techniques We have not attempted to present an
exhaustive set of strategies or even the most sophisticated techniques for proving theo-
rems using resolution inference. These are available in the literature, such as Wos et al.
(1984) and Wos (1988). Our goal is rather to introduce the basic tools for this research
area and to describe how these tools may be used in problem solving. As noted earlier, the
resolution proof procedure is but another weak method problem-solving technique.


In this sense, resolution may serve as an inference engine for the predicate calculus,
but an engine that requires much analysis and careful application of strategies before suc-
cess. In a problem large enough to be interesting, randomly clashing expressions together
with resolution is as hopeless as striking random terminal keys and hoping a quality paper
will result.


The examples used in this chapter are trivially small and have all the clauses neces-
sary (and only those necessary) for their solution. This is seldom true of interesting prob-
lems. We have given several simple strategies for combating these combinatorial
complexities, and we will conclude this subsection by describing a few more important
considerations in designing a resolution-based problem solver. Later we show (in Section
14.3) how a resolution refutation system, with an interesting combination of search strate-
gies, provides a “semantics” for logic programming, especially for the design of Prolog
interpreters. 


A combination of strategies can be quite effective in controlling search—for instance,
the use of set of support plus unit preference. Search heuristics may also be built into the
design of rules (by creating a left-to-right ordering of literals for resolving). This order can
be most effective for pruning the search space. This implicit use of strategy is important in
Prolog programming (Section 14.3). 


The generality of conclusions can be a criterion for designing a solution strategy. On
one side it might be important to keep intermediate solutions as general as possible, as this
allows them to be used more freely in resolution. Thus the introduction of any resolution
with clauses that require specialization by binding variables, such as {john/X}, should be
put off as long as possible. If, on the other side, a solution requires specific variable
bindings, such as in the analysis of whether John has a staph infection, the {john/Person}
and {staph/Infection} substitutions may restrict the search space and increase the
probability and speed of finding a solution. 
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An important issue in selecting a strategy is the notion of completeness. It might be
very important in some applications to know that a solution will be found (if one exists).
This can be guaranteed by using only complete strategies. 


We can also increase efficiency by speeding up the matching process. We can
eliminate needless (and costly) unifications between clauses that cannot possibly produce
new resolvents by indexing each clause with the literals it contains and whether they are
positive or negative. This allows us directly to find potential resolvents for any clause.
Also, we should eliminate certain clauses as soon as they are produced. First, any
tautological clause need never be considered; these can never be falsified and so are of no
use in a solution attempt. 


Another type of clause that gives no new information is one that can be subsumed,
that is, when a new clause has a more general instance already in the clause space. For
example, if p(john) is deduced for a space that already contains ∀ X(p(X)), then p(john)
may be dropped with no loss; in fact, there is a saving because there are fewer clauses in
the clause space. Similarly, p(X) subsumes the clause p(X) ∨ q(X). Less general informa-
tion does not add anything to more general information when both are in the clause space. 


Finally, procedural attachment evaluates or otherwise processes without further
search any clause that can yield new information. It does arithmetic, makes comparisons
between atoms or clauses, or “runs” any other deterministic procedure that can add con-
crete information to the problem solving or in any manner constrain the solution process.
For example, we may use a procedure to compute a binding for a variable when enough
information is present to do so. This variable binding then restricts possible resolutions
and prunes the search space. 


Next we show how answers may be extracted from the resolution refutation process. 


14.2.5 Answer Extraction from Resolution Refutations


The instances under which an hypothesis is true includes the set of substitutions with
which the refutation is found. Therefore, retaining information on the unification substitu-
tions made in the resolution refutation gives information for a correct answer. In this sub-
section we give three examples of this and introduce a bookkeeping method for extracting
answers from a resolution refutation. 


The answer recording method is simple: retain the original conclusion that was to be
proved and, into that conclusion, introduce each unification that is made in the resolution
process. Thus the original conclusion is the “bookkeeper” of all unifications that are made
as part of the refutation. In the computational search for resolution refutations, this might
require extra pointers, such as when more than one possible choice exists in the search for
a refutation. A control mechanism such as backtracking may be necessary to produce
alternative solution paths. But still, with a bit of care, this added information may
be retained. 


Let us see some examples of this process. In Figure 14.6, where a proof was found for
the existence of a person with an exciting life, the unifications of Figure 14.10 were made.
If we retain the original goal and apply all the substitutions of the refutation to this clause,
we find the answer of which person it is who has an exciting life. 
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Figure 14.10 shows how a resolution refutation not only can show that “no one leads
an exciting life” is false but also, in the process of that demonstration, can produce a
happy person, John. This is a general result, where the unifications that produce a refuta-
tion are the same ones that produce the instances under which the original query is true. 


A second example is the simple story: 


Fido the dog goes wherever John, his master, goes. John is at the library. Where is Fido? 


First we represent this story in predicate calculus expressions and then reduce these
expressions to clause form. The predicates: 


at (john,X) → at (fido,X) 


at (john,library)


The clauses: 


¬ at (john,Y) ∨ at (fido,Y) 


at (john,library)


The conclusion negated: 


exciting(W)


exciting(Z)


exciting(X)


exciting(Y)


exciting(john)


exciting(john)


{Z/W}


{X/Z}


{Y/X}


{john/Y}


{ }


Figure 14.10 Unification substitutions of Figure 14.6
applied to the original query.
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¬ at (fido,Z), Fido is nowhere!


Figure 14.11 gives the answer extraction process. The literal keeping track of
unifications is the original question (where is Fido?): 


at (fido,Z)


Once again, the unifications under which the contradiction is found tell how the original
query is true: Fido is at the library. 


The final example shows how the skolemization process can give the instance under
which the answer may be extracted. Consider the following situation: 


Everyone has a parent. The parent of a parent is a grandparent. Given the person John, prove
that John has a grandparent. 


The following sentences represent the facts and relationships in the situation above.
First, Everyone has a parent:


(∀ X)(∃ Y) p(X,Y)


A parent of a parent is a grandparent.


(∀ X)(∀ Y)(∀ Z) p(X,Y) ∧ p(Y,Z) → gp(X,Z)


The goal is to find a W such that gp(john,W) or ∃ (W)(gp(john,W)). The negation of the
goal is ¬ ∃ (W)(gp(john,W)) or:


¬ gp(john,W)


at(fido, Z)              ¬ at(fido, Z)             ¬ at(john, X) ∨ at(fido, X)


{X/Z}


at(fido, X)                                   ¬ at(john, X)                 at(john, library)


{library/X}


at(fido, library)


Figure 14.11 Answer extraction process on the
finding fido  problem.
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In the process of putting this set of predicates into clause form for the resolution
refutation, the existential quantifier in the first predicate (everyone has a parent) requires a
skolem function. This skolem function would be the obvious function: take the given X
and find the parent of X. Let’s call this the pa(X) for “find a parental ancestor for X .” For
John this would be either his father or his mother. The clause form for the predicates of
this problem is: 


p(X,pa(X))


¬ p(W,Y) ∨ ¬ p(Y,Z) ∨ gp(W,Z) 


¬ gp(john,V)


The resolution refutation and answer extraction process for this problem are presented
in Figure 14.12. Note that the unification substitutions in the answer are


gp(john,pa(pa(john)))


The answer to the question of whether John has a grandparent is to “find the parental
ancestor of John’s parental ancestor.” The skolemized function allows us to compute this
result.


The general process for answer extraction just described may be used in all resolution
refutations, whether they be with general unifications as in Figures 14.10 and 14.11 or
from evaluating the skolem function as in Figure 14.12. The process yields an answer. The
method is really quite simple: the situation (unifications) under which the contradiction is
found is an instance under which the opposite of the negated conclusion (the original


gp (john, V)               ¬ gp (john, V)            ¬ p(W,Y) ∨ ¬ p(Y,Z) ∨ gp(W,Z)


{john/W, V/Z}


gp (john, V)                        ¬ p(john, Y) ∨ ¬ p(Y,V)                p(X,pa(X))


{john/X, pa(X)/Y}


gp (john, V)                                                ¬ p(pa(john), V)                p(X,pa(X))


gp (john, pa(pa(john)))


{pa(john)/X, pa(X)/V}


Figure 14.12 Skolemization as part of the answer
extraction process.
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query of the problem) is true. Although this subsection has not given a mathematical dem-
onstrated of why this is true in every instance, we have shown several examples of how
the process works; further discussion can be found in the literature (Nilsson 1980, Wos et
al. 1984). 


14.3 Prolog and Automated Reasoning


14.3.1 Introduction


Only by understanding the implementation of a computer language can we properly guide
its use, control its side effects, and have confidence in its results. In this section we
describe the semantics of Prolog, and relate it to the issues in automated reasoning
presented in the previous section. 


A serious criticism of the resolution proof procedure, Section 14.2, is that it requires a
totally homogeneous database to represent the problem. When predicate calculus descrip-
tors are reduced or transformed to clause form, important heuristic problem-solving
information is left out. The omitted information is not the truth or fallacy of any part of the
problem but rather the control hints or procedural descriptions on how to use the
information. For example, a negated goal clause in a resolution format might be of
the form: 


a ∨ ¬ b ∨ c ∨ ¬ d


where a, b, c, and d are literals. The resolution inference mechanism applies a search
strategy to deduce the empty clause. All literals are open to the strategy and the one used
depends on the particular strategy selected. The strategies used to guide resolution
theorem proving are weak heuristics; they do not incorporate deep knowledge of a specific
problem domain. 


For example, the negated goal clause in the resolution example above might be a
transformation of the predicate calculus statement: 


a ← b ∧ ¬ c ∧ d


This can be understood as “to see whether a is true go out and see whether b is true and c
is false and d is true.” The rule was intended as a procedure for solving a and implements
heuristic information specific to this use. Indeed, the subgoal b might offer the easiest way
to falsify the entire predicate, so the order “try b then see whether c is false then test d”
could save much problem-solving time and cost. The implicit heuristic says “test the easi-
est way to falsify the problem first, then if this is passed go ahead and generate the remain-
ing (perhaps much more difficult) part of the solution.” Human experts design procedures
and relationships that not only are true but also contain information critical for using this
truth. In most interesting problem-solving situations we cannot afford to ignore these heu-
ristics (Kowalski 1979b).
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In the next section we introduce Horn clauses and use their procedural interpretation
as an explicit strategy that preserves this heuristic information. 


14.3.2 Logic Programming and Prolog


To understand the mathematical foundations of Prolog, we first define logic
programming. Once we have done this, we will add an explicit search strategy to logic
programming to approximate the search strategy, sometimes referred to as the
procedural semantics, of Prolog. To get full Prolog, we also discuss the use of not and the
closed world assumption.


Consider a database of clauses prepared for resolution refutation, as in Section 14.2.
If we restrict this set to clauses that have at most one positive literal (zero or more negative
literals), we have a clause space with some interesting properties. First, problems describ-
able with this set of clauses preserve unsatisfiability for resolution refutations, or are refu-
tation complete, Section 14.2. Second, an important benefit of restricting our
representation to this subclass of all clauses is a very efficient search strategy for refuta-
tions: a linear input form, unit preference based, left-to-right and depth-first goal reduc-
tion. With well-founded recursion (recursive calls that eventually terminate) and occurs
checking, this strategy guarantees finding refutations if the clause space is unsatisfiable
(van Emden and Kowalski 1976). A Horn clause contains at most one positive literal,
which means it is of the form 


a ∨ ¬ b1 ∨ ¬ b2 ∨ ⋅ ⋅ ⋅ ∨ ¬ bn


where a and all the bis are positive literals. To emphasize the key role of the one positive
literal in resolutions, we generally write Horn clauses as implications with the positive
literal as the conclusion: 


a ← b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn


Before we discuss further the search strategy, we formally define this subset of
clauses, called Horn clauses. These, together with a nondeterministic goal reduction
strategy, are said to constitute a logic program.


D E F I N I T I O N


LOGIC PROGRAM


A logic program is a set of universally quantified expressions in first-order predicate
calculus of the form: 


a ← b1 ∧ b2 ∧ b3 ∧ ⋅ ⋅ ⋅ ∧ bn


The a and bi are all positive literals, sometimes referred to as atomic goals. The a is
the clause head, the conjunction of bi, the body.
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These expressions are the Horn clauses of the first-order predicate calculus. They
come in three forms: first, when the original clause has no positive literals; second,
when it has no negative literals; and third, when it has one positive and one or more
negative literals. These cases are 1, 2, and 3, respectively: 


1. ← b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn
called a headless clause or goals to be tried: b1 and b2 and . . . and bn.


2. a1 ←
a2 ←
⋅
⋅
an ←
called the facts.


3. a ← b1 ∧ ⋅ ⋅ ⋅ ∧ bn
called a rule relation. 


Horn clause calculus allows only the forms just presented; there may be only one
literal to the left of ← and this literal must be positive. All literals to the right of ← are
also positive. 


The reduction of clauses that have at most one positive literal into Horn form requires
three steps. First, select the positive literal in the clause, if there is a positive literal, and
move this literal to the very left (using the commutative property of ∨). This single
positive literal becomes the head of the Horn clause, as just defined. Second, change the
entire clause to Horn form by the rule: 


a ∨ ¬ b1 ∨ ¬ b2 ∨ ⋅ ⋅ ⋅ ∨ ¬ bn ≡ a ← ¬ (¬ b1 ∨ ¬ b2 ∨ ⋅ ⋅ ⋅ ∨ ¬ bn)


Finally, use de Morgan’s law to change this specification to:


a ← b1 ∧ b2 ⋅ ⋅ ⋅ ∧ bn


where the commutative property of ∧ can be used to order the bi subgoals. 
It should be noted that it may not be possible to transform clauses from an arbitrary


clause space to Horn form. Some clauses, such as p ∨ q, have no Horn form. To create a
Horn clause, there can be at most one positive literal in the original clause. If this
criterion is not met it may be necessary to rethink the original predicate calculus
specification for the problem. The payoff for Horn form representation is an efficient refu-
tation strategy, as we see shortly. 


The computation algorithm for logic programs proceeds by nondeterministic goal
reduction. At each step of the computation where there is a goal of the form: 


← a1 ∧ a2 ∧ ⋅ ⋅ ⋅ ∧ an


the interpreter arbitrarily chooses some ai for 1  i  n. It then nondeterministically
chooses a clause: 


< <








606 PART V / ADVANCED TOPICS FOR AI PROBLEM SOLVING


a1 ← b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn


such that the a1 unifies with ai with substitution ς and uses this clause to reduce the goal.
The new goal then becomes: 


← (a1 ∧ ⋅ ⋅ ⋅ ∧ ai − 1 ∧ b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn ∧ ai + 1 ∧ ⋅ ⋅ ⋅ ∧ an)ς


This process of nondeterministic goal reduction continues until the computation termi-
nates with the goal set empty. 


If we eliminate the nondeterminism by imposing an order on the reduction of sub-
goals, we do not change the result of the computation. All results that can be found nonde-
terministically can be found through an exhaustive ordered search. However, by reducing
the amount of nondeterminism, we can define strategies that prune unnecessary branches
from the space. Thus, a major concern of practical logic programming languages is to pro-
vide the programmer with facilities to control and, when possible, reduce the amount of
nondeterminism. These facilities allow the programmer to influence both the order in
which the goals are reduced and the set of clauses that are used to reduce each goal. (As in
any graph search, precautions must be taken to prevent infinite cycles in the proof.)


The abstract specification of a logic program has a clean semantics, that of the resolu-
tion refutation system. van Emden and Kowalski (1976) show that the smallest interpreta-
tion on which a logic program is true is the interpretation of the program. The price paid
by practical programming languages, such as Prolog, is that executing programs  by these
may compute only a subset of their associated interpretations (Shapiro 1987). 


Sequential Prolog is an approximation to an interpreter for the logic programming
model, designed for efficient execution on von Neumann computers. This is the interpreter
that we have used so far in this text. Sequential Prolog uses both the order of goals in a
clause and the order of clauses in the program to control the search for a proof. When a
number of goals are available, Prolog always pursues them left to right. In the search for a
unifiable clause on a goal, the possible clauses are checked in the order they are
presented by the programmer. When each selection is made, a backtracking pointer is
placed with the recorded unification that allows other clauses to be used (again, in the
programmer’s order) should the original selection of a unifiable clause fail. If this attempt
fails across all possible clauses in the clause space, then the computation fails. With cut,
an attempt to use efficiently the depth-first backtracking search, Section 14.1.5, the inter-
preter may not, in fact, visit all clause combinations (interpretations) in the search space.


More formally, given a goal: 


← a1 ∧ a2 ∧ a3 ⋅ ⋅ ⋅ ∧ an


and a program P, the Prolog interpreter sequentially searches for the first clause in P
whose head unifies with a1. This clause is then used to reduce the goals. If: 


a1 ← b1 ∧ b2 ∧ . . . ∧ bn


is the reducing clause with ξ the unification, the goal clause then becomes: 
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← (b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn ∧ a2 ∧ a3 ∧ ⋅ ⋅ ⋅ ∧ an)ξ


The Prolog interpreter then continues by trying to reduce the leftmost goal, b1 in this
example, using the first clause in the program P that unifies with b1. Suppose it is: 


b1 ← c1 ∧ c2 ∧ ⋅ ⋅ ⋅ ∧ cp


under unification φ. The goal then becomes: 


← (c1 ∧ c2 ∧ ⋅ ⋅ ⋅ ∧ cp ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn ∧ a2 ∧ a3 ∧ ⋅ ⋅ ⋅ ∧ an)ξ φ


Note that the goal list is treated as a stack enforcing depth-first search. If the
Prolog interpreter ever fails to find a unification that solves a goal it then backtracks to its
most recent unification choice point, restores all bindings made since that choice point,
and chooses the next clause that will unify (by the order in P). In this way, Prolog imple-
ments its left-to-right, depth-first search of the clause space. 


If the goal is reduced to the null clause ( ) then the composition of unifications that
made the reductions: 


← ( )ξ φ ⋅ ⋅ ⋅ ω


(here ξ φ ⋅ ⋅ ⋅ ω), provides an interpretation under which the original goal clause was true. 
Besides backtracking on the order of clauses in a program, sequential Prolog allows


the cut or “!”. As described in Section 14.1.5, a cut may be placed in a clause as a goal
itself. The interpreter, when encountering the cut, is committed to the current execution
path and in particular to that subset of unifications made since the choice of the clause
containing the cut. It also commits the interpreter to the choice of that clause itself as the
only method for reducing the goal. Should failure be encountered within the clause after
the cut, the entire clause fails. 


Procedurally, the cut makes it unnecessary to retain backtrack pointers for the
reducing clause and all its components before the cut. Thus, cut can mean that only some
of the possible interpretations of the model are ever computed. 


We summarize our discussion of sequential Prolog by comparing it to the
resolution refutation model of Section 14.2. 


1. The resolution clause space is a superset of  Horn clause expressions in logic pro-
gramming. Each clause must have at most one positive literal to be in Horn form. 


2. The following structures represent the problem in Horn form: 
a. The goals,


← b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn


are a list of clause statements that make up the goals to be tested by
resolution refutation. Each ai is in turn negated, unified with, and reduced
until the empty clause is found (if this is possible). 
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b. The facts, 


a1 ←
a2 ←
⋅
⋅
⋅
an ←


are each separate clauses for resolution. Finally,


c. The Horn clause rules or axioms, 


a ← b1 ∧ b2 ∧ ⋅ ⋅ ⋅ ∧ bn
allow us to reduce matching subgoals. 


3. With a unit preference, linear input form strategy (always preferring fact clauses
and using the negated goal and its descendant resolvents; see Section 14.2.4) and
applying a left-to-right, depth-first (with backtracking) order for selecting clauses
for resolutions, the resolution theorem prover is acting as a Prolog interpreter.
Because this strategy is refutation complete, its use guarantees that the solution
will be found (provided that part of the set of interpretations is not pruned away
by using cut).


4. Finally, the composition of unifications in the proof provides the answer
(interpretation) for which the goal is true. This is exactly equivalent to the answer
extraction process of Section 14.2.5. Recording the composition of unifications
in the goal literal produces each answer interpretation. 


An important issue with Prolog is that we wish to use negative literals on the right
hand side of Horn clause rules. This requires interpreters to enforce the closed world
assumption. In predicate calculus, the proof of ¬ p(X) is exactly the proof that p(X) is log-
ically false. That is, p(X) is false under every interpretation that makes the axiom set true.
The Prolog interpreter, based on the unification algorithm of Chapter 2, offers a more
restricted result than the general resolution refutation of Section 14.2. Rather than trying
all interpretations, it examines only those interpretations that are made explicit in the data-
base. We now axiomatize these constraints to see exactly the restrictions implicit in cur-
rent Prolog environemnts.


For every predicate p, and every variable X belonging to p, suppose a1, a2, . . . , an
make up the domain of X. The Prolog interpreter, using unification, enforces: 


1. The unique name axiom. For all atoms of the domain ai aj unless they are
identical. This implies that atoms with distinct names are distinct. 


2. The closed world axiom. 


p(X) → p(a1) ∨ p(a2) ∨ ⋅ ⋅ ⋅ ∨ p(an).


This means the only possible instances of a relation are those implied by the
clauses present in the problem specification. 


|≡
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3. The domain closure axiom. 


(X = a1) ∨ (X = a2) ∨ ⋅ ⋅ ⋅ ∨ (X = an).


This guarantees that the atoms occurring in the problem specification constitute
all and the only atoms. 


These three axioms are implicit in the action of the Prolog interpreter. They may be
seen as added to the set of Horn clauses making up a problem description and thus as con-
straining the set of possible interpretations to a Prolog query. 


Intuitively, this means that Prolog assumes as false all goals that it cannot prove to be
true. This can introduce anomalies: if a goal’s truth value is actually unknown to the cur-
rent database, Prolog will assume it to be false. 


Other limitations are implicit in Prolog, as they seem to be in all computing lan-
guages. The most important of these, besides the problem of negation as failure, represent
violations of the semantic model for logic programming. In particular, there is the lack of
an occurs check (see Section 2.3; this allows a clause to unify with a subset of itself) and
the use of cut. The current generation of Prolog interpreters should be looked at pragmati-
cally. Some problems arise because “no efficient way is currently known” to get around
the issue (this is the situation with the occurs check); others arise from attempts to opti-
mize use of the depth-first with backtrack search (explicitl controlling search with the
cut). Many of the anomalies of Prolog are a result of trying to implement the nondeter-
ministic semantics of pure logic programming on a sequential computer. This includes the
problems introduced by the cut.


In the final section of Chapter 14 we introduce alternative inferencing schemes for
automated reasoning.


14.4 Further Issues in Automated Reasoning 


We described weak method problem solvers as using (a) a uniform representation medium
for (b) sound inference rules that focus on syntactic features of the representation and are
guided by (c) methods or strategies for combating the combinatorics of exhaustive search.
We conclude this chapter with further comments on each of these aspects of the weak
method solution process. 


14.4.1 Uniform Representations for Weak Method Solutions


The resolution proof procedure requires us to place all our axioms in clause form. This
uniform representation then allows us to resolve clauses and simplifies the design of prob-
lem solving heuristics. One major disadvantage of this approach is that much valuable
heuristic information can be lost in this uniform encoding. 


The if . . . then format of a rule often conveys more information for use of modus
ponens or production system search than one of its syntactic variants. It also offers us an
efficient way to use the rule. For instance, suppose we want to represent the abductive
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inference, Section 8.0, If the engine does not turn over and the lights do not come
on then the battery may be dead. This rule suggests how to check the  battery. 


The disjunctive form of the same rule obscures this heuristic information about how
the rule should be applied. If we express this rule in predicate calculus ¬ turns_over ∧
¬ lights → battery, the clause form of this rule is this: turns_over ∨ lights ∨ battery.
This clause can have a number of equivalent forms, and each of these represents a differ-
ent implication. 


(¬ turns_over ∧ ¬ lights) → battery 
(¬ turns_over → (battery ∨ lights)) 
(¬ battery ∧ ¬ lights) → turns_over 
(¬ battery → (turns_over ∨ lights))


and so on. 
To retain heuristic information in the automated reasoning process several research-


ers, including Nilsson (1980) and Bundy (1988), advocate reasoning methods that encode
heuristics by forming rules according to the way in which the human expert might design
the rule relationships. We have proposed this approach already in our and/or graph rea-
soning in Section 3.3 and the Prolog form of automated reasoning of Section 14.3. Rule-
based expert systems also allow the programmer to control search through the structure of
rules. We develop the idea further with the next two examples, one data-driven and the
second goal-driven. Both of these retain the form of implications and use this information
to guide search through an and/or graph. 


Consider, for use in data-driven reasoning, the following facts, rules (axioms), and
goal:


Fact:


(a ∨ (b ∧ c))


Rules (or axioms):


(a → (d ∧ e))


(b → f)


(c → (g ∨ h))


Goal:


← e ∨ f


The proof of e ∨ f is found in the and/or graph of Figure 14.13. Note the use of and
connectors on ∨ relations and the or connectors on ∧ relations in the data-driven search
space. If we are given that either a or b ∧ c is true, then we must reason with both
disjuncts to guarantee that our argument is truth preserving; hence these two paths are
conjoined. When b and c are true, on the other hand, we can continue to explore either of
these conjuncts. Rule matching takes any intermediate state, such as c, and replaces it with
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the conclusion of a rule, such as (g ∨ h), whose premise matches that state. The discovery
of both states e and f in Figure 14.13 indicates that the goal (e ∨ f) is established. 


In a similar fashion we can use matching of rules on and/or graphs for goal-driven
reasoning. When a goal description includes a ∨, as in the example of Figure 14.14, then
either alternative can be explored independently to establish the goal. If the goal is a
conjunction, then, of course, both conjuncts must be established.


Goal:


(a ∨ (b ∧ c))


Rules (or axioms):


(f ∧ d) → a
(e → (b ∧ c))
(g → d)


Fact:


f ∧ g


Direction
of search


Goal:     e ∨ f


f                  g                   h


d                    e                    b     f                    c     (g ∨ h)→ →


a     (d ∧e)                           b                             c→


a                                           b ∧ c


Fact:      a ∨ (b ∧ c)


Figure 14.13 Data-driven reasoning with an and/or graph
in the propositional calculus.
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Although these examples are taken from the propositional calculus, a similar search is
generated using predicate calculus facts and rules. Unification makes literals compatible
for applying inference rules across different branches of the search space. Of course,
unifications must be consistent (that is, unifiable) across different and branches of the
search space. 


This subsection has suggested solution methods to help preserve heuristic information
within the representational medium for weak method problem solving. This is essentially
the way the inference engines of expert systems allow the programmer to specify control
and heuristic information in a rule. Expert systems rely on the rule form, such as the order-
ing of rules or the ordering of the premises within a rule, for control of search rather than
depending totally on general weak problem-solving methods. What is lost in this approach
is the ability to apply uniform proof procedures, such as resolution, across the full set of
rules. As can be noted in the examples of Figures 14.13 and 14.14, modus ponens may still
be used, however. Production system control using either depth-first, breadth-first, or best-
first search offers one weak method reasoning architecture for implementing rule systems
(see examples in Chapters 4, 6, and 8). 


(f ∧ d)     a                   e     (b ∧ c)→


Goal:      a ∨ (b ∧ c)


a                               b    c


→


f                    d                         e


g     d→


g


Fact:     f     g


Direction
of search


∧


∧


Figure 14.14 Goal-driven reasoning with an and/or graph
in the propositional calculus.
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14.4.2 Alternative Inference Rules


Resolution is the most general sound inference rule we have presented so far. Several
more sophisticated inference rules have been created in an attempt to make resolution
more efficient. We briefly consider two of these: hyperresolution and paramodulation.


Resolution, as we have presented it, is actually a special variant called binary
resolution: exactly two parent clauses are clashed. A successful application of
hyperresolution replaces a sequence of binary resolutions to produce one clause.
Hyperresolution clashes, in a single step, a clause with some negative literals, referred to
as the nucleus, and a number of clauses with all positive literals, called the satellites.
These satellites must have one positive literal that will match with a negative literal of the
nucleus. There must also be one satellite for each negative literal of the nucleus. Thus the
result of an application of hyperresolution is a clause with all positive literals. 


An advantage of hyperresolution is that a clause of all positive literals is produced
from each hyperresolution inference, and the clause space itself is kept smaller because no
intermediate results are produced. Unifications across all clauses in the inference step
must be consistent. 


As an example of hyperresolution, consider the following clause set: 


¬ married(X,Y) ∨ ¬ mother(X,Z) ∨ father(Y,Z)


married(kate,george) ∨ likes(george,kate) 


mother(kate,sarah)


We draw a conclusion in one step using hyperresolution: 


father(george,sarah) ∨ likes(george,kate)


The first clause in the example is the nucleus; the second two are satellites. The
satellites are all positive, and there is one for each negative literal in the nucleus. Note how
the nucleus is just the clause form for the implication: 


married(X,Y) ∧ mother(X,Z) → father(Y,Z)


The conclusion of this rule is part of the final result. Note that there are no intermediate
results, such as: 


¬ mother(kate,Z) ∨ father(george,Z) ∨ likes(george,kate)


which we would find in any binary resolution proof applied to the same clause space.
Hyperresolution is sound and complete when used by itself. When combined with


other strategies, such as set of support, completeness may be compromised (Wos et al.
1984). It does require special search strategies to organize the satellite and nucleus
clauses, although in most environments where hyperresolution is used, the clauses are
often indexed by the name and positive or negative property of each literal. This makes it
efficient to prepare the nucleus and satellite clauses for the hyperresolution inference.
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An important and difficult issue in the design of theorem-proving mechanisms is the
control of equality. Especially complex are application areas, such as mathematics, where
most facts and relationships have multiple representations, such as can be obtained by
applying the associative and commutative properties to expressions. To convince yourself
of this with a very simple example, consider the multiple ways the arithmetic expression
3 + (4 + 5) can be represented, including 3 + ((4 + 0) + 5). This is a complex issue in that
expressions need to be substituted for, unified with, and checked for equality with other
expressions within automated mathematical problem solving. 


Demodulation is the process of rephrasing or rewriting expressions so they
automatically take on a chosen canonical form. The unit clauses used to produce this
canonical form are called demodulators. Demodulators specify the equality of different
expressions, allowing us to replace an expression with its canonical form. With proper use
of demodulators all newly produced information is reduced to a specified form before it is
placed in the clause space. For example, we might have a demodulator:


equal(father(father(X)),grandfather(X))


and the new clause: 


age(father(father(sarah)),86).


Before adding this new clause to the clause space, we apply the demodulator and add
instead:


age(grandfather(sarah),86).


The equality problem here is one of naming. Do we wish to classify a person as
father(father(X)) or grandfather(X)? Similarly, we can pick out canonical names for all
family relations: a brother(father(Y)) is uncle(Y), etc. Once we pick the canonical names
to store information under, we then design demodulators such as the equal clause to
reduce all new information to this determined form. Note that demodulators are always
unit clauses. 


Paramodulation is a generalization of equality substitution at the term level. For
example, given the expression: 


older(mother(Y),Y)


and the equality relationship: 


equal(mother(sarah),kate)


we can conclude with paramodulation: 


older(kate,sarah)
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Note the term-level matching and replacement of {sarah/Y} and mother(sarah) for
kate. A vital difference between demodulation and paramodulation is that the latter allows
a nontrivial replacement of variables in both the arguments of the equality predicate and
the predicate into which the substitution is made. Demodulation does replacement based
on the demodulator. Multiple demodulators may be used to get an expression into its final
form; paramodulation is usually used only once in any situation. 


We have given several simple examples of these powerful inference mechanisms.
They should be seen as more general techniques for use in a resolution clause space. Like
all the other inference rules we have seen, these are tightly linked to the chosen represen-
tation and must be controlled by appropriate strategies. 


14.4.3 Question Answering Supported by Resolution Refutation


In Section 14.2.5 we demonstrated a natural fit between the process of resolution refuta-
tion and the generation of answers for the original query (the theorem to be proved). Stuart
Shapiro and his colleagues (Burhans and Shapiro 2005) demonstrate how resolution refu-
tations also offer a useful paradigm for question answering. 


Burhans and Shipiro note that the refutation process partitions the clauses generated
during resolution refutations into three classes, each appropriate for answering different
types of questions about the theorem under consideration. In their research clauses that are
relevant are all identified as possible answers, where relevance is determined according to
a question (the theorem to be proved) and a knowledge base (the clause set used in the
proof), where any clause descended from the clause form of the negated goal is deemed
relevant.


The refutation proof is partitioned into three answer classes: specific, generic, and
hypothetical. These classes are distinguished by the way the literals making up the clause
share variables. The result is a context independent, i.e., it can be used with any set-of-
support based refutation, pragmatics for question answering.


Specific answers, sometimes referred to as extensional answers (Green 1969a, b), are
associated with the set of ground terms corresponding to the constants substituted for vari-
able values in the process of producing a refutation. For example, the query “is there any-
one at home?” would be replaced by the negated goal, “there is no one at home” and
would lead to a refutation when it is shown that “Amy is at home”. This set of individuals
that can be produced through the refutation process provide the specific answers.


Generic answers, also called intensional answers (Green 1969a,b), correspond to all
non-ground instances of answering clauses that can be associated with the refutation. For
example, for the query “is there anyone at home?”, any variable-based clauses, such as
“all the children are at home”, provided these clauses are contained in or are inferable
from the clause space, make up the set of generic answers.


Finally, hypothetical answers, sometimes called conditional or qualified, take the
form of a rule whose antecedent has some ground variables and whose consequent
matches the negated answer query. For example, “is there anyone at home?” might match
with the clause “if Allen is at home then Amy is at home” with the subsequent search to
determine whether Allen is at home. For more details see Burhans and Shiparo (2005).
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14.4.4 Search Strategies and Their Use


Sometimes the domain of application puts special demands on the inference rules and
heuristics for guiding their use. We have already seen the use of demodulators for
assistance in equality substitution. Bledsoe, in his natural deduction system, identifies two
important strategies for preparing theorems for resolution proof. He calls these strategies
split and reduce (Bledsoe 1971). 


Blades designed his strategies for use in mathematics and, in particular, for
application to set theory. The effect of these strategies is to break a theorem into parts to
make it easier to prove by conventional methods such as resolution. Split takes various
mathematical forms and splits them to appropriate pieces. The proof of A ∧ B is
equivalent to the proof of A and the proof of B. Similarly, the proof of A ↔ B is the proof
of A → B and the proof of A ← B.


The heuristic reduce also attempts to break down large proofs to their components.
For example, the proof of s ∈ A ∩ B may be decomposed into the proofs of s ∈ A and
s ∈ B. Again, to prove a property true of ¬ (A ∪ B) prove the property for ¬ A and for
¬ B. By breaking up larger proofs into smaller pieces, Bledsoe hopes to contain the search
space. His heuristics also include a limited use of equality substitution. 


As mentioned throughout this book, the appropriate use of heuristics is very much an
art that takes into account the application area as well as the representation and inference
rules used. We close this chapter by citing some general proverbs, all of which are
sometimes false but which can, with careful use, be very effective. These proverbs sum up
thoughts taken from researchers in the area (Bledsoe 1971, Nilsson 1980, Wos et al. 1984,
Dallier 1986, Wos 1988) as well as our own reflections on weak method problem solvers.
We state them without further comment.


Use, whenever possible, clauses with fewer literals.


Break the task into subtasks before employing general inferencing.


Use equality predicates whenever this is appropriate.


Use demodulators to create canonical forms.


Use paramodulation when inferencing with equality predicates.


Use strategies that preserve “completeness”.


Use set of support strategies, for these contain the potential contradiction.


Use units within resolution, as these shorten the resulting clause.


Perform subsumption checks with new clauses.


Use an ordering mechanism on clauses and literals within the clauses that reflect your
intuitions and problem-solving expertise. 
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14.5 Epilogue and References


Weak method solvers require choosing a representational medium, inference mechanisms,
and search strategies. These three choices are intricately interwoven and cannot be made
in isolation from each other. The application domain also affects the choice of representa-
tion, inference rules, and strategies. The “proverbs” at the end of the previous section
should be considered in making these choices. 


Resolution is the process of constraining possible interpretations until the clause
space with the inclusion of the negated goal is inconsistent. We do not address the sound-
ness of resolution or the completeness of resolution refutations. These proofs are based on
Herbrand’s theorem (Chang and Lee 1973) and the notion of possible interpretations of
the clause set. The interested reader is encouraged to go to the references for these proofs. 


A number of other references are appropriate: Automated Theorem Proving: A Logi-
cal Basis offers a formal approach (Loveland 1978). A number of classic early papers in
the field are collected in a series The Automation of Reasoning: Collected Papers, 1957 to
1970 (Siekmann and Wrightson 1983a, b). Nilsson (1980), Weyhrauch (1980), Genesereth
and Nilsson (1987), Kowalski (1979b), Lloyd (1984) Wos et al. (1984), and Wos (1988)
offer summaries of important concepts in automated reasoning. Robinson (1965) and
Bledsoe (1977) have made fundamental contributions to the field. An important research
contribution is made by Boyer and Moore (1979). Early theorem-proving work by Newell
and Simon and their colleagues is reported in Computers and Thought (Feigenbaum and
Feldman 1963) and Human Problem Solving (Newell and Simon 1972). Question answer-
ing based on resolution refutations is described by Burhans and Shapiro (2005).


CADE, the Conference on Automated DEduction is a major forum for the presenta-
tion of results in automated reasoning. Model checking, verification systems, and scalable
knowledge representation, are current research issues (McAllester 1999, Ganzinger et al.
1999, Veroff and Spinks 2006). Research by Wos and his colleagues at Argonne National
Laboratory is important. Veroff (1997) has published a set of essays in honor of Wos.
Bundy’s work (1983, 1988) in automated reasoning at the University of Edinburgh is also
important, as is extending the Boyer-Moore theorem prover at the University of Texas,
Austin, see Computer-Aided Reasoning: ACL2 Case Studies, Kaufmann et al. (2000).


14.6 Exercises


  1. Take the logic-based financial advisor of Section 2.4, put the predicates describing the
problem into clause form, and use resolution refutations to answer queries such as whether
a particular investor should make an investment(combination).


  2. Use resolution to prove Wirth’s statement in Exercise 12, Chapter 2. 


  3. Use resolution to answer the query in Example 3.3.4. 


  4. In Chapter 5 we presented a simplified form of the knight’s tour. Take the path3 rule, put
it in clause form, and use resolution to answer queries such as path3(3,6). Next, use the
recursive path call, in clause form, to answer queries. 
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  5. How might you use resolution to implement a “production system” search? 


  6. How would you do data-driven reasoning with resolution? Use this to address the search
space of Exercise 1. What problems might arise in a large problem space? 


  7. Use resolution for queries in the farmer, wolf, goat, and cabbage problem of Section 15.3.


  8. Use resolution to solve the following puzzle from Wos et al. (1984). Four people: Roberta,
Thelma, Steve, and Pete hold eight different jobs, each person with exactly two jobs. The
jobs are, chef, guard, nurse, telephonist, police officer, teacher, actor, and boxer. The nurse
is a male. The husband of the chef is the telephonist. Roberta is not a boxer. Pete has no
education over ninth grade. Roberta, the chef, and the police officer went golfing together.
Who holds which jobs? Show how the addition of a sex bias can change the problem. 


  9. Work out two examples for hyperresolution where the nucleus has at least four literals. 


10. Write a demodulator for sum that would cause clauses of the form equal(ans, sum(5,
sum(6, minus(6)))) to be reduced to equal(ans, sum(5, 0)). Write a further demodula-
tor to reduce this last result to equal(ans, 5).


11. Pick a “canonical set” of six family relations. Write demodulators to reduce alternative
forms of relations to the set. For example, your “mother’s brother” is “uncle.”


12. Take the happy student problem of Figure 14.5 and apply three of the refutation strategies
of Section 14.2.4 to its solution. 


13. Put the following predicate calculus expression in clause form: 


∀ (X)(p(X) → {∀ (Y)[p(Y) → p(f(X,Y))] ∧ ¬ ∀ (Y)[q(X,Y) → p(Y)]}) 


14. Create the and/or graph for the following data-driven predicate calculus deduction. 


Fact: ¬ d(f) ∨ [b(f) ∧ c(f)].


Rules: ¬ d(X) → ¬ a(X) and b(Y) → e(Y) and g(W) ← c(W).


Prove: ¬ a(Z) ∨ e(Z).


15. Prove the linear input form strategy is not refutation complete.


16. Create the and/or graph for the following problem. Why is it impossible to conclude the
goal:


r(Z) ∨ s(Z)?


Fact: p(X) ∨ q(X).


Rules: p(a) → r(a) and q(b) → s(b).


17. Use factoring and resolution to produce a refutation for the following clauses:
p(X) ∨ p(f(Y)) and ¬ p(W) ∨ ¬ p(f(Z)). Try to produce a refutation without factoring. 


18. Derive a resolution proof of the theorem of Figure 14.1.


19. An alternative semantic model for logic programming is that of  Flat Concurrent Prolog.
Compare Prolog as seen in Section 14.3 with Flat Concurrent Prolog (Shapiro 1987).
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UNDERSTANDING
NATURAL LANGUAGE


But it must be recognized that the notion “probability of a sentence” is an entirely useless
one under any known interpretation of this term...


—NOAM CHOMSKY,  (1965)


I understand a fury in your words, 
But not the words. 


—WILLIAM SHAKESPEARE, Othello


They have been at a great feast of languages, 
and stolen the scraps. 


—WILLIAM SHAKESPEARE, Love’s Labour’s Lost


I wish someone would tell me what “Ditty wah ditty” means. 


—ARTHUR BLAKE


15.0 The Natural Language Understanding Problem


Communicating with natural language, whether as text or as speech, depends heavily on
our language skills, knowledge of the domain of interest, and expectations within that
domain. Understanding language is not merely the transmission of words: it also requires
inferences about the speaker’s goals, knowledge, and assumptions, as well as about the
context of the interaction. Implementing a natural language understanding program
requires that we represent knowledge and expectations of the domain and reason effec-
tively about them. We must consider such issues as nonmonotonicity, belief revision, met-
aphor, planning, learning, and the practical complexities of human interaction. But these
are the central problems of artificial intelligence itself! 


15
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Consider, as an example, the following lines from Shakespeare’s Sonnet XVIII:


Shall I compare thee to a summer’s day? 
Thou art more lovely and more temperate: 
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date:


We cannot understand these lines through a simplistic, literal treatment of meaning.
Instead, we must address such issues as: 


1. What were Shakespeare’s intentions in writing? We must know about human
love and its social conventions to begin to understand these lines. Or was Shakes-
peare just trying to get something to his publisher so he could be paid?


2. Why did Shakespeare compare his beloved to a summer’s day? Does he mean
that she is 24 hours long and can cause sunburn or that she makes him feel the
warmth and beauty of summer? 


3. What inferences does the passage require? Shakespeare’s intended meaning does
not reside explicitly in the text; it must be inferred using metaphors, analogies,
and background knowledge. For instance, how do we come to interpret the
references to rough winds and the brevity of summer as lamenting the shortness
of human life and love? 


4. How does metaphor shape our understanding? The words are not mere references
to explicit objects such as blocks on a table: the poem’s meaning is in the selec-
tive attribution of properties of a summer’s day to the beloved. Which properties
are attributed, and which are not, and above all, why are some properties impor-
tant while others are ignored?


5. Must a computer-based text-to-speech system know something about the iambic
pentameter? How could a computer summarize what this poem is “about,” or
retrieve it intelligently from a corpus of poetry?


We cannot merely chain together the dictionary meanings of Shakespeare’s words and
call the result understanding. Instead, we must employ a complex process of capturing the
word patterns, parsing the sentences, constructing a representation of the semantic mean-
ings, and interpreting these meanings in light of our knowledge of the problem domain. 


Our second example is part of a web ad for a faculty position in computer science.


The Department of Computer Science of the University of New Mexico. . . is conducting a
search to fill two tenure-track positions. We are interested in hiring people with interests in:


Software, including analysis, design, and development tools. . .
Systems, including architecture, compilers, networks. . .
...


Candidates must have completed a doctorate in. . .
The department has internationally recognized research programs in adaptive computation,
artificial intelligence, . . . and enjoys strong research collaborations with the Santa Fe Institute
and several national laboratories. . . 
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Several questions arise in understanding this job ad:


1. How does the reader know that this ad is for a faculty position, when only “ten-
ure-track” is explicitly stated? For how long are people hired as tenure-track?


2. What software and software tools are required for working in a university envi-
ronment, when none were explicitly mentioned? Cobol, Prolog, UML? A person
would need a lot of knowledge about university teaching and research to under-
stand these expectations.


3. What do internationally recognized programs and collaborations with interesting
institutions have to do with a university job ad?


4. How could a computer summarize what this ad is about? What must it know to
intelligently retrieve this ad from the web for a job-hunting PhD candidate?


There are (at least!) three major issues involved in understanding language. First, a
large amount of human knowledge is assumed. Language acts describe relationships in an
often complex world. Knowledge of these relationships must be part of any understanding
system. Second, language is pattern based: phonemes are components of words and words
make phrases and sentences. Phoneme, word, and sentence orders are not random. Com-
munication is impossible without a rather constrained use of these components. Finally,
language acts are the product of agents, either human or computer. Agents are embedded
in complex environments with both individual and sociological dimensions. Language
acts are purposive.


This chapter provides an introduction to the problems of natural language understand-
ing and the computational techniques developed for their solution. Although in this chap-
ter we focus primarily on the understanding of text, speech-understanding and generation
systems must also solve these problems, as well as the additional difficulties associated
with the recognition and disambiguation of words grounded in a particular context. 


Early AI programs, because of the knowledge required to understand unconstrained
language, made progress by restricting their focus to microworlds, limited applications
that required minimal domain knowledge. One of the earliest programs to take this
approach was Terry Winograd’s SHRDLU (Winograd 1972), which could converse about
a blocks world consisting of differently shaped and colored blocks and a hand for moving
them about, as in Figure 15.1. See also Section 8.4.


SHRDLU could respond to English-language queries such as “What is sitting on the
red block?” “What shape is the blue block on the table?” or “Place the green pyramid on
the red brick.” It could handle pronoun references such as “Is there a red block? Pick it
up.” It could even understand ellipses, such as “What color is the block on the blue brick?
Shape?” Because of the simplicity of the blocks world, it was possible to provide the sys-
tem with adequate knowledge. Because the blocks world did not involve the more difficult
problems of commonsense reasoning such as understanding time, causality, possibilities,
or beliefs, the techniques for representing this knowledge were relatively straightforward.
In spite of its limited domain, SHRDLU did provide a model for the integration of syntax
and semantics and demonstrated that a program with sufficient knowledge of a domain of
discourse could communicate meaningfully in natural language. 
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Complementary to the knowledge-intensive component of language understanding
just described is to model the patterns and expectations of the language expressions them-
selves. Markov Chains offer a powerful tool for capturing these regularities. In language
use, for example, articles and adjectives generally precede nouns rather than follow them
and certain nouns and verbs tend to occur together. Markov models can also capture the
relationships between language patterns and the worlds they describe.


In Section 15.1 we present a high-level analysis of language understanding. Section
15.2 presents a syntactic analysis; Section 15.3 combines syntax and semantics using aug-
mented transition network parsing. Section 15.4 presents the stochastic approach to cap-
turing regularities in language expressions. Finally, in Section 15.5 we consider several
applications where natural language understanding programs are useful: question answer-
ing, accessing information in databases, web queries, and text summarization. 


15.1  Deconstructing Language: An Analysis


Language is a complicated phenomenon, involving processes as varied as the recognition
of sounds or printed letters, syntactic parsing, high-level semantic inferences, and even the
communication of emotional content through rhythm and inflection. To manage this
complexity, linguists have described different levels of analysis for natural language: 


1. Prosody deals with the rhythm and intonation of language. This level of analysis
is difficult to formalize and often neglected; however, its importance is evident in
the powerful effect of poetry or religious chants, as well as the role played by
rhythm in children’s wordplay and the babbling of infants. 


2. Phonology examines the sounds that are combined to form language. This branch
of linguistics is important for computerized speech recognition and generation. 


Figure 15.1 A blocks world, adapted from Winograd (1972).
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3. Morphology is concerned with the components (morphemes) that make up
words. These include the rules governing the formation of words, such as the
effect of prefixes (un-, non-, anti-, etc.) and suffixes (-ing, -ly, etc.) that modify
the meaning of root words. Morphological analysis is important in determining
the role of a word in a sentence, including its tense, number, and part of speech.


4. Syntax studies the rules for combining words into legal phrases and sentences,
and the use of those rules to parse and generate sentences. This is the best formal-
ized and thus the most successfully automated component of linguistic analysis.


5. Semantics considers the meaning of words, phrases, and sentences and the ways
in which meaning is conveyed in natural language expressions. 


6. Pragmatics is the study of the ways in which language is used and its effects on
the listener. For example, pragmatics would address the reason why “Yes” is
usually an inappropriate answer to the question “Do you have a watch?”


7. World knowledge includes knowledge of the physical world, the world of human
social interaction, and the role of goals and intentions in communication. This
general background knowledge is essential to understand the full meaning of a
text or conversation. 


Although these levels of analysis seem natural and are supported by psychological
evidence, they are, to some extent, artificial divisions that have been imposed on lan-
guage. All of these interact extensively, with even low-level intonations and rhythmic
variations having an effect on the meaning of an utterance, for example, the use of sar-
casm. This interaction is evident in the relationship between syntax and semantics, and
although some division along these lines seems essential, the exact boundary is difficult to
characterize. For example, sentences such as “They are eating apples” have multiple pars-
ings, resolved only by attention to meaning in context. Syntax also affects semantics, as is
seen by the role of phrase structure in interpreting the meaning of a sentence. Although the
exact nature of the distinction between syntax and semantics is often debated, both the
psychological evidence and its utility in managing the complexity of the problem argue
for its retention. We address these deeper issues of language understanding and interpreta-
tion again in Chapter 16. 


Although the specific organization of natural language understanding programs varies
with different philosophies and applications—e.g., a front end for a database, an automatic
translation system, a story understanding program—all of them must translate the original
sentence into an internal representation of its meaning. Generally, symbol-based natural
language understanding follows the stages presented in Figure 15.2. 


The first stage is parsing, which analyzes the syntactic structure of sentences. Parsing
both verifies that sentences are syntactically well formed and also determines a linguistic
structure. By identifying the major linguistic relations such as subject–verb, verb–object,
and noun–modifier, the parser provides a framework for semantic interpretation. This is
often represented as a parse tree. The language parser employs knowledge of language
syntax, morphology, and some semantics. 


The second stage is semantic interpretation, which produces a representation of the
meaning of the text. In Figure 15.2 this is shown as a conceptual graph. Other
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representations commonly used include conceptual dependencies, frames, and logic-based
representations. Semantic interpretation uses knowledge about the meaning of words and
linguistic structure, such as case roles of nouns or the transitivity of verbs. In Figure 15.2,
the program used knowledge of the meaning of kiss to add the default value of lips for the
instrument of kissing. This stage also performs semantic consistency checks. For example,
the definition of the verb kiss may include constraints that the object be a person if the
agent is a person, that is, Tarzan kisses Jane and does not (normally) kiss Cheetah. 


In the third stage, structures from the knowledge base are added to the internal
representation of the sentence to produce an expanded representation of the sentence’s
meaning. This adds the necessary world knowledge required for complete understanding,
such as the facts that Tarzan loves Jane, that Jane and Tarzan live in the jungle, and that
Cheetah is Tarzan’s pet. This resulting structure represents the meaning of the natural lan-
guage text and is used by the system for further processing. 


In a database front end, for example, the extended structure would combine the repre-
sentation of the query’s meaning with knowledge about the organization of the database.


Input: Tarzan kissed Jane.


Parsing


Contextual/world
knowledge interpretation


Semantic interpretation


To:
question answerer,
database query handler,
translator, etc.


parse tree:       sentence


                                   verb phrase


noun phrase                                noun phrase


      noun                 verb                 noun


    Tarzan               kissed               Jane


internal representation:


person: tarzan                    person: jane


    agent               kiss               object


                       instrument            lips


expanded representation:


   possess                  pet: cheetah


  experiencer            love          object


person: tarzan                   person: jane


        agent             kiss               object


                         instrument              lips


location               jungle              location


Figure 15.2 Stages in producing an internal representation
of a sentence.
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This could then be translated into an appropriate query in the database language (see Sec-
tion 15.5.2). In a story understanding program, this extended structure would represent the
meaning of the story and be used to answer questions about it (see the discussion of scripts
in Chapter 7 and of text summarization in Section 15.5.3).


These stages exist in most (non probabilistic) natural language understanding sys-
tems, although they may or may not correspond to distinct software modules. For exam-
ple, many programs do not produce an explicit parse tree but generate an internal semantic
representation directly. Nevertheless, the tree is implicit in the parse of the sentence.
Incremental parsing (Allen 1987) is a commonly used technique in which a fragment of
the internal representation is produced as soon as a significant part of the sentence is
parsed. These fragments are combined into a complete structure as the parse proceeds.
These fragments are also used to resolve ambiguities and guide the parser. 


15.2 Syntax


15.2.1 Specification and Parsing Using Context-Free Grammars


Chapter 3 introduced the use of rewrite rules to specify a grammar. The rules listed below
define a grammar for simple transitive sentences such as “The man likes the dog.” The
rules are numbered for reference.


  1. sentence 


 


↔ noun_phrase verb_phrase 
  2. noun_phrase 


 


↔ noun 
  3. noun_phrase 


 


↔ article noun 
  4. verb_phrase 


 


↔ verb 
  5. verb_phrase 


 


↔ verb noun_phrase 
  6. article 


 


↔ a
  7. article 


 


↔ the
  8. noun 


 


↔ man
  9. noun 


 


↔ dog
10. verb 


 


↔ likes
11. verb


 


↔ bites


Rules 6 through 11 have English words on the right-hand side; these rules form a dic-
tionary of words that may appear in sentences. These words are the terminals of the gram-
mar and define a lexicon of the language. Terms that describe higher-level linguistic
concepts (sentence, noun_phrase, etc.) are called nonterminals. Nonterminals appear
in this typeface. Note that terminals do not appear in the left-hand side of any rule. 


A legal sentence is any string of terminals that can be derived using these rules. A der-
ivation begins with the nonterminal symbol sentence and produces a string of terminals
through a series of substitutions defined by the rules of the grammar. A legal substitution
replaces a symbol that matches the left-hand side of a rule with the symbols on the right-
hand side of that rule. At intermediate stages of the derivation, the string may contain both
terminals and nonterminals and is called a sentential form.
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A derivation of the sentence “The man bites the dog” is given by:


This is an example of a top-down derivation: it begins with the sentence symbol and
works down to a string of terminals. A bottom-up derivation starts with a string of
terminals and replaces right-hand-side patterns with those from the left-hand side,
terminating when all that remains is the sentence symbol.


A derivation can be represented as a tree structure, known as a parse tree, in which
each node is a symbol from the set of rules of the grammar. The tree’s interior nodes are
nonterminals; each node and its children correspond, respectively, to the left- and right-
hand side of a rule in the grammar. The leaf nodes are terminals and the sentence symbol
is the root of the tree. The parse tree for “The man bites the dog” appears in Figure 15.3.


Not only does the existence of a derivation or parse tree prove that a sentence is legal
in the grammar, but it also determines the structure of the sentence. The phrase structure
of the grammar defines the deeper linguistic organization of the language. For example,
the breakdown of a sentence into a noun_phrase and a verb_phrase specifies the


STRING APPLY RULE #


sentence 1


noun_phrase verb_phrase 3


article noun verb_phrase 7


The noun verb_phrase 8


The man verb_phrase 5


The man verb noun_phrase 11


The man bites noun_phrase 3


The man bites article noun 7


The man bites the noun 9


The man bites the dog


Sentence


Noun_phrase                        Verb_phrase


Article        Noun            Verb          Noun_phrase


The              man           bites        the             dog


Article         Noun


Figure 15.3 Parse tree for the sentence The man bites
the dog.
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relation between an action and its agent. This phrase structure plays an essential role in
semantic interpretation by defining intermediate stages in a derivation at which semantic
processing may take place, as seen in Section 14.3. 


Parsing is the problem of constructing a derivation or a parse tree for an input string
from a formal definition of a grammar. Parsing algorithms fall into two classes: top-down
parsers, which begin with the top-level sentence symbol and attempt to build a tree
whose leaves match the target sentence, and bottom-up parsers, which start with the
words in the sentence (the terminals) and attempt to find a series of reductions that yield
the sentence symbol. 


One difficulty that can add huge complexity to the parsing problem, is in determining
which of several potentially applicable rules should be used at any step of the derivation.
If the wrong choice is made, the parser may fail to recognize a legal sentence. For exam-
ple, in attempting to parse the sentence “The dog bites” in a bottom-up fashion, rules 7, 9,
and 11 produce the string article noun verb. At this point, an erroneous application of
rule 2 would produce article noun_phrase verb; this could not be reduced to the sen-
tence symbol. The parser should have used rule 3 instead. Similar problems can occur in
a top-down parse.


The problem of selecting the correct rule at any stage of the parse is handled either by
allowing the parser to set backtrack pointers and return to the problem situation if an
incorrect choice was made (see Section 3.2) or by using look-ahead to check the input
stream for features to help determine the proper rule to apply. With either approach, we
must take care to control the complexity of execution while guaranteeing a correct parse. 


The inverse problem is generation, or producing legal sentences from an internal rep-
resentation. Generation starts with a representation of some meaningful content (such as a
semantic network or conceptual dependency graph) and constructs a grammatically cor-
rect sentence that communicates this meaning. Generation is not merely the reverse of
parsing; it encounters unique difficulties and requires separate methodologies. We present
recursive descent context free and context sensitive parsers in the auxiliary materials.


Because parsing is particularly important in the processing of programming
languages as well as natural language, researchers have developed a number of different
parsing algorithms, including both top-down and bottom-up strategies. Although a com-
plete survey of parsing algorithms is beyond the scope of this chapter, we do consider sev-
eral approaches to parsing in some detail. In the next section we show the Earley parser, an
important polynomial-time parser based on dynamic programming. In Section 15.3, we
introduce semantic constraints to parsers, with transition network parsers. These parsers
are not sufficiently powerful for the semantic analysis of natural language, but they do
form the basis for augmented transition networks, which have proved to be a useful and
powerful tool in natural language work.


15.2.2 The Earley Parser: Dynamic Programming Revisited


Dynamic programming (DP) was originally proposed by Richard Bellman (1956) and pre-
sented with several examples in Section 4.1. The idea is straightforward: when addressing
a complex problem that can be broken down into multiple interrelated subproblems, save








628 PART V / ADVANCED TOPICS FOR AI PROBLEM SOLVING


partial solutions as they are generated so that they can be reused in the continuing solution
process. This approach is sometimes called memoizing the subproblem results for reuse.


There are many examples of dynamic programming in pattern matching, for example,
in determining a difference measure between two strings of bits or characters. The overall
difference between the strings will be a function of the differences between their specific
components. An example of this is a spell checker suggesting words that are “close” to
your misspelled word (Section 4.1). Another example of DP is to recognize words in
speech understanding as a function of the possible phonemes from an input stream. As
phonemes are recognized (with associated probabilities), the most appropriate word is
often a function of the combined conjoined probabilistic measures of the individual
phones (see Section 13.X). In this section, we use DP to show the Earley parser determin-
ing whether strings of words make up syntactically correct sentences. Our pseudo-code is
adapted from that of Jurafsky and Martin (2008).


The parsing algorithms of Section 15.2.1 are often implemented with a recursive,
depth-first, and left-to-right search of possible acceptable syntactic structures. This search
approach can mean that many of the possible acceptable partial parses of the first (left-
most) components of the string are repeatedly regenerated. This revisiting of early partial
solutions within the full parse structure is the result of later backtracking requirements of
the search and can become exponentially expensive and in larger parses. Dynamic pro-
gramming provides an efficient alternative where partial parses, once generated, are saved
for reuse in the overall final parse of a string of words. The first DP-based parser was cre-
ated by Earley (1970).


Memoization and Dotted Pairs


In parsing with Earley’s algorithm the memoization of partial solutions (partial parses) is
done with a data structure called a chart. This is why the Earley approach to parsing is
often called chart parsing. The chart is generated through the use of dotted grammar rules.


The dotted grammar rule provides a representation that indicates, in the chart, the
state of the parsing process at any given time. Every dotted rule falls into one of three cat-
egories, depending on whether the dot's position is at the beginning, somewhere in the
middle, or at the end of the right hand side, RHS, of the grammar rule. We refer to these
three categories as the initial, partial, or completed parsing stages, respectively:


Initial prediction:        Symbol → . RHS_unseen
Partial parse: Symbol → RHS_seen  . RHS_unseen
Completed parse:      Symbol → RHS_seen  .
In addition, there is a natural correspondence between states containing different dot-


ted rules and the edges of the parse tree(s) produced by the parse.  Consider the following
very simple grammar, where terminal symbols are surrounded by quotes, as in “mary”:


Sentence → Noun  Verb
Noun → “mary”
Verb → “runs”
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As we perform a top-down, left-to-right parse of this sentence, the following sequence of
states is produced:


Sentence → . Noun  Verb predict:  Noun followed by a  Verb
Noun → . mary predict:   mary
Noun → mary . scanned:   mary 
Sentence → Noun . Verb completed:  Noun;    predict: Verb
Verb → . runs predict:  runs
Verb → runs . scanned:  runs 
Sentence →  Noun  Verb . completed:  Verb, completed: sentence


Note that the scanning and completing procedures deterministically produce a result. The
prediction procedure describes the possible parsing rules that can apply to the current situ-
ation. Scanning and prediction create the states in the parse tree of Figure 15.4.


Earley's algorithm operates by generating top-down and left-to-right predictions of
how to parse a given input. Each prediction is recorded as a state containing all the rele-
vant information about the prediction, where the key component of each state is a dotted
rule. (A second implementation component will be introduced in the next section.) All of
the predictions generated after examining a particular word of the input are collectively
referred to as the state set.


For a given input sentence with n words, w1 to wn, a total of n + 1 state sets are gen-
erated: [S0, S1, …, Sn]. The initial  state set S0 contains those predictions that are made
before examining any input words, S1 contains predictions made after examining w1, and
so on. We refer to the entire collection of state sets as the chart produced by the parser.
Figure 15.4 illustrates the relationship between state set generation and the examination of
input words. Although, traditionally, the sets of states that make up each component of the
parse are called state sets, the order of the generation of these states is important. Thus we
will call each component of the chart the state list, and describe it as [State1, State2, …,
Staten]. This also works well with the Prolog implementation in the auxiliary materials,
where the state lists will be maintained as Prolog lists. Finally, we describe each state of
the state list as a sequence of specific symbols enclosed by brackets, for example, ($ → .
S).


Figure 15.4 The relationship of dotted rules to the generation of a parse tree.


Noun . Verb Noun  Verb .
    Noun


mary .
mary


runs .
runs


   Sentence


. Noun  Verb


.
..


.


.
Verb
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Now consider Earley’s algorithm parsing the simple sentence mary runs, using the
grammar above. The algorithm begins by creating a dummy start state, ($ → . S), that is
the first member of state list S0. This state represents the prediction that the input string
can be parsed as a sentence, and it is inserted into S0 prior to examining any input words.
A successful parse produces a final state list Sn, which contains the state ($ → S .).


Beginning with S0, the parser executes a loop in which each state, Si, in the current
state list is examined in order and used to generate new states.  Each new state is generated
by one of three procedures that are called the predictor, scanner, and completer.  The
appropriate procedure is determined by the dotted rule in state S, specifically by the gram-
mar symbol (if any) following the dot in the rule.


In our example, the first state to be examined contains the rule ($ → . S).  Since the
dot is followed by the symbol S, this state is “expecting” to see an instance of S occur
next in the input. As S is a nonterminal symbol of the grammar, the predictor procedure
generates all states corresponding to a possible parse of S. In this case, as there is only one
alternative for S, namely that S → Noun Verb, only one state, (S → . Noun Verb), is
added to S0. As this state is expecting a part of speech, denoted by the nonterminal symbol
Noun following the dot, the algorithm examines the next input word to verify that predic-
tion. This is done by the scanner procedure, and since the next word matches the predic-
tion, mary is indeed a Noun, the scanner generates a new state recording the match:
(Noun → mary .).  Since this state depends on input word w1, it becomes the first state in
state list S1 rather than being added to S0. At this point the chart, containing two state
lists, looks as follows, where after each state we name the procedure that generated it:


S0: [($ → . S), dummy start state
       (S → . Noun Verb)] predictor
S1: [(Noun → mary .)] scanner
Each state in the list of states S0 has now been processed, so the algorithm moves to


S1 and considers the state (Noun → mary .).  Since this is a completed state, the compl-
eter procedure is applied. For each state expecting a Noun, that is, has the . Noun pat-
tern, the completer generates a new state that records the discovery of a Noun by
advancing the dot over the Noun symbol. In this case, the completer produces the state
(S → . Noun Verb) in S0 and generates the new state (S → Noun .Verb) in the list S1.
This state is expecting a part of speech, which causes the scanner to examine the next
input word w2.  As w2 is a Verb, the scanner generates the state (Verb → runs .) and
adds it to S2, resulting in the following chart:


S0: [($ → . S), start
       (S → . Noun Verb)] predictor
S1: [(Noun → mary .), scanner


              (S → Noun .Verb)] completer
S2: [(Verb → runs .)] scanner
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Processing the new state S2, the completer advances the dot in (S → Noun . Verb)
to produce (S → Noun Verb .), from which the completer generates the state ($ → S .)
signifying a successful parse of a sentence.  The final chart for mary runs, with three state
lists, is:


S0: [($ → . S), start
       (S → . Noun Verb)] predictor
S1: [(Noun → mary .), scanner


              (S → Noun .Verb)] completer
S2: [(Verb → runs .)] scanner
       (S → Noun Verb .), completer
       ($ → S .)] completer


15.2.2.2 The Earley Algorithm: Pseudo-code 


To represent computationally the state lists produced by the dotted pair rules above, we
create indices to show how much of the right hand side of a grammar rule has been parsed.
We first describe this representation and then offer pseudo-code for implementing it
within the Earley algorithm. 


Each state in the state list is augmented with an index indicating how far the input
stream has been processed. Thus, we extend each state description to a (dotted rule [i, j])
representation where the [i, j] pair denotes how much of right hand side, RHS, of the
grammar rule has been seen or parsed to the present time. For the right hand side of a
parsed rule that includes zero or more seen and unseen components indicated by the ., we
have (A → Seen . Unseen, [i,j]), where i is the start of Seen and j is the position of . in
the word sequence.


We now add indices to the parsing states discussed earlier for the sentence mary
runs:


($ → . S, [0, 0]) produced by predictor, i = j = 0, nothing parsed
(Noun → mary ., [0,1]) scanner sees w1 between word indices 0 and 1
(S→ Noun .Verb, [0,1])   completer has seen Noun (mary) between 0 and 1
(S → Noun Verb ., [0,2]) completer has seen sentence S between 0 and 2


Thus, the state indexing pattern shows the results produced by each of the three state gen-
erators using the dotted rules along with the word index wi.


To summarize, the three procedures for generating the states of the state list are: pre-
dictor generating states with index [j, j] going into chart[j], scanner considering word
wj+1 to generate states indexed by [j, j+1] into chart[j+1], and completer operating on
rules with index [i, j], i < j, adding a state entry to chart[j]. Note that a state from the dot-
ted-rule, [i, j] always goes into the state list chart[j]. Thus, the state lists include chart[0],
..., chart[n] for a sentence of n words. Now that we have presented the indexing scheme
for representing the chart, we give the pseudo-code for the Earley parser.
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function EARLEY-PARSE(words, grammar)  returns chart
begin


      chart := empty
      ADDTOCHART(($ → . S, [0, 0]), chart[0])                   % dummy start state


for i from 0 to LENGTH(words) do
            for each state in chart[i] do
                          if rule_rhs(state) = … . A … and A is not a part of speech


then PREDICTOR(state)
                            else if rule_rhs(state) = … . L …               % L is part of speech


then SCANNER(state)
else COMLETER(state)                            % rule_rhs = RHS .


       end


procedure PREDICTOR((A → … . B …, [i,  j]))
begin


      for each (B → RHS) in grammar do
            ADDTOCHART((B → . RHS, [j,  j]), chart[j])
       end


procedure SCANNER((A → … . L …, [i,  j]))
begin


      if (L → word[j]) is_in grammar
            then ADDTOCHART((L → word[j] ., [j,  j + 1]), chart[j + 1])
       end


procedure COMPLETER((B → … ., [j, k]))
begin


      for each (A → … . B …, [i, j]) in chart[j] do
            ADDTOCHART((A → … B . …, [i, k]), chart[k])
      end


procedure ADDTOCHART(state, state-list)
begin


      if state is not in state-list
            then ADDTOEND(state, state-list)
       end


Our first example, the Earley parse of the sentence Mary runs, was intended to be
simple but illustrative, with the very detailed presentation of the state lists and their indi-
ces. A more complex - and ambiguous - sentence, John called Mary from Denver is pre-
sented in the auxiliary materials with code for implementing a parse using the Earley
algorithm in both the Prolog and Java languages. The ambiguity of this sentence is
reflected in the production of two different parses that redflecting that ambiguity. The
selection of one of these parses is acomplished by running the backward component of the
dynamic programming based Earley parser.
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15.3 Transition Network Parsers and Semantics


To this point we have offered representations and algorithms that support symbol based
syntactic anslysis. The analysis of syntactic relationships, even when constrained for con-
text sensitive parsing (e.g., noun-verb agreement), does not consider semantic relation-
ships. In this section we introduce transition networks to address this issue.


15.3.1 Transition Network Parsers


A transition network parser represents a grammar as a set of finite-state machines or
transition networks. Each network corresponds to a single nonterminal in the grammar.
Arcs are labeled with either terminal or nonterminal symbols. Each path through the net-
work, the start state to the final state, corresponds to some rule for that nonterminal; the
sequence of arc labels on the path is the sequence of symbols on the right-hand side of the
rule. The grammar of Section 15.2.1 is represented by the networks of Figure 15.5. When
there is more than one rule for a nonterminal, the corresponding network has multiple
paths from the start to the goal, e.g., the rules noun_phrase ↔ noun and noun_phrase
↔ article noun are captured by alternative paths through the noun_phrase network. 


Finding a successful transition through the network for a nonterminal corresponds to
the replacement of that nonterminal by the right-hand side of a grammar rule. For
example, to parse a sentence, a transition network parser must find a transition through the
sentence network. It begins in the start state (Sinitial) and takes the noun_phrase transition
and then the verb_phrase transition to reach the final state (Sfinal). This is equivalent to
replacing the original sentence symbol with noun_phrase verb_phrase.


In order to cross an arc, the parser examines its label. If the label is a terminal symbol,
the parser checks the input stream to see whether the next word matches the arc label. If it
does not match, the transition cannot be taken. If the arc is labeled with a nonterminal
symbol, the parser retrieves the network for that nonterminal and recursively attempts to
find a path through it. If the parser fails to find a path through this network, the top-level
arc cannot be traversed. This causes the parser to backtrack and attempt another path
through the network. Thus, the parser tries to find a path through the sentence network; if
it succeeds, the input string is a legal sentence in the grammar. 


Consider the simple sentence Dog bites, as analyzed and illustrated in Figure 15.6:


1. The parser begins with the sentence network and tries to move along the arc
labeled noun_phrase. To do so, it retrieves the network for noun_phrase.


2. In the noun_phrase network, the parser first tries the transition marked article.
This causes it to branch to the network for article.


3. It fails to find a path to the finish node of the article network because the first
word, “Dog,” matches neither of the arc labels. The parser fails and backtracks to
the noun_phrase network. 


4. The parser attempts to follow the arc labeled noun in the noun_phrase network
and branches to the network for noun.
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5. The parser successfully crosses the arc labeled “dog,” because this corresponds
to the first word of the input stream. 


6. The noun network returns success. This allows the arc labeled noun in the
noun_phrase network to be crossed to the final state. 


7. The noun_phrase network returns success to the top-level network, allowing
the transition of the arc labeled noun_phrase.


8. A sequence of similar steps is followed to parse the verb_phrase portion of the
sentence.


Pseudo-code for a transition network parser appears below. It is defined using two
mutually recursive functions, parse and transition. Parse takes a grammar symbol as
argument: if the symbol is a terminal, parse checks it against the next word in the input


Sentence:


Noun_phrase:


Verb_phrase:


Article:                                                        Verb:


Noun:


initialS


initialS


initialS


initialS


initialS


Noun_phrase                     Verb_phrase


finalS


finalS


Noun


Article                              Noun


finalS


Verb


Verb                              Noun_phrase


finalS


a


the
initialS finalS


likes


bites


finalS


man


dog


Figure 15.5 Transition network definition of a simple
English grammar.
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stream. If it is a nonterminal, parse retrieves the transition network associated with the
symbol and calls transition to find a path through the network. To parse a sentence, call
parse(sentence).


function parse(grammar_symbol); 
begin


save pointer to current location in input stream; 
case


grammar_symbol is a terminal: 
if grammar_symbol matches the next word in the input stream 


then return (success) 
else begin


reset input stream; 
return (failure) 


end;
grammar_symbol is a nonterminal: 


begin
retrieve the transition network labeled by grammar symbol; 
state := start state of network; 
if transition(state) returns success 
then return (success) 
else begin 


reset input stream; 
return (failure) 


end
end


end
end.


function transition (current_state);
begin


case
current_state is a final state: 


return (success) 
current_state is not a final state: 


while there are unexamined transitions out of current_state 
do begin 


grammar_symbol := the label on the next unexamined transition; 
if parse(grammar_symbol) returns (success)


then begin 
next_state := state at end of the transition; 
if transition(next_state) returns success;


then return (success)
end


end
return (failure)


end
end.
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Transition takes a state in a transition network as its argument and tries to find a path
through that network in a depth-first fashion. Because the parser may make a mistake and
require a backtrack, parse retains a pointer to the current location in the input stream.
This allows the input stream to be reset to this location in the event the parser backtracks. 


This transition network parser determines whether a sentence is grammatically
correct, but it does not construct a parse tree. This may be accomplished by having the
functions return a subtree of the parse tree instead of the symbol success. Modifications
that would accomplish this are: 


1. Each time the function parse is called with a terminal symbol as argument and
that terminal matches the next symbol of input, it returns a tree consisting of a
single leaf node labeled with that symbol. 


2. When parse is called with a nonterminal, grammar_symbol, it calls transition.
If transition succeeds, it returns an ordered set of subtrees (described below).
Parse combines these into a tree whose root is grammar_symbol and whose
children are the subtrees returned by transition.


initialS


initialS


initialS


Noun_phrase                      Verb_phrase


finalS


finalS


Noun


Article                              Noun


finalS


a


the
initialS finalS


man


dog


1. call
    Noun_phrase


7. return
    success


8. call
    Verb_phrase


2. call
    Article


3. fail 4. call
    Noun


6. return
    success


5. read "dog"
    from input


Figure 15.6 Trace of a transition network parse of the
sentence Dog bites.
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3. In searching for a path through a network, transition calls parse on the label of
each arc. On success, parse returns a tree representing a parse of that symbol.
Transition saves these subtrees in an ordered set and, on finding a path through
the network, returns the ordered set of parse trees corresponding to the sequence
of arc labels on the path. 


15.3.2 The Chomsky Hierarchy and Context-Sensitive Grammars


In Section 15.3.1, we defined a small subset of English using a context-free grammar. A
context-free grammar allows rules to have only a single nonterminal on their left-hand
side. Consequently, the rule may be applied to any occurrence of that symbol, regardless
of its context. Though context-free grammars have proved to be a powerful tool for
defining programming languages and other formalisms in computer science, there is
reason to believe that they are not powerful enough, by themselves, to represent the rules
of natural language syntax. For example, consider what happens if we add both singular
and plural nouns and verbs to the grammar of Section 15.2.1:


noun ↔ men 
noun ↔ dogs 
verb ↔ bites 
verb ↔ like 


The resulting grammar will parse sentences like “The dogs like the men”, but it also
accepts “A men bites a dogs.” The parser accepts these sentences because the rules don’t
use context to determine when singular and plural forms need be coordinated. The rule
defining a sentence as a noun_phrase followed by a verb_phrase does not require that
the noun and verb agree on number, or that articles agree with nouns.


Conext free languages can be extended to handle these situations, but a more natural
approach is for the grammer to be context sensitive, where the components of the parse
tree are designed to constrain each other. Chomsky (1965) first proposed a world of  hier-
archical and ever more powerful grammers (Hopcroft and Ullman 1979). At the bottom of
this hierarchy is the class of regular languages, whose grammar may be defined using a
finite-state machine, Section 3.1. Regular languages have many uses in computer science,
but they are not powerful enough to represent the syntax of most programming languages. 


The context-free languages are above the regular languages in the Chomsky hierar-
chy. Context-free languages are defined using rewrite rules such as in Section 15.2.1; con-
text-free rules may only have one nonterminal symbol on their left-hand side. Transition
network parsers are able to parse the class of context-free languages. It is interesting to
note that if we do not allow recursion in a transition network parser i.e., arcs may be
labeled only with terminal symbols and transitions may not “call” another network, then
the class of languages that may be so defined corresponds to regular expressions. Thus,
regular languages are a proper subset of the context-free languages.


The context-sensitive languages form a proper superset of the context-free languages.
These are defined using context-sensitive grammars which allow more than one symbol
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on the left-hand side of a rule and make it possible to define a context in which that rule
can be applied. This ensures satisfaction of global constraints such as number agreement
and other semantic checks. The only restriction on context-sensitive grammar rules is that
the right-hand side be at least as long as the left-hand side (Hopcroft and Ullman 1979).


A fourth class, forming a superset of the context-sensitive languages, is the class of
recursively enumerable languages. Recursively enumerable languages may be defined
using unconstrained production rules; because these rules are less constrained than
context-sensitive rules, the recursively enumerable languages are a proper superset of the
context-sensitive languages. This class is not of interest in defining the syntax of natural
language, although it is important in the theory of computer science. The remainder of this
section focuses on English as a context-sensitive language.


A simple context-free grammar for sentences of the form article noun verb that
enforces number agreement between article and noun and subject and verb is given by:


sentence ↔ noun_phrase verb_phrase
noun_phrase ↔ article number noun
noun_phrase ↔ number noun
number ↔ singular
number ↔ plural
article singular ↔ a singular
article singular ↔ the singular
article plural ↔ some plural
article plural ↔ the plural
singular noun ↔ dog singular
singular noun ↔ man singular
plural noun ↔ men plural
plural noun ↔ dogs plural
singular verb_phrase ↔ singular verb
plural verb_phrase ↔ plural verb
singular verb ↔ bites
singular verb ↔ likes
plural verb ↔ bite
plural verb ↔ like 


In this grammar, the nonterminals singular and plural offer constraints to determine
when different article, noun, and verb_phrase rules can be applied, ensuring number
agreement. A derivation of the sentence “The dogs bite” using this grammar is given by:


sentence.
noun_phrase verb_phrase.
article plural noun verb_phrase.
The plural noun verb_phrase.
The dogs plural verb_phrase.
The dogs plural verb.
The dogs bite. 
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Similarly, we can use context-sensitive grammars to perform checks for semantic
agreement. For example, we could disallow sentences such as “Man bites dog” by adding
a nonterminal, act_of_biting, to the grammar. This nonterminal could be checked in the
rules to prevent any sentence involving “bites” from having “man” as its subject. 


Though context-sensitive grammars can define language structures that cannot be
captured using context-free grammars, they have a number of disadvantages for the design
of practical parsers: 


1. Context-sensitive grammars increase drastically the number of rules and
nonterminals in the grammar. Imagine the complexity of a context-sensitive
grammar that would include number, person, and all the other forms of
agreement required by English. 


2. They obscure the phrase structure of the language that is so clearly represented in
the context-free rules. 


3. By attempting to handle more complicated checks for agreement and semantic
consistency in the grammar itself, they lose many of the benefits of separating the
syntactic and semantic components of language. 


4. Context-sensitive grammars do not address the problem of building a semantic
representation of the meaning of the text. A parser that simply accepts or rejects
sentences is not sufficient; it must return a useful representation of the sentence’s
semantic meaning. 


In the auxiliary materials for this book we present both context-free and context sensi-
tive parsers and sentence generators. The control regime for these Prolog programs is
depth-first recursive descent. Next, we examine augmented transition networks (ATNs),
an extension of transition networks that can define context-sensitive languages but has
several advantages over context-sensitive grammars in the design of parsers. 


15.3.3 Semantics: Augmented Transition Network Parsers


An alternative to context-sensitive grammars is to retain the simpler structure of con-
text-free grammar rules but augment these rules with attached procedures that perform the
necessary contextual tests. These procedures are executed when a rule is invoked in pars-
ing. Rather than using the grammar to describe such notions as number, tense, and person,
we represent these as features attached to terminals and nonterminals of the grammar. The
procedures attached to the rules of the grammar access these features to assign values and
perform the necessary tests. Grammars that use augmentations of context-free grammars
to implement context sensitivity include augmented phrase structure grammars (Heidorn
1975, Sowa 1984), augmentations of logic grammars (Allen 1987), and the augmented
transition network (ATN). 


In this section we present ATN parsing and outline the design of a simple ATN parser
for sentences about the “dogs world” introduced in Section 15.2.1. We address the first
two steps of Figure 15.2: creation of a parse tree and its use to construct a representation
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of the sentence’s meaning. We use conceptual graphs in this example, although ATN pars-
ers can also be used with semantic net, script, frame, or logic-based representations. 


Augmented transition networks extend transition networks by allowing procedures to
be attached to the arcs of the networks. An ATN parser executes these attached procedures
when it traverses the arcs. The procedures may assign values to grammatical features and
perform tests, causing a transition to fail if certain conditions (such as number agreement)
are not met. These procedures also construct a parse tree, which is used to generate an
internal semantic representation of the sentence’s meaning. 


We represent both terminals and nonterminals as identifiers (e.g., verb,
noun_phrase) with attached features. For example, a word is described using its
morphological root, along with features for its part of speech, number, person, etc.
Nonterminals in the grammar are similarly described. A noun phrase is described by its
article, noun, number, and person. Both terminals and nonterminals can be represented
using framelike structures with named slots and values. The values of these slots specify
grammatical features or pointers to other structures. For example, the first slot of a
sentence frame contains a pointer to a noun phrase definition. Figure 15.7 shows the
frames for the sentence, noun_phrase, and verb_phrase nonterminals in our
simple grammar.


Individual words are represented using similar structures. Each word in the dictionary
is defined by a frame that specifies its part of speech (article, noun, etc.), its morphological
root, and its significant grammatical features. In our example, we are only checking for
number agreement and only record this feature. More sophisticated grammars indicate
person and other features. These dictionary entries may also indicate the conceptual graph
definition of the word’s meaning for use in semantic interpretation. The complete dictio-
nary for our grammar appears in Figure 15.8.


Figure 15.9 presents an ATN for our grammar, with pseudo-code descriptions of the
tests performed at each arc. Arcs are labeled with both nonterminals of the grammar (as in
Figure 15.5) and numbers; these numbers are used to indicate the function attached to each
arc. These functions must run successfully in order to traverse the arc. 


When the parser calls a network for a nonterminal, it creates a new frame for that
non-terminal. For example, on entering the noun_phrase network it creates a new
noun_phrase frame. The slots of the frame are filled by the functions for that network.
These slots may be assigned values of grammatical features or pointers to components of


Noun phrase:


Verb phrase:


Determiner:


Noun:


Number:


Verb:


Number:


Object:


Sentence Noun phrase Verb phrase


Figure 15.7 Structures representing the sentence, noun
phrase, and verb phrase nonterminals of
the grammar.
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the syntactic structure (e.g., a verb_phrase can consist of a verb and a noun_phrase).
When the final state is reached, the network returns this structure. 


When the network traverses arcs labeled noun, article, and verb, it reads the next
word from the input stream and retrieves that word’s definition from the dictionary. If the
word is not the expected part of speech, the rule fails; otherwise the definition frame is
returned.


In Figure 15.9 frames and slots are indicated using a Frame.Slot notation; e.g., the
number slot of the verb frame is indicated by VERB.NUMBER. As the parse proceeds,
each function builds and returns a frame describing the associated syntactic structure. This
structure includes pointers to structures returned by lower-level networks. The top-level


Word                         Definition                                Word                         Definition


a


bite


bites


dog


dogs


PART_OF_SPEECH: article


ROOT: a


NUMBER: singular


PART_OF_SPEECH: verb


ROOT: bite


NUMBER: plural


PART_OF_SPEECH: verb


ROOT: bite


NUMBER: singular


PART_OF_SPEECH: noun


ROOT: dog


NUMBER: singular


PART_OF_SPEECH: noun


ROOT: dog


NUMBER: plural


like


likes


man


men


the


PART_OF_SPEECH: verb


ROOT: like


NUMBER: plural


PART_OF_SPEECH: verb


ROOT: like


NUMBER: singular


PART_OF_SPEECH: noun


ROOT: man


NUMBER: singular


PART_OF_SPEECH: noun


ROOT: man


NUMBER: plural


PART_OF_SPEECH: article


ROOT: the


NUMBER: plural or singular


Figure 15.8 Dictionary entries for a simple ATN.
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sentence function returns a sentence structure representing the parse tree for the input.
This structure is passed to the semantic interpreter. Figure 15.10 shows the parse tree that
is returned for the sentence “The dog likes a man.”


The next phase of natural language processing takes the parse tree, such as that of
Figure 15.10, and constructs a semantic representation of the domain knowledge and
meaning content of the sentence. 


function sentence-1;
    begin
        NOUN_PHRASE := structure returned by
                   noun_phrase network;


        SENTENCE.SUBJECT := NOUN_PHRASE;
    end.


    if NOUN_PHRASE.NUMBER =
                                             VERB_PHRASE.NUMBER
        then begin
            SENTENCE.VERB_PHRASE := VERB_PHRASE;
            return SENTENCE
        end
        else fail
end.


function sentence-2;
    begin
        VERB_PHRASE := structure returned by
                    verb_phrase network;


function noun_phrase-1;
    begin
        ARTICLE := definition frame for next word of input;


        if ARTICLE.PART_OF_SPEECH=article
            then NOUN_PHRASE.DETERMINER := ARTICLE
            else fail
    end.


                NOUN_PHRASE.NUMBER := NOUN.NUMBER
                return NOUN_PHRASE
            end
            else fail
    end.


                           NOUN_PHRASE.DETERMINER.NUMBER
            then begin
                NOUN_PHRASE.NOUN := NOUN;


function noun_phrase-2;
    begin
        NOUN := definition frame for next word of input;


        if NOUN.PART_OF_SPEECH=noun and
                   NOUN.NUMBER agrees with


noun


article                       noun


iS fS1                            2


3


noun_phrase:


iS


noun_phrase          verb_phrase


fS1                            2


sentence:


Figure 15.9 An ATN grammar that checks number 
                      agreement and builds a parse tree.
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15.3.4 Combining Syntax and Semantic Knowledge with ATNs


The semantic interpreter constructs a representation of the input string’s meaning by
beginning at the root, or sentence node, and traversing the parse tree. At each node, it
recursively interprets the children of that node and combines the results into a single
conceptual graph; this graph is passed up the tree. For example, the semantic interpreter
builds a representation of the verb_phrase by recursively building representations of the


                NOUN_PHRASE.NOUN := NOUN
                NOUN_PHRASE.NUMBER := NOUN.NUMBER
            end
            else fail
    end.


            then begin
                NOUN_PHRASE.DETERMINER := unspecified;


function noun_phrase-3
    begin
        NOUN := definition frame for next word of input;


        if NOUN.PART_OF_SPEECH=noun


                VERB_PHRASE.NUMBER := VERB.NUMBER;
            end;
    end.


            then begin
                VERB_PHRASE.VERB := VERB;


function verb_phrase-1
    begin
        VERB := definition frame for next word of input;


        if VERB.PART_OF_SPEECH=verb


        return VERB_PHRASE
    end.


function verb_phrase-2
    begin
        NOUN_PHRASE := structure returned by
                                                       noun_phrase network;


        VERB_PHRASE.OBJECT := NOUN_PHRASE;


                VERB_PHRASE.NUMBER := VERB.NUMBER;
                VERB_PHRASE.OBJECT := unspecified;
                return VERB_PHRASE;
            end;
    end.


            then begin
                VERB_PHRASE.VERB := VERB;


function verb_phrase-3
    begin
        VERB := definition frame for next word of input;


        if VERB.PART_OF_SPEECH=verb


verb


verb                  noun_phrase


iS fS1                            2


3


verb_phrase:


Figure 15.9 (cont d) An ATN grammar that checks number 
agreement and builds a parse tree.
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node’s children, verb and noun_phrase, and joining these to form an interpretation of the
verb phrase. This is passed to the sentence node and combined with the representation of
the subject.


Recursion stops at the terminals of the parse tree. Some of these, such as nouns,
verbs, and adjectives, cause concepts to be retrieved from the knowledge base. Others,
such as articles, do not directly correspond to concepts in the knowledge base but qualify
other concepts in the graph.


The semantic interpreter in our example uses a knowledge base for the “dogs world.”
Concepts in the knowledge base include the objects dog and man and the actions like and
bite. These concepts are described by the type hierarchy of Figure 15.11.


In addition to concepts, we must define the relations that will be used in our
conceptual graphs. For this example, we use the following concepts:


agent links an act with a concept of type animate. agent defines the relation
between an action and the animate object causing the action.


experiencer links a state with a concept of type animate. It defines the relation
between a mental state and its experiencer.


PART_OF_SPEECH:


ROOT:


NUMBER:


PART_OF_SPEECH:


ROOT:


NUMBER:


PART_OF_SPEECH:


ROOT:


NUMBER:


PART_OF_SPEECH:


ROOT:


NUMBER:


PART_OF_SPEECH:


ROOT:


NUMBER:


article noun verb article noun


the dog like a man


plural or
singular


singular singular singular singular


Noun_phrase


Determiner:


Noun:


Number: singular


Verb_phrase


Verb:


Number:


Object:


singular


Noun_phrase


Determiner:


Noun:


Number: singular


Sentence


Noun_phrase:


Verb_phrase:


Figure 15.10  Parse tree for the sentence The dog likes a man
 returned by an ATN parser.
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instrument links an act with an entity and defines the instrument used in an action.


object links an event or state with an entity and represents the verb–object relation.


part links concepts of type physobj and defines the relation between whole and part. 


The verb plays a particularly important role in building an interpretation, as it defines
the relationships between the subject, object, and other components of the sentence. We
represent each verb using a case frame that specifies: 


1. The linguistic relationships (agent, object, instrument, and so on) appropriate to
that particular verb. Transitive verbs, for example, have an object; intransitive
verbs do not. 


2. Constraints on the values that may be assigned to any component of the case
frame. For example, in the case frame for the verb ”bites,” we have asserted that
the agent must be of the type dog. This causes “Man bites dog” to be rejected as
semantically incorrect. 


3. Default values on components of the case frame. In the “bites” frame, we have a
default value of teeth for the concept linked to the instrument relation. 


The case frames for the verbs like and bite appear in Figure 15.12.
We define the actions that build a semantic representation with rules or procedures for


each potential node in the parse tree. Rules for our example are described as pseudo-code


event                      entity                              state


act


bite                 dog            person      teeth      like


animate                     physobj


animal


man


Figure 15.11 Type hierarchy used in dogs world  example.
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procedures. In each procedure, if a specified join or other test fails, that interpretation is
rejected as semantically incorrect: 


procedure sentence; 


begin
call noun_phrase to get a representation of the subject; 
call verb_phrase to get a representation of the verb_phrase; 
using join and restrict, bind the noun concept returned for the subject to


the agent of the graph for the verb_phrase
end.


procedure noun_phrase; 


begin
call noun to get a representation of the noun; 
case


the article is indefinite and number singular: the noun concept is generic; 
the article is definite and number singular: bind marker to noun concept; 
number is plural: indicate that the noun concept is plural 


end case 
end.


object                         entity


like                        experiencer                    animate


partobject                    entity


bite                       agent                       dog


instrument                  teeth


Figure 15.12 Case frames for the verbs like  and bite.
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procedure verb_phrase; 


begin
call verb to get a representation of the verb; 
if the verb has an object 


then begin
call noun_phrase to get a representation of the object; 
using join and restrict, bind concept for object to object of the verb 


end
end.


procedure verb; 


begin
retrieve the case frame for the verb


end.


procedure noun;


begin
retrieve the concept for the noun 


end.


Articles do not correspond to concepts in the knowledge base but determine whether
their noun concept is generic or specific. We have not discussed the representation of plu-
ral concepts; refer to Sowa (1984) for their treatment as conceptual graphs. 


Using these procedures, along with the concept hierarchy of Figure 15.11 and the case
frames of Figure 15.12, we trace the actions of the semantic interpreter in building a
semantic representation of the sentence “The dog likes a man” from the parse tree of
Figure 15.10. This trace appears in Figure 15.13.


The actions taken in the trace are (numbers refer to Figure 15.13):


1. Beginning at the sentence node, call sentence.


2. sentence calls noun_phrase.


3. noun_phrase calls noun.


4. noun returns a concept for the noun dog (1 in Figure 15.13).


5. Because the article is definite, noun_phrase binds an individual marker to the
concept (2) and returns this concept to sentence.


6. sentence calls verb_phrase.


7. verb_phrase calls verb, which retrieves the case frame for like (3).


8. verb_phrase calls noun_phrase, which then calls noun to retrieve the concept
for man (4).


9. Because the article is indefinite, noun_phrase leaves this concept generic (5).
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10. The verb_phrase procedure restricts the entity concept in the case frame and
joins it with the concept for man (6). This structure is returned to sentence.


11. sentence joins concept dog: #1 to the experiencer node of the case frame (7). 


This conceptual graph represents the meaning of the sentence.
Language generation is a related problem addressed by natural language understand-


ing programs. The generation of English sentences requires the construction of a semanti-
cally correct output from an internal representation of meaning. For example, the agent
relation indicates a subject–verb relationship between two concepts. Simple approaches
allow the appropriate words to be plugged into stored sentence templates. These templates
are patterns for sentences and fragments, such as noun phrases and prepositional phrases.
The output is constructed by walking the conceptual graph and combining these frag-
ments. More sophisticated approaches to language generation use transformational gram-
mars to map meaning into a range of possible sentences (Winograd 1972, Allen 1987). 


like                 experiencer            dog: #1


like                 experiencer            animate


like                 experiencer            animate


object                  man


7:


6:


object                  man


2:     dog: #1


1:        dog


3:


5:       man


4:       man


object                entity


Figure 15.13 Construction of a semantic representation
from the parse tree of Figure 15.10.
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In the auxiliary materials for this book we have build a full recursive-descent seman-
tic net parser in Prolog. This parser uses graph operators, such as join and restrict, to con-
strain the semantic net representations attached to the leaf nodes of the parse tree.


In Section 15.5 we will show how a program can build an internal representations of
language phenomena. These representations are used by programs in a number of ways,
depending on applications, sevewral of which we present. But first, in Section 15.4, we
present stochastic approaches for capturing the patterns and regularities of language.


15.4 Stochastic Tools for Language Understanding


In Section 15.1 we discussed a natural decomposition of sentence structures that supported
language understanding. In Sections 15.2 and 15.3 we noted that the semantic and knowl-
edge intensive aspects of language could be supported by word and sentence-level repre-
sentational structures. In this section we introduce stochastic tools that support, at these
same levels, pattern based analysis of structures enabling language comprehension.


15.4.1 Introduction: Statistical Techniques in Language Analysis


Statistical language techniques are methods which arise when we view natural language as
a random process. In everyday parlance, randomness suggests lack of structure, definition,
or understanding. However, viewing natural language as a random process generalizes the
deterministic viewpoint. That is, statistical (or stochastic) techniques can accurately model
both those parts of language which are well defined as well as those parts which indeed do
have some degree of randomness. 


Viewing language as a random process allows us to redefine many of the basic
problems within natural language understanding in a rigorous, mathematical manner. It is
an interesting exercise, for example, to take several sentences, say the previous paragraph
including periods and parentheses, and to print out these same words and language sym-
bols ordered by a random number generator. The result will make very little sense. It is
interesting to note (Jurafsky and Martin 2008) that these same pattern-based constraints
operate on many levels of linguistic analysis, including acoustic patterns, phonemic com-
binations, the analysis of grammatical structure, and so on. As an example of the use of
stochastic tools, we first consider  the problem of part-of-speech tagging.


Most people are familiar with this problem from grammar class. We want to label
each word in a sentence as a noun, verb, preposition, adjective, and so on. In addition, if
the word is a verb, we may want to know if it is active, passive, transitive, or intransitive.
If the word is a noun, whether it is singular or plural and so on. Difficulty arises with
words like “swing”. If we say, “front porch swing,” swing is a noun but if we say “swing
at the ball” then swing is a verb. We present next a quote from Picasso with its correct part
of speech labels:


Art      is       a            lie       that         lets    us            see     the        truth.
Noun   Verb  Article  Noun  Pronoun  Verb  Pronoun  Verb  Article  Noun   
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To begin our analysis, we first define the problem formally. We have a set of words in
our language Sw = {w1,..., wn}, for example {a, aardvark, ... , zygote}, and a set of parts of
speech or tags St = {t1, ..., tm}. A sentence with n words is a sequence of n random
variables W1, W2, ... Wn. These are called random variables because they can take on any
of the values in Sw with some probability. The tags, T1, T2, ...,Tn, are also a sequence of
random variables. The value that Ti takes on will be denoted ti and the value of Wi is wi.
We want to find the sequence of values for these tags which is most likely, given the words
in the sentence. Formally, we want to pick t1, ..., tn to maximize:


p(T1= t1, ..., Tn = tn | W1 = w1, ..., Wn = wn)


Recall from Section 5.2, that p(X | Y) stands for the probability of X given that Y has
occurred. It is customary to drop reference to the random variables and just write:


p(t1, ..., tn | w1, ..., wn)        equation 1


Note that if we knew this probability distribution exactly and if we had enough time
to maximize over all possible tag sets, we would always get the best possible set of tags
for the words considered. In addition, if there really were only one correct sequence of
tags for each sentence, an idea your grammar teacher may have espoused, this probabilis-
tic technique would always find that correct sequence! Thus the probability for the correct
sequence would be 1 and that for all other sequences 0. This is what we meant when we
said that the statistical viewpoint can generalize the deterministic one.


In reality, because of limited storage space, data, and time, we cannot use this tech-
nique and must come up with some type of approximation. The rest of this section deals
with better and better ways to approximate equation 1.


First note that we can rewrite equation 1 in a more useful manner:


p(t1, ..., tn | w1, ..., wn) = p(t1, ..., tn , w1, ..., wn) / p(w1, ..., wn)


and since we maximize this by choosing t1, ..., tn , we can simplify equation 1 to:


p(t1, ..., tn, w1,..., wn)  =


p(t1)p(w1 | t1)p(t2 | t1,w1) ... p(tn | w1, ..., wn , t1, ..., tn − 1)  = 
n


Π p(ti | t1, ..., ti − 1, w1, ..., wi − 1) p(wi | t1, ..., ti − 1, w1, ..., wi − 1)           equation 2
i = 1


Notice that equation 2 is equivalent to equation 1.


15.4.2 A Markov Model Approach


In practice, and as seen earlier in our discussion of Chapters 9.3 and 13, it is usually a
complex task to maximize equations with probabilities conditioned on many other random
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variables, such as we find in equation 2. There are three reasons for this: first, it is diffi-
cult to store the probability of a random variable conditioned on many other random vari-
ables because the number of possible probabilities increases exponentially with the
number of conditioning variables. Secondly, even if we could store all of the probability
values, it is often difficult to estimate their values. Estimation is usually done empirically
by counting the number of occurrences of an event in a hand-tagged training corpus and
thus, if an event occurs only a few times in that training set, we will not get a good esti-
mate of its probability. That is, it is easier to estimate p(cat | the) than p(cat | The dog
chased the) since there will be fewer occurrences of the latter in the training set. Finally,
finding the chain of tags that maximizes structures like equation 2 would take too long,
as will be shown next. 


First, we make some useful approximations of equation 2. The first rough attempt is:


p(ti | t1, ..., ti − 1, w1, ..., wi − 1) approaches p(ti | ti − 1)


and


p(wi | t1, ..., ti − 1, w1,..., wi − 1) approaches p(wi | ti).


These are first-order Markov assumption, as seen in Section 9.3, where it is assumed that
the present thing being considered is dependent only on the immediately preceeding thing,
i.e., it is independent of things in the more distant past.


Plugging these approximations back into equation 2, we get


n
Π p(ti | ti − 1) p(wi | ti)                                                                        equation 3
i = 1


Equation 3 is straightforward to work with because its probabilities can be easily
estimated and stored. Recall that equation 3 is just an estimate of P(t1,..., tn | w1,..., wn)
and we still need to maximize it by choosing the tags, i.e., t1,..., tn. Fortunately, there is a
dynamic programming (DP) algorithm called the Viterbi algorithm (Viterbi 1967, Forney
1973; for DP see Sections 4.1 and 15.2, for Viterbi, Section 10.3) which will allow us to
do this. The Viterbi algorithm calculates the probability of t2 tag sequences for each word
in the sentence where t is the number of possible tags. For a particular step, the tag
sequences under consideration are of the following form:


article article {best tail}
article verb   {best tail}
...
article noun  {best tail}
...
...
noun article   {best tail}
...
noun  noun    {best tail}
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where {best tail} is the most likely sequence of tags found dynamically for the last n − 2
words for the given n − 1 tag. 


There is an entry in the table for every possible value for tag number n − 1 and tag
number n (hence we have the t2 tag sequences). At each step, the algorithm finds the max-
imal probabilities and adds one tag to each best tail sequence. This algorithm is guaranteed
to find the tag sequence which maximizes equation 3 and it runs in O(t2 s), where t is the
number of tags and s is the number of words in the sentence. If p(ti) is conditioned on the
last n tags rather than the last two, the Viterbi Algorithm will take O(tn s). Thus we see
why conditioning on too many past variables increases the time taken to find a maximiz-
ing value.


Fortunately, the approximations used in equation 3 work well. With about 200 possi-
ble tags and a large training set to estimate probabilities, a tagger using these methods is
about 97% accurate, which approaches human accuracy. The surprising accuracy of the
Markov approximation along with its simplicity makes it useful in many applications. For
example, most speech recognition systems use what is called the trigram model to provide
some “grammatical knowledge” to the system for predicting words the user has spoken.
The trigram model is a simple Markov model which estimates the probability of the cur-
rent word conditioned on the previous two words. It uses the Viterbi algorithm and other
techniques just described. For more detail on this and related techniques see Jurasky and
Martin (2008).


15.4.3 A Decision Tree Approach


An obvious problem with the Markov approach is that it considers only local context. If
instead of tagging words with simple parts of speech, we wish to do things like identify an
agent, identify an object, or decide whether verbs are active or passive, then a richer
context is required. The following sentence illustrates this problem:


The policy announced in December by the President guarantees lower taxes.


In fact, the President is the agent but a program using a Markov model would likely
identify the policy as agent and announced as an active verb. We can imagine that a
program would get better at probabilistically choosing the agent of this type of sentence if
it could ask questions like, “Is the current noun inanimate?” or “Does the word by appear
a few words before the noun under consideration?” 


Recall that the tagging problem is equivalent to maximizing equation 2, i.e.,
n


Π p(ti | t1, ..., ti − 1, w1,..., wi − 1) p(wi | t1, ..., ti − 1, w1,..., wi − 1).
i = 1


Theoretically, considering a larger context involves simply finding better estimates for
these probabilities. This suggests that we might want to use answers to the grammatical
questions above to refine the probabilities.


There are several ways we can address this issue. First, we can combine the Markov
approach with the parsing techniques presented in the first three sections of this chapter. A
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second method allows us to find probabilities conditioned on yes or no questions with the
ID3 algorithm (presented in detail in Section 10.3 and built in Lisp in the auxiliary mate-
rial) or some equivalent algorithm. ID3 trees have the added bonus that out of a very large
set of possible questions, they will choose only those which are good at refining probabil-
ity estimates. For more complicated natural language processing tasks such as parsing,
ID3 based trees are often preferred over Markov models. We next describe how to use ID3
to construct a decision tree for use in parsing.


Recall that in the above section we asked the question “Is the current noun inani-
mate?” We can ask questions like this only if we know which words are animate and
which words are inanimate. In fact there is an automated technique which can assign
words to these types of classes for us. The technique is called mutual information cluster-
ing. The mutual information shared between two random variables X and Y is defined as
follows:


To do mutual information clustering over a vocabulary of words, we start by putting
each word in the vocabulary into a distinct set. At each step, we compute the average
mutual information between sets using a bigram, that is a next word model, and a merge of
two word sets is chosen which minimizes the loss in average mutual information for all
classes.


For example, if initially we have the words cat, kitten, run, and green, at the first
step of the algorithm, we have the sets:


{cat} {kitten} {run} {green}.


It is likely that the probability of the next word, given that the previous word was cat, is
about equal to the probability of the next word, given that the previous word was kitten. In
other words:


p(eats | cat) is about the same as p(eats | kitten)
p(meows | cat) is about the same as p(meows | kitten)


Thus, if we let X1, X2, Y1, and Y2 be random variables such that:


X1 = {{cat}, {kitten}, {run}, {green}}
Y1 = word following X1 
X2 = {{cat, kitten}, {run}, {green}}
Y2 = word following X2,


then the mutual information between X2 and Y2 is not much less than the mutual
information between X1 and Y1, thus cat and kitten will likely be combined. If we
continue this procedure until we have combined all possible classes, we get a binary tree.


I X Y;( ) p x y,( ) 2
p x y,( )


p x( )p y( )-----------------------log
y Y∈
∑


x X∈
∑=
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Then, bit codes can be assigned to words based on the branches taken within the tree that
reaches the leaf node that has that word in it. This reflects the semantic meaning of the
word. For example:


cat = 01100011
kitten = 01100010


Furthermore, we might find that “noun-like” words will be all those words that have a 1 in
the leftmost bit and that words which most likely represent inanimate objects may be those
whose 3rd bit is a 1.


This new encoding of dictionary words allows the parser to ask questions more effec-
tively. Note that the clustering does not take context into account so that even though
“book” may be clustered as a “noun-like” word, we will want our model to tag it as a verb
when it is found in the phrase “book a flight.”


15.4.4 Probabilistic Approaches to Parsing


Stochastic techniques have already been used in many domains of computational
linguistics and there is still a great deal of opportunity to apply them to areas which have
resisted traditional, symbolic approaches.


The use of statistical methods in parsing was first motivated by the problem of ambi-
guity. Ambiguity arises from the fact that there are often several possible parses for a
given sentence and we need to choose which parse might be the best one. For example, the
sentence Print the file on the printer can be parsed using either of the two trees presented
in Figure 15.14.


In situations such as this, grammar rules alone are not sufficient for choosing the
correct parse. In the Print the file on the printer case we need to consider some informa-
tion about context and semantics. In fact, the primary use of stochastic techniques in the
parsing domain is to help resolve ambiguities. In the current example, we can use the same
tool used in part of speech tagging, the ID3 algorithm. ID3 assists us in predicting the
probability that a parse is correct based on semantic questions about the sentence. In the
case when there is some syntactic ambiguity in the sentence, we can then choose that
parse which has the highest probability of being correct. As usual, this technique requires
a large training corpus of sentences with their correct parses.


Recently, people in the statistical natural language modeling community have become
more ambitious and have tried to use statistical techniques without a grammar to do
parsing. Although the details of grammarless parsing are beyond the scope of this book,
suffice it to say that it is related more to pattern recognition than to the traditional parsing
techniques covered earlier in this chapter.


Grammarless parsing has been quite successful. In experiments comparing a tradi-
tional grammar-based parser with a grammarless one on the task of parsing the same set of
sentences, the grammar-based parser achieved a score, using a popular metric, the cross-
ing-brackets measure, of 69% and the grammarless parser 78% (Magerman 1994). These
results are good, although not outstanding. More importantly, the grammar in the tradi-
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tional parser was developed meticulously by a trained linguist over the course of about ten
years, while the grammarless parser used essentially no hard-coded linguistic information,
only sophisticated mathematical models which could infer the needed information from
the training data. For more on grammarless parsing and related issues see Manning and
Schutze (1999).


Speech understanding, converting speech to text, and handwriting recognition are
three further areas which have a long history of using stochastic methods for modeling


   a.


Sentence


Verb Phrase Noun Phrase


Verb Prepositional Phrase Article Noun


the file
Print


Preposition Noun Phrase


on Article Noun


the printer
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Verb Noun Phrase


Noun Phrase Prepositional Phrase


Preposition Noun Phrase


Print


Article Noun


on Article Noun


the file


the printer


   b.


Figure 14.14   Two different parses of Print the file on the printer.
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language. The most commonly used statistical method in these areas is the trigram model
for next word prediction. The strength of this model is in its simplicity: it predicts the next
word based on the last two words. Recently, there has been work in the statistical language
community to maintain the simplicity and ease of use of this model while incorporating
grammatical constraints and longer distance dependencies. This new approach uses what
are called grammatical trigrams. The grammatical trigrams are informed by basic associa-
tions between pairs of words (i.e., subject−verb, article−noun, and verb−object). Collec-
tively, these associations are called a link grammar. The link grammar is much simpler
and easier to construct than the traditional grammars used by linguists and works well
with probabilistic methods.


Berger et al. (1994) describe a statistical program, Candide, which translates French
text to English text. Candide uses both statistics and information theory to develop a prob-
ability model of the translation process. It trains only on a large corpus of French and
English sentence pairs and gets results comparable to and in some cases better than
Systran (Berger et al. 1994), a commercial translation program. Of particular interest is the
fact that the Candide system does no traditional parsing in the translation process. Instead
it uses the grammatical trigrams and link grammars just mentioned.


15.4.5 Probabilistic Context-Free Parsers


In this section we present two different probabilistic context-free parsers, structure-based
and lexicalized. The structure-based parser uses probability measures for each grammati-
cal parse-rule that occurs. The probability of each parse rule is a function of that rule hap-
pening combined with the probabilities of its constituents.


We demonstrate the structure based probabilistic parser by extending the set of con-
text-free grammar rules of Section 15.2 with probability measures:


 1. sentence ↔ noun_phrase verb_phrase p(s) = p(r1) p(np) p(vp) 
 2. noun_phrase ↔ noun p(np) = p(r2) p(noun) 
 3. noun_phrase ↔ article noun p(np) = p(r3) p(article) p(noun)
 4. verb_phrase ↔ verb p(vp) = p(r4) p(verb)
 5. verb_phrase ↔ verb noun_phrase p(vp) = p(r5) p(verb) p(np)
 6. article ↔ a p(article) = p(a)
 7. article ↔ the p(article) = p(the)
 8. noun ↔ man p(noun) = p(man)
 9. noun ↔ dog p(noun) = p(dog)
10. verb ↔ likes p(noun) = p(likes)
11. verb ↔ bites p(noun) = p(bites)


The probability measures for the individual words can be taken from their probability of
occurring within a particular corpus of English sentences. The probability measure for
each grammar rule, the p(ri), can be determined by how often that grammar rule occurs
within the sentences of a language corpus. Of course, the example here is simple - it is
intended to characterize this type of probabilistic context-free parser.
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The second example, the probabilistic lexicalized context free parser, will also be
demonstrated by extending the grammar rules of Section 15.2. In this situation we want to
take account of multiple aspects of the sentence. First we can have bigram or trigram
probabilities of language use. Again we will be dependent on an appropriate language cor-
pus to obtain bigram or trigram measures. As with our previous example we will also use
probability measures, obtained from a language corpus, for the occurrence of each of the
parse rules. Finally, we will have probabilistic measures of particular nouns and verb
going together. For example, if the subject noun is dog. the probability that the verb will
be bites. Note that this measure, even though taken from a language corpus, can also
enforce noun-verb agreement. 


We call our parser lexicalized, because we are able to focus on the probabilities of
specific patterns of words occurring together. For simplicity we present our parser for big-
rams only:


 1. sentence ↔ noun_phrase(noun) verb_phrase(verb) 
p(sentence) = p(r1) p(np) p(vp) p(verb | noun)


 2. noun_phrase ↔ noun 
p(np) = p(r2) p(noun) 


 3. noun_phrase ↔ article noun 
p(np) = p(r3) p(article) p(noun) p(noun | article)


 4. verb_phrase ↔ verb 
p(vp) = p(r4) p(verb)


 5. verb_phrase ↔ verb noun_phrase 
p(vp) = p(r5) p(verb) p(noun_phrase(noun)) p(noun |verb)


 6. article ↔ a p(article) = p(a)
 7. article ↔ the p(article) = p(the)
 8. noun ↔ man p(noun) = p(man)


.   p(man | a)
   p(man | the)
   etc.
   p(likes | man)
   etc.


Each of the two probabilistic parsers of this section have been built in Prolog in the
auxiliary materials for this chapter


There are many other areas where rigorous stochastic language modeling techniques
have not yet been tried but where they may yield useful results. Information extraction, or
the problem of obtaining a certain amount of concrete information from a written text is
one potential application. A second is tom match patterns in voiced speech to link into
concepts of a specific knowledge base. Finally, of course, is semantic web searching. Fur-
ther details on stochastic approaches to natural language processing can be found in Juraf-
sky and Martin (2008) and Manning and Schutze (1999).


We end Chapter 15 with several examples of computational language use.
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15.5 Natural Language Applications


15.5.1 Story Understanding and Question Answering


An interesting test for natural language understanding technology is to write a program
that can read a story or other piece of natural language text and answer questions about it.
In Chapter 7 we discussed some of the representational issues involved in story under-
standing, including the importance of combining background knowledge with the explicit
content of the text. As illustrated in Figure 15.2, a program can accomplish this by per-
forming network joins between the semantic interpretation of the input and conceptual
graph structures in a knowledge base. More sophisticated representations, such as scripts,
Section 7.1.4, can model more complex situations involving events occurring over time.


Once the program has built an expanded representation of the text, it can intelligently
answer questions about what it has read. The program parses the question into an internal
representation and matches that query against the expanded representation of the story.
Consider the example of Figure 15.2. The program has read the sentence “Tarzan kissed
Jane” and built an expanded representation. 


Assume that we ask the program “Who loves Jane?” In parsing the question, the
interrogative, who, what, why, etc., indicates the intention of the question. Who questions
ask for the agent of the action; what questions ask for the object of the action; how
questions ask for the means by which the action was performed, and so on. The question
“Who loves Jane?” produces the graph of Figure 15.15. The agent node of the graph is
marked with a ? to indicate that it is the goal of the question. This structure is then joined
with the expanded representation of the text. The concept that becomes bound to the per-
son: ? concept in the query graph is the answer to the question: “Tarzan loves Jane.” 


15.5.2 A Database Front End


The major bottleneck in designing natural language understanding programs is the acqui-
sition of sufficient knowledge about the domain of discourse. Current technology is lim-
ited to narrow domains with well-defined semantics. An application area that meets these
criteria is the development of natural language front ends for databases. Although data-
bases store enormous amounts of information, that information is highly regular and nar-
row in scope; furthermore, database semantics are well defined. These features, along with
the utility of a database that can accept natural language queries, make database front ends
an important application of natural language understanding technology. 


The task of a database front end is to translate a question in natural language into a
well-formed query in the database language. For example, using the SQL database
language as a target (Ullman 1982), the natural language front end would translate the
question “Who hired John Smith?” into the query: 


SELECT MANAGER
FROM MANAGER_OF_HIRE 
WHERE EMPLOYEE = John Smith








CHAPTER 15/ UNDERSTANDING NATURAL LANGUAGE 659


In performing this translation, the program must do more than translate the original
query; it must also decide where to look in the database (the MANAGER_OF_HIRE
relation), the name of the field to access (MANAGER), and the constraints on the query
(EMPLOYEE = ‘John Smith’). None of this information was in the original question; it
was found in a knowledge base that knew about the organization of the database and the
meaning of potential questions. 


A relational database organizes data in relations across domains of entities. For
example, suppose we are constructing a database of employees and would like to access
the salary of each employee and the manager who hired her. This database would consist
of three domains, or sets of entities: the set of managers, the set of employees, and the set
of salaries. We could organize these data into two relations, employee_salary, which
relates an employee and her salary, and manager_of_hire, which relates an employee
and her manager. In a relational database, relations are usually displayed as tables that
enumerate the instances of the relation. The columns of the tables are often named; these
names are called attributes of the relation. Figure 15.16 shows the tables for the
employee_salary and the manager_of_hire relations. Manager_of_hire has two
attributes, the employee and the manager. The values of the relation are the pairs of
employees and managers.


If we assume that employees have a unique name, manager, and salary, then the
employee name can be used as a key for both the salary and the manager attributes. An
attribute is a key for another attribute if it uniquely determines the value of elements for
the other attribute. A valid query indicates a target attribute and specifies a value or set of


object                       person: "jane"


love                       experiencer                     person: ?


Figure 15.15 Conceptual graph for the question Who
loves Jane?


Figure 15.16 Two relations in an employee database.
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John Smith
Alex Barrero
Don Morrison
Jan Claus
Anne Cable


manager


Jane Martinez
Ed Angel
Jane Martinez
Ed Angel
Bob Veroff


salary


$35,000.00
$42,000.00
$50,000.00
$40,000.00
$45,000.00


employee


John Smith
Alex Barrero
Don Morrison
Jan Claus
Anne Cable


manager_of_hire:                                              employee_salary:
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constraints; the database returns the specified values of the target attribute. We can indi-
cate the relationship between keys and other attributes graphically in a number of ways,
including entity-relationship diagrams (Ullman 1982) and data flow diagrams (Sowa
1984). Both of these approaches display the mapping of keys onto attributes using
directed graphs. 


We can extend conceptual graphs to include diagrams of these relationships (Sowa
1984). The database relation that defines the mapping is indicated by a rhombus, which is
labeled with the name of the relation. The attributes of the relation are expressed as
concepts in a conceptual graph and the direction of the arrows indicates the mapping of
keys onto other attributes. The entity-relation graphs for the employee_salary and
manager_of_hire relations may be seen in Figure 15.17.


In translating from English to a formal query, we must determine the record that con-
tains the answer, the field of that record that is to be returned, and the values of the keys
that determine that field. Rather than translating directly from English into the database
language, we first translate into a more expressive language such as conceptual graphs.
This is necessary because many English queries are ambiguous or require additional inter-
pretation to produce a well-formed database query. The use of a more expressive represen-
tation language helps this process. 


The natural language front end parses and interprets the query into a conceptual
graph, as described earlier in this chapter. It then combines this graph with information in
the knowledge base using join and restrict operations. In this example, we want to handle
queries such as “Who hired John Smith?” or “How much does John Smith earn?” For each
potential query, we store a graph that defines its verb, the case roles for that verb, and any
relevant entity-relationship diagrams for the question. Figure 15.18 shows the knowledge
base entry for the verb “hire.” 


The semantic interpreter produces a graph of the user’s query and joins this graph
with the appropriate knowledge base entry. If there is an attached entity relation graph that
maps keys into the goal of the question, the program can use this entity relation graph to
form a database query. Figure 15.19 shows the query graph for the question “Who hired
John Smith?” and the result of joining this with the knowledge base entry from Figure
15.18. It also shows the SQL query that is formed from this graph. Note that the name of
the appropriate record, the target field, and the key for the query were not specified in the
natural language query. These were inferred by the knowledge base. 


In Figure 15.18 the agent and object of the original query were known only to be of
type person. To join these with the knowledge base entry for hire, they were first
restricted to types manager and employee, respectively. The type hierarchy could thus
be used to perform type checking across possible solutions of the original query. If john
smith were not of type employee, the question would be invalid and the program could
detect this. 


Once the expanded query graph is built, the program examines the target concept,
flagged with a ?, and determines that the manager_of_hire relation mapped a key onto
this concept. Because the key is bound to a value of john smith, the question was valid
and the program would form the proper database query. Translation of this entity
relationship graph into SQL or some other any other general purpose data base language is
straightforward. 








CHAPTER 15/ UNDERSTANDING NATURAL LANGUAGE 661


Although this example is simplified, it illustrates the use of a knowledge-based
approach to building a natural language database front end. The ideas in our example are
expressed in conceptual graphs but could equally well be mapped into other representa-
tions such as frames or predicate logic-based formalisms. 


15.5.3 An Information Extraction and Summarization System for the Web


The World Wide Web offers many exciting challenges as well as interesting opportunities
for artificial intelligence and natural language understanding research. One of the biggest
is the need to design intelligent software that can summarize “interesting” web-based
materials. There are actually two parts to this problem: locating potentially interesting
information on the web and then extracting (or mining) critical components of that infor-
mation. Although the first problem of locating potentially interesting information is


manager                                    salary


manager_of_hire: employee_salary


employee                                 employee


Figure 15.17 Entity-relationship diagrams of the manager_of_hire
and employee_salary relations.


Figure 15.18 Knowledge base entry for hire  queries.
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critical (and many of the techniques of Chapters 10, 13, and 15 are important), we now
consider a template matching and filling approach to address the second problem. 


After locating information, perhaps by key-word match or use of a more sophisticated
search-engine, an information extraction system takes as input this unrestricted text and
then summarizes it with respect to a pre-specified domain or topic of interest. It finds use-
ful information about the domain and encodes this information form suitable for report to
the user or for populating a structured database.


In contrast to an in-depth natural language understanding system, information extrac-
tion systems skim a text to find relevant sections and then focus only on processing these
sections. We propose a template-based approach similar to extraction techniques proposed
by several researchers (Cardie 1997, Cardie and Mooney 1999). An overview of our infor-
mation extraction system is presented in Figures 15.20 and 15.21. Suppose we want to
find and summarize from the WWW information related to computer science university-
level faculty positions. Figure 15.20 presents a target job ad and also presents a template
of the information we want our software to extract from this and similar job ads 


Figure 15.19 Development of a database query from
the graph of a natural language input.
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SELECT MANAGER
FROM MANAGER_OF_HIRE
WHERE EMPLOYEE = "john smith"
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Sample Computer Science Job Ad (an excerpt):


The Department of Computer Science of the University of New Mexico. . . is conducting
a search to fill two tenure-track positions. We are interested in hiring people with research
interests in:


Software, including analysis, design, and development tools. . .
Systems, including architecture, compilers, networks. . .
...


Candidates must have completed a doctorate in. . .
The department has internationally recognized research programs in adaptive computa-
tion, artificial intelligence, . . . and enjoys strong research collaborations with the Santa Fe
Institute and several national laboratories.  ...


Sample Partially Filled Template:


Employer: Department of Computer Science, University of New Mexico
Location City: Albuquerque
Location State: NM 87131
Job Description: Tenure track faculty
Job Qualifications: PhD in . . .
Skills Required: software, systems, . . .
Platform Experience: . . .
About the Employer: (text attached)


Figure 15.20 Sample text, template summary, and information 
extraction for computer science advertisement.


1. Text: The Department of Computer Science of the Univer-
sity of New Mexico is conducting a search to fill two
tenure track positions. We are interested in filling
positions at the Assistant Professor. . .


2.Tokenization and Tagging: The/det    Department/noun    of/prep ... 


3. Sentence Analysis: Department/subj     is conducting/verb     search/obj
Computer/noun ...


4. Extraction: Employer: Department of Computer Science
Job Description: Tenure track position ...


5. Merging: tenure track position = faculty
New Mexico = NM ...


6. Template Generation: As in Figure 15.19


Figure 15.21 An architecture for information extraction, from Cardie (1997).
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In early attempts at information extraction, natural language systems varied in their
approaches. On one extreme, systems processed text using traditional tools: a full syntac-
tic breakdown of each sentence which was accompanied by a detailed semantic analysis.
Discourse level processing often followed. At the other extreme, systems used keyword
matching techniques with little or no knowledge or linguistic-level analysis. As more sys-
tems were built and evaluated, however, the limitations of these extreme approaches to
information extraction became obvious. A more modern approach to information extrac-
tion, adapted from Cardie (1997), is reflected in Figures 15.20 and 15.21. Although the
details of this architecture may differ across applications, the figures indicate the main
functions performed in extraction.


First, each sentence of the “interesting” web site is tokenized and tagged. The sto-
chastic tagger presented in Section 15.4 could be used for this. The sentence analysis stage
that follows and performs parsing then produces noun groups, verbs, prepositional phrases
and other grammatical constructs. Next the extraction phase finds and labels semantic
entities relevant to the extraction topic. In our example, this will be to identify employer
name, location of the faculty position, job requirements (education, computing skills, and
so on), the time the appointment begins, etc.


The extraction phase is the first entirely domain specific stage of the process. During
extraction, the system identifies specific relations among relevant components of the text.
In our example, the Department of Computer Science is seen as the employer and the
location is seen as University of New Mexico. The merging phase must address issues
such as synonym reference and anaphora resolution. Example of synonyms are tenure-
track position and faculty position as well as New Mexico and NM. Anaphora resolution
links the Department of Computer Science in the first sentence with we that is the subject
of the second sentence. 


The discourse-level inferences made during merging assist the template generation
phase, which determines the number of distinct relationships in the text, maps these
extracted pieces of information onto each field of the template, and produces the final out-
put template.


In spite of recent progress, current information extraction systems still have problems.
First, the accuracy and robustness of these systems can be improved greatly, as errors in
extraction seem to follow from a rather shallow understanding of meaning (semantics) of
the input text. Second, building an information extraction system in a new domain can be
difficult and time consuming (Cardie 1997). Both of these problems are related to the
domain-specific nature of the extraction task. The information extraction process
improves if its linguistic knowledge sources are tuned to the particular domain, but manu-
ally modifying domain-specific linguistic knowledge is both difficult and error prone. 


Nonetheless, a number of interesting applications now exist. Glasgow et al. (1997)
built a system to support underwriters in analysis of life insurance applications. Soderland
et al. (1995) have build a system to extract symptoms, physical findings, test results, and
diagnoses from patient’s medical records for insurance processing. There are programs to
analyze newspaper articles to find and summarize joint business ventures (MUC-5 1994),
systems that automatically classify legal documents (Holowczak and Adam 1997), and
programs that extract detailed information from computer job listings (Nahm and Mooney
2000).
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15.5.4 Using Learning Algorithms to Generalize Extracted Information


Another application brings together several of the ideas presented in this chapter as well as
algorithms from machine learning (Section 10.3). Cardie and Mooney (1999) and Nahm
and Mooney (2000) have suggested that information extracted from text may be general-
ized by machine learning algorithms and the result reused in the information extraction
task.


The approach is straightforward. Completed, or even partially filled text summariza-
tion templates as seen, for example, in Figure 15.20 are collected from appropriate web
sites. The resulting template information is then stored in a relational database where
learning algorithms, such as ID3 or C4.5 are used to extract decision trees, which, as seen
in Section 9.3, can reflect rule relationships implicit in the data sets. (This technique we
referred to as data mining.)


Mooney and his colleagues propose that these newly discovered relationships might
then be used for refining the original templates and knowledge structures used in the infor-
mation extraction. Examples of this type information that could be discovered from the
computer science job application analysis of Section 15.5.3 might include: if the position
is computer science faculty then experience on a particular computing platform is not
required; if universities are hiring faculty members then research experience is required,
etc. Further details on this approach to information generalization may be found in Nahm
and Mooney (2000).


There are a large number of current exciting issues in computational linguistics that it
is beyond our goal to address. We conclude with three open issues. First, what is the key
unit for understanding spoken language? There have been various attempts to answer this
question from the full parsing of the English language sentence, attempts at single word
recognition, to focus on individual phones. Might it be that focus on the syllable is key to
understanding human language? How much of a word do we have to hear before it is rec-
ognized? What is the optimum granularity for analysis of voiced speech (Greenberg
1999)?


Second, can access to concepts in a knowledge base through sound recognition lead
to further conditioning for subsequent language interpretation? Suppose that the syllable
turns out to be a useful unit for language analysis. Suppose that syllable bigrams are useful
for suggesting the words of a speaker. Can these words be mapped into the concepts of a
knowledge base and the related knowledge be used to enhance the interpretation of subse-
quent syllables? A caller to a computer based travel organizer could recognize the sylla-
bles suggesting a city name and the computer could then anticipate questions related to
visiting that city.


Finally, and a long term goal for natural language processing, is the creation of the
semantic web; how will this happen? Or will it happen? Is there any methodology under
which computers can be said to “understand” anything? Or will there always be search-
based pattern-driven “tricks” that are good enough to “convince” people that the computer
understands (the Turing-test again)? Isn’t this “good enough” approach what we humans
do for each other anyway? The final chapter continues this and related discussions.
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15.6 Epilogue and References


As this chapter suggests, there are a number of approaches to defining grammars and pars-
ing sentences in natural language. We have presented ATN parsers and Markov models as
typical examples of these approaches. The reader should be aware of other possibilities.
These include transformational grammars, semantic grammars, case grammars, and fea-
ture and function grammars (Winograd 1983, Allen 1995, Jurafsky and Martin 2008). 


Transformational grammars use context-free rules to represent the deep structure, or
meaning, of the sentence. This deep structure may be represented as a parse tree that not
only consists of terminals and nonterminals but also includes a set of symbols called
grammatical markers. These grammatical markers represent such features as number,
tense, and other context-sensitive aspects of linguistic structure. Next, a higher-level set of
rules called transformational rules transform between this deep structure and a surface
structure, which is closer to the actual form the sentence will have. For example, “Tom
likes Jane” and “Jane is liked by Tom” have the same deep structure but different surface
structures. 


Transformational rules act on parse trees themselves, performing the checks that
require global context and produce a suitable surface structure. For example, a
transformational rule may check that the number feature of the node representing the
subject of a sentence is the same as the number feature of the verb node. Transformational
rules may also map a single deep structure into alternative surface structures, such as
changing active to passive voice or forming an assertion into a question. Although
transformational grammars are not discussed in this text, they are an important alternative
to augmented phrase structure grammars.


Terry Winograd offers a comprehensive treatment of grammars and parsing in Lan-
guage as a Cognitive Process (1983). This book offers a thorough treatment of transfor-
mational grammars. Natural Language Understanding by James Allen (1987, 1995)
provides an overview of the design and implementation of natural language understanding
programs. Introduction to Natural Language Processing by Mary Dee Harris (1985) is
another general text on natural language expanding the issues raised in this chapter. We
also recommend Gerald Gazdar and Chris Mellish (1989), Natural Language Processing
in PROLOG. Charniak (1993) and Charniak et al. (1993), address issues in stochastic
approaches to language and part-of-speech tagging. 


The semantic analysis of natural language involves a number of difficult issues that
are addressed in knowledge representation (Chapter 7). In Computational Semantics,
Charniak and Wilks (1976) have articles addressing these issues. Because of the difficulty
in modeling the knowledge and social context required for natural language interaction,
many authors have questioned the possibility of moving this technology beyond con-
strained domains. Early research in discourse analysis may be found in Linde (1974),
Grosz (1977) and Grosz and Sidner (1990 Understanding Computers and Cognition by
Winograd and Flores (1986), Minds, Brains, and Programs by John Searle (1980) and On
the Origin of Objects (Smith 1996) address these issues. 


Inside Computer Understanding by Schank and Riesbeck (1981) discusses natural
language understanding using conceptual dependency technology. Scripts, Plans, Goals
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and Understanding by Schank and Abelson (1977) discusses the role of higher-level
knowledge organization structures in natural language programs. 


Speech Acts by John Searle (1969) discusses the role of pragmatics and contextual
knowledge in modeling discourse. Fass and Wilks (1983) have proposed semantic prefer-
ence theory as a vehicle for modeling natural language semantics. Semantic preference is
a generalization of case grammars that allows transformations on case frames. This pro-
vides greater flexibility in representing semantics and allows the representation of such
concepts as metaphor and analogy. For a full discussion of the Chomsky hierarchy see
Hopcroft and Ullman (1979). We are indebted to John Sowa (1984) for our treatment of
conceptual graphs.


Recent presentations of language processing techniques can be found in Speech and
Language Processing by Jurafsky and Martin (2008), Foundations of Statistical Natural
Language Processing by Manning and Schutze (1999), and Survey of the State of the Art
in Human Language Technology, Cole (1997), and the Winter 1997 edition of the AI Mag-
azine.


There are a number of very interesting commercial products now available for various
aspects of computer based language understanding and generation as well as language
based data mining. It is very nice to experiment with these products, but because they are
usually not open source, we do not discuss them here.


Excellent references for keeping up with the research trends in natural language
understanding, both from the traditional as well as from the stochastic viewpoints, are the
annual proceedings of the AI conferences: AAAI and IJCAI, published by AAAI Press
through MIT Press. The Association of Computational Linguistics also has its annual
national and international conferences as well as the Journal of the Association for Com-
putational Linguistics. These are important sources of current technology.


15.7 Exercises


 1.    Classify each of the following sentences as either syntactically incorrect, syntactically cor-
rect but meaningless, meaningful but untrue, or true. Where in the understanding
process is each of these problems detected?


Colorless green ideas sleep furiously. 
Fruit flies like a banana. 
Dogs the bite man a. 
George Washington was the fifth president of the USA. 
This exercise is easy. 
I want to be under the sea in an octopus’s garden in the shade. 


 2.    Discuss the representational structures and knowledge necessary to understand the following 
sentences.


The brown dog ate the bone. 
Attach the large wheel to the axle with the hex nut. 
Mary watered the plants. 
The spirit is willing but the flesh is weak. 
My kingdom for a horse! 
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3.    Parse each of these sentences using the “dogs world” grammar of Section 15.2.1. Which of 
these are illegal sentences? Why?


The dog bites the dog. 
The big dog bites the man. 
Emma likes the boy. 
The man likes. 
Bite the man. 


 4.    Extend the dogs world grammar so it will include the illegal sentences in Exercise 3. 


 5.    Parse each of these sentences using the context-sensitive grammar of Section 15.2.3.


The men like the dog. 
The dog bites the man. 


 6.    Produce a parse tree for each of the following sentences. You will have to extend our simple 
grammars with more complex linguistic constructs such as adverbs, adjectives, and prepo-
sitional phrases. If a sentence has more than one parsing, diagram all of them and explain
the semantic information that would be used to choose a parsing.


Time flies like an arrow but fruit flies like a banana. 
Tom gave the big, red book to Mary on Tuesday. 
Reasoning is an art and not a science. 
To err is human, to forgive divine. 


 7.    Extend the dogs world grammar to include adjectives in noun phrases. Be sure to allow an 
indeterminate number of adjectives. Hint: use a recursive rule, adjective_list, that either
is empty or contains an adjective followed by an adjective list. Map this grammar into
transition networks. 


 8.    Add the following context-free grammar rules to the dogs world grammar of Section 15.2.1. 
Map the resulting grammar into transition networks. 


sentence ↔ noun_phrase verb_phrase prepositional_phrase
prepositional_phrase ↔ preposition noun_phrase 
preposition ↔ with 
preposition ↔ to 
preposition ↔ on 


 9.    Define an ATN parser for the dogs world grammar with adjectives (Exercise 7) and preposi-
tional phrases (Exercise 8). 


    10.   Define concepts and relations in conceptual graphs needed to represent the meaning of the 
grammar of Exercise 9. Define the procedures for building a semantic representation from 


                the parse tree. 


    11.   Extend the context-sensitive grammar of Section 15.2.3 to test for semantic agreement 
                between the subject and verb. Specifically, men should not bite dogs, although dogs can 
                either like or bite men. Perform a similar modification to the ATN grammar. 


12.   Expand the ATN grammar of Section 15.2.4 to include who and what questions.


13.   Describe how the Markov models of Section 15.4 might be combined with the more sym-
bolic approach to understanding language of Section 15.1−15.3. Describe how the sto-
chastic models could be combined with traditional knowledge-based systems, Chapter 8.
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14.   Extend the database front end example of Section 15.5.2 so that it will answer questions of 
the form “How much does Don Morrison earn?” You will need to extend the grammar, the
representation language, and the knowledge base. 


15.   Take the previous problem and put its words, including punctuation, in random order.


16.    Assume that managers are listed in the employee_salary relation with other employees in 
the example of Section 15.5.2. Extend the example so that it will handle queries such as
“Find any employee that earns more than his or her manager.”


17.   How might the stochastic approaches of Section 15.4 be combined with the techniques for
database analysis found in Section 15.5.2.


18.   Use of the stochastic approach for discovering patterns in a relational database is an impor-
tant area of current research, sometime referred to as data mining (see Section 10.3). How
might this work be used to answer queries, such as those posed in Section 15.5.2 about
relational databases?


19.   As a project, build an information extractions system for some knowledge domain to be used
on the WWW. See Section 15.5.3 for suggestions.


20.  From this book’s auxiliary materials, take the structure of the Prolog context free and context
sensitive parsers and ad adjectives, adverbs, and propositional phrases to the grammar.


21. From this book’s auxiliary materials, take the structure of the Prolog probabilistic context
free parser and ad adjectives, adverbs, and propositional phrases to the grammar.
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P A R T VI


EPILOGUE


The potential of computer science, if fully explored and developed, will take us to a higher 
plane of knowledge about the world. Computer science will assist us in gaining a greater 
understanding of intellectual processes. It will enhance our knowledge of the learning 
process, the thinking process, and the reasoning process. Computer science will provide 
models and conceptual tools for the cognitive sciences. Just as the physical sciences have 
dominated humanity’s intellectual endeavors during this century as researchers explored 
the nature of matter and the beginning of the universe, today we are beginning the 
exploration of the intellectual universe of ideas, knowledge structures, and language. 
I foresee significant advances continuing to be made that will greatly alter our lives. . . . 
I can foresee an understanding of how to organize and manipulate knowledge. . .


—J. HOPCROFT, ACM Turing Award Lecture, 1987


What is mind? No matter. 
What is matter? Never mind. . . 


—HOMER SIMPSON


It’s what we learn after we know it all that is important.


—EARL WEAVER, Baltimore Orioles


Reflections on the Nature of Intelligence


Although this book has flirted with the larger philosophical implications of artificial intel-
ligence, we have chiefly emphasized the engineering techniques used to build intelligent
computer-based artifacts. In these final pages, we would like to return to those deeper
issues, to consider the philosophical foundations of artificial intelligence, to re-evaluate
the possibility of a science of intelligence using AI techniques, and to speculate on the
future progress of the discipline. 


As we have noted throughout our book, research on human cognition and problem
solving has made important contributions to the theory of artificial intelligence and the
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design of AI programs. And conversely, work in AI has led to many insights for both
model construction and empirical testing in many disciplines, including biology, linguis-
tics, and cognitive psychology. In concluding our presentation, we would like to revive
this eclectic spirit and consider such issues as the limits of representations, the importance
of physical embodiment to mental processes, and the role of culture in the growth and
interpretation of knowledge. These questions lead us to further scientific and philosophical
questions, such as those surrounding the falsifiability of models and the nature and capa-
bilities of the scientific method itself. Our observations lead us to argue for an interdisci-
plinary approach that couples work in AI with the findings of psychology, linguistics,
biology, anthropology, neuroscience, and the other fields that explore the full range of
human thought and its products. We believe that by exploring both the intersections of
these disciplines, as well as the tensions between them, we can better understand the pro-
cesses that underlie intelligence, whether biologically or mechanically based.


Traditionally, work in artificial intelligence was based on the physical symbol system
hypothesis (Newell and Simon 1976). Research from that perspective produced increas-
ingly sophisticated data structures and search strategies that, in turn, led to many impor-
tant successes both in creating tools that can achieve elements of intelligent behavior, as
well as in illuminating the many components that make up human intelligence. It is impor-
tant to note, however, that much of the practice of AI that emerged from this early
approach rested on assumptions which derive from philosophical rationalism. As defined
by the rationalist tradition, intelligence itself is largely seen as a process of logical reason-
ing, scientific problem solving, and a straightforward, empirical approach to understand-
ing the universe. We feel that philosophical rationalism has overly constrained both the
current methods of artificial intelligence as well as the scope of its inquiry.


Throughout this book, we have presented many more recent developments, including
alternative (probabilistic) models of learning, agent-based and distributed problem solv-
ing, approaches to embodied and situated intelligence, as well as the insights of evolution-
ary computation and artificial life. These approaches to understanding intelligence offer
much needed alternatives to a rationalist reductionism. Biological and social models of
intelligence have shown that human intelligence is very much a product of our bodies and
senses, of our cultural and social institutions, of the art we create and have enjoyed, of the
stories we have been told and pass on. By establishing methods for building computer
simulations of many of these complex processes, such as evolution or the adaptation of
neural patterns in the human brain, these recent approaches have given AI a new and pow-
erful set of tools to complement its more traditional techniques. 


Artificial intelligence, like most of computer science, is a young field. Where physics
and biology can measure their progress in centuries, modern computing still reckons its
age in decades. In Chapter 16 we attempt to integrate the findings of AI’s different
approaches into a unified science of intelligent systems. We propose that science and engi-
neering, philosophy, and our own aesthetic judgments must lead us in our continuing cre-
ation of new artifacts and experiments, which when used appropriately, can offer insight
into the more general science of intelligent systems. This chapter continues the long tradi-
tion introduced in Chapter 1 of establishing an epistemological grounding for AI, not so
much to answer its critics (in fact, many of their challenges still await answers) but in the
positive sense, of attempting to explore and illuminate the path ahead. 
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ARTIFICIAL
INTELLIGENCE AS
EMPIRICAL ENQUIRY


Computer science is an empirical discipline. We would have called it an experimental 
science, but like astronomy, economics, and geology, some of its unique forms of 
observation and experience do not fit a narrow stereotype of the experimental method. 
Nonetheless, they are experiments. Each new machine that is built is an experiment. 
Actually constructing the machine poses a question to nature; and we listen for the answer 
by observing the machine in operation and analyzing it by all analytical and measurement 
means available. Each new program that is built is an experiment. It poses a question to 
nature, and its behavior offers clues to an answer. Neither machines nor programs are 
black boxes; they are artifacts that have been designed, both hardware and software, and 
we can open them up and look inside. We can relate their structure to their behavior and 
draw many lessons from a single experiment. 


—A. NEWELL AND H. A. SIMON, ACM Turing Award Lecture, 1976


The study of thinking machines teaches us more about the brain than we can learn by 
introspective methods. Western man is externalizing himself in the form of gadgets.


—WILLIAM S. BURROUGHS, Naked Lunch


Where is the knowledge we have lost in information?


—T. S. ELIOT, Choruses from the Rock


16.0 Introduction


For many people, one of the most surprising aspects of work in artificial intelligence is the
extent to which AI, and indeed much of computer science, turns out to be an empirical dis-
cipline. This is surprising because most people initially think of these fields in terms of
their mathematical, or alternatively, their engineering foundations. From the mathematical


16
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viewpoint, sometimes termed the “neat” perspective, there is the rationalist desire to bring
standards of proof and analysis to the design of intelligent computational devices. From
the engineering, or “scruffy” perspective, the task is often viewed as simply making suc-
cessful artifacts that society wants to call “intelligent”. Unfortunately, or fortunately,
depending upon your philosophy, the complexity of intelligent software and the ambigu-
ities inherent in its interactions with the worlds of human activity frustrate analysis from
either the purely mathematical or purely engineering perspectives. 


Furthermore, if artificial intelligence is to achieve the level of a science and become a
critical component of the science of intelligent systems, a mixture of analytic and empiri-
cal methods must be included in the design, execution, and analysis of its artifacts. On this
viewpoint each AI program can be seen as an experiment: it proposes a question to the nat-
ural world and the results are nature’s response. Nature’s response to our design and pro-
grammatic commitments shapes our understanding of formalism, mechanism, and finally,
of the nature of intelligence itself (Newell and Simon 1976). 


Unlike many of the more traditional studies of human cognition, we as designers of
intelligent computer artifacts can inspect the internal workings of our “subjects”. We can
stop program execution, examine internal state, and modify structure at will. As Newell
and Simon note, the structure of computers and their programs indicate their potential
behavior: they may be examined, and their representations and search algorithms under-
stood. The power of computers as tools for understanding intelligence is a product of this
duality. Appropriately programmed computers are capable of both achieving levels of
semantic and behavioral complexity that beg to be characterized in psychological terms as
well as offer an opportunity for an inspection of their internal states that is largely denied
scientists studying most other intellectual life forms.


Fortunately for continuing work in AI, as well as for establishing a science of intelli-
gent systems, more modern psychological techniques, especially those related to neural
physiology, have also shed new light on the many modes of human intelligence. We know
now, for example, that human intelligent function is not monolithic and uniform. Rather it
is modular and distributed. Its power is seen in the sense organs, such as the human retina,
that can screen and preprocess visual information. Similarly, human learning is not a uni-
form and homogenous faculty. Rather learning is a function of multiple environments and
differing systems, each adapted to achieve specialized goals. fMRI analysis, along with
PET scans, EEG, and allied neural physical imaging procedures, all support a diverse and
cooperative picture of the internal workings of actual intelligent systems.


If work in AI is going to reach the level of a science, we must also address important
philosophical issues, especially those related to epistemology, or the question of how an
intelligent system “knows” its world. These issues range from the question of what is the
object of study of artificial intelligence to deeper issues, such as questioning the validity
and utility of the physical symbol system hypothesis. Further questions include what a
“symbol” is in the symbol system approach to AI and how symbols might relate to sets of
weighted nodes in a connectionist model. We also question the role of rationalism
expressed in the inductive bias seen in most learning programs and how this compares to
the unfettered lack of structure often seen in unsupervised, reinforcement, and emergent
approaches to learning. Finally, we must question the role of embodiment, situatedness,
and sociological bias in problem solving. We conclude our discussion of philosophical
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issues by proposing a constructivist epistemology that fits comfortably with both our com-
mitment to AI as a science as well as to AI as empirical enquiry.


And so in this final chapter we return again to the questions asked in Chapter 1: What
is intelligence? Can it be formalized? How can we build mechanisms that exhibit it? How
can artificial and human intelligence fit into a larger context of a science of intelligent sys-
tems? In Section 16.1 we begin with a revised definition of artificial intelligence which
shows how current work in AI, although rooted in the physical symbol system hypothesis
of Newell and Simon, has extended both its tools, techniques, and inquiries into a much
broader context. We explore these alternative approaches to the question of intelligence,
and consider their powers for the design of intelligent machines and for being a compo-
nent in the science of intelligence systems. In Section 16.2, we point out how many of the
techniques of modern cognitive psychology, neuroscience, as well as epistemology may
be used to better understand the artificial intelligence enterprise. 


Finally, in Section 16.3, we discuss some of the challenges that remain both for mod-
ern AI practitioners as well as for epistemologists. For even though the traditional
approaches to AI have often been guilty of a rationalist reductionism, new interdiscipli-
nary insights and tools also have related shortcomings. For example, the creators of the
genetic algorithm and the designers of a-life research define the world of intelligence from
a Darwinian viewpoint: “What is, is what survives”. Knowledge is also seen as “knowing
how” rather than “knowing what” in a complex situated world. For the scientist, answers
require explanations, and “success” or “survival” are not of themselves sufficient. 


In this final chapter, we will discuss the future of AI by exploring the philosophical
questions that must be addressed to create a computational science of intelligence. We
conclude that AI’s empirical methodology is an important tool, and perhaps one of the best
available, for exploring the nature of intelligence.


16.1 Artificial Intelligence: A Revised Definition


16.1.1 Intelligence and the Physical Symbol System Hypothesis


Based on our experience of the last 15 chapters, we offer a revised definition of artificial
intelligence:


AI is the study of the mechanisms underlying intelligent behavior through the construction and
evaluation of artifacts designed to enact those mechanisms. 


On this definition, artificial intelligence is less a theory about the mechanisms underlying
intelligence and more an empirical methodology for constructing and testing possible
models for supporting such a theory. It is a commitment to the scientific method of design-
ing, running, and evaluating experiments with the goal of model refinement and further
experiment. Most importantly however, this definition, like the field of AI itself, directly
attacks centuries of philosophical obscurantism about the nature of mind. It gives people
who would understand what is perhaps our defining characteristic as humans an alterna-
tive to religion, superstition, Cartesian dualism, new-age placebos, or the search for
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intelligence in some as yet undiscovered quirk of quantum mechanics (Penrose 1989). If
the science supporting artificial intelligence has made any contribution to human knowl-
edge, it is in confirming that intelligence is not some mystic vapor permeating men and
angels, but rather the effect of a set of principles and mechanisms that can be understood
and applied in the design of intelligent machines. It must be noted that our revised defini-
tion of AI does not define intelligence; rather it proposes a coherent role for artificial intel-
ligence in exploring both the nature and expression of intelligent phenomena.


From an historical perspective, the dominant approach to artificial intelligence
involved the construction of representational formalisms and their associated search-based
reasoning mechanisms. The guiding principle of early AI methodology was the physical
symbol system hypothesis, first articulated by Newell and Simon (1976). This hypothesis
states:


The necessary and sufficient condition for a physical system to exhibit general intelligent
action is that it be a physical symbol system.


Sufficient means that intelligence can be achieved by any appropriately organized physical
symbol system.


Necessary means that any agent that exhibits general intelligence must be an instance of a
physical symbol system. The necessity of the physical symbol system hypothesis requires that
any intelligent agent, whether human, space alien, or computer, achieve intelligence through
the physical implementation of operations on symbol structures.


General intelligent action means the same scope of action seen in human action. Within
physical limits, the system exhibits behavior appropriate to its ends and adaptive to the
demands of its environment. 


Newell and Simon have summarized the arguments for the necessity as well as the suffi-
ciency of this hypothesis (Newell and Simon 1976, Newell 1981, Simon 1981). In subse-
quent years both AI and cognitive science explored the territory delineated by this
hypothesis.


The physical symbol system hypothesis has led to four significant methodological
commitments: (a) the use of symbols and systems of symbols as a medium to describe the
world; (b) the design of search mechanisms, especially heuristic search, to explore the
space of potential inferences those symbol systems could support; and (c) the disembodi-
ment of cognitive architecture, by which we mean it was assumed that an appropriately
designed symbol system could provide a full causal account of intelligence, regardless of
its medium of implementation. Finally (d), on this viewpoint, AI became empirical and
constructivist: it attempted to understand intelligence by building working models of it. 


On the symbol system view, tokens in a language, referred to as symbols, were used to
denote or reference something other than themselves. Like verbal tokens in a natural lan-
guage, symbols stood for or referred to things in an intelligent agent’s world. Tarski (1956,
Section 2.3) could offer the possibility of a science of meaning in these object


 


−referent
relationships.


Furthermore, AI’s use of symbols goes beyond the questions addressed in a Tarskian
semantics, extending symbols to represent all forms of knowledge, skill, intention, and
causality. Such constructive efforts rely on the fact that symbols, together with their
semantics, can be embedded in formal systems. These define a representation language.
The ability to formalize symbolic models is essential to modeling intelligence as a running
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computer program. In previous chapters we studied several representations in detail: the
predicate calculus, semantic networks, scripts, conceptual graphs, frames, and objects.
The mathematics of formal systems allows us to argue such issues as soundness, com-
pleteness, and complexity, as well as discuss the organization of knowledge structures.
The evolution of representational formalisms has allowed us to establish more complex
(richer) semantic relationships. For example, inheritance systems constitute a semantic
theory of taxonomic knowledge. By formally defining a class inheritance, such languages
simplify the construction of intelligent programs and provide testable models of the orga-
nization of possible categories of intelligence itself.


Closely bound to representational schemata and their use in reasoning is the notion of
search. Search became the step-by-step examination of problem states within a state space
framework (an a priori semantic commitment) looking for solutions, subproblem goals,
problem symmetries, or whatever aspect of the problem might be under consideration.
Representation and search are linked because a commitment to a particular representation
determines a space to be searched. Indeed, some problems can be made more difficult, or
even impossible, through a poor choice of a representation language. The discussion of
inductive bias later in this chapter illustrates this point. 


A dramatic and often cited example of this interplay between search and representa-
tion as well as the difficulty of choosing an appropriate representation (can this process of
optimizing the selection of representations be automated?) is the problem of placing dom-
inos on a truncated chessboard. Assume that we have a chessboard and a set of dominos
such that each domino will cover exactly two squares of the board. Also, assume that the
board has some missing squares; in Figure 16.1 the upper left-hand corner and the lower
right-hand corner have been removed. 


The truncated chessboard problem asks whether there is a way of placing dominos on
the board so that each square of the chessboard is covered and each domino covers exactly
two squares.We might try to solve the problem by trying all placements of dominos on the
board; this is the obvious search-based approach and is a natural consequence of repre-
senting the board as a simple matrix, ignoring such seemingly irrelevant features as the


Figure 16.1 Truncated chessboard with two squares 
covered by a domino.
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color of the squares. The complexity of such a search is enormous, and would require heu-
ristics for an efficient solution. For example, we might prune partial solutions that leave
single squares isolated. We could also start by solving the problem for a smaller board,
such as 2 


 


× 2 and 3 


 


× 3, and attempt to extend the solution to the 8 


 


× 8 situation. 
A more sophisticated solution, relying on a more complex representational scheme,


notes that every placement of a domino must cover both a black and a white square. This
truncated board has 32 black squares but only 30 white squares; thus the desired place-
ment is not going to be possible. This raises a serious question for purely symbol-based
reasoners: do we have representations that allow problem solvers to access knowledge
with this degree of flexibility and creativity? How can a particular representation automat-
ically change its structure as more is learned about a problem domain?


Heuristics are the third component, along with representation and search, of symbol-
based AI. A heuristic is a mechanism for organizing search across the alternatives offered
by a particular representation. Heuristics are designed to overcome the complexity of
exhaustive search, the barrier to useful solutions for many classes of interesting problems.
In computing, just as for humans, intelligence requires the informed choice of “what to do
next”. Throughout the history of AI research, heuristics have taken many forms. 


The earliest problem-solving techniques, such as hill climbing in Samuel’s checker-
playing program (Section 4.1) or means


 


−ends analysis in Newell, Shaw, and Simon’s
General Problem Solver (Section 13.1), came into AI from other disciplines, such as
operations research, and have gradually matured into general techniques for AI problem
solving. Search properties, including admissibility, monotonicity, and informedness, are
important results from these early studies. These techniques are often referred to as weak
methods. Weak methods were general search strategies intended to be applicable across
entire classes of problem domains (Newell and Simon 1972, Ernst and Newell 1969). We
saw these methods and their properties in Chapters 2, 3, 4, 6, and 14.


We introduced strong methods for AI problem solving with the rule-based expert sys-
tem, model-based and case-based reasoning, and symbol-based learning of Chapters 8, 9,
and 10. In contrast to weak problem solvers, strong methods focus on the information spe-
cific to each problem area, such as internal medicine or integral calculus, rather than on
designing heuristic methods that generalize across problem areas. Strong methods under-
lie expert systems and other knowledge-intensive approaches to problem solving. Strong
methods emphasize such issues as the amount of knowledge needed for problem solving,
learning, and knowledge acquisition, the syntactic representation of knowledge, the man-
agement of uncertainty, and issues related to the quality of knowledge. 


Why have we not built many truly intelligent symbol-based systems?


There are many criticisms that can be leveled at the physical symbol system characteriza-
tion of intelligence. Most of these are captured by considering the issues of semantic
meaning and the grounding of the symbols of an intelligent agent. The nature of “mean-
ing”, of course, also impacts the idea of intelligence as search through pre-interpreted
symbol structures and the “utility” implicit in the use of heuristics. The notion of meaning
in traditional AI is very weak, at best. Furthermore, the temptation of moving towards a
more mathematics-based semantics, such as the Tarskian possible worlds approach, seems
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wrong-headed. It reinforces the rationalist project of replacing the flexible and evolving
intelligence of an embodied agent with a world where clear and distinct ideas are directly
accessible.


The grounding of meaning is an issue that has forever frustrated both the proponents
and critics of the AI and cognitive science enterprises. The grounding issue asks how sym-
bols can have meaning. Searle (1980) makes just this point in his discussion of the so-
called Chinese Room. Searle places himself in a room intended for translating Chinese
sentences into English; there he receives a set of Chinese symbols, looks the symbols up
in a large Chinese symbol cataloging system, and then outputs the appropriately linked
sets of English symbols. Searle claims that although he himself knows absolutely no Chi-
nese, his “system” can be seen as a Chinese-to-English translation machine.


There is a problem here. Although anyone who has worked in the research areas of
machine translation or natural language understanding (Chapter 15), might argue that the
Searle “translation machine”, blindly linking one set of symbols to another set of symbols,
would produce results of minimal quality, the fact remains that many current intelligent
systems have a very limited ability to interpret sets of symbols in a “meaningful” fashion.
This problem of too weak a supporting semantics also pervades many computationally
based sensory modalities, whether they be visual, kinesthetic, or verbal.


In the areas of human language understanding, Lakoff and Johnson (1999) argue that
the ability to create, use, exchange, and interpret meaning-symbols comes from a human’s
embodiment within an evolving social context. This context is physical, social, and right-
now; it supports and enables the human ability to survive, evolve, and reproduce. It makes
possible a world of analogical reasoning, the use and appreciation of humor, and the expe-
riences of music and art. Our current generation of AI tools and techniques are very far
away indeed from being able to encode and utilize any equivalent “meaning” system.


As a direct result of this weak semantic encoding, the traditional AI search/heuristic
methodology explores states and contexts of states that are pre-interpreted. This means
that an AI program’s creator “imputes” or “lays on” to the symbols of the program various
contexts of semantic meaning. A direct result of this pre-interpreted encoding is that intel-
ligence-rich tasks, including learning and language, can only produce some computed
function of that interpretation. Thus, many AI systems have very limited abilities to evolve
new meaning associations as they explore their environments (Luger et al. 2002). 


Finally, as a direct result of our current limited semantic modeling abilities, those
applications where we are able to abstract away from a rich embodied and social context
and at the same time capture the essential components of problem solving with pre-inter-
preted symbol systems are our most successful endeavors. Many of these were addressed
throughout this book. However, even these areas remain brittle, without multiple interpre-
tations, and with only limited ability to automatically recover from failures.


Across its brief history, the artificial intelligence research community has explored
the ramifications of the physical symbol system hypothesis, and has developed its own
challenges to that previously dominant view. As illustrated in the later chapters of this
book, the explicit symbol system and search are not the only possible representational
media for capturing intelligence. Models of computing based on the architecture of the
animal brain as well as on the processes of biological evolution also provide useful frame-
works for understanding intelligence in terms of scientifically knowable and empirically
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reproducible processes. In the following sections of this final chapter we explore the ram-
ifications of these approaches.


16.1.2 Connectionist or “Neural” Computing


A significant alternative to the physical symbol system hypothesis is the research into neu-
ral networks and other biologically inspired models of computing. Neural networks, for
example, are computational and physically instantiated models of cognition not totally
reliant on explicitly referenced and pre-interpreted symbols that characterize a world.
Because the “knowledge” in a neural network is distributed across the structures of that
network, it is often difficult, if not impossible, to isolate individual concepts to specific
nodes and weights of the network. In fact, any portion of the network may be instrumental
in the representation of different concepts. Consequently, neural networks offer a counter-
example, at least to the necessary clause of the physical symbol system hypothesis. 


Neural networks and genetic architectures shift the emphasis of AI away from the
problems of symbolic representation and sound inference strategies to issues of learning
and adaptation. Neural networks, like human beings and other animals, are mechanisms
for adapting to the world: the structure of a trained neural network is shaped by learning,
as much as by design. The intelligence of a neural network does not require that the world
be recast as an explicit symbolic model. Rather, the network is shaped by its interactions
with the world, reflected through the implicit traces of experience. This approach has
made a number of contributions to our understanding of intelligence, giving us a plausible
model of the mechanisms underlying the physical embodiment of mental processes, a
more viable account of learning and development, a demonstration of the ability of sim-
ple, and local adaptations to shape a complex system in response to actual phenomena.
Finally, they offer a powerful research tool for cognitive neuroscience.


Precisely because they are so different, neural nets can answer a number of questions
that may be outside the expressive abilities of symbol-based AI. An important class of
such questions concerns perception. Nature is not so generous as to deliver our percep-
tions to a processing system as neat bundles of predicate calculus expressions. Neural net-
works offer a model of how we might recognize “meaningful” patterns in the chaos of
sensory stimuli.


Because of their distributed representation, neural networks are often more robust
than their explicitly symbolic counterparts. A properly trained neural network can effec-
tively categorize novel instances, exhibiting a human-like perception of similarity rather
than strict logical necessity. Similarly, the loss of a few neurons need not seriously com-
promise the performance of a large neural network. This results from the often extensive
redundancy inherent in network models.


Perhaps the most appealing aspect of connectionist networks is their ability to learn.
Rather than attempting to construct a detailed symbolic model of the world, neural net-
works rely on the plasticity of their own structure to adapt directly to external experiences.
They do not construct a model of the world so much as they are shaped by their experience
within the world. Learning is one of the most important aspects of intelligence. It is also
the problem of learning that raises some of the hardest questions for work in neural com-
puting.
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Why have we not built a brain?


In fact, the current generation of engineered connectionist systems bear very little resem-
blance to the human neuronal system! Because the topic of neural plausibility is a critical
research issue, we begin with that question and then consider development and learning.
Research in cognitive neuroscience (Squire and Kosslyn 1998, Gazzaniga 2000, Hugdahl
and  Davidson 2003) brings new insight to the understanding of human cognitive architec-
ture. We describe briefly some findings and comment on how they relate to the AI enter-
prise. We consider issues from three levels: first, the neuron, second, the level of neural
architecture, and finally we discuss cognitive representation or the encoding problem.


First, at the level of the individual neuron, Shephard (1998) and Carlson (1994) iden-
tify many different types of neuronal architectures for cells, each of which is specialized
as to its function and role within the larger neuronal system. These types include sensory
receptor cells typically found in the skin and passing input information to other cell struc-
tures, interneurons whose primary task is to communicate within cell clusters, principle
neurons whose task is to communicate between cell clusters, and motor neurons whose
task is system output.


Neural activity is electrical. Patterns of ion flows into and out of the neuron determine
whether a neuron is active or resting. The typical neuron has a resting charge of 


 


−70mV.
When a cell is active, certain chemicals are released from the axon terminal. These chemi-
cals, called neurotransmitters, influence the postsynaptic membrane, typically by fitting
into specific receptor sites, like a key into a lock, initiating further ion flows. Ion flows,
when they achieve a critical level, about 


 


−50mV, produce an action potential, an all-or-
none triggering mechanism indicating that the cell has fired. Thus neurons communicate
through sequences of binary codes.


Postsynaptic changes from the action potential are of two sorts, inhibitory, found
mainly in interneuron cell structures, or excitatory. These positive and negative potentials
are constantly being generated throughout the synapses in the dendritic system. Whenever
the net effect of all these events is to alter the membrane potentials of related neurons from


 


−70mV to about 


 


−50mV, the threshold is crossed and massive ion flows are again initiated
into those cells’ axons.


Secondly, on the level of neural architecture, there are approximately 1010 total neu-
rons in the cerebral cortex, a thin convoluted sheet covering the entire cerebral hemi-
sphere. Much of the cortex is folded in on itself, increasing the total surface area. From the
computational perspective we need to know not only the total number of synapses, but
also the fan-in and fan-out parameters. Shephard (1998) estimates both these numbers to
be about 105.


Finally, aside from the differences in the cells and architectures of neural and com-
puter systems, there is a deep problem of cognitive representation. We are ignorant, for
example, of how even simple memories are encoded in cortex. Of how, for example, a
face is recognized, and how recognition of a face can link an agent to feelings of joy or
sadness. We know a huge amount about the physical/chemical aspects of the brain, but rel-
atively little about how the neural system encodes and uses “patterns” within its context.


One of the more difficult questions facing researchers, in both the neural and comput-
ing communities, is the role of innate knowledge in learning: can effective learning ever
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occur on a tabula rasa, or blank slate, starting with no initial knowledge and learning
entirely from experience? Or must learning start out with some prior inductive bias? Expe-
rience in the design of machine learning programs suggests that some sort of prior knowl-
edge, usually expressed as an inductive bias, is necessary for learning in complex
environments. 


The ability of connectionist networks to converge on a meaningful generalization
from a set of training data has proven sensitive to the number of artificial neurons, the
network topology, and the specific learning algorithms used. Together, these factors con-
stitute as strong an inductive bias as can be found in any symbolic representation.
Research into human development supports this conclusion. There is increasing evidence,
for example, that human infants inherit a range of “hard-wired” cognitive biases that
enable learning of concept domains such as language and commonsense physics. Charac-
terizing innate biases in neural networks is an active area of research (Elman et al. 1996). 


The issue of innate biases becomes even more confounding when we consider more
complex learning problems. For example, suppose we are developing a computational
model of scientific discovery and want to model Copernicus’ shift from a geocentric to
heliocentric view of the universe. This requires that we represent both the Copernican and
Ptolemaic views in a computer program. Although we could represent these views as pat-
terns of activations in a neural network, our networks would tell us nothing about their
behavior as theories. Instead, we prefer explanations such as “Copernicus was troubled by
the complexity of the Ptolemaic system and preferred the simpler model of letting the
planets revolve around the sun.” Explanations such as this require symbols. Clearly, con-
nectionist networks must be capable of supporting symbolic reasoning; after all, human
beings are neural networks, and they seem to manipulate symbols tolerably well. Still, the
neural foundation of symbolic reasoning is an important and open research problem.


Another problem is the role of development in learning. Human children cannot sim-
ply learn on the basis of available data. Their ability to learn in specific domains appears
in well-defined developmental stages (Karmiloff-Smith 1992). An interesting question is
whether this developmental progression is solely a result of human biology and embodi-
ment, or whether it reflects some logically necessary limits on the ability of an intelligence
to learn invariances in its world. Could developmental stages function as a mechanism for
decomposing the problem of learning about the world into more manageable subprob-
lems? Might a series of artificially imposed developmental restrictions provide artificial
networks with a necessary framework for learning about a complex world?


The application of neural networks to practical problems raises a number of addi-
tional research issues. The very properties of neural networks that make them so appeal-
ing, such as adaptability and robustness in light of missing or ambiguous data, also create
problems for their practical application. Because networks are trained, rather than pro-
grammed, behavior is difficult to predict. There are few guidelines for designing networks
that will converge properly in a given problem domain. Finally, explanations of why a net-
work arrived at a particular conclusion are often difficult to construct and may take the
form of a statistical argument. These are all areas of current research.


One can ask then, whether connectionist networks and more symbolic AI are that dif-
ferent as models of intelligence. They both share a number of important commonalities,
especially that intelligence is ultimately encoded as computation and has fundamental and
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formal limits, such as the Church/Turing hypothesis (Luger 1994, Chapter 2). Both
approaches also offer models of mind shaped by application to practical problems. Most
importantly, however, both approaches deny philosophical dualism and place the founda-
tions of intelligence in the structure and function of physically realized devices.


We believe that a full reconciliation of these two very different approaches to captur-
ing intelligence is inevitable. When it is accomplished, a theory of how symbols may
reduce to patterns in a network and, in turn influence future adaptation of that network,
will be an extraordinary contribution. This will support a number of developments, such
as integrating network-based perceptual and knowledge-intensive reasoning facilities into
a single intelligence. In the meantime, however, both research communities have consid-
erable work to do, and we see no reason why they should not continue to coexist. For
those who feel uncomfortable with two seemingly incommensurable models of intelli-
gence, even physics functions well with the intuitively contradictory notion that light is
sometimes best understood as a wave and sometimes as a particle, although both view-
points may well be subsumed by string theory (Norton 1999). 


16.1.3 Agents, Emergence, and Intelligence


Agent-based computation and modular theories of cognition raise another set of interest-
ing issues for researchers building artificial intelligences. One important school of thought
in cognitive science holds that the mind is organized into sets of specialized functional
units (Minsky 1985, Fodor 1983). These modules are specialists and employ a range of
innate structures and functions, from “hard-wired” problem solving to inductive biases,
that account for the diversity of problems they, as practical agents, must address. This
makes sense: how can a single neural network or other system be trained to handle func-
tions as diverse as perception, motor control, memory, and higher-level reasoning? Modu-
lar theories of intelligence provide both a framework for answering these questions and a
direction for continued research into issues such as the nature of innate biases in individ-
ual modules as well as mechanisms of module interaction.


Genetic and emergent models of computation offer one of the newest and most excit-
ing approaches to understanding both human and artificial intelligence. By demonstrating
that globally intelligent behavior can arise from the cooperation of large numbers of
restricted, independent, and individual agents, genetic and emergent theories view com-
plex results through the interrelationships of relatively simple structures. 


In an example from Holland (1995), the mechanisms that keep a large city such as
New York supplied with bread demonstrate the fundamental processes underlying the
emergence of intelligence in an agent-based system. It is unlikely that we could write a
centralized planner that would successfully supply New Yorkers with the rich variety of
daily breads to which they are accustomed. Indeed, the Communist world’s unfortunate
experiment with central planning revealed the limitations of such approaches! However,
in spite of the practical difficulties of writing a centralized planning algorithm that will
keep New York supplied with bread, the loosely coordinated efforts of the city’s many
bakers, truckers, suppliers of raw materials, as well as its retailers, solve the problem quite
nicely. As in all agent-based emergent systems, there is no central plan. No one baker has
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more than a very limited knowledge of the city’s bread requirements; each baker simply
tries to optimize his or her own business opportunities. The solution to the global problem
emerges from the collective activities of these independent and local agents.


By demonstrating how highly goal-directed, robust, nearly optimal behaviors can
arise from the interactions of local individual agents, these models provide yet another
answer to old philosophical questions of the origins of mind. The central lesson of emer-
gent approaches to intelligence is that full intelligence can and does arise from the interac-
tions of many simple, individual, local, and embodied agent intelligences.


The second major feature of emergent models is their reliance on Darwinian selection
as the basic mechanism that shapes the behavior of the individual agents. In the bakery
example, it seems that each individual baker does not behave in a manner that is, in some
sense, globally optimal. Rather, the source of their optimality is not of a central design; it
is the simple fact that bakers who do a poor job of satisfying the needs of their local  cus-
tomers generally fail. It is through the tireless, persistent operations of these selective
pressures that individual bakers arrive at the behaviors that lead to their individual sur-
vival as well as to a useful emergent collective behavior.


The combination of a distributed, agent-based architecture and the adaptive pressures
of natural selection are a powerful model of the origins and operations of mind. Evolution-
ary psychologists (Cosmides and Tooby 1992, 1994; Barkow et al. 1992) have provided a
model of the way in which natural selection has shaped the development of the innate
structure and biases in the human mind. The basis of evolutionary psychology is a view of
the mind as highly modular, as a system of interacting, highly specialized agents. Indeed,
discussions of evolutionary psychology often compare the mind to a Swiss army knife, a
collection of specialized tools that can be applied to solving different problems. 


There is increasing evidence that human minds are, indeed, highly modular. Fodor
(1983) offers a philosophical argument for the modular structure of mind. Minsky (1985)
explores the ramifications of modular theories for artificial intelligence. This architecture
is important to theories of the evolution of mind. It would be difficult to imagine how evo-
lution could shape a single system as complex as a mind. It is, however, plausible that evo-
lution, working over millions of years, could successively shape individual, specialized
cognitive skills. As evolution of the brain continued, it could also work on combinations
of modules, forming the mechanisms that enable the modules to interact, to share informa-
tion, and to cooperate to perform increasingly complex cognitive tasks (Mithen 1996). 


Theories of neuronal selection (Edelman 1992) show how these same processes can
account for the adaptation of the individual neural system. Neural Darwinism models the
adaptation of neural systems in Darwinian terms: the strengthening of particular circuits in
the brain and the weakening of others is a process of selection in response to the world. In
contrast to symbolic learning methods, which attempt to extract information from training
data and use that information to build models of the world, theories of neuronal selection
examine the effect of selective pressures on populations of neurons and their interactions.
Edelman (1992, page 81) states:


In considering brain science as a science of recognition I am implying that recognition is
not an instructive process. No direct information transfer occurs, just as none occurs in
evolutionary or immune processes. Instead, recognition is selective. 
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Agent technologies offer models of social cooperation as well. Using agent-based
approaches, economists have constructed informative (if not completely predictive) mod-
els of economic markets. Agent technologies have exerted an increasing influence on the
design of distributed computing systems, the construction of internet search tools and
implementation of cooperative work environments. 


Finally, agent-based models have exerted an influence on theories of consciousness.
For example, Daniel Dennett (1991, 2006) has based an account of the function and struc-
ture of consciousness on an agent architecture of mind. He begins by arguing that it is
incorrect to ask where consciousness is located in the mind/brain. Instead, his multiple
draft theory of consciousness focuses on the role of consciousness in the interactions of
agents in a distributed mental architecture. In the course of perception, motor control,
problem solving, learning, and other mental activities, we form coalitions of interacting
agents. These coalitions are highly dynamic, changing in response to the needs of different
situations. Consciousness, for Dennett, serves as a binding mechanism for these coali-
tions, supporting agent interaction and raising critical coalitions of interacting agents to
the foreground of cognitive processing.


What issues limit an agent-based approximation of intelligence?


Agent-based and “emergent” approaches have opened up a number of problems that must
be solved if their promise is to be realized. For example, we have yet to fill in all the steps
that have enabled the evolution of higher-level cognitive abilities such as language. Like
paleontologists’ efforts to reconstruct the evolution of species, tracing the development of
these higher level problems will take a great deal of additional detailed work. We must
both enumerate the agents that underlie the architecture of mind and trace their evolution
across time. 


Another important problem for agent-based theories is in explaining the interactions
between modules. Although the “Swiss army knife” model of mind is a useful intuition
builder, the modules that compose mind are not as independent as the blades of a pocket
knife. Minds exhibit extensive, highly fluid interactions between cognitive domains: we
can talk about things we see, indicating an interaction between visual and linguistic mod-
ules. We can construct buildings that enable a specific social purpose, indicating an inter-
action between technical and social intelligence. Poets can construct tactile metaphors for
visual scenes, indicating a fluid interaction between visual and tactile modules. Defining
the representations and processes that enable these inter-module interactions is an active
area of research (Karmiloff-Smith 1992, Mithen 1996, Lakoff and Johnson 1999).


Practical applications of agent-based technologies are also becoming increasingly
important. Using agent-based computer simulations, it is possible to model complex sys-
tems that have no closed-form mathematical description, and were heretofore impossible
to study in this detail. Simulation-based techniques have been applied to a range of phe-
nomena, such as the adaptation of the human immune system and the control of complex
processes, including particle accelerators, the behavior of global currency markets, and the
study of weather systems. The representational and computational issues that must be
solved to implement such simulations continue to drive research in knowledge representa-
tions, algorithms, and even the design of computer hardware.
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Further practical problems that agent architectures must deal with include protocols
for inter-agent communication, especially when local agents often have limited knowl-
edge of the problem at large or indeed of what knowledge other agents might already pos-
sess. Furthermore, few algorithms exist for the decomposition of larger problems into
coherent agent-oriented subproblems, or indeed how limited resources might be distrib-
uted among agents. These and other agent-related issues were presented in Section 7.4.


Perhaps the most exciting aspect of emergent theories of mind is their potential for
placing mental activities within a unified model of the emergence of order from chaos.
Even the brief overview provided in this section has cited work using emergent theories to
model a range of processes, from the evolution of the brain over time, to the forces that
enable learning in individuals, to the construction of economic and social models of
behavior. There is something extraordinarily appealing in the notion that the same pro-
cesses of emergent order as shaped by Darwinian processes can explain intelligent behav-
ior at a variety of resolutions, from the interactions of individual neurons, to the shaping of
the modular structure of the brain, to the functioning of economic markets and social sys-
tems. It may be that intelligence has a fractal geometry, where the same emerging pro-
cesses appear at whatever level of resolution we view the system at large.


16.1.4 Probabilistic Models and the Stochastic Technology


As early as the 1950s, stochastic techniques were used to address the understanding and
generation of natural language expressions. Claude Shannon (1948) applied probabilistic
models, including discrete Markov chains, to the task of language processing. Shannon
(1951) also borrowed the notion of entropy from thermodynamics as a way of measuring
the information capacity of a message. Also about this time Bell Labs created the first sta-
tistical system able to recognize the ten digits, 0, ..., 9, as spoken by an individual speaker.
It functioned at 97-99% accuracy (Davis et al. 1952, Jurasky and Martin 2008).


Through the 1960s and 1970s Bayesian approaches to reasoning continued very much
in the background of AI research activity. Natural language technology explored many of
the symbol based approaches described in Section 7.1. Although many expert systems, for
example MYCIN, created their own “certainty factor algebras” as seen in Section 9.2, sev-
eral, including PROSPECTOR, took the Bayesian approach (Duda et al. 1979a). The com-
plexity of such systems quickly become intractable, however. As we pointed out in
Section 9.3, the full use of Bayes’ rule for a realistic sized medical diagnosis program of
200 diseases and 2000 symptoms would require the collection and integration of eight
hundred million pieces of information.


In the late 1980s Judea Pearl (1988) offered a computationally tractable model for
diagnostic reasoning in the context of causal relationships within a problem domain:
Bayesian belief networks. BBNs relax two constraints of the full Bayesian model. First, an
implicit “causality” is assumed in stochastic inference; that is, reasoning goes from cause
to effect and is not circular, i.e., an effect cannot circle back to cause itself. This supports
representing BBNs as a directed acyclic graph (Sections 3.1, 9.3). Second, BBNs assume
the direct parents of a node supports full causal influence on that node. All other nodes are
assumed to be conditionally independent or have influence small enough to be ignored.
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Pearl’s research (1988, 2000) renewed interest in stochastic approaches for modeling
the world. As we saw in Section 9.3, BBNs offered a very powerful representational tool
for diagnostic (abductive) inference. This is true especially with the dynamic nature of
both human and stochastic systems: as the world changes across time, our understanding
is enriched: some causes turn out to explain more of what we see while other potential
causes are “explained away”. Research in the design of stochastic systems as well as their
supporting inference schemes is really only in its infancy.


The late 1980s also saw new research energy applied to issues of natural language
processing. As noted in Section 15.4, these stochastic approaches included new parsing,
tagging, and many other techniques for disambiguating language expressions. A full range
of these approaches may be found in books on speech recognition and tasks in language
processing (Manning and Schutz 1999, Jurasky and Martin 2008).


With the renewed interest and successes in the stochastic approaches to characterizing
intelligent behavior, a person can quite naturally wonder what its limitations might be.


Is intelligence fundamentally stochastic?


There is a tremendous attraction towards a stochastic viewpoint for agent interactions in a
changing world. Many might argue that a human’s “representational system” is fundamen-
tally stochastic, i.e., conditioned by the world of perceptions and causes in which it is
immersed. Certainly the behaviorist/empiricist viewpoint would find this conjecture
attractive. Situated and embedded action theorists might go even further and hypothesize
that the conditioned relationships an agent has with its physical and social environment
offer a sufficient explanation of the successful agent’s accommodation with that world.
Some modern researchers are even claiming that aspects of neural function are fundamen-
tally stochastic (Hawkins 2004, Doya et al. 2007).


Let’s consider language. One of the strengths of oral and written expression, as
Chomsky and others have pointed out, is its generative nature. This means that, within the
set of vocabulary and language forms available, new and previously unexperienced
expressions naturally occur. This happens both on the level of creating novel sentences as
well as with individual words, verbizing, for instance: “Google it!”. A stochastic account
of language must demonstrate this generative power. Currently, the limitations of col-
lected language information, whether treebanks or other data copora, can radically restrict
use of the stochastic technology. This is because the collected information must offer an
appropriate setting (or prior) for interpreting the current novel situation.


Stochastic models of application domains, for an aircraft engine or transmission sys-
tem say, can have similar limitations. There, of necessity, will always be closed world or
minimal model assumptions, Section 9.1, for realistically complex system. However,
dynamic Bayesian networks are now showing promise for interpreting system state over
time. But there still are limited abilities to predict novel situations across time.


On a higher explanatory level, it may be difficult for a probabilistic model to account
for a shift out of its own explanatory system, or paradigm. In what sense, as noted in Sec-
tion 16.1.2, can a stochastic model possibly explain theories or higher-level rearrange-
ments of conceptual views, that is, re-evaluate issues related to the adequacy of the model
itself with, perhaps, the need to shift to different viewpoints? These topics remain
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important research issues and constraints on the stochastic approaches to understanding
uncertainty.


But, the fact remains that, often without explicit instruction, agents “make” quite suc-
cessful models. As we see from a constructivist viewpoint, Section 16.2, some model is a
sine qua non for an agent to understand its world, i.e., if there is no a priori commitment to
what the world is “about”, phenomena are neither perceived nor understood! 


Besides the philosophical arguments just presented, there are a number of practical
limitations to the use of stochastic systems. The current generation of BBNs are proposi-
tional in nature. It has been only recently possible to create general laws or relationships
such as ∀X male(X) → smart(X) with an attached distribution. Furthermore, it is desired
that BBNs include recursive relationships, especially for time-series analysis. Research to
develop first-order stochastic representational systems, addressing these issues of general,
is important for continuing research. As noted in Section 13.3, first-order and Turing-com-
plete stochastic modeling tools are now available (Pless et al. 2006). It is also important to
explore the application of these general stochastic models to neuro/psychological data,
where they have recently been applied (Burge et al. 2007, Doya et al. 2007). 


We next discuss those psychological and philosophical aspects of human intelligence
that impact the creation, deployment, and evaluation of an artificial intelligence.


16.2 The Science of Intelligent Systems


It is not a coincidence that a major subgroup of the artificial intelligence community has
focused its research on understanding human intelligence. Humans provide the prototypi-
cal examples of intelligent activity, and AI engineers, even though they are usually not
committed to “making programs that act like humans”, seldom ignore human solutions.
Some applications such as diagnostic reasoning are often deliberately modeled on the
problem solving processes of human experts working in that area. Even more importantly,
understanding human intelligence is a fascinating and open scientific challenge in itself. 


Modern cognitive science, or the science of intelligent systems (Luger 1994), began
with the advent of the digital computer, even though, as we saw in Chapter 1, there were
many intellectual forebears of this discipline, from Aristotle through Descartes and Boole,
to more modern theorists such as Turing, McCulloch and Pitts, the founders of the neural
net model, and John von Neumann, an early proponent of a-life. The study became a sci-
ence, however, with the ability to design and run experiments based on these theoretical
notions, and to an important extent, this came about with the arrival of the computer.
Finally, we must ask, “Is there an all inclusive science of intelligence?” We can further
ask, “Can a science of intelligent systems support construction of artificial intelligences?”


In the following sections we discuss briefly how the psychological, epistemological,
and sociological sciences support research and development in AI.


16.2.1 Psychological Constraints


Early research in cognitive science examined human solutions to logic problems, simple
games, planning, and concept learning (Feigenbaum and Feldman 1963, Newell and
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Simon 1972, Simon 1981). Coincident with their work on the Logic Theorist, Section
14.1, Newell and Simon began to compare their computational approaches with the search
strategies used by human subjects. Their data consisted of think-aloud protocols,
descriptions by human subjects of their thoughts during the process of devising a problem
solution, such as a logic proof. Newell and Simon then compared these protocols with the
behavior of the computer program solving the same problem. The researchers found
remarkable similarities and interesting differences across both problems and subjects. 


These early projects established the methodology that the discipline of cognitive sci-
ence would employ during the following decades: 


1. Based on data from humans solving particular classes of problems, design a rep-
resentational scheme and related search strategy for solving the problem. 


2. Run the computer-based model to produce a trace of its solution behavior.


3. Observe human subjects working on these same problems and keep track of mea-
surable parameters of their solution process, such as those found in think-aloud
protocols, eye movements, and written partial results. 


4. Analyze and compare the human and computer solutions. 


5. Revise the computer model for the next round of tests and comparisons with the
human subjects. 


This empirical methodology is described in Newell and Simon’s Turing award lecture,
quoted at the beginning of this chapter. An important aspect of cognitive science is the use
of experiments to validate a problem-solving architecture, whether it be a production sys-
tem, connectionist, emergent, or an architecture based on the interaction of distributed
agents.


In recent years, an entirely new dimension has been added to this paradigm. Now, not
just programs can be deconstructed and observed in the act of problem solving, but
humans and other life forms can be as well. A number of new imaging techniques have
been included in the tools available for observing cortical activity. These include magne-
toencephalography (MEG), which detects the magnetic fields generated by populations of
neurons. Unlike the electrical potentials generated by these populations, the magnetic field
is not smeared by the skull and scalp, and thus a much greater resolution is possible.


A second imaging technology is positron emission tomography, or PET. A radioactive
substance, typically O15 is injected into the bloodstream. When a particular region of the
brain is active, more of this agent passes by sensitive detectors than when the region is at
rest. Comparison of resting and active images can potentially reveal functional localiza-
tion at a resolution of about 1cm (see Stytz and Frieder 1990).


Another technique for neural analysis is functional magnetic resonance imaging, or
fMRI. This approach has emerged from more standard structured imaging based on
nuclear magnetic resonance (NMR). Like PET, this approach compares resting with active
neuronal states to reveal functional localization.


A further contribution to the localization of brain function, with an important link to
the imaging techniques just mentioned, is software algorithms developed by Barak Pearl-
mutter and his colleagues (Pearlmutter and Parra 1997, Tang et al. 1999, 2000a, 2000b).
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These researchers are able to take the complex noise patterns often seen as the output of
various neural imaging techniques and break them into their separate components. This is
an essential step in analysis, as the patterns of normal steady state existence, such as eye
movements, breathing, and heartbeats, are interwoven with the other neuron firing pat-
terns we want to understand. 


The result of research in cognitive neuroscience (Squire and Kosslyn 1998, Shephard
1998, Gazzaniga 2000) has added greatly to our understanding of the neural components
involved in intelligent activity. Even though an analysis and critique of these results is
beyond the scope of this book, we list and reference several important issues:


In the area of perception and attention there is the binding problem. Researchers such
as Anne Triesman (1993, 1998) and Jeff Hawkins (2004) note that perceptual repre-
sentations depend on distributed neural codes for relating the parts and properties of
objects to each other, and ask what mechanism is needed to “bind” the information
relating to each object and to distinguish that object from others.


In the area of visual search, what neural mechanisms support the perception of objects
embedded in large complex scenes? Some experiments show that the suppression of
information from irrelevant objects plays an important role in the selection of search
targets (Luck 1998). Furthermore how do we “learn” to see (Sagi and Tanne 1998)?


In the area of plasticity in perception, Gilbert (1992, 1998) contends that what we see
is not strictly a reflection of the physical characteristics of a scene, but rather is highly
dependent on the processes by which our brain attempts to interpret that scene.


How does the cortical system represent and index temporally related information,
including interpretation of perceptions and production of motor activity (Ivry 1998)?


In memory studies, stress hormones released during emotionally arousing situations
modulate memory processes (Cahill and McGaugh 1998). This relates to the ground-
ing problem: how are thoughts, words, perceptions meaningful to an agent? In what
sense can there possibly be a “sadness (or tears) in things,” the lacremae rerum of
Virgil?


The acoustic-phonetic aspects of speech provide important organizing principles for
linking neuroscience research to cognitive and linguistic theories (Miller et al. 1998).
How are syntactic and semantic components of cortex integrated (Gazzaniga 2000)?


How does an individual acquire a specific language and what neurophysiological
stages support this development (Kuhl 1993, 1998)?


How is development understood, what is critical period plasticity, and the adult reor-
ganizations seen in mammalian somatosensory systems (O’Leary et al. 1999)? Are
developmental stages critical for “building” intelligence? See Karmiloff-Smith
(1992) and Gazzaniga (2000) for further discussion.


The practice of artificial intelligence certainly does not require extensive knowledge
of these and related neuro/psychological domains. However this type of knowledge can
support the engineering of intelligent artifacts as well as help locate research and
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development in AI within the context of the larger science of intelligence systems. Finally,
the creation of a psychological, neurophysiological, and computational synthesis is truly
exciting. But this requires a mature epistemology, which we discuss next. 


16.2.2 Epistemological Issues


If you don’t know where you are going, you will wind up somewhere else. . .


—YOGI BERRA (attributed)


The development of artificial intelligence has been shaped by a number of important chal-
lenges and questions. Natural language understanding, planning, reasoning in uncertain
situations, and machine learning are all typical of those types of problems that capture
some essential aspect of intelligent behavior. More importantly, intelligent systems operat-
ing in each of these domains require knowledge of purpose, practice, and performance in
situated and socially embedded contexts. To better understand these issues, we examine
the epistemological commitment of a program that is intended to be “intelligent”. 


The epistemological commitment reflects both the semantics supporting symbol use
as well as the structures of symbols employed. The task in these situations is to discover
and exploit the invariances existing in a problem domain. “Invariant” is a term used to
describe the regularities or significant manipulable aspects of complex environments. In
the present discussion, the terms symbols and symbol systems are used generically, from
the explicit symbols of the Newell and Simon (1976) tradition, to the nodes and network
architecture of a connectionist system, to the emergent tokens of genetic and artificial life.
Although the points we make next are general across most of AI, we will focus our discus-
sion on issues in machine learning, as we have created multiple examples and algorithms
for learning throughout this book. 


In spite of progress in machine learning, it remains one of the most difficult problems
facing artificial intelligence. There are three issues limiting our current understanding and
research progress: first, the problem of generalization and overlearning, second, the role
of inductive bias in learning, and third, the empiricist’s dilemma or addressing the idea of
constraint-free learning. The last two problems are related: the implicit inductive bias of
many learning algorithms is an expression of the rationalists’ problem of being biased by
expectations, that is, what we learn often seems to be a direct function of what we expect
to learn. From the opposite viewpoint, as we saw in a-life research, where there are very
few a priori expectations of what is to be learned, is it really sufficient to say, “Build it and
it will happen”? According the attribution to Yogi Berra at the beginning of this section, it
probably won’t! The next sections briefly address these issues.


The generalization problem


The examples we used to introduce the various learning models−symbol-based, connec-
tionist, and emergent−were usually very constrained. For example, connectionist architec-
tures often contained only a few nodes or one partial hidden layer. This is appropriate in
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that the main learning laws can be adequately explained in the context of a few neurons
and partial layers. It can be very misleading in that neural net applications are usually con-
siderably larger and that the problem of scale IS important. For instance, for backpropaga-
tion learning, a large number of training examples and larger networks are generally
required to solve problems of any significant practical interest. Many researchers com-
ment extensively on the matter of selecting appropriate numbers of input values, the ratio
between input parameters and hidden nodes, and the training trials necessary before con-
vergence can be expected (Hecht-Nielsen 1990, Zurada 1992, Freeman and Skapura
1991). In fact, the quality and quantity of training data are important issues for any learn-
ing algorithm. Without an appropriate bias or extensive built-in knowledge, a learning
algorithm can be totally misled attempting to find patterns in noisy, sparse, or even bad
data. Other than acknowledging that these are difficult, important, and open issues, this
“engineering” aspect of learning is not addressed in our book. 


A related problem is the issue of “sufficiency” in learning. When can we say our algo-
rithms are sufficient for capturing the important constraints or invariants of a problem
domain? Do we reserve a portion of our original data to test our learning algorithms? Does
the amount of data we have relate to the quality of learning? Perhaps the sufficiency
judgement is heuristic or aesthetic: we humans often see our algorithms as “good enough”.


Let us illustrate this generalization problem with an example, using a form of back-
propagation to induce a general function from a set of data points. Figure 16.2 might rep-
resent data points we are asking our algorithm to generalize. The lines across this set of
points represent functions induced by a learning algorithm. Remember that once the algo-
rithm is trained we will want to offer it new data points and have the algorithm produce a
good generalization for these data also.


The induced function f1 might represent a fairly accurate least mean squares fit. With
further training the system might produce f2, which seems a fairly “good” fit to the set of
data points; but still, f2 does not exactly capture the data points. Further training can pro-
duce functions that exactly fit the data but may offer terrible generalizations for further
input data. This phenomena is referred to as overtraining a network. One of the strengths
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Figure 16.2     A set of data points and three function 
approximations.
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of backpropagation learning is that in many application domains it is known to produce
effective generalizations, that is, functional approximations which fit the training data
well and also handle new data adequately. However, identifying the point where a net-
work passes from an undertrained to an overtrained state is nontrivial. It is naive to think
that one can present a neural network, or for that matter any other learning tool, with raw
data and then simply step aside and watch while it produces the most effective and useful
generalizations for addressing new similar problems.


We conclude by placing this generalization issue back into its epistemological con-
text. When problem solvers make and utilize representations (whether symbols, nodes of
networks, or whatever) for the solution process, they are creating invariants, and most
probably systems of invariants, for exploring the problem/solution domain and producing
related generalizations. This very viewpoint brought to the problem solving process biases
the eventual success of the endeavour. In the next subsection, we address this issue further.


Inductive bias, the rationalist’s a priori


The automated learning of Chapters 10 to 13, and for that matter most AI techniques,
reflected the a priori biases of their creators. The problem of inductive bias is that the
resulting representations and search strategies offer a medium for encoding an already
interpreted world. They rarely offer mechanisms for questioning our interpretations, gen-
erating new viewpoints, or for backtracking and changing perspectives when they are
unproductive. This implicit bias leads to the rationalist epistemological trap of seeing in
the world exactly and only what we expect or are trained to see.


The role of inductive bias must be made explicit in each learning paradigm. Further-
more, just because no inductive bias is acknowledged, doesn’t mean it does not exist and
critically effect the parameters of learning. In symbol-based learning the inductive bias is
usually obvious, for example, using a semantic net for concept learning. In Winston’s
(1975a, Section 10.1) learning algorithms, biases include the conjunctive relationship rep-
resentation and the importance of using “near misses” for constraint refinement. We see
similar biases in the use of particular predicates for version space search,  decision trees in
ID3, Section 10.3, or even rules for Meta-DENDRAL, Section 10.5. 


As we have intimated throughout Chapters 10 through 13, however, many aspects of
connectionist and genetic learning also assume an inductive bias. For instance, the limita-
tions of perceptron networks led to the introduction of hidden nodes. We may well ask
what contribution the hidden nodes make in solution generation. One way of understand-
ing the role of hidden nodes is that they add dimensions to the representation space. As a
simple example, we saw in Section 11.3.3 that the data points for the exclusive-or problem
were not linearly separable in two dimensions. The learned weight on the hidden node,
however, provides another dimension to the representation. In three dimensions, the points
are separable using a two-dimensional plane. Given the two dimensions of the input space
and the hidden node, the output layer of this network can then be seen as an ordinary per-
ceptron, which is finding a plane that separates the points in a three-dimensioned space. 


A complementary perspective is that many of the “different” learning paradigms
shared (sometimes not obvious) common inductive biases. We pointed out many of these:
the relationship between clustering with CLUSTER/2 in Section 10.5, the perceptron in
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Section 11.2, and prototype networks in Section 11.3. We noted that counterpropagation,
the coupled network that uses unsupervised competitive learning on the Kohonen layer
together with supervised Hebbian learning on the Grossberg layer, is in many ways similar
to backpropagation learning. In counterpropagation, clustered data on the Kohonen layer
plays a role similar to the generalizations learned by the hidden nodes that use backpropa-
gation.


In many important ways, the tools we presented are similar. In fact, even the discov-
ery of prototypes representing clusters of data offer the complementary case to function
approximation. In the first situation, we are attempting to classify sets of data; in the sec-
ond, we are generating functions that explicitly divide data clusters from each other. We
saw this when the minimum distance classification algorithm used by the perceptron also
gave the parameters defining the linear separation of the data.


Even the generalizations that produce functions can be seen from many different
viewpoints. Statistical techniques, for example, have for a long time been able to discover
data correlations. Iterative expansion of Taylor series can be used to approximate most
functions. Polynomial approximation algorithms have been used for over a century to
approximate functions for fitting data points.


To summarize, the commitments made within a learning scheme, whether symbol-
based, connectionist, emergent, or stochastic to a very large extent mediate the results we
can expect from the problem solving effort. When we appreciate this synergistic effect
throughout the process of the design of computational problem solvers we can often
improve our chances of success as well as interpret our results more insightfully.


The empiricist’s dilemma


If current approaches to machine learning, especially supervised learning, possess a domi-
nant inductive bias, unsupervised learning, including many of the genetic and evolution-
ary approaches, has to grapple with the opposite problem, sometimes called the
empiricist’s dilemma. Themes of these research areas include: solutions will emerge, alter-
natives are evolved, populations reflects the survival of the fittest. This is powerful stuff,
especially situated in the context of parallel and distributed search power. But there is a
problem: How can we know we are someplace when we are not sure where we are going?


Plato, more than 2000 years ago, posed this problem in the words of the slave Meno:


And how can you enquire, Socrates, into that which you do not already know? What will you
put forth as the subject of the enquiry? And if you find out what you want, how will you ever
know that this is what you did not know (Plato 1961)?


Several researchers have demonstrated that Meno was correct, see Mitchell (1997) and the
No Free Lunch theorems of Wolpert and Macready (1995). The empiricist, in fact, does
require the remnants of a rationalist’s a priori to save the science!


Nonetheless, there remains great excitement about unsupervised and evolutionary
models of learning; for example, in creating networks based on exemplars or energy mini-
mization, which can be seen as fixed-point attractors or basins for complex relational
invariances. We watch as data points “settle” toward attractors and are tempted to see
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these new architectures as tools for modeling dynamic phenomena. What, we might ask,
are the limits of computation in these paradigms?


In fact, researchers have shown (Siegelman and Sontag 1991) that recurrent networks
are computationally complete, that is, equivalent to the class of Turing Machines. This
Turing equivalence extends earlier results: Kolmogorov (1957) showed that for any con-
tinuous function there exists a neural network that computes that function. It has also been
shown that a one hidden-layer backpropagation network can approximate any of a more
restricted class of continuous functions (Hecht-Nielsen 1989). Similarly, we saw in Sec-
tion 11.3, that von Neumann created finite state automata that were Turing complete. Thus
connectionist networks and finite state automata appear to be but two more classes of
algorithms capable of computing virtually any computable function. Furthermore, induc-
tive biases DO apply to unsupervised as well as genetic and emergent models of learning;
representational biases apply to the design of nodes, networks, and genomes, and algorith-
mic biases apply to the search, reward, and selection operators. 


What is it then, that unsupervised learners, whether connectionist, genetic, or evolv-
ing finite state machines in their various forms, can offer?


1. One of the most attractive features of connectionist learning is that most models
are data or example driven. That is, even though their architectures are explicitly
designed, they learn by example, generalizing from data in a particular problem
domain. But the question still arises as to whether the data is sufficient or clean
enough not to perturb the solution process. And how can the designer know?


2. Genetic algorithms also support a powerful and flexible search of a problem
space. Genetic search is driven both by the diversity enforced by mutation as well
as by operators such as crossover and inversion, that preserve important aspects
of parental information for succeeding generations. How can the program
designer preserve and nurture this diversity/preservation trade-off?


3. Genetic algorithms and connectionist architectures may be viewed as instances of
parallel and asynchronous processing. Do they indeed provide results through
parallel asynchronous effort not possible with explicit sequential programming?


4. Even though the neural and sociological inspiration is not important for many
modern practitioners of connectionist and genetic learning, these techniques do
reflect many important aspects of natural evolution and selection. We saw models
for error reduction learning with perceptron, backpropagation, and Hebbian mod-
els. We also saw the autoassociative Hopfield nets in Section 11.3.4. Various
models of evolution were reflected in the paradigms of Chapter 12.


5. Finally, all learning paradigms are tools for empirical enquiry. As we capture the
invariants of our world, are our tools sufficiently powerful and expressive to ask
further questions related to the nature of perception, learning, and understanding?


In the next section we propose that a constructivist epistemology, coupled with the
experimental methods of modern artificial intelligence, offer the tools and techniques for
continuing the exploration of a science of intelligent systems.
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The constructivist’s rapprochement


Theories are like nets: he who casts, captures. . .


—L. WITTGENSTEIN


Constructivists hypothesize that all understanding is the result of an interaction between
energy patterns in the world and mental categories imposed on the world by the intelligent
agent (Piaget 1954, 1970; von Glasersfeld 1978). Using Piaget’s descriptions, we assimi-
late external phenomena according to our current understanding and accommodate our
understanding to the “demands” of the phenomena.


Constructivists often use the term schemata to describe the a priori structure used to
organize experience of the external world. This term is taken from the British psychologist
Bartlett (1932) and its philosophical roots go back to Kant (1781/1964). On this view-
point, observation is not passive and neutral but active and interpretive.


Perceived information, Kant’s a posteriori knowledge, never fits precisely into our
preconceived, and a priori, schemata. From this tension, the schema-based biases the sub-
ject uses to organize experience are either modified or replaced. The need for accommoda-
tion in the face of unsuccessful interactions with the environment drives a process of
cognitive equilibration. Thus, the constructivist epistemology is fundamentally one of
cognitive evolution and refinement. An important consequence of constructivism is that
the interpretation of any situation involves the imposition of the observer’s concepts and
categories on reality (an inductive bias).


When Piaget (1954, 1970) proposed a constructivist approach to understanding, he
called it genetic epistemology. The lack of a comfortable fit of current schemata to the
world “as it is” creates a cognitive tension. This tension drives a process of schema revi-
sion. Schema revision, Piaget’s accommodation, is the continued evolution of an agent’s
understanding towards equilibration.


Schema revision and continued movement toward equilibration is a genetic predispo-
sition of an agent for an accommodation to the structures of society and the world. It com-
bines both these forces and represents an embodied predisposition for survival. Schema
modification is both an a priori result of our genetics as well as an a posteriori function of
society and the world. It reflects the embodiment of a survival-driven agent, of a being in
space and time. 


There is a blending here of the empiricist and rationalist traditions, mediated by the
goals of agent survival. As embodied, agents can comprehend nothing except that which
first passes through their senses. As accommodating, agents survive through learning the
general patterns of an external world. What is perceived is mediated by what is expected;
what is expected is influenced by what is perceived: these two functions can only be
understood in terms of each other. In this sense stochastic models - both Bayesian and
Markovian - are appropriate, as prior experience conditions current interpretations (Doya
et al. 2007).


Finally, we, as agents, are seldom consciously aware of the schemata that support our
interactions with the world. As the sources of bias and prejudice both in science and soci-
ety, we are more often than not unaware of a priori schemata. These are constitutive of our
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equilibration with the world and not (usually) a perceptible element of a conscious mental
life.


Finally, why is a constructivist epistemology particularly useful in addressing the
problems of understanding intelligence? How can an agent within an environment under-
stand its own understanding of that situation? We believe constructivism also addresses
the epistemological access problem in both philosophy and psychology. For more than a
century there has been a struggle in both these disciplines between two factions, the posi-
tivist, which proposes to infer mental phenomena from observable physical behavior, and
a more phenomenological approach which allows the use of first person reporting to
access cognitive phenomena. This factionalism exists because both modes of access to
psychological phenomena require some form of model construction and inference. 


In comparison to physical objects like chairs and doors, which often, naively, seem to
be directly accessible, the mental states and dispositions of an agent seem to be particu-
larly difficult to characterize. In fact, we contend that this dichotomy between the direct
access to physical phenomena and the indirect access to the mental is illusory. The con-
structivist analysis suggests that no experience of things is possible without the use of
some model or schema for organizing that experience. In scientific inquiry, as well as in
our normal human experiences, this implies that all access to phenomena is through explo-
ration, approximation, and continued model refinement.


So what is the project of the AI practitioner?


As AI practitioners, we are constructivists. We build, test, and refine models. But what are
we approximating in our model-building? We discuss this issue in the following para-
graphs but first make an epistemological observation: Rather than trying to capture the
essence of “things outside” us, the AI problem-solver is best served by attempting to emu-
late the model building, refining, and equilibration heuristics of the intelligent agent itself.


Only the extreme solipsist (or the mentally challenged) would deny the “reality” of an
extra-subject world. But what is this so called “real world”? Besides being a complex
combination of “hard things” and “soft things”, it is also a system of atoms, molecules,
quarks, gravity, relativity, cells, DNA, and (perhaps even) superstrings. For all these con-
cepts are but exploratory models driven by the explanatory requirements of equalibration-
driven agents. Again, these exploratory models are not about an external world. Rather,
they capture the dynamic equilibrating tensions of the intelligent and social agent, of a
material intelligence evolving and continually calibrating itself within space and time.


But access to and creation of “the real” is also achieved through agent commitment.
An embodied agent creates the real through an existential affirmation that a perceived
model of its expectations is good-enough for addressing some of its practical needs and
purposes. This act of commitment grounds the symbols and systems of symbols the agent
uses in its material and social contexts. These constructs are grounded because they are
affirmed as good-enough for achieving aspects of its purpose. This grounding is also seen
in agent language use. Searle (1969) is correct in his notion of speech phenomena as acts.
This grounding issue is part of why computers have fundamental problems with expres-
sions of intelligence, including their demonstrations of language and learning. What dis-
position might a computer be given that affords it appropriate purposes and goals?
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Although Dennett (1987) would impute grounding to a computer solving problems requir-
ing and using “intelligence”, the lack of sufficient grounding is easily seen in the com-
puter’s simplifications, brittleness, and often limited appreciation of context. 


The use and grounding of symbols by animate agents implies even more. The particu-
lars of the human agent’s embodiment and social contexts mediate its interactions with its
world. Auditory and visual systems sensitive to a particular bandwidth; viewing the world
as an erect biped, having arms, legs, hands; being in a world with weather, seasons, sun,
and darkness; part of a society with evolving goals and purposes; an individual that is
born, reproduces, and dies: these are critical components that support metaphors of under-
standing, learning, and language; these mediate our comprehension of art, life, and love.


Shall I compare thee to a summer’s day? 
Thou art more lovely and more temperate: 
Rough winds do shake the darling buds of May, 
And summer’s lease hath all too short a date... 


Shakespeare Sonnet XVIII


We conclude with a final summary of critical issues that both support and delimit our
efforts at creating a science of intelligent systems.


16.3 AI: Current Challenges and Future Directions


like the geometer who strives 
to square the circle and cannot find 
by thinking the principle needed, 


was I at that new sight. . . 


—DANTE, Paradiso


Although the use of AI techniques to solve practical problems has demonstrated its utility,
the use of these techniques to found a general science of intelligence is a difficult and con-
tinuing problem. In this final section we return to the questions that led us to enter the field
of artificial intelligence and to write this book: is it possible to give a formal, computa-
tional account of the processes that enable intelligence? 


The computational characterization of intelligence begins with the abstract specifica-
tion of computational devices. Research through the 1930s, 40s, and 50s began this task,
with Turing, Post, Markov, and Church all contributing formalisms that describe computa-
tion. The goal of this research was not just to specify what it meant to compute, but rather
to specify limits on what could be computed. The Universal Turing Machine (Turing
1950) is the most commonly studied specification, although Post’s rewrite rules, the basis
for production system computing (Post 1943), is also an important contribution. Church’s
model (1941), based on partially recursive functions, offers support for modern high-level
functional languages, such as Scheme, Ocaml, and Standard ML. 
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Theoreticians have proven that all of these formalisms have equivalent computational
power in that any function computable by one is computable by the others. In fact, it is
possible to show that the universal Turing machine is equivalent to any modern computa-
tional device. Based on these results, the Church−Turing hypothesis makes the even stron-
ger argument: that no model of computation can be defined which is more powerful than
these known models. Once we establish equivalence of computational specifications, we
have freed ourselves from the medium of mechanizing these specifications: we can imple-
ment our algorithms with vacuum tubes, silicon, protoplasm, or tinker toys. The auto-
mated design in one medium can be seen as equivalent to mechanisms in another. This
makes the empirical enquiry method even more critical, as we experiment in one medium
to test our understanding of mechanisms implemented in another. 


One of the possibilities is that the universal machine of Turing and Post may be too
general. Paradoxically, intelligence may require a less powerful computational mechanism
with more focused control. Levesque and Brachman (1985) have suggested that human
intelligence may require more computationally efficient (although less expressive) repre-
sentations, such as Horn clauses for reasoning, the restriction of factual knowledge to
ground literals, and the use of computationally tractable truth maintenance systems.
Agent-based and emergent models of intelligence also seem to espouse this philosophy. 


Another point addressed by the formal equivalence of our models of mechanism is the
duality issue and the mind−body problem. At least since the days of Descartes (Section
1.1), philosophers have asked the question of the interaction and integration of mind, con-
sciousness, and a physical body. Philosophers have offered every possible response, from
total materialism to the denial of material existence, even to the supporting intervention of
a benign god! AI and cognitive science research reject Cartesian dualism in favor of a
material model of mind based on the physical implementation or instantiation of symbols,
the formal specification of computational mechanisms for manipulating those symbols,
the equivalence of representational paradigms, and the mechanization of knowledge and
skill in embodied models. The success of this research is an indication of the validity of
this model (Johnson-Laird 1988, Dennett 1987, Luger et al. 2002. 


Many consequential questions remain, however, within the epistemological founda-
tions for intelligence in a physical system. We summarize, for a final time, several of these
critical issues. 


1. The representation problem. Newell and Simon hypothesized that the physical
symbol system and search are necessary and sufficient characterizations of intel-
ligence (see Section 16.1). Are the successes of the neural or sub-symbolic mod-
els and of the genetic and emergent approaches to intelligence refutations of the
physical symbol hypothesis, or are they simply other instances of it? 


Even a weak interpretation of this hypothesis—that the physical symbol
system is a sufficient model for intelligence—has produced many powerful and
useful results in the modern field of cognitive science. What this argues is that we
can implement physical symbol systems that will demonstrate intelligent behav-
ior. Sufficiency allows creation and testing of symbol-based models for many
aspects of human performance (Pylyshyn 1984, Posner 1989). But the strong
interpretation—that the physical symbol system and search are necessary for
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intelligent activity—remains open to question (Searle 1980, Weizenbaum 1976,
Winograd and Flores 1986, Dreyfus and Dreyfus 1985, Penrose 1989).


2. The role of embodiment in cognition. One of the main assumptions of the phys-
ical symbol system hypothesis is that the particular instantiation of a physical
symbol system is irrelevant to its performance; all that matters is its formal struc-
ture. This has been challenged by a number of thinkers (Searle 1980, Johnson
1987, Agre and Chapman 1987, Brooks 1989, Varela et al. 1993) who essentially
argue that the requirements of intelligent action in the world require a physical
embodiment that allows the agent to be fully integrated into that world. The
architecture of modern computers does not support this degree of situatedness,
requiring that an artificial intelligence interact with its world through the
extremely limited window of contemporary input/output devices. If this chal-
lenge is correct, then, although some form of machine intelligence may be possi-
ble, it will require a very different interface than that afforded by contemporary
computers. (For further comments on this topic see Section 15.0, issues in natural
language understanding, and Section 16.2.2, on epistemological constraints.)


3. Culture and intelligence. Traditionally, artificial intelligence has focused on the
individual mind as the sole source of intelligence; we have acted as if an explana-
tion of the way the brain encodes and manipulates knowledge would be a com-
plete explanation of the origins of intelligence. However, we could also argue
that knowledge is best regarded as a social, rather than as an individual construct.
In a meme-based theory of intelligence (Edelman 1992), society itself carries
essential components of intelligence. It is possible that an understanding of the
social context of knowledge and human behavior is just as important to a theory
of intelligence as an understanding of the dynamics of the individual mind/brain. 


4. Characterizing the nature of interpretation. Most computational models in the
representational tradition work with an already interpreted domain: that is, there
is an implicit and a priori commitment of the system’s designers to an interpre-
tive context. Under this commitment there is little ability to shift contexts, goals,
or representations as the problem solving evolves. Currently, there is little effort
at illuminating the process by which humans construct interpretations.


The Tarskian view of semantics as a mapping between symbols and objects
in a domain of discourse is certainly too weak and doesn’t explain, for example,
the fact that one domain may have different interpretations in the light of differ-
ent practical goals. Linguists have tried to remedy the limitations of Tarskian
semantics by adding a theory of pragmatics (Austin 1962). Discourse analysis,
with its fundamental dependence on symbol use in context, has dealt with these
issues in recent years. The problem, however, is broader in that it deals with the
failure of referential tools in general (Lave 1988, Grosz and Sidner 1990). 


The semiotic tradition started by C. S. Peirce (1958) and continued by Eco,
Seboek, and others (Eco 1976, Grice 1975, Sebeok 1985) takes a more radical
approach to language. It places symbolic expressions within the wider context of
signs and sign interpretation. This suggests that the meaning of a symbol can
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only be understood in the context of its role as interpretant, that is, in the context
of an interpretation and interaction with the environment (see Section 16.2.2). 


5. Representational indeterminacy. Anderson’s representational indeterminacy
conjecture (Anderson 1978) suggests that it may in principle be impossible to
determine what representational scheme best approximates the human problem
solver in the context of a particular act of skilled performance. This conjecture is
founded on the fact that every representational scheme is inextricably linked to a
larger computational architecture, as well as search strategies. In the detailed
analysis of human skill, it may be impossible to control the process sufficiently
so that we can determine the representation; or establish a representation to the
point where a process might be uniquely determined. As with the uncertainty
principle of physics, where phenomena can be altered by the very process of
measuring them, this is an important concern for constructing models of intelli-
gence but need not limit their utility. 


But more importantly, the same criticisms can be leveled at the computa-
tional model itself where the inductive biases of symbol and search in the context
of the Church-Turing hypothesis still under constrain a system. The perceived
need of some optimal representational scheme may well be the remnant of a
rationalist’s dream, while the scientist simply requires models sufficiently robust
to constrain empirical questions. The proof of the quality of a model is in its abil-
ity to offer an interpretation, to predict, and to be revised. 


6. The necessity of designing computational models that are falsifiable. Popper
(1959) and others have argued that scientific theories must be falsifiable. This
means that there must exist circumstances under which the model is not a suc-
cessful approximation of the phenomenon. The obvious reason for this is that any
number of confirming experimental instances are not sufficient for confirmation
of a model. Furthermore, much new research is done in direct response to the
failure of existing theories.


The general nature of the physical symbol system hypothesis as well as situ-
ated and emergent models of intelligence may make them impossible to falsify
and therefore of limited use as models. The same criticism can be made of the
conjectures of the phenomenological tradition (see point 7). Some AI data struc-
tures, such as the semantic network, are so general that they can model almost
anything describable, or as with the universal Turing machine, any computable
function. Thus, when an AI researcher or cognitive scientist is asked under what
conditions his or her model for intelligence will not work, the answer can be dif-
ficult.


7. The limitations of the scientific method. A number of researchers (Winograd
and Flores 1986, Weizenbaum 1976) claim that the most important aspects of
intelligence are not and, in principle, cannot be modeled, and in particular not
with any symbolic representation. These areas include learning, understanding
natural language, and the production of speech acts. These issues have deep roots
in our philosophical tradition. Winograd and Flores’s criticisms, for example, are
based on issues raised in phenomenology (Husserl 1970, Heidegger 1962). 
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Most of the assumptions of modern AI can trace their roots back from Car-
nap, Frege, and Leibniz through Hobbes, Locke, and Hume to Aristotle. This tra-
dition argues that intelligent processes conform to universal laws and are, in
principle, understandable.


Heidegger and his followers represent an alternative approach to understand-
ing intelligence. For Heidegger, reflective awareness is founded in a world of
embodied experience (a life-world). This position, shared by Winograd and
Flores, Dreyfus, and others, argues that a person’s understanding of things is
rooted in the practical activity of “using” them in coping with the everyday
world. This world is essentially a context of socially organized roles and pur-
poses. This context, and human functioning within it, is not something explained
by propositions and understood by theorems. It is rather a flow that shapes and is
itself continuously created. In a fundamental sense, human expertise is not know-
ing that, but rather, within a world of evolving social norms and implicit pur-
poses, knowing how. We are inherently unable to place our knowledge and most
of our intelligent behavior into language, either formal or natural. 


Let us consider this point of view. First, as a criticism of the pure rationalist
tradition, it is correct. Rationalism asserts that all human activity, intelligence,
and responsibility can, in principle at least, be represented, formalized, and
understood. Most reflective people do not believe this to be the case, reserving
important roles for emotion, self-affirmation and responsible commitment (at
least!). Aristotle himself said, in his Essay on Rational Action, “Why is it that I
don’t feel compelled to perform that which is entailed?” There are many human
activities outside the realms of science that play an essential role in responsible
human interaction; these cannot be reproduced by or abrogated to machines. 


This being said, however, the scientific tradition of examining data, con-
structing models, running experiments, and examining results with model refine-
ment for further experiments has brought an important level of understanding,
explanation, and ability to predict to the human community. The scientific
method is a powerful tool for increasing human understanding. Nonetheless,
there remain a number of caveats to this approach that scientists must understand. 


First, scientists must not confuse the model with the phenomenon being
modeled. The model allows us to progressively approximate the phenomenon:
there will, of necessity, always be a “residue” that is not empirically explained. In
this sense also representational indeterminacy is not an issue. A model is used to
explore, explain, and predict; and if it allows scientists to accomplish this, it is
successful (Kuhn 1962). Indeed, different models may successfully explain dif-
ferent aspects of a phenomenon, such as the wave and particle theories of light.


Furthermore, when researchers claim that aspects of intelligent phenomena
are outside the scope and methods of the scientific tradition, this statement itself
can only be verified by using that very tradition. The scientific method is the only
tool we have for explaining in what sense issues may still be outside our current
understanding. Every viewpoint, even that from the phenomenological tradition,
if it is to have any meaning, must relate to our current notions of explanation -
even to be coherent about the extent to which phenomena cannot be explained. 
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The most exciting aspect of work in artificial intelligence is that to be coherent and
contribute to the endeavor we must address these issues. To understand problem solving,
learning, and language we must comprehend the philosophical level of representations and
knowledge. In a humbling way we are asked to resolve Aristotle’s tension between theoria
and praxis, to fashion a union of understanding and practice, of the theoretical and practi-
cal, to live between science and art. 


AI practicioners are tool makers. Our representations, algorithms, and languages are
tools for designing and building mechanisms that exhibit intelligent behavior. Through
experiment we test both their computational adequacy for solving problems as well as our
own understanding of intelligent phenomena. 


Indeed, we have a tradition of this: Descartes, Leibniz, Bacon, Pascal, Hobbes, Bab-
bage, Turing, and others whose contributions were presented in Chapter 1. Engineering,
science, and philosophy; the nature of ideas, knowledge, and skill; the power and limita-
tions of formalism and mechanism; these are the limitations and tensions with which we
must live and from which we continue our explorations. 


16.4 Epilogue and References


We refer the reader to the references at the end of Chapter 1 and add Computation and
Cognition (Pylyshyn 1984) and Understanding Computers and Cognition (Winograd and
Flores 1986). For issues in cognitive science see Newell and Simon (1972), Pylyshyn
(1973, 1980), Norman (1981), Churchland (1986), Posner (1989), Luger (1994), Franklin
(1995), Ballard (1997), Elman et al. (1996), and Jeannerod (1997).


Haugeland (1981, 1997), Dennett (1978, 2006) and Smith (1996) describe the philo-
sophical foundations of a science of intelligent systems. Anderson’s (1990) book on cogni-
tive psychology offers valuable examples of information processing models. Pylyshyn
(1984) and Anderson (1978, 1982, 1983a) give detailed descriptions of many critical
issues in cognitive science, including a discussion of representational indeterminacy. Den-
nett (1991) applies the methodology of cognitive science to an exploration of the structure
of consciousness itself. We also recommend books on the philosophy of science (Popper
1959, Kuhn 1962, Bechtel 1988, Hempel 1965, Lakatos 1976, Quine 1963).


Finally, Philosophy in the Flesh, Lakoff and Johnson (1999) suggest possible answers
to the grounding problem. The Embodied Mind (Varela et al.1993), Suchman (1987), and
Being There (Clark 1997) describe aspects of embodiment that support intelligence.


We leave the reader with address information for two important groups:


The Association for the Advancement of Artificial Intelligence 
445 Burgess Drive, Menlo Park, CA 94025 


Computer Professionals for Social Responsibility 
P.O. Box 717, Palo Alto, CA 94301
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15-puzzle 20, 89
8-puzzle 89-91, 103-105, 137-143, 146-149,


203-205, 293
AAAI 703
abduction 78, 226, 334, 347-350


coherence-based selection 349-350
cost-based 349
logic-based 335, 347-349
set cover 347


ABSTRIPS 330, 582
ACT* 203
action potential 681
activation level 456
admissibility 127, 145-147, 162-163, 678
agent-based problem solving 


(see agent-based systems)
agent-based systems 265-270, 683


definition 266
agents 16-19, 223-226, 265-270, 536-537, 542, 


683, 697 (see also emergent computation, 
subsumption architecture)


agglomerative clustering 435
Algorithm A (see Algorithm A*)
Algorithm A* 146-150, 161-162, 517, 161
alpha-beta pruning 127, 155-157, 161
AM 28, 433-434
analogy 25, 391, 430-433


inference 430
retrieval 430
structure mapping 430
systematicity 432


analogical reasoning 309-310, 430-433, 679
analytical engine 10-11, 20
and elimination 64-65
and introduction 64-65
and/or graphs 109-121, 159, 289-290, 610
answer extraction 590, 599-603, 608


arity 51-52, 54
artificial intelligence definition 1-2, 30-31, 675
artificial life 17, 388, 508-509, 530-542, 672


(see also em5ergent computation)
associationist representation 228-248, 270
associationist theories 228-248, 270
associative law 49
associative memory 455, 490-505 (see also


semantic networks, conceptual graphs)
assumption-based truth maintenance 342-344, 348
attractor 455
attractor networks 455, 495-505
augmentation of logic grammars 639
augmented phrase structure grammars 639
augmented transition network 639-649
autoassociative memory (see associative memory,


Hopfield networks)
autoepistemic logic 338
automated reasoning 21, 22, 573, 575-618


and logic programming 603-609
and predicate calculus 590-593
and PROLOG 603-609
answer extraction 590, 599-603, 608
binary resolution 583, 589-594
breadth-first strategy 595
clause form 583-588
completeness 576
conjunction of disjuncts 584
conjunctive normal form 511-513
converting to clause form 586-589
demodulation 614-616
difference tables 576-582
factoring 591
General Problem Solver 21, 201-203, 224,


576-582
Hebrand's theorem 617
heuristics 594-599, 609-612
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automated reasoning (continued)
headless clause 605 (see also horn clause)
horn clause 576, 604-605, 644
hyperresolution 591, 613-616
linear input form strategy 597
literal 583
LT, Logic Theorist 21, 49, 223-224
means-ends analysis 576, 580, 678
natural deduction 576, 616-617
paramodulation 613-616
prenex normal form 586
refutation 582-583, 589-594
refutation completeness 583, 595
resolution 67, 582-594
resolution refutation 582-594
rule-based approaches 609-612
rule relation 605 (see also horn clause)
set of support strategy 576, 596
skolemization 587
soundness 64, 582, 609
subsumption 599, 617
unit preference strategy 576, 597
unit resolution 597
weak methods 223-224, 609


automotive diagnosis 42-44, 287-296, 334
auto-regressive hidden Markov models 546-548
axon 29


backpropagation 454, 467-474
backpropagation and exclusive-or 473-474
backtracking 96-99, 111, 196, 693
backward chaining (see goal-driven search)
BACON 434
bagging 416-417
BAM, (see bi-directional associative memory)
base-level categories 438
basin of attraction 494-495, 539
Baum-Welch 559
Bayesian reasoning 182-185, 363-381, 543-570


Bayesian belief networks 363-366, 381, 543, 554-
564, 570
Bayesian logic programs 378
Bayes' theorem 182-185
clique tree 369-371
clique tree triangulation 370-371
d-separation 366-368
DBN, dynamic Bayesian network 365, 371-372
junction tree 368-371
learning 543-570
maximal clique 370-371
message passing 370-371
Probabilistic relational models (PRMs) 378
triangulation 370


beam search 159, 408


behaviorism 25-26
Bernoulli trials 545
best-first search 133-164, 667-668, 758-759
bi-directional associative memory 496-500
binary resolution 583, 589-594
blackboard architecture 194, 217-219
blocks world 40, 314-323, 622, 668-671
boolean algebra 11
boosting 416-417
bottom-up parsing 626-627
branch and bound 92
branching factor 96, 158-159
breadth-first search 99-107
breadth-first strategy 595
bridges of Königsberg problem 10, 80-83
Brown corpus 187-188
bucket brigade algorithm 519-524
buried Markov models 551
Burton 323


C4.5 417, 665
candidate elimination 397-408
Candide 656
case-based reasoning 297, 305-310, 311-312


case adaptation 306-307
case retrieval 306-307


case frame 645-648, 666
case-grammars 666
CASEY 305
category formation (see conceptual clustering)
category utility 440
CBR (see case-based reasoning)
cellular automata 534-541
centroid method 357
chart parsing 627-632
checkers 18, 127-128, 153, 678
chess 18, 44, 153, 677
Chinese Room 679
Chomsky hierarchy 637-639
chronological backtracking 339
Church/Turing hypothesis 683
circumscription 345-347
classifier systems 519-524, 542
clause form 583-588
CLIPS 203, 329
clique, maximal 370-371
clique tree propagation 369-371, 380
closed world assumption 336, 345, 608
CLUSTER/2 389, 419, 436-437, 476
CNF satisfaction 511-515
COBWEB 389, 437-441, 476
cognitive neuroscience 681
cognitive science 26, 688-689, 703
coincidence learning 484 (see also Hebbian learning)
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combinations 169-170
commonsense reasoning 19, 23, 281, 621
commutative law 49
competitive learning 454-455, 474-484
completeness 64, 595
complexity of search 157-160
Computer Professionals for Social Responsibility


703
concept learning 389
concept space 392, 396-397
conceptual clustering 389, 435-441
conceptual dependency diagrams 236-240
conceptual graphs 248-258, 272, 639-649,


658-661, 677
absurd type 252
and frames 255
and modal logic 256
and predicate calculus 257
canonical formation rules 255
concepts 248-249
conceptual relations 248-249
copy 252-255
existential quantification 257-258
generalization 252
generic concept 251
individuals 249-251
inheritance 252-256
join 252-255
marker 250
names 249-251
propositional nodes 256
quantification 256-258
referent 251
restrict 252-255
simplify 252-255
specialization 252
subtype 252
supertype 252
type hierarchy 252
type lattice 252-253
types 249-251
universal quantification 256-257
universal type 252


conceptual models 284-286
conditioning on phones 579-582 665


syllables 665
conflict resolution to control search 214-215


recency 215
refraction 215
specificity 215


conjunction of disjuncts 584
conjunctive normal form satisfiability 511-513
connectionist networks 28, 29, 388, 453-506, 674,


680, 691-692 (see also machine learning)


activation level 456
associative memory 455, 490-505 (see also


semantic networks, conceptual graphs)
attractor 455
attractor networks 455, 495-505
autoassociative memory (see associative memory,


Hopfield networks)
BAM, bi-directional associative memory 496-500
backpropagation 454, 467-474
backpropagation and exclusive-or 473-474
classification 460-464
competitive learning 454-455, 474-484
counterpropagation learning 455, 475
delta rule 454, 454-467
early history 455-457
feedback networks 495
gradient descent learning 465
Grossberg learning 478-480
Hebbian learning 455, 484-494
heteroassociative memory (see


associative memory)
Hopfield networks 455, 495, 500-505
interpolative memory 490-491
Kohonen network 454-455, 476
linear associator network 492-494
McCulloch-Pitts model 456
NETtalk 471-473
NETtalk and ID3 472
network topology 456
neuron 28-29, 454, 681
perceptron learning 454, 458-467
self-organizing network 477
support vector machines 482-484
threshold function 456
winner-take-all learning 454-455, 474-476


consciousness 685, 699
consistent with operator 337-338
context-free grammar 625-627, 637-639
context-free parser 
context-sensitive grammars 637-639
context-sensitive parser 712-713
contrapositive law 49
Copycat architecture 261-263, 271
counterpropagation learning 455, 475
counting 167-170
coupled hidden Markov model 551
covering a concept 397
credit assignment 407 (see also bucket brigade


algorithm, reinforcement learning)
crossover 510-515, 518-529, 539
crosstalk 494, 497


d-separation 366-368
data mining 665
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data-driven search 93-96, 210-213, 293-296
de Morgan's law 49
decision trees 408-411, 420, 652-654, 665


in natural language analysis 652-654
declarative semantics 213-214, 641
decoding (see phoneme recognition)
default logic 338-339
delta rule 454, 454-467
demodulation 614-616
Dempster-Shafer theory of evidence 357-363
DENDRAL 23, 96
dendrite 29
dependency-directed backtracking 340
depth-first search 99-107
difference reduction 576, 580
difference tables 576-582
Dipmeter 95-96
directed graphical model (see Bayesian belief net-


work, Markov model)
discrete Markov process 373-376
distributed problem solving (see agents)
distributive law 49
domain expert 281-286
durative action 324
DYNA-Q 443
dynammic Bayesian network, DBN, 365, 371-372,


564-568, 570
learning 564-568, 570


dynamic programming 127, 129-133, 161, 551-554,
447-449, 627-632, 651


Earley parser 627-632
chart parsing 629-632
completer 630-632
dotted pairs 628-632
memoization 628-632
predictor 630-632
scanner 630-632
top-down 629-632


EBL (see explanation-based learning)
elimination 64-65
embodied problem solving (see agents)
emergent computation 16-19, 28-29, 286, 386,


537-541 (see also agents)
artificial life 17, 388, 508-509, 530-542, 672
cellular automata 534-541
classifier systems 519-524, 542
evolutionary programming 509, 534-537
finite state machine 85, 86, 371, 531
Game of Life 508, 530-534
genetic algorithm 28, 29, 388, 507-519, 538-539
genetic programming 519, 524-530, 542
Santa Fe Institute 509
society-based learning 530-541


subsumption architecture 226, 258-262, 536
teleo-reactive agents 323-326, 536-537


empiricist tradition 8-9
English language parser 116-121
epistemology 674-675
evolutionary learning (see genetic algorithm)
evolutionary programming 509, 534-537
excitatory 681
expectation maximization (EM) 558-564, 570


Baum-Welch 559
maximum likelihood estimate 558


expert system 22-24, 143, 227-297, 576
certainty factors 686
conceptual models 281, 284-286
expert system shell 280, 329
explanation 277-279
exploratory programming 282, 285
model-based reasoning 297-305 312-313
rule-based expert systems 286-297
separation of knowledge and control 270, 280


explanation-based learning 389, 424-429,
701-704
explanation structure 427
generalization 424-429
goal regression 427
knowledge-level learning 423
operationality criteria 425
speed up learning 423


factorial hidden Markov models 547-547
family resemblance theory 438
fast Fourier transform 548
feedback networks 495
financial advisor 73-76, 115-116, 143-144, 210
finite state acceptor 86, 373
finite state machine 85, 86, 373, 531
first-order Markov model 371-372
first-order predicate calculus (see predicate calculus)
fitness function 508, 510
fitness proportionate selection 510
floating point numbers 38
forward chaining (see data-driven search)
forward-backward algorithm


(see dynamic programming)
frame problem 315
frames 244-248
fuzzy associative matrix 355
fuzzy logic (see fuzzy set theory)
fuzzy reasoning (see fuzzy set theory)
fuzzy set theory 353-357, 381


Game of Life 508, 530-534
game playing 20, 41-42, 124-125, 150-157,


161-164 688
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game playing (cont)
15-puzzle 20, 89
8-puzzle 89-91, 103-105, 137-143, 146-149,


203-205, 293
alpha-beta pruning 127, 155-157, 161
checkers 18, 127-128, 153, 678
chess 18, 44, 153, 677
heuristics 150-157
horizon effect 154
minimax 150-157, 161
minimax to fixed ply depth
n-move look ahead 153


game playing (continued)
nim 150-153
ply 152-153
Samuel's checker player 127-128, 678
tic-tac-toe 41-42, 88-89, 124-126, 154-157,


444-447
General Problem Solver 21, 201-203, 224, 576-582


difference tables 576-582
means-ends analysis 576, 580, 678


generalization 252-255, 391-399, 427, 804, 691-692
generalized expextation maximization 559


Baum-Welch 559
generic functions 795
genetic algorithm 28, 29, 388, 507-519, 538-539,


675, 680, 683, 691 (see also
emergent computation)


artificial life 17, 388, 508-509, 530-542, 672
classifier systems 519-524, 542
CNF satisfiability 511-513
crossover 510-515, 518-529, 539
defined 509-511
genetic operators (see crossover, mutation,


inversion, order crossover, permutation)
genetic programming 519, 524-530, 542
gray coding 516
hill-climbing 517, 527
implicit parallelism 513, 517
inversion 511-515, 518, 527
Monte Carlo replacement algorithms
mutation 508, 511-515, 518-529, 539
order crossover 514-515
performance evaluation 515-519
permutation 527
traveling salesperson 513


genetic operators (see crossover, mutation,
inversion, order crossover, permutation)


genetic programming 519, 524-530, 542 (see also
genetic algorithm)


goal regression 427
goal-driven search 93-96, 210-213, 287-292
GOFAI 17
GPS (see General Problem Solver)


gradient descent learning 465 (see also delta rule)
graph search (see state space search)
graph theory 10, 80-84


ancestor 83-84
arc 80-84
child 83-84
connected nodes 85
cycle 83-84
descendant 83-84
directed graph 83
Euler path 82
Hamiltonian path
labeled graph 81-82
leaf node
link 80-83
loop 83
node 80-83
parent 83
path 83
rooted graph 83
sibling 83
tree 83


graphical model (see Bayesian belief network,
Markov Model)


grounding 678-679
gray coding 516


Hamming distance 491-492
headless clause 605 (see also horn clause)
HEARSAY 217-220
Hebbian learning 455, 484-494
heteroassociative memory (see associative memory)
heuristics 21, 44, 123, 150-157, 296-297, 391,


367-371, 403-408, 418-420, 429, 594-599,
609-612, 678
admissibility 127, 145-147, 162-163, 678
Algorithm A* 146-150, 161-162, 517, 161
alpha-beta pruning 127, 155-157, 161
best-first search 133-164
branching factor 158-159
coupled HMM 551
game playing 150-157
heuristic search 123-164 (see also


best-first search)
horizon effect 154
means-ends analysis 576, 580, 678
minimax 150-157, 161
monotonicity 145-148, 678


hidden Markov model 374-379, 543-554, 570
auto-regressive 546-548
buried Markov models 551
definition 544
factorial hidden Markov models 547-549
hidden semi-markov model 551
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hidden Markov model (cont)
hierarchical HMMs 547, 549-550
mixed-memory HMM 551
n-gram HMMs 550-551


hidden semi-Markov model 551
hierarchical problem decomposition 26
hierarchical hidden Markov models 547, 549-550


internal state 549
production state 549


hill-climbing 127-129, 161, 418-419, 441, 467, 517, 
527, 678
Hopfield networks 455, 495, 500-505
horn clause 576, 604-605
human performance modeling 27
hypergraphs (see and/or graphs)
hyperresolution 613-616


ID3 408-417, 472, 652-654, 665
and hill-climbing 418
bagging 416-417
boosting 416-417
information theory 412-415
performance evaluation 416-417


inconsistent 63
inductive bias 388-389, 408, 417-420, 454, 674,


682, 691, 693
inductive learning 389
inference engine 279-280
informality of behavior 15
information extraction 661-665
information theory 412-415
informedness 145, 148-150, 159, 678
inhibitory 681
inversion 511-515, 518, 527
INTERNIST 23
iterative deepening 106-107


Java 632
JESS 203, 280
junction tree 368-371
justification-based truth maintenance system 340-342


kernel 322-323
knight's tour 204-210
knight's tour problem 204-210
knowledge base 279-280
knowledge base editor 280
knowledge engineering 279-286
knowledge representation 37, 227-276, 677 (see also


predicate calculus, conceptual graphs)
associationist representation 228-248, 270
conceptual dependency diagrams 236-240
efficiency 271
exhaustiveness 271


extensional representation 436
frame problem 271, 315-317
frames 244-248
higher-order logics 380
inheritance 252-256
intentional representation 436
modal logics 380
multiple-valued logics 344
ontologies 263-265
schema 518-519
scripts 240-244
semantic networks 40-41, 229-236
standardization of network relationships 234-240
temporal logics 380


knowledge services 263-265
knowledge-intensive problem solving (see strong 
method problem solving)
Kohonen network 454-455, 476


Lady Lovelace's Objection 15
learnability theory 420-422
Levenshtein distance (see dynamic programming)
LEX 403-408, 419
lexicon 625
linear associator network 492-494
linear dynamical systems 555
linear input form strategy 597
linear separability 458-459, 462-463
lisp 27-28, 37
Livingstone 302-305, 326-328
logic programming 603-609
Logic Theorist 21, 49, 223-224
logic-based truth maintenance system 343-344, 350
logical inference 62-65
logically follows 64
LOGO 282
loopy logic 379, 559-564


cluster nodes 561
Markov random field 559-564
variable nodes 561


LT (see Logic Theorist)


machine learning 28, 385-543
and heuristic search 392
and knowledge representation 391
agglomerative clustering 399
AM 28, 433-434
analogical reasoning 430-433
autoassociative memory (see associative memory,


Hopfield networks)
associative memory 455, 490-505 (see also


 semantic networks, conceptual graphs)
BACON 434
bagging 416-417
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machine learning (cont)
boosting 416-417
BAM, bi-directional associative memory 496-500
C4.5 417, 665
candidate elimination 397-408
category formation (see conceptual clustering) 
CLUSTER/2 389, 419, 436-437, 476
COBWEB 389, 437-441, 476
coincidence learning 484
competitive learning 454-455, 474-484
concept learning 389
concept space 392, 396-397
conceptual clustering 389, 435-441
conjunctive bias 420
connectionist networks 28, 29, 388, 453-506,


674, 680, 691-692
counterpropagation learning 455, 475
covering a concept 397
credit assignment 407 (see also bucket brigade


algorithm, reinforcement learning)
decision trees 408-411, 420, 652-654, 665
deductive closure 429
discovery 433-434
dynamic Bayesian networks 554-564, 570
dynamic programming 127, 129-133, 161,


551-554, 447-449
emergent computation 507-543
empiricist's dilemma 694-695
EURISKO 434
evolutionary learning (see genetic algorithm)
EBL, explanation-based learning 389, 424-429
explanation structure 427
feature vectors 420
generalization 391-399, 427, 691-692
genetic algorithm 28, 29, 388, 507-519, 538-539
goal regression 427
gradient descent learning 465
Grossberg learning 478-480
Hebbian learning 455, 484-494
heteroassociative memory (see associative


memory)
heuristics 391, 367-371, 418-420, 429
hill-climbing 127-129, 161, 418-419, 441,


467, 517, 527, 678
Hopfield networks 455, 495, 500-505
ID3 408-417, 472, 652-654, 665
induction 388
inductive bias 408, 417-420, 454
inductive learning 389
information theoretic selection 412-415
knowledge-level learning 423
Kohonen networks 454-455, 476
learnability theory 420-422
learning search heuristics 403-408


LEX 403-408, 419
Meta-DENDRAL 423-424
near miss 392
negative instances and overgeneralization 399-400
neural networks (see connectionist networks)
numeric taxonomy 435
operationality criteria 425
outstar networks (see Grossberg learning)
overlearning (see generalization)
PAC, probably approximately correct learning


421-422, 482
parameter learning 555-556, 558-564
perceptron learning 454, 458-467
performance evaluation 407-408, 416-417,


471-472, 515-519
Q-learning 449
reinforcement learning 442-449, 455, 544, 564-
568, 570
similarity-based learning 389, 422, 429
specialization 252-255, 391-392
specific to general search 398-404
speed up learning 423
stochastic 543-570
structure learning 555-558
supervised learning 389, 397, 478, 482, 484,


488-490
support vector machines 482-484
symbol-based learning framework 390-396
taxonomic learning 435-442
temporal difference learning 443, 447
top-down decision tree induction (see ID3)
unsupervised learning 389, 433-441, 454,


476-478, 484-488
version space search 396-408
winner-take-all learning 454-455, 474-476


macro operators 319-323
MACSYMA 111-112
Markov models 371-379, 543-570, 622, 650-652


and natural language analysis 650-652
discrete Markov process 364, 373
first-order Markov model 364, 373-551, 543-547
hidden Markov model 374-379, 543-554, 570
Markov assumptions 651
Markov chain 373-551, 543-554, 570
Markov chain Monte Carlo (MCMC) 554, 557-


558, 570
Markov decision process (MDP) 551-552, 554, 


564-570
Markov logic networks 378-379
Markov random field 364, 378-379, 559-564
Markov state machine 373-376
observable 373-552
partially observable Markov decision process 


(POMDP) 376-377, 552, 554, 564-570








750 SUBJECT INDEX


Markov models (cont)
probabilistic finite state acceptor 186-188
probabilistic finite state machine 186-188
semi-Markov models 551


McCulloch-Pitts model 456
means-ends analysis 576, 580, 678
Meta-DENDRAL 423-424
metaphor 620-621
mgu (see most general unifier)
mind-body problem 7, 8
minimax 150-157, 161
minimum distance classification 461
minimum edit difference (see dynamic


programming)
mixed-memory hidden Markov model 551
mode estimation 327-328
mode reconfiguration 327-328
model 63
model-based reasoning 297-305 312-313
modus ponens 64-65
modus tollens 64-65
monotonicity 145-148, 678
Monte Carlo method 448
Monte Carlo replacement 510
Moore machine (see finite state acceptor)
morphology 623
most general unifier 58
multilayer network 468-472
multiple belief reasoner 344
MYCIN 23, 24, 298, 329


n-gram analysis 186
n-gram hidden Markov models 550-551


bi-gram 550
tri-gram 551


natural deduction 576, 616-617


natural language understanding 24, 619-669,
704-716, 679
and decision trees 652-654
applications 658-665
augmentation of logic grammars 639
augmented phrase structure grammars 639
augmented transition network parser 639-649
bottom-up parsing 626-627
case frame 645-648, 666
case-grammars 665-666
Chomsky hierarchy 637-639
combining syntax and semantics 643-649
context-free grammars 637-639
context-free parser 705-709
context-sensitive grammars 637-639
context-sensitive parser
database front end 658-661


decoding (see phoneme recognition)
deep structure 666
feature and function grammars 666
generation 621, 625, 627, 648
grammar 637-639 (see also parsing, syntax)
grammatical markers 666
ID3 652-654, 665
information extraction 661-665
link grammars 657
Markov models 622, 650-652
morphology 623
n-gram analysis 186
parsing 633-649, 654-654, 657
phoneme 471, 187-188, 621
phoneme recognition 187, 551-554
phonology 623
pragmatics 623
probabilistic lexicalized parser 
question answering 658-658
semantics 623-624
semantic grammars 666
stochastic tools 649-657, 665
syntax 623, 625-639
transformational grammars 666
transition network parsers 633-649
Viterbi algorithm 651-652
world knowledge 623, 625


nearest neighbor 93
negation as failure 337
NETtalk 471-473
network energy function 455, 495, 500-505
neural networks (see connectionist networks)
neural plausibility 681
neuron 28-29, 454, 681
neurotransmitters 681
nim 150-153
nonmonotonic reasoning 335-339, 380-381


autoepistemic logic 338
circumscription 345-347
closed world assumption 336, 345, 608, 644
default logic 338-339
defeasibility 337
minimum models 335, 345-347
modal operators 336-339
truth maintenance system 337-344


numeric taxonomy 435


object-oriented programming 27
observable Markov model 372-377
Occam's Razor 411, 557
occurs check 69, 609
ontologies 263-265
opportunistic search 294-295
OPS 203, 215
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order crossover 514
orthonormality of vectors 492
outstar 478-480
overlearning (see generalization)
OWL 264


PAC, probably approximately correct learning 
421-422, 482


parallel distributed processing (see connectionist
networks)


parameter learning 555-556, 558-564
paramodulation 613-616
parsing 116-121, 623-649


chart 627-632
dynamic programming 627-632
Earley 627-632
stochastic 649-657


partially observable Markov decision process 
(POMDP) 367-368


pattern-driven reasoning 196-200
perceptron learning 454, 458-467
permutations 169-170
phoneme 471, 187-188, 621
phoneme recognition 187, 551-554
phonology 623
physical system hypothesis 30, 672-676
planning 26, 27, 314-328
planning macros 319-323
plausibility of a proposition 358-359
pragmatics 623
predicate calculus 11-12, 39-40, 50-78, 228-229


and planning 314-323
and elimination 64-65
and introduction 64-65
atomic sentence 54


predicate calculus (continued)
clause form 583-588
closed world assumption 336, 345, 608
completeness 64
conjunction 54
conjunctive normal form 511-513
constant 52
converting to clause form 586-589
declarative semantics 213-214
disjunction 54
equivalence 54
existential quantifier 59
function 52
function expression
horn clause 576, 604-605
implication 54
improper symbols 51
inconsistent 63
inference 62


interpretation 57
knight's tour 204-210, 650-652, 720
model 63
modus ponens 64-65
modus tollens 64-65
negation 54
predicate 54
prenex normal form 586
procedural semantics 213-214
proof procedures 64
quantification 58
resolution 65
rules of inference 62-65
satisfiability 63
searching the space of inferences 196-200
semantics 56
sentences 54-55
skolemization 66, 587
soundness 64
symbols 50-52
term 52
truth symbol 52
truth value 57-58
undecidability 58
universal quantifier 58
unsatisfiability 63-64
validity 63
variable 52


prenex normal form 586
probabilistic finite state acceptor 186-188
probabilistic finite state machine 186-188, 373
probabilistic reasoning (see stochastic reasoning,


Bayesian reasoning, Markov models)
probabilistic relational models (PRMs) 378
probability density function 360, 375
probability theory 170-186 (see also


Bayesian reasoning, Markov models)
Bayesian belief networks 363-366, 381
Bayes' theorem 182-185
counting 167-170
conditional probability 178-182
defined 171
events 170-171
expectation of an event 177
independent event 171-173, 181
learning 543-570
posterior probability 179
prior probability 179
probabilistic finite state acceptor 186-188
probabilistic finite state machine 186-188
random variable 175-177


production systems 200-221, 698
8-puzzle 203-204
advantages 215-217
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production systems (cont)
blackboard architecture 217-219
conflict resolution 201, 214
control 210-215
knight’s tour problem 204-210
production rule 200
recognize-act cycle 200-201
working memory 200


Prolog  27, 28, 632
proof procedure 64
propositional calculus 45-49, 107-108


conjunction 46
disjunction 46
equivalence 46
implication 46
interpretation 47
negation 46
propositions 46-47
semantics 47-49
sentence 46-47
symbols 46
syntax 46-47
truth symbol 46
truth table 49
well-formed formula 46-47


prosody 622
PROSPECTOR 23, 95-96, 186
PROTOS 305


Q-learning 449
question answering  615, 658


random restart 558
rationalist tradition 8-9, 16, 672
recognize-act cycle 287
recursion-based search 194-200
refutation completeness 583, 595
reinforcement learning 442-449, 455, 564-568


definition 442
dynamic programming 447-448
Monte Carlo method 448
Q-learning 449
tic-tac-toe 444-447
temporal difference learning 443, 447
using  the Markov decision process, 564-568


resolution refutation 582-594
and logic programming 603-609
and PROLOG 603-609
answer extraction 590, 599-603, 608
binary resolution 583, 589-594
breadth-first strategy 595
clashing 584
clause form 583-588
completeness 583, 595


converting to clause form 586-589
demodulation 614-616
factoring 591
heuristics 594-599
hyperresolution 591, 613-616
linear input form strategy 597
literal 583
paramodulation 613-616
prenex normal form 586
refutation 582-583, 589-594
refutation completeness 583, 595


resolution refutation (continued)
resolution 67, 582-594
set of support strategy 576, 596
soundness 64, 582, 609
subsumption 599, 617
unit preference strategy 576, 597
unit resolution 597


resolution theorem prover 576, 582-603
RETE 297, 307
robotics 26, 27
roulette wheel replacement 510
rule relation 605 (see also horn clause)
rule-based expert systems 286-297
rule-based reasoning 286-297, 310-311


satisfiability 63
schema 518-519
SCHEME 698
science of intelligent systems 674
scripts 240-244
self-organizing network 477
semantic networks 40-41, 229-236
semantics 623
semantic web 661-665
semi-Markov model 551
set minimality 349
set of support strategy 576, 596
set simplicity 349
SHRDLU 25, 621
sigmoidal function 464
similarity 308
similarity-based learning 389, 422, 429
simulated annealing 558
skolemization 587
SOAR 203
SOFA 264
soundness 64, 582, 609
specific to general search 398-404
Stanford certainty factor algebra 


(see Stanford certainty theory)
Stanford certainty theory 226, 350-353, 684
state space search 10, 37, 41-44, 79-80, 87-122


admissibility 127, 145-147, 162-163, 678
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state space search (cont)
Algorithm A* 146-150, 161-162, 517, 161
alpha-beta pruning 127, 155-157, 161
and logical inference 279-280
and planning 314-329
and propositional calculus 107-121
and/or graphs 109-121, 159, 289-290, 610 
backtracking 96-99, 111, 196, 693
backward chaining (see goal-driven search)
beam search 159, 408
best-first search 133-164
branch and bound 92
branching factor 96, 158-159
breadth-first search 99-107
data-driven search 93-96, 210-213, 293-296
defined 88
depth-first iterative deepening 106-107
depth-first search 99-107
exhaustive search 92
forward chaining (see data-driven search)
goal-driven search 93-96, 210-213, 287-292
hill-climbing 127-129, 161, 418-419, 441, 467,


517, 527, 678
implementation 96-99
informedness 145, 148-150, 159, 678
minimax 150-157, 161
monotonicity 145-148, 678
opportunistic search 294-295
pattern-directed search 196-200
question answering 615
recursive search 194-196
shortest path 138
solution path 88
state 41
structure learning 555-558
subgoal 93
uninformed search 106


stochastic reasoning 165-166, 363-379, 381
(see also Bayesian reasoning, Markov models)
and uncertainty 363-379
applications 186-188, 551-554
inference 174-175
learning 543-570
road/traffic example 174-175, 188


stochastic lambda calculus 379
stochastic parsing 649-657


lexicalized 657
structural 656


stochastic tools for language analysis  649-657 665
story understanding  658-658
STRIPS 319, 330
strong method problem solving 223-225,


227-332, 678
structure learning 555-558


NP-hard 557
overfitting 557
Markov chain Monte Carlo (MCMC) 557-558
Occam’s razor 557


subsumption 599, 617
subsumption architecture 226, 258-261, 536
supervised learning 389, 397, 478, 482, 484, 488-490
support vector machines 482-484
Switchboard corpus 187-188
Syllable-based conditioning 665
symbol-based learning framework 390-396
synapse 29 (see also connectionist learning)
syntactic bias 419
syntax 623, 625-649


teleo-reactive planning 323-326, 536-537
temporal difference learning 443, 447
text summarization 661-665
text-to-speech 620
theorem proving (see automated reasoning)
tic-tac-toe 41-42, 88-89, 124-126, 154-157, 444-447
transformational analogy 309
transition network parser 633-649
traveling salesperson 91-93, 455, 513-515
triangle tables 319-323
triangulation 370
truncated chessboard problem 677-678
truth maintenance system 337-344


assumption-based truth maintenance 342-344, 348
chronological backtracking 339
dependency-directed backtracking 340
justification-based truth maintenance 340-342
logic-based truth maintenance 343-344, 350
multiple belief reasoner 344


Turing machine 698
Turing test 13


unification 66-72, 590
uniform representations for weak method solutions


609
unit preference strategy 576, 597
universal instantiation 64-65
unsatisfiability 595
unsupervised learning 389, 433-441, 454,


476-478, 484-488


validity 63
Vapnik Chervonenkis dimension 482-483
version space search 396-408
Viterbi 551-554, 651


(see also dynamic programming)


weak method problem solving 223-224
well-formed formula 46-47
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winner-take-all learning 454-455, 474-476
working memory 200
world knowledge 623


XCON 23, 203
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