Propried

CHAPTER FOUR: MULTIPLE REGRESSION: ESTIMATION AND HYPOTHESIS TESTING 125

PROBLEMS

4.7. You are given the following data:

,	X ₂	Y
	1	1
	2	3
-	3	3 8

Based on these data, estimate the following regressions (*Note:* Do not worry about estimating the standard errors):

a.
$$Y_i = A_1 + A_2 X_{2i} + u_i$$

b.
$$Y_i = C_1 + C_3 X_{3i} + u_i$$

c.
$$Y_i = B_1 + B_2 X_{2i} + B_3 X_{3i} + u_i$$

d. Is
$$A_2 = B_2$$
? Why or why not?

e. Is
$$C_3 = B_3$$
? Why or why not?

What general conclusion can you draw from this exercise?

4.8. You are given the following data based on 15 observations:

$$\overline{Y} = 367.693;$$
 $\overline{X}_2 = 402.760;$ $\overline{X}_3 = 8.0;$ $\sum y_i^2 = 66,042.269$
 $\sum x_{2i}^2 = 84,855.096;$ $\sum x_{3i}^2 = 280.0;$ $\sum y_i x_{2i} = 74,778.346$
 $\sum y_i x_{3i} = 4,250.9;$ $\sum x_{2i} x_{3i} = 4,796.0$

where lowercase letters, as usual, denote deviations from sample mean values.

- a. Estimate the three multiple regression coefficients.
- b. Estimate their standard errors.
- c. Obtain R^2 and R^2 .

4.9.

- **d.** Estimate 95% confidence intervals for B_2 and B_3 .
- e. Test the statistical significance of each estimated regression coefficient using $\alpha = 5\%$ (two-tail).
- f. Test at $\alpha=5\%$ that all partial slope coefficients are equal to zero. Show the ANOVA table.

A three-variable regression gave the following results:

Source of variation	Sum of squares (SS)	d.f.	Mean sum of squares (MSS)
Due to regression (ESS)	65,965	-	_
Due to residual (RSS)		_	
Total (TSS)	66,042	14	

- a. What is the sample size?
- b. What is the value of the RSS?
- c. What are the d.f. of the ESS and RSS?
- d. What is R^2 ? And \overline{R}^2 ?
- e. Test the hypothesis that X_2 and X_3 have zero influence on Y. Which test do you use and why?
- **f.** From the preceding information, can you determine the individual contribution of X_2 and X_3 toward Y?
- **4.10.** Recast the ANOVA table given in problem 4.9 in terms of R^2 .

- **4.13.** In the illustrative Example 4.2 given in the text, test the hypothesis that X_2 and X_3 together have no influence on Y. Which test will you use? What are the assumptions underlying that test?
- 4.14. Table 4-7 (found on the textbook's Web site) gives data on child mortality (CM), female literacy rate (FLR), per capita GNP (PGNP), and total fertility rate (TFR) for a group of 64 countries.
 - a. A priori, what is the expected relationship between CM and each of the other variables?
 - b. Regress CM on FLR and obtain the usual regression results.
 - c. Regress CM on FLR and PGNP and obtain the usual results.
 - d. Regress CM on FLR, PGNP, and TFR and obtain the usual results. Also show the ANOVA table.
 - e. Given the various regression results, which model would you choose and why?
 - **f.** If the regression model in (*d*) is the correct model, but you estimate (*a*) or (*b*) or (*c*), what are the consequences?
 - **g.** Suppose you have regressed CM on FLR as in (*b*). How would you decide if it is worth adding the variables PGNP and TFR to the model? Which test would you use? Show the necessary calculations.
- 4.15. Use formula (4.54) to answer the following question:

Value of R ²	п	K	R^2
0.83	50	6	
0.55	18	9	
0.33	16	12	_
0.12	1,200	32	-

What conclusion do you draw about the relationship between \mathbb{R}^2 and \mathbb{R}^2 ?

- **4.16.** For Example 4.3, compute the *F* value. If that *F* value is significant, what does that mean?
- **4.17.** For Example 4.2, set up the ANOVA table and test that $R^2 = 0$. Use $\alpha = 1\%$.
- 4.18. Refer to the data given in Table 2-12 (found on the textbook's Web site) to answer the following questions:
 - a. Develop a multiple regression model to explain the average starting pay of MBA graduates, obtaining the usual regression output.
 - b. If you include both GPA and GMAT scores in the model, a priori, what problem(s) may you encounter and why?
 - c. If the coefficient of the tuition variable is positive and statistically significant, does that mean it pays to go to the most expensive business school? What might the tuition variable be a proxy for?
 - d. Suppose you regress GMAT score on GPA and find a statistically significant positive relationship between the two. What can you say about the problem of multicollinearity?
 - e. Set up the ANOVA table for the multiple regression in part (a) and test the hypothesis that all partial slope coefficients are zero.
 - f. Do the ANOVA exercise in part (e), using the R^2 value.