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Summer, 2015 Math 4400
Meeting #12 Update of 


Some Definitions, Shorthand Notations, Theorems, and Notes


A. Note the following shorthand notations:


i. Given p, q 0 {statements}, “p Y q” is read “p implies q”


ii. Given p, q 0 {statements}, “p ] q” is read “p implies q and p is implied by q.” or,
in other words, “q is true if and only if p is true.”


iii. “�” is read “there exist.”


iv. “h” is read “such that”


v. “ò” is read “there does not exist.”


vi. “�!” is read “there exist uniquely.”


vii. “�” is read “for all.”


B. Note some shorthand notations and definitions from the language of set theory:


i. Note that “x 0 A” is read “x is an element of set A.”


Also note the following:


Given n is a natural number, “x1, x2, x3, ..., xn 0 A” is read “x1, x2, x3, and so
on through  xn are elements of set A.” 


Further note the meaning of “ó” as well as the use of “/” through any relationship
sign.


ii. Note: “V” is a symbol for the universe.


Definition for the universe:


Given a specific domain, V = {elements in the domain}


iii. Note: “i” is a symbol for the empty set.


Definition of the empty set:


i 0 {sets} h (ò x 0 V h x 0 i)








2


iv. Given A, B 0 {sets}, note that “A f B” is read “A is a subset of B.”


Definition for subset:


Given A, B 0 {sets}, (A f B ] (x 0 A Yx 0 B))


v. Definition for equal sets:


Given A, B 0 {sets}, (A = B ] ( A f B and B f A))


vi. Given A, B 0 {sets}, note that “A c B” is read “the union of A and B.”


Definition for union of sets:


Given A, B 0 {sets}, (A c B = {x : x 0 A or  x 0 B} )


vii. Given A, B 0 {sets}, note that “A 1 B” is read “the intersection of A and B.”


Definition for intersection of sets:


Given A, B 0 {sets}, (A 1 B = {x : x 0 A and  x 0 B})


viii. Given A, B 0 {sets}, note that “A - B” is read “A without B.”


Definition for without:


Given A, B 0 {sets}, (A - B = {x : x 0 A and  x ó B})


C Note the following shorthand conventions for naming subsets of numbers along with
some definitions:


i. “Z” is read “the set of all integers.”


Thus, Z = {..., G3, G2, G1, 0, 1, 2, 3, ...}


ii. “ù” is read “the set of all natural numbers” or “the set of positive integers.”


Thus, ù = {1, 2, 3, ... }


iii. “�” is read “the set of all primes.”


Sidebar note:   The definition for “d * p” that’s used in the definition for � is given in 
Item #E-iv in this document.


Here is a definition for �:


� = { p 0 ù - { 1 } : d * p Y d 0 { Gp, G1, 1,  p }}
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iv. Here is a definition for composite number:


{ composite numbers } =  ù – ( � c { 1 } )
 


v. “ù” is read “the set of all whole numbers” or “the set of non-negative integers.”


Thus, ù = {0, 1, 2, 3, ...}


vi. “ú” is read “the set of all real numbers.”


vii. “Q” is read “the set of all rational numbers.”


Here is a definition for rational number:


Q = {q : � n, d 0 Z h = q}


Sidebar definitions from philosophy:


A. Definition for ontology:


Ontology is the branch of philosophy focusing on questions about
existence and truth (i.e., what truly exists).


B. Definition for epistemology:


Epistemology is the branch of philosophy involving theories of
knowledge, thus focusing on the following questions: What is
knowledge? How is knowledge acquired?  How do we determine truth?
How do we know what we know? 


C. Definition for axiology:


Axiology is the branch of philosophy involving theories of ethics, thus
focusing on questions about the value of behaviors.


  
D. Definition for aesthetics:


Aesthetics is the branch of philosophy (sometimes perceived as a sub-
branch of axiology) involving theories of beauty (i.e., sensory values or
taste)
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Sidebar Definitions of inductive and deductive reasoning:


i. Inductive reasoning is the cognitive process by which people formulate
generalizations (e.g., propose a conjecture) based on patterns gleaned from a
finite string of specific examples or experiences.


ii. Deductive reasoning is the cognitive process by which people determine
whether or not a specific example is subsumed by an accepted generalization. 
Aristotlean syllogism is the paradigm for logical deductions:   ( major premise
v minor premise )  Y conclusion


D. Note the following four definitions from the world of real number mathematics (e.g.,
calculus):


i. Here is the definition of a subset of ú having a lower bound: 


Given A f ú, ( A has a lower bound ] � x 0 ú h x # y � y 0 A )


ii. Here is the definition of a subset of ú having an upper bound: 


Given A f ú, ( A has an upper bound ] � x 0 ú h y # x � y 0 A )


iii. Here is the definition of a subset of ú having a least element: 


Given A f ú, ( A has a least element ] � x 0 A h x # y � y 0 A )


iv. Here is the definition of a subset of ú having a greatest element: 


Given A f ú, ( A has a greatest element ] � x 0 A h y # x � y 0 A )


E. Note the following list of definitions, shorthand notations, axioms, and theorems that
we’ve developed specifically for our work wirh number theory (up through Theorem 11
(out of 25 theorems):


i. Here is Axiom 1: 


Z is closed under + (i.e., a, b 0 Z Y a + b 0 Z )


ii. Here is Axiom 2 (i.e., the least integer principle and the greatest integer principle): 


The Least Integer Principle: Every nonempty subset of integers that has a
lower bound contains a least element.


The Greatest Integer Principle: Every nonempty subset of integers that has
an upper bound contains a greatest element.
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iii. Here is Theorem 0 (the Principle of Mathematical Induction):


( p : ù 6 { true, false } h (( either p(n) is a true proposition or  p(n) is a
false proposition) and p(1) is true and ( p(k) is true Y  p(k + 1) is true ))) Y
 p(n) is true � n 0 ù


iv. Given a, b 0 Z, “a*b” is read “a is a divisor of b” or “b is a multiple of a.”  


Here is a definition for the relation of is a divisor or is a multiple: 


Given a, b 0 Z, (a*b ] � i 0 Z h ai = b)


v. Here is a definition for proper divisor:


Given n 0 ù, ( { proper divisors of n } = { d : d 0 ù - { n } and d * n }) 


vi. Here is Theorem 1:


( a*b and b*c) Y a*c 


vii. Here is Theorem 2:


� c1, c2, ..., cn 0 Z  


viii. Here is Theorem 3 (the Division Algorithm):


 ( a 0 Z and b 0 ù) Y (�!(q, r) h q, r 0 Z and  a = qb + r  and 0 # r < b)


ix. Note that depending on context and given that a, b 0 Z, “(a, b) = d ” is read “d is


the greatest common divisor of a and b.


Here is a definition for greatest common divisor of a pair of integers:


Given a, b 0 Z, ((a, b) = d ] (d*a,  d*b, and ((e*a and e*b) Y e # d )))


x. Note that if ( a, b ) = 1 for some a, b 0 Z, then a and b are a relatively prime pair.  


xi. Here is Theorem 4:


 (a, b) = d Y = 1
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xii. Here is Theorem 5:


� a, b, q, r 0 Z, (a = bq + r Y (a, b) = (b, r))


xiii. Note the following definition of  perfect number:


 p 0 {perfect numbers} ] p = where (*{d1, d2, d3, ..., dk}* = k and


{d1, d2, d3, ..., dk} = {proper divisors of p})


xiv. Note the following definition of Mersenne number:


{2n - 1: n 0 ù } = {Mersenne numbers}


xv. Note Euclid’s formula for generating perfect numbers:


2n!1 0 V Y 2n-1 (2n!1) 0 {perfect numbers}


xvi. Note other gems from your reading of Hoffman’s Archimedes’ Revenge (e.g.,
polygonal numbers, “biblically significant numbers,” and lots of other stuff listed
in the reading outlines)


xvii. Here is Theorem 6 (the Euclidean Algorithm):


If a, b 0 ù  such that:


a = q1b + r1  such that 0 # r1 < b,


b = q2r1 + r2 such that 0 # r2 < r1,


r1 = q3r2 + r3 such that 0 # r3 < r2,


•
•
•


rk = rk+1qk+2 + rk+2 such that 0 # rk+2 < rk+1,


             then for k large enough, say k = t, we have 


rt-1 = rtqt+1 + 0 and


(a, b) = rt.
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xviii. Here is Theorem 7:


(a, b) = d) Y (� x, y 0 Z h ax + by = d)


xix. Here is Theorem 8:  


(d*ab and (d, a) =1) Y (d*b)


xx. Here is Theorem 9:


(n 0 ù and n > 1) Y � p 0 � h p*n


xxi. Here is Theorem 10:


 (n 0 ù-{1}) Y (� p1, p2, p3, ..., pk 0 � h = n)


xxii. Here is Theorem 11:


 � is infinite.


xxiii. Here is Theorem 12:


 c 0 {composites} Y � d 0 ù - {1} h d # and d*c


xxiv. Here is Theorem 13:


c 0 {composites} Y � p 0 V h p # and p*c


xxv. Here is Theorem 14:


(p 0 � and a, b 0 Z h p*ab) Y (p*a or p*b) 


xxvi. Here is Theorem 15:


 p 0 � h p*  Y (p*ai  for some i 0 {1, 2, 3, ..., k})


xxvii. Here is Theorem 16:


(p, q1, q2, q3, ..., qn 0 �h p* ) Y p = qk for some k 0 {1, 2, 3, ..., n}


xxviii. Here is Theorem 17 (the Fundamental Theorem of Arithmetic):


n 0 ù - { 1} Y ( n can be written as a product of primes in one and only one
way (Note: Order is not considered a difference)
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F. Note the following list of definitions and shorthand notations that we’ve comprehended
specifically for our work with cryptography


i. Note: 


Given a, b, m 0 Z h m $ 1,  “a / b (mod m)” is read “a is congruent to b


modulo m” or  “a is congruent to b mod m.” 


ii. Here is a definition for congruence among integers:


Given a, b, m 0 Z h m $ 1, ( a / b (mod m) ] m * a - b )


iii. Note: 


Given  m 0 ù and a 0 Z, “[a]m” is read “the congruence class of a modulo m.”


iv. Here is a definition for congruence class:


Given  m 0 ù and a 0 Z, ( [a]m = { x : x / a (mod m)})


v. Note: 


Given m 0 ù and a, b 0 Z, “[a]m r [b]m” is read 


“the sum of the classes [a]m and [b]m .” 


vi. Here is a definition for sum of congruence classes:


Given m 0 ù and a, b 0 Z, ( [a]m r [b]m = [a + b]m )


vii. Note: 


Given m 0 ù and a, b 0 Z, “[a]m u [b]m” is read


“the product of the classes [a]m and [b]m .” 


viii. Here is a definition for product of congruence classes:


Given m 0 ù and a, b 0 Z, ( [a]m u [b]m = [ab]m )


G. Note the following list of definitions, shorthand notations, axioms, and theorems that we’ve
developed specifically for our work in number theorem (completing our list of 25 theorems):
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i. Here is Theorem 18:


( a, b, c 0 Z, m 0 ù, ( c, m ) = 1, and  ac / bc (mod m)) Y a / b (mod m) 


ii. Here is Theorem 19:


( p 0 �, r 0 ù, and r < p ) Y p*


iii. Here is Theorem 20 (Fermat’s Little Theorem):


( a 0 ù, p 0 �, and p ð a ) Y 


x. Here is Theorem 21:


((x0, y0 ) is a solution of the linear Diophantine equation  ax + by = c) Y 
((x0 + bt, y0 - at) is also a solution for any integer t).


xi. Here is Theorem 22:  


(a, b)ðc Y the linear Diophantine equation ax + by = c has no solutions.


xii. Here is Theorem 23: 


(a, b)*c Y the linear Diophantine equation ax + by = c  has a solution.


xiii. Here is Theorem 24: 


((a, b) = 1 and (x0, y0) 0 {(x, y) : ax + by = c} Y 


(all solutions of ax + by = c are given by x = x0 + bt, y = y0 - at where t 0 Z ) 


In other words:  ((a, b) = 1 and (x0, y0) 0 {(x, y) : ax + by = c}) Y 


  {(x, y) : ax + by = c} = {(x, y) : x = x0 + bt, y = y0 - at where t 0 Z }


xiv. Here is Theorem 25:


( (a, b)*c ) Y ( The solutions for linear Diophantine equation ax + by = c are as
follows:


          x  =  x0  +  ,  y  =  y0  -  where (x0, y0) is any solution and t 0 Z 


In other words: ( (a, b)*c ) Y {(x, y) : ax + by = c} = 


             {(x, y) : x  =  x0 + , y = y0 -  where t 0 Z })
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