
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

Answer as per the instructions
[image: profile]
Reuben 1
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

sabook.pdf

Home>Computer Science homework help>Answer as per the instructions

This page intentionally left blank

Essentials of
Systems Analysis
and Design

Editorial Director: Sally Yagan
Editor in Chief: Eric Svendsen
Executive Editor: Bob Horan
Editorial Assistant: Ashlee Bradbury
Director of Marketing: Patrice Lumumba Jones
Executive Marketing Manager: Anne Fahlgren
Senior Managing Editor: Judy Leale
Production Project Manager: Kelly Warsak
Senior Operations Supervisor: Arnold Vila
Operations Specialist: Cathleen Petersen
Creative Director: Blair Brown
Senior Art Director/Design Supervisor: Janet Slowik
Text Designer: Michael Fruhbeis
Creative Director/Cover: Jayne Conte
Cover Designer: Suzanne Duda
Cover Art: Fotolia/3d mosaic/©Redshinestudio
Manager, Rights and Permissions: Hessa Albader
Media Project Manager: Lisa Rinaldi
Media Editor: Denise Vaughn
Full-Service Project Management: Tiffany Timmerman/S4Carlisle Publishing Services
Composition: S4Carlisle Publishing Services
Printer/Binder: Courier/Kendallville
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: ITCCentury Book

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this
textbook appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other
countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is
not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2012, 2009, 2006, 2004, 2001 Pearson Education, Inc., publishing as Prentice Hall. All
rights reserved. Manufactured in the United States of America. This publication is protected by Copyright,
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Valacich, Joseph S.

Essentials of systems analysis and design / Joseph S. Valacich,
Joey F. George, Jeffrey A. Hoffer.—5th ed.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-13-706711-4
ISBN-10: 0-13-706711-9

1. System design. 2. System analysis. I. George, Joey F. II.
Hoffer, Jeffrey A. III. Title.

QA76.9.S88V345 2011
003—dc22

2011008298

10 9 8 7 6 5 4 3 2 1
ISBN 10: 0-13-706711-9
ISBN 13: 978-0-13-706711-4

Essentials of
Systems Analysis
and Design
FIFTH EDITION

Joseph S. Valacich
University of Arizona

Joey F. George
Iowa State University

Jeffrey A. Hoffer
University of Dayton

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sa~o Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

To Jackie, Jordan, and James,
for your sacrifices, encouragement,

and support.

—Joe

To Karen, Evan, and Caitlin.

—Joey

To Patty, for her sacrifices,
encouragement, and support.

To my students, for being receptive
and critical, and for challenging me

to be a better teacher.

—Jeff

Brief Contents
PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT 2

1 The Systems Development Environment 2
2 The Sources of Software 26
3 Managing the Information Systems Project 42

PART II SYSTEMS PLANNING AND SELECTION 82

4 Systems Planning and Selection 82

PART III SYSTEMS ANALYSIS 122

5 Determining System Requirements 122
6 Structuring System Requirements:

Process Modeling 152
7 Structuring System Requirements:

Conceptual Data Modeling 188

PART IV SYSTEMS DESIGN 232

8 Designing the Human Interface 232
9 Designing Databases 272

PART V SYSTEMS IMPLEMENTATION AND OPERATION 318

10 Systems Implementation and Operation 318

Appendix A Object-Oriented Analysis and Design 361
Appendix B Agile Methodologies 381

References 395
Glossary of Acronyms 401
Glossary of Terms 403
Index 409

vii

This page intentionally left blank

Contents
Preface xix

PART I FOUNDATIONS FOR SYSTEMS DEVELOPMENT 2

Chapter 1 The Systems Development Environment 2
What Is Information Systems Analysis and Design? 4

Systems Analysis and Design: Core Concepts 4

Systems 6

Definition of a System and Its Parts 6

Important System Concepts 7

A Modern Approach to Systems Analysis and Design 10

Your Role in Systems Development 11

Developing Information Systems and the Systems
Development Life Cycle 12

Phase 1: Systems Planning and Selection 14

Phase 2: Systems Analysis 14

Phase 3: Systems Design 15

Phase 4: Systems Implementation and Operation 15

Alternative Approaches to Development 18

Prototyping 18

Computer-Aided Software Engineering (CASE) Tools 18

Joint Application Design 19

Rapid Application Development 19

Participatory Design 21

Agile Methodologies 21

Key Points Review 21
Key Terms Checkpoint 22
Review Questions 23
Problems and Exercises 23
Discussion Questions 24
Case Problems 24

Chapter 2 The Sources of Software 26
Introduction 27

Systems Acquisition 27

Outsourcing 28

Sources of Software 29

Choosing Off-the-Shelf Software 33

ix

x Contents

Reuse 36

Key Points Review 39
Key Terms Checkpoint 39
Review Questions 40
Problems and Exercises 40
Field Exercises 40
Case: Petrie’s Electronics 40

Chapter 3 Managing the Information Systems Project 42
Pine Valley Furniture Company Background 44

Managing the Information Systems Project 45

Initiating the Project 49

Planning the Project 53

Executing the Project 60

Closing Down the Project 63

Representing and Scheduling Project Plans 64

Representing Project Plans 66

Calculating Expected Time Durations Using PERT 67

Constructing a Gantt Chart and Network Diagram
at Pine Valley Furniture 68

Using Project Management Software 71

Establishing a Project Starting Date 72

Entering Tasks and Assigning Task Relationships 72

Selecting a Scheduling Method to Review Project
Reports 73

Key Points Review 74
Key Terms Checkpoint 75
Review Questions 76
Problems and Exercises 76
Discussion Questions 78
Case Problems 79
Case: Petrie’s Electronics 80

PART II SYSTEMS PLANNING AND SELECTION 82

Chapter 4 Systems Planning and Selection 82
Identifying and Selecting Projects 84

The Process of Identifying and Selecting Information
Systems Development Projects 84

Deliverables and Outcomes 87

Initiating and Planning Systems Development Projects 88

The Process of Initiating and Planning Systems
Development Projects 88

Deliverables and Outcomes 89

Assessing Project Feasibility 90

Assessing Economic Feasibility 92

Assessing Other Feasibility Concerns 98

Building the Baseline Project Plan 99

Reviewing the Baseline Project Plan 105

Pine Valley Furniture WebStore: Systems Planning
and Selection 108

Internet Basics 108

Pine Valley Furniture WebStore 110

Key Points Review 113
Key Terms Checkpoint 114
Review Questions 116
Problems and Exercises 116
Discussion Questions 117
Case Problems 117
Case: Petrie’s Electronics 119

PART III SYSTEMS ANALYSIS 122

Chapter 5 Determining System Requirements 122
Performing Requirements Determination 124

The Process of Determining Requirements 124

Deliverables and Outcomes 125

Requirements Structuring 126

Traditional Methods for Determining Requirements 126

Interviewing and Listening 126

Directly Observing Users 131

Analyzing Procedures and Other Documents 132

Modern Methods for Determining System
Requirements 135

Joint Application Design 136

Using Prototyping during Requirements Determination 139

Radical Methods for Determining System Requirements 140

Identifying Processes to Reengineer 141

Disruptive Technologies 142

Pine Valley Furniture WebStore: Determining System
Requirements 143

System Layout and Navigation Characteristics 143

Contents xi

WebStore and Site Management System Capabilities 144

Customer and Inventory Information 145

System Prototype Evolution 145

Key Points Review 146
Key Terms Checkpoint 147
Review Questions 148
Problems and Exercises 148
Discussion Questions 148
Case Problems 149
Case: Petrie’s Electronics 150

Chapter 6 Structuring System Requirements: Process Modeling 152
Process Modeling 154

Modeling a System’s Process 154

Deliverables and Outcomes 154

Data-Flow Diagramming Mechanics 155

Definitions and Symbols 156

Developing DFDs: An Example 158

Data-Flow Diagramming Rules 161

Decomposition of DFDs 162

Balancing DFDs 164

Using Data-Flow Diagramming in the Analysis Process 166

Guidelines for Drawing DFDs 166

Using DFDs as Analysis Tools 168

Using DFDs in Business Process Reengineering 169

Logic Modeling 171

Modeling Logic with Decision Tables 172

Pine Valley Furniture WebStore: Process Modeling 175

Process Modeling for Pine Valley Furniture’s WebStore 175

Key Points Review 177
Key Terms Checkpoint 178
Review Questions 179
Problems and Exercises 179
Discussion Questions 183
Case Problems 184
Case: Petrie’s Electronics 185

Chapter 7 Structuring System Requirements:
Conceptual Data Modeling 188
Conceptual Data Modeling 190

The Process of Conceptual Data Modeling 191

Deliverables and Outcomes 191

xii Contents

Gathering Information for Conceptual Data
Modeling 195

Introduction to Entity-Relationship Modeling 197

Entities 197

Attributes 199

Candidate Keys and Identifiers 199

Multivalued Attributes 200

Relationships 201

Conceptual Data Modeling and the E-R Model 201

Degree of a Relationship 202

Cardinalities in Relationships 203

An Example of Conceptual Data Modeling
at Hoosier Burger 206

PVF WebStore: Conceptual Data Modeling 209

Conceptual Data Modeling for Pine Valley Furniture’s
WebStore 209

Selecting the Best Alternative Design Strategy 213

The Process of Selecting the Best Alternative Design
Strategy 213

Generating Alternative Design Strategies 214

Developing Design Strategies for Hoosier Burger’s
New Inventory Control System 216

Selecting the Most Likely Alternative 218

Key Points Review 220
Key Terms Checkpoint 221
Review Questions 222
Problems and Exercises 222
Discussion Questions 225
Case Problems 225
Case: Petrie’s Electronics 229

PART IV SYSTEMS DESIGN 232

Chapter 8 Designing the Human Interface 232
Designing Forms and Reports 234

The Process of Designing Forms and Reports 234

Deliverables and Outcomes 236

Formatting Forms and Reports 238

Designing Interfaces and Dialogues 246

The Process of Designing Interfaces and Dialogues 246

Deliverables and Outcomes 247

Designing Interfaces 247

Designing Dialogues 258

Contents xiii

Pine Valley Furniture WebStore: Designing
the Human Interface 262

General Guidelines for Designing Web Interfaces 262

General Guidelines for Web Layouts 262

Designing the Human Interface at Pine Valley Furniture 263

Menu-Driven Navigation with Cookie Crumbs 264

Lightweight Graphics 265

Forms and Data Integrity 265

Template-Based HTML 265

Key Points Review 266
Key Terms Checkpoint 267
Review Questions 267
Problems and Exercises 268
Discussion Questions 268
Case Problems 269
Case: Petrie’s Electronics 270

Chapter 9 Designing Databases 272
Database Design 274

The Process of Database Design 274

Deliverables and Outcomes 276

Relational Database Model 279

Well-Structured Relations 280

Normalization 281

Rules of Normalization 281

Functional Dependence and Primary Keys 282

Second Normal Form 282

Third Normal Form 283

Transforming E-R Diagrams into Relations 284

Represent Entities 285

Represent Relationships 286

Summary of Transforming E-R Diagrams to Relations 288

Merging Relations 289

An Example of Merging Relations 289

View Integration Problems 290

Logical Database Design for Hoosier Burger 291

Physical File and Database Design 293

Designing Fields 294

Choosing Data Types 294

Controlling Data Integrity 296

Designing Physical Tables 297

Arranging Table Rows 299

Designing Controls for Files 303

xiv Contents

Physical Database Design for Hoosier Burger 304

Pine Valley Furniture WebStore: Designing Databases 306

Designing Databases for Pine Valley Furniture’s
WebStore 307

Key Points Review 309
Key Terms Checkpoint 311
Review Questions 312
Problems and Exercises 312
Discussion Questions 314
Case Problems 314
Case: Petrie’s Electronics 315

PART V SYSTEMS IMPLEMENTATION AND OPERATION 318

Chapter 10 Systems Implementation and Operation 318
Systems Implementation and Operation 320

The Processes of Coding, Testing, and Installation 321

Deliverables and Outcomes from Coding, Testing,
and Installation 321

The Processes of Documenting the System, Training Users,
and Supporting Users 322

Deliverables and Outcomes from Documenting the System,
Training Users, and Supporting Users 323

The Process of Maintaining Information Systems 323

Deliverables and Outcomes from Maintaining Information
Systems 324

Software Application Testing 325

Seven Different Types of Tests 325

The Testing Process 327

Acceptance Testing by Users 329

Installation 330

Planning Installation 330

Documenting the System 333

User Documentation 334

Preparing User Documentation 335

Training and Supporting Users 336

Training Information System Users 336

Supporting Information System Users 338

Support Issues for the Analyst to Consider 340

Why Implementation Sometimes Fails 341

Project Closedown 342

Conducting Systems Maintenance 343

Types of Maintenance 343

The Cost of Maintenance 344

Contents xv

xvi Contents

Measuring Maintenance Effectiveness 345

Controlling Maintenance Requests 346

Configuration Management 347

Role of Automated Development Tools in Maintenance 348

Web Site Maintenance 348

Maintaining an Information System
at Pine Valley Furniture 349

Pine Valley Furniture WebStore: Systems Implementation
and Operation 350

Systems Implementation and Operation
for Pine Valley Furniture’s WebStore 351

Key Points Review 353
Key Terms Checkpoint 354
Review Questions 356
Problems and Exercises 356
Discussion Questions 357
Case Problems 357
Case: Petrie’s Electronics 358

Appendix A Object-Oriented Analysis and Design 361
The Object-Oriented Modeling Approach 361

Use-Case Modeling 362

Object Modeling: Class Diagrams 365

Representing Associations 366

Representing Generalization 368

Representing Aggregation 370

Dynamic Modeling: State Diagrams 371

Dynamic Modeling: Sequence Diagrams 372

Designing a Use Case with a Sequence Diagram 374

Moving to Design 375

Key Points Review 376
Key Terms Checkpoint 377
Review Questions 378
Problems and Exercises 378

Appendix B Agile Methodologies 381
The Trend to Agile Methodologies 381

Agile Methodologies 382

eXtreme Programming 384

The Heart of the Systems Development Process 385

Requirements Determination 386

Design Specifications 389

Implementation 391

What We’ve Learned about Agile Methodologies 391

Key Points Review 392
Key Terms Checkpoint 393
Review Questions 393
Problems and Exercises 393

References 395
Glossary of Acronyms 401
Glossary of Terms 403
Index 409

Contents xvii

This page intentionally left blank

Preface

Our Approach
In today’s information- and technology-driven business world, students need to
be aware of three key factors. First, it is more crucial than ever to know how to
organize and access information strategically. Second, success often depends
on the ability to work as part of a team. Third, the Internet will play an impor-
tant part in their work lives. Essentials of Systems Analysis and Design, Fifth
Edition, addresses these key factors.

More than 50 years’ combined teaching experience in systems analysis and
design have gone into creating Essentials of Systems Analysis and Design,
Fifth Edition, a text that emphasizes hands-on, experimental learning. We pro-
vide a clear presentation of the concepts, skills, and techniques students need
to become effective systems analysts who work with others to create informa-
tion systems for businesses. We use the systems development life cycle model
as an organizing tool throughout the book to provide a strong conceptual and
systematic framework.

Internet coverage is provided in each chapter via an integrated, extended
illustrative case (Pine Valley Furniture WebStore) and an end-of-chapter case
(Petrie’s Electronics).

Many systems analysis and design courses involve lab work and outside read-
ing. Lecture time can be limited. Based on market research and our own teach-
ing experience, we understand the need for a book that combines depth of
coverage with brevity. So we have created a ten-chapter book that covers key
systems analysis and design content without overwhelming students with
unnecessary detail.

New to the Fifth Edition
The following features are new to the Fifth Edition:

� Emphasis on current changes in systems analysis and design. The
move to structured analysis and design in the late 1970s was
considered to be a revolution in systems development. We are
undergoing another revolution now, as we move away from complex,
plan-driven development to new approaches called “Agile
Methodologies.” Although the best-known Agile Methodology is
eXtreme Programming, many other approaches are also available. The
Agile revolution in systems development is acknowledged and briefly
explained in Chapter 1 and then explored in much greater depth in
Appendix B.

� Increased focus on make versus buy and systems integration. More
and more systems development involves the use of packages in
combination with legacy applications and new modules. Coverage of
the make-versus-buy decision and of the multiple sources of software
and software components is highlighted in Chapter 2 to show how
companies deal with these issues.

� New end-of-chapter running case. Petrie’s Electronics, a fictional
electronics retailer, is a student project case that allows students to
study and develop a Web-based customer loyalty program to enhance
a customer relationship management system.

xix

� Updated illustrations of technology. Screen captures have been
updated throughout the text to show examples using the latest
versions of programming and Internet development environments, and
user interface designs.

� New entity-relationship notation. We now use a new notation for
entity-relationship diagramming in Chapter 7 and elsewhere. This
notation is consistent with that used in Modern Database
Management, Tenth Edition, by Hoffer, Ramesh, and Topi (2011).

� Updated content. Throughout the book, the content in each chapter
has been updated where appropriate.

� End-of-chapter updates. We have provided extensive updates to
existing problems along with several new problems in every chapter.

Themes
Essentials of Systems Analysis and Design, Fifth Edition, is characterized by
the following themes:

� Systems development is firmly rooted in an organizational context.
The successful systems analyst requires a broad understanding of
organizations, organizational culture, and operations.

� Systems development is a practical field. Coverage of current
practices as well as accepted concepts and principles is essential for
today’s systems analyst.

� Systems development is a profession. The text presents standards of
practice, and fosters a sense of continuing personal development,
ethics, and a respect for and collaboration with the work of others.

� Systems development has significantly changed with the explosive
growth in databases, data-driven architecture for systems, and the
Internet. Systems development and database management can be
taught in a highly coordinated fashion. The Internet has rapidly
become a common development platform for database-driven
electronic commerce systems.

� Success in systems analysis and design requires not only skills in
methodologies and techniques, but also in the management of time,
resources, and risks. Learning systems analysis and design requires a
thorough understanding of the process as well as the techniques and
deliverables of the profession.

Given these themes, the text emphasizes these approaches:

� A business rather than a technology perspective

� The role, responsibilities, and mind-set of the systems analyst as well
as the systems project manager, rather than those of the programmer
or business manager

� The methods and principles of systems development rather than the
specific tools or tool-related skills of the field

Audience
The book assumes that students have taken an introductory course on com-
puter systems and have experience writing programs in at least one program-
ming language. We review basic system principles for those students who have

xx Preface

not been exposed to the material on which systems development methods are
based. We also assume that students have a solid background in computing lit-
eracy and a general understanding of the core elements of a business, including
basic terms associated with the production, marketing, finance, and accounting
functions.

Organization
The outline of the book follows the systems development life cycle:

� Part I, “Foundations for Systems Development,” gives an overview of
systems development and previews the remainder of the book.

� Part II, “Systems Planning and Selection,” covers how to assess
project feasibility and build the baseline project plan.

� Part III, “Systems Analysis,” covers determining system requirements,
process modeling, and conceptual data modeling.

� Part IV, “Systems Design,” covers how to design the human interface
and databases.

� Part V, “Systems Implementation and Operation,” covers system
implementation, operation, closedown, and system maintenance.

� Appendix A, “Object-Oriented Analysis and Design,” and Appendix B,
“Agile Methodologies,” can be skipped or treated as advanced topics
at the end of the course.

Distinctive Features
Here are some of the distinctive features of Essentials of Systems Analysis and
Design, Fifth Edition:

1. The grounding of systems development in the typical architecture for
systems in modern organizations, including database management and
Web-based systems.

2. A clear linkage of all dimensions of systems description and modeling—
process, decision, and data modeling—into a comprehensive and
compatible set of systems analysis and design approaches. Such broad
coverage is necessary for students to understand the advanced
capabilities of many systems development methodologies and tools that
automatically generate a large percentage of code from design
specifications.

3. Extensive coverage of oral and written communication skills (including
systems documentation), project management, team management, and a
variety of systems development and acquisition strategies (e.g., life cycle,
prototyping, rapid application development, object orientation, joint
application development, participatory design, and business process
reengineering).

4. Coverage of rules and principles of systems design, including decoupling,
cohesion, modularity, and audits and controls.

5. A discussion of systems development and implementation within the
context of management of change, conversion strategies, and
organizational factors in systems acceptance.

6. Careful attention to human factors in systems design that emphasize
usability in both character-based and graphical user interface situations.

Preface xxi

Pedagogical Features
The pedagogical features of Essentials of Systems Analysis and Design, Fifth
Edition, reinforce and apply the key content of the book.

SDLC Framework
Although several conceptual processes can be used for guiding a systems de-
velopment effort, the systems development life cycle (SDLC) is arguably the
most widely applied method for designing contemporary information systems.
We highlight four key SDLC steps (Figure P-1):

� Planning and selection

� Analysis

� Design

� Implementation and operation

xxii Preface

Phase 1:
Systems Planning

and Selection

Phase 2:
Systems Analysis

Phase 3:
Systems Design

Phase 4: Systems
Implementation and

Operation SDLC

FIGURE P-1
The systems development life
cycle (SDLC): management is
necessary throughout.

We use the SDLC to frame the part and chapter organization of our book. Most
chapters open with an SDLC figure with various parts highlighted to show stu-
dents how these chapters, and each step of the SDLC, systematically builds on
the previous one.

Internet Coverage and Features
Pine Valley Furniture WebStore A furniture company founded in 1980
has decided to explore electronic commerce as an avenue to increase its market
share. Should this company sell its products online? How would a team of
analysts work together to develop, propose, and implement a plan? Beginning
in Chapter 4, we explore the step-by-step process.

Petrie’s Electronics This end-of-chapter fictional case illustrates how a
national electronics retailer develops a Web-based customer loyalty program to
build and strengthen customer relationships. The case first appears at the end
of Chapter 2 and concludes at the end of Chapter 10.

Preface xxiii

Three Illustrative Fictional Cases
Pine Valley Furniture (PVF) This case is introduced in Chapter 3 and
revisited throughout the book. As key systems development life cycle concepts
are presented, they are applied and illustrated. For example, in Chapter 3, we
explore how PVF implements the purchasing fulfillment system, and in Chapter
4, we explore how PVF implements a customer tracking system. A margin icon
identifies the location of the case segments. A case problem related to PVF is
included in the end-of-chapter material.

Hoosier Burger (HB) This second illustrative case is introduced in
Chapter 6 and revisited throughout the book. Hoosier Burger is a fictional fast-
food restaurant in Bloomington, Indiana. We use this case to illustrate how
analysts would develop and implement an automated food-ordering system. A
margin icon identifies the location of these case segments. A case problem
related to HB is included in the end-of-chapter material.

Petrie’s Electronics This fictional electronics retailer is used as an
extended case at the end of each chapter, beginning with Chapter 2. Designed
to bring the chapter concepts to life, this case illustrates how a company
initiates, plans, models, designs, and implements a Web-based customer loyalty
program. Discussion questions are included to promote critical thinking and
class participation. Suggested solutions to the discussion questions are
provided in the Instructor’s Manual.

End-of-Chapter Material
We have developed an extensive selection of end-of-chapter material designed
to accommodate various learning and teaching styles.

Key Points Review This section repeats the learning objectives that appear at
the opening of the chapter and summarizes the key points related to the objectives.

Key Terms Checkpoint In this self-test feature, students match each key
term in the chapter with its definition.

Review Questions These questions test students’ understanding of key
concepts.

Problems and Exercises These exercises test students’ analytical skills
and require them to apply key concepts.

Discussion Questions These questions promote class participation and
discussion.

Case Problems These problems require students to apply the concepts of
the chapter to fictional cases from various industries. The two illustrative cases
from the chapters are revisited—Pine Valley Furniture and Hoosier Burger.
Other cases are from various fields such as medicine, agriculture, and
technology. Solutions are provided in the Instructor’s Manual.

Margin Term Definitions
Each key term and its definition appear in the margin. A glossary of terms ap-
pears at the back of the book.

References
Located at the end of the text, references are organized by chapter and list more
than 200 books and journals that can provide students and faculty with addi-
tional coverage of topics.

The Supplement Package: www.pearsonhighered.com/valacich
A comprehensive and flexible technology support package is available to
enhance the teaching and learning experience. Instructor supplements are
available at www.pearsonhighered.com/valacich:

� An Instructor’s Resource Manual provides chapter-by-chapter
instructor objectives, teaching suggestions, and answers to all text
review questions, problems, and exercises.

� The Test Item File and TestGen include a comprehensive set of more
than 1,500 test questions in multiple-choice, true-false, and short-
answer format; questions are ranked according to level of difficulty and
referenced with page numbers and topic headings from the text. The
Test Item File is available in Microsoft Word and as the computerized
Prentice Hall TestGen software. The software is PC/Mac-compatible
and preloaded with all of the Test Item File questions. You can
manually or randomly view test questions and drag-and-drop to create
a test. You can add or modify test-bank questions as needed.

� PowerPoint Presentation Slides feature lecture notes that highlight
key text terms and concepts. Professors can customize the
presentation by adding their own slides or by editing the existing ones.

� The Image Library is a collection of the text art organized by chapter.
This collection includes all of the figures, tables, and screenshots (as
permission allows) from the book. These images can be used to
enhance class lectures and PowerPoint slides.

Materials for Your Online Course
Our TestGens are converted for use in BlackBoard and WebCT. These conver-
sions can be found on the Instructor’s Resource Center. Conversions to D2L or
Angel can be requested through your local Pearson Sales Representative.

CourseSmart
CourseSmart eTextbooks were developed for students looking to save on re-
quired or recommended textbooks. Students simply select their eText by title or
author and purchase immediate access to the content for the duration of the
course using any major credit card. With a CourseSmart eText, students can
search for specific keywords or page numbers, take notes online, print out read-
ing assignments that incorporate lecture notes, and bookmark important pas-
sages for later review. For more information or to purchase a CourseSmart
eTextbook, visit www.coursesmart.com.

Acknowledgments
The authors have been blessed by considerable assistance from many people on
all aspects of preparation of this text and its supplements. We are, of course, re-
sponsible for what eventually appears between the covers, but the insights, cor-
rections, contributions, and proddings of others have greatly improved our
manuscript. The people we recognize here all have a strong commitment to stu-
dents, to the IS field, and to excellence. Their contributions have stimulated us,
and frequently rejuvenated us during periods of waning energy for this project.

We would like to recognize the efforts of the many faculty and practicing sys-
tems analysts who have been reviewers of the five editions of this text and its

xxiv Preface

www.pearsonhighered.com/valacich

www.pearsonhighered.com/valacich

www.coursesmart.com

associated text, Modern Systems Analysis and Design. We have tried to deal
with each reviewer comment, and although we did not always agree with spe-
cific points (within the approach we wanted to take with this book), all review-
ers made us stop and think carefully about what and how we were writing. The
reviewers were:

Richard Allen, Richland Community College
Charles Arbutina, Buffalo State College
Paula Bell, Lock Haven University of Pennsylvania
Sultan Bhimjee, San Francisco State University
Bill Boroski, Trident Technical College
Nora Braun, Augsburg College
Rowland Brengle, Anne Arundel Community College
Richard Burkhard, San Jose State University
Doloras Carlisle, Western Oklahoma State College
Pam Chapman, Waubonsee Community College
Edward Chen, University of Massachusetts Lowell
Suzanne Clayton, Drake University
Garry Dawdy, Metropolitan State College of Denver
Thomas Dillon, James Madison University
Brad Dyer, Hazard Community and Technical

College
Veronica Echols-Noble, DeVry University–Chicago
Richard Egan, New Jersey Institute of Technology
Gerald Evans, University of Montana
Lawrence Feidelman, Florida Atlantic University
David Firth, University of Montana
John Fowler, Walla Walla Community College
Larry Fudella, Erie Community College
Carol Grimm, Palm Beach Community College
Carol Healy, Drake University
Lenore Horowitz, Schenectady County

Community College
Daniel Ivancevich, University of North

Carolina–Wilmington
Jon Jasperson, University of Oklahoma
Len Jessup, Washington State University
Rich Kepenach, St. Petersburg College
Lin Lin, Lehigh University
James Scott Magruder, University of Southern

Mississippi
Diane Mayne-Stafford, Grossmont College

David McNair, Maryville University
Loraine Miller, Cayuga Community College
Klara Nelson, University of Tampa
Max North, Southern Polytechnic State University
Doncho Petkov, Eastern Connecticut State

University
Lou Pierro, Indiana University
Selwyn Piramuthu, University of Florida
Mitzi Pitts, University of Memphis
Richard Platt, University of West Florida
James Pomykalski, Susquehanna University
Robin Poston, University of Memphis
Rao Prabhakar, Amarillo College
Mary Prescott, University of Tampa
Joseph Rottman, University of Missouri, St. Louis
Robert Saldarini, Bergen Community College
Howard Schuh, Rockland Community College
Elaine Seeman, Pitt Community College
Teresa Shaft, The University of Oklahoma
Thomas Shaw, Louisiana State University
Gary Templeton, Mississippi State University
Dominic Thomas, University of Georgia
Don Turnbul, The University of Texas at Austin
Kathleen Voge, University of Alaska–Anchorage
Erica Wagner, Portland State University
Sharon Walters, Southern Illinois University
Haibo Wang, Texas A&M International University
Mark Ward, Southern Illinois University,

Edwardsville
Merrill Warkentin, Northeastern University
June Wei, University of West Florida
Mudasser Wyne, University of Michigan–Flint
Saeed Yazdain, Lane College
Liang Yu, San Francisco State University
Steven Zeltmann, University of Central Arkansas
Justin Zhang, Eastern New Mexico University

We extend a special note of thanks to Jeremy Alexander, who was instru-
mental in conceptualizing and writing the Pine Valley Furniture WebStore
feature that appears in Chapters 3 through 10. The addition of this feature has
helped make those chapters more applied and innovative. We also want to
thank Ryan Wright, University of San Francisco, for the help he provided with
the Visual Basic and .NET related materials, as well as Dave Wilson, Washing-
ton State University, and David Gomillion, Florida State University, for assisting
with updates to the end-of-chapter problems, exercises, and cases.

In addition, we want to thank Nicholas Romano for his work on the Instruc-
tor’s Resource Manual for this edition. We also thank John Russo, for his work
on the PowerPoint presentations and Test Bank of Essentials of Systems
Analysis and Design.

Preface xxv

We also wish to thank Atish Sinha of the University of Wisconsin–Milwaukee
for writing the initial draft of Appendix A on object-oriented analysis and
design. Dr. Sinha, who has been teaching this topic for several years to both un-
dergraduates and MBA students, executed a challenging assignment with
creativity and cooperation. We are also indebted to our undergraduate and MBA
students at the University of Dayton, Florida State University, and Washington
State University who have given us many helpful comments as they worked
with drafts of this text.

Thanks also go to V. Ramesh (Indiana University) and Heikki Topi (Bentley
College) for their assistance in coordinating this text with its companion
book—Modern Database Management, also by Pearson Prentice Hall.

Finally, we have been fortunate to work with a large number of creative and
insightful people at Pearson Prentice Hall, who have added much to the devel-
opment, format, and production of this text. We have been thoroughly
impressed with their commitment to this text and to the IS education market.
These people include Bob Horan, Executive Editor; Anne Fahlgren, Executive
Marketing Manager; Kelly Loftus, Senior Editorial Project Manager; Judy Leale,
Senior Managing Editor; Kelly Warsak, Production Project Manager; Janet
Slowik, Senior Art Director; and Denise Vaughn, Media Editor.

The writing of this text has involved thousands of hours of time from the au-
thors and from all of the people listed. Although our names will be visibly asso-
ciated with this book, we know that much of the credit goes to the individuals
and organizations listed here for any success this book might achieve.

xxvi Preface

About the Authors

Joseph S. Valacich is an Eller Professor of Management Information Systems in
the Eller College of Management at the University of Arizona. He has had visiting
faculty appointments at Buskerud College (Norway), City University of Hong
Kong, Norwegian University of Life Sciences, Riga Technical University (Latvia),
and Helsinki School of Economics and Business. He received a Ph.D. degree from
the University of Arizona (MIS), and M.B.A. and B.S. (computer science) degrees
from the University of Montana. His teaching interests include systems analysis
and design, collaborative computing, project management, and management of
information systems. Professor Valacich cochaired the national task forces to de-
sign IS 2008: The Model Curriculum and Guidelines for Undergraduate Degree
Programs in Information Systems. He also served on the Executive Committee,
funded by the National Science Foundation, to define the IS Program Accredita-
tion Standards and on the Board of Directors for CSAB (formally, the Comput-
ing Sciences Accreditation Board), representing the Association for Information
Systems (AIS). He was the general conference co-chair for the 2003 International
Conference on Information Systems (ICIS), and the co-chair for the Americas’
Conference on Information Systems (AMCIS) in 2012.

Prior to his academic career, Dr. Valacich worked in the information systems
field as a programmer, systems analyst, and technical product manager. He has
conducted numerous corporate training and executive development programs
for organizations, including AT&T, Boeing, Dow Chemical, EDS, Exxon, FedEx,
General Motors, Microsoft, and Xerox.

Dr. Valacich serves on the editorial board of MIS Quarterly and was formerly
an associate editor for Information Systems Research. His research has ap-
peared in publications such as MIS Quarterly, Information Systems Research,
Management Science, and Academy of Management Journal. He is a coauthor
of the best-selling Modern Systems Analysis and Design (Sixth Edition), as
well as Object-Oriented Systems Analysis and Design, Information Systems
Today (Fifth Edition), and Information Systems Project Team Management;
all are published by Pearson Prentice Hall.

Joey F. George is professor and Dean’s Chair in the Iowa State University
College of Business. Dr. George earned his bachelor’s degree at Stanford Uni-
versity in 1979 and his Ph.D. in management at the University of California at
Irvine in 1986. He was previously the Edward G. Schlieder Chair of Information
Systems in the E. J. Ourso College of Business Administration at Louisiana State
University. He also served at Florida State University as Chair of the Depart-
ment of Information and Management Sciences from 1995 to 1998.

Dr. George has published dozens of articles in such journals as Information
Systems Research, Communications of the ACM, MIS Quarterly, Journal of
MIS, and Communication Research. His research interests focus on the use of
information systems in the workplace, including computer-based monitoring,
computer-mediated deceptive communication, and group support systems.

Dr. George is coauthor of the textbooks Modern Systems Analysis and De-
sign, Sixth Edition, published in 2010, and Object-Oriented Systems Analysis
and Design, Second Edition, published in 2007, both from Pearson Prentice
Hall. He has served as an associate editor and senior editor for both MIS Quar-
terly and Information Systems Research. He served three years as the editor-
in-chief of the Communications of the AIS. Dr. George was the conference
cochair for the 2001 ICIS, held in New Orleans, Louisiana, and the doctoral

xxvii

consortium cochair for the 2003 ICIS, held in Seattle, Washington. He is a Fel-
low of the Association for Information Systems (AIS) and served as President
of AIS in 2010–11.

Jeffrey A. Hoffer is the Sherman–Standard Register Professor of Data Man-
agement for the Department of MIS, Operations Management, and Decision
Sciences in the School of Business Administration at the University of Dayton.
He also taught at Indiana University and Case Western Reserve University.
Dr. Hoffer earned his B.A. from Miami University in 1969 and his Ph.D. from
Cornell University in 1975.

Dr. Hoffer has coauthored all editions of three college textbooks: Modern Sys-
tems Analysis and Design, with George and Valacich; Managing Information
Technology: What Managers Need to Know, with Brown, DeHayes, Martin, and
Perkins; and Modern Database Management, with Ramesh and Topi, all pub-
lished by Pearson Prentice Hall. His research articles have appeared in numer-
ous journals, including the MIS Quarterly–Executive, Journal of Database
Management, Small Group Research, Communications of the ACM, and Sloan
Management Review. He has received research grants from Teradata (Division
of NCR), IBM Corporation, and the U.S. Department of the Navy.

Dr. Hoffer is cofounder of the International Conference on Information Sys-
tems and Association for Information Systems and has served as a guest lec-
turer at the Catholic University of Chile, Santiago, and the Helsinki School of
Economics and Business in Mikkeli, Finland.

Joseph S. Valacich, Tucson, Arizona
Joey F. George, Ames, Iowa

Jeffrey A. Hoffer, Dayton, Ohio

xxviii About the Authors

Essentials of
Systems Analysis
and Design

2

The Systems Development
Environment

� Define information systems analysis and
design.

� Discuss the modern approach to systems
analysis and design that combines both
process and data views of systems.

� Describe the role of the systems analyst in
information systems development.

� Describe the information systems development
life cycle (SDLC).

� List alternatives to the systems development
life cycle, including a description of the role of
computer-aided software engineering (CASE)
tools in systems development.

After studying this chapter, you should be able to:

one
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

Ja
vi

er
 L

ar
re

a/
A

G
E

Fo
to

sto
ck

FIGURE 1-1
The four steps of the systems
development life cycle (SDLC):
(1) planning and selection,
(2) analysis, (3) design, and
(4) implementation and
operation.

Chapter Preview . . .

The key to success in business is the ability to
gather, organize, and interpret information. Sys-

tems analysis and design is a proven methodol-

ogy that helps both large and small businesses

reap the rewards of utilizing information to its

full capacity. As a systems analyst, the person in

the organization most involved with systems

analysis and design, you will enjoy a rich career

path that will enhance both your computer and

interpersonal skills.

The systems development life cycle (SDLC) is

central to the development of an efficient infor-

mation system. We will highlight four key SDLC

steps: (1) planning and selection, (2) analysis,

(3) design, and (4) implementation and opera-

tion. Be aware that these steps may vary in each

organization, depending on its goals. The SDLC

is illustrated in Figure 1-1. Each chapter of this

book includes an updated version of the SDLC,

highlighting which steps have been covered and

which steps remain.

This text requires that you have a general un-

derstanding of computer-based information sys-

tems as provided in an introductory information

systems course. This chapter previews systems

analysis and lays the groundwork for the rest of

the book.

3

Phase 1:
Systems Planning

and Selection

Phase 2:
Systems Analysis

Phase 3:
Systems Design

Phase 4: Systems
Implementation and

Operation SDLC

Application software
Software designed to process
data and support users in an
organization. Examples include
spreadsheets, word processors,
and database management
systems.

Information systems
analysis and design
The process of developing and
maintaining an information
system.

4 Part I Foundations for Systems Development

What Is Information Systems Analysis and Design?
Information systems analysis and design is a method used by companies
ranging from IBM to PepsiCo to Sony to create and maintain information sys-
tems that perform basic business functions such as keeping track of customer
names and addresses, processing orders, and paying employees. The main goal
of systems analysis and design is to improve organizational systems, typically
through applying software that can help employees accomplish key business
tasks more easily and efficiently. As a systems analyst, you will be at the center
of developing this software. The analysis and design of information systems are
based on:

� Your understanding of the organization’s objectives, structure, and
processes

� Your knowledge of how to exploit information technology for
advantage

To be successful in this endeavor, you should follow a structured approach. The
SDLC, shown in Figure 1-1, is a four-phased approach to identifying, analyzing,
designing, and implementing an information system. Throughout this book, we
use the SDLC to organize our discussion of the systems development process.
Before we talk about the SDLC, we first describe what is meant by systems
analysis and design.

Systems Analysis and Design: Core Concepts
The major goal of systems analysis and design is to improve organizational
systems. Often this process involves developing or acquiring application
software and training employees to use it. Application software, also called
a system, is designed to support a specific organizational function or process,
such as inventory management, payroll, or market analysis. The goal of appli-
cation software is to turn data into information. For example, software devel-
oped for the inventory department at a bookstore may keep track of the
number of books in stock of the latest best seller. Software for the payroll de-
partment may keep track of the changing pay rates of employees. A variety of
off-the-shelf application software can be purchased, including WordPerfect,
Excel, and PowerPoint. However, off-the-shelf software may not fit the needs
of a particular organization, and so the organization must develop its own
product.

In addition to application software, the information system includes:

� The hardware and systems software on which the application software
runs. Note that the systems software helps the computer function,
whereas the application software helps the user perform tasks such as
writing a paper, preparing a spreadsheet, and linking to the Internet.

� Documentation and training materials, which are materials created by
the systems analyst to help employees use the software they’ve helped
create.

� The specific job roles associated with the overall system, such as the
people who run the computers and keep the software operating.

� Controls, which are parts of the software written to help prevent fraud
and theft.

� The people who use the software in order to do their jobs.

The components of a computer-based information system application are
summarized in Figure 1-2. We address all the dimensions of the overall system,

Chapter 1 The Systems Development Environment 5

Computer-Based
Information System

Application

Hardware

Controls

System Software

Specific Job Roles
Users of the System

Documentation
and Training Manuals

FIGURE 1-2
Components of a computer-based
information system application.

Methodologies

ToolsTechniques

Software
Engineering

Process

FIGURE 1-3
The software engineering process
uses proven methodologies,
techniques, and tools.

with particular emphasis on application software development—your primary
responsibility as a systems analyst.

Our goal is to help you understand and follow the software engineering process
that leads to the creation of information systems. As shown in Figure 1-3, proven
methodologies, techniques, and tools are central to software engineering
processes (and to this book).

Methodologies are a sequence of step-by-step approaches that help develop
your final product: the information system. Most methodologies incorporate
several development techniques, such as direct observations and interviews
with users of the current system.

Techniques are processes that you, as an analyst, will follow to help ensure
that your work is well thought-out, complete, and comprehensible to others on
your project team. Techniques provide support for a wide range of tasks, in-
cluding conducting thorough interviews with current and future users of the in-
formation system to determine what your system should do, planning and
managing the activities in a systems development project, diagramming how the
system will function, and designing the reports, such as invoices, your system
will generate for its users to perform their jobs.

Tools are computer programs, such as computer-aided software engineering
(CASE) tools, that make it easy to use specific techniques. These three elements—
methodologies, techniques, and tools—work together to form an organizational
approach to systems analysis and design.

System
A group of interrelated
procedures used for a business
function, with an identifiable
boundary, working together
for some purpose.

6 Part I Foundations for Systems Development

OutputOutputOutput

Interrelationship

Components

ENVIRONMENT

Boundary

Input

Interfaces

FIGURE 1-4
Seven characteristics
of a system.

In the rest of this chapter, you will learn about approaches to systems
development—the data- and process-oriented approaches. You will also
identify the various people who develop systems and the different types of sys-
tems they develop. The chapter ends with a discussion of some of the method-
ologies, techniques, and tools created to support the systems development
process. Before we talk more about computer-based information systems, let’s
briefly discuss what we mean by the word system.

Systems
The key term used most frequently in this book is system. Understanding sys-
tems and how they work is critical to understanding systems analysis and design.

Definition of a System and Its Parts
A system is an interrelated set of business procedures (or components) used
within one business unit, working together for some purpose. For example, a
system in the payroll department keeps track of checks, whereas an inventory
system keeps track of supplies. The two systems are separate. A system has
nine characteristics, seven of which are shown in Figure 1-4. A detailed expla-
nation of each characteristic follows, but from the figure you can see that a sys-
tem exists within a larger world, an environment. A boundary separates the
system from its environment. The system takes input from outside, processes
it, and sends the resulting output back to its environment. The arrows in the
figure show this interaction between the system and the world outside of it.

1. Components

2. Interrelated components

Constraint
A limit to what a system can
accomplish.

Interface
Point of contact where a system
meets its environment or where
subsystems meet each other.

Environment
Everything external to a system
that interacts with the system.

Purpose
The overall goal or function
of a system.

Boundary
The line that marks the inside
and outside of a system and that
sets off the system from its
environment.

Interrelated
Dependence of one part of the
system on one or more other
system parts.

Component
An irreducible part or
aggregation of parts that makes
up a system; also called
a subsystem.

Chapter 1 The Systems Development Environment 7

3. Boundary

4. Purpose

5. Environment

6. Interfaces

7. Constraints

8. Input

9. Output

A system is made up of components. A component is either an irreducible
part or an aggregate of parts, also called a subsystem. The simple concept of
a component is very powerful. For example, just as with an automobile or a
stereo system, with proper design, we can repair or upgrade the system by
changing individual components without having to make changes throughout
the entire system. The components are interrelated; that is, the function of
one is somehow tied to the functions of the others. For example, the work of
one component, such as producing a daily report of customer orders re-
ceived, may not progress successfully until the work of another component
is finished, such as sorting customer orders by date of receipt. A system has
a boundary, within which all of its components are contained and which es-
tablishes the limits of a system, separating it from other systems. Compo-
nents within the boundary can be changed, whereas systems outside the
boundary cannot be changed. All of the components work together to
achieve some overall purpose for the larger system: the system’s reason for
existing.

A system exists within an environment—everything outside the system’s
boundary that influences the system. For example, the environment of a state
university includes prospective students, foundations and funding agencies,
and the news media. Usually the system interacts with its environment. A university
interacts with prospective students by having open houses and recruiting from
local high schools. An information system interacts with its environment by
receiving data (raw facts) and information (data processed in a useful format).
Figure 1-5 shows how a university can be seen as a system. The points at which
the system meets its environment are called interfaces; an interface also
occurs between subsystems.

In its functioning, a system must face constraints—the limits (in terms of
capacity, speed, or capabilities) to what it can do and how it can achieve its
purpose within its environment. Some of these constraints are imposed in-
side the system (e.g., a limited number of staff available), and others are im-
posed by the environment (e.g., due dates or regulations). A system takes
input from its environment in order to function. People, for example, take in
food, oxygen, and water from the environment as input. You are constrained
from breathing fresh air if you’re in an elevator with someone who is smok-
ing. Finally, a system returns output to its environment as a result of its func-
tioning and thus achieves its purpose. The system is constrained if electrical
power is cut.

Important System Concepts
Systems analysts need to know several other important systems concepts:

� Decomposition

� Modularity

� Coupling

� Cohesion

Decomposition
The process of breaking the
description of a system down
into small components; also
known as functional
decomposition.

8 Part I Foundations for Systems Development

ENVIRONMENT

Prospective
Students

News Media

Interface

University Boundary

WASHINGTON

TODD

ST
AD

IU
M

MEDMAIN

VET

Funding Sources

WILSON

GRANT

ARTS

JEFFERSON

LINCOLN

CO
LL

EG
E

LAW

SCIENCE

FIGURE 1-5
A university as a system.

Decomposition is the process of breaking down a system into its smaller
components. These components may themselves be systems (subsystems)
and can be broken down into their components as well. How does decom-
position aid understanding of a system? It results in smaller and less com-
plex pieces that are easier to understand than larger, complicated pieces.
Decomposing a system also allows us to focus on one particular part of a
system, making it easier to think of how to modify that one part independ-
ently of the entire system. Decomposition is a technique that allows the sys-
tems analyst to:

� Break a system into small, manageable, and understandable
subsystems

� Focus attention on one area (subsystem) at a time, without
interference from other areas

� Concentrate on the part of the system pertinent to a particular group
of users, without confusing users with unnecessary details

� Build different parts of the system at independent times and have the
help of different analysts

Coupling
The extent to which subsystems
depend on each other.

Modularity
Dividing a system up into chunks
or modules of a relatively
uniform size.

Chapter 1 The Systems Development Environment 9

Figure 1-6 shows the decomposition of a portable MP3 player. Decomposing the
system into subsystems reveals the system’s inner workings. You can decom-
pose an MP3 player into at least three separate physical subsystems. (Note that
decomposing the same MP3 player into logical subsystems would result in a
different set of subsystems.) One subsystem, the battery, supplies the power for
the entire system to operate. A second physical subsystem, the storage system,
is made up of a hard drive that stores thousands of MP3 recordings. The third
subsystem, the control subsystem, consists of a printed circuit board (PCB),
with various chips attached, that controls all of the recording, playback, and
access functions. Breaking the subsystems down into their components reveals
even more about the inner workings of the system and greatly enhances our
understanding of how the overall system works.

Modularity is a direct result of decomposition. It refers to dividing a system into
chunks or modules of a relatively uniform size. Modules can represent a system
simply, making it easier to understand and easier to redesign and rebuild. For ex-
ample, each of the separate subsystem modules for the MP3 player in Figure 1-6
shows how decomposition makes it easier to understand the overall system.

Coupling means that subsystems are dependent on each other. Subsystems
should be as independent as possible. If one subsystem fails and other subsys-
tems are highly dependent on it, the others will either fail themselves or have
problems functioning. Looking at Figure 1-6, we would say the components of
a portable MP3 player are tightly coupled. The best example is the control sys-
tem, made up of the printed circuit board and its chips. Every function the MP3
player can perform is enabled by the board and the chips. A failure in one part
of the circuit board would typically lead to replacing the entire board rather
than attempting to isolate the problem on the board and fix it. Even though re-
pairing a circuit board in an MP3 player is certainly possible, it is typically not
cost-effective; the cost of the labor expended to diagnose and fix the problem
may be worth more than the value of the circuit board itself. In a home stereo
system, the components are loosely coupled because the subsystems, such as
the speakers, the amplifier, the receiver, and the CD player, are all physically
separate and function independently. If the amplifier in a home stereo system
fails, only the amplifier needs to be repaired.

FIGURE 1-6
An MP3 player is a system
with power supply, storage
and control subsystems.

Sources: Shutterstock; ©Harald van
Arkel/Chipmunk International.

Battery:
Power system

Hard drive:
Storage system

Printed circuit board:
Control system

10 Part I Foundations for Systems Development

Cohesion is the extent to which a subsystem performs a single function. In
the MP3 player example, supplying power is a single function.

This brief discussion of systems should better prepare you to think about
computer-based information systems and how they are built. Many of the same
principles that apply to systems in general apply to information systems as well.
In the next section, we review how the information systems development
process and the tools that have supported it have changed over the decades.

A Modern Approach to Systems Analysis and Design
Today, systems development focuses on systems integration. Systems integra-
tion allows hardware and software from different vendors to work together in
an application. It also enables existing systems developed in procedural lan-
guages to work with new systems built with visual programming environments.
Developers use visual programming environments, such as Visual Basic, to de-
sign the user interfaces for systems that run on client/server platforms. In a
client/server environment, some of the software runs on the server, a powerful
computer designed to allow many people access to software and data stored on
it, and some of the software runs on client machines. Client machines are the
PCs you use at your desk at work. The database usually resides on the server.
These relationships are shown in Figure 1-7. The Internet is also organized in a
client/server format. With the browser software on your home PC, you can get
files and applications from many different computers throughout the world.
Your home PC is the client, and all of the Internet computers are servers.

Alternatively, organizations may purchase an enterprise-wide system from
companies such as SAP (Systems, Applications, and Products in Data Processing)
or Oracle. Enterprise-wide systems are large, complex systems that consist
of a series of independent system modules. Developers assemble systems by
choosing and implementing specific modules. Enterprise-wide systems usually
contain software to support many different tasks in an organization rather than
only one or two functions. For example, an enterprise-wide system may handle
all human resources management, payroll, benefits, and retirement functions
within a single, integrated system. It is, in fact, increasingly rare for organiza-
tions to develop systems in-house anymore. Chapter 2 will introduce you to the

Server

Clients

Database

FIGURE 1-7
The client/server model.

Cohesion
The extent to which a system or
subsystem performs a single
function.

Systems analyst
The organizational role most
responsible for the analysis and
design of information systems.

Chapter 1 The Systems Development Environment 11

various sources of information systems technology. First, however, you must
gain some insight into what your role will be in the systems development
process.

Your Role in Systems Development
Although many people in organizations are involved in systems analysis and
design, the systems analyst has the primary responsibility. A career as a systems
analyst will allow you to have a significant impact on how your organization
operates. This fast-growing and rewarding position is found in both large and
small companies. IDC, a leading consulting group, predicts that growth in
information technology (IT) employment will exceed 3 percent per year through
at least 2013. The Bureau of Labor Statistics predicts additional increases in the
numbers of IT jobs from 2004 to 2014. During this period, the professional IT
workforce is projected to add more than 1 million new jobs in the United States.
Information technology workers remain in demand.

The primary role of a systems analyst is to study the problems and needs of
an organization in order to determine how people, methods, and information
technology can best be combined to bring about improvements in the organiza-
tion. A systems analyst helps system users and other business managers define
their requirements for new or enhanced information services.

Systems analysts are key to the systems development process. To succeed
as a systems analyst, you will need to develop four types of skills: analytical,
technical, managerial, and interpersonal. Analytical skills enable you to un-
derstand the organization and its functions, to identify opportunities and
problems, and to analyze and solve problems. One of the most important an-
alytical skills you can develop is systems thinking, or the ability to see or-
ganizations and information systems as systems. Systems thinking provides
a framework from which to see the important relationships among informa-
tion systems, the organizations they exist in, and the environment in which
the organizations themselves exist. Technical skills help you understand the
potential and the limitations of information technology. As an analyst, you
must be able to envision an information system that will help users solve
problems and that will guide the system’s design and development. You must
also be able to work with programming languages such as C�� and Java, var-
ious operating systems such as Windows and Linux, and computer hardware
platforms such as IBM and Mac. Management skills help you manage proj-
ects, resources, risk, and change. Interpersonal skills help you work with end
users as well as with other analysts and programmers. As a systems analyst,
you will play a major role as a liaison among users, programmers, and other
systems professionals. Effective written and oral communication, including
competence in leading meetings, interviewing end users, and listening, are
key skills that analysts must master. Effective analysts successfully combine
these four types of skills, as Figure 1-8 (a typical advertisement for a systems
analyst position) illustrates.

Let’s consider two examples of the types of organizational problems you
could face as a systems analyst. First, you work in the information systems de-
partment of a major magazine company. The company is having problems keep-
ing an updated and accurate list of subscribers, and some customers are getting
two magazines instead of one. The company will lose money and subscribers if
these problems continue. To create a more efficient tracking system, the users
of the current computer system as well as financial managers submit their prob-
lem to you and your colleagues in the information systems department. Second,
you work in the information systems department at a university, where you are
called upon to address an organizational problem such as the mailing of student
grades to the wrong addresses.

Systems development life
cycle (SDLC)
The series of steps used to mark
the phases of development for an
information system.

Systems development
methodology
A standard process followed in
an organization to conduct all
the steps necessary to analyze,
design, implement, and maintain
information systems.

12 Part I Foundations for Systems Development

1.

2.

3.

A bachelor’s degree in management information systems or computer science.

Simon & Taylor, Inc., a candle manufacturer, has an immediate opening for a systems analyst in
its Vermont-based office.

The ideal candidate will have:

We offer a competitive salary, relocation assistance, and the challenges of working in a
state-of-the-art IT environment.

Two years’ experience with UNIX/LINUX.

Experience with C, Java, and/or other object-oriented programming languages, and with
application development environments such as Visual Studio or IBM's Rational Unified
Process.

4. LAN-related skills and experience.

5. Familiarity with distribution and manufacturing concepts (allocation, replenishment,
shop floor control, and production scheduling).

6. Working knowledge of project management and all phases of the systems development
life cycle.

7. Strong communication skills.

Simon & Taylor, Inc., is an equal opportunity employer.

E-mail your resume to .

FIGURE 1-8
A job advertisement for a systems
analyst.

When developing information systems to deal with problems such as these, an
organization and its systems analysts have several options: They can go to an in-
formation technology services firm, such as Accenture or EDS, an HP Company,
to have the system developed for them; they can buy the system off the shelf; they
can implement an enterprise-wide system from a company such as SAP; they can
obtain open-source software; or they can use in-house staff to develop the sys-
tem. Alternatively, the organization can decide to outsource system development
and operation. All of these options are discussed in detail in Chapter 2.

Developing Information Systems and the Systems
Development Life Cycle
Organizations use a standard set of steps, called a systems development
methodology, to develop and support their information systems. Like many
processes, the development of information systems often follows a life cycle.
For example, a commercial product, such as a Nike sneaker or a Honda car,
follows a life cycle: It is created, tested, and introduced to the market. Its sales
increase, peak, and decline. Finally, the product is removed from the market and
is replaced by something else. The systems development life cycle (SDLC)
is a common methodology for systems development in many organizations. It
marks the phases or steps of information systems development: Someone has
an idea for an information system and what it should do. The organization that
will use the system decides to devote the necessary resources to acquiring it.
A careful study is done of how the organization currently handles the work the
system will support. Professionals develop a strategy for designing the new sys-
tem, which is then either built or purchased. Once complete, the system is in-
stalled in the organization, and after proper training, the users begin to
incorporate the new system into their daily work. Every organization uses a
slightly different life-cycle model to model these steps, with anywhere from
three to almost twenty identifiable phases. In this book, we highlight four SDLC

Chapter 1 The Systems Development Environment 13

steps: (1) planning and selection, (2) analysis, (3) design, and (4) implementa-
tion and operation (see Figure 1-9).

Although any life cycle appears at first glance to be a sequentially ordered set
of phases, it actually is not. The specific steps and their sequence are meant to
be adapted as required for a project. For example, in any given SDLC phase, the
project can return to an earlier phase, if necessary. Similarly, if a commercial
product does not perform well just after its introduction, it may be temporar-
ily removed from the market and improved before being reintroduced. In the
systems development life cycle, it is also possible to complete some activities
in one phase in parallel with some activities of another phase. Sometimes the
life cycle is iterative; that is, phases are repeated as required until an accept-
able system is found. Some systems analysts consider the life cycle to be a
spiral, in which we constantly cycle through the phases at different levels of
detail, as illustrated in Figure 1-10. The circular nature of the life-cycle dia-
gram in Figure 1-10 illustrates how the end of the useful life of one system

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 1-9
The systems development life
cycle (SDLC).

Planning
Risk

Assessment

Engineering

Construction
and Release

Customer
Evaluation

Customer
Communication

Go/No-Go Axis

FIGURE 1-10
Evolutionary model SDLC.

Systems analysis
Phase of the SDLC in which the
current system is studied and
alternative replacement systems
are proposed.

Systems planning
and selection
The first phase of the SDLC, in
which an organization’s total
information system needs are
analyzed and arranged, and in
which a potential information
systems project is identified and
an argument for continuing or not
continuing with the project is
presented.

14 Part I Foundations for Systems Development

leads to the beginning of another project that will replace the existing system
altogether. However conceived, the systems development life cycle used in
an organization is an orderly set of activities conducted and planned for each
development project. The skills required of a systems analyst apply to all life-
cycle models.

Every medium-to-large corporation, such as Wal-Mart, and every custom soft-
ware producer, such as SAP, will have its own specific, detailed life cycle or sys-
tems development methodology in place. Even if a particular methodology does
not look like a cycle, many of the SDLC steps are performed, and SDLC tech-
niques and tools are used. This book follows a generic SDLC model, as illus-
trated in Figure 1-9. We use this SDLC as an example of methodology and a way
to think about systems analysis and design. You can apply this methodology to
almost any life cycle. As we describe this SDLC throughout the book, it becomes
clear that each phase has specific outcomes and deliverables that feed impor-
tant information to other phases. At the end of each phase (and sometimes
within phases for intermediate steps), a systems development project reaches
a milestone. Then, as deliverables are produced, they are often reviewed by
parties outside the project team, including managers and executives.

Phase 1: Systems Planning and Selection
The first phase in the SDLC, systems planning and selection, has two pri-
mary activities. First, someone identifies the need for a new or enhanced sys-
tem. Information needs of the organization are examined, and projects to meet
these needs are identified. The organization’s information system needs may re-
sult from:

� Requests to deal with problems in current procedures

� The desire to perform additional tasks

� The realization that information technology could be used to
capitalize on an existing opportunity

The systems analyst prioritizes and translates the needs into a written plan for
the information systems (IS) department, including a schedule for developing
new major systems. Requests for new systems spring from users who need new
or enhanced systems. During the systems planning and selection phase, an
organization determines whether resources should be devoted to the develop-
ment or enhancement of each information system under consideration.
A feasibility study is conducted before the second phase of the SDLC to deter-
mine the economic and organizational impact of the system.

Phase 2: Systems Analysis
The second phase of the systems development life cycle is systems analysis.
During this phase, the analyst thoroughly studies the organization’s current

The second task in the systems planning and selection phase is to investigate
the system and determine the proposed system’s scope. The team of systems
analysts then produces a specific plan for the proposed project for the team to
follow. This baseline project plan customizes the standardized SDLC and speci-
fies the time and resources needed for its execution. The formal definition of a
project is based on the likelihood that the organization’s IS department is able
to develop a system that will solve the problem or exploit the opportunity and
determine whether the costs of developing the system outweigh the possible
benefits. The final presentation to the organization’s management of the plan for
proceeding with the subsequent project phases is usually made by the project
leader and other team members.

Systems design
Phase of the SDLC in which the
system chosen for development
in systems analysis is first
described independently of any
computer platform, (logical
design) and is then transformed
into technology-specific details
(physical design) from which all
programming and system
construction can be
accomplished.

Chapter 1 The Systems Development Environment 15

procedures and the information systems used to perform tasks such as general
ledger, shipping, order entry, machine scheduling, and payroll. Analysis has several
subphases. The first subphase involves determining the requirements of the system.
In this subphase, you and other analysts work with users to determine what the
users want from a proposed system. This subphase involves a careful study of any
current systems, manual and computerized, that might be replaced or enhanced as
part of this project. Next, you study the requirements and structure them according
to their interrelationships, eliminating any redundancies. As part of structuring, you
generate alternative initial designs to match the requirements. Then you compare
these alternatives to determine which best meets the requirements within the cost,
labor, and technical levels the organization is willing to commit to the development
process. The output of the analysis phase is a description of the alternative solution
recommended by the analysis team. Once the recommendation is accepted by the
organization, you can make plans to acquire any hardware and system software
necessary to build or operate the system as proposed.

Phase 3: Systems Design
The third phase of the SDLC is called systems design. During systems design,
analysts convert the description of the recommended alternative solution into
logical and then physical system specifications. You must design all aspects of
the system from input and output screens to reports, databases, and computer
processes.

Logical design is not tied to any specific hardware and systems software plat-
form. Theoretically, the system you design could be implemented on any hardware
and systems software. Logical design concentrates on the business aspects of
the system; that is, how the system will impact the functional units within the
organization. Figure 1-11 shows both the logical design for a product and its
physical design, side by side, for comparison. You can see from the comparison
that many specific decisions had to be made to move from the logical model to
the physical product. The situation is similar in information systems design.

In physical design, you turn the logical design into physical, or technical, spec-
ifications. For example, you must convert diagrams that map the origin, flow,
and processing of data in a system into a structured systems design that can
then be broken down into smaller and smaller units for conversion to instruc-
tions written in a programming language. You design the various parts of the
system to perform the physical operations necessary to facilitate data capture,
processing, and information output. During physical design, the analyst team
decides which programming languages the computer instructions will be writ-
ten in, which database systems and file structures will be used for the data, and
which hardware platform, operating system, and network environment the sys-
tem will run under. These decisions finalize the hardware and software plans
initiated at the end of the analysis phase. Now you can acquire any new tech-
nology not already present in the organization. The final product of the design
phase is the physical system specifications, presented in a form, such as a dia-
gram or written report, ready to be turned over to programmers and other sys-
tem builders for construction.

Phase 4: Systems Implementation and Operation
The final phase of the SDLC is a two-step process: systems implementation
and operation. During systems implementation and operation, you turn sys-
tem specifications into a working system that is tested and then put into use.
Implementation includes coding, testing, and installation. During coding,
programmers write the programs that make up the system. During testing,
programmers and analysts test individual programs and the entire system in

Systems implementation
and operation
Final phase of the SDLC, in
which the information system is
coded, tested, and installed in
the organization, and in which
the information system is
systematically repaired and
improved.

B

16 Part I Foundations for Systems Development

FIGURE 1-11
The difference between logical
design and physical design:
(A) A skateboard ramp
blueprint (logical design),
(B) A skateboard ramp (physical
design).

Source: http://www.tumyeto.com/
tydu/skatebrd/organizations/
plans/14pipe.jpg; www.tumyeto
.com/tydu/skatebrd/
organizations/iuscblue.html
(accessed September 16, 1999).
Reprinted by permission of the
International Association of
Skateboard Companies.

1/4 PIPE

REV. DATE
SIZE ASHEET 1 OF

SCALE: NONE
DO NOT SCALE DRAWING!

DWG. NO.
8–26–92

8–26–92C. M. ALLEN

RAMP6

DRAWN BY:
1. QUANTITY REQUIRED: 2
NOTES:

CAD FILE:A

order to find and correct errors. During installation, the new system becomes a
part of the daily activities of the organization. Application software is installed,
or loaded, on existing or new hardware; then users are introduced to the new
system and trained. Begin planning for both testing and installation as early as
the project planning and selection phase, because they both require extensive
analysis in order to develop exactly the right approach.

Systems implementation activities also include initial user support such
as the finalization of documentation, training programs, and ongoing user
assistance. Note that documentation and training programs are finalized
during implementation; documentation is produced throughout the life cycle,
and training (and education) occurs from the inception of a project. Systems

http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg

http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg

http://www.tumyeto.com/tydu/skatebrd/organizations/plans/14pipe.jpg

www.tumyeto.com/tydu/skatebrd/organizations/iuscblue.html

www.tumyeto.com/tydu/skatebrd/organizations/iuscblue.html

www.tumyeto.com/tydu/skatebrd/organizations/iuscblue.html

TABLE 1-1: Products of the SDLC Phases

Phase Products, Outputs, or Deliverables

Systems planning and selection Priorities for systems and projects

Architecture for data, networks, hardware, and IS management

Detailed work plan for selected project

Specification of system scope

System justification or business case

Systems analysis Description of current system

General recommendation on how to fix, enhance, or replace current system

Explanation of alternative systems and justification for chosen alternative

Acquisition plan for new technology

Systems design Detailed specifications of all system elements

Systems implementation and
operation

Code

Documentation

Training procedures and support capabilities

New versions or releases of software with associated updates to documentation,
training, and support

Chapter 1 The Systems Development Environment 17

implementation can continue for as long as the system exists because ongoing
user support is also part of implementation. Despite the best efforts of
analysts, managers, and programmers, however, installation is not always
a simple process. Many well-designed systems have failed because the in-
stallation process was faulty. Note that even a well-designed system can fail
if implementation is not well managed. Because the management of systems
implementation is usually done by the project team, we stress implementa-
tion issues throughout this book.

The second part of the fourth phase of the SDLC is operation. While a sys-
tem is operating in an organization, users sometimes find problems with how
it works and often think of improvements. During operation, programmers
make the changes that users ask for and modify the system to reflect chang-
ing business conditions. These changes are necessary to keep the system
running and useful. The amount of time and effort devoted to system enhan-
cements during operation depends a great deal on the performance of
the previous phases of the life cycle. Inevitably, the time comes when an in-
formation system is no longer performing as desired, when the costs of keep-
ing a system running become prohibitive, or when an organization’s needs
have changed substantially. Such problems indicate that it is time to begin de-
signing the system’s replacement, thereby completing the loop and starting the
life cycle over again.

The SDLC is a highly linked set of phases whose products feed the activities
in subsequent phases. Table 1-1 summarizes the outputs or products of each
phase based on the preceding descriptions. The subsequent chapters on the
SDLC phases discuss the products of each phase and how they are developed.

Throughout the systems development life cycle, the systems development
project itself needs to be carefully planned and managed. The larger the systems
project, the greater the need for project management. Several project manage-
ment techniques have been developed in the last quarter-century, and many
have been improved through automation. Chapter 3 contains a more detailed
treatment of project planning and management techniques.

Computer-aided
software engineering
(CASE)
Software tools that provide
automated support for some
portion of the systems
development process.

Prototyping
Building a scaled-down version
of the desired information
system.

18 Part I Foundations for Systems Development

Alternative Approaches to Development
Prototyping, computer-aided software engineering (CASE) tools, joint application
design (JAD), rapid application development (RAD), participatory design (PD),
and the use of Agile Methodologies represent different approaches that streamline
and improve the systems analysis and design process from different perspectives.

Prototyping
Designing and building a scaled-down but working version of a desired system
is known as prototyping. A prototype can be developed with a CASE tool, a
software product that automates steps in the systems development life cycle.
CASE tools make prototyping easier and more creative by supporting the design
of screens and reports and other parts of a system interface. CASE tools also
support many of the diagramming techniques you will learn, such as data-flow
diagrams and entity-relationship diagrams.

Figure 1-12 illustrates prototyping. The analyst works with users to determine
the initial or basic requirements for the system. The analyst then quickly builds
a prototype. When the prototype is completed, the users work with it and tell the
analyst what they like and do not like about it. The analyst uses this feedback to
improve the prototype and takes the new version back to the users. This itera-
tive process continues until the users are relatively satisfied with what they have
seen. The key advantages of the prototyping technique are: (1) it involves the user
in analysis and design, and (2) it captures requirements in concrete, rather than
verbal or abstract, form. In addition to being used as a stand-alone, prototyping
may also be used to augment the SDLC. For example, a prototype of the final sys-
tem may be developed early in analysis to help the analysts identify what users
want. Then the final system is developed based on the specifications of the
prototype. We discuss prototyping in greater detail in Chapter 5 and use various
prototyping tools in Chapter 9 to illustrate the design of system outputs.

Computer-Aided Software Engineering (CASE) Tools
Computer-aided software engineering (CASE) refers to automated software
tools used by systems analysts to develop information systems. These tools can be
used to automate or support activities throughout the systems development
process with the objective of increasing productivity and improving the overall
quality of systems. CASE helps provide an engineering-type discipline to software

FIGURE 1-12
The prototyping method.

Source: Adapted from
J. D. Naumann and A. M. Jenkins,
“Prototyping: The New Paradigm
for Systems Development,” MIS
Quarterly 6, no. 3 (1982): 29–44.

Identify
Problem

Initial
Requirements Develop

Prototype

If Prototype
Accepted

Problems

W
or

kin
g

Pr
ot

ot
yp

e

New Requirements

Next Version

Revise and
Enhance Prototype

Implement and
Use Prototype

Convert to
Operational

System

Repository
A centralized database that
contains all diagrams, forms and
report definitions, data structures,
data definitions, process flows
and logic, and definitions of
other organizational and system
components; it provides a set of
mechanisms and structures to
achieve seamless data-to-tool
and data-to-data integration.

Chapter 1 The Systems Development Environment 19

development and to the automation of the entire software life-cycle process, some-
times with a single family of integrated software tools. In general, CASE assists sys-
tems builders in managing the complexities of information system projects and
helps ensure that high-quality systems are constructed on time and within budget.

Vendors of CASE products have “opened up” their systems through the use
of standard databases and data-conversion utilities to share information
across products and tools easier. An integrated and standard database called a
repository is the common method for providing product and tool integra-
tion and has been a key factor in enabling CASE to manage larger, more com-
plex projects easier and to seamlessly integrate data across various tools and
products. The general types of CASE tools include:

� Diagramming tools that enable system process, data, and control
structures to be represented graphically.

� Computer display and report generators that help prototype how
systems “look and feel” to users. Display (or form) and report
generators also make it easier for the systems analyst to identify data
requirements and relationships.

� Analysis tools that automatically check for incomplete, inconsistent,
or incorrect specifications in diagrams, forms, and reports.

� A central repository that enables the integrated storage of specifica-
tions, diagrams, reports, and project management information.

� Documentation generators that help produce both technical and user
documentation in standard formats.

� Code generators that enable the automatic generation of program and
database definition code directly from the design documents,
diagrams, forms, and reports.

Joint Application Design
In the late 1970s, systems development personnel at IBM developed a new
process for collecting information system requirements and reviewing system
designs. The process is called joint application design (JAD). The idea
behind JAD is to structure the requirements determination phase of analysis and
the reviews that occur as part of the design. Users, managers, and systems devel-
opers are brought together for a series of intensive structured meetings run by a
JAD session leader. By gathering the people directly affected by an IS in one room
at the same time to work together to agree on system requirements and design
details, time and organizational resources are better managed. Group members
are more likely to develop a shared understanding of what the IS is supposed to do.
JAD has become common in certain industries, such as insurance, and in specific
companies, such as CIGNA. We discuss JAD in more detail in Chapter 5.

Rapid Application Development
Prototyping, CASE, and JAD are key tools that support rapid application
development (RAD). The fundamental principle of any RAD methodology is
to delay producing detailed system design documents until after user require-
ments are clear. The prototype serves as the working description of needs. RAD
involves gaining user acceptance of the interface and developing key system
capabilities as quickly as possible. RAD is widely used by consulting firms. It is
also used as an in-house methodology by firms such as the Boeing Company.
RAD sacrifices computer efficiency for gains in human efficiency in rapidly
building and rebuilding working systems. On the other hand, RAD methodolo-
gies can overlook important systems development principles, which may result
in problems with systems developed this way.

Joint application design
(JAD)
A structured process in which
users, managers, and analysts
work together for several days in
a series of intensive meetings to
specify or review system
requirements.

Rapid application
development (RAD)
Systems development
methodology created to radically
decrease the time needed to
design and implement
information systems.

20 Part I Foundations for Systems Development

RAD grew out of the convergence of two trends: the increased speed and
turbulence of doing business in the late 1980s and early 1990s, and the ready
availability of high-powered computer-based tools to support systems develop-
ment and easy maintenance. As the conditions of doing business in a changing,
competitive global environment became more turbulent, management in many
organizations began to question whether it made sense to wait two to three
years to develop systems that would be obsolete upon completion. On the other
hand, CASE tools and prototyping software were diffusing throughout organi-
zations, making it relatively easy for end users to see what their systems would
look like before they were completed. Why not use these tools to address the
problems of developing systems more productively in a rapidly changing busi-
ness environment? So RAD was born.

As Figure 1-13 shows, the same phases followed in the traditional SDLC are
also followed in RAD, but the phases are combined to produce a more stream-
lined development technique. Planning and design phases in RAD are shortened
by focusing work on system functional and user interface requirements at the
expense of detailed business analysis and concern for system performance is-
sues. Also, usually RAD looks at the system being developed in isolation from
other systems, thus eliminating the time-consuming activities of coordinating
with existing standards and systems during design and development. The em-
phasis in RAD is generally less on the sequence and structure of processes in
the life cycle and more on doing different tasks in parallel with each other and
on using prototyping extensively. Notice also, that the iteration in the RAD life
cycle is limited to the design and development phases, which is where the bulk
of the work in a RAD approach takes place. Although it is possible in RAD to re-
turn to planning once design has begun, it is rarely done. Similarly, although it
is possible to return to development from the cutover phase (when the system
is turned over to the user), RAD is designed to minimize iteration at this point
in the life cycle. The high level of user commitment and involvement through-
out RAD implies that the system that emerges should be more readily accepted
by the user community (and hence more easily implemented during cutover)
than would a system developed using traditional techniques.

Planning

Design

Development

SDLC

Cutover

FIGURE 1-13
RAD systems development life
cycle compared to standard
SDLC.

Participatory design (PD)
A systems development
approach that originated in
northern Europe, in which users
and the improvement of their
work lives are the central focus.

Chapter 1 The Systems Development Environment 21

Participatory Design
Developed in northern Europe, participatory design (PD) represents a viable al-
ternative approach to the SDLC. One of the best-known companies that has used
this approach is StatoilHydro, the Norwegian oil company. PD emphasizes the role
of the user much more than do traditional North American techniques such as
structured analysis and structured design. In some cases, PD may involve the en-
tire user community in the development process. Each user has an equal voice in
determining system requirements and in approving system design. In other cases,
an elected group of users controls the process. These users represent the larger
community, much as a legislature represents the needs and wants of the electorate.
Typically, under PD, systems analysts work for the users. The organization’s man-
agement and outside consultants provide advice rather than control. PD is partly
a result of the roles of labor and management in the northern European workplace
where labor is more organized, carries more clout, and is more intimately involved
with technological changes than is true in North America.

Agile Methodologies
As you might imagine, many other approaches to systems analysis and design have
been developed over the years. These approaches include eXtreme Programming,
the Crystal family of methodologies, Adaptive Software Development, Scrum, and
Feature Driven Development. In February 2001, many of the proponents of these
alternative approaches met in Utah in the United States and reached a consensus
on many of the underlying principles their various approaches contained. This con-
sensus turned into a document they called “The Agile Manifesto” (see Appendix B
for more detail). These Agile Methodologies share three key principles:
(1) a focus on adaptive rather than predictive methodologies, (2) a focus on
people rather than roles, and (3) a self-adaptive process. Adopting an adaptive
rather than predictive methodology refers to the observation that engineering-
based methodologies work best when the process and product are predictive.
Software tends not to be as predictive as, say, a bridge, especially in today’s
turbulent business environment. More adaptive methodologies are needed, then,
and the Agile Methodologies are based on the ability to adapt quickly. The
focus on people rather than roles is also a criticism of engineering-based
techniques, where people became interchangeable. An Agile approach views
people as talented individuals, not people filling roles, each of whom has unique
talents to bring to a development project. Finally, Agile Methodologies pro-
mote a self-adaptive software development process. As the methodologies
are applied, they should also be adapted by a particular development team
working on a particular project in a particular context. No single monolithic
methodology effectively fits all developers on all projects at all times. You will
learn much more about Agile Methodologies in Appendix B.

Agile Methodologies
A family of development
methodologies characterized by
short iterative cycles and
extensive testing; active
involvement of users for
establishing, prioritizing, and
verifying requirements; and a
focus on small teams of talented,
experienced programmers.

Key Points Review
1. Define information systems analysis and

design.
Systems analysis and design is the complex or-

ganizational process whereby computer-based
information systems are developed and operated.

2. Describe the role of the systems analyst in
information systems development.

Systems analysts play a key organizational role
in systems development. They act as liaisons be-
tween business users on one hand and technical

personnel on the other. Analysts need to develop
four sets of skills in order to succeed: analytical,
technical, managerial, and interpersonal.

3. Describe the information systems develop-
ment life cycle (SDLC).

The SDLC used in this book has four major
phases: (1) systems planning and selection,
(2) systems analysis, (3) systems design, and
(4) systems implementation and operation. In the
first phase, which is planning and selection,

22 Part I Foundations for Systems Development

Match each of the key terms above with the definition that best fits it.

1. The first phase of the SDLC in which an
organization’s total information system needs
are analyzed and arranged, and in which a
potential information systems project is
identified and an argument for continuing or
not continuing with the project is presented.

2. The process of developing and maintaining
an information system.

3. A systems development approach that
originated in northern Europe, in which
users and the improvement of their work
lives are the central focus.

4. Software designed to process data and
support users in an organization. Examples
include spreadsheets, word processors,
and database management systems.

5. The organizational role most responsible
for the analysis and design of information
systems.

6. A structured process in which users,
managers, and analysts work together for
several days in a series of intensive
meetings to specify or review system
requirements.

7. Building a scaled-down version of the
desired information system.

8. A group of interrelated procedures used
for a business function, with an identifiable
boundary, working together for some
purpose.

9. An irreducible part or aggregation of parts
that make up a system, also called a
subsystem.

10. Dependence of one part of the system on
one or more other system parts.

11. The line that marks the inside and outside
of a system and that sets off the system
from its environment.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Agile Methodologies (p. 21)
2. Application software (p. 4)
3. Boundary (p. 7)
4. Cohesion (p. 10)
5. Component (p. 7)
6. Computer-aided software

engineering (CASE) (p. 18)
7. Constraint (p. 7)
8. Coupling (p. 9)
9. Decomposition (p. 8)

10. Environment (p. 7)
11. Information systems analysis

and design (p. 4)

12. Interface (p. 7)
13. Interrelated (p. 7)
14. Joint application design (JAD)

(p. 19)
15. Modularity (p. 9)
16. Participatory design (PD) (p. 21)
17. Prototyping (p. 18)
18. Purpose (p. 7)
19. Rapid application development

(RAD) (p. 19)
20. Repository (p. 19)
21. System (p. 6)
22. Systems analysis (p. 14)

23. Systems analyst (p. 11)
24. Systems design (p. 15)
25. Systems development life cycle

(SDLC) (p. 12)
26. Systems development methodology

(p. 12)
27. Systems implementation

and operation (p. 15)
28. Systems planning and selection

(p. 14)

analysts make detailed road maps of the system
development project. In analysis, analysts work
to solve the business problem being studied. In
design, the solution to the problem is built.
Finally, in the last phase, the system is given to
users and kept running.

4. List alternatives to the SDLC, including a des-
cription of the role of computer-aided soft-
ware engineering (CASE) tools in systems
development.

The alternative frameworks mentioned in this
chapter are prototyping, joint application design
(JAD), rapid application development (RAD), par-
ticipatory design (PD), and Agile Methodologies.

Using prototyping, analysts build a working model
of the system. In JAD, analysts and users meet to
solve problems and design systems. RAD de-
creases the time needed to design and implement
information systems. In PD, the emphasis is on the
user community. Agile Methodologies focus on
adaptive rather than predictive methodologies,
on people rather than roles. CASE tools represent
the use of information technology to assist in the
systems development process. They include dia-
gramming tools, screen and report design tools,
and other special-purpose tools. CASE tools help
programmers and analysts do their jobs efficiently
and effectively by automating routine tasks.

Chapter 1 The Systems Development Environment 23

12. The overall goal or function of a system.
13. Phase of the SDLC, in which the system

chosen for development in systems analysis
is first described independently of any
computer platform and is then transformed
into technology-specific details from which
all programming and system construction
can be accomplished.

14. Phase of the SDLC, in which the current
system is studied and alternative
replacement systems are proposed.

15. Everything external to a system that
interacts with the system.

16. Point of contact where a system meets
its environment or where subsystems
meet each other.

17. A limit to what a system can accomplish.
18. Final phase of the SDLC, in which the

information system is coded, tested, and
installed in the organization, and in which
the information system is systematically
repaired and improved.

19. A standard process followed in an
organization to conduct all the steps
necessary to analyze, design, implement,
and maintain information systems.

20. The series of steps used to mark the phases
of development for an information system.

21. The process of breaking the description of
a system down into small components;
also known as functional decomposition.

22. Dividing a system up into chunks or
modules of a relatively uniform size.

23. The extent to which subsystems depend
on each other.

24. The extent to which a system or subsystem
performs a single function.

25. Software tools that provide automated
support for some portion of the systems
development process.

26. A centralized database that contains
all diagrams, forms and report definitions,
data structures, data definitions, process
flows and logic, and definitions of other
organizational and system components;
it provides a set of mechanisms and
structures to achieve seamless data-to-
tool and data-to-data integration.

27. Systems development methodology
created to radically decrease the time
needed to design and implement
information systems.

28. Current approaches to systems development
that focus on adaptive methodologies,
people instead of roles, and an overall
self-adaptive development process.

Review Questions
1. What is information systems analysis and design?
2. What is systems thinking? How is it useful for think-

ing about computer-based information systems?
3. What is decomposition? Coupling? Cohesion?
4. In what way are organizations systems?
5. List and explain the different phases in the sys-

tems development life cycle.

6. What is prototyping?
7. What are CASE tools? What is a CASE repository

and how is it used?
8. What is JAD? What is participatory design?
9. What is RAD? How does it compare to the typical

SDLC?
10. What are Agile Methodologies?

Problems and Exercises
1. Why is it important to use systems analysis and

design methodologies when building a system?
Why not just build the system in whatever way
seems to be “quick and easy?” What value is pro-
vided by using an “engineering” approach?

2. Describe your university or college as a system.
What is the input? The output? The boundary?
The components? Their interrelationships? The
constraints? The purpose? The interfaces? The
environment? Draw a diagram of this system.

3. A car is a system with several subsystems, in-
cluding the braking subsystem, the electrical
subsystem, the engine, the fuel subsystem, the
climate-control subsystem, and the passenger

subsystem. Draw a diagram of a car as a system
and label all of its system characteristics.

4. Your personal computer is a system. Draw and
label a personal computer as a system as you did
for a car in Problem and Exercise 3.

5. Choose a business transaction you undertake
regularly, such as using an ATM machine, buy-
ing groceries at the supermarket, or buying a
ticket for a university’s basketball game. For
this transaction, define the data, draw the data-
flow diagram, and describe processing logic.

6. How is the joint application design (JAD) approach
different from the participatory design (PD)
approach developed in northern Europe? (You may

24 Part I Foundations for Systems Development

Discussion Questions
1. If someone at a party asked you what a systems

analyst was and why anyone would want to be
one, what would you say? Support your answer
with evidence from this chapter.

2. Explain how a computer-based information system
designed to process payroll is a specific example
of a system. Be sure to account for all nine com-
ponents of any system in your explanation.

3. How does the Internet, and more specifically
the World Wide Web, fit into the picture of sys-
tems analysis and systems development drawn
in this chapter?

4. What do you think systems analysis and design
will look like in the next decade? As you saw
earlier in the chapter, changes in systems devel-
opment have been pretty dramatic in the past.
A computer programmer suddenly transported
from the 1950s to the 2000s would have trouble
recognizing the computing environment that had
evolved just fifty years later. What dramatic
changes might occur in the next ten years?

Case Problems
1. Pine Valley Furniture

Alex Schuster began Pine Valley Furniture (PVF)
as a hobby. Initially, Alex would build custom furni-
ture in his garage for friends and family. As word
spreadabouthisqualitycraftsmanship,hebegantak-
ing orders. The hobby has since evolved into a
medium-sized business, employing more than fifty
workers.

Over the years, increased demand has forced
Alex to relocate several times, increase his sales
force, expand his product line, and renovate Pine
Valley Furniture’s information systems. As the
company began to grow, Alex organized the com-
pany into functional areas—manufacturing, sales,
orders, accounting, and purchasing. Originally,
manual information systems were used; however,
as the business began to expand rapidly, a mini-
computer was installed to automate applications.

In the beginning, a process-oriented approach
was utilized. Each separate application had its own
data files. The applications automated the manual
systems on which they were modeled. In an effort
to improve its information systems, PVF recently
renovated its information systems, resulting in a
company-wide database and applications that
work with this database. Pine Valley Furniture’s
computer-based applications are primarily in the
accounting and financial areas. All applications
have been built in-house, and when necessary, new

information systems staff is hired to support Pine
Valley Furniture’s expanding information systems.

a. How did PVF go about developing its informa-
tion systems? Why do you think the company
chose this option? What other options were
available?

b. One option available to PVF was an enterprise-
wide system. What features does an enter-
prise-wide system, such as SAP, provide? What
is the primary advantage of an enterprise-wide
system?

c. PVF will be hiring two systems analysts next
month. Your task is to develop a job advertise-
ment for these positions. Locate several Web
sites or newspapers that have job advertise-
ments for systems analysts. What skills are
required?

d. What types of information systems are cur-
rently utilized at PVF? Provide an example of
each.

2. Hoosier Burger
As college students in the 1970s, Bob and Thelma

Mellankamp often dreamed of starting their own
business. While on their way to an economics class,
Bob and Thelma drove by Myrtle’s Family Restau-
rant and noticed a “for sale” sign in the window.

have to do some digging at the library to answer this
question adequately.) What are the benefits in using
these types of approaches in building information
systems? What are the barriers?

7. How would you organize a project team of stu-
dents to work with a small business client?
How would you organize a project team if
you were working for a professional consulting

organization? How might these two methods
of organization differ? Why?

8. How might prototyping be used as part of
the SDLC?

9. Describe the difference in the role of a systems
analyst in the SDLC versus prototyping.

10. Compare Figures 1-9 and 1-10. What similarities
and differences do you see?

Chapter 1 The Systems Development Environment 25

Bob and Thelma quickly made arrangements to
purchase the business, and Hoosier Burger Restau-
rant was born. The restaurant is moderately sized,
consisting of a kitchen, dining room, counter, stor-
age area, and office. Currently, all paperwork is
done by hand. Thelma and Bob have discussed the
benefits of purchasing a computer system; how-
ever, Bob wants to investigate alternatives and hire
a consultant to help them.

Perishable food items, such as beef patties, buns,
and vegetables are delivered daily to the restaurant.
Other items, such as napkins, straws, and cups, are
ordered and delivered as needed. Bob Mellankamp
receives deliveries at the restaurant’s back door
and then updates a stock log form. The stock log
form helps Bob track inventory items. The stock
log form is updated when deliveries are received
and also nightly after daily sales have been tallied.

Customers place their orders at the counter and
are called when their orders are ready. The orders
are written on an order ticket, totaled on the cash
register, and then passed to the kitchen where
the orders are prepared. The cash register is not
capable of capturing point-of-sale information.
Once an order is prepared and delivered, the
order ticket is placed in the order ticket box.
Bob reviews these order tickets nightly and
makes adjustments to inventory.

In the past several months, Bob has noticed sev-
eral problems with Hoosier Burger’s current infor-
mation systems, especially with the inventory
control, customer ordering, and management re-
porting systems. Because the inventory control and
customer ordering systems are paper based, errors
occur frequently. These errors often affect delivery
orders received from suppliers as well as customer
orders. Bob has often wanted to have electronic ac-
cess to forecasting information, inventory usage,
and basic sales information. This access is impos-
sible because of the paper-based system.

a. Apply the SDLC approach to Hoosier Burger.
b. Using the Hoosier Burger scenario, identify an

example of each system characteristic.
c. Decompose Hoosier Burger into its major

subsystems.
d. Briefly summarize the approaches to systems

development discussed in this chapter. Which
approach do you feel should be used by
Hoosier Burger?

3. Natural Best Health Food Stores
Natural Best Health Food Stores is a chain of

health food stores serving Oklahoma, Arkansas,
and Texas. Garrett Davis opened his first Natural

Best Health Food Store in 1975 and has since
opened fifteen stores in three states. Initially, he
sold only herbal supplements, gourmet coffees
and teas, and household products. In 1990, he ex-
panded his product line to include personal care,
pet care, and grocery items.

In the past several months, many of Mr. Davis’s
customers have requested the ability to purchase
prepackaged meals, such as chicken, turkey, fish,
and vegetarian, and have these prepackaged meals
automatically delivered to their homes weekly, bi-
weekly, or monthly. Mr. Davis feels that this option
is viable because Natural Best has an automatic de-
livery system in place for its existing product lines.

With the current system, a customer can sub-
scribe to the Natural Best Delivery Service (NBDS)
and have personal care, pet care, gourmet prod-
ucts, and grocery items delivered on a weekly, bi-
weekly, or monthly basis. The entire subscription
process takes approximately five minutes. The
salesclerk obtains the customer’s name, mailing
address, credit card number, desired delivery
items and quantity, delivery frequency, and phone
number. After the customer’s subscription has
been processed, delivery usually begins within a
week. As customer orders are placed, inventory is
automatically updated. The NBDS system is a
client/server system. Each store is equipped with a
client computer that accesses a centralized data-
base housed on a central server. The server tracks
inventory, customer activity, delivery schedules,
and individual store sales. Each week the NBDS
generates sales summary reports, low-in-stock
reports, and delivery schedule reports for each
store. The information contained on each of these
individual reports is then consolidated into mas-
ter sales summary, low-in-stock, and forecasting
reports. Information contained on these reports
facilitates restocking, product delivery, and fore-
casting decisions. Mr. Davis has an Excel work-
sheet that he uses to consolidate sales information
from each store. He then uses this worksheet to
make forecasting decisions for each store.

a. Identify the different types of information sys-
tems used at Natural Best Health Food Stores.
Provide an example of each. Is an expert sys-
tem currently used? If not, how could Natural
Best benefit from the use of such a system?

b. Figure 1-4 identifies seven characteristics of a
system. Using the Natural Best Health Food
Stores scenario, provide an example of each
system characteristic.

c. What type of computing environment does
Natural Best Health Food Stores have?

26

The Sources of Software

After studying this chapter, you should be able to:

C
h
a

p
te

r
O

b
je

c
ti
v
e

s

� Explain outsourcing.

� Describe six different sources of software.

� Discuss how to evaluate off-the-shelf software.

� Explain reuse and its role in software
development.

two

©
 R

ya
ns

to
ck

/
G

et
ty

 Im
ag

es

Chapter Preview . . .

Software is a big part of any business application
system. Although most software was once written

in-house by a company’s own systems analysts and

programmers, this practice is certainly not the

case today. In today’s thriving software industry,

you can purchase software for just about any busi-

ness situation imaginable. However, every busi-

ness is unique, and no existing software fits a given

firm and its needs exactly. Software must be mod-

ified to fit a company’s specific needs. Many times,

a business application is actually a combination of

many different bits and pieces of software, pur-

chased or otherwise acquired from many different

vendors and integrated by a firm’s internal infor-

mation technology staff. But where does the IT

staff find all the software it needs? That is the sub-

ject of Chapter 2. Here you will learn about the

many sources of software available to today’s sys-

tem analyst.

27

Introduction
Many different sources of software are available, and many of you reading this
book will end up working for firms that produce software rather than working
in the information systems department of a corporation. But for those of you
who go on to work in a corporate information systems department, the focus is
no longer exclusively on in-house development. Instead, the focus will be on
where to obtain the many pieces and components that you will combine into
the application system you have been asked to create. You and your peers will
still write code, mainly to make all the different pieces work together, but more
and more of your application software will be written by someone else. Even
though you will not write the code, you will still use the basic structure and
processes of the systems development life cycle (SDLC) to build the application
systems your organization demands. The organizational process of systems de-
velopment remains the focus for the rest of the book, but first you need to know
more about where software originates in today’s development environment.

In this chapter, you will learn about the various sources of software for organ-
izations. The first source considered is outsourcing, in which all or part of an or-
ganization’s information systems, their development, and their maintenance are
given over to another organization. You will then read about six different sources
of software: (1) information technology services firms, (2) packaged software
providers, (3) vendors of enterprise solutions software, (4) cloud computing,
(5) open-source software, and (6) the organization itself when it develops soft-
ware in-house. You will learn of criteria to evaluate software from these differ-
ent sources. The chapter closes with a discussion of reuse and its impact on
software development.

Systems Acquisition
Despite some debate about when and where the first administrative information
system was developed, it is generally agreed that the first such system in the
United Kingdom was developed at J. Lyons & Sons. In the United States, the first
administrative information system was General Electric’s (GE) payroll system,
which was developed in 1954. At that time, and for many years afterwards,
obtaining an information system meant one thing only: in-house development.

Outsourcing
The practice of turning over
responsibility for some or all of
an organization’s information
systems applications and
operations to an outside firm.

28 Part I Foundations for Systems Development

The software industry itself did not even come into existence until a decade
after GE’s payroll system was implemented.

Since GE’s payroll system was built, in-house development has become a pro-
gressively smaller piece of all the systems development work that takes place
in and for organizations. Internal corporate information systems departments
now spend a smaller and smaller proportion of their time and effort on devel-
oping systems from scratch. Corporate information systems groups reported
spending less time and money on traditional software development and main-
tenance than they used to. Instead, they increased work on packaged applica-
tions by a factor of three, and they increased outsourcing by 42 percent. Where
in-house development occurred, it was related to Internet technology. Develop-
ers probably view Internet-related development as being more challenging and
more fun than traditional development.

Organizations today have many choices when seeking an information system.
We will start with a discussion of outsourcing development and operation and
then present the six categories of software sources mentioned earlier. These
various sources represent points along a continuum of options, along with many
hybrid combinations as well.

Outsourcing
If another organization develops or runs a computer application for your
organization, that practice is called outsourcing. Outsourcing includes a
spectrum of working arrangements. At one extreme is having a firm develop and
run your application on its computers—you only supply input and take output.
A common example is a company that runs payroll applications for clients so
that clients don’t have to develop an independent in-house payroll system.
Instead they simply provide employee payroll information to the company and,
for a fee, the company returns completed paychecks, payroll accounting re-
ports, and tax and other statements for employees. For many organizations, the
most cost-effective way to manage payroll operations is through outsourcing. In
another example of outsourcing arrangements, you hire a company to run your
applications at your site on your computers. In some cases, an organization
employing such an arrangement will dissolve some or all of its information
systems unit and transfer most or all of its information systems employees to
the company brought in to run the organization’s computing.

Why would an organization outsource its information systems operations? As
we saw in the payroll example, outsourcing may be cost effective. If a company
specializes in running payroll for other companies, it can leverage the economies
of scale it achieves from running one stable computer application for many or-
ganizations into low prices. But why would an organization dissolve its entire in-
formation processing unit and bring in an outside firm to manage its computer
applications? One reason may be to overcome operating problems the organiza-
tion faces in its information systems unit. For example, the city of Grand Rapids,
Michigan, hired an outside firm to run its computing center thirty years ago in or-
der to manage its computing center employees better. Union contracts and civil
service constraints, then in force, made it difficult to fire people, so the city
brought in a facilities management organization to run its computing operations,
and it was able to get rid of problem employees at the same time. Another reason
for total outsourcing is that an organization’s management may feel its core mis-
sion does not involve managing an information systems unit and that it might
achieve more effective computing by turning over all of its operations to a more
experienced, computer-oriented company. Kodak decided in the late 1980s that it
was not in the computer applications business and turned over management of its
mainframes to IBM and management of its personal computers to Businessland.

Outsourcing is big business. Some organizations outsource the IT devel-
opment and many of their IT functions, at a cost of billions of dollars. The

Chapter 2 The Sources of Software 29

traditional outsourcing market is now a $280 billion industry, and the off-
shoring market is worth $70 billion. Individual outsourcing vendors sign
large contracts for their services. IBM and HP are two of the biggest, best-
known global outsourcing firms. Both companies have multiple outsourcing
contracts in place with many different firms.

Outsourcing is an alternative that analysts definitely need to be aware of.
When generating alternative system development strategies for a system, you as
an analyst should consult organizations in your area that provide outsourcing
services. It may well be that at least one such organization has already been
developed and is running an application similar to what your users are asking
for. Perhaps outsourcing the replacement system should be one of your
alternatives. Knowing what your system requirements are before you consider
outsourcing means that you can carefully assess how well the suppliers of
outsourcing services can respond to your needs. However, should you decide
not to outsource, you need to consider whether some software components of
your replacement system should be purchased and not built.

Sources of Software
We can group organizations that produce software into six major categories:
(1) information technology services firms, (2) packaged software providers,
(3) vendors of enterprise solutions software, (4) cloud computing, (5) open-
source software, and (6) in-house development (Figure 2-1).

Information Technology Services Firms If a company needs an
information system but does not have the expertise or the personnel to develop
the system in-house and a suitable off-the-shelf system is not available, the
company will likely consult an information technology (IT) services firm. IT
services firms help companies develop custom information systems for internal
use; they develop, host, and run applications for customers, or they provide other
services. Note in Table 2-1, a list of the top ten global software firms, that three
out of ten specialize in services, which include custom systems development.
These firms employ people with expertise in the development of information
systems. Their consultants may also have expertise in a given business area. For

ERP Vendors

IT Services Firms

Open Source Packaged Software
Providers

In-house

ASPs/MSPs

FIGURE 2-1
Sources of application software.

30 Part I Foundations for Systems Development

TABLE 2-1: The 2010 Top 10 Global Software Companies

Rank Company

2009 Software/
Services Revenue
(millions of USD) Software Business Sector

1 IBM $74,934 Middleware/Application Server/
Web Server/Services

2 Microsoft $50,820 Operating Systems

3 HP $38,265 Systems Integration Services/
IT Consulting

4 Oracle $23,252 Database

5 Accenture $21,577 Systems Integration Services/
IT Consulting

6 Computer Sciences
Corp.

$16,740 Enterprise Resource Planning

7 SAP AG $15,235 Enterprise Application/
Data Integration

8 EMC Corp. $14,026 Information Management

9 Hitachi $12,254 Other

10 Lockheed Martin
Corp.

$12,130 Vertical Industry Applications

Note: All figures in U.S. dollars (USD).
Source: Based on Software Magazine; visit www.softwaremag.com.

example, consultants who work with banks understand financial institutions as
well as information systems. Consultants use many of the same methodologies,
techniques, and tools that companies use to develop systems in-house.

It may surprise you to see IBM listed as the top global software producer. You
may think of IBM as a hardware company primarily. Yet IBM has been moving
away from a reliance on hardware development for many years. The purchase
of the IT consulting arm of PricewaterhouseCoopers by IBM in 2002 solidified
its move into services and consulting. IBM is also well known for its develop-
ment of Web server and middleware software. Other leading IT services firms
include traditional consulting firms such as Accenture. The list also includes HP,
another company formerly focused on hardware that has made the transition to
an IT services firm.

Packaged Software Producers The growth of the software industry has
been phenomenal since its beginnings in the mid-1960s. Now, some of the
largest computer companies in the world, as measured by Software magazine, are
companies that produce software exclusively (see Table 2-1). Software companies
develop what are sometimes called prepackaged or off-the-shelf systems.
Microsoft’s Project and Intuit’s Quicken, QuickPay, and QuickBooks are popular
examples of such software. The packaged software development industry serves
many market segments. Its software offerings range from general, broad-based
packages, such as general ledger, to more narrow, niche packages, such as
software to help manage a day-care center. Software companies develop software
to run on many different computer platforms, from microcomputers to large
mainframes. The companies range in size from just a few people to thousands of
employees. Software companies consult with system users after the initial
software design has been completed and after an early version of the system has

www.softwaremag.com

Enterprise resource
planning (ERP) system
A system that integrates
individual traditional business
functions into a series of modules
so that a single transaction
occurs seamlessly within a single
information system rather than
several separate systems.

Chapter 2 The Sources of Software 31

been built. The systems are then tested in actual organizations to reveal any
problems or determine any improvements that can be made. Until testing is
completed, the system is not offered for sale to the public.

Some off-the-shelf software systems cannot be modified to meet the specific,
individual needs of a particular organization. Such application systems are
sometimes called turnkey systems. The producer of a turnkey system will make
changes to the software only when a substantial number of users ask for a
specific change. Other off-the-shelf application software can be modified or
extended, however, by the producer or the user to fit the needs of the organization
more closely. Even though many organizations perform similar functions, no
two organizations do the same thing in quite the same way. A turnkey system
may be good enough for a certain level of performance, but it will never per-
fectly match the way a given organization does business. A reasonable estimate
is that off-the-shelf software can at best meet 70 percent of an organization’s
needs. Thus, even in the best case, 30 percent of the software systems used don’t
perfectly match the organization’s specifications.

Enterprise Solutions Software As mentioned earlier, more and more
organizations are choosing complete software solutions, called enterprise
solutions or enterprise resource planning (ERP) systems, to support their
operations and business processes. These ERP software solutions consist of a
series of integrated modules. Each module supports an individual traditional
business function, such as accounting, distribution, manufacturing, and human
resources. The difference between the modules and traditional approaches is that
the modules are integrated to focus on business processes rather than on business
functional areas. For example, a series of modules will support the entire order-
entry process, from receiving an order to adjusting inventory to shipping to billing
to after-the-sale service. The traditional approach would use different systems in
different functional areas of the business, such as a billing system in accounting
and an inventory system in the warehouse. Using ERP systems, a firm can integrate
all parts of a business process in a unified information system. All aspects of a
single transaction occur seamlessly within a single information system, rather than
in a series of disjointed, separate systems focused on business functional areas.

The benefits of the enterprise solutions approach include a single repository
of data for all aspects of a business process and the flexibility of the modules.
A single repository ensures more consistent and accurate data, as well as less
maintenance. The modules are flexible because additional modules can be
added as needed once the basic system is in place. Added modules are immedi-
ately integrated into the existing system.

Enterprise solutions software also involves some disadvantages. The systems
are complex, so implementation can take a long time to complete. Organiza-
tions typically do not have the necessary expertise in-house to implement the
systems, so they must rely on consultants or employees of the software vendor,
which can be expensive. In some cases, organizations must change how they do
business in order to benefit from a shift toward enterprise solutions.

Several major vendors offer enterprise solutions software. The best-known
vendor is probably SAP AG, a German firm, known for its flagship product R/3.
SAP stands for Systems, Applications, and Products in Data Processing. SAP AG
was founded in 1972, but most of its growth has occurred since 1992. In 2009, SAP
America was the seventh largest supplier of software in the world (see Table 2-1).
The other major vendor of enterprise solutions is Oracle Corp., a U.S.-based firm,
perhaps better known for its database software. Oracle is fourth on the list of
the top ten software companies for 2009 (Table 2-1). At the end of 2004, Oracle
acquired PeopleSoft, Inc., a U.S. firm founded in 1987. PeopleSoft began with en-
terprise solutions that focused on human resources management and expanded
to cover financials, materials management, distribution, and manufacturing

Cloud computing
The provision of computing
resources, including applications,
over the Internet, so customers do
not have to invest in the
computing infrastructure needed
to run and maintain the
resources.

32 Part I Foundations for Systems Development

before Oracle acquired it. Just before being purchased by Oracle, PeopleSoft had
boosted its corporate strength in 2003 through acquiring another ERP vendor,
J.D. Edwards. In 2009, SAP held 31 percent of the global core enterprise applica-
tions market. As the higher end of the market has become saturated with ERP sys-
tems, most ERP vendors are looking to medium and small businesses for growth.

Cloud Computing Another method for organizations to obtain applications
istorentthemorlicensethemfromthird-partyproviderswhoruntheapplications
at remote sites. Users have access to the applications through the Internet or
through virtual private networks (VPNs). The application provider buys, installs,
maintains, and upgrades the applications. Users pay on a per-use basis or they
license the software, typically month to month. Although this practice has been
known by many different names over the years, today it is called cloud
computing. Cloud computing refers to the provision of applications over the
Internet, where customers do not have to invest in the hardware and software
resources needed to run and maintain the applications. You may have seen
the Internet referred to as a cloud in other contexts, which comes from how the
Internet is depicted on computer network diagrams. A well-known example of
cloud computing is Google Apps, which provides common personal productivity
tools online, while the software runs on Google’s servers. Another well-known
example is Salesforce.com, which provides customer relationship management
(CRM) software online. Cloud computing includes many areas of technology,
including software as a service (often referred to as SaaS), which includes Google
Apps and Salesforce.com, and hardware as a service, which allows companies to
order server capacity and storage on demand.

Merrill Lynch has predicted that by 2013, 12 percent of the world’s corporate
computing will be done by cloud computing. The total market for cloud com-
puting is expected to be $160 billion, which includes $95 billion in business and
$65 billion in online advertising. The companies that are most likely to profit im-
mediately are those that can quickly adjust their product lines to meet the needs
of cloud computing. These include such well-known names as IBM, which has
built several cloud computing centers worldwide; Microsoft, which in 2008 an-
nounced its Azure platform to support the development and operation of busi-
ness applications and consumer services on its own servers; and Amazon.com,
which provides storage and capacity from its own servers to customers.

As these growth forecasts indicate, taking the cloud-computing route has its ad-
vantages. The top three reasons for choosing to go with cloud computing, all of
which result in benefits for the company, are: (1) freeing internal IT staff, (2) gain-
ing access to applications faster than via internal development, and (3) achieving
lower-cost access to corporate-quality applications. Especially appealing is the
ability to gain access to large and complex systems without having to go through
the expensive and time-consuming process of implementing the systems them-
selves in-house. Getting your computing through a cloud also makes it easier to
walk away from an unsatisfactory systems solution. IT managers do have some
concerns, however. The primary concern is reliability, but other concerns include
security and compliance with government regulations such as Sarbanes-Oxley.

Open-Source Software Open-source software is unlike the other types of
software you have read about so far. Open-source software is different because
it is freely available—not just the final product, but the source code itself. It is
also different because it is developed by a community of interested people
instead of by employees of a particular company. Open-source software
performs the same functions as commercial software, such as operating
systems, e-mail, database systems, Web browsers, and so on. Some of the most
well-known and popular open-source software names are Linux (the operating
system), mySQL (a database system), and Firefox (a Web browser). Open
source also applies to software components and objects. Open source is

Chapter 2 The Sources of Software 33

developed and maintained by communities of people. These communities
can sometimes be quite large. Developers often use common Web resour-
ces, such as SourceForge.net to organize their activities. In December 2010,
SourceForge.net hosted more than 260,000 projects and had over 2.7 million
registered users. Without question, the open-source movement would not be
having the success it enjoys without the availability of the Internet for providing
access and organizing development activities.

If the software is free, you might wonder how anybody makes any money by
developing open-source software. Companies and individuals can make money
with open source: (1) by providing maintenance and other services, or (2) by pro-
viding one version of the software for free and selling a more fully-featured ver-
sion. Some open-source solutions have more of an impact on the software industry
than others. Firefox, for example, has been very successful in the Web browser
market, where it is estimated to have 24 percent of the market share. Other open-
source software products, such as mySQL, have also been successful, and open
source’s share of the software industry seems destined to continue growing.

In-House Development We have talked about several different types of
external organizations that serve as sources of software, but in-house
development remains an option. Of course, in-house development need not
entail development of all of the software that will compose the total system.
Hybrid solutions involving some purchased and some in-house software
components are common. Some in-house software components are reused.
Table 2-2 compares the six different software sources.

Choosing Off-the-Shelf Software
Once you have decided to purchase off-the-shelf software rather than write some
or all of the software for your new system, how do you decide what to buy? Sev-
eral criteria need consideration, and special ones may arise with each potential
software purchase. For each standard, an explicit comparison should be made
between the software package and the process of developing the same applica-
tion in-house. The most common criteria, highlighted in Figure 2-2, are as follows:

� Cost

� Functionality

TABLE 2-2: Comparison of Six Different Sources of Software Components

Producers
When to Go to This Type
of Organization for Software

Internal Staffing
Requirements

IT services firms When task requires custom support and
system can’t be built internally or system
needs to be sourced

Internal staff may be needed, depending
on application

Packaged software producers When supported task is generic Some IS and user staff to define
requirements and evaluate packages

Enterprise solutions vendors For complete systems that cross functional
boundaries

Some internal staff necessary
but mostly need consultants

Cloud computing For instant access to an application;
when supported task is generic

Few; frees up staff for other IT work

Open-source software When supported task is generic but cost
is an issue

Some IS and user staff to define
requirements and evaluate packages

In-house developers When resources and staff are available
and system can be built from scratch

Internal staff necessary though staff
size may vary

34 Part I Foundations for Systems Development

12

3

6

9
1

2

4
57

8

10
11

Cost

Vendor Support

Flexibility

Response Time

Functionality

Viability of Vendor

Documentation

Ease of Installation

FIGURE 2-2
Common criteria for choosing
off-the-shelf software.

� Vendor support

� Viability of vendor

� Flexibility

� Documentation

� Response time

� Ease of installation

The relative importance of these standards will vary from project to project and
from organization to organization. If you had to choose two criteria that would
always be among the most important, those two would probably be vendor sup-
port and vendor viability. You don’t want to license software from a vendor that
has a reputation for poor support. Similarly, you don’t want to get involved with
a vendor that might not be in business tomorrow. How you rank the importance
of the remaining criteria depends primarily on your specific situation.

Cost involves comparing the cost of developing the same system in-house to the
cost of purchasing or licensing the software package. Be sure to include a com-
parison of the cost of purchasing vendor upgrades or annual license fees with the
costs you would incur to maintain your own software. Costs for purchasing and
developing in-house can be compared based on the economic feasibility meas-
ures. Functionality refers to the tasks the software can perform and the mandatory,
essential, and desired system features. Can the software package perform all, or
just some of the tasks your users need? If some, can it perform the necessary core
tasks? Note that meeting user requirements occurs at the end of the analysis
phase because you cannot evaluate packaged software until user requirements
have been gathered and structured. Purchasing application software is not a sub-
stitute for conducting the systems analysis phase.

As we said earlier, vendor support refers to whether the vendor can provide
support, and how much. Support includes assistance to install the software, to
train user and systems staff on the software, and to provide help as problems
arise after installation. Recently, many software companies have significantly

Chapter 2 The Sources of Software 35

reduced the amount of free support they provide customers, so the cost to use
telephone, on-site fax, or computer bulletin board support facilities should be
considered. Related to support is the vendor’s viability. This latter point should
not be minimized. The software industry is quite dynamic, and innovative appli-
cation software is created by entrepreneurs working from home offices—the
classic cottage industry. Such organizations, even with outstanding software,
often do not have the resources or business management ability to stay in
business long. Further, competitive moves by major software firms can render
the products of smaller firms outdated or incompatible with operating systems.
One software firm we talked to while developing this book was struggling to sur-
vive by working to make its software operate on any Windows, Mac OS, or mobile
platform. Keeping up with hardware and system software changes may be more
than a small firm can handle, and good off-the-shelf application software is lost.

Flexibility refers to how easy it is for you, or the vendor, to customize the soft-
ware. If the software is not sufficiently flexible, your users may have to adapt
the way they work to fit the software. Are they likely to adapt in this manner?
Purchased software can be modified in several ways. Sometimes, the vendor
will make custom changes for you if you are willing to pay for the redesign and
programming. Some vendors design the software for customization. For example,
the software may include several different ways of processing data and, at
installation time, the customer chooses which to initiate. Also, displays and
reports may be easily redesigned if these modules are written in a fourth-
generation language. Reports, forms, and displays may be easily customized
using a process whereby your company name and chosen titles for reports,
displays, forms, and column headings are selected from a table of parameters
you provide. You may want to employ some of these same customization tech-
niques for in-house-developed systems so that the software can be easily
adapted for different business units, product lines, or departments.

Documentation includes the user’s manual as well as technical documenta-
tion. How understandable and up to date is the documentation? What is the cost
for multiple copies, if required? Response time refers to how long it takes the
software package to respond to the user’s requests in an interactive session.
Another measure of time would be how long it takes the software to complete
running a job. Finally, ease of installation is a measure of the difficulty of load-
ing the software and making it operational.

Validating Purchased Software Information One way to get all of the
information you want about a software package is to collect it from the vendor.
Some of this information may be contained in the software documentation and
technical marketing literature. Other information can be provided upon request.
For example, you can send prospective vendors a questionnaire asking specific
questions about their packages. This questionnaire may be part of a request for
proposal (RFP) or request for quote (RFQ) process your organization requires
when major purchases are made.

If you decide that new hardware or system software is a strong possibility, you
may want to issue a request for proposal (RFP) to vendors. The RFP will ask
the vendors to propose hardware and system software that will meet the
requirements of your new system. Issuing an RFP gives you the opportunity to
have vendors conduct the research you need in order to decide among various
options. You can request that each bid submitted by a vendor contain certain
information essential for you to decide on what best fits your needs. For exam-
ple, you can ask for performance information related to speed and number of
operations per second. You can ask about machine reliability and service avail-
ability and whether an installation is located nearby that you can visit for more
information. You can ask to take part in a demonstration of the hardware. The
bid will also include information on cost.

Request for proposal
(RFP)
A document provided to vendors
to ask them to propose hardware
and system software that will
meet the requirements of a new
system.

Reuse
The use of previously written
software resources, especially
objects and components, in new
applications.

36 Part I Foundations for Systems Development

Of course, actually using the software yourself and running it through a series
of tests based on the criteria for selecting software may provide the best route for
evaluation. Remember to test not only the software, but also the documentation,
the training materials, and even the technical support facilities. One requirement
you can place on prospective software vendors as part of the bidding process is
that they install (free or at an agreed-upon cost) their software for a limited
amount of time on your computers. This way you can determine how their soft-
ware works in your environment, not in some optimized environment they have.

One of the most reliable and insightful sources of feedback is other users of
the software. Vendors will usually provide a list of customers (remember, they
will naturally tell you about satisfied customers, so you may have to probe for
a cross section of customers) and people who are willing to be contacted by
prospective customers. Here is where your personal network of contacts,
developed through professional groups, college friends, trade associations, or
local business clubs, can be a resource; do not hesitate to find some contacts on
your own. Such current or former customers can provide a depth of insight on
the use of a package at their organizations.

To gain a range of opinions about possible packages, you can use independent
software testing services that periodically evaluate software and collect user
opinions. Such surveys are available for a fee either as subscription services or
on demand. Occasionally, unbiased surveys appear in trade publications. Often,
however, articles in trade publications, even software reviews, are actually
seeded by the software manufacturer and are not unbiased.

If you are comparing several software packages, you can assign scores for
each package on each criterion and compare the scores using the quantitative
method (see Chapter 7) for comparing alternative system design strategies.

Reuse
Reuse is the use of previously written software resources in new applications.
Because so many bits and pieces of applications are relatively generic across
applications, it seems intuitive that great savings can be achieved in many areas
if those generic bits and pieces do not have to be written anew each time they
are needed. Reuse should increase programmer productivity, because being
able to use existing software for some functions means they can perform more
work in the same amount of time. Reuse should also decrease development
time, minimizing schedule overruns. Because existing pieces of software have
already been tested, reusing them tends to result in higher-quality software with
lower defect rates, decreasing maintenance costs.

Although reuse can conceivably apply to many different aspects of software,
typically it is most commonly applied to two different development technologies:
object-oriented and component-based development. For example, consider an
object class created to model an employee. The object class Employee would con-
tain both the data about employees and the instructions necessary for calculating
payroll for a variety of job types. The object class could be used in any application
that dealt with employees, but if changes had to be made in calculating payroll for
different types of employees, the changes would only have to be made to the
object class and not to the various applications that used it. By definition, using
the Employee object class in more than one application constitutes reuse.

Component-based development is similar to object-oriented development in
that the focus is on creating general-purpose pieces of software that can be used
interchangeably in many different programs. Components can be as small as
objects or as large as pieces of software that handle single business functions, such
as currency conversion. The idea behind component-based development is the as-
sembly of an application from many different components at many different levels

Chapter 2 The Sources of Software 37

1-project solution

Many-project solution:
High value per unit investment

2-project solution:
50% more cost and 100% more time

5-project solution:
125% more cost and
150% more time

Number of Projects Using Reusable Assets

De
ve

lo
pm

en
t C

os
t a

nd
 S

ch
ed

ul
e

Re
so

ur
ce

s FIGURE 2-3
Investments necessary to achieve
reusable components.

Source: Royce, W. 1998. Software
Project Management: A Unified
Framework. Boston, MA: Addison-
Wesley. Used by permission.

of complexity and size. Many vendors are working on developing libraries of com-
ponents that can be retrieved and assembled as needed into desired applications.

Some evidence suggests that reuse can be effective, especially for object classes.
For example, one laboratory study found that reuse of object class libraries
resulted in increased productivity, reduced defect density, and reduced rework.
For HP, a reuse program resulted in cutting time to market for certain products by
a factor of three or more, from eighteen months to less than five months. However,
for reuse to work in an organizational setting, many different issues must be
addressed. Technical issues include the current lack of a methodology for creating
and clearly defining and labeling reusable components for placement in a library
and the small number of reusable and reliable software resources currently
available. Key organizational issues include the lack of commitment to reuse, as
well as the lack of proper training and rewards needed to promote it, the lack of
organizational support for institutionalizing reuse, and the difficulty in measuring
the economic gains from reuse. Because of the considerable costs of developing a
reusable component, most organizations cannot compete economically with
established commercial organizations that focus on selling components as their
main line of business. Success depends on being able to leverage the cost of
components across a large user and project base (Figure 2-3). Key legal and con-
tractual issues concerning the reuse of object classes and components originally
used in other applications must also be addressed.

When an organization’s management decides to pursue reuse as a strategy, it is
important for the organization to match its approach to reuse with its strategic busi-
ness goals. The benefits of reuse grow as more corporate experience is gained from
it, but so do the costs and the amount of resources necessary for reuse to work well.
Software reuse has three basic steps: abstraction, storage, and recontextualization.
Abstraction involves the design of a reusable piece of software, starting from ex-
isting software assets or from scratch. Storage involves making software assets
available for others to use. Although it sounds like a simple problem, storage can
actually be very challenging. The problem is not simply putting software assets on
a shelf; the problem is correctly labeling and cataloging assets so that others can
find the ones they want to use. Once an asset has been found, recontextualization,
or making the reusable asset understandable to developers who want to use it in
their systems, becomes important. Software is complex, and a software asset de-
veloped for a particular system under system-specific circumstances may not at all
be the asset it appears to be. What seems to be a generic asset called “Customer”
may actually be something quite different, depending on the context in which it was
developed. It may often appear to be easier to simply build your own assets rather
than invest the time and energy it takes to establish a good understanding of soft-
ware someone else has developed. A key part of a reuse strategy, as mentioned pre-
viously, is establishing rewards, incentives, and organizational support for reuse to
help make it more worthwhile than developing your own assets.

38 Part I Foundations for Systems Development

An organization can take one of four approaches to reuse (see Table 2-3). The
ad hoc reuse approach is not really an approach at all, at least from an official
organizational perspective. With this approach, individuals are free to find or
develop reusable assets on their own, but few, if any, organizational rewards are
offered for reusing assets. Storage is not an issue, because individuals keep track
of and distribute their own software assets. For such an ad hoc, individually
driven approach, it is difficult to measure any potential benefits to the company.

Another approach to reuse is facilitated reuse. With this approach, develop-
ers are not required to practice reuse, but they are encouraged to do so. The
organization makes available some tools and techniques that enable the devel-
opment and sharing of reusable assets, and one or more employees may be
assigned the role of evangelist to publicize and promote the program. Little
is done to track the quality and use of reusable assets; however, the overall
corporate investment is small.

Managed reuse is a more structured, and more expensive, mode of managing
software reuse. With managed reuse, the development, sharing, and adoption of
reusable assets is mandated. The organization establishes processes and policies
for ensuring that reuse is practiced and that the results are measured. The orga-
nization also establishes policies and procedures for ensuring the quality of its
reusable assets. The focus is on identifying existing assets that can be potentially
reused from various sources, including from utility asset libraries that come with
operating systems, from companies that sell assets, from the open-source com-
munity, from internal repositories, from scouring existing legacy code, and so on.

The most expensive and extensive approach to reuse is designed reuse. In ad-
dition to mandating reuse and measuring its effectiveness, the designed reuse
approach takes the extra step of mandating that assets be designed for reuse as
they are being designed for specific applications. The focus is more on devel-
oping reusable assets than on finding existing assets that might be candidates
for reuse. A corporate reuse office may be established to monitor and manage
the overall methodology. Under such an approach, as much as 90 percent of
software assets may be reused across different applications.

Each approach to reuse has its advantages and disadvantages. No single
approach is a silver bullet that will solve the reuse puzzle for all organizations
and for all situations. Successful reuse requires an understanding of how reuse
fits within larger organizational goals and strategies as well as an understand-
ing of the social and technical world into which the reusable assets must fit.

Even though reuse is valuable to many organizations, it turns out it is not
as valuable to all developers in any given organization. Novice developers
are more likely to reuse code and components than are more experienced

TABLE 2-3: Approaches to Reuse

Approach Reuse Level Cost Policies & Procedures

Ad hoc None to low Low None

Facilitated Low Low Developers are encouraged to reuse but are not required to do so.

Managed Moderate Moderate Development, sharing, and adoption of reusable assets are mandated;
organizational policies are established for documentation, packaging,
and certification.

Designed High High Reuse is mandated; policies are put in place so that reuse effectiveness
can be measured; code must be designed for reuse during initial
development, regardless of the application it is originally designed for;
there may be a corporate office for reuse.

Source: Based on Griss, 2003.

Chapter 2 The Sources of Software 39

developers. Novice developers are more risk averse and do not want to make
mistakes, so they tend to reuse an existing code that has already been tested and
verified. More experienced developers tend to trust their own coding skills
more than they trust the skills of others, so they prefer to write and test their
own code. Differences in reuse across different types of development teams are
also common. Transient project teams, which will only exist a short time, are
more likely to reuse than are established, more permanent project teams.

Key Points Review
1. Explain outsourcing.

Outsourcing is the practice of turning over to
another organization all or part of the responsi-
bility for your information systems’ development,
operation, and maintenance. Outsourcing can be
done through many different organizational
arrangements, all of which are governed through
contractual agreements. Outsourcing is big busi-
ness, with large computer firms such as IBM and
HP each handling several contracts worth billions
of dollars per year. As an analyst, you need to con-
sider outsourcing seriously as an alternative way
to get things done.

2. Describe six different sources of software.
As a systems analyst, you must be aware of

where you can obtain software that meets some
or all of an organization’s needs. You can obtain
application (and system) software from informa-
tion technology services firms, packaged soft-
ware providers, vendors of enterprise solutions
software, cloud computing, and open-source soft-
ware providers, as well as from internal systems

development resources, including the reuse of
existing software components.

3. Discuss how to evaluate off-the-shelf software.
You must also know the criteria to use when

choosing among off-the-shelf software products.
These criteria include cost, functionality, vendor
support, vendor viability, flexibility, documenta-
tion, response time, and ease of installation.
Requests for proposals are one way you can col-
lect more information about system software, its
performance, and its costs.

4. Explain reuse and its role in software
development.

Reuse is the use of previously written software re-
sources in new applications. Reuse should increase
programmer productivity, decrease development
time, and result in higher-quality software with
lower defect rates, decreasing maintenance costs.
Some evidence suggests that reuse can be effective,
especially for object classes. However, when an
organization pursues reuse as a strategy, its reuse
strategy should match its strategic business goals.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Cloud computing (p. 32)
2. Enterprise resource planning (ERP) system (p. 31)
3. Outsourcing (p. 28)

4. Request for proposal (RFP) (p. 35)
5. Reuse (p. 36)

Match each of the key terms above with the definition that best fits it.

1. The practice of turning over responsibility
of some or all of an organization’s
information systems applications and
operations to an outside firm.

2. A system that integrates individual
traditional business functions into a series of
modules so that a single transaction occurs
seamlessly within a single information
system rather than several separate systems.

3. A document provided to vendors to ask
them to propose hardware and system

software that will meet the requirements of
your new system.

4. The use of previously written software
resources, especially objects and
components, in new applications.

5. The provision of computing resources
over the Internet, so customers do not
have to invest in the computing
infrastructure needed to run and maintain
the resources.

40 Part I Foundations for Systems Development

Review Questions
1. Describe and compare the six sources of software.
2. How can you decide among various off-the-

shelf software options? What criteria should
you use?

3. What is an RFP, and how do analysts use one to
gather information about hardware and system
software?

4. What methods can a systems analyst employ to
verify vendor claims about a software package?

5. What are ERP systems? What are the benefits
and disadvantages of such systems as a design
strategy?

6. Explain reuse and its advantages and
disadvantages.

7. Compare and contrast the four approaches to
reuse.

8. Why would a company rely on cloud computing
for its software needs?

Problems and Exercises
1. Research how to prepare an RFP.
2. Review the criteria for selecting off-the-shelf

software presented in this chapter. Use your
experience and imagination and describe other
criteria that are or might be used to select off-the-
shelf software in the “real world.” For each new
criterion, explain how use of this criterion might
be functional (i.e., it is useful to use this crite-
rion), dysfunctional, or both.

3. In the section on choosing off-the-shelf soft-
ware, eight criteria are proposed for evaluating

alternative packages. Suppose the choice is be-
tween alternative custom software developers
rather than prewritten packages. What criteria
would be appropriate to select and compare
among competing bidders for custom develop-
ment of an application? Define each of these
criteria.

4. How might the project team recommending an
ERP design strategy justify its recommenda-
tion as compared with other types of design
strategies?

Field Exercises
1. Interview businesspeople who participate in the

purchase of off-the-shelf software in their
organizations. Review with them the criteria for
selecting off-the-shelf software presented in this
chapter. Have them prioritize the list of criteria
as they are used in their organization and provide
an explanation of the rationale for each crite-
rion’s ranking. Ask them to list and describe any
other criteria that are used in their organization.

2. Obtain copies of actual RFPs used for informa-
tion systems developments or purchases. If pos-
sible, obtain RFPs from public and private

organizations. Find out how they are used. What
are the major components of these proposals?
Do these proposals seem to be useful? Why or
why not? How and why do RFPs from public and
private organizations differ?

3. Contact an organization that has or is imple-
menting an integrated ERP application. Why did it
choose this design strategy? How has it managed
this development project differently from prior
large projects? What organizational changes have
occurred due to this design strategy? How long
did the implementation last and why?

CASE: PETRIE’S ELECTRONICS

The Sources of Software
Jim Watanabe looked around his new office. He
couldn’t believe that he was the assistant director of
information technology at Petrie’s Electronics, his
favorite consumer electronics retail store. He always
bought his new DVDs and video games for his Xbox
360 at Petrie’s. In fact, he had bought his Blu-ray

player and his Xbox 360 at Petrie’s, along with his sur-
round sound system and his 40" flat-screen HD LED
TV. And now he worked there too. The employee dis-
count was a nice perk1 of his new job, but he was also
glad that his technical and people skills were finally
recognized by the people at Petrie’s. He had worked
for five years at Broadway Entertainment Company

1 perquisite

Chapter 2 The Sources of Software 41

as a senior systems analyst, and it was clear that he
was not going to be promoted there. He was really
glad he had put his résumé up on Monster.com and
that now he had a bigger salary and a great job with
more responsibility at Petrie’s.

Petrie’s Electronics had started as a single electron-
ics store in 1984 in San Diego, California. The store
was started by Jacob Rosenstein in a strip mall. It
was named after Rob Petrie, the TV writer played by
Dick Van Dyke in the TV show named after himself.
Rosenstein always liked that show. When he had
grown the store to a chain of thirteen stores in the
Southern California area, it was too much for
Rosenstein to handle. He sold out in 1992, for a hand-
some profit, to the Matsutoya Corporation, a huge
Japanese conglomerate that saw the chain of stores
as a place to sell its many consumer electronics goods
in the U.S.

Matsutoya aggressively expanded the chain to
218 stores nationwide by the time they sold the chain
in 2002, for a handsome profit, to Sam and Harry’s, a
maker and seller of ice cream. Sam and Harry’s was
looking for a way to diversify and invest the con-
siderable cash they had made creating and selling
ice cream, with flavors named after actors and
actresses, like their best selling Lime Neeson and Jim
Carrey-mel. Sam and Harry’s brought in professional
management to run the chain, and since they bought
it, they added fifteen more stores, including one in
Mexico and three in Canada. Even though they origi-
nally wanted to move the headquarters to their home
state of Delaware, Sam and Harry decided to keep
Petrie’s headquartered in San Diego.

The company had made some smart moves and
had done well, Jim knew, but he also knew that com-
petition was fierce. Petrie’s competitors included big
electronics retail chains like Best Buy. In California,
Fry’s was a ferocious competitor. Other major play-
ers in the arena included the electronics departments
of huge chains like Wal-Mart and Target and online
vendors like Amazon.com. Jim knew that part of his
job in IT was to help the company grow and prosper
and beat the competition—or at least survive.

Just then, as Jim was trying to decide if he needed
a bigger TV, Ella Whinston, the chief operations offi-
cer at Petrie’s, walked into his office. “How’s it going,
Jim? Joe keeping you busy?” Joe was Joe Swanson,
Jim’s boss, the director of IT. Joe was away for the
week, at a meeting in Pullman, Washington. Jim
quickly pulled his feet off his desk.

“Hi, Ella. Oh, yeah, Joe keeps me busy. I’ve got to
get through the entire corporate strategic IT plan

before he gets back—he’s going to quiz me—and then
there’s the new help-desk training we are going to
start next week.”

“I didn’t know we had a strategic IT plan,” Ella
teased. “Anyway, what I came in here for is to give
you some good news. I have decided to make you the
project manager for a project that is crucial to our
corporate survival.”

“Me?” Jim said. “But I just got here.”
“Who better than you? You have a different per-

spective, new ideas. You aren’t chained down by the
past and by the Petrie’s way of doing things, like the
rest of us. Not that it matters, since you don’t have a
choice. Joe and I both agree that you are the best per-
son for the job.”

“So,” Jim asked, “what’s the project about?”
“Well,” Ella began, “the executive team has decided

that the number one priority we have right now is to
not only survive but to thrive and to prosper, and the
way to do that is to develop closer relationships with
our customers. The other person on the executive
team, who is even more excited about this than me,
is John [John Smith, the head of marketing]. We want
to attract new customers, like all of our competitors.
But also like our competitors, we want to keep our
customers for life, kind of like a frequent flier
program, but better. Better for us and for our loyal
customers. And we want to reward most, the cus-
tomers who spend the most. We are calling the proj-
ect ‘No Customer Escapes.’”

“I hope that’s only an internal name,” Jim joked.
“Seriously, I can see how something like this
would be good for Petrie’s, and I can see how IT
would play an important, no, crucial role in mak-
ing something like this happen. OK, then, let’s get
started.”

Case Questions

1. How do information systems projects get started
in organizations?

2. How are organizational information systems
related to company strategy? How does strategy
affect the information systems a company devel-
ops and uses?

3. Research customer loyalty programs in retail
firms. How common are they? What are their pri-
mary features?

4. What do you think Jim’s next step would be? Why?
5. Why would a systems analyst new to a company

be a good choice to lead an important systems
development effort?

42

Managing the Information
Systems Project

After studying this chapter, you should be able to:

three
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

� Describe the skills required to be an effective
project manager.

� List and describe the skills and activities of
a project manager during project initiation,
project planning, project execution, and project
closedown.

� Explain what is meant by critical path
scheduling and describe the process of
creating Gantt charts and Network diagrams.

� Explain how commercial project management
software packages can be used to assist in
representing and managing project schedules.

©
 L

W
A

/
G

et
ty

 Im
ag

es

Chapter Preview . . .

In Chapter 1, we introduced the four phases of
the systems development life cycle (SDLC) and

explained how an information system project

moves through those four phases. In this

chapter, we focus on the systems analyst’s role

as project manager of information systems

projects. Throughout the SDLC, the project

manager is responsible for initiating, planning,

executing, and closing down the systems devel-

opment project. Figure 3-1 illustrates these four

functions.

We use two fictional companies in this book—

Pine Valley Furniture and Hoosier Burger—to

help illustrate key SDLC concepts. Icons appear

in the margins to make references to these com-

panies easy to spot while you read. The next sec-

tion gives you background on Pine Valley

Furniture, a manufacturing company. Next, we

describe the project manager’s role and the proj-

ect management process. The subsequent sec-

tion examines techniques for reporting project

plans using Gantt charts and Network diagrams.

At the end of the chapter, we discuss commer-

cially available project management software

that a systems analyst can use in a wide variety

of project management activities.

43

Project Initiation

Project Execution

Pr
oj

ec
t C

lo
se

do
w

n Project Planning

Phase 1:
Systems Planning

and Selection

Phase 2:
Systems Analysis

Phase 3:
Systems Design

Phase 4: Systems
Implementation and

Operation SDLC

FIGURE 3-1
Management is necessary
throughout the systems
development life cycle (SDLC).

44 Part I Foundations for Systems Development

Customer
Master

File

Inventory
Master

File

Back
Order
File

Inventory
Pricing

File

Customer
Master

File

Employee
Master

File

Payroll
System

Invoicing
System

Order Filling
System

Program
A

Program
B

Program
C

Program
A

Program
B

Program
A

Program
B

Orders Department Accounting Department Payroll DepartmentFIGURE 3-2
Three computer applications
at Pine Valley Furniture:
order filling, invoicing,
and payroll.

Source: Hoffer, Ramesh, and
Topi, 2011.

Pine Valley Furniture Company Background
Pine Valley Furniture (PVF) Company manufactures high-quality wood
furniture and distributes it to retail stores within the United States. Its product
lines include dinette sets, stereo cabinets, wall units, living room furniture, and
bedroom furniture. In the early 1980s, PVF’s founder, Alex Schuster, started to
make and sell custom furniture in his garage. Alex managed invoices and kept
track of customers by using file folders and a filing cabinet. By 1984, business
expanded and Alex had to rent a warehouse and hire a part-time bookkeeper.
PVF’s product line had multiplied, sales volume had doubled, and staff had
increased to fifty employees. By 1990, PVF moved into its third and present
location. Because of the added complexity of the company’s operations, Alex
reorganized the company into the following functional areas:

� Manufacturing, which was further subdivided into three separate
functions—fabrication, assembling, and finishing

� Sales

� Orders

� Accounting

� Purchasing

Alex and the heads of the functional areas established manual information
systems, such as accounting ledgers and file folders, which worked well for a
time. Eventually, however, PVF selected and installed a minicomputer to auto-
mate invoicing, accounts receivable, and inventory control applications.

When the applications were first computerized, each separate application had
its own individual data files tailored to the needs of each functional area. As is
typical in such situations, the applications closely resembled the manual
systems on which they were based. Three computer applications at PVF are
depicted in Figure 3-2: order filling, invoicing, and payroll. In the late 1990s, PVF
formed a task force to study the possibility of moving to a database approach.
After a preliminary study, management decided to convert its information
systems to such an approach. The company upgraded its minicomputer and
implemented a database management system. By the time we caught up with
PVF, it had successfully designed and populated a company-wide database, and
had converted its applications to work with the database. However, PVF is contin-
uing to grow at a rapid rate, putting pressure on its current application systems.

Project
A planned undertaking of related
activities, having a beginning
and an end, to reach an
objective.

Project manager
A systems analyst with a diverse
set of skills—management,
leadership, technical, conflict
management, and customer
relationship—who is responsible
for initiating, planning,
executing, and closing down
a project.

Chapter 3 Managing the Information Systems Project 45

The computer-based applications at PVF support its business processes.
When customers order furniture, their orders must be processed appropriately:
Furniture must be built and shipped to the right customer and the right invoice
mailed to the right address. Employees have to be paid for their work. Given
these tasks, most of PVF’s computer-based applications are located in the ac-
counting and financial areas. The applications include order filling, invoicing,
accounts receivable, inventory control, accounts payable, payroll, and general
ledger. At one time, each application had its own data files. For example, PVF
had a customer master file, an inventory master file, a back-order file, an in-
ventory pricing file, and an employee master file. The order filling system uses
data from three files: customer master, inventory master, and back order. With
PVF’s new centralized database, data are organized around entities, or subjects,
such as customers, invoices, and orders.

Pine Valley Furniture Company, like many firms, decided to develop its appli-
cation software in-house; that is, it hired staff and bought computer hardware
and software necessary to build application software suited to its own needs.
(Other methods used to obtain application software were explained in Chapter 2.)
Although PVF continues to grow at a rapid rate, market conditions are
becoming extremely competitive, especially with the advent of the Internet and
the World Wide Web. Let’s see how a project manager plays a key role in
developing a new information system for PVF.

Managing the Information Systems Project
Project management is an important aspect of the development of information
systems and a critical skill for a systems analyst. The focus of project management
is to ensure that system development projects meet customer expectations and are
delivered within budget and time constraints.

The project manager is a systems analyst with a diverse set of skills—
management, leadership, technical, conflict management, and customer
relationship—who is responsible for initiating, planning, executing, and closing
down a project. As a project manager, your environment is one of continual
change and problem solving. In some organizations, the project manager is a
senior systems analyst who “has been around the block” a time or two. In
others, both junior and senior analysts are expected to take on this role, man-
aging parts of a project or actively supporting a more senior colleague who is
assuming this role. Understanding the project management process is a critical
skill for your future success.

Creating and implementing successful projects requires managing resources,
activities, and tasks needed to complete the information systems project. A
project is a planned undertaking of a series of related activities, having a
beginning and an end, to reach an objective. The first questions you might ask
yourself are, Where do projects come from? and, after considering all the
different things that you could be asked to work on within an organization, How
do I know which projects to work on? The ways in which each organization
answers these questions vary.

In the rest of this section, we describe the process followed by Juanita Lopez
and Chris Martin during the development of Pine Valley Furniture’s Purchasing
Fulfillment System. Juanita works in the purchasing department, and Chris is a
systems analyst.

Juanita observed problems with the way orders were processed and reported:
sales growth had increased the workload for the manufacturing department,
and the current systems no longer adequately supported the tracking of orders.

It was becoming more difficult to track orders and get the right furniture and
invoice to the right customers. Juanita contacted Chris, and together they
developed a system that corrected these purchasing department problems.

Deliverable
An end product in a phase
of the SDLC.

46 Part I Foundations for Systems Development

Pine Valley Furniture
System Service Request

REQUESTED BY

DEPARTMENT

LOCATION

CONTACT

TYPE OF REQUEST URGENCY

DATEJuanita Lopez

Purchasing, Manufacturing Support

Headquarters, 1-322

Tel: 4-3267 FAX: 4-3270 e-mail:

November 2, 2012

[

[
[

]

]
]

[

[
[

]

]
]

New System

System Enhancement
System Error Correction

Immediate—Operations are impaired or
opportunity lost
Problems exist, but can be worked around
Business losses can be tolerated until new
system installed

X

X

Sales growth at PVF has caused greater volume of work for the manufacturing support unit within
Purchasing. Further, more concentration on customer service has reduced manufacturing lead times,
which puts more pressure on purchasing activities. In addition, cost-cutting measures force Purchasing
to be more agressive in negotiating terms with vendors, improving delivery times, and lowering our
investments in inventory. The current modest systems support for manufacturing purchasing is not
responsive to these new business conditions. Data are not available, information cannot be summarized,
supplier orders cannot be adequately tracked, and commodity buying is not well supported. PVF is
spending too much on raw materials and not being responsive to manufacturing needs.

I request a thorough analysis of our current operations with the intent to design and build a completely
new information system. This system should handle all purchasing transactions, support display and
reporting of critical purchasing data, and assist purchasing agents in commodity buying.

Chris Martin (Tel: 4-6204 FAX: 4-6200 e-mail: )

Sal Divario, Director, Purchasing

TO BE COMPLETED BY SYSTEMS PRIORITY BOARD

[

[
[
[

]

]
]
]

Request approved

Recommend revision
Suggest user development
Reject for reason

Assigned to
Start date

IS LIAISON

SPONSOR

PROBLEM STATEMENT

SERVICE REQUEST

FIGURE 3-3
System service request for
purchasing fulfillment with
name and contact information
of the person requesting the
system, a statement of the
problem, and the name and
contact information of the
liaison and sponsor.

The first deliverable, or end product, produced by Chris and Juanita was a
system service request (SSR), a standard form PVF uses for requesting systems
development work. Figure 3-3 shows an SSR for purchasing a fulfillment
system. The form includes the name and contact information of the person
requesting the system, a statement of the problem, and the name and contact
information of the liaison and sponsor.

This request was then evaluated by the Systems Priority Board of PVF.
Because all organizations have limited time and resources, not all requests can
be approved. The board evaluates development requests in relation to the
business problems or opportunities the system will solve or create. It also consid-
ers how the proposed project fits within the organization’s information systems
architecture and long-range development plans. The review board selects those
projects that best meet overall organizational goals. In the case of the Purchasing
Fulfillment System request, the board found merit in the request and approved

Feasibility study
Determines whether the
information system makes sense
for the organization from an
economic and operational
standpoint.

Chapter 3 Managing the Information Systems Project 47

1.

2.

3.

4.

5.

Juanita observed problems with existing
purchasing system.

Juanita contacted Chris within the IS development
group to initiate a System Service Request (SSR).

SSR was reviewed and approved by Systems
Priority Board.

Steering committee was assigned to oversee project.

Detailed project plan was developed and executed.

FIGURE 3-4
A graphical view of the five
steps followed during the project
initiation of the purchasing
fulfillment system.

a more detailed feasibility study. A feasibility study, conducted by the project
manager, involves determining whether the information system makes sense
for the organization from an economic and operational standpoint. The study
takes place before the system is constructed. Figure 3-4 is a graphical view of
the steps followed during the project initiation of the Purchasing Fulfillment
System.

In summary, systems development projects are undertaken for two primary
reasons: to take advantage of business opportunities and to solve business
problems. Taking advantage of an opportunity might mean providing an inno-
vative service to customers through the creation of a new system. For example,
PVF may want to create a Web page so that customers can easily access its cat-
alog and place orders at any time. Solving a business problem could involve
modifying how an existing system processes data so that more accurate or
timely information is provided to users. For example, a company such as PVF
may create a password-protected intranet site that contains important an-
nouncements and budget information.

Projects are not always initiated for the rational reasons (taking advantage of
business opportunities or solving business problems) previously stated. For
example, in some instances organizations and government undertake projects
to spend resources, attain or pad budgets, keep people busy, or help train people
and develop their skills. Our focus in this chapter is not on how and why
organizations identify projects but on the management of projects once they
have been identified.

Once a potential project has been identified, an organization must determine the
resources required for its completion by analyzing the scope of the project and de-
termining the probability of successful completion. After getting this information,
the organization can then determine whether taking advantage of an opportunity
or solving a particular problem is feasible within time and resource constraints. If
deemed feasible, a more detailed project analysis is then conducted.

Project management
A controlled process of initiating,
planning, executing, and closing
down a project.

48 Part I Foundations for Systems Development

Customer and
Management
Expectations

Technological
Change

Documentation
and

Communication

Contractors
and Vendors

Managing
People

Methodologies
and Tools

Time and
Resource

Constraints

Systems
Development

Life Cycle

Organizational
Change and
Complexity

The Art
of

Project
Management

FIGURE 3-5
A project manager juggles
numerous activities.

As you will see, determining the size, scope, and resource requirements for a
project are just a few of the many skills that a project manager must possess. A
project manager is often referred to as a juggler keeping aloft many balls, which
reflect the various aspects of a project’s development, as depicted in Figure 3-5.

To successfully orchestrate the construction of a complex information
system, a project manager must have interpersonal, leadership, and technical
skills. Table 3-1 lists the project manager’s common activities and skills. Note
that many of the skills are related to personnel or general management, not
simply technical skills. Table 3-1 shows that not only does an effective project
manager have varied skills, but he or she is also the most instrumental person
to the successful completion of any project.

The remainder of this chapter will focus on the project management
process, which involves four phases:

1. Initiating the project

2. Planning the project

3. Executing the project

4. Closing down the project

Several activities must be performed during each of these four phases.
Following this formal project management process greatly increases the like-
lihood of project success.

Project initiation
The first phase of the project
management process in which
activities are performed to assess
the size, scope, and complexity
of the project and to establish
procedures to support later
project activities.

Chapter 3 Managing the Information Systems Project 49

TABLE 3-1: Common Activities and Skills of a Project Manager

Activity Description Skill

Leadership Influencing the activities of others toward the
attainment of a common goal through the use
of intelligence, personality, and abilities

Communication; liaison between
management, users, and developers;
assigning activities; monitoring progress

Management Getting projects completed through the effective
utilization of resources

Defining and sequencing activities;
communicating expectations; assigning
resources to activities; monitoring outcomes

Customer relations Working closely with customers to ensure
project deliverables meet expectations

Interpreting system requests and
specifications; site preparation and user
training; contact point for customers

Technical problem solving Designing and sequencing activities to attain
project goals

Interpreting system requests and specifications;
defining activities and their sequence; making
trade-offs between alternative solutions;
designing solutions to problems

Conflict management Managing conflict within a project team to
ensure that conflict is not too high or too low

Problem solving; smoothing out personality
differences; compromising; goal setting

Team management Managing the project team for effective team
performance

Communication within and between teams;
peer evaluations; conflict resolution; team
building; self-management

Risk and change
management

Identifying, assessing, and managing the
risks and day-to-day changes that occur during
a project

Environmental scanning; risk and opportunity
identification and assessment; forecasting;
resource redeployment

Initiating the Project
During project initiation the project manager performs several activities that
assess the size, scope, and complexity of the project, and establishes procedures
to support subsequent activities. Depending on the project, some initiation
activities may be unnecessary and some may be more involved. The types of
activities you will perform when initiating a project are summarized in Figure 3-6
and are described next.

1. Establishing the project initiation team. This activity involves organizing
an initial core of project team members to assist in accomplishing the

Project Initiation

1. Establishing the Project Initiation Team

2. Establishing a Relationship with the Customer

3. Establishing the Project Initiation Plan

4. Establishing Management Procedures

6. Developing the Project Charter

5. Establishing the Project Management
Environment and Project Workbook

FIGURE 3-6
Six project initiation activities.

Project workbook
An online or hard-copy
repository, for all project
correspondence, inputs, outputs,
deliverables, procedures, and
standards, that is used for
performing project audits,
orienting new team members,
communicating with
management and customers,
identifying future projects, and
performing postproject reviews.

50 Part I Foundations for Systems Development

project initiation activities. For example, during the Purchasing
Fulfillment System project at PVF, Chris Martin was assigned to support
the purchasing department. It is a PVF policy that all initiation teams
consist of at least one user representative, in this case Juanita Lopez, and
one member of the IS development group. Therefore, the project initiation
team consisted of Chris and Juanita; Chris was the project manager.

2. Establishing a relationship with the customer. A thorough understanding
of your customer builds stronger partnerships and higher levels of trust.
At PVF, management has tried to foster strong working relationships
between business units (such as purchasing) and the IS development
group by assigning a specific individual to work as a liaison between both
groups. Because Chris had been assigned to the purchasing unit for some
time, he was already aware of some of the problems with the existing
purchasing systems. PVF’s policy of assigning specific individuals to each
business unit helped to ensure that both Chris and Juanita were
comfortable working together prior to the initiation of the project. Many
organizations use a similar mechanism for establishing relationships with
customers.

3. Establishing the project initiation plan. This step defines the activities
required to organize the initiation team while it is working to define the
scope of the project. Chris’s role was to help Juanita translate her
business requirements into a written request for an improved information
system. This task required the collection, analysis, organization, and
transformation of a lot of information. Because Chris and Juanita were
already familiar with each other and their roles within a development
project, they next needed to define when and how they would
communicate, define deliverables and project steps, and set deadlines.
Their initiation plan included agendas for several meetings. These steps
eventually led to the creation of their system service request (SSR) form.

4. Establishing management procedures. Successful projects require the
development of effective management procedures. Within PVF, many of
these management procedures had been established as standard operating
procedures by the Systems Priority Board and the IS development group.
For example, all project development work is charged to the functional
unit requesting the work. In other organizations, each project may have
unique procedures tailored to its needs. Yet, in general, when establishing
procedures, you are concerned with developing team communication
and reporting procedures, job assignments and roles, project change
procedures, and determining how project funding and billing will be
handled. It was fortunate for Chris and Juanita that most of these
procedures were already established at PVF, allowing them to move
quickly on to other project activities.

5. Establishing the project management environment and project
workbook. The focus of this activity is to collect and organize the tools
that you will use while managing the project and to construct the project
workbook. For example, most diagrams, charts, and system descriptions
provide much of the project workbook contents. Thus, the project
workbook serves as a repository for all project correspondence, inputs,
outputs, deliverables, procedures, and standards established by the
project team. The project workbook can be stored as an online electronic
document, a Web site, or in a large three-ring binder. The project
workbook is used by all team members and is useful for project audits,
orientation of new team members, communication with management
and customers, identification of future projects, and performance of
postproject reviews. The establishment and diligent recording of all

Project charter
A short, high-level document
prepared for both internal and
external stakeholders to formally
announce the establishment
of the project and to briefly
describe its objective, key
assumptions, and stakeholders.

Chapter 3 Managing the Information Systems Project 51

Pine Valley Furniture
Information System
Development Group

1. Project overview
2. Initiation plan and SSR
3. Project scope and risks
4. Management procedures
5. Data descriptions
6. Process descriptions
7. Team correspondence
8. Statement of work
9. Project schedule

Online copies of data dictionary,
diagrams, schedules, reports, etc.

1

2

3

4

5

6

7

8

9

Purchasing Fulfillment System

Manager: Chris Martin

FIGURE 3-7
The project workbook for the
Purchase Fulfillment System
project contains nine key
documents in both hard-copy
and electronic form.

project information in the workbook are two of the most important
activities you will perform as project manager.

Figure 3-7 shows the project workbook for the Purchasing Fulfillment
System. It consists of both a large hard-copy binder and online storage
where the system data dictionary, a catalog of data stored in the database,
and diagrams are stored. For this system, all project documents can fit into
a single binder. It is not unusual, however, for project documentation to be
spread over several binders. As more information is captured and recorded
electronically, however, fewer hard-copy binders may be needed. Many
project teams keep their project workbooks on the Web. A Web site can be
created so that all project members can easily access all project documents.
This Web site can be a simple repository of documents or an elaborate site
with password protection and security levels. The best feature of using the
Web as your repository is that it allows all project members and customers
to review a project’s status and all related information continually.

6. Developing the project charter. The project charter is a short (typically
one page), high-level document prepared for the customer that describes
what the project will deliver and outlines many of the key elements of the
project. A project charter can vary in the amount of detail it contains, but
often includes the following elements:

� Project title and date of authorization
� Project manager name and contact information
� Customer name and contact information
� Projected start and completion dates
� Project description and objectives
� Key assumptions or approach
� Key stakeholders, roles, responsibilities and signatures

The project charter ensures that both you and your customer gain a common
understanding of the project. It is also a useful communication tool; it helps
to announce to the organization that a particular project has been chosen for
development. A sample project charter is shown in Figure 3-8.

52 Part I Foundations for Systems Development

Pine Valley Furniture

Project Charter Prepared: November 2, 2012

Project Name: Customer Tracking System

Project Manager: Jim Woo ()

Customer: Marketing

Project Sponsor: Jackie Judson ()

Project Start/End (projected): 10/2/12–2/1/13

Project Overview:

 This project will implement a customer tracking system for the marketing department.
 The purpose of this system is to automate the . . . to save employee time, reduce errors,
 have more timely information . . .

Objectives:

 • Minimize data entry errors
 • Provide more timely information
 • . . .

Key Assumptions:

 • System will be built in-house
 • Interface will be a Web-browser
 • System will access customer database
 • . . .

Stakeholders and Responsibilities

Stakeholder Role Responsibility Signatures

Jackie Judson VP Marketing Project Vision, Resources

Alex Datta CIO Monitoring, Resources

Jim Woo Project Manager Plan, Monitor, Execute Project

James Jordan Director of Sales System Functionality

Mary Shide VP Human Resoures Staff Assignments

FIGURE 3-8
A project charter for a proposed information systems project.

Project initiation is complete once these six activities have been performed.
Before moving on to the next phase of the project, the work performed during
project initiation is reviewed at a meeting attended by management, customers,
and project team members. An outcome of this meeting is a decision to continue
the project, modify it, or abandon it. In the case of the Purchasing Fulfillment
System project at Pine Valley Furniture, the board accepted the SSR and
selected a project steering committee to monitor project progress and to provide
guidance to the team members during subsequent activities. If the scope of the

Project planning
The second phase of the project
management process, which
focuses on defining clear,
discrete activities and the work
needed to complete each activity
within a single project.

Chapter 3 Managing the Information Systems Project 53

1 Week
Out

Low

Medium

High

1 Month
Out

6 Months
Out

Planning Horizon

Pl
an

ni
ng

 D
et

ai
l

FIGURE 3-9
Level of project planning detail
should be high in the short term,
with less detail as time goes on.

project is modified, it may be necessary to return to project initiation activities
and collect additional information. Once a decision is made to continue the
project, a much more detailed project plan is developed during the project
planning phase.

Planning the Project
The next step in the project management process is project planning. Project
planning involves defining clear, discrete activities and the work needed to
complete each activity within a single project. It often requires you to make
numerous assumptions about the availability of resources such as hardware,
software, and personnel. It is much easier to plan nearer-term activities than
those occurring in the longer term. In actual fact, you often have to construct
longer-term plans that are more general in scope and nearer-term plans that are
more detailed. The repetitive nature of the project management process requires
that plans be constantly monitored throughout the project and periodically
updated (usually after each phase) based upon the most recent information.

Figure 3-9 illustrates the principle that nearer-term plans are typically more
specific and firmer than longer-term plans. For example, it is virtually impossi-
ble to rigorously plan activities late in the project without first completing
earlier activities. Also, the outcome of activities performed earlier in the project
are likely to affect later activities. In other words, it is difficult, and likely inef-
ficient, to try to plan detailed solutions for activities that will occur far in the
future.

As with the project initiation process, varied and numerous activities must be
performed during project planning. For example, during the Purchasing Ful-
fillment System project, Chris and Juanita developed a ten-page plan. However,
project plans for large systems may be several hundred pages in length. The
types of activities that you can perform during project planning are summarized
in Figure 3-10 and are described in the following list:

1. Describing project scope, alternatives, and feasibility. The purpose of
this activity is to understand the content and complexity of the project.
Within PVF’s system development methodology, one of the first meetings
must focus on defining a project’s scope. Although project scope
information was not included in the SSR developed by Chris and Juanita,
it is important that both share the same vision for the project before
moving too far along. During this activity, you should reach agreement
on the following questions:

� What problem or opportunity does the project address?
� What are the quantifiable results to be achieved?

Gantt chart
A graphical representation of a
project that shows each task as
a horizontal bar whose length is
proportional to its time for
completion.

Work breakdown
structure (WBS)
The process of dividing the
project into manageable tasks
and logically ordering them
to ensure a smooth evolution
between tasks.

54 Part I Foundations for Systems Development

Project Planning

1. Describing Project Scope, Alternatives,
and Feasibility

2. Dividing the Project into Manageable Tasks

3. Estimating Resources and Creating a
Resource Plan

4. Developing a Preliminary Schedule

5. Developing a Communication Plan

6. Determining Project Standards and Procedures

7. Identifying and Assessing Risk

8. Creating a Preliminary Budget

9. Developing a Project Scope Statement

10. Setting a Baseline Project Plan

FIGURE 3-10
Ten project planning activities.

� What needs to be done?
� How will success be measured?
� How will we know when we are finished?

After defining the scope of the project, your next objective is to identify
and document general alternative solutions for the current business
problem or opportunity. You must then assess the feasibility of each
alternative solution and choose which to consider during subsequent
SDLC phases. In some instances, off-the-shelf software can be found. It is
also important that any unique problems, constraints, and assumptions
about the project be clearly stated.

2. Dividing the project into manageable tasks. This activity is critical during
the project planning process. Here, you must divide the entire project into
manageable tasks and then logically order them to ensure a smooth
evolution between tasks. The definition of tasks and their sequence is
referred to as the work breakdown structure (WBS). Some tasks
may be performed in parallel, whereas others must follow one another
sequentially. Task sequence depends on which tasks produce deliverables
needed in other tasks, when critical resources are available, the
constraints placed on the project by the client, and the process outlined
in the SDLC.

For example, suppose that you are working on a new development
project and need to collect system requirements by interviewing users of
the new system and reviewing reports they currently use to do their job.
A work breakdown for these activities is represented in a Gantt chart in
Figure 3-11. A Gantt chart is a graphical representation of a project that
shows each task as a horizontal bar whose length is proportional to its time
for completion. Different colors, shades, or shapes can be used to highlight
each kind of task. For example, those activities on the critical path
(defined later in this chapter) may be in red, and a summary task could
have a special bar. Note that the black horizontal bars—rows 1, 2, and 6 in
Figure 3-11—represent summary tasks. Planned versus actual times or
progress for an activity can be compared by parallel bars of different
colors, shades, or shapes. Gantt charts do not show how tasks must be
ordered (precedence) but simply show when an activity should begin

Chapter 3 Managing the Information Systems Project 55

FIGURE 3-11
Gantt chart showing project tasks,
duration times for those tasks,
and predecessors.

and end. In Figure 3-11, the task duration is shown in the second column,
in days, and necessary prior tasks are noted in the third column as
predecessors. Most project management software tools support a broad
range of task durations, including minutes, hours, days, weeks, and
months. As you will learn in later chapters, the SDLC consists of several
phases, which you need to break down into activities. Creating a work
breakdown structure requires that you decompose phases into activities—
summary tasks—and activities into specific tasks. For example, Figure 3-11
shows that the activity Interviewing consists of three tasks: design
interview form, schedule appointments, and conduct interviews.

Defining tasks in too much detail will make the management of the
project unnecessarily complex.

What are the characteristics of a task? A task:

� Can be done by one person or a well-defined group
� Has a single and identifiable deliverable (the task, however, is the

process of creating the deliverable)
� Has a known method or technique
� Has well-accepted predecessor and successor steps
� Is measurable so that percent completed can be determined

Through experience, you will develop the skill of discovering the
optimal level of detail for representing tasks. For example, it may be
difficult to list tasks that require less than one hour of time to complete
in a final work breakdown structure. Alternatively, choosing tasks that are
too large in scope (e.g., several weeks long) will not provide you with a
clear sense of the status of the project or of the interdependencies
between tasks.

3. Estimating resources and creating a resource plan. The goal of this
activity is to estimate resource requirements for each project activity
and use this information to create a project resource plan. The
resource plan helps assemble and deploy resources in the most
effective manner. For example, you would not want to bring additional
programmers onto the project at a rate faster than you could prepare
work for them. Project managers use a variety of tools to assist in
making estimates of project size and costs. The most widely used
method is called COCOMO (COnstructive COst MOdel), which uses
parameters that were derived from prior projects of differing

COCOMO
A method for estimating a
software project’s size and cost.

56 Part I Foundations for Systems Development

FIGURE 3-12
COCOMO is used by many
project managers to estimate
project resources.

Low

High

Time of Programming a Task

Brenda

Adam
CarlQu

al
ity

 o
f W

or
k

LongShort

FIGURE 3-13
Trade-offs between the quality
of the program code versus the
speed of programming.

complexity. COCOMO uses these different parameters to predict
human resource requirements for basic, intermediate, and complex
systems (see Figure 3-12).

People are the most important and expensive part of project resource
planning. Project time estimates for task completion and overall system
quality are significantly influenced by the assignment of people to tasks. It
is important to give people tasks that allow them to learn new skills. It is
equally important to make sure that project members are not in “over their
heads” or working on a task that is not well suited to their skills. Resource
estimates may need to be revised based upon the skills of the actual
person (or people) assigned to a particular activity. Figure 3-13 indicates
the relative programming speed versus the relative programming quality
of three programmers. The figure suggests that Carl should not be
assigned tasks in which completion time is critical and that Brenda
should be assigned to tasks in which high quality is most vital.

Network diagram
A diagram that depicts project
tasks and their interrelationships.

Chapter 3 Managing the Information Systems Project 57

FIGURE 3-14
A Network diagram illustrates
tasks with rectangles (or ovals)
and the relationships and
sequences of those activities
with arrows.

One approach to assigning tasks is to assign a single task type (or only
a few task types) to each worker for the duration of the project. For
example, you could assign one worker to create all computer displays and
another to create all system reports. Such specialization ensures that both
workers become efficient at their own particular tasks. A worker may
become bored if the task is too specialized or is long in duration, so you
could assign workers to a wider variety of tasks. However, this approach
may lead to lowered task efficiency. A middle ground would be to make
assignments with a balance of both specialization and task variety.
Assignments depend upon the size of the development project and the
skills of the project team. Regardless of the manner in which you assign
tasks, make sure that each team member works only on one task at a time.
Exceptions to this rule can occur when a task occupies only a small
portion of a team member’s time (e.g., testing the programs developed
by another team member) or during an emergency.

4. Developing a preliminary schedule. During this activity, you use the
information on tasks and resource availability to assign time estimates to
each activity in the work breakdown structure. These time estimates will
allow you to create target starting and ending dates for the project. Target
dates can be revisited and modified until a schedule produced is
acceptable to the customer. Determining an acceptable schedule may
require that you find additional or different resources or that the scope of
the project be changed. The schedule may be represented as a Gantt chart,
as illustrated in Figure 3-11, or as a Network diagram, as illustrated in
Figure 3-14. A Network diagram is a graphical depiction of project tasks
and their interrelationships. As with a Gantt chart, each type of task can
be highlighted by different features on the Network diagram. The
distinguishing feature of a Network diagram is that the ordering of tasks
is shown by connecting tasks—depicted as rectangles or ovals—with its
predecessor and successor tasks. However, the relative size of a node
(representing a task) or a gap between nodes does not imply the task’s
duration. We describe both of these charts later in this chapter.

5. Developing a communication plan. The goal of this activity is to outline
the communication procedures among management, project team
members, and the customer. The communication plan includes when
and how written and oral reports will be provided by the team, how team
members will coordinate work, what messages will be sent to announce

58 Part I Foundations for Systems Development

Stakeholder Document Format Team Contact Date Due

Team Members Project Status Project Intranet Juan First Monday of
 Report Month
 Kim

Management Project Status Hard Copy Juan First Monday of
Supervisor Report Month
 Kim

User Project Status Hard Copy James First Monday of
 Report Month
 Kim

Internal IT Project Status E-mail Jackie First Monday of
Staff Report Month
 James

IT Manager Project Status Hard Copy Juan First Monday of
 Report Month
 Jeremy

Contract Software E-mail/Project Jordan October 4, 2012
Programmers Specifications Intranet
 Kim

Training Implementation Hard Copy Jordan January 10, 2013
Subcontractor and Training
 Plan James

FIGURE 3-15
The project communication
matrix provides a high-level
summary of the
communication plan.

the project to interested parties, and what kinds of information will be
shared with vendors and external contractors involved with the project. It
is important that free and open communication occurs among all parties,
with respect for proprietary information and confidentiality with the
customer. When developing a communication plan, numerous questions
must be answered in order to ensure that the plan is comprehensive and
complete, including:

� Who are the stakeholders for this project?
� What information does each stakeholder need?
� When, and at what interval, does this information need to be

produced?
� What sources will be used to gather and generate this information?
� Who will collect, store, and verify the accuracy of this information?
� Who will organize and package this information into a document?
� Who will be the contact person for each stakeholder, should any

questions arise?
� What format will be used to package this information?
� What communication medium will be most effective for delivering this

information to the stakeholder?

Once these questions are answered for each stakeholder, a
comprehensive communication plan can be developed. In this plan, a
summary of communication documents, work assignments, schedules,
and distribution methods will be outlined. Additionally, a project
communication matrix that provides a summary of the overall
communication plan can be developed (see Figure 3-15). This matrix

Chapter 3 Managing the Information Systems Project 59

can be easily shared among team members, and verified by stakeholders
outside the project team, so that the right people are getting the right
information at the right time, and in the right format.

6. Determining project standards and procedures. During this activity, you
specify how various deliverables are produced and tested by you and your
project team. For example, the team must decide on which tools to use,
how the standard SDLC might be modified, which SDLC methods will be
used, documentation styles (e.g., type fonts and margins for user
manuals), how team members will report the status of their assigned
activities, and terminology. Setting project standards and procedures for
work acceptance is a way to ensure the development of a high-quality
system. Also, it is much easier to train new team members when clear
standards are in place. Organizational standards for project management
and conduct make the determination of individual project standards
easier and the interchange or sharing of personnel among different
projects feasible.

7. Identifying and assessing risk. The goal of this activity is to identify
sources of project risk and to estimate the consequences of those risks.
Risks might arise from the use of new technology, prospective users’
resistance to change, availability of critical resources, competitive
reactions or changes in regulatory actions due to the construction of a
system, or team member inexperience with technology or the business
area. You should continually try to identify and assess project risk.

The identification of project risks is required to develop PVF’s new
Purchasing Fulfillment System. Chris and Juanita met to identify and
describe possible negative outcomes of the project and their probabilities
of occurrence. Although we list the identification of risks and the outline of
project scope as two discrete activities, they are highly related and often
concurrently discussed.

8. Creating a preliminary budget. During this phase, you need to create
a preliminary budget that outlines the planned expenses and revenues
associated with your project. The project justification will demonstrate
that the benefits are worth these costs. Figure 3-16 shows a cost-benefit
analysis for a new development project. This analysis shows net present
value calculations of the project’s benefits and costs, as well as a return on
investment and cash flow analysis. We discuss project budgets fully in
Chapter 4.

9. Developing a project scope statement. An important activity that occurs
near the end of the project planning phase is the development of the
project scope statement. Developed primarily for the customer, this
document outlines work that will be done and clearly describes what the
project will deliver. The project scope statement is useful to make sure
that you, the customer, and other project team members have a clear
understanding of the intended project size, duration, and outcomes.

10. Setting a baseline project plan. Once all of the prior project planning
activities have been completed, you will be able to develop a baseline
project plan. This baseline plan provides an estimate of the project’s tasks
and resource requirements and is used to guide the next project phase—
execution. As new information is acquired during project execution, the
baseline plan will continue to be updated.

At the end of the project planning phase, a review of the baseline
project plan is conducted to double-check all the information in the plan.
As with the project initiation phase, it may be necessary to modify the
plan, which means returning to prior project planning activities before
proceeding. As with the Purchasing Fulfillment System project, you may

Project execution
The third phase of the project
management process, in which
the plans created in the prior
phases (project initiation and
planning) are put into action.

60 Part I Foundations for Systems Development

FIGURE 3-16
A financial cost-benefit analysis
for a systems development project.

submit the plan and make a brief presentation to the project steering
committee at this time. The committee can endorse the plan, ask for
modifications, or determine that it is not wise to continue the project as
currently outlined.

Executing the Project
Project execution puts the baseline project plan into action. Within the con-
text of the SDLC, project execution occurs primarily during the analysis, design,
and implementation phases. During the development of the Purchasing
Fulfillment System, Chris Martin was responsible for five key activities during
project execution. These activities are summarized in Figure 3-17 and are
described in the remainder of this section:

1. Executing the baseline project plan. As project manager, you oversee
the execution of the baseline plan: You initiate the execution of project
activities, acquire and assign resources, orient and train new team
members, keep the project on schedule, and ensure the quality of project
deliverables. This formidable task is made much easier through the use
of sound project management techniques. For example, as tasks are
completed during a project, they can be “marked” as completed on the
project schedule. In Figure 3-18, tasks 3 and 7 are marked as completed by
showing 100 percent in the “% Complete” column. Members of the project
team will come and go. You are responsible for initiating new team
members by providing them with the resources they need and helping
them assimilate into the team. You may want to plan social events, regular
team project status meetings, team-level reviews of project deliverables,
and other group events to mold the group into an effective team.

Chapter 3 Managing the Information Systems Project 61

Project Execution

1. Executing the Baseline Project Plan

2. Monitoring Project Progress Against the
Baseline Project Plan

3. Managing Changes to the Baseline Project Plan

4. Maintaining the Project Workbook

5. Communicating the Project Status

FIGURE 3-17
Five project execution activities.

FIGURE 3-18
Gantt chart with tasks 3
and 7 completed.

2. Monitoring project progress against the baseline project plan. While you
execute the baseline project plan, you should monitor your progress. If
the project gets ahead of (or behind) schedule, you may have to adjust
resources, activities, and budgets. Monitoring project activities can result
in modifications to the current plan. Measuring the time and effort
expended on each activity helps you improve the accuracy of estimations
for future projects. It is possible with project schedule charts, like Gantt,
to show progress against a plan; and it is easy with Network diagrams to
understand the ramifications of delays in an activity. Monitoring progress
also means that the team leader must evaluate and appraise each team
member, occasionally change work assignments or request changes in
personnel, and provide feedback to the employee’s supervisor.

3. Managing changes to the baseline project plan. You will encounter
pressure to make changes to the baseline plan. At PVF, policies dictate
that only approved changes to the project specification can be made, and
all changes must be reflected in the baseline plan and project workbook,
including all charts. For example, if Juanita suggests a significant change
to the existing design of the Purchasing Fulfillment System, a formal
change request must be approved by the steering committee. The request
should explain why changes are desired and describe all possible impacts
on prior and subsequent activities, project resources, and the overall
project schedule. Chris would have to help Juanita develop such a request.

62 Part I Foundations for Systems Development

This information allows the project steering committee to more easily
evaluate the costs and benefits of a significant midcourse change.

In addition to changes occurring through formal request, changes may
also occur because of events outside of your control. In fact, numerous
events may initiate a change to the baseline project plan, including the
following possibilities:

� A slipped completion date for an activity
� A bungled activity that must be redone
� The identification of a new activity that becomes evident later in the

project
� An unforeseen change in personnel due to sickness, resignation, or

termination

When an event occurs that delays the completion of an activity, you
typically have two choices: devise a way to get back on schedule or revise
the plan. Devising a way to get back on schedule is the preferred approach
because no changes to the plan will have to be made. The ability to head
off and smoothly work around problems is a critical skill that you need
to master.

As you will see later in the chapter, project schedule charts are helpful
in assessing the impact of change. Using such charts, you can quickly see
whether the completion time of other activities will be affected by
changes in the duration of a given activity or if the whole project
completion date will change. Often you will have to find a way to
rearrange the activities because the ultimate project completion date may
be rather fixed. The organization may even incur a penalty (even legal
action) if the expected completion date is not met.

4. Maintaining the project workbook. As in all project phases, maintaining
complete records of all project events is necessary. The workbook
provides the documentation new team members require to assimilate
project tasks quickly. It explains why design decisions were made and is
a primary source of information for producing all project reports.

5. Communicating the project status. The project manager is responsible
for keeping all team members—system developers, managers, and
customers—abreast of the project status. Clear communication is
required to create a shared understanding of the activities and goals of the
project; such an understanding ensures better coordination of activities.
This means that the entire project plan should be shared with the entire
project team, and any revisions to the plan should be communicated to all
interested parties so that everyone understands how the plan is evolving.
Procedures for communicating project activities vary from formal
meetings to informal hallway discussions. Some procedures are useful for
informing others of project status, others for resolving issues, and others
for keeping permanent records of information and events. Two types of
information are routinely exchanged throughout the project: (1) work
results, or the outcomes of the various tasks and activities that are
performed to complete the project, and (2) the project plan, which is the
formal comprehensive document used to execute the project. The project
plan contains numerous items including the project charter, project
schedule, budgets, risk plan, and so on. Table 3-2 lists numerous
communication procedures, their level of formality, and most likely use.
Whichever procedure you use, frequent communication helps to ensure
project success.

This section outlined your role as the project manager during the execution
of the baseline project plan. The ease with which the project can be managed is
significantly influenced by the quality of prior project phases. If you develop a

Project closedown
The final phase of the project
management process, which
focuses on bringing a project
to an end.

Chapter 3 Managing the Information Systems Project 63

TABLE 3-2: Project Team Communication Methods

Procedure Formality Use

Project workbook High Inform; permanent record

Meetings Medium to high Resolve issues

Seminars and workshops Low to medium Inform

Project newsletters Medium to high Inform

Status reports High Inform

Specification documents High Inform; permanent record

Minutes of meetings High Inform; permanent record

Bulletin boards Low Inform

Memos Medium to high Inform

Brown bag lunches Low Inform

Hallway discussions Low Inform; resolve issues

high-quality project plan, it is much more likely that the project will be
successfully executed. The next section describes your role during project
closedown, the final phase of the project management process.

Closing Down the Project
The focus of project closedown is to bring the project to an end. Projects can
conclude with a natural or unnatural termination. A natural termination occurs
when the requirements of the project have been met—the project has been com-
pleted and is a success. An unnatural termination occurs when the project is
stopped before completion. Several events can cause an unnatural termination
of a project. For example, it may be learned that the assumption used to guide
the project proved to be false, or that the performance of the system or devel-
opment group was somehow inadequate, or that the requirements are no longer
relevant or valid in the customer’s business environment. The most likely
reasons for the unnatural termination of a project relate to running out of time
or money, or both. Regardless of the project termination outcome, several ac-
tivities must be performed: closing down the project, conducting postproject
reviews, and closing the customer contract. Within the context of the SDLC,
project closedown occurs after the implementation phase. The system mainte-
nance phase typically represents an ongoing series of projects, each needing to
be individually managed. Figure 3-19 summarizes the project closedown activi-
ties that are described more fully in the remainder of this section:

1. Closing down the project. During closedown, you perform several diverse
activities. For example, if you have several team members working with

Project Closedown

1. Closing Down the Project

2. Conducting Postproject Reviews

3. Closing the Customer Contract

FIGURE 3-19
Three project closedown activities.

64 Part I Foundations for Systems Development

you, project completion may signify job and assignment changes for some
members. You will likely be required to assess each team member and
provide an appraisal for personnel files and salary determination. You may
also want to provide career advice to team members, write letters to
superiors praising special accomplishments of team members, and send
thank-you letters to those who helped but were not team members.
As project manager, you must be prepared to handle possible negative
personnel issues, such as job termination, especially if the project was not
successful. When closing down the project, it is also important to notify all
interested parties that the project has been completed and to finalize all
project documentation and financial records so that a final review of the
project can be conducted. You should also celebrate the accomplishments
of the team. Some teams will hold a party, and each team member may
receive memorabilia (e.g., a T-shirt with “I survived the X project”).
The goal is to celebrate the team’s effort in bringing a difficult task to a
successful conclusion.

2. Conducting postproject reviews. Once you have closed down the project,
final reviews of the project should be conducted with management and
customers. The objective of these reviews is to determine the strengths
and weaknesses of project deliverables, the processes used to create
them, and the project management process. It is important that everyone
understands what went right and what went wrong, in order to improve
the process for the next project. Remember, the systems development
methodology adopted by an organization is a living guideline that must
undergo continual improvement.

3. Closing the customer contract. The focus of this final activity is to ensure
that all contractual terms of the project have been met. A project
governed by a contractual agreement is typically not completed until
agreed to by both parties, often in writing. Thus, it is paramount that you
gain agreement from your customer that all contractual obligations have
been met and that further work is either their responsibility or covered
under another system service request or contract.

Closedown is an important activity. A project is not complete until it is
closed, and it is at closedown that projects are deemed a success or failure.
Completion also signifies the chance to begin a new project and apply what
you have learned. Now that you have an understanding of the project
management process, the next section describes specific techniques used in
systems development for representing and scheduling activities and
resources.

Representing and Scheduling Project Plans
A project manager has a wide variety of techniques available for depicting and
documenting project plans. These planning documents can take the form of
graphical or textual reports, although graphical reports have become most
popular for depicting project plans. The most commonly used methods are
Gantt charts and Network diagrams. Because Gantt charts do not show how
tasks must be ordered (precedence) but simply show when a task should be-
gin and when it should end, they are often more useful for depicting relatively
simple projects or subparts of a larger project, the activities of a single worker,
or for monitoring the progress of activities compared to scheduled completion
dates (see Figure 3-20A). Recall that a Network diagram shows the ordering of
activities by connecting a task to its predecessor and successor tasks (see
Figure 3-20B). Sometimes a Network diagram is preferable; other times a

Chapter 3 Managing the Information Systems Project 65

FIGURE 3-20
Graphical diagrams that depict
project plans: (A) A Gantt chart,
(B) A Network diagram.

Gantt chart more easily shows certain aspects of a project. Here are the key
differences between these two representations:

� A Gantt chart shows the duration of tasks, whereas a Network
diagram shows the sequence dependencies between tasks.

� A Gantt chart shows the time overlap of tasks, whereas a Network
diagram does not show time overlap but does show which tasks could
be done in parallel.

� Some forms of Gantt charts can show slack time available within an
earliest start and latest finish date. A Network diagram shows these
data within activity rectangles.

A

B

Critical path scheduling
A scheduling technique in which
the order and duration of a
sequence of task activities
directly affect the completion
date of a project.

Resources
Any person, group of people,
piece of equipment, or material
used in accomplishing an
activity.

66 Part I Foundations for Systems Development

FIGURE 3-21
A screen from Microsoft Project
for Windows summarizes all
project activities, their durations
in weeks, and their scheduled
starting and ending dates.

Source: Reprinted with permission
of Microsoft.

Project managers also use textual reports that depict resource utilization by
tasks, complexity of the project, and cost distributions to control activities. For
example, Figure 3-21 shows a screen from Microsoft Project for Windows that
summarizes all project activities, their durations in weeks, and their scheduled
starting and ending dates. Most project managers use computer-based systems
to help develop their graphical and textual reports. Later in this chapter, we
discuss these automated systems in more detail.

A project manager will periodically review the status of all ongoing project
task activities to assess whether the activities will be completed early, on time,
or late. If early or late, the duration of the activity, depicted in column 2 of
Figure 3-21, can be updated. Once changed, the scheduled start and finish
times of all subsequent tasks will also change. Making such a change will also
alter a Gantt chart or Network diagram used to represent the project tasks. The
ability to easily make changes to a project is a powerful feature of most project
management environments. It allows the project manager to determine easily
how changes in task duration affect the project completion date. It is also
useful for examining the impact of “what if” scenarios for adding or reducing
resources, such as personnel, for an activity.

Representing Project Plans
Project scheduling and management requires that time, costs, and resources be
controlled. Resources are any person, group of people, piece of equipment, or
material used in accomplishing an activity. Network diagramming is a critical
path scheduling technique used for controlling resources. A critical path
refers to a sequence of task activities whose order and durations directly affect
the completion date of a project. A Network diagram is one of the most widely
used and best-known scheduling methods.

A major strength of Network diagramming is its ability to represent how com-
pletion times vary for activities. Because of this, it is more often used than Gantt
charts to manage projects such as information systems development where

PERT (Program
Evaluation Review
Technique)
A technique that uses optimistic,
pessimistic, and realistic time
estimates to calculate the
expected time for a particular
task.

Chapter 3 Managing the Information Systems Project 67

Design
System

Write
Programs

Test
Programs

Write
Documentation

Install
System

E

B C

D

A

FIGURE 3-22
A Network diagram showing
activities (represented by circles)
and sequence of those activities
(represented by arrows).

variability in the duration of activities is the norm. Network diagrams are com-
posed of circles or rectangles representing activities and connecting arrows
showing required work flows, as illustrated in Figure 3-22.

Calculating Expected Time Durations Using PERT
One of the most difficult and most error-prone activities when constructing a
project schedule is the determination of the time duration for each task within
a work breakdown structure. It is particularly problematic to make these
estimates when a high degree of complexity and uncertainty characterize a
task. PERT (program evaluation review technique) is a technique that
uses optimistic, pessimistic, and realistic time estimates to calculate the
expected time for a particular task. This technique helps you obtain a better
time estimate when you are uncertain as to how much time a task will require
to be completed.

The optimistic (o) and pessimistic (p) times reflect the minimum and maxi-
mum possible periods of time for an activity to be completed. The realistic time
(r), or most likely time, reflects the project manager’s “best guess” of the
amount of time the activity will require for completion. Once each of these es-
timates is made for an activity, an expected completion time (ET) can be calcu-
lated for that activity. Because the expected completion time should be closer
to the realistic time (r), the realistic time is typically weighted 4 times more than
the optimistic (o) and pessimistic (p) times. Once you add these values together,
it must be divided by 6 to determine the ET. This equation is shown in the fol-
lowing formula:

ET �

where
ET � expected time for the completion for an activity

o � optimistic completion time for an activity
r � realistic completion time for an activity
p � pessimistic completion time for an activity

For example, suppose that your instructor asked you to calculate an expected
time for the completion of an upcoming programming assignment. For this
assignment, you estimate an optimistic time of 2 hours, a pessimistic time of
8 hours, and a most likely time of 6 hours. Using PERT, the expected time
for completing this assignment is 5.67 hours. Commercial project management
software such as Microsoft Project assists you in using PERT to make expected
time calculations. Additionally, many commercial tools allow you to customize
the weighing of optimistic, pessimistic, and realistic completion times.

o � 4r � p
6

68 Part I Foundations for Systems Development

Constructing a Gantt Chart and Network Diagram
at Pine Valley Furniture
Although Pine Valley Furniture has historically been a manufacturing company,
it recently entered the direct sales market for selected target markets. One of
the fastest growing of these markets is economically priced furniture suitable
for college students. Management has requested that a new Sales Promotion
Tracking System (SPTS) be developed. This project has already successfully
moved through project initiation and is currently in the detailed project plan-
ning stage, which corresponds to the SDLC phase of project initiation and plan-
ning. The SPTS will be used to track the sales purchases by college students for
the next fall semester. Students typically purchase low-priced beds, bookcases,
desks, tables, chairs, and dressers. Because PVF does not normally stock a
large quantity of lower-priced items, management feels that a tracking system
will help provide information about the college student market that can be used
for follow-up sales promotions (e.g., a midterm futon sale).

The project is to design, develop, and implement this information system
before the start of the fall term in order to collect sales data at the next major
buying period. This deadline gives the project team twenty-four weeks to
develop and implement the system. The Systems Priority Board at PVF wants
to make a decision this week based on the feasibility of completing the project
within the twenty-four-week deadline. Using PVF’s project planning methodology,
the project manager, Jim Woo, knows that the next step is to construct a Gantt
chart and a Network diagram of the project to represent the baseline project
plan so that he can use these charts to estimate the likelihood of completing the
project within twenty-four weeks. A major activity of project planning focuses
on dividing the project into manageable activities, estimating times for each,
and sequencing their order. Here are the steps Jim followed:

1. Identify each activity to be completed in the project. After discussing the
new Sales Promotion Tracking System with PVF’s management, sales, and
development staff, Jim identified the following major activities for the
project:

� Requirements collection
� Screen design
� Report design
� Database design
� User documentation creation
� Software programming
� System testing
� System installation

2. Determine time estimates and calculate the expected completion time
for each activity. After identifying the major project activities, Jim
established optimistic, realistic, and pessimistic time estimates for each
activity. These numbers were then used to calculate the expected
completion times for all project activities. Figure 3-23 shows the estimated
time calculations for each activity of the Sales Promotion Tracking System
project.

3. Determine the sequence of the activities and precedence relationships
among all activities by constructing a Gantt chart and Network
diagram. This step helps you understand how various activities are
related. Jim starts by determining the order in which activities should
take place. The results of this analysis for the SPTS project are shown in
Figure 3-24. The first row of this figure shows that no activities precede
requirements collection. Row 2 shows that screen design must be
preceded by requirements collection. Row 4 shows that both screen

Chapter 3 Managing the Information Systems Project 69

ACTIVITY
1. Requirements Collection
2. Screen Design
3. Report Design
4. Database Design
5. User Documentation
6. Programming
7. Testing
8. Installation

TIME ESTIMATE
(in weeks)

EXPECTED TIME (ET)
o + 4r + p

6o
1
5
3
1
2
4
1
1

r
5
6
6
2
6
5
3
1

p
9
7
9
3
7
6
5
1

5
6
6
2

 5.57
5
3
1

FIGURE 3-23
Expected time calculations for
the SPTS project.

ACTIVITY
1. Requirements Collection
2. Screen Design
3. Report Design
4. Database Design
5. User Documentation
6. Programming
7. Testing
8. Installation

PRECEDING
ACTIVITY

—
1
1

2,3
4
4
6

5,7

FIGURE 3-24
Sequence of activities within
the SPTS project.

and report design must precede database design. Thus, activities may be
preceded by zero, one, or more activities.

Using the estimated times and activity sequencing information from
Figures 3-23 and 3-24, Jim can now construct a Gantt chart and
Network diagram of the project’s activities. To construct the Gantt
chart, a horizontal bar is drawn for each activity that reflects its
sequence and duration, as shown in Figure 3-25. The Gantt chart may
not, however, show direct interrelationships between activities. For
example, just because the database design activity begins right after
the screen design and report design bars finish does not imply that

FIGURE 3-25
Gantt chart that illustrates the
sequence and duration of each
activity of the SPTS project.

Slack time
The amount of time that an
activity can be delayed without
delaying the project.

Critical path
The shortest time in which a
project can be completed.

70 Part I Foundations for Systems Development

Requirements
Collection

Database
Design

Screen
Design Installation

User
Documentation

Report Design Programming Testing

8

7

2

3

41

5

6

FIGURE 3-26
A Network diagram that illustrates
the activities (circles) and the
sequence (arrows) of those
activities.

TE = 11
TL = 11

TE = 11
TL = 11

TE = 5
TL = 5

ET = 6 ET = 5 ET = 3

ET = 2

ET = 6 ET = 5.5 ET = 1

ET = 5

7

41

TE = 18.5
TL = 21

TE = 22
TL = 22

TE = 21
TL = 21

TE = 18
TL = 18

TE = 13
TL = 13

5 8

Critical Path Noncritical Path

2

3 6

FIGURE 3-27
A Network diagram for the SPTS
project showing estimated times
for each activity and the earliest
and latest expected completion
time for each activity.

these two activities must finish before database design can begin.
To show such precedence relationships, a Network diagram must be
used. The Gantt chart in Figure 3-25 does, however, show precedence
relationships.

Network diagrams have two major components: arrows and nodes.
Arrows reflect the sequence of activities, whereas nodes reflect activities
that consume time and resources. A Network diagram for the SPTS
project is shown in Figure 3-26. This diagram has eight nodes labeled
1 through 8.

4. Determine the critical path. The critical path of a Network diagram is
represented by the sequence of connected activities that produces the
shortest overall time period. All nodes and activities within this
sequence are referred to as being “on” the critical path. The critical
path represents the shortest time in which a project can be completed.
In other words, any activity on the critical path that is delayed in
completion delays the entire project. Nodes not on the critical path,
however, can be delayed (for some amount of time) without delaying
the final completion of the project. Nodes not on the critical path
contain slack time and allow the project manager some flexibility in
scheduling.

Figure 3-27 shows the Network diagram that Jim constructed to
determine the critical path and expected completion time for the SPTS
project. To determine the critical path, Jim calculated the earliest and
latest expected completion time for each activity. He found each activity’s
earliest expected completion time (TE) by summing the expected
completion times (ET) of the activity and each preceding activity from left
to right (i.e., in precedence order), starting at activity 1 and working
toward activity 8. In this case, TE for activity 8 is equal to 22 weeks. If two
or more activities precede an activity, the largest expected completion
time of these activities is used in calculating the new activity’s expected

Chapter 3 Managing the Information Systems Project 71

TEACTIVITY
1
2
3
4
5
6
7
8

5
11
11
13

18.5
18
21
22

TL
5
11
11
13
21
18
21
22

TL – TE
SLACK

0
0
0
0

2.5
0
0
0

ON CRITICAL PATH

FIGURE 3-28
Activity slack time calculations for
the SPTS project all activities
except number 5 are on the
critical path.

completion time. For example, because activity 8 is preceded by both
activities 5 and 7, the largest expected completion time between 5 and 7 is
21, so TE for activity 8 is 21 � 1, or 22. The earliest expected completion
time for the last activity of the project represents the amount of time the
project should take to complete. Because the time of each activity can
vary, however, the projected completion time represents only an estimate.
The project may, in fact, require more or less time for completion.

The latest expected completion time (TL) refers to the time in which an
activity can be completed without delaying the project. To find the values
for each activity’s TL, Jim started at activity 8 and set TL equal to the final TE
(22 weeks). Next, he worked right to left toward activity 1 and subtracted
the expected time for each activity. The slack time for each activity is equal
to the difference between its latest and earliest expected completion times
(TL – TE). Figure 3-28 shows the slack time calculations for all activities of
the SPTS project. All activities with a slack time equal to zero are on the
critical path. Thus, all activities except 5 are on the critical path. Part of the
diagram in Figure 3-27 shows two critical paths, between activities 1-2-4 and
1-3-4, because both of these parallel activities have zero slack.

In addition to the possibility of having multiple critical paths, two types
of slack are actually possible. Free slack refers to the amount of time a
task can be delayed without delaying the early start of any task immediately
following. Total slack refers to the amount of time a task can be delayed
without delaying the completion of the project. Understanding free and
total slack allows the project manager to better identify where trade-offs
can be made if changes to the project schedule are needed. For more
information about understanding slack and how it can be used to manage
tasks, see Information Systems Project Management (© 2008) by Mark
A. Fuller, Joseph S. Valacich, and Joey F. George (Upper Saddle River, NJ:
Prentice Hall).

Using Project Management Software
A wide variety of automated project management tools are available to help you
manage a development project. New versions of these tools are continuously
being developed and released by software vendors. Most of the available tools
have a common set of features that include the ability to define and order tasks,
assign resources to tasks, and easily modify tasks and resources. Project man-
agement tools are available to run on Windows-compatible personal computers,
the Macintosh, and larger mainframe and workstation-based systems. These
systems vary in the number of task activities supported, the complexity of rela-
tionships, system processing and storage requirements, and, of course, cost.
Prices for these systems can range from a few hundred dollars for personal
computer–based systems to more than $100,000 for large-scale multiproject

72 Part I Foundations for Systems Development

FIGURE 3-29
Establishing a project starting date
in Microsoft Project for Windows.

Source: Reprinted with permission
of Microsoft.

systems. Yet, a lot can be done with systems like Microsoft Project as well as
public domain and shareware systems. For example, numerous shareware proj-
ect management programs (e.g., OpenProj or EasyProjectPlan) can be down-
loaded from the World Wide Web (e.g., at www.download.com). Because these
systems are continuously changing, you should comparison shop before choos-
ing a particular package.

We now illustrate the types of activities you would perform when using proj-
ect management software. Microsoft Project for Windows is a project manage-
ment system that has earned consistently high marks in computer publication
reviews (see www.microsoft.com and search for “project”—also, if you search
the Web, you can find many useful tutorials for improving your Microsoft Proj-
ect skills). When using this system to manage a project, you need to perform at
least the following activities:

� Establish a project starting or ending date.

� Enter tasks and assign task relationships.

� Select a scheduling method to review project reports.

Establishing a Project Starting Date
Defining the general project information includes obtaining the name of the
project and project manager and the starting or ending date of the project. Start-
ing and ending dates are used to schedule future activities or backdate others
(see following) based upon their duration and relationships to other activities.
An example from Microsoft Project for Windows of the data-entry screen for es-
tablishing a project starting or ending date is shown in Figure 3-29. This screen
shows PVF’s Purchasing Fulfillment System project. Here, the starting date for
the project is Monday, November 5, 2012.

Entering Tasks and Assigning Task Relationships
The next step in defining a project is to define project tasks and their relation-
ships. For the Purchasing Fulfillment System project, Chris defined 11 tasks to
be completed when he performed the initial system analysis activities of the
project (Task 1—Start Analysis Phase—is a summary task that is used to group
related tasks). The task entry screen, shown in Figure 3-30, is similar to a fi-
nancial spreadsheet program. The user moves the cursor to a cell with arrow
keys or the mouse and then simply enters a textual Task Name and a numeric
Duration for each activity. Scheduled Start and Scheduled Finish are automati-
cally entered based upon the project start date and duration. To set an activity

www.download.com

www.microsoft.com

Chapter 3 Managing the Information Systems Project 73

FIGURE 3-30
Entering tasks and assigning task
relationships in Microsoft Project
for Windows.

Source: Reprinted with permission
of Microsoft.

relationship, the ID number (or numbers) of the activity that must be completed
before the start of the current activity is entered in the Predecessors column.
Additional codes under this column make the precedence relationships more
precise. For example, consider the Predecessor column for ID 6. The entry in
this cell says that activity 6 cannot start until one day before the finish of activ-
ity 5. (Microsoft Project provides many different options for precedence and de-
lays such as in this example, but discussion of these is beyond the scope of our
coverage.) The project management software uses this information to construct
Gantt charts, Network diagrams, and other project-related reports.

Selecting a Scheduling Method to Review Project Reports
Once information about all the activities for a project has been entered, it is easy
to review the information in a variety of graphical and textual formats using dis-
plays or printed reports. For example, Figure 3-30 shows the project informa-
tion in a Gantt chart screen, whereas Figure 3-31 shows the project information
as a Network diagram. You can easily change how you view the information by
making a selection from the View menu shown in Figure 3-31.

As mentioned in the chapter, interim project reports to management will often
compare actual progress to plans. Figure 3-32 illustrates how Microsoft Project

FIGURE 3-31
Viewing project information as a
Network diagram in Microsoft
Project for Windows.

Source: Reprinted with permission
of Microsoft.

74 Part I Foundations for Systems Development

FIGURE 3-32
Gantt chart showing progress of
activities (right frame) versus
planned activities (left frame).

shows progress with a solid line within the activity bar. In this figure, task 2 is
completed and task 3 is almost completed, but there remains a small percent-
age of work, as shown by the incomplete solid lines within the bar for this task.
Assuming that this screen represents the status of the project on Friday,
November 16, 2012, the third activity is approximately on schedule. Tabular
reports can summarize the same information.

This brief introduction to project management software has only scratched
the surface to show you the power and the features of these systems. Other fea-
tures widely available and especially useful for multi-person projects relate to
resource usage and utilization. Resource-related features allow you to define
characteristics such as standard costing rates and daily availability via a calen-
dar that records holidays, working hours, and vacations. These features are par-
ticularly useful for billing and estimating project costs. Often, resources are
shared across multiple projects, which could significantly affect a project’s
schedule. Depending upon how projects are billed within an organization, as-
signing and billing resources to tasks is a time-consuming activity for most proj-
ect managers. The features provided in these powerful tools can greatly ease
both the planning and managing of projects so that both project and manage-
ment resources are effectively utilized.

Key Points Review
1. Describe the skills required to be an effec-

tive project manager.
A project manager has both technical and

managerial skills and is ultimately responsible
for determining the size, scope, and resource
requirements for a project. Once a project is
deemed feasible by an organization, the project
manager ensures that the project meets the cus-
tomer’s needs and is delivered within budget and
time constraints.

2. List and describe the skills and activities of
a project manager during project initiation,
project planning, project execution, and
project closedown.

To manage the project, the project manager
must execute four primary activities: project

initiation, project planning, project execution,
and project closedown. The focus of project initi-
ation is on assessing the size, scope, and com-
plexity of a project and establishing procedures
to support later project activities. The focus of
project planning is on defining clear, discrete ac-
tivities and the work needed to complete each ac-
tivity. The focus of project execution is on putting
the plans developed in project initiation and plan-
ning into action. Project closedown focuses on
bringing the project to an end.

3. Explain what is meant by critical path sched-
uling and describe the process of creating
Gantt charts and Network diagrams.

Critical path scheduling refers to planning
methods whereby the order and duration of the

Chapter 3 Managing the Information Systems Project 75

project’s activities directly affect the completion
date of the project. Gantt charts and Network
diagrams are powerful graphical techniques used
in planning and controlling projects. Both Gantt
and Network diagramming scheduling tech-
niques require that a project have activities that
can be defined as having a clear beginning and
end, can be worked on independently of other ac-
tivities, are ordered, and are such that their com-
pletion signifies the end of the project. Gantt
charts use horizontal bars to represent the begin-
ning, duration, and ending of an activity. Network
diagramming is a critical path scheduling method
that shows the interrelationships between activi-
ties. These charts show when activities can begin
and end, which activities cannot be delayed with-
out delaying the whole project, how much slack

time each activity has, and progress against
planned activities. Network diagramming’s ability
to use estimated completion times, based on op-
timistic, pessimistic, and most likely completion
times, when determining critical paths.

4. Explain how commercial project manage-
ment software packages can be used to as-
sist in representing and managing project
schedules.

A wide variety of automated tools for assisting
the project manager are available. Most tools
have common features, including the ability to
define and order tasks, assign resources to tasks,
and modify tasks and resources. Systems vary re-
garding the number of activities supported, the
complexity of relationships, processing and stor-
age requirements, and cost.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. COCOMO (p. 55)
2. Critical path (p. 70)
3. Critical path scheduling (p. 66)
4. Deliverable (p. 46)
5. Feasibility study (p. 47)
6. Gantt chart (p. 54)
7. Network diagram (p. 57)
8. PERT (Program Evaluation Review

Technique) (p. 67)

9. Project (p. 45)
10. Project charter (p. 51)
11. Project closedown (p. 63)
12. Project execution (p. 60)
13. Project initiation (p. 49)
14. Project management (p. 48)
15. Project manager (p. 45)

16. Project planning (p. 53)
17. Project workbook (p. 50)
18. Resources (p. 66)
19. Slack time (p. 70)
20. Work breakdown structure

(WBS) (p. 54)

Match each of the key terms above with the definition that best fits it.

1. An online or hard-copy repository for all
project correspondence, inputs, outputs,
deliverables, procedures, and standards
that is used for performing project audits,
orienting new team members,
communicating with management and
customers, identifying future projects, and
performing postproject reviews.

2. An end product in a phase of the SDLC.
3. Determines whether the information

system makes sense for the organization
from an economic and operational
standpoint.

4. A controlled process of initiating, planning,
executing, and closing down a project.

5. The third phase of the project management
process in which the plans created in the
prior phases (project initiation and
planning) are put into action.

6. The first phase of the project management
process in which activities are performed
to assess the size, scope, and complexity of
the project and to establish procedures to
support later project activities.

7. A diagram that depicts project tasks and
their interrelationships.

8. A planned undertaking of related activities
to reach an objective that has a beginning
and an end.

9. The amount of time that an activity can be
delayed without delaying the project.

10. The process of dividing the project into
manageable tasks and logically ordering
them to ensure a smooth evolution
between tasks.

11. The final phase of the project management
process, which focuses on bringing a
project to an end.

76 Part I Foundations for Systems Development

Review Questions
1. Discuss the reasons why organizations under-

take information system projects.
2. List and describe the common skills and activi-

ties of a project manager. Which skill do you
think is most important? Why?

3. Describe the activities performed by the project
manager during project initiation.

4. Describe the activities performed by the project
manager during project planning.

5. Describe the activities performed by the project
manager during project execution.

6. List various project team communication meth-
ods, and describe an example of the type of in-
formation that might be shared among team
members using each method.

7. Describe the activities performed by the project
manager during project closedown.

8. What characteristics must a project have in order
for critical path scheduling to be applicable?

9. Describe the steps involved in making a Gantt
chart.

10. Describe the steps involved in making a Network
diagram.

11. In which phase of the systems development life
cycle does project planning typically occur? In
which phase is project management necessary?

12. What are some reasons why one activity may have
to precede another activity before the second ac-
tivity can begin? In other words, what causes prece-
dence relationships between project activities?

Problems and Exercises
1. Which of the four phases of the project manage-

ment process do you feel is most challenging? Why?
2. What are some sources of risk in a systems analy-

sis and design project, and how does a project
manager cope with risk during the stages of proj-
ect management?

3. Search the Web for recent reviews of project man-
agement software. Which packages seem to be
most popular? What are the relative strengths and
weaknesses of each package? What advice would
you give to someone intending to buy project
management software for his or her PC? Why?

4. Suppose that you have been contracted by a
jewelry store to manage a project to create a
new inventory tracking system. Describe
your initial approach to the project. What
should your first activity be? What information
would you need? To whom might you need to
speak?

5. Can a project have two critical paths? Why or
why not? Give a brief example to illustrate your
point.

6. Calculate the expected time for the following
tasks.

12. A graphical representation of a project that
shows each task activity as a horizontal
bar whose length is proportional to its time
for completion.

13. Any person, group of people, piece of
equipment, or material used in
accomplishing an activity.

14. A scheduling technique in which the order
and duration of a sequence of activities
directly affect the completion date of a
project.

15. A systems analyst with a diverse set of
skills—management, leadership, technical,
conflict management, and customer
relationship—who is responsible for
initiating, planning, executing, and closing
down a project.

16. The second phase of the project management
process, which focuses on defining clear,
discrete activities and the work needed to
complete each activity within a single project.

17. The shortest time in which a project can be
completed.

18. A technique that uses optimistic,
pessimistic, and realistic time estimates
to calculate the expected time for a
particular task.

19. A short document prepared for the
customer during project initiation that
describes what the project will deliver and
outlines generally at a high level all work
required to complete the project.

20. A method for estimating a software
project’s size and cost.

Chapter 3 Managing the Information Systems Project 77

7. A project has been defined to contain the follow-
ing list of activities along with their required
times for completion.

Task
Optimistic

Time
Most Likely

Time
Pessimistic

Time
Expected

Time

A 3 7 11

B 5 9 13

C 1 2 9

D 2 3 16

E 2 4 18

F 3 4 11

G 1 4 7

H 3 4 5

I 2 4 12

J 4 7 9

Activity
No. Activity

Time
(weeks)

Immediate
Predecessors

1 Collect requirements 3

2 Analyze processes 2 1

3 Analyze data 2 2

4 Design processes 6 2

5 Design data 3 3

6 Design screens 2 3,4

7 Design reports 4 4,5

8 Program 5 6,7

9 Test and Document 7 7

10 Install 2 8,9

a. Draw a Network diagram for the activities.
b. Calculate the earliest expected completion

time.
c. Show the critical path.
d. What would happen if activity 6 were revised

to take 6 weeks instead of 2 weeks?

8. Construct a Gantt chart for the project defined in
Problem and Exercise 7.

9. Look again at the activities outlined in Problem
and Exercise 7. Assume that your team is in its
first week of the project and has discovered that
each of the activity duration estimates is wrong.
Activities 4 and 7 will each take three times
longer than anticipated. All other activities will
take twice as long to complete as previously esti-
mated. In addition, a new activity, number 11, has
been added. It will take one week to complete,
and its immediate predecessors are activities 10
and 9. Adjust the Network diagram and recalcu-
late the earliest expected completion times.

10. Construct a Gantt chart and Network diagram
for a project you are or will be involved in.

Choose a project of sufficient depth at either
work, home, or school. Identify the activities to
be completed, determine the sequence of the ac-
tivities, and construct a diagram reflecting the
starting, ending, duration, and precedence (Net-
work diagram only) relationships among all ac-
tivities. For your Network diagram, use the
procedure in this chapter to determine time esti-
mates for each activity and calculate the ex-
pected time for each activity. Now determine the
critical path and the early and late starting and
finishing times for each activity. Which activities
have slack time?

11. For the project you described in Problem and
Exercise 10, assume that the worst has hap-
pened. A key team member has dropped out of
the project and has been assigned to another
project in another part of the country. The re-
maining team members are having personality
clashes. Key deliverables for the project are now
due much earlier than expected. In addition, you
have just determined that a key phase in the
early life of the project will now take much
longer than you had originally expected. To
make matters worse, your boss absolutely will
not accept that this project cannot be completed
by the old deadline. What will you do to account
for these project changes and problems? Begin
by reconstructing your Gantt chart and Network
diagram and determining a strategy for dealing
with the specific changes and problems de-
scribed here. If new resources are needed to
meet the old deadline, outline the rationale that
you will use to convince your boss that these ad-
ditional resources are critical to the success of
the project.

12. Assume you have a project with seven activities
labeled A–G (following). Derive the earliest com-
pletion time (or early finish—EF), latest comple-
tion time (or late finish—LF), and slack for each
of the following tasks (begin at time � 0). Which
tasks are on the critical path? Draw a Gantt chart
for these tasks.

Task
Preceding

Event
Expected
Duration EF LF Slack

Critical
Path?

A — 2

B A 3

C A 4

D C 6

E B,C 4

F D 1

G D,E,F 5

78 Part I Foundations for Systems Development

13. Draw a Network diagram for the tasks shown in
Problem and Exercise 12. Highlight the critical
path.

14. Assume you have a project with ten activities la-
beled A–J. Derive the earliest completion time
(or early finish—EF), latest completion time (or
late finish—LF), and slack for each of the follow-
ing tasks (begin at time � 0). Which tasks are on
the critical path? Highlight the critical path on
your Network diagram.

15. Draw a Gantt chart for the tasks shown in Prob-
lem and Exercise 14.

16. Assume you have a project with ten activities la-
beled A–J. Derive the earliest completion time
(or early finish—EF), latest completion time (or
late finish—LF), and slack for each of the follow-
ing tasks (begin at time � 0). Which tasks are on
the critical path? Draw both a Gantt chart and a
Network diagram for these tasks, and make sure
you highlight the critical path on your Network
diagram.

17. Make a list of the tasks that you performed when
designing your schedule of classes for this
term. Develop a table showing each task, its dura-
tion, preceding event(s), and expected duration.
Develop a Network diagram for these tasks. High-
light the critical path on your Network diagram.

18. Fully decompose a project you’ve done in an-
other course (e.g., a semester project or term
paper). Discuss the level of detail where you
stopped decomposing and explain why.

19. Create a work breakdown structure based on the
decomposition you carried out for the previous
question.

20. Working in a small group, pick a project (it could
be anything, such as planning a party, writing a
group term paper, developing a database applica-
tion, etc.) and then write the various tasks that
need to be done to accomplish the project on
Post-Its (one task per Post-It). Then, use the
Post-Its to create a work breakdown structure
for the project. Was it complete? Add missing
tasks if necessary. Were some tasks at a lower
level in the WBS than others? What was the most
difficult part of doing this exercise?

Discussion Questions
1. You interview for a job and the employer asks

you if the project management process for sys-
tems development should be a structured, formal
process. What will your answer be?

2. Do you agree that breaking projects down into
small, manageable tasks is an important part of
managing a project? What are the pros and cons
of this type of breakdown?

3. Microsoft Project is powerful but expensive.
Assume you are in charge of researching and

purchasing a project management application.
Would you select Microsoft Project? Why or
why not? If you were to select Microsoft
Project, how would you justify its cost to your
manager?

4. When completing a project, some tasks are inde-
pendent of others, whereas some are interde-
pendent. What does task interdependence mean
in regards to slack? How are slack and the criti-
cal path related?

Activity
Preceding

Event
Expected
Duration EF LF Slack

Critical
Path?

A — 4

B A 5

C A 6

D A 7

E A,D 6

F C,E 5

G D,E 4

H E 3

I F,G 4

J H,I 5

Activity
Preceding

Event
Expected
Duration EF LF Slack

Critical
Path?

A — 3

B A 1

C A 2

D B,C 5

E C 3

F D 2

G E,F 3

H F,G 5

I G,H 5

J I 2

Chapter 3 Managing the Information Systems Project 79

Case Problems
1. Pine Valley Furniture

In an effort to better serve the various depart-
ments at Pine Valley Furniture, the PVF informa-
tion systems department assigns one of its
systems analysts to serve as a liaison to a partic-
ular business unit. Chris Martin is currently the
liaison to the purchasing department.

After graduating from Valley State University,
Chris began working at Pine Valley Furniture. He
began his career at Pine Valley Furniture as a
programmer/analyst I. This job assignment
required him to code and maintain financial
application systems in COBOL. In the six years he
has been at PVF, he has been promoted several
times; his most recent promotion was to a junior
systems analyst position. During his tenure at
PVF, Chris has worked on several important proj-
ects, including serving as a team member on a
project that developed a five-year plan that would
renovate the manufacturing information systems.

Chris enjoys his work at Pine Valley Furniture
and wishes to continue moving up the informa-
tion systems ladder. Over the past three years,
Chris has often thought about becoming certified
by the Project Management Institute. He has
taken several courses toward his MBA, has at-
tended three technology-related seminars, and
has helped the local Feed the Hungry chapter de-
velop, implement, and maintain its computerized
information system.

a. While eating lunch one day, Juanita asked
Chris about the benefits of becoming a proj-
ect management professional. Briefly make a
case for becoming a project management
professional.

b. What are the project management profes-
sional eligibility criteria for Chris? What docu-
mentation must he provide?

c. Assume Chris has obtained his certification.
What are PDUs, and how many must Chris
acquire over a three-year period?

d. Several activity categories are listed as quali-
fying for PDUs on the Project Management
Institute’s Web site. Identify these categories.
In which categories would you place Chris’s
experience?

2. Hoosier Burger
Bob and Thelma Mellankamp have come to

realize that the current problems with their
inventory control, customer ordering, and man-
agement reporting systems are seriously affecting
Hoosier Burger’s day-to-day operations. At the
close of business one evening, Bob and Thelma

decide to hire the Build a Better System (BBS)
consulting firm. Harold Parker and Lucy Chen,
two of BBS’s owners, are frequent Hoosier Burger
customers. Bob and Thelma are aware of the ex-
cellent consulting service BBS is providing to the
Bloomington area.

Build a Better System is a medium-size consult-
ing firm based in Bloomington, Indiana. Six
months ago, BBS hired you as a junior systems
analyst for the firm. Harold and Lucy were
impressed with your résumé, course work, and
systems analysis and design internship. During
your six months with BBS, you have had the
opportunity to work alongside several senior
systems analysts and observe the project man-
agement process.

On a Friday afternoon, you learn that you have
been assigned to the Hoosier Burger project and
that the lead analyst on the project is Juan
Rodriquez. A short while later, Juan stops by your
desk and mentions that you will be participating in
the project management process. Mr. Rodriquez
has scheduled a meeting with you for 10:00 A.M.
on Monday to review the project management
process with you. You know from your brief dis-
cussion with Mr. Rodriquez that you will be asked
to prepare various planning documents, particu-
larly a Gantt chart and a Network diagram.

a. In an effort to learn more about project
management, you decide to research this topic
over the weekend. Locate articles that discuss
project management. Summarize your findings.

b. At your meeting on Monday, Mr. Rodriquez
asks you to prepare a Gantt chart for the
Hoosier Burger project. Using the following
information, prepare a Gantt chart.

c. Using the information provided in part b,
prepare a Network diagram.

d. After reviewing the Gantt chart and a Network
diagram, Mr. Rodriquez feels that alternative
generation should take only one-half week and
that implementation may take three weeks.
Modify your charts to reflect these changes.

Activity
No. Activity

Time
(weeks)

Immediate
Predecessors

1 Requirements collection 1 —

2 Requirements structuring 2 1

3 Alternative generation 1 2

4 Logical design 2 3

5 Physical design 3 4

6 Implementation 2 5

80 Part I Foundations for Systems Development

3. Lilly Langley’s Baking Goods Company
In 1919 Lionel Langley opened his first bakery

store, which he named after his wife, Lilly. Initially
he sold only breads, cakes, and flour to his cus-
tomers. Through the years, the business expanded
rapidly by opening additional bakeries, acquiring
flour mills, and acquiring food-processing compa-
nies. After 81 years in business, the company is
now a well-known, highly reputable, international
corporation. Lilly Langley’s Baking Goods Com-
pany (LLBGC) has more than 15,000 employees,
operates in 50 countries, and offers a wide variety
of products.

Frederica Frampton, LLBGC’s chief information
officer, has just returned from a meeting with
Chung Lau, LLBGC’s director of operations. They
discussed the many problems the company is hav-
ing with getting supplies and distributing products.
In essence, the end users of the current operations/
manufacturing systems are demanding informa-
tion that the current system just cannot provide.
The current information systems are inflexible.

� Combining data housed in separate plant
databases is difficult, if not impossible.

� End users have difficulty
generating ad hoc reports.

� Scheduling the production lines is
becoming quite tedious.

Costs to enhance the systems are becoming
unwieldy, so now it is time to consider renovating
these systems. Because of a top management
directive, the systems must be operational within
nine months.

Frederica Frampton recognizes the importance
of the LLBGC operations/manufacturing systems
renovation. She decides to assemble a team of her
best systems analysts to develop new operations/
manufacturing systems for LLBGC. You are
assigned as a member of this team.

a. Lorraine Banderez, the project manager, has
asked you to investigate how other companies
have used project management software,
particularly Microsoft Project. Investigate
two companies and provide a brief summary
of how each has used project management
software.

b. Part of your responsibility is to assist in the
preparation of the planning documents.
Using the following information, prepare a
Gantt chart.

c. Using the information from part b, prepare a
Network diagram. Identify the critical path.

d. After reviewing your planning documents,
Lorraine decides to modify several of the activ-
ity times. Revise both your Gantt chart and Net-
work diagram to reflect these modifications.

CASE: PETRIE’S ELECTRONICS

Managing the Information Systems Project
Jim Watanabe, the assistant director of information
technology at Petrie’s Electronics, a Southern
California–based electronics retail store, walked into
his building’s conference room. It was early in the
morning for Jim, but the meeting was important for
him. Jim was going to put together his team for the
customer relationship project he had just been named

to manage. It was Jim’s first big project to manage at
Petrie’s, and he was excited about getting started.

“Hi Jim,” said Ella Whinston, the chief operations
officer. With Ella was a guy Jim did not know. “Jim,
this is Bob Petroski. I’ve asked that he be on your
project team, to represent me.”

Jim and Bob shook hands. “Nice to meet you, Jim. I’m
looking forward to working with you on this project.”

Activity
No. Activity

Time
(weeks)

Immediate
Predecessors

1 Requirements collection 3 —

2 Requirements structuring 4 1

3 Process analysis 3 2

4 Data analysis 3 2

5 Logical design 5 3,4

6 Physical design 5 5

7 Implementation 6 6

Activity Time (weeks)

Requirements collection 4

Requirements structuring 3

Process analysis 4

Data analysis 4.5

Logical design 5

Physical design 5.5

Implementation 7

Chapter 3 Managing the Information Systems Project 81

“And Bob knows how important this project is to
me,” Ella said, “so I expect him to keep me informed
about your progress.” Ella smiled.

Great, Jim thought, more pressure. That’s all I need.
Just then, John Smith, the head of marketing

walked into the conference room. With him was a
young woman Jim recognized, but he wasn’t sure
from where.

“Jim,” John said, “Let me introduce you to Sally
Fukuyama. She is the assistant director of marketing.
She will be representing marketing, and me, on your
‘No Customer Escapes’ project.”

“Hi Jim,” Sally said, “I have a lot of ideas about
what we can do. Even though I still have my regular
job to worry about, I’m excited about working on this
project.”

“Who else will be on your team?” Ella asked.
“I am bringing Sanjay Agarwal from IT,” Jim said. “He

is in charge of systems integration in the IT department
and reports to me. In addition to myself and Sanjay and
Sally and Bob, we will also have a store manager on the
team. I’m trying to get Carmen Sanchez, the manager of
the store in Irvine (California). Like the rest of us, she
is really busy, but I think we have to have a store
manager on the team.”

“Irvine?” Ella asked. “That’s one of our top stores.
Carmen should have a lot of insight into the issues
related to keeping customers, if she is managing the
Irvine store. And you are right, she is going to be
very busy.”

“So,” John asked, “When is your first meeting?”

Case Questions

1. What qualities might Jim possess that would
make him a successful project manager?

2. How do you think Jim should respond to Ella’s
implied pressure about the importance of the
project to her?

3. What strategies might Jim employ to deal with a
very busy team member such as Carmen
Sanchez?

4. What should Jim do next to complete the project
initiation?

5. List five team communication methods that Jim
might use throughout this project. What are some
pros and cons of each?

82

Systems Planning and Selection

� Describe the steps involved when identifying
and selecting projects and initiating and
planning projects.

� Explain the need for and the contents
of a project scope statement and baseline
project plan.

� List and describe various methods for
assessing project feasibility.

� Describe the differences between tangible
and intangible benefits and costs, and the
differences between one-time and recurring
costs.

� Perform cost-benefit analysis and describe
what is meant by the time value of money,
present value, discount rate, net present
value, return on investment, and break-even
analysis.

� Describe the activities and participant roles
within a structured walkthrough.

After studying this chapter, you should be able to:

four
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

C
om

sto
ck

/
Th

in
ks

to
ck

Chapter Preview . . .

The acquisition, development, and maintenance
of information systems consume substantial re-

sources for most organizations. Organizations can

benefit from following a formal process for iden-

tifying, selecting, initiating, and planning projects.

The first phase of the systems development life

cycle—systems planning and selection—deals

with this issue. As you can see in Figure 4-1, this

phase consists of two primary activities. In the

next section, you learn about the first activity, a

general method for identifying and selecting proj-

ects and the deliverables and outcomes from this

process. Next, we review the second activity, proj-

ect initiation and planning, and present several

techniques for assessing project feasibility. The

information uncovered during feasibility analysis

is organized into a document called a baseline

project plan. The process of building this plan is

discussed next. Before the project can evolve to

the next phase of the systems development life

cycle—systems analysis—the project plan must

be reviewed and accepted. In the final major sec-

tion of the chapter, we provide an overview of the

project review process.

83

✓ Project Identification and Selection
✓ Project Initiation and Planning

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 4-1
Systems development life
cycle phase 1, systems
planning and selection.
Phase 1 activities are project
identification and selection
and project initiation and
planning.

84 Part II Systems Planning and Selection

Information Systems
Managers

Formal Planning Groups

Managers and
Business Units

Project 1
Project 2
Project 3
...

Project N

FIGURE 4-2
Three key sources for information
systems projects.

Identifying and Selecting Projects
The first activity of the systems planning and selection phase of the SDLC is proj-
ect identification and selection. During this activity, a senior manager, a business
group, an IS manager, or a steering committee identifies and assesses all possible
systems development projects that a business unit could undertake. Next, those
projects deemed most likely to yield significant organizational benefits, given
available resources, are selected. Organizations vary in their approach to identi-
fying and selecting projects. In some organizations, project identification and
selection is a formal process in which projects are outcomes of a larger overall
planning process. For example, a large organization may follow a formal project
identification process that involves rigorously comparing all competing projects.
Alternatively, a small organization may use informal project selection processes
that allow the highest-ranking IS manager to select projects independently or
allow individual business units to decide on projects after agreeing on funding.

Requests for information systems development can come from three key
sources, as depicted in Figure 4-2:

1. Managers and business units who want to replace or extend an existing
system in order to gain needed information or to provide a new service to
customers

2. Information systems managers who want to make a system more efficient,
less costly to operate, or want to move a system to a new operating
environment

3. Formal planning groups that want to improve an existing system in order
to help the organization meet its corporate objectives, such as providing
better customer service

Regardless of how an organization executes the project identification and
selection process, a common sequence of activities occurs. In the following
sections, we describe a general process for identifying and selecting projects,
and producing the deliverables and outcomes of this process.

The Process of Identifying and Selecting Information
Systems Development Projects
Project identification and selection consists of three primary activities: identi-
fying potential development projects, classifying and ranking projects, and
selecting projects for development. Each of these activities is described next.

Chapter 4 Systems Planning and Selection 85

1. Identifying potential development projects. Organizations vary as to how
they identify projects. This process can be performed by:

� A key member of top management, either the CEO of a small or
medium-size organization or a senior executive in a larger
organization

� A steering committee, composed of a cross section of managers with
an interest in systems

� User departments, in which either the head of the requesting unit or a
committee from the requesting department decides which projects to
submit (as a systems analyst, you will help users prepare such requests)

� The development group or a senior IS manager

Each identification method has strengths and weaknesses. For example,
projects identified by top management have a strategic organizational
focus. Alternatively, projects identified by steering committees reflect the
diversity of the committee and therefore have a cross-functional focus.
Projects identified by individual departments or business units have a
narrow, tactical focus. The development group identifies projects based
on the ease with which existing hardware and systems will integrate with
the proposed project. Other factors, such as project cost, duration,
complexity, and risk, also influence the people who identify a project.
Table 4-1 summarizes the characteristics of each selection method.

Of all the possible project sources, those identified by top management
and steering committees most often reflect the broader needs of the
organization. These groups have a better understanding of overall business
objectives and constraints. Projects identified by top management or by a
diverse steering committee are therefore referred to as coming from a
top-down source.

Projects identified by a functional manager, a business unit, or the
information systems development group are often designed for a
particular business need within a given business unit and may not reflect
the overall objectives of the organization. It’s not that projects identified
by individual managers, business units, or the IS development group are
deficient, but rather that they may not consider broader organizational
issues. Project initiatives stemming from managers, business units, or the
development group are referred to as coming from a bottom-up source.
As a systems analyst, you provide ongoing support for users of these types
of projects and are involved early in the life cycle. You help managers
describe their information needs and the reasons for doing the project.
These descriptions are evaluated in selecting which projects will be
approved to move into the project initiation and planning activities.

In sum, projects are identified by both top-down and bottom-up
initiatives. The formality of identifying and selecting projects can vary
substantially across organizations. Because limited resources preclude the

TABLE 4-1: Common Characteristics of Alternative Methods for Making Information Systems
Identification and Selection Decisions

Project Source Cost Duration Complexity System Size Focus

Top management Highest Longest Highest Largest Strategic

Steering committee High Long High Large Cross-functional

User department Low Short Low Small Departmental

Development group Low–high Short–long Low–high Small–large Integration with existing systems

86 Part II Systems Planning and Selection

TABLE 4-2: Possible Evaluation Criteria When Classifying and Ranking Projects

Evaluation Criteria Description

Value chain analysis Extent to which activities add value and costs when developing products and/or services; information
systems projects providing the greatest overall benefits will be given priority over those with fewer benefits

Strategic alignment Extent to which the project is viewed as helping the organization achieve its strategic objectives and
long-term goals

Potential benefits Extent to which the project is viewed as improving profits, customer service, etc., and the duration
of these benefits

Resource availability Amount and type of resources the project requires and their availability

Project size/duration Number of individuals and the length of time needed to complete the project

Technical difficulty/risks Level of technical difficulty to complete the project successfully within given time and resource
constraints

development of all proposed systems, most organizations have some
process of classifying and ranking each project’s merit. Those projects
deemed to be inconsistent with overall organizational objectives,
redundant in functionality to some existing system, or unnecessary will
not be considered.

2. Classifying and ranking IS development projects. Assessing the merit of
potential projects is the second major activity in the project identification
and selection phase. As with project identification, classifying and ranking
projects can be performed by top managers, a steering committee,
business units, or the IS development group. The criteria used to assign
the merit of a given project can vary based on the size of the organization.
Table 4-2 summarizes the criteria commonly used to evaluate projects. In
any given organization, one or several criteria might be used during the
classifying and ranking process.

As with project identification, the criteria used to evaluate projects
will vary by organization. If, for example, an organization uses a steering
committee, it may choose to meet monthly or quarterly to review
projects and use a wide variety of evaluation criteria. At these meetings,
new project requests are reviewed relative to projects already identified,
and ongoing projects are monitored. The relative ratings of projects are
used to guide the final activity of this identification process—project
selection.

3. Selecting IS development projects. The selection of projects is the final
activity in the project identification and selection phase. The short- and
long-term projects most likely to achieve business objectives are
considered. As business conditions change over time, the relative
importance of any single project may substantially change. Thus, the
identification and selection of projects is an important and ongoing activity.

Numerous factors must be considered when selecting a project, as illus-
trated in Figure 4-3. These factors include:

� Perceived needs of the organization
� Existing systems and ongoing projects
� Resource availability
� Evaluation criteria
� Current business conditions
� Perspectives of the decision makers

Chapter 4 Systems Planning and Selection 87

Existing and
Available

Resources
Perceived and

Real Needs

List of Potential
and Ongoing

Projects

Current
Business

Conditions
Evaluation

Criteria

Decision Outcome

Project
Selection
Decision

• Accept Project
• Reject Project
• Delay Project
• Refocus Project
• End-User Development
• Purchase System
• Modify and Resubmit

FIGURE 4-3
Numerous factors must be
considered when selecting a
project. Decisions can result in
one of seven outcomes.

Top Down

Bottom Up

Schedule of Projects
1. ...
2. ...
3. ...

Evaluate,
Prioritize, and

Schedule
Projects

Sources of
Potential Projects

Project Identification
and Selection

Project Initiation
and Planning

• Top Management
• Steering Committee

• User Departments
• Development Group

FIGURE 4-4
Information systems development
projects come from both top-down
and bottom-up initiatives.

This decision-making process can lead to numerous outcomes. Of course, proj-
ects can be accepted or rejected. Acceptance of a project usually means that
funding to conduct the next SDLC activity has been approved. Rejection means
that the project will no longer be considered for development. However, projects
may also be conditionally accepted; projects may be accepted pending the ap-
proval or availability of needed resources or the demonstration that a particularly
difficult aspect of the system can be developed. Projects may also be returned to
the original requesters who are told to develop or purchase the requested system
themselves. Finally, the requesters of a project may be asked to modify and
resubmit their request after making suggested changes or clarifications.

Deliverables and Outcomes
The primary deliverable, or end product, from the project identification and se-
lection phase is a schedule of specific IS development projects. These projects
come from both top-down and bottom-up sources, and once selected they
move into the second activity within this SDLC phase—project initiation and
planning. This sequence of events is illustrated in Figure 4-4. An outcome of
this activity is the assurance that people in the organization gave careful

88 Part II Systems Planning and Selection

consideration to project selection and clearly understood how each project
could help the organization reach its objectives. Because of the principle of
incremental commitment, a selected project does not necessarily result in a
working system. Incremental commitment means that after each subsequent
SDLC activity, you, other members of the project team, and organization offi-
cials will reassess your project. This reassessment will determine whether the
business conditions have changed or whether a more detailed understanding
of a system’s costs, benefits, and risks would suggest that the project is not as
worthy as previously thought. In the next section, we discuss several tech-
niques for gaining a thorough understanding of your development project.

Initiating and Planning Systems Development Projects
Many activities performed during initiation and planning could also be com-
pleted during the next phase of the SDLC—systems analysis. Proper and
insightful project initiation and planning, including determining project scope
and identifying project activities, can reduce the time needed to complete later
project phases, including systems analysis. For example, a careful feasibility
analysis conducted during initiation and planning could lead to rejecting a proj-
ect and saving a considerable expenditure of resources. The actual amount of
time expended will be affected by the size and complexity of the project as well
as by the experience of your organization in building similar systems. A rule of
thumb is that between 10 and 20 percent of the entire development effort should
be expended on initiation and planning. In other words, you should not be re-
luctant to spend considerable time and energy early in the project’s life in order
to fully understand the motivation for the requested system.

Most organizations assign an experienced systems analyst, or team of ana-
lysts for large projects, to perform project initiation and planning. The analyst
will work with the proposed customers—managers and users in a business
unit—of the system and other technical development staff in preparing the final
plan. Experienced analysts working with customers who well understand their
information services needs should be able to perform a detailed analysis with
relatively little effort. Less experienced analysts with customers who only
vaguely understand their needs will likely expend more effort in order to be
certain that the project scope and work plan are feasible.

The objective of project initiation and planning is to transform a vague system
request document into a tangible project description, as illustrated in Figure 4-5.
Effective communication among the systems analysts, users, and management
is crucial to the creation of a meaningful project plan. Getting all parties to agree
on the direction of a project may be difficult for cross-department projects when
different parties have different business objectives. Projects at large, complex
organizations require systems analysts to take more time to analyze both the
current and proposed systems.

In the remainder of this chapter, we describe how a systems analyst develops
a clear project description.

The Process of Initiating and Planning Systems
Development Projects
As its name implies, two major activities occur during project initiation and
project planning. Project initiation focuses on activities that will help orga-
nize a team to conduct project planning. During initiation, one or more
analysts are assigned to work with a customer to establish work standards
and communication procedures. Table 4-3 summarizes six activities per-
formed during project initiation.

Incremental commitment
A strategy in systems analysis
and design in which the project
is reviewed after each phase,
and continuation of the project
is rejustified in each of these
reviews.

Business case
A written report that outlines the
justification for an information
system. The report highlights
economic benefits and costs and
the technical and organizational
feasibility of the proposed system.

Chapter 4 Systems Planning and Selection 89

Vague System Request Tangible Project Description

Technical Staff

Systems Analyst

Customers of the
Proposed System

FIGURE 4-5
The systems analyst transforms
a vague systems request into a
tangible project description during
project initiation and planning.

The second activity, project planning, focuses on defining clear, discrete tasks
and the work needed to complete each task. The objective of the project plan-
ning process is to produce two documents: a baseline project plan (BPP) and
the project scope statement (PSS). The BPP becomes the foundation for the re-
mainder of the development project. It is an internal document used by the
development team but not shared with customers. The PSS, produced by the
project team, clearly outlines the objectives of the project for the customer. As
with the project initiation process, the size, scope, and complexity of a project
dictate the comprehensiveness of the project planning process and the result-
ing documents. Further, numerous assumptions about resource availability and
potential problems will have to be made. Analysis of these assumptions and sys-
tem costs and benefits forms a business case. Table 4-4 lists the activities per-
formed during project planning.

Deliverables and Outcomes
The major outcomes and deliverables from project initiation and planning are
the baseline project plan and the project scope statement. The baseline project
plan (BPP) contains all information collected and analyzed during the project
initiation and planning activity. The plan contains the best estimate of the project’s

TABLE 4-3: Types of Activities Performed during Project Initiation

• Establishing the project initiation team

• Establishing a relationship with the customer

• Establishing the project initiation plan

• Establishing management procedures

• Establishing the project management environment and project workbook

• Developing the project charter

Baseline project
plan (BPP)
One of the major outcomes and
deliverables from the project
initiation and planning phase. It
contains the best estimate of the
project’s scope, benefits, costs,
risks, and resource requirements.

90 Part II Systems Planning and Selection

scope, benefits, costs, risks, and resource requirements given the current under-
standing of the project. The BPP specifies detailed project activities for the next
life cycle phase—systems analysis—and provides less detail for subsequent proj-
ect phases (because these depend on the results of the analysis phase). Similarly,
benefits, costs, risks, and resource requirements will become more specific and
quantifiable as the project progresses. The project selection committee uses the
BPP to help decide whether to continue, redirect, or cancel a project. If selected,
the BPP becomes the foundation document for all subsequent SDLC activities;
however, it is updated as new information is learned during subsequent SDLC
activities. We explain how to construct the BPP later in the chapter.

Assessing Project Feasibility
Most information systems projects have budgets and deadlines. Assessing
project feasibility is a required task that can be a large undertaking because it
requires you, as a systems analyst, to evaluate a wide range of factors. Although
the specifics of a given project will dictate which factors are most important,
most feasibility factors fall into the following six categories:

� Economic

� Operational

� Technical

� Schedule

� Legal and contractual

� Political

The analysis of these six factors forms the business case that justifies the
expenditure of resources on the project. In the remainder of this section, we
examine various feasibility studies, beginning with economic feasibility.

To help you better understand the feasibility assessment process, we examine
a project at Pine Valley Furniture. Jackie Judson, Pine Valley Furniture’s (PVF)
vice president of marketing, prepares a system service request (SSR), illustrated
in Figure 4-6, to develop a customer tracking system. Jackie feels that this system
would allow PVF’s marketing group to better track customer purchase activity
and sales trends. She also feels that, if implemented, the Customer Tracking
System (CTS) would help improve revenue, a tangible benefit, and improve em-
ployee morale, an intangible benefit. PVF’s Systems Priority Board selected this
project for an initiation and planning study. The board assigned senior systems

TABLE 4-4: Activities Performed during Project Planning

• Describing the project scope, alternatives, and feasibility

• Dividing the project into manageable tasks

• Estimating resources and creating a resource plan

• Developing a preliminary schedule

• Developing a communication plan

• Determining project standards and procedures

• Identifying and assessing risk

• Creating a preliminary budget

• Developing a project scope statement

• Setting a baseline project plan

Chapter 4 Systems Planning and Selection 91

Sales growth at PVF has caused a greater volume of work for the marketing department. This volume of
work has greatly increased the volume and complexity of the data we need to deal with and understand.
We are currently using manual methods and a complex PC-based electronic spreadsheet to track and
forecast customer buying patterns. This method of analysis has many problems: (1) We are slow to catch
buying trends as there is often a week or more delay before data can be taken from the point-of-sale
system and manually entered into our spreadsheet; (2) the process of manual data entry is prone to errors
(which makes the results of our subsequent analysis suspect); and (3) the volume of data and the
complexity of analyses conducted in the system seem to be overwhelming our current system—sometimes
the program starts recalculating and never returns anything, or it returns information that we know
cannot be correct.

SERVICE REQUEST

I request a thorough analysis of our current method of tracking and analysis of customer purchasing
activity with the intent to design and build a completely new information system. This system should
handle all customer purchasing activity, support display and reporting of critical sales information, and
assist marketing personnel in understanding the increasingly complex and competitive business
environment. I feel that such a system will improve the competitiveness of PVF, particularly in our ability
to better serve our customers.

IS LIAISON

SPONSOR

Pine Valley Furniture
System Service Request

REQUESTED BY

DEPARTMENT

LOCATION

CONTACT

TYPE OF REQUEST

PROBLEM STATEMENT

URGENCY

DATE:Jackie Judson

Marketing

Headquarters, 570c

Tel: 4-3290 FAX: 4-3270 e-mail:

September 1, 2012

[
[
[

]
]
]

[
[
[

]
]
]

New System
System Enhancement
System Error Correction

Immediate—Operations are impaired or opportunity lost
Problems exist, but can be worked around
Business losses can be tolerated until new system installed

X

X

Jim Woo (Tel: 4-6207 FAX: 4-6200 e-mail: )

Jackie Judson, Vice President of Marketing

TO BE COMPLETED BY SYSTEMS PRIORITY BOARD

[

[
[
[

]

]
]
]

Request approved

Recommend revision
Suggest user development
Reject for reason

Assigned to
Start date

FIGURE 4-6
System service request (SSR) for the Customer Tracking System at Pine Valley Furniture. The SSR includes contact information,
a problem statement, service request statement, and liaison contact information.

analyst Jim Woo to work with Jackie to initiate and plan the project. At this point
in the project, all project initiation activities have been completed: Jackie
prepared an SSR, the selection board reviewed the SSR, and Jim Woo was as-
signed to work on the project. Jackie and Jim can now focus on project planning
activities, which will lead to the baseline project plan.

Tangible benefit
A benefit, derived from the
creation of an information
system, that can be measured in
dollars and with certainty.

92 Part II Systems Planning and Selection

TANGIBLE BENEFITS WORKSHEET
Customer Tracking System Project

Year 1 through 5

A. Cost reduction or avoidance $ 4,500

B. Error reduction 2,500

C. Increased flexibility 7,500

D. Increased speed of activity 10,500

E. Improvement in management
planning or control 25,000

F. Other __ 0_______

TOTAL Tangible Benefits $50,000

FIGURE 4-7
Tangible benefits worksheet for the
Customer Tracking System at Pine
Valley Furniture.

Assessing Economic Feasibility
A study of economic feasibility is required for the baseline project plan. The
purpose for assessing economic feasibility is to identify the financial bene-
fits and costs associated with the development project. Economic feasibility is
often referred to as cost-benefit analysis. During project initiation and plan-
ning, it will be impossible for you to define precisely all benefits and costs re-
lated to a particular project. Yet, it is important that you identify and quantify
benefits and costs, or it will be impossible for you to conduct a sound eco-
nomic analysis and determine whether one project is more feasible than an-
other. Next, we review worksheets you can use to record costs and benefits,
and techniques for making cost-benefit calculations. These worksheets and
techniques are used after each SDLC phase to decide whether to continue, redi-
rect, or kill a project.

Determining Project Benefits An information system can provide many
benefits to an organization. For example, a new or renovated IS can automate
monotonous jobs, reduce errors, provide innovative services to customers and
suppliers, and improve organizational efficiency, speed, flexibility, and morale.
These benefits are both tangible and intangible. A tangible benefit is an item
that can be measured in dollars and with certainty. Examples of tangible
benefits include reduced personnel expenses, lower transaction costs, or
higher profit margins. It is important to note that not all tangible benefits can
be easily quantified. For example, a tangible benefit that allows a company to
perform a task 50 percent of the time may be difficult to quantify in terms of
hard dollar savings. Most tangible benefits fit in one or more of the following
categories:

� Cost reduction and avoidance

� Error reduction

� Increased flexibility

� Increased speed of activity

� Improvement of management planning and control

� Opening new markets and increasing sales opportunities

Jim and Jackie identified several tangible benefits of the Customer Tracking
System at PVF and summarized them in a worksheet, shown in Figure 4-7.
Jackie and Jim collected information from users of the current customer track-
ing system in order to create the worksheet. They first interviewed the person
responsible for collecting, entering, and analyzing the correctness of the current
customer tracking data. This person estimated that he spent 10 percent of his

Economic feasibility
A process of identifying the
financial benefits and costs
associated with a development
project.

Tangible cost
A cost associated with an
information system that can be
easily measured in dollars and
with certainty.

Intangible benefit
A benefit derived from the
creation of an information
system, that cannot be easily
measured in dollars or with
certainty.

Chapter 4 Systems Planning and Selection 93

time correcting data-entry errors. This person’s salary is $25,000, so Jackie and
Jim estimated an error reduction benefit of $2,500 (10 percent of $25,000).
Jackie and Jim also interviewed managers who used the current customer
tracking reports to estimate other tangible benefits. They learned that cost
reduction or avoidance benefits could be gained with better inventory manage-
ment. Also, increased flexibility would likely occur from a reduction in the time
normally taken to reorganize data manually for different purposes. Further,
improvements in management planning or control should result from a broader
range of analyses in the new system. This analysis forecasts that benefits from
the system would be approximately $50,000 per year.

Jim and Jackie also identified several intangible benefits of the system. Al-
though they could not quantify these benefits, they will still be described in the
final BPP. Intangible benefits refer to items that cannot be easily measured
in dollars or with certainty. Intangible benefits may have direct organizational
benefits, such as the improvement of employee morale, or they may have
broader societal implications, such as the reduction of waste creation or re-
source consumption. Potential tangible benefits may have to be considered in-
tangible during project initiation and planning because you may not be able to
quantify them in dollars or with certainty at this stage in the life cycle. During
later stages, such intangibles can become tangible benefits as you better un-
derstand the ramifications of the system you are designing. Intangible benefits
include:

� Competitive necessity

� Increased organizational flexibility

� Increased employee morale

� Promotion of organizational learning and understanding

� More timely information

After determining project benefits, project costs must be identified.

Determining Project Costs An information system can have both
tangible and intangible costs. A tangible cost refers to an item that you can
easily measure in dollars and with certainty. From a systems development
perspective, tangible costs include items such as hardware costs, labor costs,
and operational costs from employee training and building renovations.
Alternatively, an intangible cost refers to an item that you cannot easily
measure in terms of dollars or with certainty. Intangible costs can include loss
of customer goodwill, employee morale, or operational inefficiency.

Besides tangible and intangible costs, you can distinguish system-related de-
velopment costs as either one-time or recurring. A one-time cost refers to a
cost associated with project initiation and development and the start-up of the
system. These costs typically encompass the following activities:

� System development

� New hardware and software purchases

� User training

� Site preparation

� Data or system conversion

When conducting an economic cost-benefit analysis, you should create a
worksheet for capturing these expenses. This worksheet can be a two-column
document or a multicolumn spreadsheet. For large projects, one-time costs may
be staged over one or more years. In these cases, a separate one-time cost work-
sheet should be created for each year. This separation would make it easier to
perform present-value calculations (see the following section “Time Value of

Intangible cost
A cost associated with an
information system, that cannot
be easily measured in terms of
dollars or with certainty.

One-time cost
A cost associated with project
initiation and development, or
system start-up.

Time value of money
(TVM)
The process of comparing
present cash outlays to future
expected returns.

ONE-TIME COSTS WORKSHEET
Customer Tracking System Project

Year 0

A. Development costs $20,000

B. New hardware 15,000

C. New (purchased) software, if any
1. Packaged applications software 5,000
2. Other _______________________________________ 0

D. User training 2,500

E. Site preparation 0

F. Other __ 0_______

TOTAL One-Time Costs $42,500

FIGURE 4-8
One-time costs worksheet for the
Customer Tracking System at Pine
Valley Furniture.

Money”). A recurring cost refers to a cost resulting from the ongoing evolution
and use of the system. Examples of these costs typically include:

� Application software maintenance

� Incremental data storage expense

� Incremental communications

� New software and hardware leases

� Consumable supplies and other expenses (e.g., paper, forms, data-
center personnel)

Both one-time and recurring costs can consist of items that are fixed or vari-
able in nature. Fixed costs refer to costs that are billed or incurred at a regular
interval and usually at a fixed rate. A facility lease payment is an example of a
fixed cost. Variable costs refer to items that vary in relation to usage. Long-
distance phone charges are variable costs.

Jim and Jackie identified both one-time and recurring costs for the Customer
Tracking System project. Figure 4-8 shows that this project will incur a one-time
cost of $42,500. Figure 4-9 shows a recurring cost of $28,500 per year. One-time
costs were established by discussing the system with Jim’s boss, who felt that
the system would require approximately four months to develop (at $5,000 per
month). To run the new system effectively, the marketing department would
need to upgrade at least five of its current workstations (at $3,000 each). Addi-
tionally, software licenses for each workstation (at $1,000 each) and modest
user training fees (10 users at $250 each) would be necessary.

As you can see from Figure 4-9, Jim and Jackie estimate that the proposed sys-
tem will require, on average, five months of annual maintenance, primarily for
enhancements that users will request from the IS department. Other ongoing ex-
penses such as increased data storage, communications equipment, and sup-
plies should also be expected.

You should now have an understanding of the types of benefit and cost cate-
gories associated with an information systems project. In the next section, we
address the relationship between time and money.

The Time Value of Money Most techniques used to determine economic
feasibility encompass the concept of the time value of money (TVM). TVM
refers to comparing present cash outlays to future expected returns. As we’ve
seen, the development of an information system has both one-time and
recurring costs. Furthermore, benefits from systems development will likely
occur sometime in the future. Because many projects may be competing for the

94 Part II Systems Planning and Selection

Recurring cost
A cost resulting from the ongoing
evolution and use of the system.

Present value
The current value of a future cash
flow.

Discount rate
The interest rate used to compute
the present value of future cash
flows.

RECURRING COSTS WORKSHEET
Customer Tracking System Project

Year 1 through 5

A. Application software maintenance $25,000

B. Incremental data storage required: 20 GB � $50 1,000
(estimated cost/GB = $50)

C. Incremental communications (lines, messages, . . .) 2,000

D. New software or hardware leases 0

E. Supplies 500

F. Other ___ 0_______

TOTAL Recurring Costs $28,500

FIGURE 4-9
Recurring costs worksheet for the
Customer Tracking System at Pine
Valley Furniture.

Chapter 4 Systems Planning and Selection 95

same investment dollars and may have different useful life expectancies, all
costs and benefits must be viewed in relation to their present, rather than future
value when comparing investment options.

A simple example will help you understand the concept of TVM. Suppose you
want to buy a used car from an acquaintance, and she asks that you make three
payments of $1,500 for three years, beginning next year, for a total of $4,500. If
she would agree to a single lump-sum payment at the time of sale (and if you
had the money!), what amount do you think she would agree to? Should the sin-
gle payment be $4,500? Should it be more or less? To answer this question, we
must consider the time value of money. Most of us would gladly accept $4,500
today rather than three payments of $1,500, because a dollar today (or $4,500
for that matter) is worth more than a dollar tomorrow or next year, because
money can be invested. The interest rate at which money can be borrowed or
invested, the cost of capital, is called the discount rate for TVM calculations.
Let’s suppose that the seller could put the money received for the sale of the car
in the bank and receive a 10 percent return on her investment. A simple formula
can be used when figuring out the present value of the three $1,500 payments:

where PVn is the present value of Y dollars n years from now, when i is the
discount rate.

From our example, the present value of the three payments of $1,500 can be
calculated as:

where PV1, PV2, and PV3 reflect the present value of each $1,500 payment in year
1, 2, and 3, respectively.

To calculate the net present value (NPV) of the three $1,500 payments, simply
add the present values calculated (NPV � PV1 � PV2 � PV3 � 1,363.65 �
1,239.60 � 1,126.95 � $3,730.20). In other words, the seller could accept a lump
sum payment of $3,730.20 as equivalent to the three payments of $1,500, given
a discount rate of 10 percent.

PV3 = 1,500 *
1

(1 + .10)3
= 1,500 * .7513 = 1,126.95

PV2 = 1,500 *
1

(1 + .10)2
= 1,500 * .8264 = 1,239.60

PV1 = 1,500 *
1

(1 + .10)1
= 1,500 * .9091 = 1,363.65

PVn = Y *
1

(1 + i)n

Break-even analysis
A type of cost-benefit analysis to
identify at what point (if ever)
benefits equal costs.

FIGURE 4-10
Worksheet reflecting the present
value calculations of all benefits
and costs for the Customer
Tracking System at Pine Valley
Furniture. This worksheet indicates
that benefits from the project over
five years exceed its costs by
$35,003.

Now that we know the relationship between time and money, the next step in
performing the economic analysis is to create a summary worksheet that re-
flects the present values of all benefits and costs. PVF’s Systems Priority Board
feels that the useful life of many information systems may not exceed five years.
Therefore, all cost-benefit analysis calculations will be made using a five-year
time horizon as the upper boundary on all time-related analyses. In addition, the
management of PVF has set its cost of capital to be 12 percent (i.e., PVF’s dis-
count rate). The worksheet constructed by Jim is shown in Figure 4-10.

Cell H11 of the worksheet displayed in Figure 4-10 summarizes the NPV of the
total tangible benefits from the project over five years ($180,239). Cell H19 sum-
marizes the NPV of the total costs from the project. The NPV for the project, in-
dicated in cell H22 ($35,003), shows that benefits from the project exceed costs.

The overall return on investment (ROI) for the project is also shown on the
worksheet in cell H25 (0.24). Because alternative projects will likely have dif-
ferent benefit and cost values and, possibly, different life expectancies, the
overall ROI value is useful for making project comparisons on an economic ba-
sis. Of course, this example shows ROI for the overall project over five years.
An ROI analysis could be calculated for each year of the project.

The last analysis shown in Figure 4-10, on line 34, is a break-even analysis.
The objective of the break-even analysis is to discover at what point (if ever)
cumulative benefits equal costs (i.e., when break-even occurs). To conduct this
analysis, the NPV of the yearly cash flows is determined. Here, the yearly cash
flows are calculated by subtracting both the one-time cost and the present
values of the recurring costs from the present value of the yearly benefits. The
overall NPV of the cash flows reflect the total cash flows for all preceding

96 Part II Systems Planning and Selection

Chapter 4 Systems Planning and Selection 97

0 1

50

0

150

200

2 3
Year

Do
lla

rs
 ($

 th
ou

sa
nd

s)

4 5

Benefits

Project break-even point

Costs

100

FIGURE 4-11
Break-even analysis for the
Customer Tracking System at Pine
Valley Furniture.

years. If you examine line 30 of the worksheet, you’ll see that break-even occurs
between years two and three. Because year three is the first year in which the
overall NPV cash flows figure is non-negative, identifying the point when break-
even occurs can be derived as follows:

Using data from Figure 4-10,

Project break-even occurs at approximately 2.4 years. A graphical represen-
tation of this analysis is shown in Figure 4-11. Using the information from the
economic analysis, PVF’s Systems Priority Board will be in a much better posi-
tion to understand the potential economic impact of the Customer Tracking Sys-
tem. Without this information, it would be virtually impossible to know the
cost-benefits of a proposed system and would be impossible to make an in-
formed decision on approving or rejecting the service request.

You can use many techniques to compute a project’s economic feasibility. Be-
cause most information systems have a useful life of more than one year and
will provide benefits and incur expenses for more than one year, most tech-
niques for analyzing economic feasibility employ the concept of the time value
of money, TVM. Table 4-5 describes three commonly used techniques for con-
ducting economic feasibility analysis. (For a more detailed discussion of TVM
or cost-benefit analysis techniques in general, the interested reader is encour-
aged to review an introductory finance or managerial accounting textbook.)

To be approved for continuation, a systems project may not have to achieve
break-even or have an ROI greater than estimated during project initiation and
planning. Because you may not be able to quantify many benefits or costs at this
point in a project, such financial hurdles for a project may be unattainable. In
this case, simply doing as thorough an economic analysis as possible, including
producing a long list of intangibles, may be sufficient for the project to progress.
One other option is to run the type of economic analysis shown in Figure 4-10
using pessimistic, optimistic, and expected benefit and cost estimates during
project initiation and planning. This range of possible outcomes, along with the
list of intangible benefits and the support of the requesting business unit, will
often be enough to allow the project to continue to the analysis-phase. You
must, however, be as precise as you can with the economic analysis, especially
when investment capital is scarce. In this case, it may be necessary to conduct
some typical analysis-phase activities during project initiation and planning in
order to clearly identify inefficiencies and shortcomings with the existing sys-
tem and to explain how a new system will overcome these problems.

Break-Even Ratio =
15,303 - 9,139

15,303
= .403

Break-Even Ratio =
Yearly NPV Cash Flow - Overall NPV Cash Flow

Yearly NPV Cash Flow

Technical feasibility
The process of assessing the
development organization’s
ability to construct a proposed
system.

Schedule feasibility
The process of assessing the
degree to which the potential
time frame and completion dates
for all major activities within
a project meet organizational
deadlines and constraints for
effecting change.

Legal and contractual
feasibility
The process of assessing
potential legal and contractual
ramifications due to the
construction of a system.

Political feasibility
The process of evaluating how
key stakeholders within the
organization view the proposed
system.

Operational feasibility
The process of assessing the
degree to which a proposed
system solves business problems
or takes advantage of business
opportunities.

Assessing Other Feasibility Concerns
You may need to consider other feasibility studies when formulating the business
case for a system during project planning. Operational feasibility is the process
of examining the likelihood that the project will attain its desired objectives. The
goal of this study is to understand the degree to which the proposed system will
likely solve the business problems or take advantage of the opportunities outlined
in the system service request or project identification study. In other words, as-
sessing operational feasibility requires that you gain a clear understanding of how
an IS will fit into the current day-to-day operations of the organization.

The goal of technical feasibility is to understand the development organiza-
tion’s ability to construct the proposed system. This analysis should include an
assessment of the development group’s understanding of the possible target
hardware, software, and operating environments to be used, as well as, system
size, complexity, and the group’s experience with similar systems. Schedule
feasibility considers the likelihood that all potential time frames and completion-
date schedules can be met and that meeting these dates will be sufficient for
dealing with the needs of the organization. For example, a system may have to be
operational by a government-imposed deadline by a particular point in the busi-
ness cycle (such as the beginning of the season when new products are intro-
duced), or at least by the time a competitor is expected to introduce a similar
system.

Assessing legal and contractual feasibility requires that you gain an
understanding of any potential legal and contractual ramifications due to the
construction of the system. Considerations might include copyright or nondis-
closure infringements, labor laws, antitrust legislation (which might limit
the creation of systems to share data with other organizations), foreign trade
regulations (e.g., some countries limit access to employee data by foreign cor-
porations), and financial reporting standards as well as current or pending con-
tractual obligations. Typically, legal and contractual feasibility is a greater
consideration if your organization has historically used an outside organization
for specific systems or services that you now are considering handling yourself.
Assessing political feasibility involves understanding how key stakeholders
within the organization view the proposed system. Because an information sys-
tem may affect the distribution of information within the organization, and thus
the distribution of power, the construction of an IS can have political ramifica-
tions. Those stakeholders not supporting the project may take steps to block,
disrupt, or change the project’s intended focus.

98 Part II Systems Planning and Selection

TABLE 4-5: Commonly Used Economic Cost-Benefit Analysis Techniques:
Net Present Value, Return on Investment, and Break-Even Analysis

Analysis Technique Description

Net present value (NPV) NPV uses a discount rate determined from the company’s cost of capital to establish the present
value of a project. The discount rate is used to determine the present value of both cash receipts
and outlays.

Return on investment (ROI) ROI is the ratio of the net cash receipts of the project divided by the cash outlays of the project.
Trade-off analysis can be made among projects competing for investment by comparing their
representative ROI ratios.

Break-even analysis (BEA) BEA finds the amount of time required for the cumulative cash flow from a project to equal its initial
and ongoing investment.

Chapter 4 Systems Planning and Selection 99

In summary, numerous feasibility issues must be considered when planning a
project. This analysis should consider economic, operational, technical, sched-
ule, legal, contractual, and political issues related to the project. In addition to
these considerations, project selection by an organization may be influenced by
issues beyond those discussed here. For example, projects may be selected for
construction given high project costs and high technical risk if the system is
viewed as a strategic necessity, that is, the project is viewed by the organization
as being critical to its survival. Alternatively, projects may be selected because
they are deemed to require few resources and have little risk. Projects may also
be selected because of the power or persuasiveness of the manager proposing
the system. This means that project selection may be influenced by factors be-
yond those discussed here and beyond items that can be analyzed. Your role as
a systems analyst is to provide a thorough examination of the items that can be
assessed so that a project review committee can make informed decisions. In
the next section, we discuss how project plans are typically constructed.

Building the Baseline Project Plan
All the information collected during project initiation and planning is collected
and organized into a document called the baseline project plan. Once the BPP
is completed, a formal review of the project can be conducted with customers.
This presentation, a walkthrough, is discussed later in the chapter. The focus of
the walkthrough is to verify all information and assumptions in the baseline
plan before moving ahead with the project. An outline of a baseline project plan,
shown in Figure 4-12, contains four major sections:

1. Introduction

2. System description

3. Feasibility assessment

4. Management issues

The purpose of the introduction is to provide a brief overview of the entire doc-
ument and outline a recommended course of action for the project. The introduc-
tion is often limited to only a few pages. Although it is sequenced as the first section
of the BPP, it is often the final section to be written. It is only after performing most
of the project planning activities that a clear overview and recommendation can be
created. One initial activity that should be performed is the definition of the proj-
ect scope, its range, which is an important part of the BPP’s introduction section.

When defining the scope for the Customer Tracking System within PVF, Jim
Woo first needed to gain a clear understanding of the project’s objectives. Jim
interviewed Jackie Judson and several of her colleagues to gain a good idea of
their needs. He also reviewed the existing system’s functionality, processes, and
data-use requirements for performing customer tracking activities. These activ-
ities provided him with the information needed to define the project scope and
to identify possible alternative solutions. Alternative system solutions can re-
late to different system scopes, platforms for deployment, or approaches to ac-
quiring the system. We elaborate on the idea of alternative solutions, called
design strategies, in Chapter 7. During project initiation and planning, the most
crucial element of the design strategy is the system’s scope. Scope depends on
the answers to these questions:

� Which organizational units (business functions and divisions) might
be affected by or use the proposed system or system change?

� With which current systems might the proposed system need to
interact or be consistent, or which current systems might be changed
because of a replacement system?

100 Part II Systems Planning and Selection

1.0

2.0

3.0

4.0

Introduction
A.

B.

System Description
A.
B.

Feasibility Assessment
A.

B.

C.

D.

E.

F.

Management Issues
A.

B.

C.

D.

BASELINE PROJECT PLAN REPORT

Project Overview—Provides an executive summary that specifies the project’s scope,
feasibility, justification, resource requirements, and schedules. Additionally, a brief
statement of the problem, the environment in which the system is to be implemented,
and constraints that affect the project are provided.
Recommendation—Provides a summary of important findings from the planning
process and recommendations for subsequent activities.

Alternatives—Provides a brief presentation of alternative system configurations.
System Description—Provides a description of the selected configuration and a narrative
of input information, tasks performed, and resultant information.

Economic Analysis—Provides an economic justification for the system using cost-benefit
analysis.
Technical Analysis—Provides a discussion of relevant technical risk factors and an
overall risk rating of the project.
Operational Analysis—Provides an analysis of how the proposed system solves business
problems or takes advantage of business opportunities in addition to an assessment of
how current day-to-day activities will be changed by the system.
Legal and Contractual Analysis—Provides a description of any legal or contractual risks
related to the project (e.g., copyright or nondisclosure issues, data capture or
transferring, and so on).
Political Analysis—Provides a description of how key stakeholders within the
organization view the proposed system.
Schedules, Timeline, and Resource Analysis—Provides a description of potential time
frame and completion-date scenarios using various resource allocation schemes.

Team Configuration and Management—Provides a description of the team member
roles and reporting relationships.
Communication Plan—Provides a description of the communication procedures to be
followed by management, team members, and the customer.
Project Standards and Procedures—Provides a description of how deliverables will be
evaluated and accepted by the customer.
Other Project-Specific Topics—Provides a description of any other relevant issues related
to the project uncovered during planning.

FIGURE 4-12
An outline of a baseline project plan contains four major sections: introduction, system description, feasibility assessment,
and management issues.

� Who inside and outside the requesting organization (or the
organization as a whole) might care about the proposed system?

� What range of potential system capabilities is to be considered?

The statement of project scope for the Customer Tracking System project at
PVF is shown in Figure 4-13. A project scope statement is a short document
prepared primarily for the customer to clearly describe what the project will de-
liver and outline generally at a high level all the work required for completing
the project. It is therefore a useful communication tool. The project scope state-
ment ensures that both you and your customer gain a common understanding
of the project size, duration, and outcomes. The project scope statement is an

Project scope statement
A document prepared for the
customer that describes what the
project will deliver and outlines
generally at a high level all work
required to complete the project.

Chapter 4 Systems Planning and Selection 101

General Project Information

Problem/Opportunity Statement:

Project Objectives:

Project Description:

Business Benefits:

Project Deliverables:

Estimated Project Duration:

Project Name:
Sponsor:
Project Manager:

Customer Tracking System
Jackie Judson, VP Marketing
Jim Woo

Pine Valley Furniture
Project Scope Statement

Sales growth has outpaced the marketing department’s ability to track and forecast
customer buying trends accurately. An improved method for performing this process must
be found in order to reach company objectives.

To enable the marketing department to track and forecast customer buying patterns
accurately in order to better serve customers with the best mix of products. This will also
enable PVF to identify the proper application of production and material resources.

A new information system will be constructed that will collect all customer purchasing
activity, support display and reporting of sales information, aggregate data, and show
trends in order to assist marketing personnel in understanding dynamic market conditions.
The project will follow PVF’s systems development life cycle.

Improved understanding of customer buying patterns
Improved utilization of marketing and sales personnel
Improved utilization of production and materials

Customer tracking system analysis and design
Customer tracking system programs
Customer tracking documentation
Training procedures

5 months

Prepared by: Jim Woo
Date: September 20, 2012

FIGURE 4-13
Project scope statement for the Customer Tracking System at Pine Valley Furniture.

easy document to create because it typically consists of a high-level summary
of the baseline project plan (BPP) information (described next).

Depending upon your relationship with your customer, the role of the project
scope statement may vary. At one extreme, the project scope statement can be
used as the basis of a formal contractual agreement outlining firm deadlines,
costs, and specifications. At the other extreme, the project scope statement can
simply be used as a communication vehicle to outline the current best estimates
of what the project will deliver, when it will be completed, and the resources it
may consume. A contract programming or consulting firm, for example, may es-
tablish a formal relationship with a customer and use a project charter that is
more extensive and formal. Alternatively, an internal development group may de-
velop a project scope statement that is shorter and less formal, as it will be in-
tended to inform customers rather than to set contractual obligations and
deadlines.

102 Part II Systems Planning and Selection

Production Schedules

Price and term quotes

Shipment

Order

Request for Quotes

Supplier Material Evaluation

Material Specifications

Production Capacities

Material Availability

0

Purchasing
Fulfillment

System

Suppliers

EngineeringProductionSchedulers
Supplier Material

Specifications

FIGURE 4-14
Context-level data-flow diagram
showing project scope for the
purchasing fulfillment system at
Pine Valley Furniture.

For the Customer Tracking System (CTS), project scope was defined using
only textual information. It is not uncommon, however, to define project
scope using tools such as data-flow diagrams and entity-relationship
models. For example, Figure 4-14 shows a context-level data-flow diagram
used to define system scope for PVF’s Purchasing Fulfillment System. As
shown in Figure 4-14, the Purchasing Fulfillment System interacts with the
production schedulers, suppliers, and engineering. You will learn much
more about data-flow diagrams in Chapter 6. The other items in the intro-
duction section of the BPP are simply executive summaries of the other sec-
tions of the document.

The second section of the BPP is the system description, in which you out-
line possible alternative solutions to the one deemed most appropriate for the
given situation. Note that this description is at a high level, mostly narrative in
form. Alternatives may be stated as simply as this:

1. Web-based online system

2. Mainframe with central database

3. Local area network with decentralized databases

4. Batch data input with online retrieval

5. Purchasing of a prewritten package

If the project is approved for construction or purchase, you will need to col-
lect and structure information in a more detailed and rigorous manner during
the systems analysis phase and evaluate in greater depth these and other alter-
natives for the system.

When Jim and Jackie were considering system alternatives for the CTS, they
focused on two primary issues. First, they discussed how the system would be
acquired and considered three options: (1) purchase the system if one could be
found that met PVF’s needs, (2) outsource the development of the system to an
outside organization, or (3) build the system within PVF. Next, Jim and Jackie
defined the comprehensiveness of the system’s functionality. To complete this
task, Jackie wrote a series of statements listing the types of tasks that she
thought marketing personnel would be able to accomplish when using the CTS.
This list became the basis of the system description and was instrumental in
helping them make the acquisition decision. After considering the unique needs
of the marketing group, they decided that the best decision was to build the sys-
tem within PVF.

Chapter 4 Systems Planning and Selection 103

In the third section of the BPP, feasibility assessment, the systems analyst
outlines project costs and benefits and technical difficulties. This section is
where high-level project schedules are specified using Network diagrams and
Gantt charts. Recall from Chapter 3 that this process is referred to as a work
breakdown structure. During project initiation and planning, task and activity
estimates are generally not detailed. An accurate work breakdown can be done
only for the next one or two life-cycle activities—systems analysis and systems
design. After defining the primary tasks for the project, an estimate of the
resource requirements can be made. As with defining tasks and activities, this
activity involves obtaining estimates of the human resource requirements,
because people are typically the most expensive resource element of a project.
Once you define the major tasks and resource requirements, a preliminary
schedule can be developed. Defining an acceptable schedule may require that
you find additional or different resources or that the scope of the project be
changed. The greatest amount of project planning effort is typically expended
on feasibility assessment activities.

The final section of the BPP, management issues, outlines the concerns that
management has about the project. It will be a short section if the proposed proj-
ect is going to be conducted exactly as prescribed by the organization’s standard
systems development methodology. Most projects, however, have some unique
characteristics that require minor to major deviation from the standard method-
ology. In the team configuration and management portion, you identify the types
of people to work on the project, who will be responsible for which tasks, and how
work will be supervised and reviewed (see Figure 4-15). In the communication

Project:
WebStore

Manager:
Juan Gonzales

Task ID

A

B

C

D

F

G

H

I

J

Prepared by:
Juan Gonzales

Legend:
P = Primary
S = Support

Page: 1 of 1

Responsibility Matrix

Jordan

P

S

S

P

S

S

James

S

P

S

S

S

P

P

Jackie

P

S

S

S

Jeremy

S

P

S

Kim

S

P

S

S

S

S

Juan

S

S

S

S

S

P

S

S

S

Task

Collect requirements

Develop data model

Program interface

Build database

Design test scenarios

Run test scenarios

User documentation

Install system

Customer support

FIGURE 4-15
Task-responsibility matrix.

104 Part II Systems Planning and Selection

Stakeholder Document Format Team Contact Date Due

Team Members Project Status Project Intranet Juan First Monday of
 Report Month
 Kim

Management Project Status Hard Copy Juan First Monday of
Supervisor Report Month
 Kim

User Project Status Hard Copy James First Monday of
 Report Month
 Kim

Internal IT Project Status E-mail Jackie First Monday of
Staff Report Month
 James

IT Manager Project Status Hard Copy Juan First Monday of
 Report Month
 Jeremy

Contract Software E-mail/Project Jordan October 4, 2012
Programmers Specifications Intranet
 Kim

Training Implementation Hard Copy Jordan January 10, 2012
Subcontractor and Training
 Plan James

FIGURE 4-16
The Project Communication Matrix provides a high-level summary of the communication plan.

plan portion, you explain how the user will be kept informed about project
progress, such as periodic review meetings or even a newsletter, and which mech-
anisms will be used to foster sharing of ideas among team members, such as a
computer-based conference facility (see Figure 4-16). An example of the type of
information contained in the project standards and procedures portion would be
procedures for submitting and approving project change requests and any other
issues deemed important for the project’s success.

You should now have a feel for how a BPP is constructed and the types of
information it contains. Its creation is not meant to be a project in and of itself
but rather a step in the overall systems development process. Developing the
BPP has two primary objectives. First, it helps to assure that the customer and
development group share a common understanding of the project. Second, it
helps to provide the sponsoring organization with a clear idea of the scope,
benefits, and duration of the project. Meeting these objectives creates the foun-
dation for a successful project.

Chapter 4 Systems Planning and Selection 105

Reviewing the Baseline Project Plan
Before phase 2 of the SDLC analysis can begin, the users, management, and de-
velopment group must review and approve the baseline project plan. This
review takes place before the BPP is submitted or presented to some project
approval body, such as an IS steering committee or the person who must fund
the project. The objective of this review is to ensure that the proposed system
conforms to organizational standards and to make sure that all relevant parties
understand and agree with the information contained in the baseline project
plan. A common method for performing this review (as well as reviews during
subsequent life-cycle phases) is called a walkthrough. Walkthroughs, also
called structured walkthroughs, are peer group reviews of any product created
during the systems development process. They are widely used by professional
development organizations, such as IBM, Xerox, and the U.S. government, and
have proven effective in ensuring the quality of an information system. As a sys-
tems analyst, you will frequently be involved in walkthroughs.

Although walkthroughs are not rigidly formal or exceedingly long in duration,
they have a specific agenda that highlights what is to be covered and the ex-
pected completion time. Individuals attending the meeting have specific roles.
These roles can include the following:

� Coordinator: This person plans the meeting and facilitates
discussions. This person may be the project leader or a lead analyst
responsible for the current life-cycle step.

� Presenter: This person describes the work product to the group. The
presenter is usually an analyst who has done all or some of the work
being presented.

� User: This person (or group) makes sure that the work product meets
the needs of the project’s customers. This user would usually be
someone not on the project team.

� Secretary: This person takes notes and records decisions or
recommendations made by the group. This may be a clerk assigned to
the project team or one of the analysts on the team.

� Standards bearer: This person ensures that the work product adheres
to organizational technical standards. Many larger organizations have
staff groups within the unit responsible for establishing standard
procedures, methods, and documentation formats. For example,
within Microsoft, user interface standards are developed and
rigorously enforced on all development projects. As a result, all
systems have the same look and feel to users. These standards bearer
validate the work so that it can be used by others in the development
organization.

� Maintenance oracle: This person reviews the work product in terms
of future maintenance activities. The goal is to make the system and
its documentation easy to maintain.

After Jim and Jackie completed their BPP for the Customer Tracking System,
Jim approached his boss and requested that a walkthrough meeting be sched-
uled and a walkthrough coordinator be assigned to the project. PVF provides
the coordinator with a Walkthrough Review Form, shown in Figure 4-17. Using
this form, the coordinator can easily make sure that a qualified individual
is assigned to each walkthrough role; that each member has been given a copy
of the review materials; and that each member knows the agenda, date, time,
and location of the meeting. At the meeting, Jim presented the BPP, and Jackie

Walkthrough
A peer group review of any
product created during the
systems development process;
also called a structured
walkthrough.

106 Part II Systems Planning and Selection

Session Coordinator:

Project/Segment:

Coordinator’s Checklist:

Agenda:

Group Decision:

Confirmation with producer(s) that material is ready and stable:
Issue invitations, assign responsibilities, distribute materials: [] Y [] N
Set date, time, and location for meeting:

Date: / /

Location:

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

[] Y [] N [] Y [] N

1.
2.
3.

All participants agree to follow PVF’s Rules of a Walkthrough
New material: Walkthrough of all material
Old material: Item-by-item checkoff of previous action list
Creation of new action list (contribution by each participant)
Group decision (see below)
Deliver copy of this form to the project control manager

Accept product as-is
Revise (no further walkthrough)
Review and schedule another walkthrough

1.
2.
3.
4.
5.
6.

Pine Valley Furniture
Walkthrough Review Form

Responsibilities

Coordinator

Presenter

User

Secretary

Standards

Maintenance

Participants Can Attend Received Materials

Time: A.M. / P.M. (circle one)

Signatures

FIGURE 4-17
Walkthrough Review Form for the Customer Tracking System at Pine Valley Furniture.

added comments from a user perspective. Once the walkthrough presentation
was completed, the coordinator polled each representative for his or her rec-
ommendation concerning the work product. The results of this voting may re-
sult in validation of the work product, validation pending changes suggested
during the meeting, or a suggestion that the work product requires major revi-
sion before being presented for approval. In the last case, substantial changes

Chapter 4 Systems Planning and Selection 107

Session Coordinator:

Project/Segment:

Date and Time of Walkthrough:

Pine Valley Furniture
Walkthrough Action List

Fixed () Issues raised in review:

Date: / / Time: A.M. / P.M. (circle one)

FIGURE 4-18
Walkthrough Action List for Pine Valley Furniture.

to the work product are usually requested, after which another walkthrough
must be scheduled before the project can be proposed to the Systems Priority
Board (steering committee). In the case of the Customer Tracking System, the
BPP was supported by the walkthrough panel pending some minor changes to
the duration estimates of the schedule. These suggested changes were recorded
by the secretary on a Walkthrough Action List, shown in Figure 4-18, and given

Internet
A network of interconnected
individual networks that use a
common protocol to communicate
with each other; a global
computing network to support
business-to-consumer electronic
commerce.

108 Part II Systems Planning and Selection

to Jim to incorporate into the next version of the baseline plan presented to the
steering committee.

Walkthrough meetings are a common occurrence in most systems develop-
ment groups. In addition to reviewing the BPP, these meetings can be used for
the following activities:

� System specifications

� Logical and physical designs

� Code or program segments

� Test procedures and results

� Manuals and documentation

One of the key advantages to using a structured review process is to ensure
that formal review points occur during the project. At each subsequent phase
of the project, a formal review should be conducted (and shown on the project
schedule) to make sure that all aspects of the project are satisfactorily accom-
plished before assigning additional resources to the project. This conservative
approach of reviewing each major project activity with continuation contin-
gent on successful completion of the prior phase is called incremental com-
mitment. It is much easier to stop or redirect a project at any point when using
this approach.

Walkthroughs are used throughout the duration of the project for briefing
team members and external stakeholders. These presentations can provide
many benefits to the team but, unfortunately, are often not well done. With the
proliferation of computer technology and the availability of powerful software
to assist in designing and delivering presentations, making an effective pres-
entation has never been easier. Microsoft’s PowerPoint has emerged as the de
facto standard for creating computer-based presentations. Although this
program is relatively easy to use, it can also be misused such that the “bells and
whistles” added to a computer-based presentation actually detract from the
presentation. Like any project, to make an effective presentation it must be
planned, designed, and delivered. Planning and designing your presentation is
equally important as delivering it. If your slides are poorly laid out, hard to
read, or inconsistent, it won’t matter how good your delivery is; your audience
will think more about the poor quality of the slides, than about what you are
saying. Fortunately, with a little work it is easy to design a high-quality presen-
tation if you follow a few simple steps that are outlined in Table 4-6.

Pine Valley Furniture WebStore: Systems Planning and Selection
Most businesses have discovered the power of Internet-based electronic com-
merce as a means to communicate efficiently with customers and to extend
their marketing reach. As a systems analyst, you and a project team may be
asked by your employer to help determine whether an Internet-based electronic
commerce application fits the goals of the company and, if so, how that appli-
cation should be implemented.

The systems planning and selection process for an Internet-based electronic
commerce application is no different than the process followed for other appli-
cations. Nonetheless, you should take into account special issues when devel-
oping an Internet-based application. In this section, we highlight those issues.

Internet Basics
The term Internet is derived from the term internetworking. The Internet is
a global network comprised of thousands of interconnected individual

Chapter 4 Systems Planning and Selection 109

TABLE 4-6: Guidelines for Making an Effective Presentation

Presentation Planning

Who is the audience? To design the most effective presentation, you need to consider the audience (e.g., What do
they know about your topic? What is their education level?).

What is the message? Your presentation should be designed with a particular objective in mind.

What is the presentation
environment?

Knowledge of the room size, shape, and lighting is valuable information for designing an
optimal presentation.

Presentation Design

Organize the sequence Organize your presentation so that related elements or topics are found in one place instead
of scattered throughout the material in random fashion.

Keep it simple Make sure that you don’t pack too much information onto a slide so that it is difficult to read.
Also, work to have as few slides as possible; in other words, only include information that
you absolutely need.

Be consistent Make sure that you are consistent in the types of fonts, font sizes, colors, design approach,
and backgrounds.

Use variety Use both textual and graphical slides to convey information in the most meaningful format.

Don’t rely on the spell
checker alone

Make sure you carefully review your presentation for typographical and grammatical errors.

Use bells and whistles
sparingly

Make sure that you use familiar graphical icons to guide and enhance slides; don’t lose sight
of your message as you add bells and whistles. Also, take great care when making transitions
between slides and elements so that “special effects” don’t take away from your message.

Supplemental materials Take care when using supplemental materials so that they don’t distract the audience. For
example, don’t provide handouts until you want the audience to actually read this material.

Have a clear beginning
and end

At the beginning, introduce yourself and your teammates (if any), thank your audience for
being there, and provide a clear outline of what will be covered during the presentation. At
the conclusion, have a concluding slide so that the audience clearly sees that the presentation
is over.

Presentation Delivery

Practice Make sure that you thoroughly test your completed work on yourself and others to be sure it
covers your points and presents them in an effective manner within the time frame required.

Arrive early and cue up your
presentation

It is good practice when feasible to have your presentation ready to go prior to the arrival
of the audience.

Learn to use the special
software keys

Using special keys to navigate the presentation will allow you to focus on your message and
not on the software.

Have a backup plan Have a backup plan in case technology fails or your presentation is lost when traveling.

Delivery To make an effective presentation, you must become an effective public speaker through
practice.

Personal appearance Your appearance and demeanor can go a long way toward enhancing how the audience
receives your presentation.

networks that communicate with each other through TCP/IP (transmission
control protocol/Internet protocol). Using the Internet and other technologies
to support day-to-day business activities, such as communicating with cus-
tomers and selling goods and services online, is referred to as electronic
commerce (EC), also called e-commerce. Note that EC can also refer to the
use of non-Internet technologies such as telephone voice-messaging systems

Electronic commerce (EC)
Internet-based communication
and other technologies that
support day-to-day business
activities.

110 Part II Systems Planning and Selection

that route and process customer requests and inquiries. Nonetheless, for our
purposes, we will use EC to mean Internet-enabled business. The three
classes of Internet EC applications are Internet, intranet, and extranet, as
illustrated in Figure 4-19. Internet-based EC is transactions between individu-
als and businesses. Intranet refers to the use of the Internet within the same
business. Extranet refers to Internet-based communication to support busi-
ness-to-business activities.

Intranets and extranets are examples of two ways organizations communi-
cate via technology. Having an intranet is a lot like having a “global” local area
network. A company may create an intranet to house commonly used forms,
up-to-date information on sales, and human resource information so that
employees can access them easily and at any time. Organizations that have
intranets dictate: (1) what applications will run over the intranet—such as
electronic mail or an inventory control system, and (2) the speed and quality of
the hardware connected to the intranet. Intranets are a new way of using
information systems to support business activities within a single organization.
Extranets are another new way of using an established computing model,
electronic data interchange (EDI). EDI refers to the use of telecommunication
technologies to transfer business documents directly between organizations.
Using EDI, trading partners—suppliers, manufacturers, and customers—
establish computer-to-computer links that allow them to exchange data elec-
tronically. For example, a car manufacturer using EDI may send an electronic
purchase order to a steel or tire supplier instead of a paper request. The paper
order may take several days to arrive at the supplier, whereas an EDI purchase
order will take only a few seconds. EDI is fast becoming the standard by which
organizations will communicate with each other in the world of electronic
commerce.

When developing either an intranet or an extranet, developers know who the
users are, what applications will be used, the speed of the network connection,
and the type of communication devices (e.g., Web browsers such as Firefox,
Chrome, or Internet Explorer, smart phones such as an iPhone). On the other
hand, when developing an Internet EC application, developers have to discern
countless unknowns in order to build a useful system. Table 4-7 lists several un-
knowns you and your project team may deal with when designing and building
an EC. These unknowns may result in making trade-offs based on a careful
analysis of who the users are likely to be, where they are likely to be located,
and how they are likely to be connected to the Internet. Even with all these dif-
ficulties to contend with, you will find no shortage of Internet ECs springing up
all across the world. One company that has decided to get onto the Web with its
own EC site is Pine Valley Furniture.

Pine Valley Furniture WebStore
The PVF board of directors has requested that a project team be created to ex-
plore the opportunity to develop an EC system. Specifically, market research

Individual Business Business

Internet Intranet Extranet

FIGURE 4-19
Three possible modes of electronic
commerce.

Intranet
Internet-based communication to
support business activities within
a single organization.

Electronic data
interchange (EDI)
The use of telecommunication
technologies to transfer business
documents directly between
organizations.

Extranet
Internet-based communication to
support business-to-business
activities.

Chapter 4 Systems Planning and Selection 111

TABLE 4-7: Unknowns That Must Be Dealt with When Designing
and Building Internet Applications

User Concern: Who is the user?
Examples: Where is the user located? What is their expertise,
education, or expectations?

Connection Speed Concern: What is the speed of the connection and what information
can be effectively displayed?
Examples: modem, cable modem, satellite, broadband, cellular

Access Method Concern: What is the method of accessing the Internet?
Examples: Web browser, personal digital assistant (PDA),
Web-enabled cellular phone, Web-enabled television

has found a good opportunity for online furniture purchases, especially in the
areas of:

� Corporate furniture buying

� Home-office furniture purchasing

� Student furniture purchasing

The board wants to incorporate all three target markets into its long-term EC
plan but wants to focus initially on the corporate furniture buying system. The
board feels that this segment has the greatest potential to provide an adequate
return on investment and would be a good building block for moving into the
customer-based markets. Because the corporate furniture buying system will
be specifically targeted to the business furniture market, it will be easier to de-
fine the system’s operational requirements. Additionally, this EC system should
integrate nicely with two currently existing systems, Purchasing Fulfillment
and Customer Tracking. Together, these attributes make it an ideal candidate
for initiating PVF’s Web strategy.

Initiating and Planning PVF’s E-Commerce System Given the high
priority of this project, Jackie Judson, vice president of marketing, and senior
systems analyst Jim Woo were assigned to work on this project. As for the
Customer Tracking System described earlier in the chapter, their first activity
was to begin the project’s initiation and planning activity. Over the next few
days, Jim and Jackie met several times to initiate and plan the proposed system.
At the first meeting, they agreed that “WebStore” would be the proposed system
project name. Next, they worked on identifying potential benefits, costs, and
feasibility concerns. Jim developed a list of potential costs the company would
incur to develop Web-based systems that he shared with Jackie and the other
project team members (see Table 4-8).

WebStore Project Walkthrough After meeting with the project team, Jim
and Jackie established an initial list of benefits and costs (see Table 4-9) as well
as several feasibility concerns (see Table 4-10). Next, Jim worked with several
of PVF’s technical specialists to develop an initial project schedule. Figure 4-20
shows the Gantt chart for this 84-day schedule. Finally, Jim and Jackie
presented their initial project plans in a walkthrough to PVF’s board of directors
and senior management. All were excited about the project plan and approval
was given to move the WebStore project on to the analysis phase.

112 Part II Systems Planning and Selection

TABLE 4-9: PVF WebStore Project Benefits and Costs

Tangible Benefits

Lower per-transaction overhead cost

Repeat business

Tangible Costs (one-time)

Internet service setup fee

Hardware

Development cost

Data entry

Tangible Costs (recurring)

Internet service hosting fee

Software

Support

Maintenance

Decreased sales via traditional channels

Intangible Benefits

First to market

Foundation for complete Web-based IS

Simplicity for customers

Intangible Costs

No face-to-face interaction

Not all customers use Internet

TABLE 4-8: Web-Based System Costs

Cost Category Examples

Platform costs Web-hosting service
Web server
Server software
Software plug-ins
Firewall server
Router
Internet connection

Content and service Creative design and development
Ongoing design fees
Web project manager
Technical site manager
Content staff
Graphics staff
Support staff
Site enhancement funds
Fees to license outside content
Programming, consulting, and research
Training and travel

Marketing Direct mail
Launch and ongoing public relations
Print advertisement
Paid links to other Web sites
Promotions
Marketing staff
Advertising sales staff

Chapter 4 Systems Planning and Selection 113

TABLE 4-10: PVF WebStore Feasibility Concerns

Feasibility Concern Description

Operational Online store open 24/7/365; returns/customer support

Technical New skill set for development, maintenance, and operation

Schedule Must be open for business by Q3

Legal Credit card fraud

Political Traditional distribution channel loses business

Key Points Review
1. Describe the steps involved when identifying

and selecting projects and initiating and
planning projects.

Project identification and selection consists of
three primary activities: identifying potential de-
velopment projects, classifying and ranking proj-
ects, and selecting projects for development. A
variety of organizational members or units can be
assigned to perform this process, including top
management, a diverse steering committee, busi-
ness units and functional managers, the develop-
ment group, or the most senior IS executive.
Potential projects can be evaluated and selected
using a broad range of criteria such as value chain
analysis, alignment with business strategy, poten-
tial benefits, resource availability and require-
ments, and risks. Project initiation and planning
is a critical activity in the life of a project. At this
point, projects are accepted for development, re-
jected as infeasible, or redirected. The objective

of this process is to transform a vague system re-
quest into a tangible system description, clearly
outlining the objectives, feasibility issues, bene-
fits, costs, and time schedules for the project.
Project initiation includes forming the project ini-
tiation team, establishing customer relationships,
developing a plan to get the project started, set-
ting project management procedures, and creat-
ing an overall project management environment.
After project initiation, project planning focuses
on assessing numerous feasibility issues associ-
ated with the project in order to create a clear
baseline project plan.

2. Explain the need for and the contents of
a project scope statement and a baseline
project plan.

A project scope statement and a baseline project
plan are created during project initiation and plan-
ning. The project scope statement is a short docu-
ment prepared for the customer that describes

FIGURE 4-20
Gantt chart showing the schedule
for the WebStore project.

114 Part II Systems Planning and Selection

what the project will deliver and outlines all work
required to complete the project; it ensures that
both you and your customer gain a common un-
derstanding of the project. The baseline project
plan contains an introduction, a high-level de-
scription of the proposed system or system
change, an outline of the various feasibilities, and
an overview of management issues specific to the
project. Before the development of an information
system can begin, the users, management, and de-
velopment group must review and agree on this
specification.

3. List and describe various methods for assess-
ing project feasibility.

Assessing project feasibility can include an
examination of economic, operational, techni-
cal, schedule, legal and contractual, and politi-
cal aspects of the project. This assessment is
influenced by the project size, the type of sys-
tem proposed, and the collective experience of
the development group and potential cus-
tomers of the system. High project costs and
risks are not necessarily bad; rather it is more
important that the organization understands
the costs and risks associated with a project
and with the portfolio of active projects before
proceeding.

4. Describe the differences between tangible
and intangible benefits and costs, and the
differences between one-time and recur-
ring costs.

Tangible benefits can be easily measured in
dollars and with certainty. Intangible benefits
cannot be easily measured in dollars or with cer-
tainty. Tangible costs can be easily measured in
dollars and with certainty. Intangible costs can-
not be easily measured in terms of dollars or with
certainty. One-time costs are associated with
project start-up and development. Recurring
costs result from the ongoing evolution and use
of a system.

5. Perform cost-benefit analysis and describe
what is meant by the time value of money,
present value, discount rate, net present
value, return on investment, and break-even
analysis.

The time value of money refers to comparing
present cash outlays to future expected returns.
Thus, the present value represents the current
value of a future cash flow. The discount rate
refers to the rate of return used to compute the
present value of future cash flows. The net pres-
ent value uses a discount rate to gain the present
value of a project’s overall benefits and costs. The
return on investment is the ratio of the cash ben-
efits of a project divided by the cash costs; trade-
off analysis can be made among projects by
comparing their representative ROI ratios. Break-
even analysis finds the amount of time required
for the cumulative incoming cash flow (the bene-
fits) from a project to equal its initial and ongoing
investment (the costs).

6. Describe the activities and participant roles
within a structured walkthrough.

A walkthrough assesses the merits of the proj-
ect and ensures that the project, if accepted for
development, conforms to organizational stan-
dards and goals. An objective of this process is
also to make sure that all relevant parties un-
derstand and agree with the information con-
tained in the baseline project plan before
subsequent development activities begin. Sev-
eral individuals participate in a walkthrough, in-
cluding the coordinator, presenter, user,
secretary, standards bearer, and maintenance
oracle. Each plays a specific role to make sure
that the walkthrough is a success. Walkthroughs
are used to assess all types of project deliver-
ables, including system specifications, logical
and physical designs, code and program seg-
ments, test procedures and results, and manuals
and documentation.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Baseline project plan (BPP) (p. 89)
2. Break-even analysis (p. 96)
3. Business case (p. 89)
4. Discount rate (p. 95)
5. Economic feasibility (p. 92)

6. Electronic commerce (EC)
(p. 109)

7. Electronic data interchange (EDI)
(p. 110)

8. Extranet (p. 110)

9. Incremental commitment
(p. 88)

10. Intangible benefit (p. 93)
11. Intangible cost (p. 93)
12. Internet (p. 108)

Match each of the key terms above with the definition that best fits it.

Chapter 4 Systems Planning and Selection 115

1. The process of evaluating how key
stakeholders within the organization view
the proposed system.

2. A document prepared for the customer
that describes what the project will
deliver and outlines generally at a high
level all work required to complete the
project.

3. A written report that outlines the
justification for an information system.
This report highlights economic benefits
and costs and the technical and
organizational feasibility of the proposed
system.

4. A process of identifying the financial
benefits and costs associated with a
development project.

5. A strategy in systems analysis and
design in which the project is reviewed
after each phase, and continuation of the
project is rejustified in each of these
reviews.

6. A cost resulting from the ongoing evolution
and use of the system.

7. The interest rate used to compute the
present value of future cash flows.

8. A benefit derived from the creation of an
information system, that cannot be easily
measured in dollars or with certainty.

9. A network of interconnected individual
networks that use a common protocol to
communicate with each other; a global
computing network to support business-to-
consumer electronic commerce.

10. The process of assessing the degree to
which the potential time frame and
completion dates for all major activities
within a project meet organizational
deadlines and constraints for affecting
change.

11. A cost associated with an information
system, that can be easily measured in
dollars and with certainty.

12. Internet-based communication and other
technologies that support day-to-day
business activities.

13. A peer group review of any product
created during the systems development
process.

14. A process of assessing the development
organization’s ability to construct a
proposed system.

15. A cost associated with project initiation
and development, or system start-up.

16. The current value of a future cash flow.
17. Internet-based communication to support

business activities within a single
organization.

18. A benefit derived from the creation of an
information system, that can be measured
in dollars and with certainty.

19. The process of assessing potential legal
and contractual ramifications due to the
construction of a system.

20. A cost associated with an information
system, that cannot be easily measured in
terms of dollars or with certainty.

21. One of the major outcomes and
deliverables from the project initiation and
planning phase. It contains the best
estimate of the project’s scope, benefits,
costs, risks, and resource requirements.

22. The process of assessing the degree to
which a proposed system solves business
problems or takes advantage of business
opportunities.

23. The process of comparing present cash
outlays to future expected returns.

24. A type of cost-benefit analysis to
identify at what point (if ever) benefits
equal costs.

25. Internet-based communication to support
business-to-business activities.

26. The use of telecommunications
technologies to transfer business
documents directly between organizations.

13. Intranet (p. 110)
14. Legal and contractual feasibility

(p. 98)
15. One-time cost (p. 93)
16. Operational feasibility (p. 98)
17. Political feasibility (p. 98)

18. Present value (p. 95)
19. Project scope statement

(p. 100)
20. Recurring cost (p. 94)
21. Schedule feasibility (p. 98)
22. Tangible benefit (p. 92)

23. Tangible cost (p. 93)
24. Technical feasibility (p. 98)
25. Time value of money (TVM)

(p. 94)
26. Walkthrough (p. 105)

116 Part II Systems Planning and Selection

Problems and Exercises
1. The economic analysis carried out during proj-

ect identification and selection is rather super-
ficial. Why is this? Consequently, what factors
do you think tend to be most important for a po-
tential project to survive this first phase of the
life cycle?

2. Consider your use of a PC at either home or work
and list tangible benefits from an information
system. Based on this list, does your use of a PC
seem to be beneficial? Why or why not?

3. Assume you are put in charge of launching a
new Web site for a local nonprofit organization.
What costs would you need to account for?
Make a list of expected costs and benefits for
the project. You don’t need to list values, just
sources of expense. Consider both one-time and
recurring costs.

4. Consider the situation you addressed in Prob-
lem and Exercise 3. Create numeric cost esti-
mates for each of the costs you listed.
Calculate the net present value and return on
investment. Include a break-even analysis. As-
sume a 10 percent discount rate and a five-year
time horizon.

5. Consider the situation you addressed in Problem
and Exercise 3. Create a sample project scope
statement, following the structure shown in
Figure 4-13.

6. Assuming monetary benefits of an information
system at $85,000 per year, one-time costs of
$75,000, recurring costs of $35,000 per year, a
discount rate of 12 percent, and a five-year
time horizon, calculate the net present value of
these costs and benefits of an information sys-
tem. Also calculate the overall return on in-
vestment of the project and then present a

break-even analysis. At what point does break-
even occur?

7. Use the outline for the baseline project plan
provided in Figure 4-12 to present the system
specifications for the information system you
chose for Problem and Exercise 3.

8. Change the discount rate for Problem and
Exercise 6 to 10 percent and redo the analysis.

9. Change the recurring costs in Problem and
Exercise 6 to $40,000 and redo the analysis.

10. Change the time horizon in Problem and Exer-
cise 6 to three years and redo the analysis.

11. Assume monetary benefits of an information
system of $40,000 the first year and increasing
benefits of $10,000 a year for the next five years
(year 1 � $50,000, year 2 � $60,000, year 3 �
$70,000, year 4 � $80,000, year 5 � $90,000). One-
time development costs were $80,000 and recur-
ring costs were $45,000 over the duration of the
system’s life. The discount rate for the company
was 11 percent. Using a six-year time horizon,
calculate the net present value of these costs and
benefits. Also, calculate the overall return on in-
vestment and then present a break-even analysis.
At what point does break-even occur?

12. Change the discount rate for Problem and
Exercise 11 to 12 percent and redo the analysis.

13. Change the recurring costs in Problem and
Exercise 11 to $40,000 and redo the analysis.

14. For the system you chose for Problem and Exer-
cise 3, complete section 1.0.A, the project
overview, of the baseline project plan report.
How important is it that this initial section of the
baseline project plan report be done well? What
could go wrong if this section is incomplete or
incorrect?

Review Questions
1. Describe the project identification and selection

process.
2. Describe several project evaluation criteria.
3. List and describe the steps in the project initia-

tion and planning process.
4. What is contained in a baseline project plan? Are

the content and format of all baseline plans the
same? Why or why not?

5. Describe three commonly used methods for per-
forming economic cost-benefit analysis.

6. List and discuss the different types of project fea-
sibility factors. Is any factor most important?
Why or why not?

7. What are the potential consequences of not
assessing the technical risks associated with an
information systems development project?

8. What are the types or categories of benefits from
an IS project?

9. What intangible benefits might an organization
obtain from the development of an IS?

10. Describe the concept of the time value of money.
How does the discount rate affect the value of $1
today versus one year from today?

11. Describe the structured walkthrough process.
What roles need to be performed during a
walkthrough?

Chapter 4 Systems Planning and Selection 117

Discussion Questions
1. Imagine that you are the chief information offi-

cer (CIO) of a company and are responsible for
making all technology investment decisions.
Would you ever agree to build an information
system that had a negative net present value? If
so, why? If not, why not? How would you justify
your decision?

2. Imagine that you are interviewing for a job when
the interviewer asks you which cost-benefit analy-
sis technique is best for assessing a project’s eco-
nomic feasibility. What would your response be?

3. Imagine you are a member of the project ap-
proval committee. An ambitious young manager

in the marketing department is well connected
with the top management team in your company.
He catches you in the hall and mentions that he
is frustrated with how long it takes to get a sim-
ple system enhancement through the “bureau-
cratic” approval process. He wonders whether
you could sign off on a small enhancement re-
quest for his team’s reporting application. With a
wink, he promises to “owe you one.” What would
you say to him and why?

4. Of the six methods for assessing project feasibil-
ity, which is the most important? In which situa-
tion is each method more or less important?

Case Problems
1. Pine Valley Furniture

Pine Valley Furniture recently implemented a
new internship program and has begun recruiting
interns from nearby university campuses. As part
of this program, interns have the opportunity to
work alongside a systems analyst. This shadow-
ing opportunity provides invaluable insights into
the systems analysis and design process. Re-
cently you were selected for a six-month intern-
ship at Pine Valley Furniture, and Jim Woo has
been assigned as your supervisor.

At an initial meeting with Jim Woo, he explains
that Pine Valley Furniture is currently involved
with two important systems development proj-
ects, the Customer Tracking System and Web-
Store. The purpose of the Customer Tracking
System is to enable the PVF marketing group to
track customer purchase activity and sales trends
better. The WebStore project will help move the
company into the twenty-first century by facilitat-
ing online furniture purchases, with an initial

focus on corporate furniture buying. During your
meeting with Mr. Woo, he reviews the documen-
tation assembled for both systems. Mr. Woo
hands you a copy of the Customer Tracking Sys-
tem’s economic feasibility analysis. He mentions
that he would like to modify the spreadsheet to re-
flect the information provided in the following
table. Because you are familiar with a spread-
sheet product, you volunteer to make the modifi-
cations for him.

Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

Net economic
benefit

$ 0 $50,000 $50,000 $50,000 $50,000 $50,000

One-time costs $47,500

Recurring costs $ 0 $32,000 $32,000 $32,000 $32,000 $32,000

15. For the system you chose for Problem and Ex-
ercise 3, complete section 2.0.A, the alterna-
tives, of the baseline project plan report.
Without conducting a full-blown feasibility
analysis, what is your gut feeling as to the feasi-
bility of this system?

16. For the system you chose for Problem and Exer-
cise 3, complete section 3.0.A–F, the feasibility
analysis, of the baseline project plan report. How
does this feasibility analysis compare with your

gut feeling from the previous question? What
might go wrong if you rely on your gut feeling in
determining system feasibility?

17. For the system you chose for Problem and Exer-
cise 3, complete section 4.0.A–C, management is-
sues, of the baseline project plan report. Why
might people sometimes feel that these addi-
tional steps in the project plan are a waste of
time? What could you say to convince them that
these steps are important?

a. How were Pine Valley Furniture’s projects ini-
tiated? What is the focus for each of the new
systems?

118 Part II Systems Planning and Selection

b. Modify the Customer Tracking System’s eco-
nomic feasibility analysis to reflect the modifi-
cations mentioned in this case problem. Use a
discount rate of 10 percent. After the changes
are made, what are the new overall NPV, ROI,
and break-even point?

c. Modify the worksheet created in part b using
discount rates of 12 and 14 percent. What im-
pact do these values have on the overall NPV,
ROI, and break-even point?

d. Jim Woo would like to investigate how other
online stores are targeting the business furni-
ture market. Identify and evaluate two online
stores that sell business furniture. Briefly sum-
marize your findings.

2. Hoosier Burger
The Hoosier Burger project development team

has met several times with Bob and Thelma Mel-
lankamp. During these meetings, Bob has
stressed the importance of improving Hoosier
Burger’s inventory control, customer ordering,
and management reporting systems. Demand for
Hoosier Burger food is at an all-time high, and
this increased demand is creating problems for
Hoosier Burger’s staff, creating stock-out prob-
lems and impacting sales.

During rush periods, customers sometimes
wait fifteen minutes to place an order and may
wait an additional twenty-five minutes to receive
their order. Low-in-stock inventory items are of-
ten not reordered in a timely fashion, thus creat-
ing problems with the food preparation. For
instance, vanilla ice cream is used to prepare
vanilla malts, an item that accompanies the
Hoosier Burger Special. Last week, Bob did not
order enough vanilla ice cream, resulting in a last-
minute dash to the grocery store.

Bob and Thelma have expressed their feelings
that a new information system will be beneficial
in the areas of inventory management, market-
ing, customer service, and food preparation. Ad-
ditionally, the project team discussed with Bob
and Thelma the possibility of implementing a
point-of-sale system as an alternative design
strategy.

a. How was the Hoosier Burger project identi-
fied and selected? What focus will the new sys-
tem have?

b. Identify the Hoosier Burger project’s scope.
c. Using the six feasibility factors presented in

the chapter, assess the Hoosier Burger proj-
ect’s feasibility.

d. Using Figure 4-13 as a guide, develop a proj-
ect scope statement for the Hoosier Burger
project.

3. American Labs
American Labs provides lab testing services for

a variety of clients, mostly doctors’ offices and
other small medical businesses throughout the
Midwest. Clients send test vials containing blood
samples or other test requests to American Labs’
testing center, where the requested tests are per-
formed, after which the results are sent back to
the client via fax.

Jim Larsen, the head technician in the testing
facility at American Labs has approached you for
help with the company’s outdated inventory
tracking system. Business has picked up recently,
and the turnaround for clients’ requested tests
has been lengthening. To make matters worse,
the lab technicians are seldom able to give cus-
tomers an answer regarding where their requests
fall in the testing queue or how long they can ex-
pect the turnaround to be. Much of this stems
from an old, mostly paper-based inventory track-
ing system, which includes hand-written labels
put on each of the incoming test vials and a log-
book with entries made for each vial at each stage
of the testing process.

Jim would like to streamline the inventory
tracking process with an updated information
system that uses barcodes and a modern data-
base to keep track of customer test requests and
the accompanying vials. He would like to enable
technicians to provide accurate status updates
and turnaround estimates, and generally shorten
the turnaround time for test requests.

After an initial analysis, you make the following
estimations. You will use these data as part of
your initial feasibility assessment.

Year 0 Year 1 Year 2 Year 3 Year 4 Year 5

Net economic
benefit

$0 $50,000 $50,000 $50,000 $50,000 $50,000

One-time costs $80,000

Recurring costs $0 $25,000 $25,000 $25,000 $25,000 $25,000

a. Identify several benefits and costs associated
with implementing this new system.

b. Using Figure 4-10 as a guide, prepare an eco-
nomic feasibility analysis worksheet for Amer-
ican Labs. Using a discount rate of 10 percent,
what are the overall NPV and ROI? When will
break-even occur?

c. Modify the spreadsheet developed for part b to
reflect discount rates of 11 and 14 percent.
What impact will these new rates have on the
economic analysis?

Chapter 4 Systems Planning and Selection 119

CASE: PETRIE’S ELECTRONICS

Systems Planning and Selection
Now that the “No Customer Escapes” project
team has been formed and a plan has been devel-
oped for distributing project information, Jim be-
gan working on the project scope statement,
workbook, and baseline project plan. He first
drafted the project scope statement and posted it
on the project’s intranet (see PE Figure 4-1). Once
posted on the intranet, he sent a short e-mail mes-
sage to all team members requesting feedback.
Minutes after sending the e-mail, Jim’s office
phone rang.

“Jim, it’s Sally. I just looked over the scope state-
ment and have a few comments.”

“Great,” replied Jim, “it’s just a draft. What do you
think?”

“Well, I think that we need to explain more about
how the system will work and why we think this new
system will more than pay for itself.”

“Those are good suggestions; I am sure many oth-
ers will also want to know that information. How-
ever, the scope statement is a pretty high-level
document and doesn’t get into too much detail. Basi-
cally, its purpose is to just formally announce the
project, providing a very high-level description as
well as briefly listing the objectives, key assump-
tions, and stakeholders. The other documents that I
am working on, the workbook and the baseline proj-
ect plan, are intended to provide more details on spe-
cific deliverables, costs, benefits, and so on. So,
anyway, that type of more detailed information will
be coming next.”

“Oh, OK, that makes sense. I have never been on
a project like this, so this is all new to me,” said
Sally.

“Don’t worry,” replied Jim, “getting that kind of
feedback from you and the rest of the team will be
key for us doing a thorough feasibility analysis. I
am going to need a lot of your help in identifying
possible costs and benefits of the system. When
we develop the baseline project plan, we do a very
thorough feasibility analysis—we examine finan-
cial, technical, operational, schedule, legal and
contractual feasibility, as well as potential politi-
cal issues arising through the development of the
system.”

“Wow, we have to do all that? Why can’t we just
build the system? I think we all know what we want,”
replied Sally.

“That is another great question,” replied Jim. “I used
to think exactly the same way, but what I learned in

my last job was that there are great benefits to fol-
lowing a fairly formal project management process
with a new system. By moving forward with care, we
are much more likely to have the right system, on time
and on budget.”

“So,” asked Sally, “what is the next step?”
“Well, we need to do the feasibility analyses I just

mentioned, which become part of the project’s base-
line project plan. Once this is completed, we will
have a walkthrough presentation to management to
make sure they agree with and understand the scope,
risks, and costs associated with making ‘No Cus-
tomer Escapes’ a reality,” said Jim.

“This is going to be a lot of work, but I am sure I am
going to learn a lot,” replied Sally.

“So, let me get to work on the feasibility analyses,”
said Jim. “I will be sending requests out to all the
team members to get their ideas. I should have this e-
mail ready within an hour or so.”

“Great, I’ll look for it and respond as soon as I can,”
answered Sally.

“Thanks, the faster we get this background work
done, the sooner we will be able to move on to what
the system will do,” replied Jim.

“Sounds good, talk to you later. Bye,” Sally said.
“Bye Sally, and thanks for your quick feedback,”

answered Jim.

Case Questions

1. Look over the scope statement (PE Figure 4-1). If
you were an employee at Petrie’s Electronics,
would you want to work on this project? Why or
why not?

2. If you were part of the management team at
Petrie’s Electronics, would you approve the
project outlined in the scope statement in PE
Figure 4-1? What changes, if any, need to be
made to the document?

3. Identify a preliminary set of tangible and intangi-
ble costs you think would occur for this project
and the system it describes. What intangible
benefits do you anticipate for the system?

4. What do you consider to be the risks of the project
as you currently understand it? Is this a low-,
medium-, or high-risk project? Justify your answer.
Assuming you were part of Jim’s team, would you
have any particular risks?

5. If you were assigned to help Jim with this project,
how would you utilize the concept of incremen-
tal commitment in the design of the baseline proj-
ect plan?

120 Part II Systems Planning and Selection

Petrie’s Electronics

Scope Statement Prepared: February 6, 2012

Project Name: No Customer Escapes

Project Manager: Jim Watanabe ()

Customer: Operations

Project Sponsor: Ella Whinston ()

Project Start/End (projected): 2/5/12 – 7/30/12

Project Overview:

 This project will design and implement a customer relationship management system in order to
provide superior customer service by rewarding our most loyal customers. Specifically, the system will
track customer purchases, assign points for cumulative purchases, and allow points to be redeemed
for “rewards” at local stores. The goal of this system is to provide an incentive to customers to choose
Petrie’s Electronics as their first and only choice for making electronic purchases. The system will
provide Petrie’s management with improved information on the purchase behavior of our most loyal
customers.

Objectives:

 • Track customer purchases
 • Accumulate redeemable points
 • Reward customer loyalty and provide incentives to customers to remain loyal
 • Provide improved management information

Key Assumptions:

 • System development will be outsourced
 • Interface will be a Web browser
 • System will access existing customer sales databases

Stakeholders and Responsibilities

Stakeholder Role Responsibility Signatures

Ella Whinston Chief Operating
 Officer

Bob Petroski Senior Operations
 Manager

Jim Watanabe Project Manager Plan, Monitor, Execute Project

Sally Fukuyama Assistant Director,
 Marketing

Sanjay Agarwal Lead Analyst Technical Architect

Project Vision,
Executive Sponsor

Monitoring, Resources

System Functionality

Ella Whinston

Bob Petroski

Sally Fukuyama

Sanjay Agarwal

PE FIGURE 4-1
A scope statement for Petrie’s customer relationship management system.

Chapter 4 Systems Planning and Selection 121

6. If you were assigned to Jim’s team for this project,
when in the project schedule (in what phase or af-
ter which activities are completed) do you think
you could develop an economic analysis of the
proposed system? What economic feasibility fac-
tors do you think would be relevant?

7. If you were assigned to Jim’s team for this project,
what activities would you conduct in order to

prepare the details for the baseline project plan?
Explain the purpose of each activity and show a
timeline or schedule for these activities.

8. In Question 4, you analyzed the risks associated
with this project. Once deployed, what are the
potential operational risks of the proposed
system? How do you factor operational risks into
a systems development plan?

122

Determining System
Requirements

� Describe options for designing and conducting
interviews and develop a plan for conducting
an interview to determine system requirements.

� Explain the advantages and pitfalls of observing
workers and analyzing business documents to
determine system requirements.

� Participate in and help plan a joint application
design (JAD) session.

� Use prototyping during requirements
determination.

� Select the appropriate methods to elicit system
requirements.

� Explain business process reengineering (BPR)
and how it affects requirements determination.

� Understand how requirements determination
techniques apply to development of Internet
applications.

After studying this chapter, you should be able to:

five
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

©
 Ji

m
 C

ra
ig

m
yl

e/
C

or
bi

s

Chapter Preview . . .

Systems analysis is the part of the systems de-
velopment life cycle in which you determine how

a current information system in an organization

functions. Then you assess what users would

like to see in a new system. As you learned in

Chapter 1, the two parts to analysis are deter-

mining requirements and structuring require-

ments. Figure 5-1 illustrates these parts and

highlights our focus in this chapter—determining

system requirements.

Techniques used in requirements determina-

tion have become more structured over time. As

we see in this chapter, current methods increas-

ingly rely on computers for support. We first

study the more traditional requirements deter-

mination methods, which include interviewing,

observing users in their work environment, and

collecting procedures and other written docu-

ments. We then discuss modern methods for col-

lecting system requirements. The first of these

methods is joint application design (JAD), which

you first read about in Chapter 1. Next, you read

about how analysts rely more and more on infor-

mation systems to help them perform analysis.

You learn how prototyping can be used as a key

tool for some requirements determination

efforts. We end the chapter with a discussion of

how requirements determination continues to be

a major part of systems analysis and design, even

when organizational change is radical, as with

business process reengineering, and new, as

with developing Internet applications.

123

Requirements Determination
Requirements Structuring

✓

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 5-1
The four steps of the systems
development life cycle (SDLC):
(1) planning and selection,
(2) analysis, (3) design, and
(4) implementation and operation.

124 Part III Systems Analysis

Performing Requirements Determination
As stated earlier and shown in Figure 5-1, the two parts to systems analysis are
determining requirements and structuring requirements. We address these as
two separate steps, but you should consider these steps as somewhat parallel
and repetitive. For example, as you determine some aspects of the current and
desired system(s), you begin to structure these requirements or to build proto-
types to show users how a system might behave. Inconsistencies and deficien-
cies discovered through structuring and prototyping lead you to explore further
the operation of the current system(s) and the future needs of the organization.
Eventually your ideas and discoveries meet on a thorough and accurate depic-
tion of current operations and the requirements for the new system. In the next
section, we discuss how to begin the requirements determination process.

The Process of Determining Requirements
At the end of the systems planning and selection phase of the SDLC, management
can grant permission to pursue development of a new system. A project is initi-
ated and planned (as described in Chapter 4), and you begin determining what
the new system should do. During requirements determination, you and other
analysts gather information on what the system should do from as many sources
as possible. Such sources include users of the current system, reports, forms,
and procedures. All of the system requirements are carefully documented and
made ready for structuring. Structuring means taking the system requirements
you find during requirements determination and ordering them into tables, dia-
grams, and other formats that make them easier to translate into technical sys-
tem specifications. We discuss structuring in detail in Chapters 6 and 7.

In many ways, gathering system requirements is like conducting any investi-
gation. Have you read any of the Sherlock Holmes or similar mystery stories?
Do you enjoy solving puzzles? The characteristics you need to enjoy solving
mysteries and puzzles are the same ones you need to be a good systems analyst
during requirements determination. These characteristics include:

� Impertinence: You should question everything. Ask such questions as
“Are all transactions processed the same way?” “Could anyone be
charged something other than the standard price?” “Might we
someday want to allow and encourage employees to work for more
than one department?”

� Impartiality: Your role is to find the best solution to a business
problem or opportunity. It is not, for example, to find a way to justify
the purchase of new hardware or to insist on incorporating what
users think they want into the new system requirements. You must
consider issues raised by all parties and try to find the best
organizational solution.

� Relaxing of constraints: Assume anything is possible and eliminate
the infeasible. For example, do not accept this statement: “We’ve
always done it that way, so we have to continue the practice.”
Traditions are different from rules and policies. Traditions probably
started for a good reason, but as the organization and its environment
change, they may turn into habits rather than sensible procedures.

� Attention to details: Every fact must fit with every other fact. One
element out of place means that the ultimate system will fail at some
time. For example, an imprecise definition of who a customer is may
mean that you purge customer data when a customer has no
active orders; yet these past customers may be vital contacts for
future sales.

Chapter 5 Determining System Requirements 125

� Reframing: Analysis is, in part, a creative process. You must challenge
yourself to look at the organization in new ways. Consider how each
user views his or her requirements. Be careful not to jump to this
conclusion: “I worked on a system like that once—this new system
must work the same way as the one I built before.”

Deliverables and Outcomes
The primary deliverables from requirements determination are the types of in-
formation gathered during the determination process. The information can take
many forms: transcripts of interviews; notes from observation and analysis of
documents; sets of forms, reports, job descriptions, and other documents; and
computer-generated output such as system prototypes. In short, anything that
the analysis team collects as part of determining system requirements is in-
cluded in these deliverables. Table 5-1 lists examples of some specific informa-
tion that might be gathered at this time.

The deliverables summarized in Table 5-1 contain the information you need
for systems analysis. In addition, you need to understand the following compo-
nents of an organization:

� The business objectives that drive what and how work is done

� The information people need to do their jobs

� The data handled within the organization to support the jobs

� When, how, and by whom or what the data are moved, transformed,
and stored

� The sequence and other dependencies among different data-handling
activities

� The rules governing how data are handled and processed

� Policies and guidelines that describe the nature of the business, the
market, and the environment in which it operates

� Key events affecting data values and when these events occur

TABLE 5-1: Deliverables for Requirements Determination

Types of Deliverables Specific Deliverables

Information collected from
conversations with users

Interview transcripts

Notes from observations

Meeting notes

Existing documents and files Business mission and strategy statement

Sample business forms and reports, and computer
displays

Procedure manuals

Job descriptions

Training manuals

Flowcharts and documentation of existing systems

Consultant reports

Computer-based information Results from joint application design (JAD) sessions

CASE repository contents and reports of existing systems

Displays and reports from system prototypes

126 Part III Systems Analysis

TABLE 5-2: Traditional Methods of Collecting System Requirements

Traditional Method Activities Involved

Interviews with individuals Interview individuals informed about the operation and issues of the current system and
needs for systems in future organizational activities.

Observations of workers Observe workers at selected times to see how data are handled and what information
people need to do their jobs.

Business documents Study business documents to discover reported issues, policies, rules, and directions, as
well as, concrete examples of the use of data and information in the organization.

Such a large amount of information must be organized in order to be useful,
which is the purpose of the next part of systems analysis—requirements
structuring.

Requirements Structuring
The amount of information gathered during requirements determination
could be huge, especially if the scope of the system under development is
broad. The time required to collect and structure a great deal of information
can be extensive and, because it involves so much human effort, quite
expensive. Too much analysis is not productive, and the term analysis paral-
ysis has been coined to describe a project that has become bogged down in
an abundance of analysis work. Because of the dangers of excessive analysis,
today’s systems analysts focus more on the system to be developed than on
the current system. Later in the chapter, you learn about joint application
design (JAD) and prototyping, techniques developed to keep the analysis
effort at a minimum yet still be effective. Other processes have been devel-
oped to limit the analysis effort even more, providing an alternative to the
SDLC. Many of these are included under the name of Agile Methodologies
(see Appendix B). Before you can fully appreciate alternative approaches,
you need to learn traditional fact-gathering techniques.

Traditional Methods for Determining Requirements
Collection of information is at the core of systems analysis. At the outset, you
must collect information about the information systems that are currently in
use. You need to find out how users would like to improve the current systems
and organizational operations with new or replacement information systems.
One of the best ways to get this information is to talk to those directly or indi-
rectly involved in the different parts of the organization affected by the possible
system changes. Another way is to gather copies of documentation relevant to
current systems and business processes. In this chapter, you learn about tradi-
tional ways to get information directly from those who have the information you
need: interviews and direct observation. You learn about collecting documen-
tation on the current system and organizational operation in the form of written
procedures, forms, reports, and other hard copy. These traditional methods of
collecting system requirements are listed in Table 5-2.

Interviewing and Listening
Interviewing is one of the primary ways analysts gather information about an in-
formation systems project. Early in a project, an analyst may spend a large
amount of time interviewing people about their work, the information they use to

Chapter 5 Determining System Requirements 127

do it, and the types of information processing that might supplement their work.
Others are interviewed to understand organizational direction, policies, and
expectations that managers have of the units they supervise. During interviewing,
you gather facts, opinions, and speculation and observe body language, emo-
tions, and other signs of what people want and how they assess current systems.

Interviewing someone effectively can be done in many ways, and no one
method is necessarily better than another. Some guidelines to keep in mind
when you interview are summarized in Table 5-3 and are discussed next.

First, prepare thoroughly before the interview. Set up an appointment at a
time and for a duration that is convenient for the interviewee. The general na-
ture of the interview should be explained to the interviewee in advance. You
may ask the interviewee to think about specific questions or issues, or to review
certain documentation to prepare for the interview. Spend some time thinking
about what you need to find out, and write down your questions. Do not assume
that you can anticipate all possible questions. You want the interview to be nat-
ural and, to some degree, you want to direct the interview spontaneously as you
discover what expertise the interviewee brings to the session.

Prepare an interview guide or checklist so that you know in which sequence
to ask your questions and how much time to spend in each area of the interview.
The checklist might include some probing questions to ask as follow-up if you
receive certain anticipated responses. You can, to some extent, integrate your
interview guide with the notes you take during the interview, as depicted in a
sample guide in Figure 5-2. This same guide can serve as an outline for a sum-
mary of what you discover during an interview.

The first page of the sample interview guide contains a general outline of the
interview. Besides basic information on who is being interviewed and when, list
major objectives for the interview. These objectives typically cover the most im-
portant data you need to collect, a list of issues on which you need to seek agree-
ment (e.g., content for certain system reports), and which areas you need to
explore. Also, include reminder notes to yourself on key information about the
interviewee (e.g., job history, known positions taken on issues, and role with
current system). This information helps you to be personal, shows that you con-
sider the interviewee important, and may assist in interpreting some answers.
Also included is an agenda with approximate time limits for different sections
of the interview. You may not follow the time limits precisely, but the schedule
helps you cover all areas during the time the interviewee is available. Space is
also allotted for general observations that do not fit under specific questions

TABLE 5-3: Guidelines for Effective Interviewing

Guidelines What Is Involved

Plan the interview Prepare interviewee by making an appointment and explaining
the purpose of the interview. Prepare a checklist, an agenda,
and questions.

Be neutral Avoid asking leading questions.

Listen and take notes Give your undivided attention to the interviewee and take notes
or tape-record the interview (if permission is granted).

Review notes Review your notes within forty-eight hours of the meeting. If you
discover follow-up questions or need additional information,
contact the interviewee.

Seek diverse views Interview a wide range of people, including potential users and
managers.

128 Part III Systems Analysis

Interview Outline

Interviewee:
Name of person being interviewed

Location/Medium:
Office, conference room, or phone number

Objectives:
What data to collect

 On what to gain agreement
 What areas to explore

Agenda:
 Introduction
 Background on Project
 Overview of Interview
 Topics to Be Covered
 Permission to Tape Record
 Topic 1 Questions
 Topic 2 Questions
 …
 Summary of Major Points
 Questions from Interviewee
 Closing

General Observations:

Unresolved Issues, Topics Not Covered:

Interviewer:
Name of person leading interview

Appointment Date:
 Start Time:
 End Time:

Reminders:
Background/experience of interviewee

 Known opinions of interviewee

Approximate Time:
 1 minute
 2 minutes

 1 minute

 5 minutes
 7 minutes
 …
 2 minutes
 5 minutes
 1 minute

 Interviewee seemed busy—probably need to call in a few days for follow-up questions
because he gave only short answers. PC was turned off—probably not a regular PC
user.

 He needs to look up sales figures from 2010. He raised the issue of how to handle
returned goods, but we did not have time to discuss.

(continues on next page)
FIGURE 5-2
A typical interview guide.

and for notes taken during the interview about topics skipped or issues raised
that could not be resolved.

On subsequent pages, list specific questions. The sample form in Figure 5-2 in-
cludes space for taking notes on these questions. Because the interviewee may
provide information you were not expecting, you may not follow the guide in se-
quence. You can, however, check off questions you have asked and write reminders
to yourself to return to or skip other questions as the interview takes place.

Choosing Interview Questions You need to decide on the mix and
sequence of open-ended and closed-ended questions to use. Open-ended
questions are usually used to probe for information when you cannot
anticipate all possible responses or when you do not know the precise question
to ask. The person being interviewed is encouraged to talk about whatever
interests him or her within the general bounds of the question. An example is,
“What would you say is the best thing about the information system you
currently use to do your job?” or “List the three most frequently used menu

Open-ended questions
Questions in interviews and on
questionnaires that have no
prespecified answers.

Closed-ended questions
Questions in interviews and on
questionnaires that ask those
responding to choose from
among a set of specified
responses.

Chapter 5 Determining System Requirements 129

Questions:

When to ask question, if conditional
Question : 1

If yes, go to Question 2

Question: 2

Notes:

Answer

 Observations

Answer

Observations

 Yes, I ask for a report on my product
line weekly.

 Seemed anxious—may be
overestimating usage frequency

Have you used the current sales
tracking system? If so, how often?

 Sales are shown in units, not
dollars.

 System can show sales in dollars,
but user does not know this.

 What do you like least about this
system?

Interviewee: Date:

options.” You must react quickly to answers and determine whether any follow-
up questions are needed for clarification or elaboration. Sometimes body
language will suggest that a user has given an incomplete answer or is reluctant
to provide certain information. If so, a follow-up question might result in more
information. One advantage of open-ended questions is that previously
unknown information can surface. You can then continue exploring along
unexpected lines of inquiry to reveal even more new information. Open-ended
questions also often put the interviewees at ease because they are able to
respond in their own words using their own structure. Open-ended questions
give interviewees more of a sense of involvement and control in the interview.
A major disadvantage of open-ended questions is the length of time it can take
for the questions to be answered. They also can be difficult to summarize.

Closed-ended questions provide a range of answers from which the inter-
viewee may choose. Here is an example:

Which of the following would you say is the one best thing about the infor-
mation system you currently use to do your job (pick only one)?

a. Having easy access to all of the data you need

b. The system’s response time

c. The ability to run the system concurrently with other applications

FIGURE 5-2
(continued)

130 Part III Systems Analysis

Closed-ended questions work well when the major answers to questions are
well known. Another plus is that interviews based on closed-ended questions do
not necessarily require a large time commitment—more topics can be covered.
Closed-ended questions can also be an easy way to begin an interview and to
determine which line of open-ended questions to pursue. You can include an
“other” option to encourage the interviewee to add unexpected responses.
A major disadvantage of closed-ended questions is that useful information that
does not quite fit the defined answers may be overlooked as the respondent
tries to make a choice instead of providing his or her best answer.

Like objective questions on an examination, closed-ended questions can fol-
low several forms, including these choices:

� True or false

� Multiple choice (with only one response or selecting all relevant choices)

� Rating a response or idea on some scale, say, from bad to good or
strongly agree to strongly disagree (each point on the scale should
have a clear and consistent meaning to each person, and there is
usually a neutral point in the middle of the scale)

� Ranking items in order of importance

Interview Guidelines First, with either open- or closed-ended questions,
do not phrase a question in a way that implies a right or wrong answer.
Respondents must feel free to state their true opinions and perspectives and
trust that their ideas will be considered. Avoid questions such as “Should the
system continue to provide the ability to override the default value, even though
most users now do not like the feature?” because such wording predefines a
socially acceptable answer.

Second, listen carefully to what is being said. Take careful notes or, if possi-
ble, record the interview on a tape recorder (be sure to ask permission first!).
The answers may contain extremely important information for the project.
Also, this may be your only chance to get information from this particular per-
son. If you run out of time and still need more information from the person you
are talking to, ask to schedule a follow-up interview.

Third, once the interview is over, go back to your office and key in your
notes within forty-eight hours with a word processing program such as
Microsoft Word. For numerical data, you can use a spreadsheet program such
as Microsoft Excel. If you recorded the interview, use the recording to verify
your notes. After forty-eight hours, your memory of the interview will fade
quickly. As you type and organize your notes, write down any additional ques-
tions that might arise from lapses in your notes or ambiguous information.
Separate facts from your opinions and interpretations. Make a list of unclear
points that need clarification. Call the person you interviewed and get an-
swers to these new questions. Use the phone call as an opportunity to verify
the accuracy of your notes. You may also want to send a written copy of your
notes to the person you interviewed to check your notes for accuracy. Finally,
make sure to thank the person for his or her time. You may need to talk to your
respondent again. If the interviewee will be a user of your system or is
involved in some other way in the system’s success, you want to leave a
good impression.

Fourth, be careful during the interview not to set expectations about the new
or replacement system unless you are sure these features will be part of the
delivered system. Let the interviewee know that there are many steps to
the project. Many people will have to be interviewed. Choices will have to be
made from among many technically possible alternatives. Let respondents
know that their ideas will be carefully considered. Because of the repetitive

Chapter 5 Determining System Requirements 131

nature of the systems development process, however, it is premature to say now
exactly what the ultimate system will or will not do.

Fifth, seek a variety of perspectives from the interviews. Talk to several differ-
ent people: potential users of the system, users of other systems that might be af-
fected by this new system, managers and superiors, information systems staff,
and others. Encourage people to think about current problems and opportunities
and what new information services might better serve the organization. You want
to understand all possible perspectives so that later you will have information on
which to base a recommendation or design decision that everyone can accept.

Directly Observing Users
Interviewing involves getting people to recall and convey information they have
about organizational processes and the information systems that support them.
People, however, are not always reliable, even when they try to be and say what
they think is the truth. As odd as it may sound, people often do not have a com-
pletely accurate appreciation of what they do or how they do it, especially when
infrequent events, issues from the past, or issues for which people have consid-
erable passion are involved. Because people cannot always be trusted to inter-
pret and report their own actions reliably, you can supplement what people tell
you by watching what they do in work situations.

For example, one possible view of how a hypothetical manager does her job
is that a manager carefully plans her activities, works long and consistently on
solving problems, and controls the pace of her work. A manager might tell you
that is how she spends her day. Several studies have shown, however, that a
manager’s day is actually punctuated by many, many interruptions. Managers
work in a fragmented manner, focusing on a problem or a communication for
only a short time before they are interrupted by phone calls or visits from sub-
ordinates and other managers. An information system designed to fit the work
environment described by our hypothetical manager would not effectively
support the actual work environment in which that manager finds herself.

As another example, consider the difference between what another employee
might tell you about how much he uses electronic mail and how much elec-
tronic mail use you might discover through more objective means. An employee
might tell you he is swamped with e-mail messages and spends a significant pro-
portion of time responding to e-mail messages. However, if you were able to
check electronic mail records, you might find that this employee receives only
three e-mail messages per day on average and that the most messages he has
ever received during one eight-hour period is ten. In this case, you were able to
obtain an accurate behavioral measure of how much e-mail this employee copes
with, without having to watch him read his e-mail.

The intent behind obtaining system records and direct observation is the
same, however, and that is to obtain more firsthand and objective measures of
employee interaction with information systems. In some cases, behavioral
measures will more accurately reflect reality than what employees themselves
believe. In other cases, the behavioral information will substantiate what
employees have told you directly. Although observation and obtaining objec-
tive measures are desirable ways to collect pertinent information, such meth-
ods are not always possible in real organizational settings. Thus, these methods
are not totally unbiased, just as no one data-gathering method is unbiased.

For example, observation can cause people to change their normal operating
behavior. Employees who know they are being observed may be nervous and
make more mistakes than normal. On the other hand, employees under obser-
vation may follow exact procedures more carefully than they typically do. They
may work faster or slower than normal. Because observation typically cannot

132 Part III Systems Analysis

be continuous, you receive only a snapshot image of the person or task you
observe. Such a view may not include important events or activities. Due to time
constraints, you observe for only a limited time, a limited number of people, and
a limited number of sites. Observation yields only a small segment of data from
a possibly vast variety of data sources. Exactly which people or sites to observe
is a difficult selection problem. You want to pick both typical and atypical
people and sites and observe during normal and abnormal conditions and times
to receive the richest possible data from observation.

Analyzing Procedures and Other Documents
As previously noted, interviewing people who use a system every day or who
have an interest in a system is an effective way to gather information about cur-
rent and future systems. Observing current system users is a more direct way of
seeing how an existing system operates. Both interviewing and observing have
limitations. Methods for determining system requirements can be enhanced by
examining system and organizational documentation to discover more details
about current systems and the organization they support.

We discuss several important types of documents that are useful in under-
standing system requirements, but our discussion is not necessarily exhaustive.
In addition to the few specific documents we mention, other important docu-
ments need to be located and considered, including organizational mission
statements, business plans, organization charts, business policy manuals, job
descriptions, internal and external correspondence, and reports from prior
organizational studies.

What can the analysis of documents tell you about the requirements for a new
system? In documents you can find information about:

� Problems with existing systems (e.g., missing information or
redundant steps)

� Opportunities to meet new needs if only certain information or
information processing were available (e.g., analysis of sales based
on customer type)

� Organizational direction that can influence information system
requirements (e.g., trying to link customers and suppliers more
closely to the organization)

� Titles and names of key individuals who have an interest in relevant
existing systems (e.g., the name of a sales manager who has led a
study of buying behavior of key customers)

� Values of the organization or individuals who can help determine
priorities for different capabilities desired by different users
(e.g., maintaining market share even if it means lower short-term profits)

� Special information-processing circumstances that occur irregularly that
may not be identified by any other requirements determination technique
(e.g., special handling needed for a few large-volume customers who
require use of customized customer ordering procedures)

� The reason why current systems are designed as they are, which can
suggest features left out of current software that may now be feasible
and desirable (e.g., data about a customer’s purchase of competitors’
products not available when the current system was designed; these
data now available from several sources)

� Data, rules for processing data, and principles by which the
organization operates that must be enforced by the information
system (e.g., each customer assigned exactly one sales department
staff member as primary contact if customer has any questions)

Chapter 5 Determining System Requirements 133

(1)

(2)

(3)

(4)

(5)

(6)

(7)

DISCLOSE ONLY ONE INVENTION PER FORM.

PREPARE COMPLETE DISCLOSURE.

The disclosure of your invention is adequate for patent purposes ONLY if it enables a person
skilled in the art to understand the invention.

CONSIDER THE FOLLOWING IN PREPARING A COMPLETE DISCLOSURE:

(a)

(b)

(c)

(d)

(e)

PROVIDE APPROPRIATE ADDITIONAL MATERIAL.

Drawings and descriptive material should be provided as needed to clarify the disclosure. Each
page of this material must be signed and dated by each inventor and properly witnessed. A copy
of any current and/or planned publication relating to the invention should be included.

INDICATE PRIOR KNOWLEDGE AND INFORMATION.

Pertinent publications, patents or previous devices, and related research or engineering activities
should be identified.

HAVE DISCLOSURE WITNESSED.

Persons other than co-inventors should serve as witnesses and should sign each sheet of the
disclosure only after reading and understanding the disclosure.

FORWARD ORIGINAL PLUS ONE COPY (two copies if supported by grant/contract) TO VICE
PRESIDENT FOR RESEARCH VIA DEPARTMENT HEAD AND DEAN.

All essential elements of the invention, their relationship to one another, and their mode of
operation

Equivalents that can be substituted for any elements

List of features believed to be new

Advantages this invention has over the prior art

Whether the invention has been built and/or tested

GUIDE FOR PREPARATION OF INVENTION DISCLOSURE
(See FACULTY and STAFF MANUALS for detailed Patent Policy and routing procedures.)

FIGURE 5-3
Example of a written work procedure for an invention disclosure.

One type of useful document is a written work procedure for an individual or a
work group. The procedure describes how a particular job or task is performed,
including data and information used and created in the process of performing
the job. For example, the procedure shown in Figure 5-3 includes data (list of
features and advantages, drawings, inventor name, and witness names) required
to prepare an invention disclosure. It also indicates that besides the inventor, the
vice president for research, the department head, and the dean must review the
material and that a witness is required for any filing of an invention disclosure.
These insights clearly affect what data must be kept, to whom information must
be sent, and the rules that govern valid forms.

134 Part III Systems Analysis

Procedures are not trouble-free sources of information, however. Sometimes
your analysis of several written procedures reveals a duplication of effort in
two or more jobs. You should call such duplication to the attention of manage-
ment as an issue to be resolved before system design can proceed. That is, it
may be necessary to redesign the organization before the redesign of an infor-
mation system can achieve its full benefits. Another problem you may
encounter is a missing procedure. Again, it is not your job to create a document
for a missing procedure—that is up to management. A third and common prob-
lem happens when the procedure is out of date, which you may realize in your
interview of the person responsible for performing the task described in the
procedure. Once again, the decision to rewrite the procedure so that it matches
reality is made by management, but you may make suggestions based upon your
understanding of the organization. A fourth problem often encountered is that
the formal procedures may contradict information you collected from inter-
views, questionnaires, and observation about how the organization operates
and what information is required. As in the other cases, resolution rests with
management.

All of these problems illustrate the difference between formal systems and
informal systems. A formal system is one an organization has documented; an
informal system is the way in which the organization actually works. Informal
systems develop because of inadequacies of formal procedures and individual
work habits, preferences, and resistance to control. It is important to understand
both formal and informal systems because each provides insight into informa-
tion requirements and what is necessary to convert from present to future
systems.

A second type of document useful to systems analysts is a business form,
illustrated in Figure 5-4. Forms are used for all types of business functions, from
recording an order to acknowledging the payment of a bill to indicating what
goods have been shipped. Forms are important for understanding a system be-
cause they explicitly indicate what data flow in or out of a system. In the sample
invoice form in Figure 5-4, we see space for data such as invoice number,
the “bill to” address, the quantity of items ordered, their descriptions, rates, and
amounts.

A printed form may correspond to a computer display that the system will
generate for someone to enter and maintain data or to display data to online
users. The most useful forms contain actual organizational data that allow you
to determine the data characteristics actually used by the application. The ways
in which people use forms change over time, and data that were needed when
a form was designed may no longer be required.

A third type of useful document is a report generated by current systems. As
the primary output for some types of systems, a report enables you to work
backward from the information on the report to the data that must have been
necessary to generate it. Figure 5-5 presents an example of a common financial
accounting report, the statement of cash flows. You analyze such reports to
determine which data need to be captured over what time period and what
manipulation of these raw data is necessary to produce each field on the report.

If the current system is computer based, a fourth set of useful documents is
one that describes the current information systems—how they were designed
and how they work. Several different types of documents fit this description,
everything from flowcharts to data dictionaries to user manuals. An analyst who
has access to such documents is fortunate because many in-house-developed
information systems lack complete documentation. Analysis of organizational
documents and observation, along with interviewing and distributing question-
naires, are the methods used most for gathering system requirements.
Table 5-4 (page 137) summarizes the comparative features of observation and
analysis of organizational documents.

Formal system
The official way a system works,
as described in organizational
documentation.

Informal system
The way a system actually
works.

Chapter 5 Determining System Requirements 135

FIGURE 5-4
An example of a business form—an invoice form for QuickBooks.

Source: http://jnk.btobsource.com/NASApp/enduser/products/product_detail.jsp?pc�13050M#.
Reprinted with permission.

Modern Methods for Determining System Requirements
Even though we called interviews, questionnaires, observation, and document
analysis traditional methods for determining a system’s requirements, all of
these methods are still used by analysts to collect important information. Today,
however, additional techniques are available to collect information about the
current system, the organizational area requesting the new system, and what the
new system should be like. In this section, you learn about two modern
information-gathering techniques for analysis: joint application design (JAD)
and prototyping. These techniques can support effective information collection
and structuring while reducing the amount of time required for analysis.

http://jnk.btobsource.com/NASApp/enduser/products/product_detail.jsp?pc=13050M#

136 Part III Systems Analysis

Joint Application Design
You were introduced to joint application design or JAD, in Chapter 1. There you
learned JAD started in the late 1970s at IBM as a means to bring together the key
users, managers, and systems analysts involved in the analysis of a current sys-
tem. Since the 1970s, JAD has spread throughout many companies and indus-
tries. For example, it is quite popular in the insurance industry. The primary
purpose of using JAD in the analysis phase is to collect systems requirements
simultaneously from the key people involved with the system. The result is an
intense and structured, but highly effective, process. Having all the key people

Mellankamp Industries
Statement of Cash Flows

October 1 through December 31, 2012

 Oct. 1–Dec. 31, 2012
OPERATING ACTIVITIES
 Net Income $38,239.15
 Adjustments to reconcile Net Income
 to Net cash provided by Operating Activities:
 Accounts Receivable –$46,571.69
 Employee Loans –$62.00
 Inventory Asset –$18,827.16
 Retainage –$2,461.80
 Accounts Payable $29,189.66
 Business Credit Card $70.00
 BigOil Card –$18.86
 Sales Tax Payable $687.65

Net cash provided by Operating Activities $244.95

INVESTING ACTIVITIES
 Equipment –$44,500.00
 Prepaid Insurance $2,322.66

Net cash provided by Investing Activities –$42,177.34

FINANCING ACTIVITIES
 Bank Loan –$868.42
 Emergency Loan $3,911.32
 Note Payable –$17,059.17
 Equipment Loan $43,013.06
 Opening Balance Equity –$11,697.50
 Owner’s Equity: Owner’s Draw –$6,000.00
 Retained Earning $8,863.39

Net cash provided by Financing Activities $20,162.68

Net cash increase for period –$21,769.71
Cash at beginning of period –$21,818.48

Cash at end of period –$43,588.19

FIGURE 5-5
An example of a report—an
accounting balance sheet.

JAD session leader
The trained individual who plans
and leads joint application
design sessions.

Chapter 5 Determining System Requirements 137

together in one place at one time allows analysts to see the areas of agreement
and the areas of conflict. Meeting with all these important people for over a
week of intense sessions allows you the opportunity to resolve conflicts or at
least to understand why a conflict may not be simple to resolve.

JAD sessions are usually conducted in a location away from where the people
involved normally work, in order to limit distractions and help participants bet-
ter concentrate on systems analysis. A JAD may last anywhere from four hours
to an entire week and may consist of several sessions. A JAD employs thou-
sands of dollars of corporate resources, the most expensive of which is the time
of the people involved. Other expenses include the costs associated with flying
people to a remote site and putting them up in hotels and feeding them for
several days.

The following is a list of typical JAD participants:

� JAD session leader: The JAD leader organizes and runs the JAD.
This person has been trained in group management and facilitation as
well as in systems analysis. The JAD leader sets the agenda and sees
that it is met. He or she remains neutral on issues and does not
contribute ideas or opinions, but rather concentrates on keeping the
group on the agenda, resolving conflicts and disagreements, and
soliciting all ideas.

� Users: The key users of the system under consideration are vital
participants in a JAD. They are the only ones who clearly understand
what it means to use the system on a daily basis.

� Managers: Managers of the work groups who use the system in
question provide insight into new organizational directions,
motivations for and organizational impacts of systems, and support
for requirements determined during the JAD.

� Sponsor: As a major undertaking, because of its expense, a JAD
must be sponsored by someone at a relatively high level in the
company such as a vice president or chief executive officer.
If the sponsor attends any sessions, it is usually only at the beginning
or the end.

� Systems analysts: Members of the systems analysis team attend the
JAD, although their actual participation may be limited. Analysts are

TABLE 5-4: Comparison of Observation and Document Analysis

Characteristic Observation Document Analysis

Information richness High (many channels) Low (passive) and old

Time required Can be extensive Low to moderate

Expense Can be high Low to moderate

Chance for follow-up
and probing

Good: Opportunity for probing and clarification
questions during or after observation

Limited: Probing possible only if original author
is available

Confidentiality Observee is known to observer; observee may
change behavior when observed

Depends on nature of document; does not
change simply by being read

Involvement of subject Observees’ involvement dependent on whether
they know they are being observed

None, no clear commitment

Potential audience Limited numbers and limited time (snapshot)
of each

Potentially biased by which documents were
kept or because document not created for this
purpose

138 Part III Systems Analysis

Flip Chart

Flip-Chart
Sheets

Order
Processing
Overview

Agenda
1.
2.
3.
4.
5.
6.
7.
8.
9.

Overview
...
...
...
...
...
...
...

Screen

Name Tents

Laptop

Open
Issues

FIGURE 5-6
A typical room layout for a JAD session.

Source: Based on Wood and Silver, 1989.

there to learn from users and managers, not to run or dominate the
process.

� Scribe: The scribe takes notes during the JAD sessions, usually on a
personal computer or laptop.

� IS staff: Besides systems analysts, other IS staff, such as programmers,
database analysts, IS planners, and data-center personnel, may attend
the session. Their purpose is to learn from the discussion and possibly
to contribute their ideas on the technical feasibility of proposed ideas
or on the technical limitations of current systems.

JAD sessions are usually held in special-purpose rooms where participants sit
around horseshoe-shaped tables, as in Figure 5-6. These rooms are typically
equipped with whiteboards (possibly electronic, with a printer to make copies
of what is written on the board). Other audiovisual tools may be used, such as
magnetic symbols that can be easily rearranged on a whiteboard, flip charts, and
computer-generated displays. Flip-chart paper is typically used for keeping track
of issues that cannot be resolved during the JAD, or for those issues requiring
additional information that can be gathered during breaks in the proceedings.
Computers may be used to create and display form or report designs or to dia-
gram existing or replacement systems. In general, however, most JADs do not
benefit much from computer support. The end result of a completed JAD is a set
of documents that detail the workings of the current system and the features of
a replacement system. Depending on the exact purpose of the JAD, analysts may
gain detailed information on what is desired of the replacement system.

Scribe
The person who makes detailed
notes of the happenings at a
joint application design session.

Chapter 5 Determining System Requirements 139

Taking Part in a JAD Imagine that you are a systems analyst taking part
in your first JAD. What might participating in a JAD be like? Typically, JADs are
held off-site, in comfortable conference facilities. On the first morning of
the JAD, you and your fellow analysts walk into a room that looks much like the
one depicted in Figure 5-6. The JAD facilitator is already there. She is finishing
writing the day’s agenda on a flip chart. The scribe is seated in a corner with a
laptop, preparing to take notes on the day’s activities. Users and managers begin
to enter in groups and seat themselves around the U-shaped table. You and the
other analysts review your notes describing what you have learned so far about
the information system you are all there to discuss. The session leader opens
the meeting with a welcome and a brief rundown of the agenda. The first day
will be devoted to a general overview of the current system and major problems
associated with it. The next two days will be devoted to an analysis of current
system screens. The last two days will be devoted to analysis of reports.

The session leader introduces the corporate sponsor, who talks about the
organizational unit and current system related to the systems analysis study and
the importance of upgrading the current system to meet changing business con-
ditions. He leaves and the JAD session leader takes over. She yields the floor to
the senior analyst, who begins a presentation on key problems with the system,
which have already been identified. After the presentation, the session leader
opens the discussion to the users and managers in the room.

After a few minutes of talk, a heated discussion begins between two users
from different corporate locations. One user, who represents the office that
served as the model for the original systems design, argues that the system’s per-
ceived lack of flexibility is really an asset, not a problem. The other user, who
represents an office that was part of another company before a merger, argues
that the current system is so inflexible as to be virtually unusable. The session
leader intervenes and tries to help the users isolate particular aspects of the
system that may contribute to the system’s perceived lack of flexibility.

Questions arise about the intent of the original developers. The session leader
asks the analysis team about their impressions of the original system design. If
these questions cannot be answered during this meeting because none of the
original designers are present nor are the original design documents readily
available, the session leader assigns the question about intent to the “to-do” list.
This question becomes the first item on a flip-chart sheet of to-do items, and the
session leader gives you the assignment of finding out about the intent of the
original designers. She writes your name next to the to-do item on the list and
continues with the session. Before the end of the JAD, you must get an answer
to this question.

The JAD will continue in this manner for its duration. Analysts will make
presentations, help lead discussions of form and report design, answer ques-
tions from users and managers, and take notes on what is being said. After
each meeting, the analysis team will meet, usually informally, to discuss what
has occurred that day and to consolidate what they have learned. Users
will continue to contribute during the meetings, and the session leader will fa-
cilitate, intervening in conflicts, seeing that the group follows the agenda.
When the JAD is over, the session leader and her assistants must prepare a
report that documents the findings in the JAD and then circulate it among
users and analysts.

Using Prototyping during Requirements Determination
You were introduced to prototyping in Chapter 1 (see Figure 1-12 for an
overview of prototyping). There you learned that prototyping is a repetitive
process in which analysts and users build a rudimentary version of an informa-
tion system based on user feedback. You also learned that prototyping could

140 Part III Systems Analysis

replace the systems development life cycle or augment it. In this section, we see
how prototyping can augment the requirements determination process.

To establish requirements for prototyping, you still have to interview users
and collect documentation. Prototyping, however, allows you to quickly convert
basic requirements into a working, though limited, version of the desired infor-
mation system. The user then views and tests the prototype. Typically, seeing
verbal descriptions of requirements converted into a physical system prompts
the user to modify existing requirements and generate new ones. For example,
in the initial interviews, a user might have said he wanted all relevant utility
billing information on a single computer display form, such as the client’s name
and address, the service record, and payment history. Once the same user sees
how crowded and confusing such a design would be in the prototype, he might
change his mind and instead ask for the information to be organized on several
screens but with easy transitions from one screen to another. He might also be
reminded of some important requirements (data, calculations, etc.) that had not
surfaced during the initial interviews.

You would then redesign the prototype to incorporate the suggested changes.
Once modified, users would again view and test the prototype. Once again, you
would incorporate their suggestions for change. Through such a repetitive
process, the chances are good that you will be able to better capture a system’s
requirements. The goal with using prototyping to support requirements deter-
mination is to develop concrete specifications for the ultimate system, not to
build the ultimate system.

Prototyping is most useful for requirements determination when:

� User requirements are not clear or well understood, which is often the
case for totally new systems or systems that support decision making.

� One or a few users and other stakeholders are involved with the system.

� Possible designs are complex and require concrete form to evaluate
fully.

� Communication problems have existed in the past between users and
analysts, and both parties want to be sure that system requirements
are as specific as possible.

� Tools (such as form and report generators) and data are readily
available to rapidly build working systems.

Prototyping also has some drawbacks as a tool for requirements determina-
tion. They include the following:

� A tendency to avoid creating formal documentation of system
requirements, which can then make the system more difficult to
develop into a fully working system.

� Prototypes can become idiosyncratic to the initial user and difficult to
diffuse or adapt to other potential users.

� Prototypes are often built as stand-alone systems, thus ignoring issues
of sharing data and interactions with other existing systems.

� Checks in the SDLC are bypassed so that some more subtle, but still
important, system requirements might be forgotten (e.g., security,
some data-entry controls, or standardization of data across systems).

Radical Methods for Determining System Requirements
Whether traditional or modern, the methods for determining system require-
ments that you have read about in this chapter apply to any requirements
determination effort, regardless of its motivation. Yet, most of what you have

Key business processes
The structured, measured set of
activities designed to produce a
specific output for a particular
customer or market.

Business process
reengineering (BPR)
The search for, and
implementation of, radical
change in business processes
to achieve breakthrough
improvements in products
and services.

Chapter 5 Determining System Requirements 141

learned has traditionally been applied to systems development projects that
involve automating existing processes. Analysts use system requirements
determination to understand current problems and opportunities, as well as
what is needed and desired in future systems. Typically, the current way of
doing things has a large impact on the new system. In some organizations,
though, management is looking for new ways to perform current tasks. These
ways may be radically different from how things are done now, but the payoffs
may be enormous: Fewer people may be needed to do the same work; relation-
ships with customers may improve dramatically; and processes may become
much more efficient and effective, all of which can result in increased profits.
The overall process by which current methods are replaced with radically new
methods is referred to as business process reengineering (BPR).

To better understand BPR, consider the following analogy. Suppose you are a
successful European golfer who has tuned your game to fit the style of golf
courses and weather in Europe. You have learned how to control the flight of
the ball in heavy winds, roll the ball on wide-open greens, putt on large and
undulating greens, and aim at a target without the aid of the landscaping com-
mon on North American courses. When you come to the United States to make
your fortune on the U.S. tour, you discover that improving your putting, driving
accuracy, and sand shots will help, but the new competitive environment is sim-
ply not suited to your playing style. You need to reengineer your whole
approach, learning how to aim at targets, spin and stop a ball on the green, and
manage the distractions of crowds and press. If you are good enough, you may
survive, but without reengineering, you will never become a winner.

Just as the competitiveness of golf forces good players to adapt their games
to changing conditions, the competitiveness of our global economy has driven
most companies into a mode of continuously improving the quality of their
products and services. Organizations realize that creatively using information
technologies can significantly improve most business processes. The idea
behind BPR is not just to improve each business process but, in a systems-
modeling sense, to reorganize the complete flow of data in major sections of
an organization to eliminate unnecessary steps, combine previously separate
steps, and become more responsive to future changes. Companies such as IBM,
Procter & Gamble, Wal-Mart, and Ford have had great success in actively pur-
suing BPR efforts. Yet, many other companies have found difficulty in applying
BPR principles. Nonetheless, BPR concepts are actively applied in both corpo-
rate strategic planning and information systems planning as a way to improve
business processes radically (as described in Chapter 6).

BPR advocates suggest that radical increases in the quality of business
processes can be achieved through creatively applying information technolo-
gies. BPR advocates also suggest that radical improvement cannot be
achieved by making minor changes in existing processes but rather by using
a clean sheet of paper and asking, “If we were a new organization, how would
we accomplish this activity?” Changing the way work is performed also
changes the way information is shared and stored, which means that the
results of many BPR efforts are the development of information system main-
tenance requests, or requests for system replacement. You likely have
encountered or will encounter BPR initiatives in your own organization. A
recent survey of IS executives found that they view BPR to be a top IS priority
for the coming years.

Identifying Processes to Reengineer
A first step in any BPR effort is to understand what processes need to change,
what are the key business processes for the organization. Key business
processes are the structured set of measurable activities designed to produce a

Disruptive technologies
Technologies that enable the
breaking of long-held business
rules that inhibit organizations
from making radical business
changes.

142 Part III Systems Analysis

specific output for a particular customer or market. The important aspect of this
definition is that key processes are focused on some type of organizational out-
come such as the creation of a product or the delivery of a service. Key business
processes are also customer focused. In other words, key business processes
would include all activities used to design, build, deliver, support, and service a
particular product for a particular customer. BPR, therefore, requires you first
to understand those activities that are part of the organization’s key business
processes and then to alter the sequence and structure of activities to achieve
radical improvements in speed, quality, and customer satisfaction. The same
techniques you learned to use for system requirements determination can be
applied to discovering and understanding key business processes: interviewing
key individuals, observing activities, reading and studying organizational
documents, and conducting JAD sessions.

After identifying key business processes, the next step is to identify
specific activities that can be radically improved through reengineering.
Michael Hammer and James Champy, two academics who coined the term
BPR, suggest systems analysts ask three questions to identify activities for
radical change:

1. How important is the activity to delivering an outcome?

2. How feasible is changing the activity?

3. How dysfunctional is the activity?

The answers to these questions provide guidance for selecting which activi-
ties to change. Those activities deemed important, changeable, yet dysfunc-
tional, are primary candidates for alteration. To identify dysfunctional activities,
Hammer and Champy suggest you look for activities that involve excessive
information exchanges between individuals, information that is redundantly
recorded or needs to be rekeyed, excessive inventory buffers or inspections,
and a lot of rework or complexity. An example of a dysfunctional process and
how BPR is used to change it is presented at the end of Chapter 6.

Disruptive Technologies
Once key business processes and activities have been identified, information
technologies must be applied to improve business processes radically. Hammer
and Champy suggest that organizations think “inductively” about information
technology. Induction is the process of reasoning from the specific to the gen-
eral, which means that managers must learn about the power of new technolo-
gies and think of innovative ways to alter the way work is done. This approach
is contrary to deductive thinking, in which problems are first identified and
solutions then formulated.

Hammer and Champy suggest that managers especially consider disruptive tech-
nologies when applying deductive thinking. Disruptive technologies are those
that enable the breaking of long-held business rules that inhibit organizations from
making radical business changes. For example, Toyota is using production sched-
ule databases and electronic data interchange (EDI)—an information system that
allows companies to link their computers directly to suppliers—to work with its
suppliers as if they and Saturn were one company. Suppliers do not wait until
Saturn sends them a purchase order for more parts but simply monitor inventory
levels and automatically send shipments as needed. Table 5-5 shows several
long-held business rules and beliefs that constrain organizations from making
radical process improvements. For example, the first rule suggests that infor-
mation can appear in only one place at a time. However, the advent of distrib-
uted databases, which allow business units to share a common database, has
“disrupted” this long-held business belief.

Chapter 5 Determining System Requirements 143

Pine Valley Furniture WebStore: Determining System
Requirements
In the last chapter, you read how Pine Valley Furniture’s management began the
WebStore project—to sell furniture products over the Internet. Here we exam-
ine the process followed by PVF to determine system requirements and
highlight some of the issues and capabilities that you may want to consider
when developing your own Internet-based application.

To collect system requirements as quickly as possible, Jim Woo and Jackie
Judson decided to hold a three-day JAD session. In order to get the most out of
these sessions, they invited a broad range of people, including representatives from
sales and marketing, operations, and information systems. Additionally, they asked
an experienced JAD facilitator, Cheri Morris, to conduct the session. Together with
Cheri, Jim and Jackie developed an ambitious and detailed agenda for the session.
Their goal was to collect requirements on the following items:

� System layout and navigation characteristics

� WebStore and site management system capabilities

� Customer and inventory information

� System prototype evolution

In the remainder of this section, we briefly highlight the outcomes of the
JAD session.

System Layout and Navigation Characteristics
As part of the process of preparing for the JAD session, all participants were
asked to visit several established retail Web sites, including www.amazon.com,
www.landsend.com, www.sony.com, and www.pier1.com. At the JAD session,
participants were asked to identify characteristics of these sites that they found

TABLE 5-5: Long-Held Organizational Rules That Are Being
Eliminated through Disruptive Technologies

Rule Disruptive Technology

Information can appear in only one place
at a time.

Distributed databases allow the sharing of
information.

Only experts can perform complex work. Expert systems can aid nonexperts.

Businesses must choose between
centralization and decentralization.

Advanced telecommunications networks can
support dynamic organizational structures.

Managers must make all decisions. Decision-support tools can aid
nonmanagers.

Field personnel need offices where they
can receive, store, retrieve, and transmit
information.

Wireless data communication and portable
computers provide a “virtual” office for
workers.

The best contact with a potential buyer is
personal contact.

Interactive communication technologies
allow complex messaging capabilities.

You have to find out where things are. Automatic identification and tracking
technology knows where things are.

Plans get revised periodically. High-performance computing can provide
real-time updating.

www.amazon.com

www.landsend.com

www.sony.com

www.pier1.com

144 Part III Systems Analysis

TABLE 5-7: System Structure of the WebStore
and Site Management Systems

WebStore System Site Management System

Main Page

Product line (catalog)

• Desks

• Chairs

• Tables

• File cabinets

Shopping cart

Checkout

Account profile

Order status/history

Customer comments

Company information

Feedback

Contact information

User profile manager

Order maintenance manager

Content (catalog) manager

Reports

Total hits

Most-frequent page views

User/time of day

Users/day of week

Shoppers not purchasing (used shopping
cart—did not check out)

Feedback analysis

appealing and those they found cumbersome; this allowed participants to iden-
tify and discuss those features that they wanted the WebStore to possess. The
outcomes of this activity are summarized in Table 5-6.

WebStore and Site Management System Capabilities
After agreeing to the general layout and navigational characteristics of the
WebStore, the session then turned its focus to the basic system capabilities. To
assist in this process, systems analysts from the information systems depart-
ment developed a draft skeleton of the WebStore based on the types of screens
and capabilities of popular retail Web sites. For example, many retail Web sites
have a “shopping cart” feature that allows customers to accumulate multiple
items before checking out rather than buying a single item at a time. After some
discussion, the participants agreed that the system structure shown in Table 5-7
would form the foundation for the WebStore system.

TABLE 5-6: Desired Layout and Navigation Feature of WebStore

Layout and Design

Navigation menu and logo placement should remain consistent throughout the entire site (this
allows users to maintain familiarity while using the site and minimizes the number who get
“lost” in the site).

Graphics should be lightweight to allow for quick page display.

Text should be used over graphics whenever possible.

Navigation

Any section of the store should be accessible from any other section via the navigation menu.

Users should always be aware of what section they are currently in.

Chapter 5 Determining System Requirements 145

In addition to the WebStore capabilities, members of the sales and marketing
department described several reports that would be necessary to manage cus-
tomer accounts and sales transactions effectively. In addition, the department
wants to be able to conduct detailed analyses of site visitors, sales tracking, and
so on. Members of the operations department expressed a need to update the
product catalog easily. These collective requests and activities were organized
into a system design structure called the Site Management system, summarized
in Table 5-7. The structures of both the WebStore and Site Management systems
will be given to the information systems department as the baseline for further
analysis and design activities.

Customer and Inventory Information
The WebStore will be designed to support the furniture purchases of three dis-
tinct types of customers:

� Corporate customers

� Home-office customers

� Student customers

To track the sales to these different types of customers effectively, the system
must capture and store distinct information. Table 5-8 summarizes this informa-
tion for each customer type identified during the JAD session. Orders reflect the
range of product information that must be specified to execute a sales transac-
tion. Thus, in addition to capturing the customer information, product and sales
data must also be captured and stored; Table 5-8 lists the results of this analysis.

System Prototype Evolution
As a final activity, the JAD participants discussed, along with extensive input
from the information systems staff, how the system implementation should
evolve. After completing analysis and design activities, they agreed that the sys-
tem implementation should progress in three main stages so that requirement
changes could be more easily identified and implemented. Table 5-9 summa-
rizes these stages and the functionality incorporated at each one.

At the conclusion of the JAD session, all the participants felt good about the
progress that had been made and about the clear requirements that had been
identified. With these requirements in hand, Jim and the information systems
staff could begin to turn these lists of requirements into formal analysis and

TABLE 5-8: Customer and Inventory Information for WebStore

Corporate Customer Home-Office Customer Student Customer Inventory Information

Company name

Company address

Company phone

Company fax

Preferred
shipping method

Buyer name

Buyer phone

Buyer e-mail

Name

Doing business as (company name)

Address

Phone

Fax

E-mail

Name

School

Address

Phone

E-mail

SKU

Name

Description

Finished product size

Finished product weight

Available materials

Available colors

Price

Lead time

146 Part III Systems Analysis

Key Points Review
1. Describe options for designing and conduct-

ing interviews and develop a plan for con-
ducting an interview to determine system
requirements.

Interviews can involve open-ended and closed-
ended questions. In either case, you must be
precise in formulating a question in order to avoid
ambiguity and to ensure a proper response. Mak-
ing a list of questions is just one activity neces-
sary to prepare for an interview. You must also
create a general interview guide (see Figure 5-2)
and schedule the interview.

2. Explain the advantages and pitfalls of observ-
ing workers and analyzing business documents
to determine system requirements.

During observation, you must try not to intrude
or interfere with normal business activities so

that the people being observed do not modify
their activities from normal processes. Observa-
tion can be expensive because it is so labor in-
tensive. Analyzing documents may be much less
expensive, but any insights gained will be limited
to what is available, based on the reader’s inter-
pretation. Often the creator of the document is
not there to answer questions.

3. Participate in and help plan a joint applica-
tion design session.

Joint application design (JAD) brings together
key users and adds structure and a JAD session
leader to it. Typical JAD participants include the
session leader, a scribe, key users, managers, a
sponsor, systems analysts, and IS staff members.
JAD sessions are usually held off-site and may
last as long as one week.

design specifications. To show how information flows through the WebStore,
Jim and his staff will produce data-flow diagrams (Chapter 6). To show a con-
ceptual model of the data used within the WebStore, they will generate an
entity-relationship diagram (Chapter 7). Both of these analysis documents will
become the foundation for detailed system design and implementation.

As we saw in Chapter 1, the systems analysis phase of the systems develop-
ment life cycle includes determining requirements and structuring require-
ments. Chapter 5 focuses on requirements determination, the gathering of
information about current systems, and the need for replacement systems.
Chapters 6 and 7 address techniques for structuring the information discovered
during requirements determination.

TABLE 5-9 Stages of System Implementation of WebStore

Stage 1 (Basic Functionality)

Simple catalog navigation; two products per section—limited attribute set

25 sample users

Simulated credit card transaction

Full shopping cart functionality

Stage 2 (Look and Feel)

Full product attribute set and media (images, video)—commonly referred to as “product data
catalog”

Full site layout

Simulated integration with Purchasing Fulfillment and Customer Tracking Systems

Stage 3 (Staging/Preproduction)

Full integration with Purchasing Fulfillment and Customer Tracking Systems

Full credit card processing integration

Full product data catalog

Chapter 5 Determining System Requirements 147

4. Use prototyping during requirements deter-
mination.

You read how information systems can support
requirements determination with prototyping. As
part of the prototyping process, users and analysts
work closely together to determine requirements
that the analyst then builds into a model. The ana-
lyst and user then work together on revising the
model until it is close to what the user desires.

5. Select the appropriate methods to elicit sys-
tem requirements.

For requirements determination, the traditional
sources of information about a system include
interviews, questionnaires, observation, and pro-
cedures, forms, and other useful documents.
Often many or even all of these sources are used
to gather perspectives on the adequacy of current
systems and the requirements for replacement
systems. Each form of information collection has
its advantages and disadvantages, which were
summarized in Table 5-4. Selecting the methods
to use depends on the need for rich or thorough

information, the time and budget available, the
need to probe deeper once initial information is
collected, the need for confidentiality for those
providing assessments of system requirements,
the desire to get people involved and committed
to a project, and the potential audience from
which requirements should be collected.

6. Explain business process reengineering and
how it affects requirements determination.

Business process reengineering (BPR) is
an approach to changing business processes
radically.

7. Understand how requirements determina-
tion techniques apply to development for
Internet applications.

Most of the same techniques used for require-
ments determination for traditional systems can
also be fruitfully applied to the development
of Internet applications. Accurately capturing
requirements in a timely manner for Internet
applications is just as important as for more tra-
ditional systems.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Business process reengineering
(BPR) (p. 141)

2. Closed-ended questions (p. 129)
3. Disruptive technologies (p. 142)

4. Formal system (p. 134)
5. Informal system (p. 134)
6. JAD session leader (p. 137)
7. Key business processes (p. 141)

8. Open-ended questions (p. 128)
9. Scribe (p. 138)

Match each of the key terms above with the definition that best fits it.

1. The search for, and implementation of,
radical change in business processes to
achieve breakthrough improvements in
products and services.

2. The person who makes detailed notes of
the happenings at a joint application design
session.

3. Technologies that enable the breaking of
long-held business rules that inhibit
organizations from making radical
business changes.

4. The way a system actually works.
5. The official way a system works as

described in organizational documentation.

6. The structured, measured set of activities
designed to produce a specific output for a
particular customer or market.

7. Questions in interviews and on
questionnaires that ask those responding
to choose from among a set of specified
responses.

8. Questions in interviews and on
questionnaires that have no prespecified
answers.

9. The trained individual who plans and leads
joint application design sessions.

148 Part III Systems Analysis

Discussion Questions
1. The methods of data collection discussed in this

chapter take a lot of time. What are some ways an-
alysts can still collect the information they need
for systems analysis but also save time? What

methods can you think of that would improve
upon both traditional and newer techniques?

2. Some of the key problems with information
systems that show up later in the systems

Review Questions
1. Describe systems analysis and the major activi-

ties that occur during this phase of the systems
development life cycle.

2. What are some useful character traits for an ana-
lyst involved in requirements determination?

3. Describe three traditional techniques for collect-
ing information during analysis. When might one
be better than another?

4. What are the general guidelines for conducting
interviews?

5. What are the general guidelines for collecting
data through observing workers?

6. What are the general guidelines for collecting
data through analyzing documents?

7. Compare collecting information through obser-
vation and through document analysis. Describe
a hypothetical situation in which each of these

methods would be an effective way to collect in-
formation system requirements.

8. What is JAD? How is it better than traditional
information-gathering techniques? What are its
weaknesses?

9. How has computing been used to support
requirements determination?

10. Describe how prototyping can be used during
requirements determination. How is it better or
worse than traditional methods?

11. When conducting a business process reengineer-
ing study, what should you look for when trying
to identify business processes to change? Why?

12. What are disruptive technologies, and how do
they enable organizations to change their busi-
ness processes radically?

Problems and Exercises
1. One of the potential problems mentioned in this

chapter with gathering information require-
ments by observing potential system users is
that people may change their behavior when
observed. What could you do to overcome this
potentially confounding factor in accurately
determining information requirements?

2. Summarize the problems with the reliability and
usefulness of analyzing business documents as a
method for gathering information requirements.
How could you cope with these problems to use
business documents effectively as a source of in-
sights on system requirements?

3. Suppose you were asked to lead a JAD
session. List ten guidelines you would follow in
playing the proper role of a JAD session
leader.

4. Prepare a plan, similar to Figure 5-2, for an inter-
view with your academic adviser to determine
which courses you should take to develop the
skills you need to be hired as a programmer/
analyst.

5. Figure 5-2 shows part of a guide for an interview.
How might an interview guide differ when a
group interview is to be conducted?

6. JADs are powerful ways to collect system re-
quirements, but special problems arise during
group requirements collection sessions. Summa-
rize these special interviewing and group prob-
lems, and suggest ways that you, as a group
facilitator, might deal with them.

7. Suppose you are a systems analyst charged with
gathering information requirements. You decide
that you want to use prototyping to gather these re-
quirements. It provides benefits beyond interviews
and observations but also presents unique chal-
lenges. Discuss the challenges you expect to face
and what processes you will put in place to prevent
them from harming your information system.

8. Questionnaires can be administered both on pa-
per and via the Internet. Online questionnaires
allow for the use of complex analysis tools and
real-time results. However, online question-
naires have idiosyncratic challenges. Three
such challenges can be computer access con-
cerns, getting users to participate, and employee
concerns for privacy of results. Discuss when
each concern is likely to impact the online
questionnaire and how you would address
each challenge.

Chapter 5 Determining System Requirements 149

Case Problems
1. Pine Valley Furniture

Jackie Judson, vice president of marketing, and
Jim Woo, a senior systems analyst, have been in-
volved with Pine Valley Furniture’s Customer
Tracking System since the beginning of the proj-
ect. After receiving project approval from the
Systems Priority Board, Jim and his project
development team turned their attention toward
analyzing the Customer Tracking System.

During a Wednesday afternoon meeting, Jim
and his project team members decide to utilize
several requirements determination methods. Be-
cause the Customer Tracking System will facili-
tate the tracking of customer purchasing activity
and help identify sales trends, various levels of
end users will benefit from the new system.
Therefore, the project team feels it is necessary to
collect requirements from these potential end
users. The project team will use interviews,
observations, questionnaires, and JAD sessions
as data-gathering tools.

Jim assigns you the task of interviewing Stacie
Walker, a middle manager in the marketing de-
partment; Pauline McBride, a sales representa-
tive; and Tom Percy, assistant vice president of
marketing. Tom is responsible for preparing the
sales forecasts. In addition, Jim assigns Pete
Polovich, a project team member, the task of
organizing the upcoming JAD sessions.

a. Because Pete Polovich is organizing a JAD ses-
sion for the first time, he would like to locate
additional information about organizing and
conducting a JAD session. Find information
on JAD on the Web, and provide Pete with
several recommendations for conducting and
organizing a JAD session.

b. When conducting your interviews, what guide-
lines should you follow?

c. As part of the requirements determination
process, what business documents should be
reviewed?

d. Is prototyping an appropriate requirements
determination method for this project?

2. Hoosier Burger
Juan Rodriquez has assigned you the task of

requirements determination for the Hoosier
Burger project. You are looking forward to this
opportunity because it will allow you to meet and
interact with Hoosier Burger employees. Besides
interviewing Bob and Thelma Mellankamp, you
decide to collect information from Hoosier
Burger’s waiters, cooks, and customers.

Mr. Rodriquez suggests that you formally inter-
view Bob and Thelma Mellankamp and perhaps
observe them performing their daily management
tasks. You decide that the best way to collect
requirements from the waiters and cooks is to
interview and observe them. You realize that dis-
cussing the order-taking process with Hoosier
Burger employees and then observing them in
action will provide you with a better idea of
where potential system improvements can be
made. You also decide to prepare a question-
naire to distribute to Hoosier Burger customers.
Because Hoosier Burger has a large customer
base, it would be impossible to interview every
customer; therefore, you feel that a customer sat-
isfaction survey will suffice.

a. Assume you are preparing the customer satis-
faction questionnaire. What types of questions
would you include? Prepare five questions
that you would ask.

b. What types of questions would you ask the
waiters? What types of questions would you
ask the cooks? Prepare five questions that you
would ask each group.

c. What types of documents are you likely to
obtain for further study? What types of docu-
ments will most likely not be available? Why?

d. What modern requirements determination
methods are appropriate for this project?

3. Clothing Shack
The Clothing Shack is an online retailer of

men’s, women’s, and children’s clothing. The
company has been in business for four years
and makes a modest profit from its online sales.

development life cycle can be traced back to in-
adequate work during requirements determina-
tion. How might this issue be avoided?

3. Survey the literature on JAD in the academic and
popular press and determine the “state of the
art.” How is JAD being used to help determine
system requirements? Is using JAD for this
process beneficial? Why or why not? Present
your analysis to the IS manager at your work or

at your university. Does your analysis of JAD fit
with his or her perception? Why or why not? Is he
or she currently using JAD, or a JAD-like method,
for determining system requirements? Why or
why not?

4. Is business process reengineering a business
fad or is there more to it? Explain and justify
your answer.

150 Part III Systems Analysis

PE TABLE 5-1: Requirements and Constraints for Petrie’s Customer Loyalty Project

Requirements

• Effective customer incentives—System should be able to effectively store customer activity and convert to rewards and other
incentives

• Easy for customers to use—Interface should be intuitive for customer use

• Proven performance—System as proposed should have been used successfully by other clients

• Easy to implement—Implementation should not require outside consultants or extraordinary skills on the part of our staff or
require specialized hardware

• Scalable—System should be easily expandable as the number of participating customers grows

• Vendor support—Vendor should have proven track record of reliable support and infrastructure in place to provide it

Constraints

• Cost to buy—Licenses for one year should be under $500,000

• Cost to operate—Total operating costs should be no more than $1 million per year

• Time to implement—Duration of implementation should not exceed three months

• Staff to implement—Implementation should be successful with the staff we have and with the skills they already possess

However, in an effort to compete successfully
against online retailing heavyweights, the
Clothing Shack’s marketing director, Makaya
O’Neil, has determined that the Clothing
Shack’s marketing information systems need
improvement.

Ms. O’Neil feels that the Clothing Shack should
begin sending out catalogs to its customers, keep
better track of its customer’s buying habits,
perform target marketing, and provide a more
personalized shopping experience for its customers.
Several months ago, Ms. O’Neil submitted a sys-
tems service request (SSR) to the Clothing Shack’s
steering committee. The committee unanimously
approved this project. You were assigned to the

project at that time and have since helped your
project team successfully complete the project
initiation and planning phase. Your team is now
ready to move into the analysis phase and begin
identifying requirements for the new system.

a. Whom would you interview? Why?
b. What requirements determination methods

are appropriate for this project?
c. Based on the answers provided for Question b,

which requirements determination methods
are appropriate for the individuals identified
in Question a?

d. Identify the requirements determination deliv-
erables that will likely result from this project.

CASE: PETRIE’S ELECTRONICS

Determining Systems Requirements
Although the customer loyalty project at Petrie’s
Electronics had gone slowly at first, the past few
weeks had been fast paced and busy, Jim Watan-
abe, the project manager, thought to himself. He
had spent much of his time planning and conduct-
ing interviews with key stakeholders inside the
company. He had also worked with the marketing
group to put together some focus groups made up
of loyal customers, to get some ideas about what
they would value in a customer loyalty program.
Jim had also spent some time studying customer

loyalty programs at other big retail chains and
those in other industries as well, such as the air-
lines, known for their extensive customer loyalty
programs. As project manager, he had also super-
vised the efforts of his team members. Together,
they had collected a great deal of data. Jim had just
finished creating a high-level summary of the
information into a table he could send to his team
members (PE Table 5-1).

From the list of requirements, it was clear that he
and his team did not favor building a system from
scratch in-house. Jim was glad that the team felt that

Chapter 5 Determining System Requirements 151

PE TABLE 5-2: Alternatives for Petrie’s Customer Loyalty Project

Alternative A

Data warehousing-centered system designed and licensed by Standard Basic Systems, Inc. (SBSI). The data warehousing tools at
the heart of the system were designed and developed by SBSI, and work with standard relational DBMSs and relational/OO
hybrid DBMSs. The SBSI tools and approach have been used for many years and are well known in the industry, but SBSI-
certified staff are essential for implementation, operation, and maintenance. The license is relatively expensive. The customer
loyalty application using the SBSI data warehousing tools is an established application, used by many retail businesses in other
industries.

Alternative B

Customer relationship management (CRM)-centered system designed and licensed by XRA Corporation. XRA is a pioneer in CRM
systems, so its CRM is widely recognized as an industry leader. The system includes tools that support customer loyalty programs.
The CRM system itself is large and complex, but pricing in this proposal is based only on modules used for the customer loyalty
application.

Alternative C

Proprietary system designed and licensed by Nova Innovation Group, Inc. The system is relatively new and leading edge,
so it has only been implemented in a few sites. The vendor is truly innovative but small and inexperienced. The customer interface,
designed for a standard Web browser, is stunning in its design and is extremely easy for customers to use to check on their
loyalty program status. The software runs remotely, in the “cloud,” and data related to the customer loyalty program would be
stored in the cloud too.

way. Not only was building a system like this
in-house an antiquated practice, it was expensive and
time consuming. As nice as it might have been to de-
velop a unique system just for Petrie’s, there was lit-
tle point in reinventing the wheel. The IT staff would
customize the system interface, and there would be
lots of work for Sanjay’s staff in integrating the new
system and its related components with Petrie’s
existing systems, but the core of the system would
have already been developed by someone else.

Just as he was finishing the e-mail he would send
to his team about the new system’s requirements and
constraints, he received a new message from Sanjay.
He had asked Sanjay to take the lead in scouting out
existing customer loyalty systems that Petrie’s could
license. Sanjay had conducted a preliminary investi-
gation that was now complete. His e-mail contained
the descriptions of three of the systems he had found
and studied (PE Table 5-2). Obviously, Jim and his
team would need to have a lot more information
about these alternatives, but Jim was intrigued by
the possibilities. He sent a reply to Sanjay, asking
him to pass the alternatives on to the team, and also

asking him to prepare a briefing for the team that
would include more detailed information about each
alternative.

Case Questions

1. What do you think are the sources of the infor-
mation Jim and his team collected? How do you
think they collected all of that information?

2. Examine PE Table 5-1. Are there any require-
ments or constraints that you can think of that
were overlooked? List them.

3. If you were looking for alternative approaches for
Petrie’s customer loyalty program, where would
you look for information? Where would you start?
How would you know when you were done?

4. Using the Web, find three customizable cus-
tomer loyalty program systems being sold by
vendors. Create a table like PE Table 5-2 that
compares them.

5. Why shouldn’t Petrie’s staff build their own
unique system in-house?

152

Structuring System Requirements:
Process Modeling

� Understand the logical modeling of processes
through studying examples of data-flow
diagrams.

� Draw data-flow diagrams following specific
rules and guidelines that lead to accurate
and well-structured process models.

� Decompose data-flow diagrams into lower-
level diagrams.

� Balance higher-level and lower-level data-flow
diagrams.

� Use data-flow diagrams as a tool to support
the analysis of information systems.

� Use decision tables to represent process
logic.

After studying this chapter, you should be able to:

six
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

©
 C

om
sto

ck
 Im

ag
es

/
Ju

pi
te

r I
m

ag
es

153

Chapter Preview . . .

FIGURE 6-1
Systems analysis, within the
analysis phase of the systems
development life cycle, we focus
on structuring requirements in this
chapter.

Requirements Determination
Requirements Structuring✓

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

In the previous chapter, you learned about vari-
ous methods that systems analysts use to collect

the information they need to determine systems

requirements. In this chapter, we continue our

focus on the systems analysis part of the SDLC,

which is highlighted in Figure 6-1. Note the two

parts to the analysis phase, determining require-

ments and structuring requirements. We focus

on a tool analysts use to structure information—

data-flow diagrams (DFDs). Data-flow diagrams

allow you to model how data flow through an

information system, the relationships among the

data flows, and how data come to be stored at

specific locations. Data-flow diagrams also show

the processes that change or transform data.

Because data-flow diagrams concentrate on the

movement of data between processes, these dia-

grams are called process models.

As the name indicates, a data-flow diagram is

a graphical tool that allows analysts (and users)

to show the flow of data in an information sys-

tem. The system can be physical or logical, man-

ual or computer based. In this chapter, you learn

the mechanics of drawing and revising data-flow

diagrams, as well as the basic symbols and set of

rules for drawing them. We also alert you to pit-

falls. You learn two important concepts related

to data-flow diagrams: balancing and decompo-

sition. At the end of the chapter, you learn how to

use data-flow diagrams as part of the analysis of

an information system and as a tool for support-

ing business process reengineering. You also are

briefly introduced to a method for modeling the

logic inside processes, decision tables.

Data-flow diagram (DFD)
A graphic that illustrates the
movement of data between
external entities and the
processes and data stores within
a system.

Process modeling
Graphically representing the
processes that capture,
manipulate, store, and distribute
data between a system and its
environment and among
components within a system.

154 Part III Systems Analysis

Process Modeling
Process modeling involves graphically representing the processes, or actions,
that capture, manipulate, store, and distribute data between a system and its en-
vironment and among components within a system. A common form of a
process model is a data-flow diagram (DFD). A data-flow diagram is a
graphic that illustrates the movement of data between external entities and the
processes and data stores within a system. Although several different tools have
been developed for process modeling, we focus solely on data-flow diagrams
because they are useful tools for process modeling.

Data-flow diagramming is one of several structured analysis techniques used
to increase software development productivity. Although not all organizations
use each structured analysis technique, collectively, these techniques, like data-
flow diagrams, have had a significant impact on the quality of the systems
development process.

Modeling a System’s Process
The analysis team begins the process of structuring requirements with an abun-
dance of information gathered during requirements determination. As part of
structuring, you and the other team members must organize the information
into a meaningful representation of the information system that exists and of
the requirements desired in a replacement system. In addition to modeling the
processing elements of an information system and transformation of data in the
system, you must also model the structure of data within the system (which we
review in Chapter 7). Analysts use both process and data models to establish the
specification of an information system. With a supporting tool, such as a CASE
tool, process and data models can also provide the basis for the automatic
generation of an information system.

Deliverables and Outcomes
In structured analysis, the primary deliverables from process modeling are a set
of coherent, interrelated data-flow diagrams. Table 6-1 lists the progression of
deliverables that result from studying and documenting a system’s process. First,
a context data-flow diagram shows the scope of the system, indicating which
elements are inside and outside the system. Second, data-flow diagrams of the
current system specify which people and technologies are used in which
processes to move and transform data, accepting inputs and producing outputs.
The detail of these diagrams allows analysts to understand the current system and
eventually to determine how to convert the current system into its replacement.
Third, technology-independent, or logical, data-flow diagrams show the data-
flow, structure, and functional requirements of the new system. Finally, entries
for all of the objects in all diagrams are included in the project dictionary or
CASE repository.

TABLE 6-1: Deliverables for Process Modeling

1. Context DFD

2. DFDs of current physical system

3. DFDs of new logical system

4. Thorough descriptions of each DFD component

Chapter 6 Structuring System Requirements: Process Modeling 155

This logical progression of deliverables helps you to understand the existing
system. You can then reduce this system into its essential elements to show
the way in which the new system should meet its information processing
requirements, as they were identified during requirements determination. In
later steps in the systems development life cycle, you and other project team
members make decisions on exactly how the new system will deliver these new
requirements in specific manual and automated functions. Because require-
ments determination and structuring are often parallel steps, data-flow diagrams
evolve from the more general to the more detailed as current and replacement
systems are better understood.

Even though data-flow diagrams remain popular tools for process modeling
and can significantly increase software development productivity, they are not
used in all systems development methodologies. Some organizations, such as
EDS, have developed their own type of diagrams to model processes. Some
methodologies, such as rapid application development (RAD), do not model
processes separately at all. Instead, RAD builds processes—the work or actions
that transform data so that they can be stored or distributed—into the proto-
types created as the core of its development life cycle. However, even if you
never formally use data-flow diagrams in your professional career, they remain
a part of systems development’s history. DFDs illustrate important concepts
about the movement of data between manual and automated steps and are a
way to depict work flow in an organization. DFDs continue to benefit informa-
tion systems professionals as tools for both analysis and communication. For
that reason, we devote this entire chapter to DFDs.

Data-Flow Diagramming Mechanics
Data-flow diagrams are versatile diagramming tools. With only four symbols,
data-flow diagrams can represent both physical and logical information systems.
The four symbols used in DFDs represent data flows, data stores, processes, and
sources/sinks (or external entities). The set of four symbols we use in this book
was developed by Gane and Sarson (1979) and is illustrated in Figure 6-2.

A data flow is data that are in motion and moving as a unit from one place in
a system to another. A data flow could represent data on a customer order form
or a payroll check. It could also represent the results of a query to a database,
the contents of a printed report, or data on a data-entry computer display form.
A data flow can be composed of many individual pieces of data that are gener-
ated at the same time and that flow together to common destinations.

FIGURE 6-2
Gane and Sarson identified
four symbols to use in data-
flow diagrams to represent
the flow of data: data-flow
symbol, data-store symbol,
process symbol, and
source/sink symbol. We use
the Gane and Sarson
symbols in this book.

Source/Sink

Data Flow

Process

Data Store

Interface1

Process1

DataStore1

DataFlow1

156 Part III Systems Analysis

A data store is data at rest. A data store may represent one of many different
physical locations for data, including a file folder, one or more computer-based
file(s), or a notebook. To understand data movement and handling in a system,
the physical configuration is not really important. A data store might contain
data about customers, students, customer orders, or supplier invoices.

A process is the work or actions performed on data so that they are
transformed, stored, or distributed. When modeling the data processing of a
system, it doesn’t matter whether a process is performed manually or by a
computer.

Finally, a source/sink is the origin and/or destination of the data.
Source/sinks are sometimes referred to as external entities because they are
outside the system. Once processed, data or information leave the system and
go to some other place. Because sources and sinks are outside the system we
are studying, many of their characteristics are of no interest to us. In particular,
we do not consider the following:

� Interactions that occur between sources and sinks

� What a source or sink does with information or how it operates
(i.e., a source or sink is a “black box”)

� How to control or redesign a source or sink because, from the
perspective of the system we are studying, the data a sink receives
and often what data a source provides are fixed

� How to provide sources and sinks direct access to stored data
because, as external agents, they cannot directly access or manipulate
data stored within the system; that is, processes within the system
must receive or distribute data between the system and its
environment

Definitions and Symbols
Among the DFD symbols presented in Figure 6-2, a data flow is depicted as an
arrow. The arrow is labeled with a meaningful name for the data in motion; for
example, customer order, sales receipt, or paycheck. The name represents the
aggregation of all the individual elements of data moving as part of one packet,
that is, all the data moving together at the same time. A rectangle or square is
used for sources/sinks, and its name states what the external agent is, such as
customer, teller, Environmental Protection Agency (EPA) office, or inventory
control system. The symbol for a process is a rectangle with rounded corners.
Inside the rectangle are written both the number of the process and a name,
which indicates what the process does. For example, the process may generate
paychecks, calculate overtime pay, or compute grade-point average. The sym-
bol for a data store is a rectangle with the right vertical line missing. Its label in-
cludes the number of the data store (e.g., D1 or D2) and a meaningful label, such
as student file, transcripts, or roster of classes.

As stated earlier, sources/sinks are always outside the information system and
define the system’s boundaries. Data must originate outside a system from one
or more sources, and the system must produce information to one or more
sinks. (These principles of open systems describe almost every information sys-
tem.) If any data processing takes place inside the source/sink, we are not
interested in it, because this processing takes place outside of the system we are
diagramming. A source/sink might consist of the following:

� Another organization or organizational unit that sends data to or
receives information from the system you are analyzing (e.g., a supplier
or an academic department—in either case, this organization
is external to the system you are studying)

Source/sink
The origin and/or destination
of data; sometimes referred to
as external entities.

Process
The work or actions performed
on data so that they are
transformed, stored, or
distributed.

Data store
Data at rest, which may take the
form of many different physical
representations.

Chapter 6 Structuring System Requirements: Process Modeling 157

3.0
Update

Customer
Master D1: Customer Master

BANK

CUSTOMER

Receipt

1.0
Record

Payment

2.0
Make Bank

Deposit

Credit Data

Payment Data

Deposit Data

Payment

Payment
Data

FIGURE 6-3
(A) An incorrectly drawn
DFD showing a process as
a source/sink,
(B) A DFD showing proper use
of a process.

D1: Customer Master

BANK

CUSTOMER

ACCOUNTING
DEPARTMENT

Receipt

1.0
Record

Payment

2.0
Make Bank

Deposit

Credit Data

Payment Data

Deposit Data

Payment

Payment
Data

A

B

� A person inside or outside the business unit supported by the system
you are analyzing and who interacts with the system (e.g., a customer
or a loan officer)

� Another information system with which the system you are analyzing
exchanges information

Many times, students learning how to use DFDs become confused about
whether a person or activity is a source/sink or a process within a system. This
dilemma occurs most often when a system’s data flow across office or depart-
mental boundaries. In such a case, some processing occurs in one office, and
the processed data are moved to another office, where additional processing
occurs. Students are tempted to identify the second office as a source/sink to
emphasize that the data have been moved from one physical location to another.
Figure 6-3A illustrates an incorrectly drawn DFD showing a process, 3.0 Update
Customer Master, as a source/sink, Accounting Department. The reference
numbers “1.0” and “2.0” uniquely identify each process. D1 identifies the first
data store in the diagram. However, we are not concerned with where the data
are physically located. We are more interested in how they are moving through
the system and how they are being processed. If the processing of data in the
other office is part of your system, then you should represent the second office
as one or more processes on your DFD. Similarly, if the work done in the sec-
ond office might be redesigned to become part of the system you are analyzing,

158 Part III Systems Analysis

FIGURE 6-4
A context diagram of Hoosier
Burger’s food-ordering system.
The system includes one process
(food-ordering system), four data
flows (customer order, receipt,
food order, management reports),
and three sources/sinks (customer,
kitchen, and restaurant manager).

Management Reports

Receipt Food Order

Customer OrderCUSTOMER

RESTAURANT
MANAGER

KITCHEN

0
Food

Ordering
System

then that work should be represented as one or more processes on your DFD.
However, if the processing that occurs in the other office takes place outside
the system you are working on, then it should be a source/sink on your DFD.
Figure 6-3B is a DFD showing proper use of a process.

Developing DFDs: An Example
Let’s work through an example to see how DFDs are used to model the logic of
data flows in information systems. Consider Hoosier Burger, a fictional fast-
food restaurant in Bloomington, Indiana. Hoosier Burger is owned by Bob and
Thelma Mellankamp and is a favorite of students at nearby Indiana University.
Hoosier Burger uses an automated food-ordering system. The boundary or
scope of this system, and the system’s relationship to its environment, is repre-
sented by a data-flow diagram called a context diagram. A context diagram is
shown in Figure 6-4. Notice that this context diagram contains only one process,
no data stores, four data flows, and three sources/sinks. The single process,
labeled “0,” represents the entire system; all context diagrams have only one
process labeled “0.” The sources/sinks represent its environmental boundaries.
Because the data stores of the system are conceptually inside the one process,
no data stores appear on a context diagram.

After drawing the context diagram, the next step for the analyst is to think
about which processes are represented by the single process. As you can see in
Figure 6-5, we have identified four separate processes, providing more detail of
the Hoosier Burger food-ordering system. The main processes in the DFD repre-
sent the major functions of the system, and these major functions correspond
to such actions as the following:

1. Capturing data from different sources (Process 1.0)

2. Maintaining data stores (Processes 2.0 and 3.0)

3. Producing and distributing data to different sinks (Process 4.0)

4. High-level descriptions of data transformation operations (Process 1.0)

We see that the system in Figure 6-5 begins with an order from a customer, as
was the case with the context diagram. In the first process, labeled “1.0,” we see
that the customer order is processed. The results are four streams or flows of
data: (1) The food order is transmitted to the kitchen, (2) the customer order is

Context diagram
A data-flow diagram of the
scope of an organizational
system that shows the system
boundaries, external entities that
interact with the system, and the
major information flows between
the entities and the system.

Chapter 6 Structuring System Requirements: Process Modeling 159

D1: Inventory File

KITCHEN

RESTAURANT
MANAGER

CUSTOMER

Formatted Inventory Data

1.0
Receive and
Transform
Customer

Food Order

3.0
Update

Inventory
File

Management Reports

4.0
Produce

Management
Reports

Inventory Data

D2: Goods Sold File

Formatted Goods Sold Data

2.0
Update

Goods Sold
File

Receipt
Customer Order

Goods Sold Data

Daily
Inventory
Depletion
Amounts

Daily Goods
Sold Amounts

Food Order

FIGURE 6-5
Four separate processes of the
Hoosier Burger food-ordering
system.

Level-0 diagram
A data-flow diagram that
represents a system’s major
processes, data flows, and data
stores at a high level of detail.

transformed into a list of goods sold, (3) the customer order is transformed into
inventory data, and (4) the process generates a receipt for the customer.

Notice that the sources/sinks are the same in the context diagram (Figure 6-4)
and in this diagram: the customer, the kitchen, and the restaurant’s manager. A
context diagram is a DFD that provides a general overview of a system. Other
DFDs can be used to focus on the details of a context diagram. A level-0
diagram, illustrated in Figure 6-4, is an example of such a DFD. Compare the
level of detail in Figure 6-5 with that of Figure 6-4. A level-0 diagram represents
the primary individual processes in the system at the highest possible level of
detail. Each process has a number that ends in .0 (corresponding to the level
number of the DFD).

Two of the data flows generated by the first process, Receive and Transform
Customer Food Order, go to external entities (Customer and Kitchen), so we no
longer have to worry about them. We are not concerned about what happens
outside of our system. Let’s trace the flow of the data represented in the other
two data flows. First, the data labeled Goods Sold go to Process 2.0, Update
Goods Sold File. The output for this process is labeled Formatted Goods Sold
Data. This output updates a data store labeled Goods Sold File. If the customer
order were for two cheeseburgers, one order of fries, and a large soft drink, each
of these categories of goods sold in the data store would be incremented appro-
priately. The Daily Goods Sold Amounts are then used as input to Process 4.0,
Produce Management Reports. Similarly, the remaining data flow generated by
Process 1.0, called Inventory Data, serves as input for Process 3.0, Update
Inventory File. This process updates the Inventory File data store, based on the
inventory that would have been used to create the customer order. For example,
an order of two cheeseburgers would mean that Hoosier Burger now has two
fewer hamburger patties, two fewer burger buns, and four fewer slices of

160 Part III Systems Analysis

American cheese. The Daily Inventory Depletion Amounts are then used as in-
put to Process 4.0. The data flow leaving Process 4.0, Management Reports,
goes to the sink Restaurant Manager.

Figure 6-5 illustrates several important concepts about information move-
ment. Consider the data flow Inventory Data moving from Process 1.0 to
Process 3.0. We know from this diagram that Process 1.0 produces this data
flow and that Process 3.0 receives it. However, we do not know the timing of
when this data flow is produced, how frequently it is produced, or what volume
of data is sent. Thus, this DFD hides many physical characteristics of the system
it describes. We do know, however, that this data flow is needed by Process 3.0
and that Process 1.0 provides this needed data.

Also, implied by the Inventory Data data flow is that whenever Process 1.0
produces this flow, Process 3.0 must be ready to accept it. Thus, Processes 1.0
and 3.0 are coupled to each other. In contrast, consider the link between
Process 2.0 and Process 4.0. The output from Process 2.0, Formatted Goods
Sold Data, is placed in a data store and, later, when Process 4.0 needs such data,
it reads Daily Goods Sold Amounts from this data store. In this case, Processes
2.0 and 4.0 are decoupled by placing a buffer, a data store (Goods Sold File),
between them. Now, each of these processes can work at its own pace, and
Process 4.0 does not have to be vigilant by being able to accept input at any time.
Further, the Goods Sold File becomes a data resource that other processes
could potentially draw upon for data.

TABLE 6-2: Rules Governing Data-Flow Diagramming

Process

A. No process can have only outputs. It is making data from
nothing (a miracle). If an object has only outputs, then
it must be a source.

B. No process can have only inputs (a black hole).
If an object has only inputs, then it must be a sink.

C. A process has a verb-phrase label.

Data Flow

J. A data flow has only one direction of flow between symbols.
It may flow in both directions between a process and a data
store to show a read before an update. The latter is usually
indicated, however, by two separate arrows because the
read and update usually happen at different times.

K. A fork in a data flow means that exactly the same data go
from a common location to two or more different processes,
data stores, or sources/sinks (it usually indicates different
copies of the same data going to different locations).

L. A join in a data flow means that exactly the same data
come from any of two or more different processes, data
stores, or sources/sinks to a common location.

M. A data flow cannot go directly back to the same process it
leaves. At least one other process must handle the data flow,
produce some other data flow, and return the original data
flow to the beginning process.

N. A data flow to a data store means update (delete or
change).

O. A data flow from a data store means retrieve or use.

P. A data flow has a noun-phrase label. More than one data-
flow noun phrase can appear on a single arrow as long
as all of the flows on the same arrow move together as one
package.

Data Store

D. Data cannot move directly from one data store to
another data store. Data must be moved by a process.

E. Data cannot move directly from an outside source to
a data store. Data must be moved by a process that
receives data from the source and places the data into
the data store.

F. Data cannot move directly to an outside sink from a data
store. Data must be moved by a process.

G. A data store has a noun-phrase label.

Source/Sink

H. Data cannot move directly from a source to a sink.
They must be moved by a process if the data are of any
concern to our system. Otherwise, the data flow is not
shown on the DFD.

I. A source/sink has a noun-phrase label.

Source: Based on J. Celko, “I. Data Flow Diagrams,” Computer Language 4 (January 1987), 41–43.

Chapter 6 Structuring System Requirements: Process Modeling 161

Data-Flow Diagramming Rules
You must follow a set of rules when drawing data-flow diagrams. These rules,
listed in Table 6-2, allow you to evaluate DFDs for correctness. Figure 6-6
illustrates incorrect ways to draw DFDs and the corresponding correct
application of the rules. The rules that prescribe naming conventions (rules C,

Incorrect Correct

A

Rule

DataFlow1Process1

DataFlow2

DataFlow1Process1

DataFlow2

DataFlow3

B

D

E

DataFlow1Process1

DataFlow2

Process1

DataFlow2

DataFlow3

DataStore1

DataStore2

DataFlow4

DataFlow5Process1

DataFlow4

DataStore1

DataStore2

DataFlow3
DataFlow4

Process2 DataStore1Process2 DataStore1

Interface1 DataFlow6 DataStore3

Process3Interface1 DataFlow6

DataStore3

DataFlow7

F Interface1DataFlow6DataStore3

Process4 Process5
A

A

Process6

Process4 Process5
A

B

Process6

Process3 Interface1DataFlow7

DataStore3

DataFlow6

H

J

K

L

M

Interface2Interface1 DataFlow1

Process7

A Process8 Process10

Process9

A
B

A

A

C

Interface2

Process1

Interface1 DataFlow2

DataFlow1

Process4 Process5
A

A

Process6

Process4 Process5
A

B

Process6

FIGURE 6-6
Incorrect and correct ways
to draw data-flow diagrams.

Level-n diagram
A DFD that is the result of n
nested decompositions of a
series of subprocesses from a
process on a level-0 diagram.

162 Part III Systems Analysis

G, I, and P in Table 6-2) and those that explain how to interpret data flows in and
out of data stores (rules N and O in Table 6-2) are not illustrated in Figure 6-6.
Besides the rules in Table 6-2, two DFD guidelines apply most of the time:

� The inputs to a process are different from the outputs of that process:
The reason is that processes, to have a purpose, typically transform
inputs into outputs, rather than simply passing the data through
without some manipulation. The same input may go in and out of
a process, but the process also produces other new data flows that
are the result of manipulating the inputs.

� Objects on a DFD have unique names: Every process has a unique
name. There is no reason to have two processes with the same name.
To keep a DFD uncluttered, however, you may repeat data stores and
sources/sinks. When two arrows have the same data-flow name, you
must be careful that these flows are exactly the same. It is a mistake
to reuse the same data-flow name when two packets of data are
almost the same but not identical. Because a data-flow name
represents a specific set of data, another data flow that has even one
more or one less piece of data must be given a different, unique name.

Decomposition of DFDs
In the Hoosier Burger’s food-ordering system, we started with a high-level con-
text diagram (see Figure 6-4). After drawing the diagram, we saw that the larger
system consisted of four processes. The act of going from a single system to
four component processes is called (functional) decomposition. Functional
decomposition is a repetitive process of breaking the description or perspective
of a system down into finer and finer detail. This process creates a set of hier-
archically related charts in which one process on a given chart is explained in
greater detail on another chart. For the Hoosier Burger system, we broke down
or decomposed the larger system into four processes. Each of those processes
(or subsystems) is also a candidate for decomposition. Each process may con-
sist of several subprocesses. Each subprocess may also be broken down into
smaller units. Decomposition continues until no subprocess can logically be
broken down any further. The lowest level of DFDs is called a primitive DFD,
which we define later in this chapter.

Let’s continue with Hoosier Burger’s food-ordering system to see how a level-0
DFD can be further decomposed. The first process in Figure 6-5, called Receive
and Transform Customer Food Order, transforms a customer’s verbal food
order (e.g., “Give me two cheeseburgers, one small order of fries, and one large
orange soda”) into four different outputs. Process 1.0 is a good candidate
process for decomposition. Think about all of the different tasks that Process 1.0
has to perform: (1) Receive a customer order, (2) transform the entered order
into a printed receipt for the customer, (3) transform the order into a form
meaningful for the kitchen’s system, (4) transform the order into goods sold
data, and (5) transform the order into inventory data. At least these five logically
separate functions occur in Process 1.0. We can represent the decomposition of
Process 1.0 as another DFD, as shown in Figure 6-7.

Note that each of the five processes in Figure 6-7 are labeled as subprocesses
of Process 1.0: Process 1.1, Process 1.2, and so on. Also note that, just as with
the other data-flow diagrams we have looked at, each of the processes and data
flows are named. No sources or sinks are represented. The context and level-0
diagrams show the sources and sinks. The data-flow diagram in Figure 6-7 is
called a level-1 diagram. If we should decide to decompose Processes 2.0, 3.0,
or 4.0 in a similar manner, the DFDs we create would also be called level-1 dia-
grams. In general, a level-n diagram is a DFD that is generated from n nested
decompositions from a level-0 diagram.

Chapter 6 Structuring System Requirements: Process Modeling 163

FIGURE 6-7
Level-1 DFD showing the
decomposition of process 1.0
from the level-0 diagram for
Hoosier Burger’s food-ordering
system.

CUSTOMER

1.2
Generate
Customer
Receipt

1.1
Receive

Customer
OrderCustomer

Order

Customer
Order

1.4
Generate

Goods Sold
Increments

2.0
Update

Goods Sold
File

1.3
Transform
Order to
Kitchen
Format

Receipt

Customer
Order

3.0
Update

Inventory
File

1.5
Generate
Inventory

Decrements

Customer Order

Inventory Data

Food Order

Goods Sold Data

Customer
Order

Processes 2.0 and 3.0 perform similar functions in that they both use data
input to update data stores. Because updating a data store is a singular logi-
cal function, neither of these processes needs to be decomposed further. We
can, on the other hand, decompose Process 4.0, Produce Management
Reports, into at least three subprocesses: Access Goods Sold and Inventory
Data, Aggregate Goods Sold and Inventory Data, and Prepare Management
Reports. The decomposition of Process 4.0 is shown in the level-1 diagram
of Figure 6-8.

Each level-1, -2, or -n DFD represents one process on a level-(n-1) DFD; each
DFD should be on a separate page. As a rule of thumb, no DFD should have
more than about seven processes in it, because the diagram would be too
crowded and difficult to understand.

To continue with the decomposition of Hoosier Burger’s food-ordering
system, we examine each of the subprocesses identified in the two level-1

FIGURE 6-8
Level-1 diagram showing the
decomposition of process 4.0
from the level-0 diagram for
Hoosier Burger’s food-ordering
system.

4.1
Access

Goods Sold
and Inventory

Data

4.2
Aggregate

Goods Sold
and Inventory

Data

D2: Goods Sold File

D1: Inventory File

Inventory Data

Goods Sold Data

4.3
Prepare

Management
Reports

Aggregated Data

Daily Goods Sold Amount

Daily Inventory
Depletion Amounts

Management Reports

Balancing
The conservation of inputs and
outputs to a data-flow diagram
process when that process is
decomposed to a lower level.

FIGURE 6-9
Level-2 diagram showing the
decomposition of process 4.3
from the level-1 diagram for
process 4.0 for Hoosier Burger’s
food-ordering system.

4.2
Aggregate

Goods Sold
and Inventory

Data

4.3.1
Format

Management
Reports

Aggregated Data

4.3.2
Print

Management
Reports

Formatted Data

Management Reports

diagrams, one for Process 1.0 and one for Process 4.0. To further decompose
any of these subprocesses, we would create a level-2 diagram showing that
decomposition. For example, if we decided to further decompose Process 4.3 in
Figure 6-8, we would create a diagram that looks something like Figure 6-9.
Again, notice how the subprocesses are labeled.

Just as the labels for processes must follow numbering rules for clear commu-
nication, process names should also be clear, yet concise. Typically, process
names begin with an action verb, such as receive, calculate, transform, gener-
ate, or produce. Often process names are the same as the verbs used in many
computer programming languages. Examples include merge, sort, read, write,
and print. Process names should capture the essential action of the process in
just a few words, yet be descriptive enough of the action of the process so that
anyone reading the name gets a good idea of what the process does. Many times,
students just learning DFDs will use the names of people who perform the
process or the department in which the process is performed as the process
name. This practice is not especially useful, because we are more interested in
the action the process represents than the person performing it or the place
where it occurs.

Balancing DFDs
When you decompose a DFD from one level to the next, a conservation princi-
ple is at work. You must conserve inputs and outputs to a process at the next
level of decomposition. In other words, Process 1.0, which appears in a level-0
diagram, must have the same inputs and outputs when decomposed into a
level-1 diagram. This conservation of inputs and outputs is called balancing.

Let’s look at an example of balancing a set of DFDs. Figure 6-4, the context
diagram for Hoosier Burger’s food-ordering system, shows one input to the sys-
tem, the customer order, which originates with the customer. Notice also the
diagram shows three outputs: the customer receipt, the food order intended for
the kitchen, and management reports. Now look at Figure 6-5, the level-0 dia-
gram for the food-ordering system. Remember that all data stores and flows to
or from them are internal to the system. Notice that the same single input to the
system and the same three outputs represented in the context diagram also
appear at level-0. Further, no new inputs to or outputs from the system have
been introduced. Therefore, we can say that the context diagram and level-0
DFDs are balanced.

Now look at Figure 6-7, where Process 1.0 from the level-0 DFD has been
decomposed. As we have seen before, Process 1.0 has one input and four out-
puts. The single input and multiple outputs all appear on the level-1 diagram in
Figure 6-7. No new inputs or outputs have been added. Compare Process 4.0 in
Figure 6-5 to its decomposition in Figure 6-8. You see the same conservation of
inputs and outputs.

164 Part III Systems Analysis

X.1Payment

X.2Coupon

B

X.0Payment and Coupon

FIGURE 6-11
Example of a data-flow splitting:
(A) Composite data flow,
(B) Disaggregated data flows.

Chapter 6 Structuring System Requirements: Process Modeling 165

Figure 6-10A shows you one example of what an unbalanced DFD could look
like. Here, the context diagram contains one input to the system, A, and one out-
put, B. Yet, in the level-0 diagram, Figure 6-10B, we see an additional input, C,
and flows A and C come from different sources. These two DFDs are not
balanced. If an input appears on a level-0 diagram, it must also appear on the
context diagram. What happened in this example? Perhaps when drawing the
level-0 DFD, the analyst realized that the system also needed C in order to com-
pute B. A and C were both drawn in the level-0 DFD, but the analyst forgot to
update the context diagram. In making corrections, the analyst should also
include SOURCE ONE and SOURCE TWO on the context diagram. It is very
important to keep DFDs balanced, from the context diagram all the way through
each level of the diagram you must create.

A data flow consisting of several subflows on a level-n diagram can be split
apart on a level-n � 1 diagram for a process that accepts this composite data flow
as input. For example, consider the partial DFDs from Hoosier Burger illustrated
in Figure 6-11. In Figure 6-11A, we see that the payment and coupon always flow
together and are input to the process at the same time. In Figure 6-11B, the
process is decomposed (sometimes called exploded or nested) into two
subprocesses, and each subprocess receives one of the components of the

SINKSOURCE 0 BA

FIGURE 6-10
An unbalanced set of data-flow
diagrams: (A) A context diagram,
(B) A level-0 diagram.

SOURCE
ONE 1.0 2.0

SINKSOURCETWO

Formatted A

Formatted B
A

B

C

B

A

A

TABLE 6-3: Advanced Rules Governing Data-Flow Diagramming

Q. A composite data flow on one level can be split into component data flows at the next
level, but no new data can be added, and all data in the composite must be accounted
for in one or more subflows.

R. The input to a process must be sufficient to produce the outputs (including data placed in
data stores) from the process. Thus, all outputs can be produced, and all data in inputs
move somewhere, either to another process or to a data store outside the process or on
a more detailed DFD showing a decomposition of that process.

S. At the lowest level of DFDs, new data flows may be added to represent data that are
transmitted under exceptional conditions; these data flows typically represent error
messages (e.g., “Customer not known; do you want to create a new customer?”) or
confirmation notices (e.g., “Do you want to delete this record?”).

T. To avoid having data-flow lines cross each other, you may repeat data store or
sources/sinks on a DFD. Use an additional symbol, like a double line on the middle
vertical line of a data-store symbol, or a diagonal line in a corner of a source/sink
square, to indicate a repeated symbol.

Source: Based on J. Celko, “I. Data Flow Diagrams,” Computer Language 4 (January 1987), 41–43.

DFD completeness
The extent to which all necessary
components of a data-flow
diagram have been included
and fully described.

composite data flow from the higher-level DFD. These diagrams are still bal-
anced because exactly the same data are included in each diagram.

The principle of balancing and the goal of keeping a DFD as simple as possible
lead to four additional, advanced, rules for drawing DFDs, summarized in
Table 6-3. Rule Q covers the situation illustrated in Figure 6-11. Rule R covers a
conservation principle about process inputs and outputs. Rule S addresses one
exception to balancing. Rule T tells you how you can minimize clutter on a DFD.

Using Data-Flow Diagramming in the Analysis Process
Learning the mechanics of drawing data-flow diagrams is important to you
because data-flow diagrams are essential tools for the structured analysis
process. In addition to drawing DFDs that are mechanically correct, you must
be concerned about whether the DFDs are complete and consistent across
levels. You also need to consider how you can use them as a tool for analysis.

Guidelines for Drawing DFDs
In this section, we consider additional guidelines for drawing DFDs that extend
beyond the simple mechanics of drawing diagrams and making sure that the rules
listed in Tables 6-2 and 6-3 are followed. These additional guidelines include:

1. Completeness

2. Consistency

3. Timing considerations

4. The iterative nature of drawing DFDs

5. Drawing primitive DFDs

Completeness The concept of DFD completeness refers to whether your
DFDs include all of the components necessary for the system you are modeling.
If your DFD contains data flows that do not lead anywhere, or data stores,
processes, or external entities that are not connected to anything else, your
DFD is not complete. Most CASE tools have built-in facilities to help find
incompleteness in your DFDs. When you draw many DFDs for a system, it is not

166 Part III Systems Analysis

DFD consistency
The extent to which information
contained on one level of a set
of nested data-flow diagrams is
also included on other levels.

Chapter 6 Structuring System Requirements: Process Modeling 167

uncommon to make errors; either CASE-tool analysis functions or walkthroughs
with other analysts can help you identify such problems.

Not only must all necessary elements of a DFD be present, each of the com-
ponents must be fully described in the project dictionary. For most CASE tools,
when you define a process, data flow, source/sink, or data store on a DFD, an
entry is automatically created in the tool’s repository for that element. You must
then enter the repository and complete the element’s description. Different de-
scriptive information can be kept about each of the four types of elements on a
DFD, and each CASE tool has different entry information. A data-flow reposi-
tory entry includes:

� The label or name for the data flow as entered on DFDs

� A short description defining the data flow

� A list of other repository objects grouped into categories by type
of object

� The composition or list of data elements contained in the data flow

� Notes supplementing the limited space for the description that go
beyond defining the data flow to explaining the context and nature
of this repository object

� A list of locations (the names of the DFDs) on which this data flow
appears and the names of the sources and destinations for the data
flow on each of these DFDs

Consistency The concept of DFD consistency refers to whether the
depiction of the system shown at one level of a DFD is compatible with the
depictions of the system shown at other levels. A gross violation of consistency
would be a level-1 diagram with no level-0 diagram. Another example of
inconsistency would be a data flow that appears on a higher-level DFD but not
on lower levels (a violation of balancing). Yet, another example is a data flow
attached to one object on a lower-level diagram but attached to another object
at a higher level. For example, a data flow named Payment, which serves as
input to Process 1 on a level-0 DFD, appears as input to Process 2.1 on a
level-1 diagram for Process 2.

You can use the analysis facilities of CASE tools to detect such inconsisten-
cies across nested (or decomposed) data-flow diagrams. For example, to avoid
making DFD consistency errors when you draw a DFD using a CASE tool, most
tools will automatically place the inflows and outflows of a process on the DFD
you create when you inform the tool to decompose that process. In manipulat-
ing the lower-level diagram, you could accidentally delete or change a data flow,
which would cause the diagrams to be out of balance; thus, a consistency check
facility with a CASE tool is quite helpful.

Timing You may have noticed in some of the DFD examples we have
presented that DFDs do not do a good job of representing time. A given DFD
provides no indication of whether a data flow occurs constantly in real time,
once per week, or once per year. No indication of when a system would run is
given either. For example, many large transaction-based systems may run
several large, computing-intensive jobs in batch mode at night, when demands
on the computer system are lighter. A DFD has no way of indicating such
overnight batch processing. When you draw DFDs, then, draw them as if the
system you are modeling has never started and will never stop.

Iterative Development The first DFD you draw will rarely perfectly capture
the system you are modeling. You should count on drawing the same diagram
over and over again, in an iterative fashion. With each attempt, you will come
closer to a good approximation of the system or aspect of the system you are

Primitive DFD
The lowest level of
decomposition for a data-flow
diagram.

modeling. Iterative DFD development recognizes that requirements determination
and requirements structuring are interacting, not sequential, subphases of the
analysis phase of the SDLC. One rule of thumb is that it should take you about
three revisions for each DFD you draw. Fortunately, CASE tools make revising
drawings a lot easier than if you had to draw each revision with pencil and
template.

Primitive DFDs One of the more difficult decisions you need to make when
drawing DFDs is when to stop decomposing processes. One rule is to stop
drawing when you have reached the lowest logical level; however, it is not
always easy to know what the lowest logical level is. Other more concrete rules
for when to stop decomposing are:

� When you have reduced each process to a single decision or
calculation or to a single database operation, such as retrieve, update,
create, delete, or read

� When each data store represents data about a single entity, such as
a customer, employee, product, or order

� When the system user does not care to see any more detail, or when
you and other analysts have documented sufficient detail to do
subsequent systems development tasks

� When every data flow does not need to be split further to show that
different data are handled in various ways

� When you believe that you have shown each business form or
transaction, computer online display, and report as a single data flow
(e.g., often means that each system display and report title
corresponds to the name of an individual data flow)

� When you believe a separate process is shown for each choice on all
lowest-level menu options

By the time you stop decomposing DFDs, a DFD can become quite detailed.
Seemingly simple actions, such as generating an invoice, may pull information
from several entities and may also return different results depending on the spe-
cific situation. For example, the final form of an invoice may be based on the
type of customer (which would determine such things as discount rate), where
the customer lives (which would determine such things as sales tax), and how
the goods are shipped (which would determine such things as the shipping and
handling charges). At the lowest-level DFD, called a primitive DFD, all of
these conditions would have to be met. Given the amount of detail required in
a primitive DFD, perhaps you can see why many experts believe analysts should
not spend their time diagramming the current physical information system
completely: much of the detail will be discarded when the current logical DFD
is created.

Using these guidelines will help you create DFDs that are more than just me-
chanically correct. Your data-flow diagrams will also be robust and accurate
representations of the information system you are modeling. Such primitive
DFDs also facilitate consistency checks with the documentation produced
from other requirements structuring techniques, as well as make it easy for you
to transition to system design steps. Having mastered the skills of drawing good
DFDs, you can now use them to support the analysis process, the subject of the
next section.

Using DFDs as Analysis Tools
We have seen that data-flow diagrams are versatile tools for process modeling
and that they can be used to model both physical and logical systems. Data-flow

168 Part III Systems Analysis

Gap analysis
The process of discovering
discrepancies between two or
more sets of data-flow diagrams
or discrepancies within a single
DFD.

Chapter 6 Structuring System Requirements: Process Modeling 169

diagrams can also be used for a process called gap analysis. In gap analysis,
the analyst’s role is to discover discrepancies between two or more sets of data-
flow diagrams or discrepancies within a single DFD.

Once the DFDs are complete, examine the details of individual DFDs for such
problems as redundant data flows, data that are captured but not used by the
system, and data that are updated identically in more than one location. These
problems may not have been evident to members of the analysis team or to
other participants in the analysis process when the DFDs were created. For
example, redundant data flows may have been labeled with different names
when the DFDs were created. Now that the analysis team knows more about the
system it is modeling, analysts can detect such redundancies. Many CASE tools
can generate a report listing all the processes that accept a given data element
as input (remember, a list of data elements is likely part of the description of
each data flow). From the label of these processes, you can determine whether
the data are captured redundantly or if more than one process is maintaining
the same data stores. In such cases, the DFDs may accurately mirror the activ-
ities occurring in the organization. As the business processes being modeled
took many years to develop, with participants in one part of the organization
sometimes adapting procedures in isolation from other participants, redundan-
cies and overlapping responsibilities may well have resulted. The careful study
of the DFDs created as part of the analysis can reveal these procedural redun-
dancies and allow them to be corrected as part of the system design.

A wide variety of inefficiencies can also be identified by studying DFDs. Some
inefficiencies relate to violations of DFD drawing rules. Consider rule R from
Table 6-3: The inputs to a process must be sufficient to produce the outputs
from the process. A violation of rule R could occur because obsolete data are
captured but never used within a system. Other inefficiencies are due to exces-
sive processing steps. For example, consider the correct DFD in rule M of
Figure 6-6: A data flow cannot go directly back to the same process it leaves.
Although this flow is mechanically correct, such a loop may indicate potential
delays in processing data or unnecessary approval operations.

Similarly, comparing a set of DFDs that models the current logical system to
DFDs that model the new logical system can better determine which processes
systems developers need to add or revise while building the new system.
Processes for which inputs, outputs, and internal steps have not changed can
possibly be reused in the construction of the new system. You can compare al-
ternative logical DFDs to identify those few elements that must be discussed in
evaluating competing opinions on system requirements. The logical DFDs for
the new system can also serve as the basis for developing alternative design
strategies for the new physical system. As we saw with the Hoosier Burger ex-
ample, a process on a new logical DFD can be implemented in several different
physical ways.

Using DFDs in Business Process Reengineering
Data-flow diagrams also make a useful tool for modeling processes in business
process reengineering (BPR), which you read about in Chapter 5. To illustrate
their usefulness, let’s look at an example from M. Hammer and J. Champy, two
experts of business redesign processes and authors of reengineering books.
Hammer and Champy (1993) use IBM Credit Corporation as an example of a
firm that successfully reengineered its primary business process. IBM Credit
Corporation provides financing for customers making large purchases of IBM
computer equipment. Its job is to analyze deals proposed by salespeople and
write the final contracts governing those deals.

According to Hammer and Champy, IBM Credit Corporation typically took six
business days to process each financing deal. The process worked like this: First,

170 Part III Systems Analysis

1.0
Log Request

Request Documentation

2.0
Check

Creditworthiness

Request & Status Documentation

3.0
Modify Loan
Agreement

Rate

4.0
Determine

Interest Rate

All Documentation

5.0
Create Quote

Letter

D2: Credit Files D1: Interest Files

SALESPERSON Request

Status

Request, Status, &
Loan Documentation

SALESPERSONContract

the salesperson called in with a proposed deal. The call was taken by one of six
people sitting around a conference table. Whoever received the call logged it and
wrote the details on a piece of paper. A clerk then carried the paper to a second
person, who initiated the next step in the process by entering the data into a com-
puter system and checking the client’s creditworthiness. This person then wrote
the details on a piece of paper and carried the paper, along with the original doc-
umentation, to a loan officer. In step 3, the loan officer modified the standard
IBM loan agreement for the customer. This involved a separate computer system
from the one used in step 2. Details of the modified loan agreement, along with
the other documentation, were then sent on to the next station in the process,
where a different clerk determined the appropriate interest rate for the loan.
Step 4 also involved its own information system. In step 5, the interest rate from
step 4 and all of the paper generated up to this point were then used to create the
quote letter. Once complete, the quote letter was sent via overnight mail back to
the salesperson.

Only reading about this process makes it seem complicated. We can use data-
flow diagrams, as illustrated in Figure 6-12, to illustrate how the overall process
worked. DFDs help us see that the process is not as complicated as it is tedious
and wasteful, especially when you consider that so many different people and
computer systems were used to support the work at each step.

According to Hammer and Champy, two IBM managers decided one day to
see if they could improve the overall process at IBM Credit Corporation. They
took a call from a salesperson and walked him through the system. These
managers found that the actual work being done on a contract took only
ninety minutes. For much of the rest of the six days it took to process the deal,
the various bits of documentation were sitting in someone’s in-basket, waiting
to be processed.

IBM Credit Corporation management decided to reengineer its entire
process. The five sets of task specialists were replaced with generalists. Now
each call from the field comes to a single clerk, who does all the work neces-
sary to process the contract. Instead of having different people check for
creditworthiness, modify the basic loan agreement, and determine the

FIGURE 6-12
IBM credit corporation’s primary
work process before business
process reengineering.

Source: Based on Michael Hammer
and James Champy, “Reengineering
the Corporation.” Copyright 1993
Harper Business, an imprint of
HarperCollins Publishers.

Chapter 6 Structuring System Requirements: Process Modeling 171

FIGURE 6-13
IBM credit corporation’s primary
work process after business
process reengineering.

Source: Based on Michael Hammer
and James Champy, “Reengineering
the Corporation.” Copyright 1993
Harper Business, an imprint of
HarperCollins Publishers.

D2: Credit Files

D1: Interest Files

SPECIALISTS

SALESPERSON

Contract
Process
Contract

Request

Rate

Status

Supporting Data

appropriate interest rate, now one person does it all. IBM Credit Corporation
still has specialists for the few cases that are significantly different from what
the firm routinely encounters. The process also uses a single supporting com-
puter system. The new process is modeled by the DFD in Figure 6-13. The
most striking difference between the DFDs in Figures 6-12 and 6-13, other
than the number of process boxes in each one, is the lack of documentation
flow in Figure 6-13. The resulting process is much simpler and cuts down dra-
matically on any chance of documentation getting lost between steps.
Redesigning the process from beginning to end allowed IBM Credit Corpora-
tion to increase the number of contracts it could handle by a hundred fold—
not 100 percent, which would only be doubling the amount of work. BPR
allowed IBM Credit Corporation to handle a hundred times more work in the
same amount of time and with fewer people!

Logic Modeling
Before we move on to logical methods for representing data, we first introduce
the topic of logic modeling. Although data-flow diagrams are good for identify-
ing processes, they do not show the logic inside the processes. Even the
processes on the primitive-level data-flow diagrams do not show the most fun-
damental processing steps. Just what occurs within a process? How are the
input data converted to the output information? Because data-flow diagrams
are not really designed to show the detailed logic of processes, you must model
process logic using other techniques.

Logic modeling involves representing the internal structure and functionality
of the processes represented on data-flow diagrams. These processes appear on
DFDs as little more than black boxes, in that we cannot tell from only their
names precisely what they do and how they do it. Yet, the structure and func-
tionality of a system’s processes are a key element of any information system.
Processes must be clearly described before they can be translated into a
programming language.

We introduce you to a common method for modeling system logic. Decision
tables allow you to represent in a tabular format a set of conditions and the
actions that follow from them. When several conditions and several possible
actions can occur, decision tables help you keep track of the possibilities in a
clear and concise manner.

Rules
That part of a decision table that
specifies which actions are to be
followed for a given set of
conditions.

Action stubs
That part of a decision table that
lists the actions that result for
a given set of conditions.

Condition stubs
That part of a decision table that
lists the conditions relevant to the
decision.

Decision table
A matrix representation of the
logic of a decision, which
specifies the possible conditions
for the decision and the resulting
actions.

Employee type
Hours worked

Pay base salary
Calculate hourly wage
Calculate overtime
Produce Absence Report

Condition
Stubs

Action
Stubs

Rules

1
S

< 40

X

2
H

< 40

X

X

3
S
40

X

4
H
40

X

5
S

> 40

X

6
H

> 40

X
X

Conditions/
Courses of Action

FIGURE 6-14
Complete decision table for
payroll system example.

Creating diagrams of process logic is not an end in itself. Rather, these dia-
grams are created ultimately to serve as part of a clear and thorough explana-
tion of the system’s specifications. These specifications are used to explain the
system requirements to developers, whether people or automated code genera-
tors. Users, analysts, and programmers use logic diagrams throughout analysis
to incrementally specify a shared understanding of requirements. Logic dia-
grams do not take into account specific programming languages or develop-
ment environments. Such diagrams may be discussed during JAD sessions or
project review meetings. Alternatively, system prototypes generated from such
diagrams may be reviewed, and requested changes to a prototype will be
implemented by changing logic diagrams and generating a new prototype from
a CASE tool or other code generator.

Modeling Logic with Decision Tables
Sometimes the logic of a process can become quite complex. Research has
shown, for example, that people become confused in trying to interpret more
than three nested IF statements. A decision table is a diagram of process logic
where the logic is reasonably complicated. All of the possible choices and the
conditions the choices depend on are represented in tabular form, as illustrated
in the decision table in Figure 6-14.

The decision table in Figure 6-14 models the logic of a generic payroll sys-
tem. The three parts to the table include the condition stubs, the action
stubs, and the rules. The condition stubs contain the various conditions that
apply in the situation the table is modeling. In Figure 6-14, two condition stubs
correspond to employee type and hours worked. Employee type has two
values: “S,” which stands for salaried, and “H,” which stands for hourly. Hours
worked has three values: less than 40, exactly 40, and more than 40. The action
stubs contain all the possible courses of action that result from combining val-
ues of the condition stubs. Four possible courses of action are indicated in
this table: pay base salary, calculate hourly wage, calculate overtime, and pro-
duce Absence Report. You can see that not all actions are triggered by all com-
binations of conditions. Instead, specific combinations trigger specific
actions. The part of the table that links conditions to actions is the section that
contains the rules.

To read the rules, start by reading the values of the conditions as specified in
the first column: Employee type is “S,” or salaried, and hours worked are less
than 40. When both of these conditions occur, the payroll system is to pay the
base salary. In the next column, the values are “H” and “�40,” meaning an hourly
worker who worked fewer than 40 hours. In such a situation, the payroll system
calculates the hourly wage and makes an entry in the Absence Report. Rule 3
addresses the situation when a salaried employee works exactly 40 hours. The
system pays the base salary, as was the case for rule 1. For an hourly worker who
has worked exactly 40 hours, rule 4 calculates the hourly wage. Rule 5 pays the

172 Part III Systems Analysis

Chapter 6 Structuring System Requirements: Process Modeling 173

Indifferent condition
In a decision table, a condition
whose value does not affect
which actions are taken for two
or more rules.

Employee type
Hours worked

Pay base salary
Calculate hourly wage
Calculate overtime
Produce Absence Report

Rules

1
S
–

X

2
H

< 40

X

X

3
H
40

X

4
H

> 40

X
X

Conditions/
Courses of Action

FIGURE 6-15
Reduced decision table for payroll
system example.

base salary for salaried employees who work more than 40 hours. Rule 5 has the
same action as rules 1 and 3 and governs behavior with regard to salaried em-
ployees. The number of hours worked does not affect the outcome for rules 1,
3, or 5. For these rules, hours worked is an indifferent condition, in that its
value does not affect the action taken. Rule 6 calculates hourly pay and overtime
for an hourly worker who has worked more than 40 hours.

Because of the indifferent condition for rules 1, 3, and 5, we can reduce
the number of rules by condensing rules 1, 3, and 5 into one rule, as shown in
Figure 6-15. The indifferent condition is represented with a dash. Whereas we
started with a decision table with six rules, we now have a simpler table that
conveys the same information with only four rules.

In constructing these decision tables, we have actually followed a set of basic
procedures, as follows:

1. Name the conditions and the values each condition can
assume. Determine all of the conditions that are relevant to your
problem, and then determine all of the values each condition can
take. For some conditions, the values will be simply “yes” or “no”
(called a limited entry). For others, such as the conditions in
Figures 6-14 and 6-15, the conditions may have more values (called
an extended entry).

2. Name all possible actions that can occur. The purpose of creating
decision tables is to determine the proper course of action given a
particular set of conditions.

3. List all possible rules. When you first create a decision table, you have
to create an exhaustive set of rules. Every possible combination of
conditions must be represented. It may turn out that some of the
resulting rules are redundant or make no sense, but these determinations
should be made only after you have listed every rule so that no
possibility is overlooked. To determine the number of rules, multiply the
number of values for each condition by the number of values for every
other condition. In Figure 6-14, we have two conditions, one with two
values and one with three, so we need 2 � 3, or 6, rules. If we added a
third condition with three values, we would need 2 � 3 � 3, or 18, rules.

When creating the table, alternate the values for the first condition,
as we did in Figure 6-14 for type of employee. For the second condition,
alternate the values but repeat the first value for all values of the first
condition, then repeat the second value for all values of the first condition,
and so on. You essentially follow this procedure for all subsequent
conditions. Notice how we alternated the values of hours worked in
Figure 6-14. We repeated “�40” for both values of type of employee,
“S” and “H.” Then we repeated “40,” and then “�40.”

174 Part III Systems Analysis

Type of item
Time of week
Season of year

Standing daily order
Standing weekend order
Minimum order quantity
Holiday reduction
Summer reduction

Rules

1
P
D
A

X

2
N
D
A

X

3
P
W
A

X

4
N
W
A

X

5
P
D
S

X

X

6
N
D
S

X

7
P
W
S

X

X

8
N
W
S

X

9
P
D
H

X

X

10
N
D
H

X

11
P
W
H

X

X

12
N
W
H

X

Conditions/
Courses of Action

Type of item:
P = perishable
N = nonperishable

Time of week:
D = weekday
W = weekend

Season of year:
A = academic year
S = summer
H = holiday

FIGURE 6-16
Complete decision table for
Hoosier Burger’s inventory
reordering system.

4. Define the actions for each rule. Now that all possible rules have been
identified, provide an action for each rule. In our example, we were able
to figure out what each action should be and whether all of the actions
made sense. If an action doesn’t make sense, you may want to create an
“impossible” row in the action stubs in the table to keep track of
impossible actions. If you can’t tell what the system ought to do in that
situation, place question marks in the action stub spaces for that
particular rule.

5. Simplify the decision table. Make the decision table as simple as
possible by removing any rules with impossible actions. Consult users
on the rules where system actions aren’t clear, and either decide on an
action or remove the rule. Look for patterns in the rules, especially for
indifferent conditions. We were able to reduce the number of rules
in the payroll example from six to four, but often greater reductions
are possible.

Let’s look at an example from Hoosier Burger. The Mellankamps are trying
to determine how they reorder food and other items they use in the restaurant.
If they are going to automate the inventory control functions at Hoosier
Burger, they need to articulate their reordering process. In thinking through
the problem, the Mellankamps realize that how they reorder depends on
whether the item is perishable. If an item is perishable, such as meat, vegeta-
bles, or bread, the Mellankamps have a standing order with a local supplier
stating that a prespecified amount of food is delivered each weekday for that
day’s use and each Saturday for weekend use. If the item is not perishable,
such as straws, cups, and napkins, an order is placed when the stock on hand
reaches a certain predetermined minimum reorder quantity. The Mellankamps
also realize the importance of the seasonality of their work. Hoosier Burger’s
business is not as good during the summer months when the students are off-
campus as it is during the academic year. They also note that business falls off
during Christmas and spring breaks. Their standing orders with all their sup-
pliers are reduced by specific amounts during the summer and holiday breaks.
Given this set of conditions and actions, the Mellankamps put together an
initial decision table (see Figure 6-16).

Three things are distinctive about Figure 6-16. First, the values for the third
condition repeat, providing a distinctive pattern for relating the values for all
three conditions to one another. Every possible rule is clearly provided in this
table. Second, there are 12 rules. Two values for the first condition (type of item)

Chapter 6 Structuring System Requirements: Process Modeling 175

Type of item
Time of week
Season of year

Standing daily order
Standing weekend order
Minimum order quantity
Holiday reduction
Summer reduction

Rules

1
P
D
A

X

2
P
W
A

X

3
P
D
S

X

X

4
P
W
S

X

X

5
P
D
H

X

X

6
P
W
H

X

X

7
N
–
–

X

Conditions/
Courses of Action

FIGURE 6-17
Reduced decision table for
Hoosier Burger’s inventory
reordering system.

times two values for the second condition (time of week) times three values for
the third condition (season of year) equals 12 possible rules. Third, the action
for nonperishable items is the same, regardless of the day of the week or the
time of year. For nonperishable goods, both time-related conditions are indif-
ferent. Collapsing the decision table accordingly gives us the decision table in
Figure 6-17. Now it contains only 7 rules instead of 12.

You have now learned how to draw and simplify decision tables. You can also
use decision tables to specify additional decision-related information. For exam-
ple, if the actions that should be taken for a specific rule are more complicated
than one or two lines of text can convey, or if some conditions need to be checked
only when other conditions are met (nested conditions), you may want to use
separate, linked decision tables. In your original decision table, you can specify
an action in the action stub that says “Perform Table B.” Table B could contain an
action stub that returns to the original table, and the return would be the action
for one or more rules in Table B. Another way to convey more information in a
decision table is to use numbers that indicate sequence rather than Xs where
rules and action stubs intersect. For example, for rules 3 and 4 in Figure 6-17, it
would be important for the Mellankamps to account for the summer reduction to
modify the existing standing order for supplies. “Summer reduction” would be
marked with a “1” for rules 3 and 4, whereas “standing daily order” would be
marked with a “2” for rule 3, and “standing weekend order” would be marked
with a “2” for rule 4.

You have seen how decision tables can model the relatively complicated logic
of a process. Decision tables are useful for representing complicated logic in
that they convey information in a tabular rather than a linear, sequential format.
As such, decision tables are compact; you can pack a lot of information into a
small table. Decision tables also allow you to check for the extent to which your
logic is complete, consistent, and not redundant.

Pine Valley Furniture WebStore: Process Modeling
In the last chapter, you read how Pine Valley Furniture determined the system
requirements for its WebStore project—a project to sell furniture products over
the Internet. In this section, we analyze the WebStore’s high-level system struc-
ture and develop a level-0 DFD for those requirements.

Process Modeling for Pine Valley Furniture’s WebStore
After completing the JAD session, senior systems analyst Jim Woo went to work
on translating the WebStore system structure into a data-flow diagram. His
first step was to identify the level-0—major system—processes. To begin, he

176 Part III Systems Analysis

carefully examined the outcomes of the JAD session that focused on defining
the system structure of the WebStore. From this analysis, he identified six high-
level processes that would become the foundation of the level-0 DFD. These
processes, listed in Table 6-4, were the “work” or “action” parts of the Web site;
note that these processes correspond to the major processing items listed in the
system structure.

Next, Jim determined that it would be most efficient if the WebStore sys-
tem exchanged information with existing PVF systems rather than capturing
and storing redundant information. This analysis concluded that the Web-
Store should exchange information with the Purchasing Fulfillment
System—a system for tracking orders (discussed in Chapter 3)—and the
Customer Tracking System (discussed in Chapter 4). These two existing
systems will be “sources” (providers) and “sinks” (receivers) of information
for the WebStore system. When a customer opens an account, his or her
information will be passed from the WebStore system to the Customer Track-
ing System. When an order is placed (or when a customer requests status
information on a prior order), information will be stored in and retrieved
from the Purchasing Fulfillment System.

Finally, Jim found that the system would need to access two additional data
sources. First, in order to produce an online product catalog, the system would
need to access the inventory database. Second, to store the items a customer
wants to purchase in the WebStore’s shopping cart, a temporary database would
need to be created. Once the transaction was completed, the shopping cart data
could be deleted. With this information, Jim was then able to develop the
level-0 DFD for the WebStore system, shown in Figure 6-18. He understood how
information would flow through the WebStore, how a customer would interact
with the system, and how the WebStore would share information with existing
PVF systems.

TABLE 6-4: System Structure of the WebStore and Corresponding
Level-0 Processes

WebStore System

Main page

Product line (Catalog)

• Desks

• Chairs

• Tables

• File cabinets

Shopping cart

Checkout

Account profile

Order status/history

Customer comments

Company information

Feedback

Contact information

Processes

Information display (minor/no processes)

1.0 Browse Catalog

2.0 Select Item for Purchase

3.0 Display Shopping Cart

4.0 Check Out/Process Order

5.0 Add/Modify Account Profile

6.0 Order Status Request

Information display (minor/no processes)

Chapter 6 Structuring System Requirements: Process Modeling 177

6.0
Order
Status

Request

PURCHASING
FULFILLMENT

SYSTEM

Order Number/
Return Code

Order
Number

4.0
Check Out
Process
Order

CUSTOMER
TRACKING
SYSTEM

5.0
Add/Modify

Account
Profile

Order

2.0
Order
Status

Request

Order Status
Information

3.0
Display

Shopping
Cart

1.0
Browse
Catalog

Items in Cart Item Profile

Customer Information/ID

Remove Item

View Cart

Order Number

Order Status
Information

Product Item
Request

Item
Profile

D1: Inventory

Customer Information

CUSTOMER

Invoice

Purchase
Request

Check Out/
Customer ID

Customer ID

Customer Information

Customer Information

Product
Item

D2: Shopping Cart

Remove Item/
Product Item

Cart ID/
Item Profile

Cart ID/
Item Profile

Item
Profile

Item
Profile

FIGURE 6-18
Level-0 DFD for the WebStore system.

Key Points Review
Data-flow diagrams, or DFDs, are useful for representing the overall data flows into, through, and out of an
information system. Data-flow diagrams rely on only four symbols to represent the four conceptual compo-
nents of a process model: data flows, data stores, processes, and sources/sinks.

is to generate a level-0 diagram, which shows the
most important high-level processes in the system.

2. Draw data-flow diagrams following specific
rules and guidelines that lead to accurate
and well-structured process models.

Several rules govern the mechanics of drawing
DFDs. These are listed in Tables 6-2 and 6-3 and
many are illustrated in Figure 6-6. Most of these

1. Understand the logical modeling of processes
through studying examples of data-flow
diagrams.

Data-flow diagrams are hierarchical in nature,
and each level of a DFD can be decomposed into
smaller, simpler units on a lower-level diagram.
You begin with a context diagram, which shows
the entire system as a single process. The next step

178 Part III Systems Analysis

rules are about the ways in which data can flow
from one place to another within a DFD.

3. Decompose data-flow diagrams into lower-
level diagrams.

Starting with a level-0 diagram, decompose
each process, as warranted, until it makes no log-
ical sense to go any further.

4. Balance higher-level and lower-level data-
flow diagrams.

When decomposing DFDs from one level to the
next, it is important that the diagrams be balanced;
that is, inputs and outputs on one level must be
conserved on the next level.

5. Use data-flow diagrams as a tool to support
the analysis of information systems.

Data-flow diagrams should be mechanically cor-
rect, but they should also accurately reflect the
information system being modeled. To that end,
you need to check DFDs for completeness and
consistency and draw them as if the system being

modeled were timeless. You should be willing to
revise DFDs several times. Complete sets of DFDs
should extend to the primitive level where every
component reflects certain irreducible properties;
for example, a process represents a single data-
base operation, and every data store represents
data about a single entity. Following these guide-
lines, you can produce DFDs to aid the analysis
process by analyzing the differences between
existing procedures and desired procedures and
between current and new systems.

6. Use decision tables to represent process
logic.

Process modeling helps isolate and define the
many processes that make up an information sys-
tem. Once the processes are identified, though, an-
alysts need to begin thinking about what each
process does and how to represent that internal
logic. Decision tables are a simple yet powerful
technique for representing process logic.

Key Terms Checkpoint

1. Action stubs (p. 172)
2. Balancing (p. 164)
3. Condition stubs (p. 172)
4. Context diagram (p. 158)
5. Data-flow diagram (DFD) (p. 154)
6. Data store (p. 156)

7. Decision table (p. 172)
8. DFD completeness (p. 166)
9. DFD consistency (p. 167)

10. Gap analysis (p. 169)
11. Indifferent condition (p. 173)
12. Level-0 diagram (p. 159)

13. Level-n diagram (p. 162)
14. Primitive DFD (p. 168)
15. Process (p. 156)
16. Process modeling (p. 154)
17. Rules (p. 172)
18. Source/sink (p. 156)

Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

Match each of the key terms listed above with the definition that best fits it.

1. A graphic that illustrates the movement
of data between external entities and the
processes and data stores within a system.

2. The conservation of inputs and outputs to
a data-flow diagram process when that
process is decomposed to a lower level.

3. That part of a decision table that lists the
conditions relevant to the decision.

4. A data-flow diagram that represents a
system’s major processes, data flows,
and data stores at a high level of detail.

5. The origin and/or destination of data;
sometimes referred to as external entities.

6. In a decision table, a condition whose
value does not affect which actions are
taken for two or more rules.

7. A data-flow diagram of the scope of an
organizational system that shows the
system boundaries, external entities that

interact with the system, and the major
information flows between the entities
and the system.

8. The lowest level of decomposition for
a data-flow diagram.

9. The extent to which all necessary
components of a data-flow diagram have
been included and fully described.

10. A matrix representation of the logic of
a decision, which specifies the possible
conditions for the decision and the
resulting actions.

11. The extent to which information contained
on one level of a set of nested data-flow
diagrams is also included on other levels.

12. A DFD that is the result of n nested
decompositions of a series of subprocesses
from a process on a level-0 diagram.

Chapter 6 Structuring System Requirements: Process Modeling 179

13. The work or actions performed on data
so that they are transformed, stored,
or distributed.

14. That part of a decision table that specifies
which actions are to be followed for a
given set of conditions.

15. Data at rest, which may take the form of
many different physical representations.

16. Graphically representing the processes
that capture, manipulate, store, and

distribute data between a system and its
environment and among components
within a system.

17. The process of discovering discrepancies
between two or more sets of data-flow
diagrams or discrepancies within a
single DFD.

18. That part of a decision table that lists
the actions that result for a given set
of conditions.

Review Questions
1. What is a data-flow diagram? Why do systems

analysts use data-flow diagrams?
2. Explain the rules for drawing good data-flow

diagrams.
3. What is decomposition? What is balancing? How

can you determine if DFDs are not balanced?
4. Explain the convention for naming different

levels of data-flow diagrams.
5. How can data-flow diagrams be used as

analysis tools?
6. Explain the guidelines for deciding when to stop

decomposing DFDs.
7. How do you decide whether a system compo-

nent should be represented as a source/sink or
as a process?

8. What unique rules apply to drawing context
diagrams?

9. Explain what the term DFD consistency means
and provide an example.

10. Explain what the term DFD completeness means
and provide an example.

11. How well do DFDs illustrate timing considera-
tions for systems? Explain your answer.

12. How can data-flow diagrams be used in business
process reengineering?

13. What are the steps in creating a decision table?
How do you reduce the size and complexity of a
decision table?

14. What formula is used to calculate the number of
rules a decision table must cover?

Problems and Exercises
1. Using the example of an online cell phone apps

store, list relevant data flows, data stores,
processes, and sources/sinks. Draw a context
diagram and a level-0 diagram that represent the
apps store. Explain why you chose certain ele-
ments as processes versus sources/sinks.

2. Using the example of checking out a book from
your university or college library, draw a context
diagram and a level-0 diagram.

3. Evaluate your level-0 DFD from Problem and
Exercise 2 using the rules for drawing DFDs in
this chapter. Edit your DFD so that it does not
break any of these rules.

4. Choose an example like that in Problem and
Exercise 2, and draw a context diagram. Decom-
pose this diagram until it doesn’t make sense to
continue. Be sure that your diagrams are bal-
anced, as discussed in this chapter.

5. Refer to Figure 6-19, which contains drafts of a
context and level-0 DFD for a university class

registration system. Identify and explain poten-
tial violations of rules and guidelines on these
diagrams.

6. What is the benefit of creating multiple levels of
DFDs? Consider the concept of DFD consis-
tency, as described on page 167. Why is consis-
tency important to take advantage of the multiple
levels of DFDs that may be created?

7. Why do you think analysts have different types of
diagrams and other documentation to depict dif-
ferent views (e.g., process, logic, and data) of an
information system?

8. Consider the DFD in Figure 6-20. List three errors
(rule violations) on this DFD.

9. Consider the three DFDs in Figure 6-21. List
three errors (rule violations) on these DFDs.

10. Starting with a context diagram, draw as many
nested DFDs as you consider necessary to repre-
sent all of the details of the patient flow manage-
ment system described in the following narrative.

D2: Class Roster

STUDENT

DEPARTMENT

0
Class

Registration
System

Scheduled
Classes

Possible
Classes

Class Schedule

List of Courses

Course Request

A

1.0
Receive
Course
Request

Course Request

STUDENT Course Request

STUDENT

2.0
Receive

Course Lists

Class Schedule

3.0
Check for
Availability

DEPARTMENT List of Courses

Scheduled
Classes

D2: Class Roster

Possible Classes
B

1.0
P2

2.0
P1

DF3

E1

E2
DF2

DS1DF1

DF5

DF4

DF6

FIGURE 6-19
Context and level-0 DFDs for a
university class registration system.

FIGURE 6-20

You must draw at least a context diagram and a
level-0 diagram. In drawing these diagrams, if you
discover that the narrative is incomplete, make
up reasonable explanations to complete the story.
Provide these extra explanations along with the
diagrams.

180 Part III Systems Analysis

Dr. Frank’s walk-in clinic has decided to go pa-
perless and will use an information system to
help move patients through the clinic as effi-
ciently as possible. Patients are entered into the
system by the front desk personnel. If this is the
first time the patient has been seen, insurance

Chapter 6 Structuring System Requirements: Process Modeling 181

P2 DS2

DS1

E1

Level 0

E2

P1DF1 DF2

P3DF3

DF6

DF3

DF4

DF5

P1.2

DS2

E1

Level 1

P1.1DF1 DF7

P1.4P1.3 DF8

DF7 DF9

P2

DF2

DF6

Level 2

P1.4.2

P2P1.4.3 DF2

DF12

P1.4.1 DF11

P1.2 DF9

P1.3 DF8

DF10

FIGURE 6-21
Diagram with levels 0,
1, and 2.

and basic demographic information is collected
from the patient. If the patient has been seen
previously, the patient is asked to verify the in-
formation. The front desk person then ensures
that the patient has a chart in the electronic
medical records system; if not, a new medical

record is started. The patient is then entered into
a queue to wait for a medical technician who will
collect health history, weight, height, tempera-
ture, blood pressure, and other medical infor-
mation, placing it into the patient’s medical
record. Next, the patient is placed into the queue

182 Part III Systems Analysis

to see a doctor. The first available doctor sees
the patient, prescribes medication or treatment
when appropriate, and sends the patient to
checkout. The person at checkout collects the
payment for the services, prints out any prescrip-
tions for medications or treatments, and provides
a printed record of the health services received.

11. a. Starting with a context diagram, draw as many
nested DFDs as you consider necessary to
represent all of the details of the engineering
document management system described in
the following narrative. You must draw at
least a context diagram and a level-0 diagram.
In drawing these diagrams, if you discover
that the narrative is incomplete, make up rea-
sonable explanations to complete the story.
Provide these extra explanations along with
the diagrams.

Projects, Inc. is an engineering firm with
approximately 500 engineers that provide
mechanical engineering assistance to organi-
zations, which requires managing many docu-
ments. Projects, Inc. is known for its strong
emphasis on change management and quality
assurance procedures. The customer provides
detailed information when requesting a docu-
ment through a web portal. The company liai-
son (a position within Projects, Inc.) assigns
an engineer to write the first draft of the
requested document. Upon completion, two
peer engineers review the document to ensure
that it is correct and meets the requirements.
These reviewers may require changes or may
approve the document as is. The original engi-
neer updates the document until the reviewers
are satisfied with the quality of the document.
The document is then sent to the company
liaison, who performs a final quality check and
ensures that the document meets the require-
ments specified by the customer. Finally, the
customer liaison sends the document to the
customer for approval. The customer can
require changes or accept the document.
When the customer requires changes, the
company liaison assigns an engineer to make
the changes to the document. When those
changes are made, two other engineers must
review them. When those reviewers are satis-
fied with the changes, the document is sent
back to the company liaison, who sends the
document back to the customer. This may hap-
pen through several iterations until the cus-
tomer is satisfied with the document.

b. Analyze the DFDs you created in part a. What
recommendations for improvements can you
make based on this analysis? Draw new logical

DFDs that represent the requirements you
would suggest for an improved document man-
agement system. Remember, these are to be
logical DFDs, so consider improvements inde-
pendent of technology that can be used to sup-
port the management of these documents.

12. A company has various rules for how payments to
suppliers are to be authorized. Some payments are
in response to an approved purchase order. For
approved purchase orders under $5,000, the
accounting clerk can immediately issue a check
against that purchase order and sign the check.
For approved purchase orders between $5,000
and $10,000, the accounting clerk can immediately
issue a check but must additionally obtain a sec-
ond signature. Payments for approved purchase
orders over $10,000 always require the approval of
the accounting manager to issue the check as well
as the signature of two accounting clerks. Pay-
ments that are not covered by a purchase order
that are under $5,000 must be approved by the ac-
counting manager and a departmental manager
that will absorb the cost of the payment into that
department’s budget. Such checks can be signed
by a single accounting clerk. Payments that are not
covered by a purchase order that are between
$5,000 and $10,000 must be approved by the ac-
counting manager and a departmental manager,
and the check must have two signatures. Finally,
payments exceeding $10,000 that are not covered
by a purchase order must be approved by a
department manager, the accounting manager,
and the chief financial officer. Such checks require
two signatures. Use a decision table to represent
the logic in this process. Write down any assump-
tions you have to make.

13. A relatively small company that sells eyeglasses to
the public wants to incentivize its sales staff to sell
customers higher quality frames, lenses, and
options. To do this, the company has decided to
pay the sales representatives based on a percent-
age of the profit earned on the glasses. All sales
representatives will earn 15% of the profit on the
eyeglasses. However, the owners are concerned
that the sales staff will fear earning less than they
do now. Therefore, those who were already work-
ing at the company are grandfathered into an
arrangement where the workers are guaranteed to
earn at least their base salary. Newly hired
employees, however, are guaranteed only mini-
mum wage based on the hours worked. To ensure
only productive employees are retained, employ-
ees who are underperforming for three months in
a row are automatically terminated. For those
employees who are grandfathered in, any month
where the representative earns only the salary is

Chapter 6 Structuring System Requirements: Process Modeling 183

considered underperforming. For newer employ-
ees, the bottom quarter of the employees based on
profit earned per hour worked are considered
underperforming. Use a decision table to repre-
sent the logic in this process. Write down any
assumptions you have to make.

14. A large technology company receives thousands
of applications per day from software engineers
who hope to work for that company. To help
manage the constant flow of applications, a
process has been created to streamline identify-
ing applicants for specific openings as they occur.
Those applications that are not in an approved file
format are discarded and not processed in any
way. All applications are first fact-checked auto-
matically by detecting any inconsistencies with
the application and the résumé, as well as other
résumé sites available online. For any applica-
tions with more than one inconsistency, the
application is automatically rejected as untruth-
ful. Next, the application is checked against the
database of other applications already in the sys-
tem. If such an application exists, the older
application is purged and the new application
continues processing. Any applications that do
not contain at least fifteen of the top 200 key-
words that the company is looking for are
rejected. Next, the phone numbers of references
are checked to ensure they are a valid, working
phone number. These applicants are then
retained in a searchable database. When man-
agers send a hiring request, the fifty best applica-
tions that most closely match the desired
attributes are sent to the manager. That manager
selects the top ten applications, which are then
screened for bad credit, with credit scores below
500 eliminated from the hiring process. If there
are at least five remaining candidates, they are all
invited to participate in phone interviews. If
there are fewer than five remaining candidates,
the next ten best matches are added to the pool
and screened for poor credit, and any remaining
candidates are invited to participate in phone in-
terviews. Present this logic in a decision table.
Write down any assumptions you have to make.

15. A huge retail store must carefully manage its
inventory levels. Stock-outs (where there is none
of an item on a shelf) can cause missed sales,
while too much inventory costs the company
money in storage, ties up capital, and carries the

risk of the products losing value. To balance
these requirements, the store has chosen to use
just-in-time ordering. To accomplish this, re-
orders are automatically generated by an infor-
mation system (called the reorder system). Each
item has a floor value, which is the fewest units
of an item that should be in the store at all times,
as well as a ceiling value, which is the maximum
number of units that can be stored on the allo-
cated shelf space. Vendors are required to com-
mit to delivering product in either two days or
one week. For vendors of the two-day plan, the
reorder system calculates the amount of product
purchased by customers in the past week, dou-
bles the quantity, and then adds to the inventory
floor. The quantity on hand is then subtracted.
This is the desired order quantity. If this quantity
added to the current inventory is greater than the
ceiling, then the order quantity is reduced to the
ceiling value less on-hand quantity. If the desired
order quantity is greater than the sales for the
previous month, a special report is generated and
provided to management and the order must be
approved before being sent to the vendor. All
other orders are automatically placed with the
vendor. However, if a product experiences a
stock-out, an emergency order is automatically
generated for the ceiling amount or the quantity
sold in the last month, whichever is less. For ven-
dors on the one-week plan, the reorder system
calculates the amount of inventory sold in the
last two weeks, doubles the quantity, and then
adds to the floor to create the desired stock level.
If this level is greater than the ceiling, the desired
stock level is lowered to the ceiling and a report
is generated for management to determine if
more space should be allocated. The on-hand
stock is subtracted from the desired stock level,
yielding the desired order level. If the desired or-
der level is greater than the number of units sold
in the last two months, a special report is gener-
ated and provided to management and the order
must be approved before being sent to the ven-
dor. All other orders are automatically placed
with the vendor. However, if a product experi-
ences a stock-out, an emergency order is auto-
matically generated for the ceiling amount or the
quantity sold in the last month, whichever is less.
Present this logic in a decision table. Write down
any assumptions you have to make.

Discussion Questions
1. Discuss the importance of diagramming tools for

process modeling. Without such tools, what
would an analyst do to model diagrams?

2. Think and write about how data-flow diagrams
might be modified to allow for time considera-
tions to be adequately incorporated.

184 Part III Systems Analysis

Case Problems
1. Pine Valley Furniture

As a Pine Valley Furniture intern, you have
gained valuable insights into the systems devel-
opment process. Jim Woo has made it a point to
discuss with you both the WebStore and the
Customer Tracking System projects. The data
requirements for both projects have been col-
lected and are ready to be organized into data-
flow diagrams. Jim has prepared the data-flow
diagrams for the WebStore; however, he has
requested your help in preparing the data-flow
diagrams for the Customer Tracking System.

You recall that Pine Valley Furniture distributes
its products to retail stores, sells directly to cus-
tomers, and is in the process of developing its
WebStore, which will support online sales in the
areas of corporate furniture buying, home-office
furniture purchasing, and student furniture pur-
chasing. You also know that the Customer Track-
ing System’s primary objective is to track and
forecast customer buying patterns.

Information collected during the requirements
determination activity suggests that the Cus-
tomer Tracking System should collect customer
purchasing activity data. Customers will be
tracked based on a variety of factors, including
customer type, geographic location, type of sale,
and promotional item purchases. The Customer
Tracking System should support trend analysis,
facilitate sales information reporting, enable
managers to generate ad hoc queries, and inter-
face with the WebStore.

a. Construct a context data-flow diagram, illus-
trating the Customer Tracking System’s scope.

b. Construct a level-0 diagram for the Customer
Tracking System.

c. Using the level-0 diagram that you previously
constructed, select one of the level-0 processes
and prepare a level-1 diagram.

d. Exchange your diagrams with another
class member. Ask your classmate to review
your diagrams for completeness and consis-
tency. What errors did he or she find? Correct
these errors.

2. Hoosier Burger
As one of Build a Better System’s lead analysts

on the Hoosier Burger project, you have spent sig-
nificant time discussing the current and future
needs of the restaurant with Bob and Thelma Mel-
lankamp. In one of these conversations, Bob and
Thelma mentioned that they were in the process of
purchasing the empty lot next to Hoosier Burger.
In the future, they would like to expand Hoosier
Burger to include a drive-through, build a larger
seating area in the restaurant, include more
items on the Hoosier Burger menu, and provide
delivery service to Hoosier Burger customers.
After several discussions and much thought, the
decision was made to implement the drive-through
and delivery service and wait on the activities
requiring physical expansion. Implementing the
drive-through service will require only minor phys-
ical alterations to the west side of the Hoosier
Burger building. Many of Hoosier Burger’s cus-
tomers work in the downtown area, so Bob and
Thelma think a noon delivery service will offer an
additional convenience to their customers.

One day while having lunch at Hoosier Burger
with Bob and Thelma, you discuss how the new de-
livery and drive-through services will work. Cus-
tomer order-taking via the drive-through window
will mirror in-house dining operations. Therefore,
drive-through window operations will not require
information system modifications. Until a new sys-
tem is implemented, the delivery service will be
operated manually; each night Bob will enter nec-
essary inventory data into the current system.

Bob envisions the delivery system operating as
follows. When a customer calls and places a
delivery order, a Hoosier Burger employee
records the order on a multiform order ticket.
The employee captures such details as customer
name, business or home address, phone number,
order placement time, items ordered, and amount
of sale. The multiform document is sent to the
kitchen where it is separated when the order is
ready for delivery. Two copies accompany the
order; a third copy is placed in a reconciliation

3. How would you answer someone who told you
that data-flow diagrams were too simple and took
too long to draw to be of much use? What if they
also said that keeping data-flow diagrams up to
date took too much effort, compared to the
potential benefits?

4. Find another example of where data-flow dia-
grams were successfully used to support busi-
ness process reengineering. Write a report,
complete with DFDs, about what you found.

Chapter 6 Structuring System Requirements: Process Modeling 185

box. When the order is prepared, the delivery per-
son delivers the order to the customer, removes
one order ticket from the food bag, collects pay-
ment for the order, and returns to Hoosier Burger.
Upon arriving at Hoosier Burger, the delivery per-
son gives the order ticket and the payment to
Bob. Each evening Bob reconciles the order tick-
ets stored in the reconciliation box with the
delivery payments and matching order tickets
returned by the delivery person. At the close of
business each evening, Bob uses the data from
the order tickets to update the goods sold and
inventory files.

a. Modify the Hoosier Burger context-level data-
flow diagram (Figure 6-4) to reflect the
changes mentioned in the case.

b. Modify Hoosier Burger’s level-0 diagram
(Figure 6-5) to reflect the changes mentioned
in the case.

c. Prepare level-1 diagrams to reflect the
changes mentioned in the case.

d. Exchange your diagrams with those of
another class member. Ask your classmate to
review your diagrams for completeness and
consistency. What errors did he or she find?
Correct these errors.

3. Evergreen Nurseries
Evergreen Nurseries offers a wide range of

lawn and garden products to its customers. Ever-
green Nurseries conducts both wholesale and
retail operations. Although the company serves
as a wholesaler to nurseries all over the United
States, the company’s founder and president has
restricted its retail operations to California, the
company’s home state. The company is situated
on 150 acres and wholesales its bulbs, perennials,
roses, trees, shrubs, and Evergreen Accessory
products. Evergreen Accessory products include
a variety of fertilizers, plant foods, pesticides, and
gardening supplies.

In the past five years, the company has seen a
phenomenal sales growth. Unfortunately, its
information systems have been left behind.
Although many of Evergreen Nurseries’ process-
ing activities are computerized, these activities
require reengineering. You are part of the project
team hired by Seymour Davis, the company’s pres-
ident, to renovate its wholesale division. Your
project team was hired to renovate the billing,
order taking, and inventory control systems.

From requirements determination, you discov-
ered the following. An Evergreen Nurseries cus-
tomer places a call to the nursery. A sales
representative takes the order, verifies the cus-
tomer’s credit standing, determines whether the
items are in stock, notifies the customer of the
product’s status, informs the customer if any spe-
cial discounts are in effect, and communicates
the total payment due. Once an order is entered
into the system, the customer’s account is up-
dated, product inventory is adjusted, and ordered
items are pulled from stock. Ordered items are
then packed and shipped to the customer. Once
each month, a billing statement is generated and
sent to the customer. The customer has thirty
days to remit payment in full; otherwise, a 15 per-
cent penalty is applied to the customer’s account.

a. Construct a context data-flow diagram,
illustrating Evergreen Nurseries’ wholesale
system.

b. Construct a level-0 diagram for Evergreen
Nurseries’ wholesale system.

c. Using the level-0 diagram that you constructed
in part b, select one of the level-0 processes
and prepare a level-1 diagram.

d. Exchange your diagrams with those of
another class member. Ask your classmate to
review your diagrams for completeness and
consistency. What errors did he or she find?
Correct these errors.

CASE: PETRIE’S ELECTRONICS

Structuring Systems Requirements: Process
Modeling
Jim and Sanjay chatted in Jim’s office while they
waited for Sally to arrive.

“Good work on researching those alternatives,”
Jim said.

“Thanks,” replied Sanjay. “There are a lot of alter-
natives out there. I think we found the best three,
considering what we are able to pay.”

Just then Sally walked in. “Sorry I’m late. Things
are getting really busy in marketing right now. I’ve
been putting out fires all morning.”

Sally sat down at the table across from Jim.

186 Part III Systems Analysis

CustomerCustomer
No Customer

Escapes
SystemCoupons

Purchases
Reports

Tailored Promotions

Coupons

PE FIGURE 6-1
Context diagram.

“I understand,” Jim said. “But to stay on schedule,
we need to start focusing on the specifics of what we
want our system to do. Remember when you wanted
more details on what the system would do? Well,
now we start to spend some serious energy on get-
ting that done.”

“Awesome,” replied Sally, as she pulled a Red Bull
out of her oversized bag and popped it open.

“I’ve got a list here of four core functions the sys-
tem must perform,” said Sanjay, pulling copies of a
list from a folder on the table (PE Table 6-1). “Let’s
look at these.”

After reviewing the list Sanjay had given them, Jim
said, “Nice job, Sanjay. But we need to put this in

graphical format, so that everyone can see what the
inputs and outputs are for each function and how
they are related to each other. We also need to see
how the new system fits in with our existing data
sources. We need . . .”

“Some data-flow diagrams,” Sanjay interrupted.
“Exactly,” said Jim.
“They are already done,” replied Sanjay, handing

diagrams to both Jim and Sally. “I’ve already created
a first draft of the context diagram [PE Figure 6-1]
and a level-1 diagram [PE Figure 6-2]. You can see
how I’ve defined the boundaries of our system, and
I’ve included our existing product and marketing
databases.”

PE TABLE 6-1: Four Core Functions of Petrie’s Customer
Loyalty System

Function Description

Record customer activities When a customer makes a purchase, the transaction must
be recorded in the customer loyalty system, as the rewards
the system generates are driven by purchases. Similarly,
when a customer uses a coupon generated by the system, it
must also be recorded, so that the customer activity records
can be updated to show that the coupon has been used
and is now invalid.

Send promotions Data about customer activities provide information about
what types of products customers tend to buy and in what
quantities. This information helps determine what sales
promotion materials are best targeted at what customers.
Customers who buy lots of video games should receive
promotions about games, game platforms and HD TVs,
for example.

Generate point-redemption
coupons

Data about customer activities is used to generate coupons
for future purchases. Those coupons must be made available
to customers, either as paper coupons sent in the mail
or online, in the customer’s private account area. Once
created, the customer activity database needs to be
updated to show the creation of the coupon. The loyalty
points needed to create the coupon must be deducted
from the customer’s total points.

Generate customer reports From time to time, either in the mail or electronically,
customers need to be sent account reports that show their
recent purchases, the coupons they have been issued that
have not yet been redeemed, and the total points they have
amassed from their purchases.

Chapter 6 Structuring System Requirements: Process Modeling 187

Customer

Customer
Coupons

Reports

Product
Database

Product Info

Generate
Customer Reports

Generate Point
Redemption

Coupons

Customer
Activity Info

Coupon Info

Customer Activity Records

Customer
Activities

Record
Customer
Activities

Coupons

Purchases

Promotions

Transactions

Customer
Activities

Marketing
Database

Send
Promotions

Tailored Promotions

PE FIGURE 6-2
Level-1 DFD.

“What can I say?” Jim said. “Again, a nice job on
your part. These diagrams are both good places
for us to start. Let’s get copies of all of this to
the team.”

“I’ll be right back,” Sally said, standing up. “I need
to get some coffee.”

Case Questions

1. Are the DFDs in PE Figures 6-1 and 6-2 balanced?
Show that they are, or are not. If they are not bal-
anced, how can they be fixed?

2. Decompose each of the core processes in PE
Figure 6-2 and draw a new DFD for each core
process.

3. Has the team overlooked any core processes in
the system that should be in PE Table 6-1 and
PE Figure 6-2? What would they be? Add them
to PE Table 6-1 and PE Figure 6-2.

4. Redesign PE Figures 6-1 and 6-2 so that they are
clearer, more efficient, and more comprehensive.

5. Why is it important for the team to create DFDs if
they are not going to write the actual system code
themselves?

188

Structuring System Requirements:
Conceptual Data Modeling

� Concisely define each of the following key
data-modeling terms: conceptual data model,
entity-relationship diagram, entity type, entity
instance, attribute, candidate key, multivalued
attribute, relationship, degree, cardinality, and
associative entity.

� Ask the right kinds of questions to determine
data requirements for an information system.

� Draw an entity-relationship (E-R) diagram
to represent common business situations.

� Explain the role of conceptual data modeling
in the overall analysis and design of an
information system.

� Distinguish between unary, binary, and ternary
relationships, and give an example of each.

� Distinguish between a relationship and an
associative entity, and use associative entities
in a data model when appropriate.

� Relate data modeling to process and logic
modeling as different ways of describing
an information system.

� Generate at least three alternative design
strategies for an information system.

� Select the best design strategy using both
qualitative and quantitative methods.

After studying this chapter, you should be able to:

seven
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

©
 C

or
bi

s

Chapter Preview . . .

In Chapter 6 you learned how to model and an-
alyze the flow of data (data in motion) between

manual or automated steps and how to show

data stores (data at rest) in a data-flow diagram.

Data-flow diagrams show how, where, and when

data are used or changed in an information sys-

tem, but they do not show the definition, struc-

ture, and relationships within the data. Data

modeling, the subject of this chapter, develops

this missing, and crucial, piece of the description

of an information system.

Systems analysts perform data modeling dur-

ing the systems analysis phase, as highlighted in

Figure 7-1. Data modeling is typically done at the

same time as other requirements structuring

steps. Many systems developers believe that a

data model is the most important part of the

information system requirements statement for

four reasons. First, the characteristics of data

captured during data modeling are crucial in

the design of databases, programs, computer

screens, and printed reports. For example, facts

such as these—a data element is numeric, a

product can be in only one product line at a time,

a line item on a customer order can never

be moved to another customer order—are all

essential in ensuring an information system’s

data integrity.

Second, data rather than processes are the

most complex aspects of many modern informa-

tion systems. For example, transaction process-

ing systems can have considerable complexity in

validating data, reconciling errors, and coordi-

nating the movement of data to various data-

bases. Management information systems (such

as sales tracking), decision support systems

(such as short-term cash investment), and execu-

tive support systems (such as product planning)

189

Requirements Determination
Requirements Structuring

✓

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 7-1
Systems analysts perform data
modeling during the systems
analysis phase. Data modeling
typically occurs in parallel with
other requirements structuring
steps.

Conceptual Data Modeling
A conceptual data model is a representation of organizational data. The pur-
pose of a conceptual data model is to show as many rules about the meaning
and interrelationships among data as possible, independent of any database
management system or other implementation considerations.

Entity-relationship (E-R) data models are commonly used diagrams that show
how data are organized in an information system. The main goal of conceptual
data modeling is to create accurate E-R diagrams. As a systems analyst, you
typically do conceptual data modeling at the same time as other requirements
analysis and structuring steps during systems analysis. You can use methods
such as interviewing, questionnaires, and JAD sessions to collect information

190 Part III Systems Analysis

are data intensive and require extracting data

from various data sources.

Third, the characteristics about data (such as

format and relationships with other data) are

rather permanent. In contrast, who receives

which data, the format of reports, and what

reports are used change constantly over time.

A data model explains the inherent nature of the

organization, not its transient form. So, an

information system design based on data, rather

than processes or logic, should have a longer

useful life.

Finally, structural information about data is

essential to generate programs automatically.

For example, the fact that a customer order has

many line items as opposed to just one affects

the automatic design of a computer form in

Microsoft Access for entry of customer orders.

In this chapter, we discuss the key concepts

of data modeling, including the most common for-

mat used for data modeling—entity-relationship

(E-R) diagramming. During the systems analysis

phase of the SDLC, you use data-flow diagrams

to show data in motion and E-R diagrams to

show the relationships among data objects.

We also illustrate E-R diagrams drawn using

Microsoft’s Visio tool, highlighting this tool’s

capabilities and limitations.

You have now reached the point in the analy-

sis phase where you are ready to transform all of

the information you have gathered and struc-

tured into some concrete ideas about the design

for the new or replacement information system.

This aspect is called the design strategy. From

requirements determination, you know what the

current system does. You also know what the

users would like the replacement system to do.

From requirements structuring, you know what

forms the replacement system’s process flow

and data should take, at a logical level inde-

pendent of any physical implementation. To

bring analysis to a conclusion, your job is to take

these structured requirements and transform

them into several alternative design strategies.

One of these strategies will be pursued in the

design phase of the life cycle. In this chapter,

you learn why you need to come up with alter-

native design strategies and about guidelines for

generating alternatives. You then learn the

different issues that must be addressed for each

alternative. Once you have generated your alter-

natives, you will have to choose the best design

strategy to pursue. We include a discussion of

one technique that analysts and users often use

to help them agree on the best approach for the

new information system.

Conceptual data model
A detailed model that shows the
overall structure of organizational
data while being independent
of any database management
system or other implementation
considerations.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 191

for conceptual data modeling. On larger systems development teams, a subset
of the project team concentrates on data modeling while other team members
focus attention on process or logic modeling. You develop (or use from prior
systems development) a conceptual data model for the current system and build a
conceptual data model that supports the scope and requirements for the proposed
or enhanced system.

The work of all team members is coordinated and shared through the project
dictionary or repository. As discussed in Chapter 3, this repository and associ-
ated diagrams may be maintained by a CASE tool or a specialized tool such as
Microsoft’s Visio. Whether automated or manual, the process flow, decision
logic, and data-model descriptions of a system must be consistent and com-
plete, because each describes different but complementary views of the same
information system. For example, the names of data stores on primitive-level
DFDs often correspond to the names of data entities in entity-relationship
diagrams, and the data elements in data flows on DFDs must be attributes of
entities and relationships in entity-relationship diagrams.

The Process of Conceptual Data Modeling
You typically begin conceptual data modeling by developing a data model for
the system being replaced, if a system exists. This phase is essential for plan-
ning the conversion of the current files or database into the database of the
new system. Further, it is a good, but not a perfect, starting point for your
understanding of the new system’s data requirements. Then, you build a new
conceptual data model that includes all of the data requirements for the new
system. You discovered these requirements from the fact-finding methods
used during requirements determination. Today, given the popularity of pro-
totyping and other rapid development methodologies, these requirements
often evolve through various iterations of a prototype, so the data model is
constantly changing.

Conceptual data modeling is only one kind of data modeling and database
design activity done throughout the systems development process. Figure 7-2
shows the different kinds of data modeling and database design that occur dur-
ing the systems development life cycle. The conceptual data-modeling methods
we discuss in this chapter are suitable for various tasks in the planning and
analysis phases. These phases of the SDLC address issues of system scope, gen-
eral requirements, and content. An E-R data model evolves from project identi-
fication and selection through analysis as it becomes more specific and is
validated by more detailed analysis of system needs.

In the design phase, the final E-R model developed in analysis is matched with
designs for systems inputs and outputs and is translated into a format that
enables physical data storage decisions. During physical design, specific data
storage architectures are selected, and then, in implementation, files and data-
bases are defined as the system is coded. Through the use of the project repos-
itory, a field in a physical data record can, for example, be traced back to the
conceptual data attribute that represents it on an E-R diagram. Thus, the data
modeling and design steps in each of the SDLC phases are linked through the
project repository.

Deliverables and Outcomes
Most organizations today do conceptual data modeling using entity-relationship
modeling, which uses a special notation of rectangles, diamonds, and lines
to represent as much meaning about data as possible. Thus, the primary deliv-
erable from the conceptual data-modeling step within the analysis phase is an

192 Part III Systems Analysis

Enterprise data model (E-R with only entities)
Conceptual data model (E-R with only entities for specific project)

•
•

D
at

ab
as

e
an

d
fil

e
de

fin
iti

on
s

(D
B

M
S-

sp
ec

ifi
c

co
de

)
D

at
a

m
od

el
 e

vo
lu

tio
n

• •

Logical data model (relational)
Physical file and database design (file organizations)

C
onceptual data m

odel (E-R
 w

ith attributes)

•
•

•Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 7-2
Relationship between data modeling and the systems development life cycle.

entity-relationship (E-R) diagram. A sample E-R diagram appears in Figure 7-3A.
This figure shows the major categories of data (rectangles in the diagram) and
the business relationships between them (lines connecting rectangles). For
example, Figure 7-3A describes that, for the business represented, a SUPPLIER
sometimes supplies ITEMs to the company, and an ITEM is always supplied by
one to four SUPPLIERS. The fact that a supplier only sometimes supplies items
implies that the business wants to keep track of some suppliers without desig-
nating what they can supply. This diagram includes two names on each line,
giving you explicit language to read a relationship in each direction. For sim-
plicity, we will not typically include two names on lines in E-R diagrams in this
book; however, many organizations use this standard.

It is common that E-R diagrams are developed using CASE tools or other
smart drawing packages. These tools provide functions to facilitate consistency
of data models across different systems development phases, reverse engineer-
ing an existing database definition into an E-R diagram, and provide documen-
tation of objects on a diagram. One popular tool is Microsoft Visio. Figure 7-3B
shows the equivalent of Figure 7-3A using Visio. This diagram is developed using
the Database Model Diagram tool. The Database|Options|Document settings are
specified as relational symbol set, conceptual names on the diagram, optional-
ity is shown, and relationships are shown using the crow’s-foot notation with
forward and inverse relationship names. These settings cause Visio to draw an
E-R diagram that most closely resembles the standards used in this text.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 193

Legend

Relationships
mandatory 1

mandatory many

optional many

many with maximum
n

Entity

Sends

Sent by

Supplies

Supplied by

Produces

Produced on

Generated on

Generates
Builds

Built on

Composed of

Goes into

Included on

Includes

4

SUPPLIER

ITEMSHIPMENT

PRODUCT

PRODUCTION
PLAN

MASTER
SCHEDULE

A

FIGURE 7-3
Sample conceptual data model
diagrams: (A) Standard E-R
notation.

Some key differences distinguish the standard E-R notation illustrated in
Figure 7-3A from the notation used in Visio, including:

� Relationships such as Supplies/Supplied by between SUPPLIER and
ITEM in Figure 7-3A require an intermediate category of data (called
SUPPLIED ITEM in Figure 7-3B because Visio does not support
representing these so-called many-to-many relationships.

� Relationships may be named in both directions, but these names
appear near the relationship line, separated by a forward slash.

� Limitations, such as an ITEM is always supplied by at most four
SUPPLIERS, are not shown on the diagram but rather are documented
in the Miscellaneous set of Database Properties of the relationship,
which are part of Visio’s version of a CASE repository.

� The symbol for each category of data (e.g., SHIPMENT) includes
space for listing other properties of each data category (such as all the
attributes or columns of data we know about that data category); we
will illustrate these components later in this chapter.

We concentrate on the traditional E-R diagramming notation in this chapter;
however, we will include the equivalent Visio version on several occasions so
you can see how to show data-modeling concepts in this popular database
design tool.

As many as four E-R diagrams may be produced and analyzed during concep-
tual data modeling:

1. An E-R diagram that covers just the data needed in the project’s
application. (This first diagram allows you to concentrate on the
data requirements without being constrained or confused by
unnecessary details.)

194 Part III Systems Analysis

Goes into / Is used

Generated on / Generates

Legend
Relationships

mandatory one

optional one

optional many

mandatory many

Sent by / Sends

Supplies / Is supplied by

Supplied for / Is supplied

SUPPLIER

ENTITY

Produced on / Produces

Built on / Builds

Includes / Included on ITEMSHIPMENT

Makes / Is made of

PRODUCT

BOM

SUPPLIED ITEM

PRODUCTION PLAN

MASTER SCHEDULE

B

FIGURE 7-3
Sample conceptual data model
diagrams: (B) Visio E-R notation.

2. An E-R diagram for the application system being replaced. (Differences
between this diagram and the first show what changes you have to make
to convert databases to the new application.) This version is, of course,
not produced if the proposed system supports a completely new business
function.

3. An E-R diagram for the whole database from which the new application’s
data are extracted. (Because many applications share the same database
or even several databases, this and the first diagram show how the new
application shares the contents of more widely-used databases.)

4. An E-R diagram for the whole database from which data for the
application system being replaced is drawn. (Again, differences between
this diagram and the third show what global database changes you have
to make to implement the new application.) Even if no system is being
replaced, an understanding of the existing data systems is necessary to
see where the new data will fit in or if existing data structures must
change to accommodate new data.

The other deliverable from conceptual data modeling is a set of entries about
data objects to be stored in the project dictionary or repository. The repository

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 195

is the mechanism to link data, process, and logic models of an information
system. For example, explicit links can be shown between a data model and
a data-flow diagram. Some important links are briefly explained here.

� Data elements included in data flows also appear in the data model,
and vice versa. You must include in the data model any raw data
captured and retained in a data store. The data model can include only
data that have been captured or are computed from captured data.
Because a data model is a general business picture of data, both
manual and automated data stores will be included.

� Each data store in a process model must relate to business objects
(what we call data entities) represented in the data model. For
example, in Figure 6-5, the Inventory File data store must correspond
to one or several data objects in a data model.

Gathering Information for Conceptual Data Modeling
Requirements determination methods must include questions and investigations
that take a data focus rather than only a process and logic focus. For example,
during interviews with potential system users, you must ask specific questions
to gain the perspective on data needed to develop a data model. In later sections
of this chapter, we introduce some specific terminology and constructs used in
data modeling. Even without this specific data-modeling language, you can be-
gin to understand the kinds of questions that must be answered during require-
ments determination. These questions relate to understanding the rules and
policies by which the area supported by the new information system operates.
That is, a data model explains what the organization does and what rules govern
how work is performed in the organization. You do not, however, need to know
how or when data are processed or used to do data modeling.

You typically do data modeling from a combination of perspectives. The first
perspective is called the top-down approach. It derives the data model from an
intimate understanding of the nature of the business, rather than from any spe-
cific information requirements in computer displays, reports, or business forms.
Table 7-1 summarizes key questions to ask system users and business managers
so that you can develop an accurate and complete data model. The questions
are purposely posed in business terms. Of course, technical terms do not mean
much to a business manager, so you must learn how to frame your questions in
business terms.

Alternatively, you can gather the information for data modeling by reviewing
specific business documents—computer displays, reports, and business
forms—handled within the system. This second perspective of gaining an un-
derstanding of data is often called a bottom-up approach. These business doc-
uments will appear as data flows on DFDs and will show the data processed by
the system, which probably are the data that must be maintained in the system’s
database. Consider, for example, Figure 7-4, which shows a customer order
form used at Pine Valley Furniture.

From the form in Figure 7-4, we determine that the following data must be
kept in the database:

ORDER NO CUSTOMER NO
ORDER DATE NAME
PROMISED DATE ADDRESS
PRODUCT NO CITY-STATE-ZIP
DESCRIPTION
QUANTITY ORDERED
UNIT PRICE

196 Part III Systems Analysis

PVF CUSTOMER ORDER

ORDER NO: 61384

 NAME:
 ADDRESS:
 CITY-STATE-ZIP:

ORDER DATE: 11/04/2012

PRODUCT
NO

M128
B381
R210

CUSTOMER NO: 1273

Contemporary Designs
123 Oak St.
Austin, TX 28384

PROMISED DATE: 11/21/2012

UNIT
PRICE

200.00
150.00
500.00

QUANTITY
ORDERED

 4
 2
 1

DESCRIPTION

Bookcase
Cabinet
Table

FIGURE 7-4
Customer order form used at Pine
Valley Furniture.

TABLE 7-1: Questions to Ask to Develop Accurate and Complete Data Models

Category of Questions Questions to Ask System Users and Business Managers

1. Data entities and their
descriptions

What are the subjects/objects of the business? What types of people, places,
things, and materials are used or interact in this business about which data must
be maintained? How many instances of each object might exist?

2. Candidate key What unique characteristics distinguish each object from other objects of the
same type? Could any such distinguishing feature change over time or is it
permanent? Could this characteristic of an object be missing even though we
know the object exists?

3. Attributes and
secondary keys

What characteristic describes each object? On what basis are objects
referenced, selected, qualified, sorted, and categorized? What must we know
about each object in order to run the business?

4. Security controls and understanding
who really knows the meaning of data

How do you use these data? That is, are you the source of the data for the
organization, do you refer to the data, do you modify them, and do you destroy
them? Who is not permitted to use these data? Who is responsible for
establishing legitimate values for these data?

5. Cardinality and time dimensions
of data

Over what period of time are you interested in these data? Do you need
historical trends, current “snapshot” values, and/or estimates or projections?
If a characteristic of an object changes over time, must you know the
obsolete values?

6. Relationships and their cardinality
and degrees

What events occur that imply associations between various objects? What
natural activities or transactions of the business involve handling data about
several objects of the same or different type?

7. Integrity rules, minimum and maximum
cardinality, time dimensions of data

Is each activity or event always handled the same way, or are there special
circumstances? Can an event occur with only some of the associated objects, or
must all objects be involved? Can the associations between objects change over
time (e.g., employees change departments)? Are values for data characteristics
limited in any way?

Entity
A person, place, object,
event, or concept in the user
environment about which
the organization wishes
to maintain data.

Entity-relationship
diagram (E-R diagram)
A graphical representation of the
entities, associations, and data
for an organization or business
area; it is a model of entities,
the associations among those
entities, and the attributes of both
the entities and their
associations.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 197

We also see that each order is from one customer, and an order can have
multiple line items, each for one product. We use this kind of understanding of
an organization’s operation to develop data models.

Introduction to Entity-Relationship Modeling
The basic entity-relationship modeling notation uses three main constructs:
data entities, relationships, and their associated attributes. Several different
E-R notations exist, and many CASE tools support multiple notations. For sim-
plicity, we have adopted one common notation for this book, the so-called
crow’s-foot notation. If you use another notation in courses or work, you should
be able to easily translate between notations.

An entity-relationship diagram (or E-R diagram) is a detailed, logical, and
graphical representation of the data for an organization or business area. The
E-R diagram is a model of entities in the business environment, the relationships
or associations among those entities, and the attributes or properties of both the
entities and their relationships. A rectangle is used to represent an entity, and
lines are used to represent the relationship between two or more entities. The
notation for E-R diagrams appears in Figure 7-5.

Entities
An entity is a person, place, object, event, or concept in the user environment
about which the organization wishes to maintain data. As noted in Table 7-1, the
first requirements determination question an analyst should ask concerns data

Strong Weak

Associative

Ternary

Entity types

Unary
Binary

Relationship degrees

Relationship cardinality

ENTITY NAME
Identifier
Partial identifier
Optional
[Derived]
{Multivalued}
Composite(...)

Attributes

Optional manyMandatory one Mandatory many Optional one

FIGURE 7-5
Entity-relationship diagram
notations: basic symbols,
relationship degree, and
relationship cardinality.

Entity instance (instance)
A single occurrence of an entity
type.

Entity type
A collection of entities that share
common properties or
characteristics.

198 Part III Systems Analysis

entities. An entity has its own identity, which distinguishes it from every other
entity. Some examples of entities follow:

� Person: EMPLOYEE, STUDENT, PATIENT

� Place: STATE, REGION, COUNTRY, BRANCH

� Object: MACHINE, BUILDING, AUTOMOBILE, PRODUCT

� Event: SALE, REGISTRATION, RENEWAL

� Concept: ACCOUNT, COURSE, WORK CENTER

You need to recognize an important distinction between entity types and
entity instances. An entity type is a collection of entities that share common
properties or characteristics. Each entity type in an E-R model is given a name.
Because the name represents a set of entities, it is singular. Also, because an
entity is an object, we use a simple noun to name an entity type. We use capital
letters in naming an entity type, and in an E-R diagram, the name is placed inside
a rectangle representing the entity, for example:

EMPLOYEE COURSE ACCOUNT

TREASURER ACCOUNT EXPENSE

An entity instance (or instance) is a single occurrence of an entity type. An
entity type is described just once in a data model, whereas many instances of
that entity type may be represented by data stored in the database. For exam-
ple, most organizations have one EMPLOYEE entity type, but hundreds (or even
thousands) of instances of this entity type may be stored in the database.

A common mistake made in learning to draw E-R diagrams, especially if you
already know how to do data-flow diagramming, is to confuse data entities with
sources/sinks, system outputs, or system users, and to confuse relationships
with data flows. A simple rule to avoid such confusion is that a true data entity
will have many possible instances, each with a distinguishing characteristic, as
well as one or more other descriptive pieces of data. Consider the following
entity types that might be associated with a church expense system:

In this situation, the church treasurer manages accounts and records expense
transactions against each account. However, do we need to keep track of data
about the treasurer and her supervision of accounts as part of this accounting
system? The treasurer is the person entering data about accounts and expenses
and making inquiries about account balances and expense transactions by cat-
egory. Because the system includes only one treasurer, TREASURER data do
not need to be kept. On the other hand, if each account has an account manager
(e.g., a church committee chair) who is responsible for assigned accounts, then
we may wish to have an ACCOUNT MANAGER entity type, with pertinent
attributes as well as relationships to other entity types.

Identifier
A candidate key that has
been selected as the unique,
identifying characteristic for
an entity type.

Candidate key
An attribute (or combination of
attributes) that uniquely identifies
each instance of an entity type.

Attribute
A named property or
characteristic of an entity that
is of interest to the organization.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 199

In this same situation, is an expense report an entity type? Because an expense
report is computed from expense transactions and account balances, it is a data
flow, not an entity type. Even though multiple instances of expense reports will
occur over time, the report contents are already represented by the ACCOUNT
and EXPENSE entity types.

Often when we refer to entity types in subsequent sections, we simply say
entity. This shorthand reference is common among data modelers. We will
clarify that we mean an entity by using the term entity instance.

Attributes
Each entity type has a set of attributes associated with it. An attribute is a prop-
erty or characteristic of an entity that is of interest to the organization (relation-
ships may also have attributes, as we see in the section on relationships). Asking
about attributes is the third question noted in Table 7-1 (see page 196).
Following are some typical entity types and associated attributes:

STUDENT: Student_ID, Student_Name, Address, Phone_Number, Major
AUTOMOBILE: Vehicle_ID, Color, Weight, Horsepower
EMPLOYEE: Employee_ID, Employee_Name, Address, Skill

We use nouns with an initial capital letter followed by lowercase letters in
naming an attribute. In E-R diagrams, we represent an attribute by placing its
name inside the rectangle that represents the associated entity. In many E-R
drawing tools, such as Microsoft Visio, attributes are listed within the entity
rectangle under the entity name.

Candidate Keys and Identifiers
Every entity type must have an attribute or set of attributes that distinguishes
one instance from other instances of the same type. A candidate key is an at-
tribute (or combination of attributes) that uniquely identifies each instance of
an entity type. A candidate key for a STUDENT entity type might be Student_ID.

Sometimes more than one attribute is required to identify a unique entity. For
example, consider the entity type GAME for a basketball league. The attribute
Team_Name is clearly not a candidate key, because each team plays several
games. If each team plays exactly one home game against every other team, then
the combination of the attributes Home_Team and Visiting_Team is a candidate
key for GAME.

Some entities may have more than one candidate key. One candidate key for
EMPLOYEE is Employee_ID; a second is the combination of Employee_Name
and Address (assuming that no two employees with the same name live at the
same address). If more than one candidate key is involved, the designer must
choose one of the candidate keys as the identifier. An identifier is a candidate key
that has been selected to be used as the unique characteristic for an entity type.

Identifiers should be selected carefully because they are critical for the
integrity of data. You should apply the following identifier selection rules:

1. Choose a candidate key that will not change its value over the life
of each instance of the entity type. For example, the combination of
Employee_Name and Address would probably be a poor choice as a
primary key for EMPLOYEE because the values of Employee_Name and
Address could easily change during an employee’s term of employment.

2. Choose a candidate key such that for each instance of the entity, the
attribute is guaranteed to have valid values and not be null. To ensure
valid values, you may have to include special controls in data entry
and maintenance routines to eliminate the possibility of errors. If the

Multivalued attribute
An attribute that may take on
more than one value for each
entity instance.

EMPLOYEE
Employee ID
Employee_Name
Payroll_Address
{Skill}

STUDENT
Student ID
Student_Name
Student_Campus_Address
Student_Campus_Phone

200 Part III Systems Analysis

candidate key is a combination of two or more attributes, make sure that
all parts of the key have valid values.

3. Avoid the use of so-called intelligent keys, whose structure indicates
classifications, locations, and other entity properties. For example, the
first two digits of a key for a PART entity may indicate the warehouse
location. Such codes are often modified as conditions change, which
renders the primary key values invalid.

4. Consider substituting single-attribute surrogate keys for large composite
keys. For example, an attribute called Game_ID could be used for the
entity GAME instead of the combination of Home_Team and
Visiting_Team.

For each entity, the name of the identifier is underlined on an E-R diagram.
The following diagram shows the representation for a STUDENT entity type
using E-R notation:

The equivalent representation using Microsoft Visio is the following:

In the Visio notation, the primary key is listed immediately below the entity
name with the notation PK, and the primary key is underlined. All required at-
tributes (that is, an instance of STUDENT must have values for Student_ID and
Name) are in bold.

Multivalued Attributes
A multivalued attribute may take on more than one value for each entity
instance. Suppose that, Skill is one of the attributes of EMPLOYEE. If each
employee can have more than one Skill, then it is a multivalued attribute. During
conceptual design, two common special symbols or notations are used to high-
light multivalued attributes. The first is to use curly brackets around the name
of the multivalued attribute, so that the EMPLOYEE entity with its attributes is
diagrammed as follows:

Many E-R drawing tools, such as Microsoft Visio, do not support multivalued
attributes within an entity. Thus, a second approach is to separate the repeating
data into another entity, called a weak (or attributive) entity, and then using a
relationship (relationships are discussed in the next section), link the weak entity
to its associated regular entity. The approach also easily handles several attributes

Relationship
An association between the
instances of one or more entity
types that is of interest to the
organization.

Repeating group
A set of two or more multivalued
attributes that are logically
related.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 201

EMPLOYEE
Employee ID
{Dep_Name,
Dep_Age,
Dep_Relation}

DEPENDENT
Dep_Name
Dep_Age
Dep_Relation

EMPLOYEE
Employee_ID

EMPLOYEE
Employee ID
Employee_Name
Birth_Date

Course_ID
Course_Title
{Topic}

COURSE
Completes

Relationships
Relationships are the glue that hold together the various components of an E-R
model. In Table 7-1 (see page 196), questions 5, 6, and 7 deal with relationships.
A relationship is an association between the instances of one or more entity
types that are of interest to the organization. An association usually means that
an event has occurred or that some natural linkage exists between entity
instances. For this reason, relationships are labeled with verb phrases. For
example, a training department in a company is interested in tracking which
training courses each of its employees has completed. This information leads to
a relationship (called Completes) between the EMPLOYEE and COURSE entity
types that we diagram as follows:

that repeat together, called a repeating group. Consider an EMPLOYEE and his
or her dependents. Dependent name, age, and relation to employee (spouse,
child, parent, etc.) are multivalued attributes about an employee, and these
attributes repeat together. We can show this repetition using an attributive
entity, DEPENDENT, and a relationship, shown here simply by a line between
DEPENDENT and EMPLOYEE. The crow’s-foot next to DEPENDENT means that
many DEPENDENTs may be associated with the same EMPLOYEE. Likewise, a
DEPENDENT may be associated with more than one EMPLOYEE (i.e., two
different EMPLOYEES are parents to a specific DEPENDENT).

As indicated by the lines, this relationship is considered a many-to-many
relationship: Each employee may complete more than one course, and each
course may be completed by more than one employee. More significantly, we
can use the Completes relationship to determine the specific courses that a
given employee has completed. Conversely, we can determine the identity of
each employee who has completed a particular course.

Conceptual Data Modeling and the E-R Model
The last section introduced the fundamentals of the E-R data modeling
notation—entities, attributes, and relationships. The goal of conceptual data
modeling is to capture as much of the meaning of data as possible. The more

202 Part III Systems Analysis

PERSON

Is_married_to

Binary Relationships

Is_assigned

Ternary Relationships

One-to-one

Contains

One-to-many

Many-to-many

Registers_for

EMPLOYEE

Manages

Unary Relationshps

PRODUCTPRODUCT
LINE

EMPLOYEE

STUDENT

PARKING
PLACE

COURSE

Supplies
WAREHOUSEVENDOR

PART

Unit_Cost

FIGURE 7-6
Examples of the three most
common relationships in E-R
diagrams: unary, binary,
and ternary.

details (or what some systems analysts call business rules) about data that we
can model, the better the system we can design and build. Further, if we can in-
clude all these details in an automated repository, such as a CASE tool, and if a
CASE tool can generate code for data definitions and programs, then the more
we know about data, the more code can be generated automatically, making the
system building more accurate and faster. More importantly, if we can keep a
thorough repository of data descriptions, we can regenerate the system as
needed as the business rules change. Because maintenance is the largest
expense with any information system, the efficiencies gained by maintaining
systems at the rule, rather than code, level drastically reduce the cost.

In this section, we explore more advanced concepts needed to more thor-
oughly model data and learn how the E-R notation represents these concepts.

Degree of a Relationship
The degree of a relationship, question 6 in Table 7-1, is the number of entity
types that participate in that relationship. Thus, the relationship Completes,
illustrated previously, is of degree two because it involves two entity types:
EMPLOYEE and COURSE. The three most common relationships in E-R dia-
grams are unary (degree one), binary (degree two), and ternary (degree three).
Higher-degree relationships are possible, but they are rarely encountered in
practice, so we restrict our discussion to these three cases. Examples of unary,
binary, and ternary relationships appear in Figure 7-6.

Unary Relationship Also called a recursive relationship, a unary
relationship is a relationship between the instances of one entity type. Two
examples are shown in Figure 7-6. In the first example, Is_married_to is shown as
a one-to-one relationship between instances of the PERSON entity type. That is,
each person may be currently married to one other person. In the second example,
Manages is shown as a one-to-many relationship between instances of the
EMPLOYEE entity type. Using this relationship, we could identify (for example)
the employees who report to a particular manager or, reading the Manages
relationship in the opposite direction, who the manager is for a given employee.

Unary relationship
(recursive relationship)
A relationship between the
instances of one entity type.

Degree
The number of entity types that
participate in a relationship.

Cardinality
The number of instances of
entity B that can (or must) be
associated with each instance
of entity A.

Ternary relationship
A simultaneous relationship
among instances of three entity
types.

Binary relationship
A relationship between instances
of two entity types.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 203

Is_stocked_as
MOVIE DVD

Binary Relationship A binary relationship is a relationship between
instances of two entity types and is the most common type of relationship
encountered in data modeling. Figure 7-6 shows three examples. The first (one-
to-one) indicates that an employee is assigned one parking place, and each
parking place is assigned to one employee. The second (one-to-many) indicates
that a product line may contain several products, and each product belongs to
only one product line. The third (many-to-many) shows that a student may
register for more than one course and that each course may have many student
registrants.

Ternary Relationship A ternary relationship is a simultaneous
relationship among instances of three entity types. In the example shown in
Figure 7-6, the relationship Supplies tracks the quantity of a given part that is
shipped by a particular vendor to a selected warehouse. Each entity may be a
one or a many participant in a ternary relationship (in Figure 7-6, all three
entities are many participants).

Note that a ternary relationship is not the same as three binary relationships.
For example, Unit_Cost is an attribute of the Supplies relationship in Figure 7-6.
Unit_Cost cannot be properly associated with any of the three possible binary
relationships among the three entity types (such as that between PART and
VENDOR) because Unit_Cost is the cost of a particular PART shipped from a
particular VENDOR to a particular WAREHOUSE.

Cardinalities in Relationships
Suppose that two entity types, A and B, are connected by a relationship.
The cardinality of a relationship (see the fifth, sixth, and seventh questions in
Table 7-1) is the number of instances of entity B that can (or must) be associated
with each instance of entity A. For example, consider the following relationship
for DVDs and movies:

Clearly, a video store may stock more than one DVD of a given movie.
In the terminology we have used so far, this example is intuitively a “many”
relationship. Yet, it is also true that the store may not have a single DVD of a
particular movie in stock. We need a more precise notation to indicate
the range of cardinalities for a relationship. This notation of relationship
cardinality was introduced in Figure 7-5, which you may want to review at
this point.

Minimum and Maximum Cardinalities The minimum cardinality of a
relationship is the minimum number of instances of entity B that may be
associated with each instance of entity A. In the preceding example, the
minimum number of DVDs available for a movie is zero, in which case we say
that DVD is an optional participant in the Is_stocked_as relationship. When the
minimum cardinality of a relationship is one, then we say entity B is a mandatory
participant in the relationship. The maximum cardinality is the maximum
number of instances. For our example, this maximum is “many” (an unspecified

Associative entity
An entity type that associates the
instances of one or more entity
types and contains attributes that
are peculiar to the relationship
between those entity instances.

204 Part III Systems Analysis

Employee_ID Course_Name Date_Completed

549–23–1948 Basic Algebra March 2012
629–16–8407 Software Quality June 2012
816–30–0458 Software Quality Feb 2012
549–23–1948 C Programming May 2012

Date_Completed

A B

Completes

EMPLOYEE
Employee_ID
Employee_Name (. . .)
Birth_Date

Course_ID
Course_Title
{Topic}

COURSE

From this limited data, you can conclude that the attribute Date_Completed
is not a property of the entity EMPLOYEE (because a given employee, such as
549–23–1948, has completed courses on different dates). Nor is Date_Completed
a property of COURSE, because a particular course (such as Software Quality)
may be completed on different dates. Instead, Date_Completed is a property of
the relationship between EMPLOYEE and COURSE. The attribute is associated
with the relationship and diagrammed as follows:

Is_stocked_as
DVD

Copy_Number

MOVIE

Movie_Name

number greater than one). Using the notation from Figure 7-5, we diagram this
relationship as follows:

The zero through the line near the DVD entity means a minimum cardinality
of zero, whereas the crow’s-foot notation means a “many” maximum cardinal-
ity. It is possible for the maximum cardinality to be a fixed number, not an arbi-
trary “many” value. For example, see the Supplies relationship in Figure 7-3A,
which indicates that each item involves at most four suppliers.

Associative Entities As seen in the examples of the Supplies ternary
relationship in Figure 7-6, attributes may be associated with a many-to-many
relationship as well as with an entity. For example, suppose that the
organization wishes to record the date (month and year) when an employee
completes each course. Some sample data follow:

Because many-to-many and one-to-one relationships may have associated
attributes, the E-R diagram poses an interesting dilemma: Is a many-to-many
relationship actually an entity in disguise? Often the distinction between entity
and relationship is simply a matter of how you view the data. An associative
entity is a relationship that the data modeler chooses to model as an entity
type. Figure 7-7 shows the E-R notation for representing the Completes relation-
ship as an associative entity. The lines from CERTIFICATE to the two entities
are not two separate binary relationships, so they do not have labels. Note that
EMPLOYEE and COURSE have mandatory-one cardinality, because an instance

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 205

A B EMPLOYEE
Employee_ID
Employee_Name (. . .)
Birth_Date

Course_ID
Course_Title
{Topic}

COURSECERTIFICATE
Certificate_Number
Date_Completed

FIGURE 7-7
Example of an associative entity.

A Many-to-many relationship with attributes

Quantity
Price

PARTVENDOR

FIGURE 7-8
An E-R model that represents each
price quote for each part shipment
received by Pine Valley Furniture.

PARTVENDOR

B Associative entity with separate relationship

Quantity
Price

PRICE QUOTE

Order_Number
Date
Amount

PART RECEIPT

of Completes must have an associated EMPLOYEE and COURSE. The implicit
identifier of Completes is the combination of the identifiers of EMPLOYEE and
COURSE, Employee_ID, and Course_ID, respectively. The explicit identifier is
Certificate_Number, as shown in Figure 7-7.

E-R drawing tools that do not support many-to-many relationships require
that any such relationship be converted into an associative entity, whether it has
attributes or not. You have already seen an example of this in Figure 7-3 for
Microsoft Visio, in which the Supplies/Supplied by relationship from Figure 7-3A
was converted in Figure 7-3B into the SUPPLIED ITEM entity (actually, asso-
ciative entity) and two mandatory one-to-many relationships.

One situation in which a relationship must be turned into an associative entity
is when the associative entity has other relationships with entities besides the
relationship that caused its creation. For example, consider the E-R model,
which represents price quotes from different vendors for purchased parts
stocked by Pine Valley Furniture, shown in Figure 7-8A.

Now, suppose that we also need to know which price quote is in effect for
each part shipment received. This additional data requirement necessitates that
the relationship between VENDOR and PART be transformed into an associa-
tive entity. This new relationship is represented in Figure 7-8B.

206 Part III Systems Analysis

Invoices

InvoicesPayments Orders

Counts

Amounts
Used

Amounts
Added

Inventory
Levels

Inventory
Levels

Minimum Order
Quantities

INVENTORY D1:

1.0
Update

Inventory
Added

3.0
Generate
Orders

4.0
Generate
Payments

2.0
Update

Inventory
Used

SUPPLIER STOCK-ON-HAND

Query
Request

Query Result 5.0
Query

Inventory
Levels

MANAGER

FIGURE 7-9
Level-0 data-flow diagram for Hoosier Burger’s new logical inventory control system.

In this case, PRICE QUOTE is not a ternary relationship. Rather, PRICE
QUOTE is a binary many-to-many relationship (associative entity) between
VENDOR and PART. In addition, each PART RECEIPT, based on Amount, has
an applicable, negotiated Price. Each PART RECEIPT is for a given PART from
a specific VENDOR, and the Amount of the receipt dictates the purchase price
in effect by matching with the Quantity attribute. Because the PRICE QUOTE
pertains to a given PART and given VENDOR, PART RECEIPT does not need
direct relationships with these entities.

An Example of Conceptual Data Modeling at Hoosier Burger
Chapter 6 structured the process and data-flow requirements for a food-
ordering system for Hoosier Burger. Figure 7-9 describes requirements for a
new system using Microsoft Visio. The purpose of this system is to monitor and
report changes in raw material inventory levels and to issue material orders and
payments to suppliers. Thus, the central data entity for this system will be an
INVENTORY ITEM, shown in Figure 7-10, corresponding to data store D1 in
Figure 7-9.

Changes in inventory levels are due to two types of transactions: receipt of
new items from suppliers and consumption of items from sales of products.
Inventory is added upon receipt of new raw materials, for which Hoosier
Burger receives a supplier INVOICE (see Process 1.0 in Figure 7-9). Figure 7-10
shows that each INVOICE indicates that the supplier has sent a specific
quantity of one or more INVOICE ITEMs, which correspond to Hoosier’s
INVENTORY ITEMs. Inventory is used when customers order and pay for
PRODUCTs. That is, Hoosier makes a SALE for one or more ITEM SALEs,

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 207

Sells

Is_sold_on

SALE

Orders

Is_ordered_on

ITEM
SALE

Includes

Is_included_on

INVOICE

Is_received_for

Received_on

INVOICE
ITEM

INVENTORY
ITEM

PRODUCT RECIPE

FIGURE 7-10
Preliminary E-R diagram for
Hoosier Burger’s inventory
control system.

each of which corresponds to a food PRODUCT. Because the real-time
customer-order processing system is separate from the inventory control sys-
tem, a source, STOCK-ON-HAND in Figure 7-9, represents how data flow from
the order processing to the inventory control system. Finally, because food
PRODUCTs are made up of various INVENTORY ITEMs (and vice versa),
Hoosier Burger maintains a RECIPE to indicate how much of each INVEN-
TORY ITEM goes into making one PRODUCT. From this discussion, we have
identified the data entities required in a data model for the new Hoosier
Burger inventory control system: INVENTORY ITEM, INVOICE, INVOICE
ITEM, PRODUCT, SALE, ITEM SALE, and RECIPE. To complete the E-R
diagram, we must determine necessary relationships among these entities as
well as attributes for each entity.

The wording in the previous description tells us much of what we need to
know to determine relationships:

� An INVOICE includes one or more INVOICE ITEMs, each of which
corresponds to an INVENTORY ITEM. Obviously, an INVOICE ITEM
cannot exist without an associated INVOICE, and over time the result
will be zero-to-many receipts, or INVOICE ITEMs, for an
INVENTORY ITEM.

� Each PRODUCT is associated with INVENTORY ITEMs.

� A SALE indicates that Hoosier Burger sells one or more ITEM SALEs,
each of which corresponds to a PRODUCT. An ITEM SALE cannot
exist without an associated SALE, and over time the result will be
zero-to-many ITEM SALEs for a PRODUCT.

Figure 7-10 shows an E-R diagram with the entities and relationships previously
described. We include on this diagram two labels for each relationship, one to be
read in either relationship direction (e.g., an INVOICE Includes one-to-many
INVOICE ITEMs, and an INVOICE ITEM Is_included_on exactly one INVOICE).
Now that we understand the entities and relationships, we must decide
which data elements are associated with the entities and associative entities in
this diagram.

You may wonder at this point why only the INVENTORY data store is
shown in Figure 7-9 when seven entities and associative entities are on the E-R
diagram. The INVENTORY data store corresponds to the INVENTORY ITEM

208 Part III Systems Analysis

FIGURE 7-11
Final E-R diagram for Hoosier
Burger’s inventory control system.

entity in Figure 7-10. The other entities are hidden inside other processes for
which we have not shown lower-level diagrams. In actual requirements struc-
turing steps, you would have to match all entities with data stores: Each data
store represents some subset of an E-R diagram, and each entity is included in
one or more data stores. Ideally, each data store on a primitive DFD will be an
individual entity.

To determine data elements for an entity, we investigate data flows in and
out of data stores that correspond to the data entity and supplement this
information with a study of decision logic that uses or changes data about the
entity. Six data flows are associated with the INVENTORY data store in Figure 7-9.
The description of each data flow in the project dictionary or repository
would include the data flow’s composition, which then tells us what data are
flowing in or out of the data store. For example, the Amounts Used data flow
coming from Process 2.0 indicates how much to decrease an attribute
STOCK_ON_HAND due to use of the INVENTORY ITEM to fulfill a customer
sale. Thus, the Amounts Used data flow implies that Process 2.0 will first read
the relevant INVENTORY ITEM record, then update its STOCK_ON_HAND
attribute, and finally store the updated value in the record. Each data flow
would be analyzed similarly (space does not permit us to show the analysis for
each data flow).

After having considered all data flows in and out of data stores related to data
entities, plus all decision logic related to inventory control, we derive the full
E-R diagram, with attributes, shown in Figure 7-11. In Visio, the ITEM SALE,
RECIPE, and INVOICE ITEM entities participate in what are called identifying
relationships. Thus, Visio treats them as associative entities, not just the
RECIPE entity. Visio automatically includes the primary keys of the identifying
entities as primary keys in the identified (associative) entities. Also note that in
Visio, because it cannot represent many-to-many relationships, there are two
mandatory relationships on either side of RECIPE.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 209

PVF WebStore: Conceptual Data Modeling
Conceptual data modeling for an Internet-based electronic commerce applica-
tion is no different from the process followed when analyzing the data needs for
other types of applications. In the last chapter, you read how Jim Woo analyzed
the flow of information within the WebStore and developed a data-flow dia-
gram. In this section, we examine the process he followed when developing the
WebStore’s conceptual data model.

Conceptual Data Modeling for Pine Valley
Furniture’s WebStore
To better understand what data would be needed within the WebStore, Jim Woo
carefully reviewed the information from the JAD session and his previously
developed data-flow diagram. Table 7-2 summarizes the customer and inventory
information identified during the JAD session. Jim wasn’t sure whether this
information was complete but knew that it was a good starting place for identi-
fying what information the WebStore needed to capture, store, and process. To
identify additional information, he carefully studied the level-0 DFD shown in
Figure 7-12. In this diagram, two data stores—Inventory and Shopping Cart—
are clearly identified; both were strong candidates to become entities within the
conceptual data model. Finally, Jim examined the data flows from the DFD as
additional possible sources for entities. Hence, he identified five general cate-
gories of information to consider:

� Customer

� Inventory

� Order

� Shopping Cart

� Temporary User/System Messages

After identifying these multiple categories of data, his next step was to define
each item carefully. He again examined all data flows within the DFD and
recorded each one’s source and destination. By carefully listing these flows, he
could move more easily through the DFD and understand more thoroughly what
information was needed to move from point to point. This activity resulted in the
creation of two tables that documented Jim’s growing understanding of the
WebStore’s requirements. The first, Table 7-3, lists each of the data flows within

TABLE 7-2: Customer and Inventory Information for WebStore

Corporate Customer Home-Office Customer Student Customer Inventory Information

Company name

Company address

Company phone

Company fax

Company preferred
shipping method

Buyer name

Buyer phone

Buyer e-mail

Name

Doing business as
(company’s name)

Address

Phone

Fax

E-mail

Name

School

Address

Phone

E-mail

SKU

Name

Description

Finished product size

Finished product weight

Available materials

Available colors

Price

Lead time

210 Part III Systems Analysis

each data category and its corresponding description. The second, Table 7-4,
lists each of the unique data flows within each data category. Jim then felt ready
to construct an entity-relationship diagram for the WebStore.

He concluded that Customer, Inventory, and Order were all unique entities
and would be part of his E-R diagram. Recall that an entity is a person, place,
or object; all three of these items meet this criteria. Because the Temporary
User/System Messages data were not permanently stored items—nor were they
a person, place, or object—he concluded that this should not be an entity in the
conceptual data model. Alternatively, although the shopping cart was also a
temporarily stored item, its contents needed to be stored for at least the dura-
tion of a customer’s visit to the WebStore and should be considered an object.
As shown in Figure 7-12, Process 4, Check Out/Process Order, moves the
Shopping Cart contents to the Purchasing Fulfillment System, where the order
details are stored. Thus, he concluded that Shopping Cart—along with Customer,
Inventory, and Order—would be entities in his E-R diagram.

4.0
Check Out
Process
Order

3.0
Display

Shopping
Cart

2.0
Select

Item for
Purchase

1.0
Browse
Catalog

6.0
Order Status

Request

5.0
Add/Modify

Account
Profile

PURCHASING
FULFILLMENT

SYSTEMCUSTOMER
TRACKING
SYSTEM

D1: Inventory D2: Shopping Cart

CUSTOMER

CUSTOMER

Cart ID/
Item Profile

Item
Profile Purchase

Request
Product

Item

Product
Item

Request

InvoiceCheck Out/
Customer

ID

Item
Profile

Cart ID/
Item Profile

Order Number/
Return Code

Order
Number

Order
Number

Order
Status

Information

Order
Status

Information

Remove Item/
Product Item

Remove
Item

Items in
Cart

Item
Profile

View
Cart

Customer
ID

Customer
Information

Customer
Information/ID

Customer
Information

Customer
Information

Order

FIGURE 7-12
Level-0 data-flow diagram for the WebStore.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 211

The final step was to identify the interrelationships between these four entities.
After carefully studying all the related information, he concluded the following:

1. Each Customer owns zero-to-many Shopping Cart Instances; each
Shopping Cart Instance is-owned-by one-and-only-one Customer.

2. Each Shopping Cart Instance contains one-and-only-one Inventory item;
each Inventory item is-contained-in zero-to-many Shopping Cart
Instances.

3. Each Customer places zero-to-many Orders; each Order is-placed-by
one-and-only-one Customer.

4. Each Order contains one-to-many Shopping Cart Instances; each
Shopping Cart Instance is-contained-in one-and-only-one Order.

With these relationships defined, Jim drew the E-R diagram shown in Fig-
ure 7-13. Through it, he demonstrated his understanding of the requirements,
the flow of information within the WebStore, the flow of information between
the WebStore and existing PVF systems, and now the conceptual data model.

TABLE 7-3: Data Category, Data Flow, and Data-Flow Descriptions for the WebStore DFD

Data Category

Data Flow Description

Customer Related

Customer ID Unique identifier for each customer (generated by Customer Tracking System)

Customer Information Detailed customer information (stored in Customer Tracking System)

Inventory Related

Product Item Unique identifier for each product item (stored in Inventory Database)

Item Profile Detailed product information (stored in Inventory Database)

Order Related

Order Number Unique identifier for an order (generated by Purchasing Fulfillment System)

Order Detailed order information (stored in Purchasing Fulfillment System)

Return Code Unique code for processing customer returns (generated by/stored in Purchasing
Fulfillment System)

Invoice Detailed order summary statement (generated from order information stored in Purchasing
Fulfillment System)

Order Status Information Detailed summary information on order status (stored/generated by Purchasing
Fulfillment System)

Shopping Cart

Cart ID Unique identifier for shopping cart

Temporary User/System
Messages

Product Item Request Request to view information on a catalog item

Purchase Request Request to move an item into the shopping cart

View Cart Request to view the contents of the shopping cart

Items in Cart Summary report of all shopping cart items

Remove Item Request to remove item from shopping cart

Check Out Request to check out and process order

212 Part III Systems Analysis

Over the next few hours, Jim planned to refine his understanding further by list-
ing the specific attributes for each entity and then comparing these lists with the
existing inventory, customer, and order database tables. He had to make sure
that all attributes were accounted for before determining a final design strategy.

TABLE 7-4: Data Category, Data Flow, and the Source/Destination
of Data Flows within the WebStore DFD

Data Category

Data Flow From/To

Customer Reated

Customer ID From Customer to Process 4.0
From Process 4.0 to Customer Tracking System
From Process 5.0 to Customer

Customer Information From Customer to Process 5.0
From Process 5.0 to Customer
From Process 5.0 to Customer Tracking System
From Customer Tracking System to Process 4.0

Inventory Related

Product Item From Process 1.0 to Data Store D1
From Process 3.0 to Data Store D2

Item Profile From Data Store D1 to Process 1.0
From Process 1.0 to Process 2.0
From Process 2.0 to Data Store D2
From Data Store D2 to Process 3.0
From Data Store D2 to Process 4.0

Order Related

Order Number From Purchasing Fulfillment System to Process 4.0
From Customer to Process 6.0
From Process 6.0 to Purchasing Fulfillment System

Order From Process 4.0 to Purchasing Fulfillment System

Return Code From Purchasing Fulfillment System to Process 4.0

Invoice From Process 4.0 to Customer

Order Status Information From Process 6.0 to Customer
From Purchasing Fulfillment System to Process 6.0

Shopping Cart

Cart ID From Data Store D2 to Process 3.0
From Data Store D2 to Process 4.0

Temporary User/System
Messages

Product Item Request From Customer to Process 1.0

Purchase Request From Customer to Process 2.0

View Cart From Customer to Process 3.0

Items in Cart From Process 3.0 to Customer

Remove Item From Customer to Process 3.0
From Process 3.0 to Data Store D2

Check Out From Customer to Process 4.0

Design strategy
A particular approach to
developing an information
system. It includes statements
on the system’s functionality,
hardware and system software
platform, and method for
acquisition.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 213

ORDER

SHOPPING CART INVENTORYCUSTOMER

Is_placed_by

Places

Contains

Is_contained_in

Contains
 Is_contained_in

Is_owned_by

Owns

FIGURE 7-13
Entity-relationship diagram
for the WebStore system.

Selecting the Best Alternative Design Strategy
Selecting the best alternative system involves at least two basic steps: (1) gen-
erating a comprehensive set of alternative design strategies, and (2) selecting
the one that is most likely to result in the desired information system, given all
of the organizational, economic, and technical constraints that limit what can
be done. A system design strategy represents a particular approach to devel-
oping the system. Selecting a strategy requires you to answer questions about
the system’s functionality, hardware and system software platform, and method
for acquisition. We use the term design strategy in this chapter rather than
alternative system because, at the end of analysis, we are still quite a long way
from specifying an actual system. This delay is purposeful because we do not
want to invest in design efforts until some agreement is reached on which
direction to take the project and the new system. The best we can do at this
point is to outline, rather broadly, the approach we can take in moving from log-
ical system specifications to a working physical system. The overall process of
selecting the best system strategy and the deliverables from this step in the
analysis process are discussed next.

The Process of Selecting the Best Alternative Design Strategy
Systems analysis involves determining requirements and structuring require-
ments. After the system requirements have been structured in terms of process
flow and data, analysts again work with users to package the requirements into
different system configurations. Shaping alternative system design strategies
involves the following processes:

� Dividing requirements into different sets of capabilities, ranging from
the bare minimum that users would accept (the required features) to
the most elaborate and advanced system the company could afford
to develop (which includes all the features desired by all users).
Alternatively, different sets of capabilities may represent the position
of different organizational units with conflicting notions about what
the system should do.

� Enumerating different potential implementation environments
(hardware, system software, and network platforms) that could be
used to deliver the different sets of capabilities. (Choices on the
implementation environment may place technical limitations on the
subsequent design phase activities.)

� Proposing different ways to source or acquire the various sets of
capabilities for the different implementation environments.

In theory, if the system includes three sets of requirements, two implementation
environments, and four sources of application software, twenty-four design
strategies would be possible. In practice, some combinations are usually
infeasible, and only a small number—typically three—can be easily considered.

214 Part III Systems Analysis

Selecting the best alternative is usually done with the help of a quantitative
procedure, an example of which comes later in the chapter. Analysts will recom-
mend what they believe to be the best alternative, but management (a combina-
tion of the steering committee and those who will fund the rest of the project) will
make the ultimate decision about which system design strategy to follow. At this
point in the life cycle, it is also certainly possible for management to end a proj-
ect before the more expensive phases of system design or system implementation
and operation are begun. Reasons for ending a project might include the costs or
risks outweighing the benefits, the needs of the organization having changed
since the project began, or other competing projects having become more
important while development resources remain limited.

Generating Alternative Design Strategies
The solution to an organizational problem may seem obvious to an analyst.
Typically, the analyst is familiar with the problem, having conducted an exten-
sive analysis of it and how it has been solved in the past. On the other hand, the
analyst may be more familiar with a particular solution that he or she attempts
to apply to all organizational problems encountered. For example, if an analyst
is an expert at using advanced database technology to solve problems, then he
or she tends to recommend advanced database technology as a solution to
every possible problem. Or if the analyst designed a similar system for another
customer or business unit, the “natural” design strategy would be the one used
before. Given the role of the analysts’ experience in the solutions they suggest,
analysis teams typically generate at least two alternative solutions for every
problem they work on.

A good number of alternatives for analysts to generate is three. Why three?
Because three alternatives can neatly represent low, middle, and high ranges of
potential solutions. One alternative represents the low end of the range.
Low-end alternatives are the most conservative in terms of the effort, cost, and
technology involved in developing a new system. Some low-end solutions may
not involve computer technology at all, focusing instead on making paper flows
more efficient or reducing redundancies in current processes. A low-end strat-
egy provides all the required functionality users demand with a system that is
minimally different from the current system.

Another alternative represents the high end of the range. High-end alterna-
tives go beyond simply solving the problem in question and focus instead on sys-
tems that contain many extra features users may desire. Functionality, not cost,
is the primary focus of high-end alternatives. A high-end alternative will provide
all desired features using advanced technologies that often allow the system to
expand to meet future requirements. Finally, the third alternative lies between
the extremes of the low-end and high-end systems. Such alternatives combine
the frugality of low-end alternatives with the focus on functionality of high-end
alternatives. Midrange alternatives represent compromise solutions. Other
possible solutions exist outside of these three alternatives, of course. Defining
the low, middle, and high possibilities allows the analyst to draw bounds around
what can be reasonably done.

How do you know where to draw bounds around the potential solution
space? The analysis team has already gathered the information it needs to iden-
tify the solution, but first that information must be systematically organized.
The first of two major considerations in this process is to determine the mini-
mum requirements for the new system. These features are mandatory, and if
any of them are missing, the design strategy is useless. Mandatory features are
the ones that everyone agrees are necessary to solve the problem or meet the
opportunity. Which features are mandatory can be determined from a survey

12

3

6

9

1
2

4
57

8

10
11

SALES

Financial

AnalysesData

Time Legal

Output

Database

Features

Constraints

FIGURE 7-14
Essential features to consider
during systems development
include data (such as customer
addresses), output (such as
a printed report like a sales
summary graph), and analyses
(such as a sales forecast).
Constraints on systems
development may include time,
finances, and legal issues.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 215

of users and others who have been involved in requirements determination.
You would conduct this survey near the end of the analysis phase after all
requirements have been structured and analyzed. In this survey, users rate fea-
tures discovered during requirements determination or categorize features on
some scale, and an arbitrary breakpoint is used to divide mandatory from de-
sired features. Some organizations will break the features into three cate-
gories: mandatory, essential, and desired. Whereas mandatory features screen
out possible solutions, essential features are the important capabilities of a sys-
tem that serve as the primary basis for comparison of different design strate-
gies. Desired features are those that users could live without but that are used
to select between design strategies that are of almost equal value in terms of
essential features. Features can take many different forms, as illustrated in
Figure 7-14, and might include:

� Data kept in system files: For example, multiple customer addresses so
that bills can be sent to addresses different from where we ship goods.

� System outputs: Printed reports, online displays, transaction
documents (for example, a paycheck or sales summary graph).

� Analyses to generate the information in system outputs: For
example, a sales forecasting module or an installment billing routine.

� Expectations on accessibility, response time, or turnaround time
for system functions: For example, online, real-time updating of
inventory files.

The second consideration in drawing bounds around alternative design strate-
gies is determining the constraints on system development. Constraints, some
of which also appear in Figure 7-14, may include:

� A date when the replacement system is needed.

� Available financial and human resources.

� Elements of the current system that cannot change.

� Legal and contractual restrictions: For example, a software package
bought off the shelf cannot be legally modified, or a license to use a
particular software package may limit the number of concurrent users
to twenty-five.

� The importance or dynamics of the problem that may limit how the
system can be acquired: For example, a strategically important
system that uses highly proprietary data probably cannot be
outsourced or purchased.

Remember, be impertinent and question whether stated constraints are firm.
You may want to consider some design alternatives that violate constraints you
consider to be flexible.

Developing Design Strategies for Hoosier Burger’s
New Inventory Control System
As an example of alternative generation and selection, let’s look at an inven-
tory control system that Hoosier Burger wants developed. Figure 7-15 lists
ranked requirements and constraints for the enhanced information system
being considered by Hoosier Burger. The requirements represent a sample of
those developed from the requirements determination and structuring carried
out in prior analysis steps. The system in question is an upgrade to the com-
pany’s existing inventory system. Before deciding to get a new inventory sys-
tem, Bob Mellankamp, one of the owners of Hoosier Burger, had to follow
several steps in his largely manual inventory control system, as identified
in Figure 7-16.

Using the current manual system, Bob first receives invoices from suppliers,
and he records their receipt on an invoice log sheet. He puts the actual
invoices in his accordion file. Using the invoices, Bob records the amount of
stock delivered on the stock logs, paper forms posted near the point of stor-
age for each inventory item. The stock logs include minimum order quantities,
as well as spaces for posting the starting amount, amount delivered, and the
amount used for each item. Amounts delivered are entered on the sheet when
Bob logs stock deliveries; amounts used are entered after Bob has compared

216 Part III Systems Analysis

1.
2.
3.
4.
5.
6.
7.

8.

9.

Meet delivery trucks before opening restaurant.
Unload and store deliveries.
Log invoices and file in accordion file.
Manually add amounts received to stock logs.
After closing, print inventory report.
Count physical inventory amounts.
Compare inventory reports totals to physical
count totals.
Compare physical count totals to minimum order
quantities; if the amount is less, make order; if
not, do nothing.
Pay bills that are due and record them as paid.

FIGURE 7-16
The steps in Hoosier Burger’s
inventory control system.

SYSTEM REQUIREMENTS
(in descending priority)

1.

2.

3.

Must be able to easily enter
shipments into system as soon as
they are received.
System must automatically
determine whether and when a
new order should be placed.
Management should be able to
determine at any time approximately
what inventory levels are
for any given item in stock.

SYSTEM CONSTRAINTS
(in descending order)

1.

2.

3.

4.

System development can cost no
more than $50,000.
New hardware can cost no more
than $50,000.
The new system must be opera-
tional in no more than six months
from the start of the contract.
Training needs must be minimal
(i.e., the new system must be
easy to use).

FIGURE 7-15
Ranked system requirements and
constraints for Hoosier Burger’s
inventory system.

the amounts of stock used, according to a physical count and according to the
numbers on the inventory report generated by the food-ordering system.
Some Hoosier Burger items, especially perishable goods, have standing orders
for daily delivery.

The Mellankamps want to improve their inventory system so that new orders
are immediately accounted for, so that the system can determine when new
orders should be placed, and so that management can obtain accurate inventory
levels at any time of the day. All three of these system requirements have been
ranked in order of descending priority in Figure 7-15. A logical data-flow dia-
gram showing the key processes in the desired inventory system is shown in
Figure 7-17. The goal of having new orders automatically accounted for is
reflected in Process 1.0. The goal of having the system determine when new
orders should be placed is realized in Process 3.0. The third goal for the new sys-
tem, of allowing managers to obtain accurate inventory levels at any time, is
captured by Process 5.0. The two other processes in Figure 7-17, generating pay-
ments (4.0) and updating inventory levels due to usage (2.0), are part of the
existing manual system.

The constraints on developing an enhanced inventory system at Hoosier
Burger are also listed in Figure 7-15, again in order of descending priority. The
first two constraints cover costs for systems development and for new computer
hardware. Development can cost no more than $50,000. New hardware can cost
no more than $50,000. The third constraint involves time for development—
Hoosier Burger wants the system to be installed and in operation in no more
than six months from the beginning of the development project. Finally, Hoosier
Burger would prefer that training for the system be simple; the new system must
be designed so that it is easy to use. However, because it is the fourth most
important constraint, the demands it makes are more flexible than those
contained in the other three.

Any set of alternative solutions to Hoosier Burger’s inventory system
problems must be developed with the company’s prioritized requirements and

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 217

4.0
Generate
Payments

D1: Inventory

SUPPLIER

STOCK-ON-
HAND

1.0
Update

Inventory
Added

2.0
Update

Inventory
Used

5.0
Query

Inventory
Levels

Amounts
Used

Amounts Added

Invoices

Query

Counts

Payments
Orders

MANAGER

3.0
Generate
Orders

Invoices

Query
Result

Request

Inventory
Levels

Minimum
Order

Quantities Inventory
Levels

FIGURE 7-17
A logical data-flow diagram showing the key processes in Hoosier Burger’s desired inventory system.

218 Part III Systems Analysis

constraints in mind. Figure 7-18 illustrates how each of three possible alterna-
tives meets (or exceeds) the criteria implied in Hoosier Burger’s requirements
and constraints. Alternative A is a low-end solution. It meets only the first re-
quirement completely and partially satisfies the second requirement, but it does
not meet the final one. However, Alternative A is relatively inexpensive to de-
velop and requires hardware that is much less expensive than the largest
amount Hoosier Burger is willing to pay. Alternative A also meets the require-
ments for the other two constraints: It will take only 3 months to become oper-
ational, and users will require only 1 week of training. Alternative C is the
high-end solution. Alternative C meets all of the requirements criteria. On the
other hand, Alternative C violates two of the four constraints: Development
costs are high at $65,000, and time to operation is 9 months. If Hoosier Burger
really wants to satisfy all three of its requirements for its new inventory system,
the company will have to pay more than it wants and will have to wait longer for
development. Once operational, however, Alternative C will take just as much
time to train people to use as Alternative A. Alternative B is in the middle. This
alternative solution meets the first two requirements, partially satisfies the
third, and does not violate any of the constraints.

Now that three plausible alternative solutions have been generated for
Hoosier Burger, the analyst hired to study the problem has to decide which
one to recommend to management for development. Management will then
decide whether to continue with the development project (incremental
commitment) and whether the system recommended by the analyst should
be developed.

Selecting the Most Likely Alternative
One method we can use to decide among the alternative solutions to Hoosier
Burger’s inventory system problem is illustrated in Figure 7-19. On the left,
you see that we have listed all three system requirements and all four con-
straints from Figure 7-15. These are our decision criteria. We have weighted
requirements as a group and constraints as a group equally; that is, we believe
that requirements are just as important as constraints. We do not have to
weight requirements and constraints equally; it is certainly possible to make
requirements more or less important than constraints. Weights are arrived at

CRITERIA ALTERNATIVE A ALTERNATIVE B ALTERNATIVE C
Requirements
1. Easy real-time entry of new Yes Yes Yes

shipment data
2. Automatic reorder decisions For some items For all items For all items
3. Real-time data on Not available Available for some Fully available

inventory levels items only

Constraints
1. Cost to develop $25,000 $50,000 $65,000
2. Cost of hardware $25,000 $50,000 $50,000
3. Time to operation Three months Six months Nine months
4. Ease of training One week of training Two weeks of training One week of training

FIGURE 7-18
Description of three alternative systems that could be developed for Hoosier Burger’s inventory system.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 219

in discussions among the analysis team, users, and sometimes managers.
Weights tend to be fairly subjective, and for that reason, should be determined
through a process of open discussion to reveal underlying assumptions,
followed by an attempt to reach consensus among stakeholders. We have
also assigned weights to each individual requirement and constraint. Notice
that the total of the weights for both requirements and constraints
is 50. Our weights correspond with our prioritization of the requirements
and constraints.

Our next step is to rate each requirement and constraint for each alterna-
tive, on a scale of 1 to 5. A rating of 1 indicates that the alternative does not
meet the requirement well or that the alternative violates the constraint. A rat-
ing of 5 indicates that the alternative meets or exceeds the requirement or
clearly abides by the constraint. Ratings are even more subjective than
weights and should also be determined through open discussion among users,
analysts, and managers. The next step is to multiply the rating for each
requirement and each constraint by its weight and follow this procedure for
each alternative. The final step is to add up the weighted scores for each
alternative. Notice that we have included three sets of totals: for require-
ments, for constraints, and for overall totals. If you look at the totals for
requirements, Alternative C is the best choice (score of 250), because it meets
or exceeds all requirements. However, if you look only at constraints, Alter-
native A is the best choice (score of 250), as it does not violate any constraints.
When we combine the totals for requirements and constraints, we see that the
best choice is Alternative C (score of 425), even though it had the lowest score
for constraints, as it has the highest overall score.

Alternative C, then, appears to be the best choice for Hoosier Burger. Whether
Alternative C is actually chosen for development is another issue. The Mel-
lankamps may be concerned that Alternative C violates two constraints, including
the most important one, development costs. On the other hand, the owners (and
chief users) at Hoosier Burger may want the full functionality Alternative C
offers that they are willing to ignore the constraints violations. Or Hoosier
Burger’s management may be so interested in cutting costs that it prefers Alter-
native A, even though its functionality is severely limited. What may appear to
be the best choice for a systems development project may not always be the one
that ends up being developed.

Criteria

Requirements
Real-time data entry
Auto reorder
Real-time data query

Constraints
Development costs
Hardware costs
Time to operation
Ease of training

Total

Weight

18
18
14
50

20
15
10
5

50

100

Rating

5
3
1

5
5
5
5

Alternative A
Score

90
54
14

158

100
75
50
25

250

408

Rating

5
5
3

4
4
4
3

Alternative B
Score

90
90
42

222

80
60
40
15

195

417

Rating

5
5
5

3
4
3
5

Alternative C
Score

90
90
70

250

60
60
30
25

175

425

FIGURE 7-19
Weighted approach
for comparing the three
alternative systems for
Hoosier Burger’s inventory
system.

220 Part III Systems Analysis

Key Points Review
1. Concisely define each of the following key

data-modeling terms: conceptual data model,
entity-relationship diagram, entity type,
entity instance, attribute, candidate key,
multivalued attribute, relationship, degree,
cardinality, and associative entity.

A conceptual data model represents the overall
structure of organizational data, independent of
any database technology. An E-R diagram is a
detailed representation of the entities, associa-
tions, and attributes for an organization or busi-
ness area. An entity type is a collection of entities
that share common properties or characteristics.
An attribute is a named property or characteristic
of an entity. One or a combination of attributes
that uniquely identifies each instance of an entity
type is called a candidate key. A multivalued
attribute may take on more than one value for an
entity instance. A relationship is an association
between the instances of one or more entity
types, and the number of entity types participat-
ing in a relationship is the degree of the relation-
ship. Cardinality is the number of instances of
entity B that can (or must) be associated with
each instance of entity A. Data that are simulta-
neously associated with several entity instances
are stored in an associative entity.

2. Ask the right kinds of questions to deter-
mine data requirements for an information
system.

Information is gathered for conceptual data
modeling as part of each phase of the systems
development life cycle. You must ask questions in
business, rather than data modeling, terms so
that business managers can explain the nature of
the business; the systems analyst represents the
objects and events of the business through a data
model. Questions include: What are the objects of
the business? What uniquely characterizes each
object? What characteristics describe each object?
How are data used? What history of data must be
retained? What events occur that relate different
kinds of data, and are there special data-handling
procedures? (See Table 7-1 for details.)

3. Draw an entity-relationship (E-R) diagram
to represent common business situations.

An E-R diagram uses symbols for entity,
relationship, identifier, attribute, multivalued
attribute, and associative entity and shows the
degree and cardinality of relationships (see
Figure 7-5 for all the symbols discussed in this
chapter, and see Figures 7-3 and 7-11 for example
diagrams). Exercises at the end of this chapter
give you practice at drawing E-R diagrams.

4. Explain the role of conceptual data modeling
in the overall analysis and design of an infor-
mation system.

Conceptual data modeling occurs in parallel
with other requirements analysis and structuring
steps during systems development. Information
for conceptual data modeling is collected during
interviews, from questionnaires, and in JAD ses-
sions. Conceptual data models may be developed
for a new information system and for the system
it is replacing, as well as for the whole database
for current and new systems. A conceptual data
model is useful input to subsequent data-oriented
steps in the analysis, design, and implementation
phases of systems development where logical
data models, physical file designs, and database
file coding are done.

5. Distinguish between unary, binary, and
ternary relationships and give an example
of each.

A unary relationship is between instances of
the same entity type (e.g., Is_married_to relates
different instances of a PERSON entity type). A
binary relationship is between instances of two
entity types (e.g., Registers_for relates instances
of STUDENT and COURSE entity types). A ter-
nary relationship is a simultaneous association
among instances of three entity types (e.g., Sup-
plies relates instances of PART, VENDOR, and
WAREHOUSE entity types).

6. Distinguish between a relationship and an
associative entity, and use associative entities
in a data model when appropriate.

Sometimes many-to-many and one-to-one rela-
tionships have associated attributes. When this
occurs, it is best to change the relationship into
an associative entity. For example, if we needed
to know the date an employee completed a
course, Date_Completed is neither an attribute
of EMPLOYEE nor COURSE but of the relation-
ship between these entities. In this case, we
would create a CERTIFICATE associative entity
(see Figure 7-7), associate Date_Completed with
CERTIFICATE, and draw mandatory one relation-
ships from CERTIFICATE to each of EMPLOYEE
and COURSE. An associative entity, like any entity,
then may be related to other entities, as shown
in Figure 7-8.

7. Relate data modeling to process and logic
modeling as different ways of describing an
information system.

Process and logic modeling represent the
movement and use of data, whereas data model-
ing represents the meaning and structure of data.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 221

A data model is usually a more permanent repre-
sentation of the data requirements of an organi-
zation than are models of data flow and use. Still,
consistency between these models of different
views of an information system is required. For
example, all the data in an E-R diagram for an
information system must be in data stores on
associated data-flow diagrams.

8. Generate at least three alternative design
strategies for an information system.

Generating different alternatives is something
you would do in actual systems analysis or as part
of a class project. Three is not a magic number.

It represents instead the endpoints and midpoint
of a series of alternatives, such as the most expen-
sive, the least expensive, and an alternative some-
where in the middle.

9. Select the best design strategy using both
qualitative and quantitative methods.

Once developed, alternatives can be compared
to each other through quantitative methods, but
the actual decision may depend on other criteria,
such as organizational politics. In this chapter,
you were introduced to one way to compare alter-
native design strategies quantitatively.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Associative entity (p. 204)
2. Attribute (p. 199)
3. Binary relationship (p. 203)
4. Candidate key (p. 199)
5. Cardinality (p. 203)
6. Conceptual data model (p. 190)
7. Degree (p. 202)

8. Design strategy (p. 213)
9. Entity (p. 197)

10. Entity instance (instance) (p. 198)
11. Entity-relationship diagram

(E-R diagram) (p. 197)
12. Entity type (p. 198)
13. Identifier (p. 199)

14. Multivalued attribute (p. 200)
15. Relationship (p. 201)
16. Repeating group (p. 201)
17. Ternary relationship (p. 203)
18. Unary relationship (recursive

relationship) (p. 202)

Match each of the key terms above with the definition that best fits it.

1. A graphical representation of the entities,
associations, and data for an organization
or business area; it is a model of entities,
the associations among those entities, and
the attributes of both the entities and their
associations.

2. A single occurrence of an entity type.
3. An attribute that may take on more than

one value for each entity instance.
4. A simultaneous relationship among

instances of three entity types.
5. A collection of entities that share common

properties or characteristics.
6. A relationship between instances of two

entity types.
7. An entity type that associates the instances

of one or more entity types and contains
attributes that are peculiar to the
relationship between those entity instances.

8. A named property or characteristic of an
entity that is of interest to the organization.

9. The number of instances of entity B that
can (or must) be associated with each
instance of entity A.

10. A candidate key that has been selected as
the unique, identifying characteristic for an
entity type.

11. An association between the instances of
one or more entity types that is of interest
to the organization.

12. An attribute (or combination of attributes)
that uniquely identifies each instance of an
entity type.

13. The number of entity types that participate
in a relationship.

14. A relationship between the instances of
one entity type.

15. A detailed model that shows the overall
structure of organizational data but is
independent of any database management
system or other implementation
considerations.

16. A set of two or more multivalued attributes
that are logically related.

17. A person, place, object, event, or
concept in the user environment about
which the organization wishes to maintain
data.

18. A particular approach to developing an
information system. It includes statements
on the system’s functionality, hardware and
system software platform, and method for
acquisition.

222 Part III Systems Analysis

Review Questions
1. What characteristics of data are represented in

an E-R diagram?
2. What elements of a data-flow diagram should be

analyzed as part of data modeling?
3. Explain why a ternary relationship is not the

same as three binary relationships.
4. When must a many-to-many relationship be mod-

eled as an associative entity?
5. Which of the following types of relationships can

have attributes associated with them: one-to-one,
one-to-many, many-to-many?

6. What is the degree of a relationship? Give an
example of each of the relationship degrees illus-
trated in this chapter.

7. Give an example of a ternary relationship (differ-
ent from any example in this chapter).

8. List the deliverables from conceptual data
modeling.

9. Explain the relationship between minimum cardi-
nality and optional and mandatory participation.

10. List the ideal characteristics of an entity identi-
fier attribute.

11. List the four types of E-R diagrams produced and
analyzed during conceptual data modeling.

12. What notation is used on an E-R diagram to show
the minimum and maximum cardinalities on a
one-to-many relationship?

13. Explain the difference between a candidate key
and the identifier of an entity type.

14. What distinguishes a repeating group from a sim-
ple multivalued attribute?

15. How do analysts generate alternative solutions
to information systems problems?

16. How do managers decide which alternative de-
sign strategy to develop?

Problems and Exercises
1. Assume that at Pine Valley Furniture each prod-

uct (described by Product No., Description, and
Cost) consists of at least three components (de-
scribed by Component No., Description, and Unit
of Measure), and components are used to make
one or many products (i.e., must be used in at
least one product). In addition, assume that com-
ponents are used to make other components and
that raw materials are also considered to be com-
ponents. In both cases of components being used
to make products and components being used to
make other components, we need to keep track
of how many components go into making some-
thing else. Draw an E-R diagram for this situation
and place minimum and maximum cardinalities
on the diagram.

2. A performance venue hosts many concert series
a year. Performers have a name and perform sev-
eral times in a concert series (each constituting a
performance with a different date). Concert
series have one or more performers and have a
name and a specified seating arrangement. A
concert series is held in one (and only one) of
several concert halls, each of which has a room
number. Represent this situation of concerts and
performers with an E-R diagram.

3. A restaurant chain has several store locations in
a city (with a name and zip code stored for
each), and each is managed by one manager.
Managers manage only one store. Each restau-
rant location has its own unique set of menus.
Most have more than one menu (e.g., lunch and

dinner menus). Each menu has many menu
items, and items can appear on multiple menus,
and with different prices on different menus.
Represent this situation of restaurants with an
E-R diagram.

4. Consider the E-R diagram in Figure 7-7.

a. What is the identifier for the CERTIFICATE
associative entity?

b. Now, assume that the same employee may
take the same course multiple times, on differ-
ent dates. Does this change your answer to
part a? Why or why not?

c. Now, assume we do know the instructor who
issues each certificate to each employee for
each course. Include this new entity in Fig-
ure 7-7 and relate it to the other entities. How
did you choose to relate INSTRUCTOR to
CERTIFICATE and why?

5. Consider the E-R diagram in Figure 7-20. Based on
this E-R diagram, answer the following questions:

a. How many EMPLOYEES can work on a
project?

b. What is the degree of the Used_on relationship?
c. Do any associative entities appear in this dia-

gram? If so, name them.
d. How else could the attribute Skill be modeled?
e. What attributes might be attached to the

Works_on relationship?
f. Could TOOL be modeled as an associative

entity? Why or why not?

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 223

6. A car rental is an association between a customer,
sales agent, and a car. Select a few pertinent
attributes for each of these entity types and rep-
resent a rental in an E-R diagram.

7. Consider the E-R diagram in Figure 7-21. Are
all three relationships—Holds, Goes_on, and
Transports—necessary (i.e., can one of these be
deduced from the other two)? What, if any, rea-
sonable assumptions make all three relation-
ships necessary?

8. Draw an E-R diagram to represent the sample
customer order in Figure 7-4.

9. A company database contains an entity called
EMPLOYEE. Among other information, the com-
pany records information about any degrees

each employee has earned, along with the gradu-
ation date for the degree.

a. Represent the EMPLOYEE entity and its
degree attributes using the notation for multi-
valued attributes.

b. Represent the EMPLOYEE entity and its
degree attributes using two entity types.

c. Finally, assume the company decides to also
keep data about the institution from which
the employees’ degrees were earned, includ-
ing name of the institution, city, and state
where the institution is located. Augment
your answer to part b to accommodate this
new entity type.

PROJECT
Project_ID

EMPLOYEE
Employee_ID

CITYTOOL

Works_on

Used_on Done_at

Includes

TASK
Task_ID
Time
{Skill}

FIGURE 7-20
E-R diagram for Problem
and Exercise 5.

AGENT
Agent_ID

VESSEL
Vessel_ID
Country_of_
 Registry

VOYAGE
Voyage_ID
Tonnage

CONSIGNMENT
Consignment_Number
$_Value

Is_responsible_for May_contain

Goes_on

Holds Transports

CONTAINER
Container_Number
Destination_Size

FIGURE 7-21
E-R diagram for Problem
and Exercise 7.

224 Part III Systems Analysis

10. Consider the Is_married_to unary relationship in
Figure 7-6.

a. Draw minimum and maximum cardinalities
for each end of this relationship.

b. Assume we wanted to know the date on which
a marriage occurred. Augment this E-R dia-
gram to include a Date_married attribute.

c. Because persons sometimes remarry after the
death of a spouse or a divorce, redraw this
E-R diagram to show the whole history of mar-
riages (not just the current marriage) for PER-
SONs. Show the Date_married attribute on
this diagram.

11. Draw an E-R diagram for each of the following
situations:

a. A laboratory has several chemists who work
on one or more projects. Chemists also may use
certain kinds of equipment on each project.
Attributes of CHEMIST include Employee_ID
(identifier), Name, and Phone_No. Attributes
of PROJECT include Project_ID (identifier)
and Start_Date. Attributes of EQUIPMENT in-
clude Serial_No and Cost. The organization
wishes to record Assign_Date—that is, the
date when a given equipment item was assig-
ned to a particular chemist working on a spec-
ified project. A chemist must be assigned to at
least one project and one equipment item. A
given equipment item need not be assigned,
and a given project need not be assigned either
a chemist or an equipment item. Provide
good definitions for all of the relationships in
this situation.

b. A college course may have one or more sched-
uled sections or may not have a scheduled
section. Attributes of COURSE include
Course_ID, Course_Name, and Units. Attri-
butes of SECTION include Section_Number
and Semester_ID. Semester_ID is composed of
two parts: Semester and Year. Section_Number
is an integer (such as “1” or “2”) that distin-
guishes one section from another for the same
course but does not uniquely identify a section.
How did you model SECTION? Why did you
choose this way versus alternative ways to
model SECTION?

12. Recreate the spreadsheet in Figure 7-19 in your
spreadsheet package. Change the weights and
compare the outcome to Figure 7-19. Change the
rankings. Add criteria. What additional informa-
tion does this “what if ” analysis provide for you
as a decision maker? What insight do you gain
into the decision-making process involved in
choosing the best alternative system design?

13. The method for evaluating alternatives used in
Figure 7-19 is called weighting and scoring. This
method implies that the total utility of an alter-
native is the sum of the products of the weights
and ratings of each criterion for the alternative.
What assumptions are characteristic of this
method for evaluating alternatives? That is, what
conditions must be true for this to be a valid
method of evaluating alternatives?

14. Weighting and scoring (see Problem and Exer-
cise 13) is only one method for comparing alter-
native solutions to a problem. Go to the library,
find a book or articles on qualitative and quanti-
tative decision making and voting methods, and
outline two other methods for evaluating alter-
native solutions to a problem. What are the pros
and cons of these methods compared to the
weighting and scoring method? Under weighting
and scoring and the other alternatives you
find, how would you incorporate the opinions of
multiple decision makers?

15. Prepare an agenda for a meeting at which you
would present the findings of the analysis phase
of the SDLC to Bob Mellankamp concerning his
request for a new inventory control system. Use
information provided in Chapters 5 through 7 as
background in preparing this agenda. Concen-
trate on which topics to cover, not the content of
each topic.

16. The owner of two pizza parlors located in adja-
cent towns wants to computerize and integrate
sales transactions and inventory management
within and between both stores. The point-of-sale
component must be easy to use and flexible
enough to accommodate a variety of pricing
strategies and coupons. The inventory manage-
ment, which will be linked to the point-of-sale
component, must also be easy to use and fast.
The systems at each store need to be linked so
that sales and inventory levels can be determined
instantly for each store and for both stores com-
bined. The owner can allocate $40,000 for hard-
ware and $20,000 for software and must have the
new system operational in three months. Train-
ing must be short and easy. Briefly describe three
alternative systems for this situation and explain
how each would meet the requirements and con-
straints. Are the requirements and constraints
realistic? Why or why not?

17. Compare the alternative systems from Problem
and Exercise 16 using the weighted approach
demonstrated in Figure 7-19. Which system
would you recommend? Why? Was the approach
taken in this and Problem and Exercise 16 useful
even for this relatively small system? Why or
why not?

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 225

18. Suppose that an analysis team did not generate
alternative design strategies for consideration by
a project steering committee or client. What
might the consequences be of having only one
design strategy? What might happen during the
oral presentation of project progress if only
one design strategy is offered?

19. Assume you are designing a database for a local
used car dealership. Attributes for a car include
the vehicle identification number, stock number,
make, model, year, and trim. What would you use
for the primary key in this entity? What attributes
are likely to be foreign keys associated with
other entities?

Discussion Questions
1. Discuss why some systems developers believe

that a data model is one of the most important
parts of the statement of information system
requirements.

2. Using Table 7-1 as a guide, develop a script of at
least ten questions you would ask during an
interview of the customer-order processing
department manager at Pine Valley Furniture.
Assume the focus is on analyzing the require-
ments for a new order-entry system. The purpose
of the interview is to develop a preliminary E-R
diagram for this system.

3. If possible, contact a systems analyst in a local
organization. Discuss with this systems analyst
the role of conceptual data modeling in the over-
all systems analysis and design of information
systems at his or her company. How, and by
whom, is conceptual data modeling performed?
What training in this technique is given? At
what point(s) is this done in the development
process? Why?

4. Talk to MIS professionals at a variety of organi-
zations and determine the extent to which CASE
tools are used in the creation and editing of
entity-relationship diagrams. Try to determine
whether they use CASE tools for this purpose;
which CASE tools are used; and why, when, and
how they are used. In companies that do not use
CASE tools for this purpose, determine why not

and what would have to change in order to
use them.

5. Ask a systems analyst to give you a copy of the
standard notation he or she uses to draw E-R
diagrams. In what ways is this notation different
from notation in this text? Which notation do you
prefer and why? What is the meaning of any
additional notation?

6. Consider the purchase of a new PC to be used by
you at your work (or by you at a job that you
would like to have). Describe in detail three alter-
natives for this new PC that represent the low,
middle, and high points of a continuum of poten-
tial solutions. Be sure that the low-end PC meets
at least your minimum requirements and the high-
end PC is at least within a reasonable budget. At
this point, without quantitative analysis, which
alternative would you choose?

7. For the new PC described in Question 6, develop
ranked lists of your requirements and constraints
as displayed in Figure 7-19. Display the require-
ments and constraints, along with the three alter-
natives, as done in Figure 7-19, and note how each
alternative is rated on each requirement and con-
straint. Calculate scores for each alternative on
each criterion and compute total scores. Which
alternative has the highest score? Why? Does this
choice fit with your selection in the previous
question? Why or why not?

Case Problems
1. Pine Valley Furniture

In order to determine the requirements for the
new Customer Tracking System, several JAD
sessions, interviews, and observations were con-
ducted. Resulting information from these require-
ments determination methods was useful in the
preparation of the Customer Tracking System’s
data-flow diagrams.

One afternoon while you are working on
the Customer Tracking System’s data-flow dia-
grams, Jim Woo stops by your desk and assigns
you the task of preparing a conceptual entity-
relationship diagram for the Customer Tracking
System. Later that afternoon, you review the

requirements-determination phase deliverables,
including the data-flow diagrams you have just
finished preparing.

Your review of these deliverables suggests that
the Customer Tracking System’s primary objec-
tive is to track and forecast customer buying pat-
terns. Additionally, in order to track a customer’s
buying habits, an order history must be estab-
lished, satisfaction levels assessed, and a variety
of demographic data collected. The demographic
data will categorize the customer according to
type, geographic location, and type of purchase.
Customer Tracking System information will enable
Pine Valley Furniture to better forecast its product

226 Part III Systems Analysis

demand, control its inventory, and solicit cus-
tomers. Also, the Customer Tracking System’s
ability to interface with the WebStore is impor-
tant to the project.

a. What entities are identified in the previous sce-
nario? Can you think of additional entities? What
interrelationships exist between the entities?

b. For each entity, identify its set of associated
attributes. Specify identifiers for each entity.

c. Based on the case scenario and your answers
to parts a and b, prepare an entity-relationship
diagram. Be sure to specify the cardinalities
for each relationship.

d. How does this conceptual model differ from
the WebStore’s conceptual model?

2. Hoosier Burger
Although Hoosier Burger is well recognized for

its fast foods, especially the Hoosier Burger Spe-
cial, plate lunches are also offered. These include
such main menu items as barbecue ribs, grilled
steak, meat loaf, and grilled chicken breast. The
customer can choose from a variety of side
items, including roasted garlic mashed potatoes,
twice-baked potatoes, coleslaw, corn, baked
beans, and Caesar salad.

Many downtown businesses often call and place
orders for Hoosier Mighty Meals. These are com-
bination meals consisting of a selection of main
menu items and three side orders. The customer
can request Hoosier Mighty Meals to feed 5, 10, 15,
or 20 individuals. As a convenience to its business
customers, Bob and Thelma allow business cus-
tomers to charge their order. Once each month, a
bill is generated and sent to those business cus-
tomers who have charged their orders. Bob and
Thelma have found that many of their business
customers are repeat customers and often place
orders for the same Hoosier Mighty Meals. Bob
asks you if it is possible to track a customer’s order
history, and you indicate that it is indeed possible.

a. Based on the information provided in the case
scenario, what entities will Hoosier Burger
need to store information about?

b. For the entities identified in part a, identify a
set of attributes for each entity.

c. Specify an identifier for each entity. What rules
did you apply when selecting the identifier?

d. Modify Figure 7-10 to reflect the addition of
these new entities. Be sure to specify the car-
dinalities for each relationship.

3. Corporate Technology Center
Five years ago, Megan Thomas was a busy

executive seeking to keep herself and her
employees current with new technology. She

realized that many small companies were facing
the same dilemma. Using her life savings and
money from investors, Megan founded Corpo-
rate Technology Center. Corporate Technology
Center’s primary objective is to offer technology
update seminars to local business executives
and their employees. A wide variety of seminars
are offered, including ones covering operating
systems, spreadsheets, word processing, data-
base management, Internet, Web page design,
and telecommunications.

Although Corporate Technology Center offers
seminars at its own campus, it also provides on-
site training for local companies. One-day, two-
day, or four-day seminars are offered. Courses are
open to a minimum of twenty students and a max-
imum of forty students. Although several staff
members are capable of teaching any given
course, generally only one staff member teaches
a given course on a given date.

a. What entities are identified in the previous
scenario? Can you identify additional entities?

b. For each entity identified in part a, specify a
set of associated attributes.

c. Select an identifier for each entity. What rules
did you apply when selecting the identifier?

d. Based on the case scenario and your answers
to a, b, and c, prepare an entity-relationship
diagram. Be sure to specify the cardinalities
for each relationship.

4. Pine Valley Furniture
During your time as a Pine Valley Furniture

intern, you have learned much about the systems
analysis and design process. You have been able
to observe Jim Woo as he serves as the lead ana-
lyst on the WebStore project, and you have also
received hands-on experience with the Customer
Tracking System project. The requirements deter-
mination and requirements structuring activities
for the Customer Tracking System are now com-
plete, and it is time to begin generating alternative
design strategies.

On Monday afternoon, Jim Woo stops by your
desk and requests that you attend a meeting
scheduled for tomorrow morning. He mentions
that during tomorrow’s meeting, the Customer
Tracking System’s requirements and constraints,
weighting criteria, and alternative design strategy
ratings will be discussed. He also mentions that
during the previously conducted systems plan-
ning and selection phase, Jackie Judson and he
prepared a baseline project plan. At the time
the initial baseline project plan was prepared, the
in-house development option was the preferred
design strategy. The marketing group’s unique

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 227

information needs seemed to indicate that in-
house development was the best option. How-
ever, other alternative design strategies have
since been investigated.

During Tuesday’s meeting, several end users,
managers, and systems development team mem-
bers meet, discuss, and rank the requirements and
constraints for the new Customer Tracking Sys-
tem. Also, weights and rankings are assigned to
the three alternative design strategies. At the end
of the meeting, Jim Woo assigns you the task of
arranging this information into a table and
calculating the overall scores for each alternative.
He would like to review this information later in
the afternoon. Tables 7-5 and 7-6 summarize the
information obtained from Tuesday’s meeting.

a. Generally speaking, what alternative design
strategies were available to Pine Valley
Furniture?

b. Of the alternative design strategies available
to Pine Valley Furniture, which were the most
viable? Why?

c. Using the information provided in Table 7-6,
calculate the scores for each alternative.

d. Based on the information provided in Tables 7-5
and 7-6, which alternative do you recommend?

5. Hoosier Burger
As the lead analyst on the Hoosier Burger proj-

ect, you have been busy collecting, structuring,
and evaluating the new system’s requirements.
During a Monday morning meeting with Bob and
Thelma, the three of you review the system
requirements, system constraints, and alternative
design strategies. The proposed alternative design
strategies address low-end, midrange, and high-
end solutions. Additionally, weights are assigned
to the evaluation criteria, and the alternatives are
ranked according to the criteria.

Bob has stated repeatedly that his main priority
is to implement an inventory control system.
However, you are aware that, if at all possible, Bob
would like to also implement a delivery system.
You inform Bob that two of the alternative design
strategies support a delivery system but will
increase the system’s development cost by at least
$20,000 and will add $10,000 in recurring costs to
the new system. Bob feels that the addition of the
new delivery system will result in $25,000 in yearly
benefits over the life of the new system.

The inclusion of a delivery system necessitates
the addition of several new requirements and
the modification of system constraints. Table 7-7

TABLE 7-5: Pine Valley Furniture Requirements and Constraints

Criteria Alternative A Alternative B Alternative C

New Requirements

Ease of use Acceptable Fair Good

Easy real-time updating of
customer profiles

Yes Yes Yes

Tracks customer purchasing
activity

No Yes Yes

Supports sales forecasting Some forecasting models
are supported

Some forecasting models
are supported

Provides support for all
necessary forecasting
models

Ad hoc report generation No Yes Yes

Constraints

Must interface with existing
systems

Requires significant
modifications

Minor modifications Minor modifications

Costs to develop $150,000 $200,000 $350,000

Cost of hardware $80,000 $80,000 $100,000

Time to operation 6 months 7 months 9 months

Must interface with
existing systems

Requires significant
modifications

Minor modifications Minor modifications

Ease of training 3 weeks of training 3 weeks of training 2 weeks of training

Legal restrictions Cannot be modified Allows for customization None

228 Part III Systems Analysis

outlines these changes. The weights, ratings, and
scores also require adjustments. Table 7-8
contains information about these adjustments.

a. Generally speaking, what alternative design
strategies are available to Hoosier Burger?

b. Is an enterprise resource planning system a
viable option for Hoosier Burger? Why or
why not?

c. Modify Figure 7-19 to incorporate the criteria
mandated by the new delivery system. Which
alternative should be chosen?

d. Assuming that Alternative C is still chosen, up-
date Hoosier Burger’s economic feasibility
analysis to reflect the changes mentioned in
this scenario.

TABLE 7-6: Pine Valley Furniture Multi-Criteria Analysis

Criteria Weight Alternative A Alternative B Alternative C

Rating Score Rating Score Rating Score

Requirements

Ease of use 15 2 3 5

Real-time customer profile updating 12 3 3 4

Tracks customer purchasing activity 12 1 3 3

Sales forecasting 8 2 2 3

Ad hoc report generation 3 1 2 3

Total 50

Constraints

Interfaces with existing systems 15 3 4 2

Development costs 10 5 4 2

Hardware costs 10 5 4 2

Time to operation 5 4 1 2

Ease of training 5 2 2 4

Legal restrictions 5 1 2 5

Total 50

TABLE 7-7: Hoosier Burger Requirements and Constraints

Criteria Alternative A Alternative B Alternative C

New Requirements

Easy real-time entry of new shipment data Yes Yes Yes

Automatic reorder decisions For some items For all items For all items

Real-time data on inventory levels Not available Available for some items only Fully available

Facilitates forecasting Not available Available Available

Track delivery sales Available Available Available

Customer billing Not available Not available Available

Constraints

Costs to develop $45,000 $70,000 $85,000

Cost of hardware $25,000 $50,000 $50,000

Time to operation 4 months 7 months 10 months

Ease of training 1 week of training 3 weeks of training 3 weeks of training

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 229

CASE: PETRIE’S ELECTRONICS

Structuring Systems Requirements:
Conceptual Data Modeling
Jim Watanabe, manager of the “No Customer
Escapes” project, and assistant director of IT for
Petrie’s Electronics, was sitting in the company cafe-
teria. He had just finished his house salad and was
about to go back to his office when Stephanie Welch
sat down at his table. Jim had met Stephanie once,
back when he started work at Petrie’s. He remem-
bered she worked for the database administrator.

“Hi, Jim, remember me?” she asked.
“Sure, Stephanie, how are you? How are things in

database land?”
“Can’t complain. Sanjay asked me to talk to you

about the database needs for your new customer
loyalty system.” Stephanie’s phone binged. She
pulled it out of her oversize bag and looked at it.
She started to text as she continued to talk to
Jim. “How far along are you on your database
requirements?”

That’s kinda rude, Jim thought. Oh well. “We are
still in the early stages. I can send you a very prelim-
inary E-R diagram we have [PE Figure 7-1], along
with a description of the major entities.”

“OK, that will help. I suspect that you won’t have
too many new entities to add to what’s already in the
system,” Stephanie responded, still looking at her
phone and still texting. She briefly looked up at Jim
and smiled slightly before going back to texting. “Just
send the E-R to me, and I’ll let you know if I have any
questions.” She stood up, still looking at her phone.
“Gotta go,” she said, and she walked away.

OK, Jim thought, I need to remember to send
Stephanie the preliminary E-R we have. I should
probably send her the entity descriptions too (PE
Table 7-1), just in case. Jim stood up, carried his tray
over to the recycling area of the cafeteria, and went
back to his office.

When Jim got back to his office, Sanjay was wait-
ing for him.

“I’ve got more information on those alternatives
we talked about earlier,” Sanjay said. “I had one
of my employees gather some data on how the alter-
natives might satisfy our needs.” (See the descrip-
tions of the alternatives in PE Table 5-2.) Sanjay
handed Jim a short report. “The matrix shows the
requirements and constraints for each alternative
and makes it relatively easy to compare them.” (See
PE Figure 7-2.)

TABLE 7-8: Hoosier Burger Multi-Criteria Analysis

Criteria Weight Alternative A Alternative B Alternative C

Rating Score Rating Score Rating Score

Requirements

Real-time data entry 12 5 5 5

Auto reorder 12 3 5 5

Real-time data query 10 1 3 5

Facilitates forecasting 8 1 2 3

Track delivery sales 5 3 3 3

Customer billing 3 1 1 3

Total 50

Constraints

Development costs 20 5 4 2

Hardware costs 15 5 4 3

Time to operation 10 5 4 3

Ease of training 5 2 1 5

Total 50

230 Part III Systems Analysis

PE TABLE 7-1: Entity Descriptions for the Preliminary E-R Diagram for Petrie’s
Customer Loyalty System

Entity Description

Coupon A coupon is a special promotion created specifically for an individual customer. A coupon is for a set dollar
amount, for example, $10. The customer may use it like cash or like a dollars-off promotion when purchasing
products or services. Coupons can only be created for an individual customer based on the points in his or
her customer loyalty account. For each dollar value of a coupon, a certain number of points must be
redeemed. Coupons must be accounted for when created and when redeemed.

Customer A customer is someone who buys products and/or services from Petrie’s Electronics. Customers include both
online customers and those who shop in Petrie’s Brick-and-Mortar stores.

Product An item made available for sale to a Petrie’s customer. For example, a product is a 40” Sony LCD HD
television. Products can be purchased online or in Brick-and-Mortar stores.

Promotion A promotion is a special incentive provided to a customer to entice the customer into buying a specific
product or service. For example, a promotion intended to sell Blu-ray disks may involve 2-for-1 coupons.
Promotions are targeted to all customers, or to subsets of customers, not just to individual customers.

Service A job performed by one of Petrie’s associates for a customer. For example, upgrading the memory in a
computer by installing new memory cards is a service that Petrie’s provides for a fee. Services may only be
ordered and performed in Brick-and-Mortar stores, not online.

Transaction A record that a particular product or service was sold to a specified customer on a particular date. A
transaction may involve more than one product or service, and it may involve more than one of a particular
kind of product or service. For example, one transaction may involve blank DVDs and prerecorded DVDs, and
the prerecorded DVDs may all be of the same movie. For members of the loyalty program, each transaction is
worth a number of points, depending on the dollar value of the transaction.

“The matrix favors the XRA CRM system,” Jim
said, after looking over the report. “It looks like their
proposal meets our requirements the best, but the
Nova group’s proposal does the best job with the
constraints.”

“Yes, but just barely,” Sanjay said. “There is only a
five-point difference between XRA and Nova, so they
are pretty comparable when it comes to constraints.
But I think the XRA system has a pretty clear advan-
tage in meeting our requirements.”

“XRA seems to be pretty highly rated in your matrix
in terms of all of the requirements. You have them

ranked better than the other two proposals for
implementation, scalability, and vendor support,” Jim
said. “The ‘5’ you gave them for proven performance
is one of the few ‘5s’ you have in your whole matrix.”

“That’s because they are one of the best companies
in the industry to work with,” Sanjay responded,
“Their reputation is stellar.”

“This looks really promising,” Jim said. “Let’s see if
reality matches what we have here. It’s time to put to-
gether the formal request for proposal. I’ll get that
work started today. I hope that all three of these com-
panies decide to bid.”

Transaction

ServiceCoupon

CustomerPromotion

Product

PE FIGURE 7-1
Initial E-R for Petrie’s customer
loyalty program.

Chapter 7 Structuring System Requirements: Conceptual Data Modeling 231

Effective customer
incentives
Easy for customers
to use
Proven performance
Easy to implement
Scalable
Vendor support

Cost to buy
Cost to operate
Time to implement
Staff to implement

Criteria

Requirements

Constraints

Weight

15

10
10
5

10
10

60

40

5

3
4
3
3
3

3
3
3
3

15
30

15
10
5

10

Alternative A
Rating Score

75

30
40
15
30
30

220

45
30

120

4

4
5
4
4
4

4
3

4

4

4

5
3
3
3 30
3

4
3

5

3
15
30

60

40
50
20

40
40

60
40
15
40

250

155

SBSI Alternative B
Rating Score

XRA

60

50
30
15

30
215

75
40

160

Total 100 340 405 375

Alternative C
Rating Score

Nova

PE FIGURE 7-2
Evaluation matrix for customer loyalty proposals.

Case Questions

1. Review the data-flow diagrams you developed for
questions in the Petrie’s Electronics case at the
end of Chapter 6 (or diagrams given to you by
your instructor). Study the data flows and data
stored on these diagrams and decide whether you
agree with the team’s conclusion that the only six
entity types needed are listed in the case and in
PE Figure 7-1. If you disagree, define additional
entity types, explain why they are necessary, and
modify PE Figure 7-1 accordingly.

2. Again, review the DFDs you developed for the
Petrie’s Electronics case (or those given to you by
your instructor). Use these DFDs to identify the
attributes of each of the six entities listed in this
case plus any additional entities identified in your
answer to Question 1. Write an unambiguous
definition for each attribute. Then, redraw PE
Figure 7-1 by placing the six (and additional)
entities in this case on the diagram along with
their associated attributes.

3. Using your answer to Question 2, designate
which attribute or attributes form the identifier
for each entity type. Explain why you chose each
identifier.

4. Using your answer to Question 3, draw the rela-
tionships between entity types needed by the sys-
tem. Remember, a relationship is needed only if the
system wants data about associated entity in-
stances. Give a meaningful name to each relation-
ship. Specify cardinalities for each relationship and

explain how you decided on each minimum and
maximum cardinality at each end of each relation-
ship. State any assumptions you made if the Petrie’s
Electronics cases you have read so far and the
answers to questions in these cases do not provide
the evidence to justify the cardinalities you choose.
Redraw your final E-R diagram in Microsoft Visio.

5. Now that you have developed in your answer to
Question 4 a complete E-R diagram for the
Petrie’s Electronics database, what are the con-
sequences of not having an employee entity type
in this diagram? Assuming only the attributes you
show on the E-R diagram, would any attribute be
moved from the entity it is currently associated
with to an employee entity type if it were in the
diagram? Why or why not?

6. Write project dictionary entries (using standards
given to you by your instructor) for all the enti-
ties, attributes, and relationships shown in the
E-R diagram in your answer to Question 4. How
detailed are these entries at this point? What
other details still must be filled in? Are any of the
entities on the E-R diagram in your answer to
Question 4 weak entities? Why? In particular, is
the SERVICE entity type a weak entity? If so,
why? If not, why not?

7. What date-related attributes did you identify in
each of the entity types in your answer to Ques-
tion 4? Why are each of these needed? Can you
make some observations about why date attrib-
utes must be kept in a database, based on your
analysis of this database?

232

Designing
the Human Interface

� Explain the process of designing forms
and reports, and the deliverables for
their creation.

� Apply the general guidelines for formatting
forms and reports.

� Format text, tables, and lists effectively.

� Explain the process of designing interfaces and
dialogues, and the deliverables for their
creation.

� Describe and apply the general guidelines for
interface design, including guidelines for layout
design, structuring data-entry fields, providing
feedback, and system help.

� Design human-computer dialogues, including
the use of dialogue diagramming.

� Discuss interface design guidelines unique
to the design of Internet-based electronic
commerce systems.

After studying this chapter, you should be able to:

eight
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

Bl
en

d
Im

ag
es

/
Su

pe
rS

to
ck

Chapter Preview . . .

Analysts must complete two important activi-
ties in the systems design phase, as illustrated in

Figure 8-1: designing the human interface and

designing databases. In this chapter, you learn

guidelines to follow when designing the human-

computer interface. In the first section, we

describe the process of designing forms and

reports and provide guidance on the deliver-

ables produced during this process. Properly

formatted segments of information are the

building blocks for designing all forms and

reports. We present guidelines for formatting

information and for designing interfaces and

dialogues. Next, we show you a method for rep-

resenting human-computer dialogues called

dialogue diagramming. Finally, we close the

chapter by examining various human-computer

interface design issues for Internet-based appli-

cations, specifically as they apply to Pine Valley

Furniture’s WebStore.

233

Designing the Human Interface
Designing Databases

✓

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 8-1
The systems design phase
consists of two important
activities: designing the
human interface and
designing databases.

Report
A business document that
contains only predefined data; it
is a passive document used only
for reading or viewing; typically
contains data from many
unrelated records or transactions.

Form
A business document that
contains some predefined data
and may include some areas
where additional data are to be
filled in; typically based on one
database record.

234 Part IV Systems Design

Designing Forms and Reports
System inputs and outputs—forms and reports—are produced at the end of the
systems analysis phase of the SDLC. During systems analysis, however, you may
not have been concerned with the precise appearance of forms and reports.
Instead, you focused on which forms and reports needed to exist and the con-
tent they needed to contain. You may have distributed to users the prototypes of
forms and reports that emerged during analysis as a way to confirm require-
ments. Forms and reports are integrally related to the DFD and E-R diagrams
developed during requirements structuring. For example, every input form is
associated with a data flow entering a process on a DFD, and every output form
or report is a data flow produced by a process on a DFD. Therefore, the contents
of a form or report correspond to the data elements contained in the associated
data flow. Further, the data on all forms and reports must consist of data ele-
ments in data stores and on the E-R data model for the application or else be
computed from these data elements. (In rare instances, data simply go from sys-
tem input to system output without being stored within the system.) It is com-
mon to discover flaws in DFDs and E-R diagrams as you design forms and
reports; these diagrams should be updated as designs evolve.

If you are unfamiliar with computer-based information systems, it will be help-
ful to clarify exactly what we mean by a form or report. A form is a business doc-
ument containing some predefined data and often includes some areas where
additional data are to be filled in. Most forms have a stylized format and are usu-
ally not in simple rows and columns. Examples of business forms are product
order forms, employment applications, and class registration sheets. Tradition-
ally, forms have been displayed on a paper medium, but today, video display tech-
nology allows us to duplicate the layout of almost any printed form, including an
organizational logo or any graphic, on a video display terminal. Forms on a video
display may be used for data display or data entry. Additional examples of forms
are an electronic spreadsheet, computer sign-on or menu, and an automated
teller machine (ATM) transaction layout. On the Internet, form interaction is the
standard method of gathering and displaying information when consumers order
products, request product information, or query account status.

A report is a business document containing only predefined data; it is a pas-
sive document used solely for reading or viewing. Examples of reports are
invoices, weekly sales summaries by region and salesperson, and a pie chart of
population by age categories. We usually think of a report as printed on paper,
but it may be printed to a computer file, a visual display screen, or some other
medium such as microfilm. Often a report has rows and columns of data, but a
report may consist of any format—for example, mailing labels. Frequently, the
differences between a form and a report are subtle. A report is only for reading
and often contains data about multiple unrelated records in a computer file. On
the other hand, a form typically contains data from only one record or is, at
least, based on one record, such as data about one customer, one order, or one
student. The guidelines for the design of forms and reports are similar.

The Process of Designing Forms and Reports
Designing forms and reports is a user-focused activity that typically follows a
prototyping approach (see Figure 1-12 to review the prototyping method).
First, you must gain an understanding of the intended user and task objectives
during the requirements determination process. During this process, the
intended user must answer several questions that attempt to answer the who,
what, when, where, and how related to the creation of all forms or reports, as
listed in Table 8-1. Gaining an understanding of these questions is a required
first step in the creation of any form or report.

Chapter 8 Designing the Human Interface 235

TABLE 8-1: Fundamental Questions When Designing Forms
and Reports

1. Who will use the form or report?

2. What is the purpose of the form or report?

3. When is the form or report needed and used?

4. Where does the form or report need to be delivered and used?

5. How many people need to use or view the form or report?

Understanding the skills and abilities of the users helps you create an effective
design. Are your users experienced computer users or novices? What is their edu-
cational level, business background, and task-relevant knowledge? Answers to
these questions provide guidance for both the format and the content of your
designs. Also, what is the purpose of the form or report? What task will users be
performing, and what information is needed to complete this task? Other questions
are also important to consider. Where will the users be when performing this task?
Will users have access to online systems or will they be in the field? How many peo-
ple will need to use this form or report? If, for example, a report is being produced
for a single user, the design requirements and usability assessment will be rela-
tively simple. A design for a larger audience, however, may need to go through
a more extensive requirements collection and usability assessment process.

After collecting the initial requirements, you structure and refine this informa-
tion into an initial prototype. Structuring and refining the requirements are com-
pleted without assistance from the users, although you may occasionally need to
contact users to clarify some issue overlooked during analysis. Finally, you ask
users to review and evaluate the prototype; then they may accept the design or
request that changes be made. If changes are needed, repeat the construction-
evaluate-refinement cycle until the design is accepted. Usually, several repeti-
tions of this cycle occur during the design of a single form or report. As with any
prototyping process, you should make sure that these iterations occur rapidly in
order to gain the greatest benefit from this design approach.

The initial prototype may be constructed in numerous environments, includ-
ing Visual Basic, Java, or HTML. The obvious choice is to employ standard
development tools used within your organization. Often, initial prototypes are
simply mock screens that are not working modules or systems. Mock screens
can also be produced from a word processor, computer graphics design pack-
age, or presentation, software. It is important to remember that the focus of this
phase within the SDLC is on the design—content and layout. How specific
forms or reports are implemented (e.g., the programming language or screen
painter code) is left for a later stage. Nonetheless, tools for designing forms and
reports are rapidly evolving. In the past, inputs and outputs of all types were typ-
ically designed by hand on a coding or layout sheet. For example, Figure 8-2
shows the layout of a data input form using a coding sheet.

Although coding sheets are still used, their importance has diminished
because of significant changes in system operating environments and the
evolution of automated design tools. Prior to the creation of graphical operat-
ing environments, for example, analysts designed many inputs and outputs that
were 80 columns (characters) by 25 rows, the standard dimensions for most
video displays. These limits in screen dimensions are radically different in
graphical operating environments such as Mac OS or Windows where font sizes
and screen dimensions can often be changed from user to user. Consequently,
the creation of new tools and development environments was needed to help
analysts and programmers develop these graphical and flexible designs.

236 Part IV Systems Design

SYSTEM
PROGRAM
PROGRAMMER DATE

Customer Information Entry
STAN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C U S T O M E R I N F O R M A T I O N
– – – – – – – – – – – – – – – – – – –

C U S T O M E R N U M B E R :

A D D R E S S :

C I T Y :

S T A T E :

Z I P :

N A M E :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIGURE 8-2
The layout of a data input
form using a coding sheet.

Figure 8-3 shows an example of the same data input form as designed in
Microsoft’s Visual Basic.Net. Note the variety of fonts, sizes, and highlighting
that was used. Online graphical tools for designing forms and reports are rap-
idly becoming the standard in most professional development organizations.

Deliverables and Outcomes
Each SDLC activity helps you to construct a system. In order to move from
phase to phase, each activity produces some type of deliverable that is used in
a later activity. For example, within the systems planning and selection phase of
the SDLC, the baseline project plan serves as input to many subsequent SDLC
activities. In the case of designing forms and reports, design specifications are

Chapter 8 Designing the Human Interface 237

FIGURE 8-3
A data input screen designed
in Microsoft’s Visual Basic.Net.

the major deliverables and are inputs to the system implementation and
operation phase. Design specifications have three sections:

1. Narrative overview

2. Sample design

3. Testing and usability assessment

The narrative overview provides a general overview of the characteristics of
the target users, tasks, system, and environmental factors in which the form or
report will be used. Its purpose is to explain to those who will actually develop
the final form, why this form exists, and how it will be used so that they can
make the appropriate implementation decisions. In this section, you list general
information and the assumptions that helped shape the design. For example,
Figure 8-4 shows an excerpt of a design specification for a Customer Account
Status form for Pine Valley Furniture. The first section of the specification,
Figure 8-4A, provides a narrative overview containing the information relevant
to developing and using the form within PVF. The overview explains the tasks
supported by the form, where and when the form is used, characteristics of the
people using the form, the technology delivering the form, and other pertinent
information. For example, if the form is delivered on a visual display terminal,
this section would describe the capabilities of this device, such as navigation
and whether it has a touch screen and whether color and a mouse are available.

In the second section of the specification, Figure 8-4B, a sample design of the
form is shown. This design may be hand-drawn using a coding sheet, although, in
most instances, it is developed using standard development tools. Using actual
development tools allows the design to be more thoroughly tested and assessed.
The final section of the specification, Figure 8-4C, provides all testing and usability
assessment information. Some specification information may be irrelevant when
designing certain forms and reports. For example, the design of a simple yes/no

238 Part IV Systems Design

(A) Narrative overview

Form:
Users:
Task:

System:
Environment:

(B) Sample design

(C) Testing and usability assessment

User-Rated Perceptions (average 14 users):
 consistency [1 = consistent to 7 = inconsistent]:
 sufficiency [1 = sufficient to 7 = insufficient]:
 accuracy [1 = accurate to 7 = inaccurate]:
 …

Customer Account Status
Customer account representatives within corporate offices
Assess customer account information: address, account
balance, year-to-date purchases and payments, credit limit,
discount percentage, and account status.
Microsoft Windows
Standard office environment

1.52
1.43
1.67

FIGURE 8-4
A design specification for a
Customer Account Status form
for Pine Valley Furniture: (A) The
narrative overview containing the
information relevant to developing
and using the form within PVF,
(B) A sample design of the PVF
form, (C) Testing and usability
assessment information.

selection form may be so straightforward that no usability assessment is needed.
Also, much of the narrative overview may be unnecessary unless intended to
highlight some exception that must be considered during implementation.

Formatting Forms and Reports
A wide variety of information can be provided to users of information systems,
ranging from text to video to audio. As technology continues to evolve, a greater
variety of data types will be used. A definitive set of rules for delivering every
type of information to users has yet to be defined because these rules are con-
tinuously evolving along with the rapid changes in technology. Research con-
ducted by computer scientists on human-computer interaction has provided
numerous general guidelines for formatting information. Many of these guide-
lines undoubtedly will apply to the formatting of all evolving information types
on yet-to-be-determined devices. Keep in mind that designing usable forms and
reports requires your active interaction with users. If this single and fundamen-
tal activity occurs, you will likely create effective designs.

For example, the human-computer interface is one of the greatest challenges
for designing mobile applications that run on devices such as the iPhone. In

Chapter 8 Designing the Human Interface 239

particular, the small video display of these devices presents significant chal-
lenges for application designers. Nevertheless, as these and other computing
devices evolve and gain popularity, standard guidelines will emerge to make the
process of designing interfaces much less challenging.

General Formatting Guidelines Over the past several years, industry
and academic researchers have investigated how information formatting
influences individual task performance and perceptions of usability. Through
this work, several guidelines for formatting information have emerged, as
highlighted in Table 8-2. These guidelines reflect some of the general truths of
formatting most types of information. The differences between a well-designed
form or report and a poorly designed one often will be obvious. For example,
Figure 8-5A shows a poorly designed form for viewing a current account
balance for a PVF customer. Figure 8-5B is a better design, incorporating several
general guidelines from Table 8-2.

The first major difference between the two forms has to do with the title. The
title in Figure 8-5A (Customer Information) is ambiguous, whereas the title in
Figure 8-5B (Detail Customer Account Information) clearly and specifically de-
scribes the contents of the form. The form in Figure 8-5B also includes the date
(October 11, 2012) the form was generated so that, if printed, it will be clear to
the reader when this occurred. Figure 8-5A displays the account status and cus-
tomer address, information that is extraneous to viewing the current account
balance, which is the intent of the form and provides information that is not in
the most useful format for the user. For example, Figure 8-5A provides all cus-
tomer data, as well as account transactions and a summary of year-to-date pur-
chases and payments. The form does not, however, provide the current
outstanding balance of the account, leaving the reader to perform a manual
calculation. The layout of information between the two forms also varies in bal-
ance and information density. Gaining an understanding of the skills of the

TABLE 8-2: Guidelines for Designing Forms and Reports

Guideline Description

Use meaningful titles Clear and specific titles describing content and use
of form or report

Revision date or code to distinguish a form or report
from prior versions

Current date that identifies when the form or report
was generated

Valid date that identifies on what date (or time) the data
in the form or report were accurate

Include meaningful information Only needed information displayed

Information provided in a usable manner without
modification

Balance the layout Information balanced on the screen or page

Adequate spacing and margins used

All data and entry fields clearly labeled

Design an easy navigation
system

Clearly show how to move forward and
backward

Clearly show where you are (e.g., page 1 of 3)

Notify user of the last page of a multipage sequence

Difficult to read: information
is packed too tightly

Vague title

No summary of
account activity

No navigation
information

A

FIGURE 8-5
Contrast of a poorly designed and a well-designed form: (A) A poorly designed form for viewing a current account balance
for a PVF customer, (B) A better design that incorporates several general guidelines from Table 8-2.

Clear navigation
information

Summary of
account information

Easy to read:
clear, balanced layout

Clear title

B

240 Part IV Systems Design

intended system users and the tasks they will be performing is invaluable when
constructing a form or report. By following these general guidelines, your
chances of creating effective forms and reports will be enhanced. In the next
sections, we discuss specific guidelines for highlighting information, displaying
text, and presenting numeric tables and lists.

Highlighting Information As display technologies continue to improve,
a greater variety of methods will be available to highlight information. Table 8-3
lists the most commonly used methods for highlighting information. Given this
vast array of options, it is important to consider how highlighting can be used
to enhance an output without being a distraction. In general, highlighting should
be used sparingly to draw the user to or away from certain information and to
group together related information. In several situations, highlighting can be a
valuable technique for conveying special information:

� Notifying users of errors in data entry or processing

� Providing warnings to users regarding possible problems, such as
unusual data values or an unavailable device

� Drawing attention to keywords, commands, high-priority messages,
and data that have changed or gone outside normal operating ranges

Highlighting techniques can be used singularly or in tandem, depending upon
the level of emphasis desired by the designer. Figure 8-6 shows a form where
several types of highlighting are used. In this example, columns clarify different
categories of data; capital letters and different fonts distinguish labels from
actual data; and bolding is used to draw attention to important data.

All capital letters Font size, intensity

Boxing Intensity differences

FIGURE 8-6
A form in which several types
of highlighting are used.

Highlighting should be used conservatively. For example, blinking and audible
tones should be used only to highlight critical information requiring the user’s
immediate response. Once a response is made, these highlights should be
turned off. Additionally, highlighting methods should be consistently selected
and used based upon the level of importance of the emphasized information. It
is also important to examine how a particular highlighting method appears on

Chapter 8 Designing the Human Interface 241

TABLE 8-3: Methods of Highlighting

Blinking and audible tones

Color differences

Intensity differences

Size differences

Font differences

Reverse video

Boxing

Underlining

All capital letters

Offsetting the position of nonstandard information

242 Part IV Systems Design

all possible output devices that could be used with the system. For example,
some color combinations may convey appropriate information on one display
configuration but wash out and reduce legibility on another.

Recent advances in the development of graphical operating environments
such as Windows, Mac OS, or Linux provide designers with some standard high-
lighting guidelines. However, because these guidelines are continuously evolv-
ing, they are often quite vague and leave a great deal of control in the hands of
the systems developer. To realize the benefits of using standard graphical oper-
ating environments—such as reduced user training time and interoperability
among systems—you must be disciplined in how you use highlighting.

Displaying Text In business-related systems, textual output is becoming
increasingly important as text-based applications, such as electronic mail, blogs,
and information services (e.g., Dow Jones Industrial Average stock index), are
more widely used. The display and formatting of system help screens, which often
contain lengthy textual descriptions and examples, is one example of textual data
that can benefit from following the simple guidelines that have emerged from
systems design research. These guidelines appear in Table 8-4. The first one is
simple: You should display text using common writing conventions such as mixed
upper- and lowercase and appropriate punctuation. For large blocks of text, and
if space permits, text should be double spaced. However, if the text is short, or
rarely used, it may make sense to use single spacing and place a blank line
between each paragraph. You should also left-justify text with a ragged right
margin—research shows that a ragged right margin makes it easier to find the
next line of text when reading than when text is both left- and right-justified.

When displaying textual information, you should also be careful not to
hyphenate words between lines or use obscure abbreviations and acronyms.
Users may not know whether the hyphen is a significant character if it is used
to continue words across lines. Information and terminology that are not widely
understood by the intended users may significantly influence the usability of the
system. Thus, you should use abbreviations and acronyms only if they are sig-
nificantly shorter than the full text and are commonly known by the intended
system users. Figure 8-7 shows two versions of a help screen from an applica-
tion system at PVF. Figure 8-7A shows many violations of the general guidelines
for displaying text, whereas Figure 8-7B shows the same information following
the general guidelines. Formatting guidelines for the entry of text and alphanu-
meric data are also very important and will be discussed later in the chapter.

Designing Tables and Lists Unlike textual information, where context and
meaning are derived through reading, the context and meaning of tables and lists
are derived from the format of the information. Consequently, the usability of
information displayed in tables and alphanumeric lists is likely to be much more
influenced by effective layout than most other types of information display. As with

TABLE 8-4: Guidelines for Displaying Text

Case Display text in mixed upper- and lowercase and use conventional
punctuation.

Spacing Use double spacing if space permits. If not, place a blank line between
paragraphs.

Justification Left-justify text and leave a ragged right margin.

Hyphenation Do not hyphenate words between lines.

Abbreviations Use abbreviations and acronyms only when they are widely understood
by users and are significantly shorter than the full text.

Chapter 8 Designing the Human Interface 243

Single spacing

VVague title Fixed, uppercase text

A

FIGURE 8-7
Contrasting two help screens from an application system at PVF: (A) A poorly designed help screen with many violations
of the general guidelines for displaying text, (B) An improved design for a help screen.

Clear title Mixed case

Spacing between sections

B

the display of textual information, tables and lists can also be greatly enhanced
by following a few simple guidelines. These are summarized in Table 8-5.

Figure 8-8 displays two versions of a form design from a Pine Valley Furniture
application system that displays customer year-to-date transaction information
in a table format. Figure 8-8A displays the information without consideration of
the guidelines presented in Table 8-5, and Figure 8-8B (only page 2 of 2 is shown)
displays this information after consideration of these guidelines.

One key distinction between these two display forms relates to labeling. The
information reported in Figure 8-8B has meaningful labels that stand out more
clearly compared to the display in Figure 8-8A. Transactions are sorted by date
and transaction type, and numeric data are right-justified and aligned by decimal
point in Figure 8-8B, which helps to facilitate scanning. Adequate space is left be-
tween columns, and blank lines are inserted after every five rows in Figure 8-8B
to help ease the finding and reading of information. Such spacing also provides
room for users to annotate data that catch their attention. Using the guidelines
presented in Table 8-5 helped create an easy-to-read layout of the information
for the user.

Most of the guidelines in Table 8-5 are rather obvious, but this and other tables
serve as a quick reference to validate that your form and report designs will be
usable. It is beyond our scope here to discuss each of these guidelines, but you
should read each carefully and think about why it is appropriate. For example,
why should labels be repeated on subsequent screens and pages (the first guide-
line in Table 8-5)? One explanation is that pages may be separated or copied,
and the original labels will no longer be readily accessible to the reader of the
data. Why should long alphanumeric data (see the last guideline) be broken into
small groups? (If you have a credit card or bank check, look at how your
account number is displayed.) Two reasons are that the characters will be easier
to remember as you read and type them, and this approach provides a natural
and consistent place to pause when you speak them over the phone (e.g., when
you are placing a phone order for products in a catalog).

244 Part IV Systems Design

Numeric data are
left-justified

Single column for
all types of data No column labels

A

FIGURE 8-8
Contrasting two Pine Valley Furniture forms: (A) A poorly designed form, (B) An improved design form.

Numeric data are
right-justified

Clear and separate column
labels for each data type

B

TABLE 8-5: General Guidelines for Displaying Tables and Lists

Guideline Description

Use meaningful labels All columns and rows should have meaningful labels.

Labels should be separated from other information by using highlighting.

Redisplay labels when the data extend beyond a single screen or page.

Format columns, rows, and text Sort in a meaningful order (e.g., ascending, descending, or alphabetical).

Place a blank line between every five rows in long columns.

Similar information displayed in multiple columns should be sorted vertically (i.e., read
from top to bottom, not left to right).

Columns should have at least two spaces between them.

Allow white space on printed reports for user to write notes.

Use a single typeface, except for emphasis.

Use same family of typefaces within and across displays and reports.

Avoid overly fancy fonts.

Format numeric, textual,
and alphanumeric data

Right-justify numeric data and align columns by decimal points or other
delimiter.

Left-justify textual data. Use short line length, usually 30 to 40 characters per line (this
guideline is what newspapers use, and it is easy to speed-read).

Break long sequences of alphanumeric data into small groups of three to four
characters each.

Chapter 8 Designing the Human Interface 245

When you design the display of numeric information, you must determine
whether a table or a graph should be used. In general, tables are best when the
user’s task involves finding an individual data value from a larger data set,
whereas line and bar graphs are more appropriate for analyzing data changes
over time. For example, if the marketing manager for Pine Valley Furniture
needed to review the actual sales of a particular salesperson for a particular
quarter, a tabular report such as the one shown in Figure 8-9 would be most use-
ful. This report has been annotated to emphasize good report design practices.
The report has both a printed date as well as a clear indication, as part of the
report title, of the period over which the data apply. Sufficient white space also
provides some room for users to add personal comments and observations.
Often, to provide such white space, a report must be printed in landscape,
rather than portrait, orientation. Alternatively, if the marketing manager wished
to compare the overall sales performance of each sales region, a line or bar
graph would be more appropriate, as illustrated in Figure 8-10.

Paper versus Electronic Reports When a report is produced on paper
rather than on a computer display, you need to consider some additional things.
For example, laser printers (especially color laser printers) and ink-jet printers
allow you to produce a report that looks exactly as it does on the display screen.
Thus, when using these types of printers, you can follow our general design
guidelines to create a report with high usability. However, other types of

Superscript characters
can be used to alert

reader of more
detailed information

Sort columns in some
meaningful order
(names are sorted

alphabetically
within region)

Long sequence of
alphanumeric data

is grouped into
smaller segments

Right-justify
all numeric data

Try to fit table
onto a single page
to help in making

comparisons

Place meaningful
labels on all

columns and rows

Alphabetic text
is left-justified

Use a
meaningful

title

Box the table data to
improve the appearance

of the table

Northwest & Mountain

Midwest & Mid-Atlantic

New England

Baker
Hawthorne
Hodges

Franklin
Stephenson1
Swenson

Brightman
Kennedy

999-99-9999
999-99-9999
999-99-9999

999-99-9999
999-99-9999
999-99-9999

999-99-9999
999-99-9999

Quarterly Actual Sales
Region Salesperson SSN First Second Third Fourth

195,000
220,000
110,000

110,000
75,000

110,000

250,000
310,000

146,000
175,000

95,000

120,000
66,000
98,000

280,000
190,000

133,000
213,000
170,000

170,000
80,000

100,000

260,000
270,000

120,000
198,000
120,000

90,000
80,000
90,000

330,000
280,000

Pine Valley Furniture
Salesperson Annual Summary Report, 2012

January 10, 2013 Page 1 of 2

1Sales reflect May 1, 2012–December 31, 2012.

FIGURE 8-9
Tabular report illustrating good report design guidelines.

246 Part IV Systems Design

First

25

20

15

10

5

0
Second Third

Quarter

Sa
le

s
Vo

lu
m

e
(0

00
0)

Fourth

Northwest & Mountain Region

Pine Valley Furniture
Quarterly Sales Report

Baker
Hawthorne

Salesperson

Hodges

A

FIGURE 8-10
Graphs showing quarterly sales at Pine Valley Furniture: (A) Line graph, (B) Bar graph.

First

25

20

15

10

5

0
Second Third

Quarter

Sa
le

s
Vo

lu
m

e
(0

00
0)

Fourth

Baker
Hawthorne

Salesperson

Northwest & Mountain Region

Pine Valley Furniture
Quarterly Sales Report

Hodges

B

printers cannot closely reproduce the display screen image onto paper. For
example, many business reports are produced using high-speed impact printers
that produce characters and a limited range of graphics by printing a fine
pattern of dots. The advantages of impact printers are that they are fast, reliable,
and relatively inexpensive. Their drawbacks are that they have a limited ability
to produce graphics and have a somewhat lower print quality. In other words,
they are good at rapidly producing reports that contain primarily alphanumeric
information but cannot exactly replicate a screen report onto paper. For this
reason, impact printers are mostly used for producing large batches of reports,
such as a batch of phone bills for your telephone company, on a wide range of
paper widths and types. When designing reports for impact printers, you use a
coding sheet similar to the one displayed in Figure 8-2, although coding sheets
for designing printer reports typically can have up to 132 columns. Like the
process for designing all forms and reports, you follow a prototyping process
and carefully control the spacing of characters in order to produce a high-
quality report. However, unlike other form and report designs, you may be
limited in the range of formatting, text types, and highlighting options.
Nonetheless, you can easily produce a highly usable report of any type if you
carefully and creatively use the available formatting options.

Designing Interfaces and Dialogues
Interface and dialogue design focuses on how information is provided to and
captured from users. Dialogues are analogous to a conversation between two
people. The grammatical rules followed by each person during a conversation
are analogous to the human-computer interface. The design of interfaces and
dialogues involves defining the manner in which humans and computers
exchange information. A good human-computer interface provides a uniform
structure for finding, viewing, and invoking the different components of a sys-
tem. In this section we describe how to design interfaces and dialogues.

The Process of Designing Interfaces and Dialogues
Similar to designing forms and reports, the process of designing interfaces and
dialogues is a user-focused activity. You follow a prototyping methodology of
iteratively collecting information, constructing a prototype, assessing usability,
and making refinements. To design usable interfaces and dialogues, you must
answer the same who, what, when, where, and how questions used to guide the

Chapter 8 Designing the Human Interface 247

design of forms and reports (see Table 8-1). Thus, this process parallels that of
designing forms and reports.

Deliverables and Outcomes
The deliverable and outcome from system interface and dialogue design is the
creation of a design specification. This specification is similar to the specifica-
tion produced for form and report designs—with one exception. Recall that the
design specification for forms and reports had three sections (see Figure 8-4):

1. Narrative overview

2. Sample design

3. Testing and usability assessment

For interface and dialogue designs, one additional subsection is included: a
section outlining the dialogue sequence—the ways a user can move from one
display to another. Later in the chapter you will learn how to design a dialogue
sequence by using dialogue diagramming. An outline for a design specification
for interfaces and dialogues is shown in Figure 8-11.

Designing Interfaces
In this section we discuss the design of interface layouts. This discussion pro-
vides guidelines for structuring and controlling data-entry fields, providing feed-
back, and designing online help. Effective interface design requires you to gain
a thorough understanding of each of these concepts.

Designing Layouts To ease user training and data recording, use standard
formats for computer-based forms and reports similar to paper-based forms and
reports for recording or reporting information. A typical paper-based form for

Design Specification

Narrative Overview
a.
b.
c.
d.
e.

Interface/Dialogue Designs
a.
b.

Testing and Usability Assessment
a.
b.
c.

1.

2.

3.

Interface/Dialogue Name
User Characteristics
Task Characteristics
System Characteristics
Environmental Characteristics

Form/Report Designs
Dialogue Sequence Diagram(s) and Narrative Description

Testing Objectives
Testing Procedures
Testing Results
i)
ii)
iii)
iv)
v)

Time to Learn
Speed of Performance
Rate of Errors
Retention over Time
User Satisfaction and Other Perceptions

FIGURE 8-11
An outline for a design
specification for interfaces
and dialogues.

248 Part IV Systems Design

Header

Body

Authorization

Totals

Sequence and
Time Information

PINE VALLEY FURNITURE

Sales Invoice

INVOICE No.
Date:

SOLD TO:

SOLD BY:

Customer Number:
Name:

Address:
City:

Phone:

Customer Signature:
Date:

State: Zip:

Product
Number Description

Quantity
Ordered

Unit
Price

Total
Price

Total Order Amount
Less Discount____%

Total Amount

FIGURE 8-12
Paper-based form for reporting
customer sales activity at Pine
Valley Furniture.

reporting customer sales activity is shown in Figure 8-12. This form has several
general areas common to most forms:

� Header information

� Sequence and time-related information

� Instruction or formatting information

� Body or data details

� Totals or data summary

� Authorization or signatures

� Comments

In many organizations, data are often first recorded on paper-based forms and
then later recorded within application systems. When designing layouts to
record or display information on paper-based forms, try to make both as similar
as possible. Additionally, data-entry displays should be consistently formatted
across applications to speed data entry and reduce errors. Figure 8-13 shows an
equivalent computer-based form to the paper-based form shown in Figure 8-12.

The design of between-field navigation is another item to consider when
designing the layout of computer-based forms. Because you can control the

Chapter 8 Designing the Human Interface 249

sequence for users to move between fields, standard screen navigation should
flow from left-to-right and top-to-bottom just as when you work on paper-based
forms. For example, Figure 8-14 contrasts the flow between fields on a form
used to record business contacts. Figure 8-14A uses a consistent left-to-right,
top-to-bottom flow. Figure 8-14B uses a flow that is nonintuitive. When appro-
priate, you should also group data fields into logical categories with labels
describing the contents of the category. Areas of the screen not used for data
entry or commands should be inaccessible to the user.

When designing the navigation procedures within your system, flexibility and
consistency are primary concerns. Users should be able to move freely forward
and backward or to any desired data-entry fields. Users should be able to navi-
gate each form in the same way or in as similar a manner as possible. Addition-
ally, data should not usually be permanently saved by the system until the user
makes an explicit request to do so. This option allows the user to abandon a
data-entry screen, back up, or move forward without adversely impacting the
contents of the permanent data.

Consistency extends to the selection of keys and commands. Assign each key
or command only one function. This assignment should be consistent through-
out the entire system and across systems, if possible. Depending upon the
application, various types of functional capabilities will be required to provide
smooth navigation and data entry. Table 8-6 provides a checklist for testing

FIGURE 8-13
Computer-based form for
reporting customer sales activity
at Pine Valley Furniture.

250 Part IV Systems Design

A

FIGURE 8-14
Contrasting the navigation flow within a data-entry form: (A) Proper flow between data-entry fields with a consistent left-to-right,
top-to-bottom flow, (B) Poor flow between data-entry fields with inconsistent flow.

B

the functional capabilities for providing smooth and easy navigation within a
form. For example, a good interface design provides a consistent way for mov-
ing the cursor to different places on the form, editing characters and fields,
moving among form displays, and obtaining help. These functions may be
provided by keystrokes, mouse, menu, or function keys. It is possible that, for a
single application, not all capabilities listed in Table 8-6 may be needed in order

TABLE 8-6: Checklist for Validating the Usability of User Interface

Cursor-Control Capabilities

Move the cursor forward to the next data field.

Move the cursor backward to the previous data field.

Move the cursor to the first, last, or some other designated data field.

Move the cursor forward one character in a field.

Move the cursor backward one character in a field.

Editing Capabilities

Delete the character to the left of the cursor.

Delete the character under the cursor.

Delete the whole field.

Delete data from the whole form (empty the form).

Exit Capabilities

Transmit the screen to the application program.

Move to another screen/form.

Confirm the saving of edits or go to another screen/form.

Help Capabilities

Get help on a data field.

Get help on a full screen/form.

Source: Based on J. S. Dumas (1988). Designing User Interfaces for Software. Upper Saddle River, NJ:
Prentice Hall.

Chapter 8 Designing the Human Interface 251

to create a good user interface. Yet, the capabilities that are used should be con-
sistently applied to provide an optimal user environment. Table 8-6 provides you
with a checklist for validating the usability of user interface designs.

Structuring Data Entry You should consider several guidelines when
structuring data-entry fields on a form. These guidelines are listed in Table 8-7.
The first is simple, yet, is often violated by designers. To minimize data-entry
errors and user frustration, never require the user to enter information that is
already available within the system or information that can be easily computed
by the system. For example, never require the user to enter the current date and
time, because each of these values can be easily retrieved from the computer
system’s internal calendar and clock. By allowing the system to do these tasks,
the user simply confirms that the calendar and clock are working properly.

Other guidelines are equally important. For example, suppose that a bank cus-
tomer is repaying a loan on a fixed schedule with equal monthly payments. Each
month when a payment is sent to the bank, a clerk needs to record that the pay-
ment has been received into a loan-processing system. Within such a system,
default values for fields should be provided whenever appropriate, which
allows the clerk to enter specific data into the system only when the customer
pays more or less than the scheduled amount. In all other cases, the clerk sim-
ply verifies that the check is for the default amount provided by the system and
presses a single key to confirm the receipt of payment.

When entering data, do not require the user to specify the dimensional units of
a particular value, for example, whether an amount is in dollars or a weight is in
tons. Use field formatting and the data-entry prompt to make clear the type of
data being requested. In other words, place a caption describing the data to be
entered adjacent to each data field so that the user knows what type of data
is being requested. As with the display of information, all data entered onto a
form should automatically justify in a standard format (e.g., date, time, money).

TABLE 8-7: Guidelines for Structuring Data-Entry Fields

Entry Never request data that are already online or that can be computed, for
example, do not request customer data on an order form if that data can be
retrieved from the database, and do not request extended prices that can be
computed from quantity sold and unit prices.

Defaults Always provide default values when appropriate, for example, assume
today’s date for a new sales invoice, or use the standard product price unless
overridden.

Units Make clear the type of data units requested for entry, for example, indicate
quantity in tons, dozens, pounds, etc.

Replacement Use character replacement when appropriate, for example, allow the user
to look up the value in a table or automatically fill in the value once the user
enters enough significant characters.

Captioning Always place a caption adjacent to fields; see Table 8-8 for caption options.

Format Provide formatting examples when appropriate, for example, automatically
show standard embedded symbols, decimal points, credit symbols,
or dollar signs.

Justify Automatically justify data entries; numbers should be right-justified and
aligned on decimal points, and text should be left-justified.

Help Provide context-sensitive help when appropriate, for example, provide a hot
key, such as the F1 key, that opens the help system on an entry that is most
closely related to where the cursor is on the display.

252 Part IV Systems Design

Table 8-8 illustrates display design options for printed forms. For data entry on
video display terminals, highlight the area in which text is entered so that the exact
number of characters per line and number of lines are clearly shown. You can also
use check-off boxes or radio buttons to allow users to choose standard textual
responses. Use data-entry controls to ensure that the proper type of data (alpha-
betic or numeric, as required) is entered. Data-entry controls are discussed next.

Controlling Data Input One objective of interface design is to reduce
data-entry errors. As data are entered into an information system, steps must be
taken to ensure that the input is valid. As a systems analyst, you must anticipate
the types of errors users may make and design features into the system’s
interfaces to avoid, detect, and correct data-entry mistakes. Several types of
data errors are summarized in Table 8-9. Data errors can occur from appending
extra data onto a field, truncating characters off a field, transcripting the wrong
characters into a field, or transposing one or more characters within a field.
Systems designers have developed numerous tests and techniques for detecting
invalid data before saving or transmission, thus improving the likelihood that
data will be valid. Table 8-10 summarizes these techniques. These tests and
techniques are often incorporated into both data-entry screens and when data
are transferred from one computer to another.

Correcting erroneous data is much easier to accomplish before it is perma-
nently stored in a system. Online systems can notify a user of input problems as
data are being entered. When data are processed online as events occur, it is
much less likely that data-validity errors will occur and not be caught. In an
online system, most problems can be easily identified and resolved before
permanently saving data to a storage device using many of the techniques

TABLE 8-9: Types of Data Errors

Data Error Description

Appending Adding additional characters to a field

Truncating Losing characters from a field

Transcripting Entering invalid data into a field

Transposing Reversing the sequence of one or more characters in a field

TABLE 8-8: Display Design Options for Entering Text

Options Example

Line caption Phone Number () -

Drop caption () -

Phone Number

Boxed caption Phone Number

Delimited characters |(| | | |)| | | |-| | | | |

Phone Number

Check-off boxes Method of payment (check one)

❑ Check

❑ Cash

❑ Credit card: Type

Chapter 8 Designing the Human Interface 253

described in Table 8-10. However, in systems where data inputs are stored and
entered (or transferred) in batches, the identification and notification of errors
are more difficult. Batch processing systems can, however, reject invalid inputs
and store them in a log file for later resolution.

Most of the straightforward tests and techniques shown in Table 8-10 are widely
used. Some can be handled by data-management technologies, such as a database
management system (DBMS), to ensure that they are applied for all data-
maintenance operations. If a DBMS cannot perform these tests, then you must de-
sign the tests into program modules. Self-checking digits, shown in Figure 8-15, is
an example of a sophisticated program. The figure provides a description and an
outline of how to apply the technique. A short example then shows how a check
digit is added to a field before data entry or transfer. Once entered or transferred,
the check digit algorithm is again applied to the field to “check” whether the check
digit received obeys the calculation. If it does, it is likely (but not guaranteed,
because two different values could yield the same check digit) that no data trans-
mission or entry error occurred. If not equal, then some type of error occurred.

In addition to validating the data values entered into a system, controls must
be established to verify that all input records are correctly entered and
processed only once. A common method used to enhance the validity of enter-
ing batches of data records is to create an audit trail of the entire sequence of
data entry, processing, and storage. In such an audit trail, the actual sequence,
count, time, source location, and human operator are recorded in a separate
transaction log in the event of a data input or processing error. If an error
occurs, corrections can be made by reviewing the contents of the log. Detailed

Audit trail
A record of the sequence of data
entries and the date of those
entries.

TABLE 8-10: Techniques Used by Systems Designers to Detect
Data Errors before Saving or Transmission

Validation Test Description

Class or composition Test to ensure that data are of proper type (e.g., all numeric, all
alphabetic, alphanumeric)

Combinations Test to see that value combinations of two or more data fields are
appropriate or make sense (e.g., does the quantity sold make sense
given the type of product?)

Expected values Test to see whether data are what is expected (e.g., match with
existing customer names, payment amount, etc.)

Missing data Test for existence of data items in all fields of a record (e.g., is there
a quantity field on each line item of a customer order?)

Pictures/templates Test to ensure that data conform to a standard format (e.g., are
hyphens in the right places for a student ID number?)

Range Test to ensure data are within a proper range of values (e.g., is
a student’s grade-point average between 0 and 4.0?)

Reasonableness Test to ensure data are reasonable for situation (e.g., pay rate for
a specific type of employee)

Self-checking digits Technique by which extra digits, derived using a standard formula
(see Figure 8-15), are added to a numeric field before transmission
and checked after transmission

Size Test for too few or too many characters (e.g., is social security
number exactly nine digits?)

Values Test to make sure values come from a set of standard values
(e.g., two-letter state codes)

254 Part IV Systems Design

Description Techniques where extra digits are added to a field to assist in
verifying its accuracy

Example

1
´1

1 +

2
´2

4 +

4
´1

4 +

7
´2
14 +

3
´1

3 = 26

Assume a numeric part number of: 12473

Method Multiply each digit of a numeric field by weighting
factor (e.g., 1,2,1,2, . . .).
Sum the results of weighted digits.
Divide sum by modulus number (e.g., 10).
Subtract remainder of division from modulus number
to determine check digit.
Append check digits to field.

1.

2.
3.
4.

5.

Multiply each digit of part number by weighting factor
from right to left and sum the results of weighted
digits:

Divide sum by modulus number.
 26/10 = 2 remainder 6
Subtract remainder from modulus number to
determine check digit.
 check digit = 10 – 6 = 4
Append check digits to field.
Field value with appended check digit = 124734

1–2.

3.

4.

5.

FIGURE 8-15
How check digits are calculated.

logs of data inputs not only are useful for resolving batch data-entry errors and
system audits, but also serve as a powerful method for performing backup and
recovery operations in the case of a catastrophic system failure.

Providing Feedback When you talk with friends, you expect them to give
you feedback by nodding and replying to your questions and comments. Without
feedback, you would be concerned that they were not listening. Similarly, when
designing system interfaces, providing appropriate feedback is an easy way to
make a user’s interaction more enjoyable; not providing feedback is a sure way
to frustrate and confuse. System feedback can consist of three types:

1. Status information

2. Prompting cues

3. Error and warning messages

1. Status Information. Providing status information is a simple technique
for keeping users informed of what is going on within a system. For
example, relevant status information, such as displaying the current
customer name or time, placing appropriate titles on a menu or screen,
and identifying the number of screens following the current one
(e.g., Screen 1 of 3), all provide needed feedback to the user. Providing
status information during processing operations is especially important if
the operation takes longer than a second or two. For example, when
opening a file, you might display, “Please wait while I open the file,” or
when performing a large calculation, flash the message “Working . . .” to
the user. Further, it is important to tell the user that besides working, the
system has accepted the user’s input and the input was in the correct
form. Sometimes it is important to give the user a chance to obtain more
feedback. For example, a function key could toggle between showing

Chapter 8 Designing the Human Interface 255

a “Working . . .” message and giving more specific information as each
intermediate step is accomplished. Providing status information reassures
users that nothing is wrong and makes them feel in command of the
system, not vice versa.

2. Prompting Cues. A second feedback method is to display prompting cues.
When prompting the user for information or action, it is useful to be
specific in your request. For example, suppose a system prompted users
with the following request:

READY FOR INPUT: ______

With such a prompt, the designer assumes that the user knows exactly
what to enter. A better design would be specific in its request, possibly
providing an example, default values, or formatting information.
An improved prompting request might be as follows:

Enter the customer account number (123-456-7):____-___-_

3. Error and Warning Messages. A final method available to you for
providing system feedback is using error and warning messages.
Following a few simple guidelines can greatly improve the usefulness of
these messages. First, make messages specific and free of error codes and
jargon. Additionally, messages should never scold the user but attempt to
guide the user toward a resolution. For example, a message might say, “No
customer record found for that customer ID. Please verify that digits were
not transposed.” Messages should be in user, not computer, terms. Terms
such as end of file, disk I/O error, or write protected may be too technical
and not helpful for many users. Multiple messages can be useful so that a
user can get more detailed explanations if wanted or needed. Also, make
sure error messages appear in roughly the same format and placement
each time so that they are recognized as error messages and not as some
other information. Examples of bad and good messages are provided
in Table 8-11. Use these guidelines to provide useful feedback in your
designs. A special type of feedback is answering help requests from users.
This important topic is described next.

Providing Help Designing a help system is one of the most important
interface design issues you will face. When designing help, you need to put
yourself in the user’s place. When accessing help, the user likely does not know
what to do next, does not understand what is being requested, or does not know
how the requested information needs to be formatted. A user requesting help is
much like a ship in distress, sending an SOS. In Table 8-12, we provide our SOS
guidelines for the design of system help: Simplify, Organize, and Show. Our first

TABLE 8-11: Examples of Poor and Improved Error Messages

Poor Error Messages Improved Error Messages

ERROR 56 OPENING FILE The file name you typed was not found. Press F2 to list valid
file names.

WRONG CHOICE Please enter an option from the menu.

DATA ENTRY ERROR The prior entry contains a value outside the range of
acceptable values. Press F9 for list of acceptable values.

FILE CREATION ERROR The file name you entered already exists. Press F10 if you
want to overwrite it. Press F2 if you want to save it with
a new name.

256 Part IV Systems Design

A

FIGURE 8-16
Contrasting help screens: (A) A poorly designed help screen, (B) An improved design for a help screen.

B

guideline, simplify, suggests that help messages should be short, to the point,
and use words that users can understand. The second guideline, organize,
means that the information in help messages should be easy for users to absorb.
Long paragraphs of text are often difficult for people to understand. A better
design organizes lengthy information in a manner easier for users to digest
through the use of bulleted and ordered lists. Finally, it is often useful to
explicitly show users how to perform an operation and the outcomes of
procedural steps. Figure 8-16 contrasts the designs of two help screens, one that
employs our guidelines and one that does not.

Many commercially available systems provide extensive system help. For
example, Table 8-13 lists the range of help available in a popular electronic
spreadsheet. Many systems are also designed so that users can vary the level of
detail provided. Help may be provided at the system level, screen or form level,
and individual field level. The ability to provide field-level help is often referred
to as context-sensitive help. For some applications, providing context-sensitive
help for all system options is a tremendous undertaking that is virtually a proj-
ect in itself. If you do decide to design an extensive help system with many lev-
els of detail, you must be sure that you know exactly what the user needs help
with, or your efforts may confuse users more than help them. After leaving a
help screen, users should always return back to where they were prior to

TABLE 8-12: Guidelines for Designing System Help

Guideline Explanation

Simplify Use short, simple wording, common spelling, and complete sentences.
Give users only what they need to know, with ability to find additional
information.

Organize Use lists to break information into manageable pieces.

Show Provide examples of proper use and the outcomes of such use.

Chapter 8 Designing the Human Interface 257

requesting help. If you follow these simple guidelines, you will likely design a
highly usable help system.

As with the construction of menus, many programming environments provide
powerful tools for designing system help. For example, Microsoft’s HTML Help
SDK allows you to construct hypertext-based help systems quickly. In this envi-
ronment, you use a text editor to construct help pages that can be easily linked
to other pages containing related or more specific information. Linkages are cre-
ated by embedding special characters into the text document that make words
hypertext buttons—that is, direct linkages—to additional information. The
HTML Help SDK transforms the text document into a hypertext document. For
example, Figure 8-17 shows a hypertext-based help screen from Microsoft.

TABLE 8-13: Types of Help

Type of Help Example of Question

Help on help How do I get help?

Help on concepts What is a customer record?

Help on procedures How do I update a record?

Help on messages What does “Invalid File Name” mean?

Help on menus What does “Graphics” mean?

Help on function keys What does each function key do?

Help on commands How do I use the “Cut” and “Paste” commands?

Help on words What do “merge” and “sort” mean?

FIGURE 8-17
Hypertext-based help system
from Microsoft.

Source: Copyright © 2011
Microsoft Corporation. All rights
reserved. Protected by the copyright
laws of the United States and
international treaties.

258 Part IV Systems Design

Hypertext-based help systems have become the standard environment for most
commercial operating environments for two primary reasons. First, standardiz-
ing system help across applications eases user training. Second, hypertext
allows users to selectively access the level of help they need, making it easier to
provide effective help for both novice and experienced users within the same
system.

Designing Dialogues
The process of designing the overall sequences that users follow to interact with
an information system is called dialogue design. A dialogue is the sequence in
which information is displayed to and obtained from a user. As with other
design processes, designing dialogues is a three-step process:

1. Designing the dialogue sequence

2. Building a prototype

3. Assessing usability

The primary design guideline for designing dialogues is consistency; dialogues
need to be consistent in sequence of actions, keystrokes, and terminology. In
other words, use the same labels for the same operations on all screens and the
same location of the same information on all displays.

One example of these guidelines concerns removing data from a database or
file (see the Reversal entry in Table 8-14). It is good practice to display the in-
formation that will be deleted before making a permanent change to the file. For

Dialogue
The sequence of interaction
between a user and a system.

TABLE 8-14: Guidelines for the Design of Human-Computer Dialogues

Guideline Explanation

Consistency Dialogues should be consistent in sequence of actions, keystrokes, and terminology (e.g., use
the same labels for the same operations on all screens and the same location of the same
information on all displays).

Shortcuts and sequence Allow advanced users to take shortcuts using special keys (e.g., CTRL-C to copy highlighted
text). A natural sequence of steps should be followed (e.g., enter first name before last name,
if appropriate).

Feedback Feedback should be provided for every user action (e.g., confirm that a record has been
added, rather than simply putting another blank form on the screen).

Closure Dialogues should be logically grouped and have a beginning, middle, and end (e.g., the last
in the sequence of screens should indicate that there are no more screens).

Error handling All errors should be detected and reported; suggestions on how to proceed should be made
(e.g., suggest why such errors occur and what the user can do to correct the error). Synonyms
for certain responses should be accepted (e.g., accept either “t,” “T,” or “TRUE”).

Reversal Dialogues should, when possible, allow the user to reverse actions (e.g., undo a deletion);
data should not be deleted without confirmation (e.g., display all the data for a record the user
has indicated is to be deleted).

Control Dialogues should make the user (especially an experienced user) feel in control of the system
(e.g., provide a consistent response time at a pace acceptable to the user).

Ease Dialogues should provide simple means for users to enter information and navigate between
screens (e.g., provide means to move forward, backward, and to specific screens, such as first
and last).

Source: Based on B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs (2009). Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 5th Edition. Reading, MA: Addison-Wesley.

Dialogue diagramming
A formal method for designing
and representing human-
computer dialogues using
box-and-line diagrams.

Chapter 8 Designing the Human Interface 259

example, if the customer service representative wanted to remove a customer
from the database, the system should ask only for the customer ID in order to
retrieve the correct customer account. Once found, and before allowing the
confirmation of the deletion, the system should display the account informa-
tion. For actions making permanent changes to system data files and when the
action is not commonly performed, many system designers use the double-
confirmation technique by which the users must confirm their intention twice
before being allowed to proceed.

Designing the Dialogue Sequence Your first step in dialogue design is
to define the sequence. In other words, you must have a clear understanding of
the user, task, technological, and environmental characteristics when designing
dialogues. Suppose that the marketing manager at Pine Valley Furniture (PVF)
wants sales and marketing personnel to be able to review the year-to-date
transaction activity for any PVF customer. After talking with the manager, you
both agree that a typical dialogue between a user and the Customer Information
System for obtaining this information might proceed as follows:

1. Request to view individual customer information

2. Specify the customer of interest

3. Select the year-to-date transaction summary display

4. Review customer information

5. Leave system

As a designer, once you understand how a user wishes to use a system, you
can then transform these activities into a formal dialogue specification.

A method for designing and representing dialogues is dialogue diagramming.
Dialogue diagrams, illustrated in Figure 8-18, have only one symbol, a box with
three sections; each box represents one display (which might be a full screen or
a specific form or window) within a dialogue. The three sections of the box are
used as follows:

1. Top: Contains a unique display reference number used by other displays
for referencing it

2. Middle: Contains the name or description of the display

3. Bottom: Contains display reference numbers that can be accessed from
the current display

All lines connecting the boxes within dialogue diagrams are assumed to be
bidirectional and, thus, do not need arrowheads to indicate direction. With this
capability, users are allowed to always move forward and backward between
adjacent displays. If you desire only unidirectional flows within a dialogue,
arrowheads should be placed at one end of the line. Within a dialogue diagram,
you can easily represent the sequencing of displays, the selection of one display
over another, or the repeated use of a single display (e.g., a data-entry display).
These three concepts—sequence, selection, and iteration—are illustrated in
Figure 8-19.

Unique Reference
Number of Display

Name or Description
of Display

Reference Numbers
of Return Displays

Top

Middle

Bottom

FIGURE 8-18
A dialogue-diagramming box
has three sections.

260 Part IV Systems Design

Sequence

Iteration

Selection

Display
A

Display
B

Display
D

Display
C

Display
E

FIGURE 8-19
Dialogue diagram illustrating
sequence, selection, and iteration.

Continuing with our PVF example, Figure 8-20 shows a partial dialogue
diagram for processing the marketing manager’s request. In this diagram, the ana-
lyst placed the request to view year-to-date customer information within the
context of the overall Customer Information System. The user must first gain
access to the system through a log-on procedure (item 0). If log-on is success-
ful, a main menu is displayed that has four items (item 1). Once the user selects
the Individual Customer Information display (item 2), control is transferred to
the Select Customer display (item 2.1). After a customer is selected, the user is
presented with an option to view customer information four different ways
(item 2.1.1). Once the user views the customer’s year-to-date transaction activ-
ity (item 2.1.1.2), the system will allow the user to back up to select a different
customer or back up to the main menu (see bottom of item 2.1.1.2).

Building Prototypes and Assessing Usability Building dialogue
prototypes and assessing usability are often optional activities. Some systems
may be simple and straightforward. Others may be more complex but are
extensions to existing systems where dialogue and display standards have
already been established. In either case, you may not be required to build
prototypes and do a formal assessment. However, for many other systems, it is
critical that you build prototype displays and then assess the dialogue;
developing a prototype can pay numerous dividends later in the systems
development life cycle (e.g., it may be easier to implement a system or train
users on a system they have already seen and used).

Building prototype displays is often a relatively easy activity if you use graph-
ical development environments such as Microsoft’s Visual Basic.Net. Some
systems development environments include easy-to-use input and output (form,
report, or window) design utilities. Also several tools called “Prototypers” or
“Demo Builders” allow you to design displays quickly and show how an

Chapter 8 Designing the Human Interface 261

interface will work within a full system. These demo systems allow users to
enter data and move through displays as if they were using the actual system.
Such activities are useful not only for showing how an interface will look and
feel but also for assessing usability and performing user training long before
actual systems are completed.

Log-On
Screen

Main
Menu

System

0

0, System

1

Reports

0, 1

5

Individual
Customer

Information

0, 1

2

Order
Status

0, 1

3

Select
Customer

1

2.1

Customer
Information

2.1, 1

2.1.1

YTD
Summary

1, 2.1, 2.1.1

2.1.1.1

YTD
Transactions

1, 2.1, 2.1.1

2.1.1.2

Lifetime
Summary

1, 2.1, 2.1.1

2.1.1.3

Lifetime
Transactions

1, 2.1, 2.1.1

2.1.1.4

Salesperson
Information

0, 1

4

FIGURE 8-20
Dialogue diagram for the Customer Information System at Pine Valley Furniture.

262 Part IV Systems Design

Pine Valley Furniture WebStore: Designing the Human Interface
Designing the human interface for an Internet-based electronic commerce
application is a central and critical design activity. Because customers will interact
with a company at this point, much care must be put into its design. Like the
process followed when designing the interface for other types of systems, a pro-
totyping design process is most appropriate when designing the human interface
for an Internet electronic commerce system. Although the techniques and tech-
nology for building the human interface for Internet sites are rapidly evolving,
several general design guidelines have emerged. In this section, we examine
some of these as they apply to the design of Pine Valley Furniture’s WebStore.

General Guidelines for Designing Web Interfaces
Over the years, interaction standards have emerged for virtually all of the com-
monly used desktop computing environments such as Windows or Mac OS.
However, some interface design experts believe that the growth of the Web has
resulted in a big step backward for interface design. One problem is that count-
less nonprofessional developers are designing commercial Web applications.
In addition, four other important factors contribute to a lack of standards
(Johnson, 2007):

� Web’s single “click-to-act” method of loading static hypertext
documents (i.e., most buttons on the Web do not provide click
feedback)

� Limited capabilities of most Web browsers to support finely grained
user interactivity

� Limited agreed-upon standards for encoding Web content and control
mechanisms

� Lack of maturity of Web scripting and programming languages as well
as limitations in commonly used Web GUI component libraries

In addition to these contributing factors, designers of Web interfaces and dia-
logues are often guilty of many design errors. Although not inclusive of all possi-
ble errors, Table 8-15 summarizes those errors that are particularly troublesome.

General Guidelines for Web Layouts
As previously mentioned, the rapid deployment of Internet Web sites has
resulted in having countless people design sites who, arguably, have limited
ability to do so. To put this into perspective, consider the following quote from
Web design guru, Jakob Nielsen (1999a, pp. 65–66):

If the [Web’s] growth rate does not slow down, the Web will reach 200 mil-
lion sites sometime during 2003. . . . The world has about 20,000 user inter-
face [UI] professionals. If all sites were to be professionally designed by a
single UI professional, we can conclude that every UI professional in the
world would need to design one Web site every working hour from now on
to meet demand. This is obviously not going to happen. . . .

Continued growth in the number of unique Web sites, estimated to exceed
250 million in early 2011, makes this problem increasingly dire. Three possible
solutions to the problem include the following:

� Make it possible to design reasonably usable sites without having UI
expertise

� Train more people in good Web design

� Live with poorly designed sites that are hard to use

Chapter 8 Designing the Human Interface 263

Designing forms and reports may lead to errors that are specific to Web site
design. It is unfortunately beyond the scope of this book to critically examine
all possible design problems with contemporary Web sites. Here, we will simply
summarize those errors that commonly occur and are particularly detrimental
to the user’s experience (see Table 8-16). Fortunately, numerous excellent
sources are available for learning more about designing useful Web sites (Ash,
2008; Loveday and Niehaus, 2007; Nielsen and Loranger, 2006; Veeny, 2008;
www.useit.com; www.webpagesthatsuck.com).

Designing the Human Interface at Pine Valley Furniture
The first design activity that Jim Woo and the PVF development team focused
on was the human-computer interface. To begin, they reviewed many popular
electronic commerce Web sites and established the following design guidelines:

� Menu-driven navigation with cookie crumbs

� Lightweight graphics

� Forms and data integrity rules

� Template-based HTML

In order to ensure that all team members understood what was meant by each
guideline, Jim organized a design briefing to explain how each would be incor-
porated into the WebStore interface design.

TABLE 8-15: Common Errors When Designing the Interface and Dialogues of Web Sites

Error Description

Opening new browser
window

Avoid opening a new browser window when a user clicks on a link unless it is clearly
marked that a new window will be opened; users may not see that a new window has
been opened, which will complicate navigation, especially when moving backward.

Breaking or slowing down
the back button

Make sure users can use the back button to return to prior pages. Avoid opening new
browser window; using immediate redirect where and when a user clicks the back button,
they are pushed forward to an undesired location; or prevent caching such that each click
of the back button requires a new trip to the server.

Complex URLs Avoid overly long and complex URLs that make it more difficult for users to understand where
they are and can cause problems if users want to e-mail page locations to others.

Orphan pages Avoid having pages with no “parent” that can be reached by using a back button; requires
users to “hack” the end of the URL to get back to a prior page.

Scrolling navigation
pages

Avoid placing navigational links below where a page opens, because many users may miss
these important options that are not immediately visible.

Lack of navigation support Make sure your pages conform to user expectations by providing commonly used icon links,
such as a site logo at the top of major elements. Also place these elements on pages in a
consistent manner.

Hidden links Make sure you leave a border around images that are links, don’t change link colors from
normal defaults, and avoid embedding links within long blocks of text.

Links that don’t provide
enough information

Avoid not turning off link-marking borders so that links clearly show which links users have
clicked and which they have not. Make sure users know which links are internal anchor
points versus external links, and indicate if a link brings up a separate browser window from
those that do not. Finally, make sure link images and text provide enough information to the
user so that they understand the meaning of the link.

Buttons that provide no click
feedback

Avoid using image buttons that don’t clearly change when being clicked; use Web GUI
toolkit button, HTML from-submit buttons, or simple textual links.

www.useit.com

www.webpagesthatsuck.com

Cookie crumbs
A technique for showing users
where they are in a Web site
by placing a series of “tabs” on
a Web page that shows users
where they are and where they
have been.

264 Part IV Systems Design

Menu-Driven Navigation with Cookie Crumbs
After reviewing several sites, the team concluded that menus should stay in the
exact same place throughout the entire site. They concluded that placing a
menu in the same location on every page will help customers to become famil-
iar with the site more quickly and therefore to navigate through the site more
rapidly. Experienced Web developers know that the quicker customers can
reach a specific destination at a site, the quicker they can purchase the product
they are looking for or get the information they set out to find. Jim emphasized
this point by stating, “These details may seem silly, but the second users find
themselves ‘lost’ in our site, they’re gone. One mouse click and they’re no longer
shopping at Pine Valley Furniture but at one of our competitor’s sites.”

A second design feature, and one that is being used on many electronic com-
merce sites, is cookie crumbs. Cookie crumbs are a technique for showing
users where they are in the site by placing “tabs” on a Web page that remind
users where they are and where they have been. These tabs are hypertext links
that can allow users to move backward quickly in the site. For example, sup-
pose that a site is four levels deep, with the top level called “Entrance,” the sec-
ond “Products,” the third “Options,” and the fourth “Order.” As the user moves
deeper into the site, a tab is displayed across the top of the page showing the
user where she is and giving her the ability to jump backward quickly one or
more levels. In other words, when first entering the store, a tab is displayed at
the top (or some other standard place) of the screen with the word “Entrance.”
After moving down a level, two tabs are displayed, “Entrance” and “Products.”
After selecting a product on the second level, a third level is displayed where a
user can choose product options. When this level is displayed, a third tab is

TABLE 8-16: Common Errors When Designing the Layout of Web Pages

Error Recommendation

Nonstandard use of GUI
widgets

Make sure that when using standard design items, that they behave in accordance to major
interface design standards. For example, the rules for radio buttons state that they are used to
select one item among a set of items that is, not confirmed until “OK’ed” by a user. In many Web
sites, selecting radio buttons are used as both selection and action.

Anything that looks like
advertising

Because research on Web traffic has shown that many users have learned to stop paying
attention to Web advertisement, make sure that you avoid designing any legitimate information
in a manner that resembles advertising (e.g., banners, animations, pop-ups).

Bleeding-edge technology Make sure that users don’t need the latest browsers or plug-ins to view your site.

Scrolling text and looping
animators

Avoid scrolling text and animations because they are both hard to read and often equated by
users with advertising.

Nonstandard link colors Avoid using nonstandard colors to show links and for showing links that users have already used;
nonstandard colors will confuse the user and reduce ease of use.

Outdated information Make sure that your site is continuously updated so that users “feel” that the site is regularly
maintained and updated. Outdated content is a sure way to lose credibility.

Slow download times Avoid using large images, lots of images, unnecessary animations, or other time-consuming
content that will slow the downloading time of a page.

Fixed-formatted text Avoid fixed-formatted text that requires users to scroll horizontally to view contents or links.

Displaying long lists as long
pages

Avoid requiring users to scroll down a page to view information, especially navigational controls.
Manage information by showing only N items at a time, using multiple pages, or by using
a scrolling container within the window.

Lightweight graphics
The use of small simple images
to allow a Web page to be
displayed more quickly.

Chapter 8 Designing the Human Interface 265

produced with the label “Options.” Finally, if the customer decides to place an
order and selects this option, a fourth-level screen is displayed and a fourth tab
displayed with the label “Order.” In summary:

Level 1: Entrance
Level 2: Entrance → Products
Level 3: Entrance → Products → Options
Level 4: Entrance → Products → Options → Order

By using cookie crumbs, users know exactly how far they have wandered
from “home.” If each tab is a link, users can quickly jump back to a broader part
of the store should they not find exactly what they are looking for. Cookie
crumbs serve two important purposes. First, they allow users to navigate to a
point previously visited and will ensure that they are not lost. Second, it clearly
shows users where they have been and how far they have gone from home.

Lightweight Graphics
In addition to easy menu and page navigation, the PVF development team wants
a system where Web pages load quickly. A technique to assist in making pages
load quickly is lightweight graphics. Lightweight graphics are the use of small
simple images that allow a page to load as quickly as possible. “Using light-
weight graphics allows pages to load quickly and helps users to reach their final
location in the site—hopefully the point-of-purchase area—as quickly as possi-
ble. Large color images will only be used for displaying detailed product pic-
tures that customers explicitly request to view,” Jim explained. Experienced
Web designers have found that customers are not willing to wait at each hop of
navigation for a page to load, just so they have to click and wait again. The quick
feedback that a Web site with lightweight graphics can provide will help to keep
customers at the WebStore longer.

Forms and Data Integrity
Because the goal of the WebStore is to have users place orders for products, all
forms that request information should be clearly labeled and provide adequate
room for input. If a specific field requires a specific input format such as a date
of birth or phone number, it must provide a clear example for the user so that
data errors can be reduced. Additionally, the site must clearly designate which
fields are optional, which are required, and which have a range of values.

Jim emphasized, “All of this to me seems a bit like overkill, but it makes pro-
cessing the data much simpler. Our site checks all data before submitting it to
the server for processing. This allows us to provide quicker feedback to the user
on any data-entry error and eliminate the possibility of writing erroneous data
into the permanent database. Additionally, we want to provide a disclaimer to
reassure our customers that the data will be used only for processing orders,
will never be sold to marketers, and will be kept strictly confidential.”

Template-Based HTML
When Jim talked with the consultants about the WebStore during the analysis
phase, they emphasized the advantages of using template-based HTML. He
was told that when displaying individual products, it would be advantageous to
try to have a few “templates” that could be used to display the entire product
line. In other words, not every product needs its own page; the development
time for that would be far too great. Jim explained, “We need to look for ways
to write a module once and reuse it. This way, a change requires modifying one
page, not seven hundred. Using HTML templates will help us create an interface
that is easy to maintain. For example, a desk and a filing cabinet are two

Template-based HTML
Templates to display and process
common attributes of higher-level,
more abstract items.

266 Part IV Systems Design

completely different products. Yet, both have an array of finishes to choose
from. Logically, each item requires the same function—namely: ‘display all fin-
ishes.’ If designed correctly, this function can be applied to all products in the
store. On the other hand, if we write a separate module for each product, it
would require us to change each and every module every time we make a prod-
uct change, like adding a new finish. But a function such as ‘display all finishes,’
written once and associated with all appropriate products, will require the
modification of one generic or ‘abstract’ function, not hundreds.”

Key Points Review
1. Explain the process of designing forms and

reports, and the deliverables for their
creation.

Forms and reports are created through a proto-
typing process. Once created, designs may be
stand-alone or integrated into actual working sys-
tems. The purpose of the prototyping process,
however, is to show users what a form or report
will look like when the system is implemented.
The outcome of this activity is the creation of a
specification document where characteristics of
the users, tasks, system, and environment are
outlined along with each form and report design.
Performance testing and usability assessments
may also be included in the design specification.

2. Apply the general guidelines for formatting
forms and reports.

Guidelines should be followed when designing
forms and reports. These guidelines, proven over
years of experience with human-computer interac-
tion, help to create professional, usable systems.
Guidelines are available for the use of titles, layout
of fields, navigation between pages or screens,
highlighting information, format of text, and the ap-
propriate use and layout of tables and lists.

3. Format text, tables, and lists effectively.
Textual output is becoming increasingly impor-

tant as text-based applications such as electronic
mail, bulletin boards, and information services
become more popular. Text should be displayed
using common writing conventions such as
mixed uppercase and lowercase, appropriate
punctuation, left-justified, and a minimal amount
of obscure abbreviations. Words should not be
hyphenated between lines, and blocks of text
should be double-spaced or, minimally, a blank
line should be placed between each paragraph.
Tables and lists should have meaningful labels
that clearly stand out. Information should
be sorted and arranged in a meaningful way.
Numeric data should be right-justified.

4. Explain the process of designing interfaces
and dialogues, and the deliverables for their
creation.

Designing interfaces and dialogues is a user-
focused activity that follows a prototyping
methodology of iteratively collecting informa-
tion, constructing a prototype, assessing usabil-
ity, and making refinements. The deliverable and
outcome from interface and dialogue design is
the creation of a specification that can be used to
implement the design.

5. Describe and apply the general guidelines
for interface design, including guidelines for
layout design, structuring data-entry-fields,
providing feedback, and system help.

To have a usable interface, users must be able
to move the cursor position, edit data, exit with
different consequences, and obtain help. Numer-
ous techniques for structuring and controlling
data entry, as well as providing feedback, prompt-
ing, error messages, and a well-organized help
function can be used to enhance usability.

6. Design human-computer dialogues, includ-
ing the use of dialogue diagramming.

Human-computer dialogues should be consis-
tent in design, allowing for shortcuts, providing
feedback and closure on tasks, handling errors,
allowing for action reversal, and giving the user a
sense of control and ease of navigation. Dialogue
diagramming is a technique for representing
human-computer dialogues. The technique uses
boxes to represent screens, forms, or reports and
lines to show the flow between each.

7. Discuss interface design guidelines unique
to the design of Internet-based electronic
commerce systems.

The human-computer interface is a central
and critical aspect of any Internet-based elec-
tronic commerce system. Using menu-driven nav-
igation with cookie crumbs ensures that users
can easily understand and navigate a system.
Using lightweight graphics ensures that Web
pages load quickly. Ensuring data integrity means
that customer information is processed quickly,
accurately, and securely. Using common tem-
plates ensures a consistent interface that is easy
to maintain.

Chapter 8 Designing the Human Interface 267

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Audit trail (p. 253)
2. Cookie crumbs (p. 264)
3. Dialogue (p. 258)

4. Dialogue diagramming (p. 259)
5. Form (p. 234)
6. Lightweight graphics (p. 265)

7. Report (p. 234)
8. Template-based HTML (p. 265)

Match each of the key terms above with the definition that best fits it.

1. Templates to display and process
common attributes of higher-level, more
abstract items.

2. A formal method for designing and
representing human-computer dialogues
using box and line diagrams.

3. A business document that contains only
predefined data; it is a passive document
used only for reading or viewing; typically
contains data from many unrelated records
or transactions.

4. A technique for showing users where they
are in a Web site by placing a series of

“tabs” on a Web page that shows users
where they are and where they have been.

5. The sequence of interaction between
a user and a system.

6. A business document that contains some
predefined data and may include some
areas where additional data are to be
filled in; typically based on one database
record.

7. A record of the sequence of data entries
and the date of those entries.

8. The use of small simple images to allow
a Web page to be displayed more quickly.

Review Questions
1. Describe the prototyping process of designing

forms and reports. What deliverables are pro-
duced from this process? Are these deliverables
the same for all types of system projects? Why or
why not?

2. To which initial questions must the analyst gain
answers in order to build an initial prototype of a
system output?

3. How should textual information be formatted on
a help screen?

4. What type of labeling can you use in a table or list
to improve its usability?

5. What column, row, and text formatting issues are
important when designing tables and lists?

6. Describe how numeric, textual, and alphanu-
meric data should be formatted in a table or list.

7. Provide some examples where variations in
user, task, system, and environmental character-
istics might impact the design of system forms
and reports.

8. Describe the process of designing interfaces and
dialogues. What deliverables are produced from
this process? Are these deliverables the same for
all types of system projects? Why or why not?

9. List and describe the functional capabilities
needed in an interface for effective entry and nav-
igation. Which capabilities are most important?

Why? Will this be the same for all systems? Why
or why not?

10. Describe the general guidelines for structuring
data-entry fields. Can you think of any instances
when it would be appropriate to violate these
guidelines?

11. Describe four types of data errors.
12. Describe the types of system feedback. Is any

form of feedback more important than the
others? Why or why not?

13. Describe the general guidelines for designing
usable help. Can you think of any instances
when it would be appropriate to violate these
guidelines?

14. What steps do you need to follow when designing
a dialogue? Of the guidelines for designing a dia-
logue, which is most important? Why?

15. Describe what is meant by a cookie crumb. How
do these help prevent users from getting lost?

16. Describe why you might want to use lightweight
graphics on some Web pages and large detailed
graphics on others.

17. Why is it especially important to eliminate data-
entry errors on an electronic commerce Web site?

18. How can template-based HTML help to make
a large electronic commerce site more
maintainable?

268 Part IV Systems Design

Report of Employees-1-2-08

Em_ID Name, Title

0124543 John Smith, VP Marketing

2345645 Jared Wright, Project Manager

2342456 Jennifer Chang, Systems Analyst

4564234 Mark Walters, Software Engineer

7875468 Nick Shelley, BI Analyst

4446789 Kim Eagar, HR Manager

4678899 Emily Graham, Receptionist

4452378 Matt Hoffman, Network Operations Specialist

Problems and Exercises
1. Imagine that you are to design a budget report

for a colleague at work using a spreadsheet
package. Following the prototyping discussed in
the chapter (see also Figure 1-12), describe the
steps you would take to design a prototype of
this report.

2. Consider a system that produces inventory
reports at a local retailer. Alternatively, con-
sider a system that produces student academic
records for the records office at a university.
For whichever system you choose, answer the
following design questions: Who will use the
output? What is the purpose of the output?
When is the output needed, and when is the in-
formation that will be used within the output
available? Where does the output need to be
delivered? How many people need to view the
output?

3. Imagine the worst possible reports from a sys-
tem. What is wrong with them? List as many
problems as you can. What are the consequences
of such reports? What could go wrong as a result?
How does the prototyping process help guard
against each problem?

4. Given the guidelines presented in this chapter,
identify flaws in the design of the Report of
Employees shown below. What assumptions
about users and tasks did you make in order to
assess this design? Redesign this report to cor-
rect these flaws.

5. Consider the design of a registration system
for a hotel. Following design specification
items in Figure 8-11, briefly describe the relevant
users, tasks, and displays involved in such a
system.

6. Obtain a report of some information, either
from your employer (e.g., a budget or project
report) or from your school (e.g., your student
academic record). Evaluate the design of
the report using the general guidelines in
Table 8-2.

7. Design one sample data-entry screen for a hotel
registration system using the data-entry guide-
lines provided in this chapter (see Table 8-7).
Support your design with arguments for each of
the design choices you made.

8. Describe some typical dialogue scenarios
between users and a hotel registration system.
For hints, reread the section in this chapter that
provides sample dialogue between users and the
Customer Information System at Pine Valley
Furniture.

9. Represent the dialogues from the previous ques-
tion through the use of dialogue diagrams.

10. Think of an online retailer you’ve recently used
or considered using for a purchase. Why is good
design of that retailer’s interface important for
the retailer? Visit the online retailer and evaluate
the interface, highlighting several good things and
several bad things.

Discussion Questions
1. Discuss the differences between a form and a re-

port. What characteristics make a form or report
good (bad) and effective (ineffective)?

2. Discuss the various ways that information can be
highlighted on a computer display. Which methods
are most effective? Are some methods better
than others? If so, why and when?

3. What problems can occur if a system fails to
provide clear feedback and error messages to
users?

4. Use a search engine to find recommendations for
good design of Web interfaces. How are these
recommendations similar to those discussed in
this chapter? How do they differ?

Chapter 8 Designing the Human Interface 269

Case Problems
1. Pine Valley Furniture

Pine Valley Furniture’s Customer Tracking Sys-
tem project is now ready to move into the
systems design phase. You are excited because
this phase involves designing the new system’s
forms, reports, and databases. During this morn-
ing’s meeting with Jim Woo, he asked you to
design several forms and reports for the new Cus-
tomer Tracking System.

During the requirements determination phase,
Jackie Judson requested that a customer profile
be created for each customer. The customer pro-
file is established when new customers place
their first order. Customers will have the option
of not completing a profile; however, to encour-
age customer participation, a 10 percent discount
on the customer’s total order will be given to each
customer who completes a profile. In the begin-
ning, existing customers will also be given the
opportunity to participate in the customer profil-
ing process. Customer profile information will be
collected via a Customer Profile Form.

Gracie Breshers, a marketing executive, has
requested that the Customer Tracking System
generate a Products by Demographics Summary
Report. This summary report should identify Pine
Valley Furniture’s major furniture categories,
such as business furniture, living room, dining
room, home office, and kitchen. Within each fur-
niture category, she would like the total sales by
region and customer age reported. She has also re-
quested that several detailed reports be prepared;
these reports will associate customer demograph-
ics with specific furniture category items.

Thi Hwang, a Pine Valley Furniture sales execu-
tive, would like to know, in a Customer Purchas-
ing Frequency Report, how many of Pine Valley
Furniture’s customers are repeat customers, in
terms of percentages, and how often they make
purchases. Additionally, he would like to have this
information categorized by customer type. For
each customer type, he would like to know the fre-
quency of the purchases. For instance, does this
type of customer place an order at least once a
month, at least every six months, at least once a
year, or longer than one year? To be considered a
repeat customer, the customer must have made
two separate purchases within a two-year period.

a. What data will the Customer Profile Form need
to collect? Using the guidelines presented in
the chapter, design the Customer Profile Form.

b. Using the guidelines presented in the chapter,
design the Products by Demographics Sum-
mary Report.

c. Using the guidelines presented in the chapter,
design the Customer Purchasing Frequency
Report.

d. Modify the dialogue diagram presented in
Figure 8-20 to reflect the addition of the Cus-
tomer Profile Form, Products by Demograph-
ics Summary Report, and the Customer
Purchasing Frequency Report.

2. Hoosier Burger
As the lead analyst for the Hoosier Burger proj-

ect, you have worked closely with Bob and
Thelma Mellankamp. Having completed the sys-
tems analysis phase, you are now ready to begin
designing the new Hoosier Burger information
system. As the lead analyst on this project, you are
responsible for overseeing the development of
the forms, reports, and databases required by the
new system. Because the inventory system is be-
ing automated and a new delivery system is being
implemented, the Hoosier Burger system requires
the development of several forms and reports.

Using your data-flow diagrams and entity-
relationship diagrams, you begin the task of iden-
tifying all the necessary forms and reports. You
readily identify the need for a Delivery Customer
Order Form, a Customer Account Balance Form, a
Low-in-Stock Report, and a Daily Delivery Sum-
mary Report. The Delivery Customer Order Form
will capture order details for those customers plac-
ing delivery orders. Bob will use the Customer
Account Balance Form to look up a customer’s
current account balance. The Low-in-Stock Report
will be generated daily to identify all food items or
supplies that are low in stock. The Daily Delivery
Summary Report will summarize each day’s
delivery sales by menu item sold.

a. What data will the Delivery Customer Order
Form need to collect? Using the design guide-
lines presented in the chapter, design the
Delivery Customer Order Form.

b. What data will the Customer Account Balance
Form need to show? Using the design guide-
lines presented in the chapter, design the
Customer Account Balance Form.

c. Using the design guidelines presented in the
chapter, design the Daily Delivery Summary
Report.

d. Using the design guidelines presented in the
chapter, design the Low-in-Stock Report.

3. Pet Nanny
Pet owners often have difficulty locating pet-

sitters for their pets, boarding their pets, or just

270 Part IV Systems Design

getting the pets to the veterinarian. Recognizing
these needs, Gladys Murphy decided to open Pet
Nanny, a business providing specialized pet-care
services to busy pet owners. The company pro-
vides a multitude of services, including pet
grooming, massage, day care, home care, aro-
matherapy, boarding, and pickup and delivery.
The company has been experiencing a steady in-
crease in demand for its services.

Initially, when the company was founded, all pet-
care records were kept manually. However, Gladys
recognized the need to update Pet Nanny’s existing
systems and hired your consulting firm to design
the system changes. Your analyst team has just
completed the requirements structuring phase and
has selected an alternative design strategy. You are
now ready to begin the systems design phase.

During the analysis phase, you determined that
several forms and reports were necessary,
including a Pet Enrollment Form, Pet Service
Form, Pickup and Delivery Schedule Report, and
Daily Boarding Report. When a customer wishes
to use Pet Nanny’s services for a new pet, the cus-
tomer must provide basic information about
the pet. For instance, the customer is asked to

provide his or her name, address, phone number,
the pet’s name, birth date (if known), and special
care instructions. When a customer requests a
special service for the pet, such as grooming or a
massage, a service record is created. Because the
pickup and delivery service is one of the most
popular services offered by Pet Nanny, Gladys
wants to make sure that no pets are forgotten.
Each morning a report listing the pet pickups and
deliveries is created. She also needs a report list-
ing the pets being boarded, their special needs,
and their length of stay.

a. What data should the Pet Enrollment Form
collect? Using the guidelines provided in the
chapter, design the Pet Enrollment Form.

b. What data should the Pet Service Form col-
lect? Using the guidelines provided in the
chapter, design the Pet Service Form.

c. Using the guidelines provided in the chapter,
design the Pickup and Delivery Schedule
Report.

d. Using the guidelines provided in the chapter,
design the Daily Boarding Report.

CASE: PETRIE’S ELECTRONICS
Designing the Human Interface
Jim Watanabe, project director for the “No Customer
Escapes” customer loyalty system for Petrie’s Elec-
tronics, walked into the conference room. Sally
Fukuyama, from marketing, and Sanjay Agarwal, from
IT, were already there. Also at the meeting was Sam
Waterston, one of Petrie’s key interface designers.

“Good morning,” Jim said. “I’m glad everyone could
be here today. I know you are all busy, but we need to
make some real progress on the customer account
area for ‘No Customer Escapes.’ We have just awarded
the development of the system to XRA, and once all the
documents are signed, they will be coming over to brief
us on the implementation process and our role in it.”

“I’m sorry,” Sally said, “I don’t understand. If we are
licensing their system, what’s left for us to do? Don’t
we just install the system and we’re done?” Sally took
a big gulp of coffee from her cup.

“I wish it was that easy,” Jim said. “While it is true
that we are licensing their system, there are many
parts of it that we need to customize for our own
particular needs. One obvious area where we need
to customize is all of the human interfaces. We
don’t want the system to look generic to our loyal
customers—we need to make it unique to Petrie’s.”

“And we have to integrate the XRA system with our
own operations,” added Sanjay. “For example, we have
to integrate our existing marketing and product data-
bases with the XRA CRM (see PE Figure 6-2). That’s
just one piece of all the technical work we have to do.”

“We’ve already done some preliminary work on
system functionality and the conceptual database,”
Jim said. “I want to start working on interface issues
now. That’s why Sam is here. What we want to do to-
day is start work on how the customer account area
should look and operate. And Sally, the customer
loyalty site is a great opportunity for marketing. We
can advertise specials and other promotions to our
best customers on this site. Maybe we could use it to
show offers that are only good for members of our
loyalty program.”

“Oh yeah,” Sally replied, “that’s a great idea. How
would that look?”

“I have ideas,” said Sam. Using a drawing program
on a tablet PC, he started to draw different zones that
would be part of the interface. “Here at the top we
would have a simple banner that says ‘Petrie’s’ and
the name of the program.”

“It’s not really going to be called ‘No Customer
Escapes,’ is it?” asked Sally.

Chapter 8 Designing the Human Interface 271

“No, that’s an internal name,” replied Jim, “but I
don’t know what the real name will be yet.”

“OK, so the real name of the program will go in the
banner, after ‘Petrie’s.’ Then on the left side, we’ll have
a sidebar that has overview information about the cus-
tomer account, things like name and points balance,”
said Sam, drawing in a sidebar on the left of the screen.
“There will also be links to more detailed information
about the account, so the customer can see more de-
tails on past transactions and on his or her profile.”

“So the rest of the screen is open. That would be
a perfect place for marketing information,” sug-
gested Sally. “Would we want just one big window
for marketing? Maybe we could divide it up into ad-
ditional windows, so we could use one to focus on
general promotions and one to advertise ‘member
only’ promotions?”

“Yeah, we can do that,” said Sam.
Just then Jim’s phone beeped. Jim looked at it. Uh-

oh, it was an urgent message from his boss, the di-
rector of IT. “Sorry, I need to take care of this
immediately,” he told the group. “Can you guys work
on this some more and then send me some of the
screen designs you come up with?”

Later that afternoon, after the crisis was over, Jim
sat back down at his desk for the first time in what

seemed like a very long time. He glanced over his
e-mail and noticed there was a message from Sam.
Attached was a preliminary design for the customer
account area. Jim opened it and looked it over
(PE Figure 8-1). Hmmm, not bad, he thought. This is
a good place for us to start.

Case Questions

1. Using the guidelines from this chapter and other
sources, evaluate the usability of the page design
depicted in PE Figure 8-1.

2. Chapter 8 encourages the design of a help system
early in the design of the human interface. How
would you incorporate help into the interface as
shown in PE Figure 8-1?

3. Describe how cookie crumbs could be used in
this system. Are cookie crumbs a desirable navi-
gation aid for this system? Why or why not?

4. The page design depicted in PE Figure 8-1 links to
an Order History page. Sketch a similar layout for
the Order History page, following guidelines from
Chapter 8.

5. Describe how the use of template-based HTML
might be leveraged in the design of the “No Cus-
tomer Escapes” system.

PE FIGURE 8-1
Preliminary design for the
customer account area.

272

Designing Databases

� Concisely define each of the following key
database design terms: relation, primary key,
functional dependency, foreign key, referential
integrity, field, data type, null value,
denormalization, file organization, index, and
secondary key.

� Explain the role of designing databases in the
analysis and design of an information system.

� Transform an entity-relationship (E-R) diagram
into an equivalent set of well-structured
(normalized) relations.

� Merge normalized relations from separate user
views into a consolidated set of well-structured
relations.

� Choose storage formats for fields in database
tables.

� Translate well-structured relations into efficient
database tables.

� Explain when to use different types of file
organizations to store computer files.

� Describe the purpose of indexes and the
important considerations in selecting attributes
to be indexed.

After studying this chapter, you should be able to:

nine
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

M
on

ke
y

Bu
sin

es
s

Im
ag

es
/

Sh
ut

te
rs

to
ck

Chapter Preview . . .

In Chapter 7 you learned how to represent an
organization’s data graphically using an entity-

relationship (E-R) diagram and Microsoft Visio.

In this chapter, you learn guidelines for clear and

efficient data files and about logical and physical

database design. It is likely that the human inter-

face and database design steps will happen in

parallel, as illustrated in the SDLC in Figure 9-1.

Logical and physical database design has five

purposes:

1. Structure the data in stable structures that

are not likely to change over time and that

have minimal redundancy.

2. Develop a logical database design that

reflects the actual data requirements that

exist in the forms (hard copy and computer

displays) and reports of an information

system. For this reason, database design is

often done in parallel with the design of the

human interface of an information system.

3. Develop a logical database design from

which we can do physical database design.

Because most information systems today

use relational database management

systems, logical database design usually

uses a relational database model, which

represents data in simple tables with

common columns to link related tables.

4. Translate a relational database model into a

technical file and database design.

5. Choose data-storage technologies (such as

hard disk, CD-ROM, or flash disk) that will

efficiently, accurately, and securely process

database activities.

The implementation of a database (i.e., creat-

ing and loading data into files and databases) is

done during the next phase of the systems devel-

opment life cycle. Because implementation is

technology specific, we address implementation

issues only at a general level in Chapter 10.

273

Designing the Human Interface
Designing Databases

✓

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 9-1
Systems development life cycle.
Systems analysts design
databases during the systems
design phase. Database design
typically occurs in parallel with
other design steps.

274 Part IV Systems Design

Database Design
File and database design occurs in two steps. You begin by developing a logical
database model, which describes data using a notation that corresponds to a
data organization used by a database management system. This system soft-
ware is responsible for storing, retrieving, and protecting data (such as
Microsoft Access, Oracle, or SQL Server). The most common style for a logical
database model is the relational database model. Once you develop a clear and
precise logical database model, you are ready to prescribe the technical speci-
fications for computer files and databases in which to store the data ultimately.
A physical database design provides these specifications.

You typically do logical and physical database design in parallel with other
systems design steps. Thus, you collect the detailed specifications of data nec-
essary for logical database design as you design system inputs and outputs. Log-
ical database design is driven not only from the previously developed E-R data
model for the application but also from form and report layouts. You study data
elements on these system inputs and outputs and identify interrelationships
among the data. As with conceptual data modeling, the work of all systems
development team members is coordinated and shared through the project dic-
tionary or repository. The designs for logical databases and system inputs and
outputs are then used in physical design activities to specify to computer pro-
grammers, database administrators, network managers, and others how to
implement the new information system. We assume for this text that the design
of computer programs and distributed information processing and data networks
are topics of other courses, so we concentrate on the aspect of physical design
most often undertaken by a systems analyst—physical file and database design.

The Process of Database Design
Figure 9-2 shows that database modeling and design activities occur in all
phases of the systems development process. In this chapter we discuss meth-
ods that help you finalize logical and physical database designs during the design
phase. In logical database design you use a process called normalization, which
is a way to build a data model that has the properties of simplicity, nonredun-
dancy, and minimal maintenance.

In most situations, many physical database design decisions are implicit or
eliminated when you choose the data-management technologies to use with the
application. We concentrate on those decisions you will make most frequently
and use Microsoft Access to illustrate the range of physical database design
parameters you must manage. The interested reader is referred to Hoffer,
Ramesh, and Topi (2011) for a more thorough treatment of techniques for logical
and physical database design.

Four steps are key to logical database modeling and design:

1. Develop a logical data model for each known user interface (form and
report) for the application, using normalization principles.

2. Combine normalized data requirements from all user interfaces into one
consolidated logical database model; this step is called view integration.

3. Translate the conceptual E-R data model for the application, developed
without explicit consideration of specific user interfaces, into normalized
data requirements.

4. Compare the consolidated logical database design with the translated
E-R model and produce, through view integration, one final logical
database model for the application.

During physical database design, you use the results of these four key logical
database design steps. You also consider definitions of each attribute; descriptions

Chapter 9 Designing Databases 275

Enterprise data model (E-R with only entities)
Conceptual data model (E-R with only entities for specific project)

•
•

D
at

ab
as

e
an

d
fil

e
de

fin
iti

on
s

(D
B

M
S-

sp
ec

ifi
c

co
de

)
D

at
a

m
od

el
 e

vo
lu

tio
n

• •

Logical data model (relational)
Physical file and database design (file organizations)

C
onceptual data m

odels (E-R
 w

ith attributes)

•
•

•Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 9-2
Relationship between data modeling and the systems development life cycle.

of where and when data are entered, retrieved, deleted, and updated; expecta-
tions for response time and data integrity; and descriptions of the file and data-
base technologies to be used. These inputs allow you to make key physical
database design decisions, including the following:

1. Choosing the storage format (called data type) for each attribute from the
logical database model; the format is chosen to minimize storage space
and to maximize data quality. Data type involves choosing length, coding
scheme, number of decimal places, minimum and maximum values, and
potentially many other parameters for each attribute.

2. Grouping attributes from the logical database model into physical records
(in general, this is called selecting a stored record, or data structure).

3. Arranging related records in secondary memory (hard disks and magnetic
tapes) so that individual and groups of records can be stored, retrieved,
and updated rapidly (called file organizations). You should also consider
protecting data and recovering data after errors are found.

4. Selecting media and structures for storing data to make access more
efficient. The choice of media affects the utility of different file
organizations. The primary structure used today to make access to data
more rapid is key indexes, on unique and nonunique keys.

Primary key
An attribute whose value is
unique across all occurrences of
a relation.

276 Part IV Systems Design

In this chapter we show how to do each of the logical database design steps
and discuss factors to consider in making each physical file and database design
decision.

Deliverables and Outcomes
During logical database design, you must account for every data element on a
system input or output—form or report—and on the E-R model. Each data ele-
ment (like customer name, product description, or purchase price) must be a
piece of raw data kept in the system’s database, or in the case of a data element
on a system output, the element can be derived from data in the database.
Figure 9-3 illustrates the outcomes from the four-step logical database design
process. Figures 9-3A and 9-3B (step 1) contain two sample system outputs for
a customer order processing system at Pine Valley Furniture. A description of
the associated database requirements, in the form of what we call normalized
relations, is listed below each output diagram. Each relation (think of a relation
as a table with rows and columns) is named, and its attributes (columns) are
listed within parentheses. The primary key attribute—that attribute whose
value is unique across all occurrences of the relation—is indicated by an
underline, and an attribute of a relation that is the primary key of another rela-
tion is indicated by a dashed underline.

In Figure 9-3A data are shown about customers, products, and the customer
orders and associated line items for products. Each of the attributes of each
relation either appears in the display or is needed to link related relations. For
example, because an order is for some customer, an attribute of ORDER is the
associated Customer_ID. The data for the display in Figure 9-3B are more com-
plex. A backlogged product on an order occurs when the amount ordered
(Order_Quantity) is less than the amount shipped (Ship_Quantity) for invoices
associated with an order. The query refers to only a specified time period, so the
Order_Date is needed. The INVOICE Order_Number links invoices with the
associated order.

Figure 9-3C (step 2) shows the result of integrating these two separate sets
of normalized relations. Figure 9-3D (step 3) shows an E-R diagram for a cus-
tomer order processing application that might be developed during concep-
tual data modeling along with equivalent normalized relations. Figure 9-3E
(step 4) shows a set of normalized relations that would result from reconcil-
ing the logical database designs of Figures 9-3C and 9-3D. Normalized
relations like those in Figure 9-3E are the primary deliverable from logical
database design.

Finally, Figure 9-3F shows the E-R diagram drawn in Microsoft Visio. Visio
actually shows the tables and relationships between the tables from the nor-
malized relations. Thus, the associative entities, LINE ITEM and SHIPMENT,
are shown as entities on the Visio diagram; we do not place relationship names
on either side of these entities on the Visio diagram because these represent
associative entities. Visio also shows for these entities the primary keys of the
associated ORDER, INVOICE, and PRODUCT entities. Also, note that the lines
for the Places and Bills relationships are dashed. This Visio notation indicates
that ORDER and INVOICE have their own primary keys that do not include the
primary keys of CUSTOMER and ORDER, respectively (what Visio calls non-
identifying relationships). Because LINE ITEM and SHIPMENT both include in
their primary keys the primary keys of other entities (which is common for
associative entities), the relationships around LINE ITEM and SHIPMENT are
identifying, and hence the relationship lines are solid.

It is important to remember that relations do not correspond to computer
files. In physical database design, you translate the relations from logical data-
base design into specifications for computer files. For most information

CUSTOMER(Customer_ID,Name)
PRODUCT(Product_ID)
INVOICE(Invoice_Number,Invoice_Date,Order_Number)
ORDER(Order_Number,Customer_ID,Order_Date)
LINE ITEM(Order_Number,Product_ID,Order_Quantity)
SHIPMENT(Product_ID,Invoice_Number,Ship_Quantity)

Chapter 9 Designing Databases 277

HIGHEST VOLUME CUSTOMER

ENTER PRODUCT ID.: M128
START DATE: 11/01/2012
END DATE: 12/31/2012
– –
CUSTOMER ID.: 1256
NAME: Commonwealth Builder
VOLUME: 30

This inquiry screen shows the customer with the largest volume total sales of a
specified product during an indicated time period.

Relations:
 CUSTOMER(Customer_ID,Name)
 ORDER(Order_Number,Customer_ID,Order_Date)
 PRODUCT(Product_ID)
 LINE ITEM(Order_Number,Product_ID,Order_Quantity)

- - - - - - - -

FIGURE 9-3
Simple example of logical data
modeling: (A) Highest-volume
customer query screen, (B) Backlog
summary report, (C) Integrated set
of relations, (D) Conceptual data
model and transformed relations,
(E) Final set of normalized
relations, (F) Microsoft Visio E-R
diagram.

BACKLOG SUMMARY REPORT
11/30/2012

PAGE 1

BACKLOG
QUANTITY PRODUCT ID

B381
B975
B985
E125

M128

0
0
6

30

2

…
…

This report shows the unit volume of each product that has been ordered less than
amount shipped through the specified date.

Relations:
 PRODUCT(Product_ID)
 LINE ITEM(Product_ID,Order_Number,Order_Quantity)
 ORDER(Order_Number,Order_Date)
 SHIPMENT(Product_ID,Invoice_Number,Ship_Quantity)
 INVOICE(Invoice_Number,Invoice_Date,Order_Number) - - - - - - - - -

A

B

C

CUSTOMER(Customer_ID,Name,Address)
PRODUCT(Product_ID,Description)
ORDER(Order_Number,Customer_ID,Order_Date)
LINE ITEM(Order_Number,Product_ID,Order_Quantity)
INVOICE(Invoice_Number,Order_Number,Invoice_Date)
SHIPMENT(Invoice_Number,Product_ID,Ship_Quantity)

_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _

278 Part IV Systems Design

LINE ITEM
Order_Quantity

PRODUCT
Product_ID
Description

Places

Bills
ORDER

Order_Number
Order_Date

CUSTOMER
Customer_ID
Name
Address

Invoice_Number

SHIPMENT
Ship_Quantity

INVOICE

D

E

F

FIGURE 9-3
(continued)

Chapter 9 Designing Databases 279

FIGURE 9-4
Definition of SHIPMENT table in Microsoft Access: (A) Table with invoice_number properties, (B) Invoice_number lookup properties.

systems, these files will be tables in a relational database. These specifications
are sufficient for programmers and database analysts to code the definitions of
the database. The coding, done during systems implementation, is written in
special database definition and processing languages, such as Structured Query
Language (SQL), or by filling in table definition forms, such as with Microsoft
Access. Figure 9-4 shows a possible definition for the SHIPMENT relation from
Figure 9-3E using Microsoft Access. This display of the SHIPMENT table defi-
nition illustrates choices made for several physical database design decisions.

� All three attributes from the SHIPMENT relation, and no attributes
from other relations, have been grouped together to form the fields of
the SHIPMENT table.

� The Invoice_Number field has been given a data type of Text, with a
maximum length of 10 characters.

� The Invoice_Number field is required because it is part of the primary
key for the SHIPMENT table (the value that makes every row of the
SHIPMENT table unique is a combination of Invoice_Number and
Product_ID).

� An index is defined for the Invoice_Number field, but because there
may be several rows in the SHIPMENT table for the same invoice
(different products on the same invoice), duplicate index values are
allowed (so Invoice_Number is what we will call a secondary key).

� The Invoice_Number, because it references the Invoice_Number from
the INVOICE table, is defined as a Lookup to the first column
(Invoice_Number) of the INVOICE table; in this way, all values that
are placed in the Invoice_Number field of the SHIPMENT table must
correspond to a previously entered invoice.

Many other physical database design decisions were made for the SHIPMENT
table, but they are not apparent on the display in Figure 9-4. Further, this table
is only one table in the PVF Order Entry database, and other tables and struc-
tures for this database are not illustrated in this figure.

Relational Database Model
Many different database models are in use and are the basis for database tech-
nologies. Although hierarchical and network models have been popular in the
past, they are not often used today for new information systems. Object-
oriented database models are emerging but are still not common. The vast
majority of information systems today use the relational database model.

A B

Well-structured relation
(or table)
A relation that contains a
minimum amount of redundancy
and allows users to insert,
modify, and delete the rows
without errors or inconsistencies.

Relation
A named, two-dimensional table
of data. Each relation consists of
a set of named columns and an
arbitrary number of unnamed
rows.

Relational database
model
Data represented as a set of
related tables or relations.

280 Part IV Systems Design

EMPLOYEE1

Emp_ID Name Dept Salary

100 Margaret Simpson Marketing 42,000
140 Allen Beeton Accounting 39,000
110 Chris Lucero Info Systems 41,500
190 Lorenzo Davis Finance 38,000
150 Susan Martin Marketing 38,500

FIGURE 9-5
EMPLOYEE1 relation with
sample data.

The relational database model represents data in the form of related tables
or relations. A relation is a named, two-dimensional table of data. Each rela-
tion (or table) consists of a set of named columns and an arbitrary number of
unnamed rows. Each column in a relation corresponds to an attribute of that
relation. Each row of a relation corresponds to a record that contains data
values for an entity.

Figure 9-5 shows an example of a relation named EMPLOYEE1. This relation
contains the following attributes describing employees: Emp_ID, Name, Dept, and
Salary. The table contains five sample rows, corresponding to five employees.

You can express the structure of a relation by a shorthand notation in which
the name of the relation is followed (in parentheses) by the names of the attri-
butes in the relation. The identifier attribute (called the primary key of the re-
lation) is underlined. For example, you would express EMPLOYEE1 as follows:

Employee (Emp_ID, Name, Dept, Salary)

Not all tables are relations. Relations have several properties that distinguish
them from nonrelational tables:

1. Entries in cells are simple. An entry at the intersection of each row and
column has a single value.

2. Entries in columns are from the same set of values.

3. Each row is unique. Uniqueness is guaranteed because the relation has a
nonempty primary key value.

4. The sequence of columns can be interchanged without changing the
meaning or use of the relation.

5. The rows may be interchanged or stored in any sequence.

Well-Structured Relations
What constitutes a well-structured relation (or table)? Intuitively, a well-
structured relation contains a minimum amount of redundancy and allows
users to insert, modify, and delete the rows in a table without errors or incon-
sistencies. EMPLOYEE1 (Figure 9-5) is such a relation. Each row of the table
contains data describing one employee, and any modification to an employee’s
data (such as a change in salary) is confined to one row of the table.

In contrast, EMPLOYEE2 (Figure 9-6) contains data about employees and the
courses they have completed. Each row in this table is unique for the combina-
tion of Emp_ID and Course, which becomes the primary key for the table. It is
not a well-structured relation, however. If you examine the sample data in the
table, you notice a considerable amount of redundancy. For example, the
Emp_ID, Name, Dept, and Salary values appear in two separate rows for
employees 100, 110, and 150. Consequently, if the salary for employee 100
changes, we must record this fact in two rows (or more, for some employees).

The problem with this relation is that it contains data about two entities:
EMPLOYEE and COURSE. You will learn to use principles of normalization
to divide EMPLOYEE2 into two relations. One of the resulting relations is

Normalization
The process of converting
complex data structures into
simple, stable data structures.

Chapter 9 Designing Databases 281

2012
2012
2012
2012
2012
2012
2012
2012

FIGURE 9-6
Relation with redundancy.

EMP COURSE

Date_
Emp_ID Course Completed

100 SPSS 6/19/2012
100 Surveys 10/7/2012
140 Tax Acc 12/8/2012
110 SPSS 1/22/2012
110 C++ 4/22/2012
190 Investments 5/7/2012
150 SPSS 6/19/2012
150 TQM 8/12/2012

FIGURE 9-7
EMP COURSE relation.

EMPLOYEE1 (Figure 9-5). The other we will call EMP COURSE, which appears
with sample data in Figure 9-7. The primary key of this relation is the combina-
tion of Emp_ID and Course (we emphasize this by underlining the column
names for these attributes).

Normalization
We have presented an intuitive discussion of well-structured relations, however,
we need rules and a process for designing them. Normalization is a process for
converting complex data structures into simple, stable data structures. For ex-
ample, we used the principles of normalization to convert the EMPLOYEE2 table
with its redundancy to EMPLOYEE1 (Figure 9-5) and EMP COURSE (Figure 9-7).

Rules of Normalization
Normalization is based on well-accepted principles and rules. The many nor-
malization rules, are too numerous to cover in this text (see Hoffer, Ramesh,
and Topi [2011] for more complete coverage). Besides the five properties of
relations outlined previously, two other rules are frequently used.

1. Second normal form (2NF). Each nonprimary key attribute is identified
by the whole key (what we call full functional dependency).

2. Third normal form (3NF). Nonprimary key attributes do not depend on
each other (what we call no transitive dependencies).

The result of normalization is that every nonprimary key attribute depends
upon the whole primary key and nothing but the primary key. We discuss second
and third normal form in more detail next.

Second normal form
(2NF)
A relation for which every
nonprimary key attribute is
functionally dependent on the
whole primary key.

Functional dependency
A particular relationship between
two attributes. For a given
relation, attribute B is functionally
dependent on attribute A if, for
every valid value of A, that value
of A uniquely determines the
value of B. The functional
dependence of B on A is
represented by A:B.

A

X
Y
Z
Y

B

U
X
Y
Z

C

X
Z
Y
W

D

Y
X
Y
Z

EXAMPLEFIGURE 9-8
EXAMPLE relation.

282 Part IV Systems Design

Functional Dependence and Primary Keys
Normalization is based on the analysis of functional dependence. A functional
dependency is a particular relationship between two attributes. In a given rela-
tion, attribute B is functionally dependent on attribute A if, for every valid value
of A, that value of A uniquely determines the value of B. The functional depend-
ence of B on A is represented by an arrow, as follows: A:B (e.g., Emp_ID:Name
in the relation of Figure 9-5). Functional dependence does not imply mathemat-
ical dependence—that the value of one attribute may be computed from the
value of another attribute; rather, functional dependence of B on A means that
there can be only one value of B for each value of A. Thus, for a given Emp_ID
value, only one Name value can be associated with it; the value of Name, how-
ever, cannot be derived from the value of Emp_ID. Other examples of functional
dependencies from Figure 9-3B are in ORDER, Order_Number:Order_Date,
and in INVOICE, Invoice_Number:Invoice_Date and Order_Number.

An attribute may be functionally dependent on two (or more) attributes,
rather than on a single attribute. For example, consider the relation EMP
COURSE (Emp_ID, Course, Date_Completed) shown in Figure 9-7. We repre-
sent the functional dependency in this relation as follows: Emp_ID, Course
Date_Completed. In this case, Date_Completed cannot be determined by either
Emp_ID or Course alone, because Date_Completed is a characteristic of an em-
ployee taking a course.

You should be aware that the instances (or sample data) in a relation do not
prove that a functional dependency exists. Only knowledge of the problem
domain, obtained from a thorough requirements analysis, is a reliable
method for identifying a functional dependency. However, you can use sam-
ple data to demonstrate that a functional dependency does not exist between
two or more attributes. For example, consider the sample data in the relation
EXAMPLE (A, B, C, D) shown in Figure 9-8. The sample data in this relation
prove that attribute B is not functionally dependent on attribute A, because
A does not uniquely determine B (two rows with the same value of A have
different values of B).

Second Normal Form
A relation is in second normal form (2NF) if every nonprimary key
attribute is functionally dependent on the whole primary key. Thus, no non-
primary key attribute is functionally dependent on a part, but not all, of the
primary key. Second normal form is satisfied if any one of the following
conditions apply:

1. The primary key consists of only one attribute (such as the attribute
Emp_ID in relation EMPLOYEE1).

2. No nonprimary key attributes exist in the relation.

3. Every nonprimary key attribute is functionally dependent on the full set of
primary key attributes.

Third normal form (3NF)
A relation that is in second
normal form and has no
functional (transitive)
dependencies between two (or
more) nonprimary key attributes.

Chapter 9 Designing Databases 283

EMPLOYEE2 (Figure 9-6) is an example of a relation that is not in second nor-
mal form. The shorthand notation for this relation is:

EMPLOYEE2(Emp_ID, Name, Dept, Salary, Course, Date_Completed)

The functional dependencies in this relation are the following:

Emp_ID:Name, Dept, Salary
Emp_ID, Course:Date_Completed

The primary key for this relation is the composite key Emp_ID, Course. There-
fore, the nonprimary key attributes Name, Dept, and Salary are functionally
dependent on only Emp_ID but not on Course. EMPLOYEE2 has redundancy,
which results in problems when the table is updated.

To convert a relation to second normal form, you decompose the relation
into new relations using the attributes, called determinants, that determine
other attributes; the determinants are the primary keys of these relations.
EMPLOYEE2 is decomposed into the following two relations:

1. EMPLOYEE1(Emp_ID, Name, Dept, Salary): This relation satisfies the
first second normal form condition (sample data shown in Figure 9-5).

2. EMP COURSE(Emp_ID, Course, Date_Completed): This relation satisfies
second normal form condition three (sample data appear in Figure 9-7).

Third Normal Form
A relation is in third normal form (3NF) if it is in second normal form with no
functional dependencies between two (or more) nonprimary key attributes
(a functional dependency between nonprimary key attributes is also called a
transitive dependency). For example, consider the relation SALES(Customer_ID,
Customer_Name, Salesperson, Region) (sample data shown in Figure 9-9A).

The following functional dependencies exist in the SALES relation:

1. Customer_ID:Customer_Name, Salesperson, Region (Customer_ID is
the primary key.)

2. Salesperson:Region (Each salesperson is assigned to a unique region.)
Notice that SALES is in second normal form because the primary key consists

of a single attribute (Customer_ID). However, Region is functionally dependent
on Salesperson, and Salesperson is functionally dependent on Customer_ID. As
a result, data maintenance problems arise in SALES.

1. A new salesperson (Robinson) assigned to the North region cannot be
entered until a customer has been assigned to that salesperson (because
a value for Customer_ID must be provided to insert a row in the table).

2. If customer number 6837 is deleted from the table, we lose the
information that salesperson Hernandez is assigned to the East region.

3. If salesperson Smith is reassigned to the East region, several rows must be
changed to reflect that fact (two rows are shown in Figure 9-9A).

These problems can be avoided by decomposing SALES into the two rela-
tions, based on the two determinants, shown in Figure 9-9(B). These relations
are the following:

SALES1(Customer_ID, Customer_Name, Salesperson)
SPERSON(Salesperson, Region)

Note that Salesperson is the primary key in SPERSON. Salesperson is also a
foreign key in SALES1. A foreign key is an attribute that appears as a non-
primary key attribute in one relation (such as SALES1) and as a primary key

Foreign key
An attribute that appears as a
nonprimary key attribute in one
relation and as a primary key
attribute (or part of a primary
key) in another relation.

Referential integrity
An integrity constraint specifying
that the value (or existence) of an
attribute in one relation depends
on the value (or existence) of the
same attribute in another
relation.

284 Part IV Systems Design

attribute (or part of a primary key) in another relation. You designate a foreign
key by using a dashed underline.

A foreign key must satisfy referential integrity, which specifies that the
value of an attribute in one relation depends on the value of the same attribute
in another relation. Thus, in Figure 9-9B, the value of Salesperson in each row
of table SALES1 is limited to only the current values of Salesperson in the SPER-
SON table. Referential integrity is one of the most important principles of the
relational model.

Transforming E-R Diagrams into Relations
Normalization produces a set of well-structured relations that contains all of the
data mentioned in system inputs and outputs developed in human interface de-
sign. Because these specific information requirements may not represent all fu-
ture information needs, the E-R diagram you developed in conceptual data
modeling is another source of insight into possible data requirements for a new
application system. To compare the conceptual data model and the normalized
relations developed so far, your E-R diagram must be transformed into relational
notation, normalized, and then merged with the existing normalized relations.

Transforming an E-R diagram into normalized relations and then merging all
the relations into one final, consolidated set of relations can be accomplished
in four steps. These steps are summarized briefly here, and then steps 1, 2, and
4 are discussed in detail in subsequent sections of this chapter.

1. Represent entities. Each entity type in the E-R diagram becomes a
relation. The identifier of the entity type becomes the primary key of the
relation, and other attributes of the entity type become nonprimary key
attributes of the relation.

2. Represent relationships. Each relationship in an E-R diagram must be
represented in the relational database design. How we represent a
relationship depends on its nature. For example, in some cases we
represent a relationship by making the primary key of one relation a
foreign key of another relation. In other cases, we create a separate
relation to represent a relationship.

SALES1

Customer_ID Customer_Name Salesperson

8023 Anderson Smith
9167 Bancroft Hicks
7924 Hobbs Smith
6837 Tucker Hernandez
8596 Eckersley Hicks
7018 Arnold Faulb

SPERSON

Salesperson Region

Smith South
Hicks West
Hernandez East
Faulb North

SALES

Customer_ID RegionSalespersonCustomer_Name

8023 Anderson Smith South
9167 Bancroft Hicks West
7924 Hobbs Smith South
6837 Tucker Hernandez East
8596 Eckersley Hicks West
7018 Arnold Faulb North

 – – – – – – – –

FIGURE 9-9
Removing transitive
dependencies: (A) Relation
with transitive dependency,
(B) Relations in 3NF.

A

B

CUSTOMER
Customer_ID
Name
Address
City_State_Zip
Discount

FIGURE 9-10
Transforming an entity
type to a relation:
(A) E-R diagram,
(B) Relation.

Chapter 9 Designing Databases 285

3. Normalize the relations. The relations created in steps 1 and 2 may have
unnecessary redundancy. So, we need to normalize these relations to
make them well structured.

4. Merge the relations. So far in database design we have created various
relations from both a bottom-up normalization of user views and from
transforming one or more E-R diagrams into sets of relations. Across
these different sets of relations, redundant relations (two or more
relations that describe the same entity type) may need to be merged
and renormalized to remove the redundancy.

Represent Entities
Each regular entity type in an E-R diagram is transformed into a relation. The
identifier of the entity type becomes the primary key of the corresponding
relation. Each nonkey attribute of the entity type becomes a nonkey attribute of
the relation. You should check to make sure that the primary key satisfies the
following two properties:

1. The value of the key must uniquely identify every row in the relation.

2. The key should be nonredundant; that is, no attribute in the key can be
deleted without destroying its unique identification.

Some entities may have keys that include the primary keys of other entities.
For example, an EMPLOYEE DEPENDENT may have a Name for each depen-
dent, but, to form the primary key for this entity, you must include the
Employee_ID attribute from the associated EMPLOYEE entity. Such an entity
whose primary key depends upon the primary key of another entity is called a
weak entity.

Representation of an entity as a relation is straightforward. Figure 9-10A
shows the CUSTOMER entity type for Pine Valley Furniture. The corresponding
CUSTOMER relation is represented as follows:

CUSTOMER(Customer_ID, Name, Address, City_State_ZIP, Discount)

In this notation, the entity type label is translated into a relation name. The
identifier of the entity type is listed first and underlined. All nonkey attributes
are listed after the primary key. This relation is shown as a table with sample
data in Figure 9-10B.

CUSTOMER

Customer_ID Name Address City_State_Zip Discount

1273 Contemporary Designs 123 Oak St. Austin, TX 28384 5%
6390 Casual Corner 18 Hoosier Dr. Bloomington, IN 45821 3%

B

A

286 Part IV Systems Design

CUSTOMER
Customer_ID
Name
Address
City_State_Zip
Discount

Places

ORDER
Order_Number
Order_Date
Promises_Date

FIGURE 9-11
Representing a 1:N relationship:
(A) E-R diagram, (B) Relations.

CUSTOMER

Customer_ID
1273 Contemporary Designs
6390 Casual Corner

ORDER

Order_Number Order_Date – – – – – – – – –
57194 3/15/12 3/28/12 6390
63725 3/17/12 4/01/12 1273
80149 3/14/12 3/24/12 6390

Name Address City_State_ZIP Discount

123 Oak St. Austin, TX 28384 5%
18 Hoosier Dr. Bloomington, IN 45821 3%

Customer_IDPromised_Date

Represent Relationships
The procedure for representing relationships depends on both the degree of the
relationship—unary, binary, ternary—and the cardinalities of the relationship.

Binary 1:N and 1:1 Relationships A binary one-to-many (1:N)
relationship in an E-R diagram is represented by adding the primary key
attribute (or attributes) of the entity on the one side of the relationship as a
foreign key in the relation that is on the many side of the relationship.

Figure 9-11A, an example of this rule, shows the Places relationship
(1:N) linking CUSTOMER and ORDER at Pine Valley Furniture. Two relations,
CUSTOMER and ORDER, were formed from the respective entity types (see
Figure 9-11B). Customer_ID, which is the primary key of CUSTOMER (on the
one side of the relationship) is added as a foreign key to ORDER (on the many
side of the relationship).

One special case under this rule was mentioned in the previous section. If the
entity on the many side needs the key of the entity on the one side as part of its
primary key (this is a so-called weak entity), then this attribute is added not as
a nonkey but as part of the primary key.

For a binary or unary one-to-one (1:1) relationship between the two entities
A and B (for a unary relationship, A and B would be the same entity type), the
relationship can be represented by any of the following choices:

1. Adding the primary key of A as a foreign key of B

2. Adding the primary key of B as a foreign key of A

3. Both of the above

Binary and Higher-Degree M:N Relationships Suppose that a
binary many-to-many (M:N) relationship (or associative entity) exists
between two entity types A and B. For such a relationship, we create a
separate relation C. The primary key of this relation is a composite key
consisting of the primary key for each of the two entities in the relationship.

A

B

Chapter 9 Designing Databases 287

Ordered_Quantity

Requests

PRODUCT
Product_ID
Description
Room
City_State_Zip
(Other Attributes)

ORDER
Order_Number
Order_Date
Promises_Date

FIGURE 9-12
Representing an M:N relationship: (A) E-R diagram, (B) Relations.

ORDER

Order_Number Order_Date Promised_Date

61384 2/17/2012 3/01/2012
62009 2/13/2012 2/27/2012
62807 2/15/2012 3/01/2012

ORDER LINE

Quantity_
Order_Number Product_ID Ordered

61384 M128 2
61384 A261 1

PRODUCT

(Other
Product_ID Description Attributes)

M128 Bookcase —-
A261 Wall unit —-
R149 Cabinet —-

CUSTOMER
Customer_ID
Name

SHIPMENT
Date
Amount

VENDOR
Vendor_ID
Address

Any nonkey attributes that are associated with the M:N relationship are
included with the relation C.

Figure 9-12A, an example of this rule, shows the Requests relationship (M:N)
between the entity types ORDER and PRODUCT for Pine Valley Furniture.
Figure 9-12B shows the three relations (ORDER, ORDER LINE, and PROD-
UCT) that are formed from the entity types and the Requests relationship. A re-
lation (called ORDER LINE in Figure 9-12B) is created for the Requests
relationship. The primary key of ORDER LINE is the combination (Order_Num-
ber, Product_ID), which consists of the respective primary keys of ORDER and
PRODUCT. The nonkey attribute Quantity_Ordered also appears in ORDER
LINE.

Occasionally, the relation created from an M:N relationship requires a pri-
mary key that includes more than just the primary keys from the two related
relations. Consider, for example, the following situation:

A

B

In this case, Date must be part of the key for the SHIPMENT relation to
uniquely distinguish each row of the SHIPMENT table, as follows:

SHIPMENT(Customer_ID, Vendor_ID, Date, Amount)

If each shipment has a separate nonintelligent key (a system-assigned unique
value that has no business meaning; e.g., order number, customer number), say
a shipment number, then Date becomes a nonkey and Customer_ID and
Vendor_ID become foreign keys, as follows:

SHIPMENT(Shipment_Number, Customer_ID, Vendor_ID, Date, Amount)

Recursive foreign key
A foreign key in a relation that
references the primary key values
of that same relation.

ManagesA

EMPLOYEE
Emp_ID
Name
Birthdate

FIGURE 9-13
Two unary relations: (A) EMPLOYEE with manages relationship (1:N), (B) Bill-of-materials structure (M:N).

288 Part IV Systems Design

Contains

B

ITEM
Item_Number
Name
Cost

Quantity

In some cases, a relationship may be found among three or more entities. In
such cases, we create a separate relation that has as a primary key the
composite of the primary keys of each of the participating entities (plus any
necessary additional key elements). This rule is a simple generalization of the
rule for a binary M:N relationship.

Unary Relationships To review, a unary relationship is a relationship
between the instances of a single entity type, which are also called recursive
relationships. Figure 9-13 shows two common examples. Figure 9-13A shows a
one-to-many relationship named Manages that associates employees with
another employee who is their manager. Figure 9-13B shows a many-to-many
relationship that associates certain items with their component items. This
relationship is called a bill-of-materials structure.

For a unary 1:N relationship, the entity type (such as EMPLOYEE) is modeled
as a relation. The primary key of that relation is the same as for the entity type.
Then a foreign key is added to the relation that references the primary key
values. A recursive foreign key is a foreign key in a relation that references
the primary key values of that same relation. We can represent the relationship
in Figure 9-13A as follows:

EMPLOYEE(Emp_ID, Name, Birthdate, Manager_ID)

In this relation, Manager_ID is a recursive foreign key that takes its values
from the same set of worker identification numbers as Emp_ID.

For a unary M:N relationship, we model the entity type as one relation. Then
we create a separate relation to represent the M:N relationship. The primary key
of this new relation is a composite key that consists of two attributes (which
need not have the same name) that both take their values from the same primary
key. Any attribute associated with the relationship (such as Quantity in Fig-
ure 9-13B) is included as a nonkey attribute in this new relation. We can express
the result for Figure 9-13B as follows:

ITEM(Item_Number, Name, Cost)
ITEM-BILL(Item_Number, Component_Number, Quantity)

Summary of Transforming E-R Diagrams to Relations
We have now described how to transform E-R diagrams to relations. Table 9-1
lists the rules discussed in this section for transforming entity-relationship
diagrams into equivalent relations. After this transformation, you should check
the resulting relations to determine whether they are in third normal form and,
if necessary, perform normalization as described earlier in the chapter.

Chapter 9 Designing Databases 289

Merging Relations
As part of the logical database design, normalized relations likely have been cre-
ated from a number of separate E-R diagrams and various user interfaces. Some
of the relations may be redundant—they may refer to the same entities. If so,
you should merge those relations to remove the redundancy. This section
describes merging relations, or view integration, which is the last step in logi-
cal database design and prior to physical file and database design.

An Example of Merging Relations
Suppose that modeling a user interface or transforming an E-R diagram results
in the following 3NF relation:

EMPLOYEE1(Emp_ID, Name, Address, Phone)

Modeling a second user interface might result in the following relation:

EMPLOYEE2(Emp_ID, Name, Address, Jobcode, Number_of_Years)

Because these two relations have the same primary key (Emp_ID) and
describe the same entity, they should be merged into one relation. The result of
merging the relations is the following relation:

EMPLOYEE(Emp_ID, Name, Address, Phone, Jobcode, Number_of_Years)

Notice that an attribute that appears in both relations (such as Name in this
example) appears only once in the merged relation.

TABLE 9-1: E-R to Relational Transformation

E-R Structure Relational Representation

Regular entity Create a relation with primary key and nonkey
attributes.

Weak entity Create a relation with a composite primary key (which
includes the primary key of the entity on which this
weak entity depends) and nonkey attributes.

Binary or unary 1:1 relationship Place the primary key of either entity in the relation for
the other entity or do it for both entities.

Binary 1:N relationship Place the primary key of the entity on the one side of
the relationship as a foreign key in the relation for the
entity on the many side.

Binary or unary M:N
relationship or associative
entity

Create a relation with a composite primary key using
the primary keys of the related entities, plus any nonkey
attributes of the relationship or associative entity.

Binary or unary M:N
relationship or associative
entity with additional key(s)

Create a relation with a composite primary key using
the primary keys of the related entities and additional
primary key attributes associated with the relationship
or associative entity, plus any nonkey attributes of the
relationship or associative entity.

Binary or unary M:N
relationship or associative
entity with its own key

Create a relation with the primary key associated with
the relationship or associative entity, plus any nonkey
attributes of the relationship or associative entity and the
primary keys of the related entities (as nonkey attributes).

Homonym
A single attribute name that is
used for two or more different
attributes.

290 Part IV Systems Design

View Integration Problems
When integrating relations, you must understand the meaning of the data and
must be prepared to resolve any problems that may arise in that process. In this
section, we describe and illustrate three problems that arise in view integration:
synonyms, homonyms, and dependencies between nonkeys.

Synonyms In some situations, two or more attributes may have different
names but the same meaning, as when they describe the same characteristic of
an entity. Such attributes are called synonyms. For example, Emp_ID and
Employee_Number may be synonyms.

When merging the relations that contain synonyms, you should obtain, if
possible, agreement from users on a single standardized name for the
attribute and eliminate the other synonym. Another alternative is to choose
a third name to replace the synonyms. For example, consider the following
relations:

STUDENT1(Student_ID, Name)
STUDENT2(Matriculation_Number, Name, Address)

In this case, the analyst recognizes that both the Student_ID and the
Matriculation_Number are synonyms for a person’s social security number
and are identical attributes. One possible resolution would be to standardize
on one of the two attribute names, such as Student_ID. Another option is
to use a new attribute name, such as SSN, to replace both synonyms. Assum-
ing the latter approach, merging the two relations would produce the
following result:

STUDENT(SSN, Name, Address)

Homonyms In other situations, a single attribute name, called a homonym,
may have more than one meaning or describe more than one characteristic. For
example, the term account might refer to a bank’s checking account, savings
account, loan account, or other type of account; therefore, account refers to
different data, depending on how it is used.

You should be on the lookout for homonyms when merging relations. Con-
sider the following example:

STUDENT1(Student_ID, Name, Address)
STUDENT2(Student_ID, Name, Phone_Number, Address)

In discussions with users, the systems analyst may discover that the attribute
Address in STUDENT1 refers to a student’s campus address, whereas in
STUDENT2 the same attribute refers to a student’s home address. To resolve
this conflict, we would probably need to create new attribute names and the
merged relation would become:

STUDENT(Student_ID, Name, Phone_Number, Campus_Address,
Permanent_Address)

Dependencies between Nonkeys When two 3NF relations are merged to
form a single relation, dependencies between nonkeys may result. For example,
consider the following two relations:

STUDENT1(Student_ID, Major)
STUDENT2(Student_ID, Adviser)

Because STUDENT1 and STUDENT2 have the same primary key, the two
relations may be merged:

STUDENT(Student_ID, Major, Adviser)

Synonyms
Two different names that are
used for the same attribute.

Chapter 9 Designing Databases 291

FIGURE 9-14
Final E-R diagram for Hoosier
Burger’s inventory control system.

However, suppose that each major has exactly one adviser. In this case,
Adviser is functionally dependent on Major:

Major:Adviser
If the previous dependency exists, then STUDENT is in 2NF but not 3NF, be-

cause it contains a functional dependency between nonkeys. The analyst can
create 3NF relations by creating two relations with Major as a foreign key in
STUDENT:

STUDENT(Student_ID, Major)
MAJOR ADVISER(Major, Adviser)

Logical Database Design for Hoosier Burger
In Chapter 7 we developed an E-R diagram for a new inventory control system
at Hoosier Burger (Figure 9-14 repeats the diagram from Chapter 7). In this sec-
tion we show how this E-R model is translated into normalized relations and
how to normalize and then merge the relations for a new report with the rela-
tions from the E-R model.

In this E-R model, four entities exist independently of other entities:
SALE, PRODUCT, INVOICE, and INVENTORY ITEM. Given the attributes
shown in Figure 9-14, we can represent these entities in the following four
relations:

SALE(Receipt_Number, Sale_Date)
PRODUCT(Product_ID, Product_Description)
INVOICE(Vendor_ID, Invoice_Number, Invoice_Date, Paid?)
INVENTORY ITEM(Item_Number, Item_Description, Quantity_in_Stock,

Minimum_Order_Quantity, Type_of_Item)

292 Part IV Systems Design

ID
Vendor

V1

V2

Name

V1name

V2name

Type of Item

aaa
bbb
ccc
bbb
mmm

Total Quantity Added

nnn1
nnn2
nnn3
nnn4
nnn5

Monthly Vendor Load Report
for Month: xxxxx

Page x of nFIGURE 9-15
Hoosier Burger monthly
vendor load report.

The entities ITEM SALE and INVOICE ITEM as well as the associative entity
RECIPE each have composite primary keys taken from the entities to which
they relate, so we can represent these three entities in the following three
relations:

ITEM SALE(Receipt_Number, Product_ID, Quantity_Sold)
INVOICE ITEM(Vendor_ID, Invoice_Number, Item_Number, Quantity_ Added)
RECIPE(Product_ID, Item_Number, Quantity_Used)

Because no many-to-many, one-to-one, or unary relationships are involved,
we have now represented all the entities and relationships from the E-R
model. Also, each of the previous relations is in 3NF because all attributes are
simple, all nonkeys are fully dependent on the whole key, and there are no
dependencies between nonkeys in the INVOICE and INVENTORY ITEM
relations.

Now suppose that Bob Mellankamp wanted an additional report that was not
previously known by the analyst who designed the inventory control system for
Hoosier Burger. A rough sketch of this new report, listing volume of purchases
from each vendor by type of item in a given month, appears in Figure 9-15. In
this report, the same type of item may appear many times if multiple vendors
supply the same type of item.

This report contains data about several relations already known to the ana-
lyst, including:

INVOICE(Vendor_ID, Invoice_Number, Invoice_Date): primary keys and the
date are needed to select invoices in the specified month of the report

INVENTORY ITEM(Item_Number, Type_of_Item): primary key and a nonkey
in the report

INVOICE ITEM(Vendor_ID, Invoice_Number, Item_Number, Quantity_Added):
primary keys and the raw quantity of items invoiced that are subtotaled by
vendor and type of item in the report

In addition, the report includes a new attribute: Vendor_Name. After some
investigation, an analyst determines that Vendor_ID:Vendor_Name. Because the
whole primary key of the INVOICE relation is Vendor_ID and Invoice_Number, if
Vendor_Name were part of the INVOICE relation, this relation would violate the
3NF rule. So, a new VENDOR relation must be created as follows:

VENDOR(Vendor_ID, Vendor_Name)

Now, Vendor_ID not only is part of the primary key of INVOICE but also is a
foreign key referencing the VENDOR relation. Hence, a one-to-many relationship
from VENDOR to INVOICE is necessary. The systems analyst determines that an

Chapter 9 Designing Databases 293

Includes

Received on

INVOICE
Invoice_Number
Vendor_ID
Invoice_Date
Paid?

INVOICE ITEM
Quantity_Added

Sells

Orders

SALE
Receipt_Number
Sale_Date

VENDOR
Vendor_ID
Vendor_Name

ITEM SALE
Quantity_Sold

PRODUCT
Product_ID
Product_Description

RECIPE
Quantity_Used

INVENTORY ITEM
Item_Number
Item_Description
Quantity_in_Stock
Type_of_Item
Minimum_Order_Quantity

FIGURE 9-16
E-R diagram corresponding to
normalized relations of Hoosier
Burger’s inventory control system.

invoice must come from a vendor, and keeping data about a vendor is not nec-
essary unless the vendor invoices Hoosier Burger. An updated E-R diagram,
reflecting these enhancements for new data needed in the monthly vendor load
report, appears in Figure 9-16. The normalized relations for this database are:

SALE(Receipt_Number, Sale_Date)
PRODUCT(Product_ID, Product_Description)
INVOICE(Vendor_ID, Invoice_Number, Invoice_Date, Paid?)
INVENTORY ITEM(Item_Number, Item_Description, Quantity_in_Stock,

Type_of_Item, Minimum_Order_Quantity)
ITEM SALE(Receipt_Number, Product_ID, Quantity_Sold)
INVOICE ITEM(Vendor_ID, Invoice_Number, Item_Number, Quantity_Added)
RECIPE(Product_ID, Item_Number, Quantity_Used)
VENDOR(Vendor_ID, Vendor_Name)

Physical File and Database Design
Designing physical files and databases requires certain information that should
have been collected and produced during prior SDLC phases. This information
includes:

� Normalized relations, including volume estimates

� Definitions of each attribute

� Descriptions of where and when data are used: entered, retrieved,
deleted, and updated (including frequencies)

� Expectations or requirements for response time and data integrity

� Descriptions of the technologies used for implementing the files and
database so that the range of required decisions and choices for each
is known

Data type
A coding scheme recognized by
system software for representing
organizational data.

294 Part IV Systems Design

Normalized relations are, of course, the result of logical database design.
Statistics on the number of rows in each table, as well as the other informa-
tion listed may have been collected during requirements determination in sys-
tems analysis. If not, these items need to be discovered to proceed with
database design.

We take a bottom-up approach to reviewing physical file and database design.
Thus, we begin the physical design phase by addressing the design of physical
fields for each attribute in a logical data model.

Designing Fields
A field is the smallest unit of application data recognized by system software,
such as a programming language or database management system. An attribute
from a logical database model may be represented by several fields. For exam-
ple, a student name attribute in a normalized student relation might be repre-
sented as three fields: last name, first name, and middle initial. Each field
requires a separate definition when the application system is implemented.

In general, you will represent each attribute from each normalized relation as
one or more fields. The basic decisions you must make in specifying each field
concern the type of data (or storage type) used to represent the field and data
integrity controls for the field.

Choosing Data Types
A data type is a coding scheme recognized by system software for represent-
ing organizational data. The bit pattern of the coding scheme is usually imma-
terial to you, but the space to store data and the speed required to access data
are of consequence in the physical file and database design. The specific file or
database management software you use with your system will dictate which
choices are available to you. For example, Table 9-2 lists the data types avail-
able in Microsoft Access.

Selecting a data type balances four objectives that will vary in degree of
importance for different applications:

1. Minimize storage space

2. Represent all possible values of the field

3. Improve data integrity for the field

4. Support all data manipulations desired on the field

You want to choose a data type for a field that minimizes space, represents
every possible legitimate value for the associated attribute, and allows the data
to be manipulated as needed. For example, suppose a “quantity sold” field can be
represented by a Number data type. You would select a length for this field that
would handle the maximum value, plus some room for growth of the business.
Further, the Number data type will restrict users from entering inappropriate val-
ues (text), but it does allow negative numbers (if this is a problem, application
code or form design may be required to restrict the values to positive).

Be careful—the data type must be suitable for the life of the application;
otherwise, maintenance will be required. Choose data types for future needs
by anticipating growth. Also, be careful that date arithmetic can be done so
that dates can be subtracted or time periods can be added to or subtracted
from a date.

Several other capabilities of data types may be available with some database
technologies. We discuss a few of the most common of these features next:
calculated fields and coding and compression techniques.

Field
The smallest unit of named
application data recognized by
system software.

Calculated (or computed
or derived) field
A field that can be derived from
other database fields.

Chapter 9 Designing Databases 295

Calculated Fields It is common that an attribute is mathematically related
to other data. For example, an invoice may include a “total due” field, which
represents the sum of the amount due on each item on the invoice. A field that
can be derived from other database fields is called a calculated (or computed
or derived) field (recall that a functional dependency between attributes does
not imply a calculated field). Some database technologies allow you to
explicitly define calculated fields along with other raw data fields. If you specify
a field as calculated, you would then usually be prompted to enter the formula
for the calculation; the formula can involve other fields from the same record
and possibly fields from records in related files. The database technology will
either store the calculated value or compute it when requested.

Coding and Compression Techniques Some attributes have few values
from a large range of possible values. For example, although a six-digit field
(five numbers plus a value sign) can represent numbers �99999 to 99999, maybe
only 100 positive values within this range will ever exist. Thus, a Number data
type does not adequately restrict the permissible values for data integrity, and
storage space for five digits plus a value sign is wasteful. To use space more
efficiently (and less space may mean faster access because the data you need
are closer together), you can define a field for an attribute so that the possible
attribute values are not represented literally but rather are abbreviated. For
example, suppose in Pine Valley Furniture each product has a finish attribute,
with possible values Birch, Walnut, Oak, and so forth. To store this attribute as
Text might require 12, 15, or even 20 bytes to represent the longest finish value.

TABLE 9-2: Microsoft Access Data Types

Data Type Description

Text Text or combinations of text and numbers, as well as numbers that don’t require calculations, such as phone
numbers. A specific length is indicated, with a maximum number of characters of 255. One byte of storage
is required for each character used.

Memo Lengthy (up to 65,535 characters) text or combinations of text and numbers. One byte of storage is
required for each character used.

Number Numeric data used in mathematical calculations. Either 1, 2, 4, or 8 bytes of storage space is required,
depending on the specified length of the number.

Date/Time Date and time values for the years 100 through 9999. Eight bytes of storage space is required.

Currency Currency values and numeric data used in mathematical calculations involving data with one to four
decimal places. Accurate to 15 digits on the left side of the decimal separator and to 4 digits on the right
side. Eight bytes of storage space is required.

Autonumber A unique sequential (incremented by 1) number or random number assigned by Microsoft Access whenever
a new record is added to a table. Typically, 4 bytes of storage is required.

Yes/No Yes and No values and fields that contain only one of two values (Yes/No, True/False, or On/Off).
One bit of storage is required.

OLE Object An object (such as a Microsoft Excel spreadsheet, a Microsoft Word document, graphics, sounds, or other
binary data) linked to or embedded in a Microsoft Access table. Up to 1 gigabyte of storage possible.

Hyperlink Text or combinations of text and numbers stored as text and used as a hyperlink address (typical URL form).

Lookup Wizard Creates a field that allows you to choose a value from another table (the table’s primary key) or from a list of
values by using a list box or combo box. Clicking this option starts the Lookup Wizard, which creates a
Lookup field. After you complete the wizard, Microsoft Access sets the data type based on the values
selected in the wizard. Used for foreign keys to enforce referential integrity. Space requirement depends on
length of foreign key or lookup value.

Input mask
A pattern of codes that restricts
the width and possible values for
each position of a field.

296 Part IV Systems Design

Suppose that even a liberal estimate is that Pine Valley Furniture will never have
more than twenty-five finishes. Thus, a single alphabetic or alphanumeric
character would be more than sufficient. We not only reduce storage space but
also increase integrity (by restricting input to only a few values), which helps to
achieve two of the physical file and database design goals. Codes also have
disadvantages. If used in system inputs and outputs, they can be more difficult
for users to remember, and programs must be written to decode fields if codes
will not be displayed.

Controlling Data Integrity
We have already explained that data typing helps control data integrity by lim-
iting the possible range of values for a field. You can use additional physical file
and database design options to ensure higher-quality data. Although these con-
trols can be imposed within application programs, it is better to include these
as part of the file and database definitions so that the controls are guaranteed
to be applied all the time, as well as uniformly for all programs. The five popu-
lar data integrity control methods are default value, input mask, range control,
referential integrity, and null value control.

� Default value: A default value is the value a field will assume unless
an explicit value is entered for the field. For example, the city and
state of most customers for a particular retail store will likely be the
same as the store’s city and state. Assigning a default value to a field
can reduce data-entry time (the field can simply be skipped during
data entry) and data-entry errors, such as typing IM instead of IN
for Indiana.

� Input mask: Some data must follow a specified pattern. An input
mask (or field template) is a pattern of codes that restricts the width
and possible values for each position within a field. For example, a
product number at Pine Valley Furniture is four alphanumeric
characters—the first is alphabetic and the next three are numeric—
defined by an input mask of L999, where L means that only alphabetic
characters are accepted, and 9 means that only numeric digits are
accepted. M128 is an acceptable value, but 3128 or M12H would be
unacceptable. Other types of input masks can be used to convert all
characters to uppercase, indicate how to show negative numbers,
suppress showing leading zeros, or indicate whether entry of a letter
or digit is optional.

� Range control: Both numeric and alphabetic data may have a limited
set of permissible values. For example, a field for the number of
product units sold may have a lower bound of 0, and a field that
represents the month of a product sale may be limited to the values
JAN, FEB, and so forth.

� Referential integrity: As noted earlier in this chapter, the most common
example of referential integrity is cross-referencing between relations.
For example, consider the pair of relations in Figure 9-17A. In this case,
the values for the foreign key Customer_ID field within a customer order
must be limited to the set of Customer_ID values from the customer
relation; we would not want to accept an order for a nonexisting or
unknown customer. Referential integrity may be useful in other
instances. Consider the employee relation example in Figure 9-17B.
In this example, the employee relation has a field of Supervisor_ID.
This field refers to the Employee_ID of the employee’s supervisor and
should have referential integrity on the Employee_ID field within the
same relation. Note in this case that because some employees do not

Default value
The value a field will assume
unless an explicit value is entered
for that field.

Physical table
A named set of rows and
columns that specifies the fields
in each row of the table.

Null value
A special field value, distinct
from 0, blank, or any other
value, that indicates that the
value for the field is missing or
otherwise unknown.

Chapter 9 Designing Databases 297

CUSTOMER(Customer_ID,Cust_Name,Cust_Address,...)

CUST_ORDER(Order_ID,Customer_ID,Order_Date,...)

and Customer_ID may not be null because every order must be for
some existing customer

and Supervisor_ID may be null because not all employees have supervisors

EMPLOYEE(Employee_ID,Supervisor_ID,Empl_Name,...)_ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _

FIGURE 9-17
Examples of referential integrity
field controls: (A) Referential
integrity between relations,
(B) Referential integrity within
a relation.

have supervisors, this referential integrity constraint is weak because the
value of a Supervisor_ID field may be empty.

� Null value control: A null value is a special field value, distinct from
0, blank, or any other value, that indicates that the value for the field is
missing or otherwise unknown. It is not uncommon that when it is
time to enter data—for example, a new customer—you might not
know the customer’s phone number. The question is whether a
customer, to be valid, must have a value for this field. The answer for
this field is probably initially no, because most data processing can
continue without knowing the customer’s phone number. Later, a null
value may not be allowed when you are ready to ship product to the
customer. On the other hand, you must always know a value for the
Customer_ID field. Because of referential integrity, you cannot enter
any customer orders for this new customer without knowing an
existing Customer_ID value, and the customer’s name is essential for
visual verification of correct data entry. Besides using a special null
value when a field is missing its value, you can also estimate the value,
produce a report indicating rows of tables with critical missing values,
or determine whether the missing value matters in computing needed
information.

Designing Physical Tables
A relational database is a set of related tables (tables are related by foreign keys
referencing primary keys). In logical database design, you grouped into a rela-
tion those attributes that concern some unifying, normalized business concept,
such as a customer, product, or employee. In contrast, a physical table is a
named set of rows and columns that specifies the fields in each row of the table.
A physical table may or may not correspond to one relation. Whereas normal-
ized relations possess properties of well-structured relations, the design of a
physical table has two goals different from those of normalization: efficient use
of secondary storage and data-processing speed.

The efficient use of secondary storage (disk space) relates to how data are
loaded on disks. Disks are physically divided into units (called pages) that can
be read or written in one machine operation. Space is used efficiently when the
physical length of a table row divides close to evenly into the length of the stor-
age unit. For many information systems, this even division is difficult to achieve
because it depends on factors, such as operating system parameters, outside the
control of each database. Consequently, we do not discuss this factor of physi-
cal table design in this text.

A second and often more important consideration when selecting a physical
table design is efficient data processing. Data are most efficiently processed

A

B

298 Part IV Systems Design

1256
2566

Name

Rogers
Bailey

Region

Atlantic
Atlantic

Annual_Sales

10,000
12,000

A_CUSTOMER

1323
1626

Name

Temple
Hope

Region

Pacific
Pacific

Annual_Sales

20,000
22,000

P_CUSTOMER

1455
2433

Name

Gates
Bates

Region

South
South

Annual_Sales

15,000
14,000

S_CUSTOMER

Denormalized Regional Customer Tables

Customer_ID

Customer_ID

Customer_ID

Customer_ID

1256
1323
1455
1626
2433
2566

Name

Rogers
Temple
Gates
Hope
Bates
Bailey

Region

Atlantic
Pacific
South
Pacific
South
Atlantic

Annual_Sales

10,000
20,000
15,000
22,000
14,000
12,000

CUSTOMER
Normalized Customer Table

when they are stored close to one another in secondary memory, thus minimiz-
ing the number of input/output (I/O) operations that must be performed. Typi-
cally, the data in one physical table (all the rows and fields in those rows) are
stored close together on disk. Denormalization is the process of splitting or
combining normalized relations into physical tables based on affinity of use of
rows and fields. Consider Figure 9-18. In Figure 9-18A, a normalized product
relation is split into separate physical tables with each containing only engi-
neering, accounting, or marketing product data; the primary key must be
included in each table. Note, the Description and Color attributes are repeated
in both the engineering and marketing tables because these attributes relate to
both kinds of data. In Figure 9-18B, a customer relation is denormalized by put-
ting rows from different geographic regions into separate tables. In both cases,
the goal is to create tables that contain only the data used together in programs.
By placing data used together close to one another on disk, the number of disk
I/O operations needed to retrieve all the data needed in a program is minimized.

Denormalization can increase the chance of errors and inconsistencies that
normalization avoided. Further, denormalization optimizes certain data pro-
cessing at the expense of others, so if the frequencies of different processing
activities change, the benefits of denormalization may no longer exist.

Denormalized Functional Area Product Relations for Tables

Normalized Product Relation
PRODUCT(Product_ID,Description,Drawing_Number,Weight,Color,Unit_Cost,Burden_Rate,Price,Product_Manager)

Engineering:
Accounting:
Marketing:

E_PRODUCT(Product_ID,Description,Drawing_Number,Weight,Color)
A_PRODUCT(Product_ID,Unit_Cost,Burden_Rate)
M_PRODUCT(Product_ID,Description,Color,Price,Product_Manager)

FIGURE 9-18
Examples of denormalization:
(A) Denormalization by columns,
(B) Denormalization by rows.

Denormalization
The process of splitting or
combining normalized relations
into physical tables based on
affinity of use of rows and fields.

B

A

File organization
A technique for physically
arranging the records of a file.

Physical file
A named set of table rows stored
in a contiguous section of
secondary memory.

Chapter 9 Designing Databases 299

Various forms of denormalization can be done, but no hard-and-fast rules will
help you decide when to denormalize data. Here are three common situations
in which denormalization often makes sense (see Figure 9-19 for illustrations):

1. Two entities with a one-to-one relationship. Figure 9-19A shows student
data with optional data from a standard scholarship application a student
may complete. In this case, one record could be formed with four fields
from the STUDENT and SCHOLARSHIP APPLICATION FORM normalized
relations. (Note: In this case, fields from the optional entity must have null
values allowed.)

2. A many-to-many relationship (associative entity) with nonkey attributes.
Figure 9-19B shows price quotes for different items from different vendors.
In this case, fields from ITEM and PRICE QUOTE relations might be
combined into one physical table to avoid having to combine all three tables
together. (Note: It may create considerable duplication of data—in the
example, the ITEM fields, such as Description, would repeat for each price
quote—and excessive updating if duplicated data changes.)

3. Reference data. Figure 9-19C shows that several ITEMs have the same
STORAGE INSTRUCTIONS, and STORAGE INSTRUCTIONS relate only to
ITEMs. In this case, the storage instruction data could be stored in the
ITEM table, thus reducing the number of tables to access but also creating
redundancy and the potential for extra data maintenance.

Arranging Table Rows
The result of denormalization is the definition of one or more physical files. A com-
puter operating system stores data in a physical file, which is a named set of table
rows stored in a contiguous section of secondary memory. A file contains rows and
columns from one or more tables, as produced from denormalization. To the
operating system—like Windows, Linux, or Mac OS—each table may be one file or
the whole database may be in one file, depending on how the database technology
and database designer organize data. The way the operating system arranges table
rows in a file is called a file organization. With some database technologies, the
systems designer can choose among several organizations for a file.

If the database designer has a choice, he or she chooses a file organization for
a specific file to provide:

1. Fast data retrieval

2. High throughput for processing transactions

3. Efficient use of storage space

4. Protection from failures or data loss

5. Minimal need for reorganization

6. Accommodation of growth

7. Security from unauthorized use

Often these objectives conflict, and you must select an organization for each
file that provides a reasonable balance among the criteria within the resources
available.

To achieve these objectives, many file organizations utilize the concept of a
pointer. A pointer is a field of data that can be used to locate a related field or
row of data. In most cases, a pointer contains the address of the associated data,
which has no business meaning. Pointers are used in file organizations when it
is not possible to store related data next to each other. Because such situations
are often the case, pointers are common. In most cases, fortunately, pointers are
hidden from a programmer. Yet, because a database designer may need to
decide whether and how to use pointers, we introduce the concept here.

Pointer
A field of data that can be used
to locate a related field or row of
data.

300 Part IV Systems Design

FIGURE 9-19
Possible denormalization
situations: (A) Two entities
with a one-to-one relationship,
(B) A many-to-many relationship
with nonkey attributes,
(C) Reference data.

Normalized relations:
STUDENT(Student_ID, Campus_Address, Application_ID)

APPLICATION(Application_ID, Application_Date, Qualifications, Student_ID)

Denormalized relation:
STUDENT(Student_ID, Campus_Address, Application_Date, Qualifications) and Application_Date and
Qualifications may be null

(Note:We assume Application_ID is not necessary when all fields are stored in one record, but this field can be included if
it is required application data.)
A

STUDENT
Student_ID
Campus_Address

SCHOLARSHIP
APPLICATION

FORM
Application_ID
Application_Date
Qualifications

STORAGE
INSTRUCTIONS

Instr_ID
Where_Store
Container_Type

ITEM
Item_ID
Description

Control for

ITEM
Item_ID
Description

VENDOR
Vendor_ID
Address
Contact_Name

PRICE QUOTE
Price

Normalized relations:
VENDOR(Vendor_ID, Address, Contact_Name)

ITEM(Item_ID, Description)

PRICE QUOTE(Vendor_ID, Item_ID, Price)

Denormalized relations:
VENDOR(Vendor_ID, Address, Contact_Name)

ITEM-QUOTE(Vendor_ID, Item_ID, Description, Price)
B

Normalized relations:
STORAGE(Instr_ID, Where_Store, Container_Type)

ITEM(Item_ID, Description, Instr_ID)

Denormalized relation:
ITEM(Item_ID, Description, Where_Store, Container_Type)

C

Sequential file
organization
The rows in the file are stored in
sequence according to a primary
key value.

Start of file

Scan

...

...

...

Aces

Boilermakers

Devils

Flyers

Hawkeyes

Hoosiers

Miners

Panthers

Seminoles

FIGURE 9-20
Comparison of file organizations:
(A) Sequential, (B) Indexed,
(C) Hashed.

Chapter 9 Designing Databases 301

Key
(Hoosiers)

B D F H L P

F P Z

R S Z

Miners

Panthers

Seminoles

Devils

Aces

Boilermakers

Flyers

Hawkeyes

Hoosiers

Relative
Record
Number

...

...

Miners

Hawkeyes

Aces

Hoosiers

Seminoles

Devils

Flyers

Panthers

Boilermakers

Hashing
Algorithm

Key
(Hoosiers)

Literally hundreds of different file organizations and variations have been cre-
ated, but we outline the basics of three families of file organizations used in
most file management environments: sequential, indexed, and hashed, as illus-
trated in Figure 9-20. You need to understand the particular variations of each
method available in the environment for which you are designing files.

Sequential File Organizations In a sequential file organization, the
rows in the file are stored in sequence according to a primary key value
(see Figure 9-20A). To locate a particular row, a program must normally scan the
file from the beginning until the desired row is located. A common example of
a sequential file is the alphabetical list of persons in the white pages of a phone
directory (ignoring any index that may be included with the directory).
Sequential files are fast if you want to process rows sequentially, but they are
essentially impractical for random row retrievals. Deleting rows can cause
wasted space or the need to compress the file. Adding rows requires rewriting
the file, at least from the point of insertion. Updating a row may also require
rewriting the file, unless the file organization supports rewriting over the
updated row only. Moreover, only one sequence can be maintained without
duplicating the rows.

B

C

A

302 Part IV Systems Design

Indexed File Organizations In an indexed file organization, the
rows are stored either sequentially or nonsequentially, and an index is created
that allows the application software to locate individual rows (see Figure 9-20B).
Like a card catalog in a library, an index is a structure that is used to
determine the rows in a file that satisfy some condition. Each entry matches
a key value with one or more rows. An index can point to unique rows
(a primary key index, such as on the Product_ID field of a product table) or to
potentially more than one row. An index that allows each entry to point to
more than one record is called a secondary key index. Secondary key
indexes are important for supporting many reporting requirements and for
providing rapid ad hoc data retrieval. An example would be an index on the
Finish field of a product table.

The example in Figure 9-20B, typical of many index structures, illustrates that
indexes can be built on top of indexes, creating a hierarchical set of indexes,
and the data are stored sequentially in many contiguous segments. For exam-
ple, to find the record with key “Hoosiers,” the file organization would start at
the top index and take the pointer after the entry P, which points to another
index for all keys that begin with the letters G through P in the alphabet. Then
the software would follow the pointer after the H in this index, which represents
all those records with keys that begin with the letters G through H. Eventually,
the search through the indexes either locates the desired record or indicates
that no such record exists. The reason for storing the data in many contiguous
segments is to allow room for some new data to be inserted in sequence without
rearranging all the data.

The main disadvantages of indexed file organizations are the extra space
required to store the indexes and the extra time necessary to access and
maintain indexes. Usually these disadvantages are more than offset by the
advantages. Because the index is kept in sequential order, both random and
sequential processing are practical. Also, because the index is separate from
the data, you can build multiple index structures on the same data file (just
as in the library where there are multiple indexes on author, title, subject,
and so forth). With multiple indexes, software may rapidly find records
that have compound conditions, such as finding books by Tom Clancy on
espionage.

The decision of which indexes to create is probably the most important
physical database design task for relational database technology, such as
Microsoft Access, SQL Server, Oracle, DB2, and similar systems. Indexes can
be created for both primary and secondary keys. When using indexes, there is
a trade-off between improved performance for retrievals and degrading per-
formance for inserting, deleting, and updating the rows in a file. Thus, indexes
should be used generously for databases intended primarily to support data
retrievals, such as for decision support applications. Because they impose
additional overhead, indexes should be used judiciously for databases that
support transaction processing and other applications with heavy updating
requirements.

Here are some rules for choosing indexes for relational databases:

1. Specify a unique index for the primary key of each table (file). This
selection ensures the uniqueness of primary key values and speeds
retrieval based on those values. Random retrieval based on primary key
value is common for answering multitable queries and for simple data-
maintenance tasks.

2. Specify an index for foreign keys. As in the first guideline, this speeds
processing multitable queries.

3. Specify an index for nonkey fields that are referenced in qualification and
sorting commands for the purpose of retrieving data.

Secondary key
One or a combination of fields
for which more than one row
may have the same combination
of values.

Index
A table used to determine the
location of rows in a file that
satisfy some condition.

Indexed file organization
The rows are stored either
sequentially or nonsequentially,
and an index is created that
allows software to locate
individual rows.

Hashed file organization
The address for each row is
determined using an algorithm.

Chapter 9 Designing Databases 303

To illustrate the use of these rules, consider the following relations for Pine
Valley Furniture:

PRODUCT(Product_Number, Description, Finish, Room, Price)
ORDER(Order_Number, Product_Number, Quantity)

You would normally specify a unique index for each primary key: Product_
Number in PRODUCT and Order_Number in ORDER. Other indexes would be
assigned based on how the data are used. For example, suppose that a system
module requires PRODUCT and PRODUCT_ORDER data for products with a
price below $500, ordered by Product_Number. To speed up this retrieval, you
could consider specifying indexes on the following nonkey attributes:

1. Price in PRODUCT because it satisfies rule 3

2. Product_Number in ORDER because it satisfies rule 2

Because users may direct a potentially large number of different queries against
the database, especially for a system with a lot of ad hoc queries, you will prob-
ably have to be selective in specifying indexes to support the most common or
frequently used queries.

Hashed File Organizations In hashed file organization, the address of
each row is determined using an algorithm (see Figure 9-20C) that converts a
primary key value into a row address. Although there are several variations of
hashed files, in most cases the rows are located nonsequentially as dictated by
the hashing algorithm. Thus, sequential data processing is impractical. On the
other hand, retrieval of random rows is fast. Some of the issues in the design of
hashing file organizations, such as how to handle two primary keys that
translate into the same address, are beyond our scope (see Hoffer, Ramesh, and
Topi [2011] for a thorough discussion).

Summary of File Organizations The three families of file organizations—
sequential, indexed, and hashed—cover most of the file organizations you will
have at your disposal as you design physical files and databases. Table 9-3
summarizes the comparative features of these file organizations. You can use this
table to help choose a file organization by matching the file characteristics and
file processing requirements with the features of the file organization.

Designing Controls for Files
Two of the goals of physical table design mentioned earlier are protection from
failures or data loss and security from unauthorized use. These goals are
achieved primarily by implementing controls on each file. Data integrity con-
trols, a primary type of control, was mentioned earlier in the chapter. Two other
important types of controls address file backup and security.

It is almost inevitable that a file will be damaged or lost, because of either soft-
ware or human errors. When a file is damaged, it must be restored to an accu-
rate and reasonably current condition. A file and database designer has several
techniques for file restoration, including:

� Periodically making a backup copy of a file

� Storing a copy of each change to a file in a transaction log or audit trail

� Storing a copy of each row before or after it is changed

For example, a backup copy of a file and a log of rows after they were changed
can be used to reconstruct a file from a previous state (the backup copy) to its
current values. This process would be necessary if the current file were so
damaged that it could not be used. If the current file is operational but inaccurate,

304 Part IV Systems Design

then a log of earlier images of rows can be used in reverse order to restore a file
to an accurate but previous condition. Then a log of the transactions can be re-
applied to the restored file to bring it up to current values. It is important that the
information system designer make provisions for backup, audit trail, and row
image files so that data files can be rebuilt when errors and damage occur.

An information system designer can build data security into a file by several
means, including:

� Coding, or encrypting, the data in the file so that they cannot be read
unless the reader knows how to decrypt the stored values

� Requiring data file users to identify themselves by entering user
names and passwords, and then possibly allowing only certain file
activities (read, add, delete, change) for selected users for selected
data in the file

� Prohibiting users from directly manipulating any data in the file, and
rather requiring programs and users to work with a copy (real or
virtual) of the data they need; the copy contains only the data that
users or programs are allowed to manipulate, and the original version
of the data will change only after changes to the copy are thoroughly
checked for validity

Security procedures such as these all add overhead to an information system,
so only necessary controls should be included.

Physical Database Design for Hoosier Burger
A set of normalized relations and an associated E-R diagram for Hoosier Burger
(Figure 9-16) were presented in the section “Logical Database Design for Hoosier
Burger” earlier in this chapter. The display of a complete design of this database

TABLE 9-3: Comparative Features of Sequential, Indexed, and Hashed File Organizations

File Organization

Factor Sequential Indexed Hashed

Storage space No wasted space No wasted space for data, but extra
space for index

Extra space may be needed to
allow for addition and deletion
of records

Sequential retrieval on
primary key

Very fast Moderately fast Impractical

Random retrieval on
primary key

Impractical Moderately fast Very fast

Multiple key retrieval Possible, but requires
scanning whole file

Very fast with multiple indexes Not possible

Deleting rows Can create wasted
space or require
reorganizing

If space can be dynamically allocated,
this is easy, but requires maintenance
of indexes

Very easy

Adding rows Requires rewriting file If space can be dynamically allocated,
this is easy, but requires maintenance
of indexes

Very easy, except multiple keys
with same address require extra
work

Updating rows Usually requires
rewriting file

Easy, but requires maintenance of
indexes

Very easy

Chapter 9 Designing Databases 305

would require more documentation than space permits in this text, so we illus-
trate in this section only a few key decisions from the complete physical database.

As outlined in this chapter, to translate a logical database design into a
physical database design, you need to make the following decisions:

� Create one or more fields for each attribute and determine a data type
for each field.

� For each field, decide whether it is calculated, needs to be coded or
compressed, must have a default value or input mask, or must have
range, referential integrity, or null value controls.

� For each relation, decide whether it should be denormalized to
achieve desired processing efficiencies.

� Choose a file organization for each physical file.

� Select suitable controls for each file and the database.

Remember, the specifications for these decisions are made in physical database
design, and then the specifications are coded in the implementation phase using
the capabilities of the chosen database technology. These database technology
capabilities determine what physical database design decisions you need to make.
For example, for Microsoft Access, which we assume is the implementation envi-
ronment for this illustration, the only choice for file organization is indexed,
so the file organization decision becomes on which primary and secondary key
attributes to build indexes.

We illustrate these physical database design decisions only for the INVOICE
table. The first decision most likely would be whether to denormalize this table.
Based on the suggestions for possible denormalization presented in the chap-
ter, the only possible denormalization of this table would be to combine it with
the VENDOR table. Because each invoice must have a vendor, and the only
additional data about vendors not in the INVOICE table is the Vendor_Name at-
tribute, it is a good candidate for denormalization. Because Vendor_Name is not
especially volatile, repeating Vendor_Name in each invoice for the same vendor
will not cause excessive update maintenance. If Vendor_Name is often used
with other invoice data when invoice data are displayed, then, indeed, it would
be a good candidate for denormalization. So, the denormalized relation to be
transformed into a physical table is:

INVOICE(Vendor_ID, Invoice_Number, Invoice_Date, Paid?, Vendor_Name)

The next decision can be what indexes to create. The guidelines presented in
this chapter suggest creating an index for the primary key, all foreign keys, and
secondary keys used for sorting and qualifications in queries. So, we create a pri-
mary key index on the combined fields Vendor_ID and Invoice_Number. INVOICE
has no foreign keys. To determine what fields are used as secondary keys in query
sorting and qualification clauses, we would need to know the content of queries.
Also, it would be helpful to know query frequency, because indexes do not pro-
vide much performance efficiency for infrequently run queries. For simplicity,
suppose only two frequently run queries reference the INVOICE table, as follows:

1. Display all the data about all unpaid invoices due this week.

2. Display all invoices sorted by vendor: show all unpaid invoices first, then
all paid invoices, and order the invoices of each category in reverse
sequence by invoice date.

In the first query, both the Paid? and Invoice_Date fields are used for qualifi-
cation. Paid?, however, may not be a good candidate for an index because this
field contains only two values. The systems analyst would need to discover what
percentage of invoices on file are unpaid. If this value is more than 10 percent,

306 Part IV Systems Design

then an index on Paid? would not likely be helpful. Invoice_Date is a more dis-
criminating field, so an index on this field would be helpful.

In the second query, Vendor_ID, Paid?, and Invoice_Date are used for sorting.
Vendor_ID and Invoice_Date are discriminating fields (most values occur in
less than 10 percent of the rows), so indexes on these fields will be helpful.
Assuming less than 10 percent of the invoices on file are unpaid, then it would
make sense to create the following indexes to make these two queries run as
efficiently as possible:

Primary key index: Vendor_ID and Invoice_Number
Secondary key indices: Vendor_ID, Invoice_Date, and Paid?

Table 9-4 shows the decisions made for the properties of each field, based on
reasonable assumptions about invoice data. Figure 9-4 illustrates a Microsoft
Access table definition screen for the SHIPMENT table that includes the
Invoice_Number field. It is the parameters on such a screen that must be spec-
ified for each field. Table 9-4 summarizes the field design parameters for the
Invoice_Number field: size (width), format and input mask (picture), default
value, validation rule (integrity control), and whether the field is required or is
allowed zero length (null value controls); we have already indicated the index-
ing decision. Recall from Table 9-2 that the data type of Lookup Wizard imple-
ments referential integrity, but no foreign keys are in the INVOICE table
because we combined the VENDOR table into the INVOICE table. We do not
specify properties under the Lookup tab, which relates to additional data entry
and display properties peculiar to Microsoft Access. Remember, we specify
these parameters in physical database design, and it is in implementation that
the Access tables would be defined using forms such as in Figure 9-4.

We do not illustrate security and other types of controls because these deci-
sions are dependent on unique capabilities of the technology and a complex
analysis of what data which users have the right to read, modify, add, or delete.
This section illustrates the process of making many key physical database de-
sign decisions within the Microsoft Access environment.

Pine Valley Furniture WebStore: Designing Databases
Like many other analysis and design activities, designing the database for an
Internet-based electronic commerce application is no different from the
process followed when designing the database for other types of applications.
In the last chapter, you read how Jim Woo and the Pine Valley Furniture devel-
opment team designed the human interface for the WebStore. In this section, we

TABLE 9-4: INVOICE Table Field Design Parameters for Hoosier Burger

Physical Design Parameter

Field
Data Type
and Size

Format and
Input Mask

Default
Value

Validation
Rule

Required, Zero
Length

Vendor_ID Number Fixed with
0 decimals, 9999

N/A � 0 Required, not 0 length

Invoice_Number Text, 10 LL99–99999 N/A N/A Required, not 0 length

Invoice_Date Date/Time Medium date � Date() � #1/1/2000 Not required

Paid? Yes/No N/A False N/A Required

Vendor_Name Text, 30 N/A N/A N/A Required, may be 0 length

Chapter 9 Designing Databases 307

examine the processes Jim followed when transforming the conceptual data
model for the WebStore into a set of normalized relations.

Designing Databases for Pine Valley Furniture’s WebStore
The first step Jim took when designing the database for the WebStore was to
review the conceptual data model—the entity-relationship diagram—developed
during the analysis phase of the SDLC (see Figure 7-13 for a review). Given that
the diagram contained no associative entities or many-to-many relationships, he
began by identifying four distinct entity types that he named:

CUSTOMER
ORDER
INVENTORY
SHOPPING_CART

Once reacquainted with the conceptual data model, he examined the lists of
attributes for each entity. He noted that three types of customers were identi-
fied during conceptual data modeling, namely: corporate customers, home-
office customers, and student customers. Yet, all were simply referred to as a
“customer.” Nonetheless, because each type of customer had some unique
information (attributes) that other types of customers did not, Jim created three
additional entity types, or subtypes, of customers:

CORPORATE
HOME_OFFICE
STUDENT

Table 9-5 lists the common and unique information about each customer type.
As Table 9-5 implies, four separate relations are needed to keep track of customer
information without having anomalies. The CUSTOMER relation is used to cap-
ture common attributes, whereas the additional relations are used to capture

TABLE 9-5: Common and Unique Information about Each
Customer Type*

Common Information about ALL Customer Types

Corporate Customer Home-Office Customer Student Customer

Customer ID Customer ID Customer ID

Address Address Address

Phone Phone Phone

E-mail E-mail E-mail

Unique Information about EACH Customer Type

Corporate Customer Home-Office Customer Student Customer

Corporate name Customer name Customer name

Shipping method Corporate name School

Buyer name Fax

Fax

*Having multiple “types” of an entity, with some sharing common attributes and each having unique
attributes, is modeled in E-R diagrams as a subclass entity and is commonly referred to as an “is a”
relationship (e.g., a customer is a corporate customer, a customer is a home-office customer, or a
customer is a student customer). Please see a comprehensive database management text such as
Hoffer, Ramesh, and Topi (2011) for more information on subclass entities and “is a” relationships.

308 Part IV Systems Design

information unique to each distinct customer type. In order to identify the type
of customer within the CUSTOMER relation easily, a Customer_Type attribute is
added to the CUSTOMER relation. Thus, the CUSTOMER relation consists of:

CUSTOMER(Customer_ID, Address, Phone, E-mail, Customer_Type)

In order to link the CUSTOMER relation to each of the separate customer
types—CORPORATE, HOME_OFFICE, and STUDENT—they all share the same
primary key, Customer_ID, in addition to the attributes unique to each, which
results in the following relations:

CORPORATE(Customer_ID, Corporate_Name, Shipping_Method, Buyer_
Name, Fax)

HOME_OFFICE(Customer_ID, Customer_Name, Corporate_Name, Fax)
STUDENT(Customer_ID, Customer_Name, School)

In addition to identifying all the attributes for customers, Jim also identified
the attributes for the other entity types. The results of this investigation are sum-
marized in Table 9-6. As described in Chapter 7, much of the order-related
information is captured and tracked within PVF’s Purchasing Fulfillment Sys-
tem. Therefore, the ORDER relation does not need to track all the details of the
order because the Purchasing Fulfillment System produces a detailed invoice
that contains all order details, such as the list of ordered products, materials
used, colors, quantities, and other such information. In order to access this
invoice information, a foreign key, Invoice_ID, is included in the ORDER rela-
tion. Additionally, to easily identify which orders belong to a specific customer,
the Customer_ID attribute is also included in ORDER. Two additional attri-
butes, Return_Code and Order_Status, are also included in ORDER. The
Return_Code is used to track the return of an order more easily—or a product
within an order—whereas Order_Status is a code used to represent the state of
an order as it moves through the purchasing fulfillment process. These attri-
butes result in the following ORDER relation:

ORDER(Order_ID, Invoice_ID, Customer_ID, Return_Code, Order_Status)

In the INVENTORY entity, two attributes—Materials and Colors—could take
on multiple values but were represented as single attributes. For example, Mate-
rials represents the range of materials from which a particular inventory item
could be constructed. Likewise, Colors is used to represent the range of possible

TABLE 9-6: Attributes for Order, Inventory,
and Shopping Cart Entities

Order Inventory Shopping_Cart

Order_ID (primary key) Inventory_ID (primary key) Cart_ID (primary key)

Invoice_ID (foreign key) Name Customer_ID (foreign key)

Customer_ID (foreign key) Description Inventory_ID (foreign key)

Return_Code Size Material

Order_Status Weight Color

Materials Quantity

Colors

Price

Lead_Time

Chapter 9 Designing Databases 309

product colors. PVF has a long-established set of codes for representing materi-
als and colors; each of these complex attributes is represented as a single attrib-
ute. For example, the value “A” in the Colors field represents walnut, dark oak,
light oak, and natural pine, whereas the value “B” represents cherry and walnut.
Using this coding scheme, PVF can use a single character code to represent nu-
merous combinations of colors and results in the following INVENTORY relation:

INVENTORY(Inventory_ID, Name, Description, Size, Weight, Materials,
Colors, Price, Lead_Time)

Finally, in addition to Cart_ID, each shopping cart contains the Customer_ID and
Inventory_ID attributes so that each item in a cart can be linked to a particular
inventory item and to a specific customer. In other words, both the Customer_ID
and Inventory_ID attributes are foreign keys in the SHOPPING_CART relation.
Recall that the SHOPPING_CART is temporary and is kept only while a customer
is shopping. When a customer actually places the order, the ORDER relation is
created and the line items for the order—the items in the shopping cart—are
moved to the Purchase Fulfillment System and stored as part of an invoice.
Because we also need to know the selected material, color, and quantity of each
item in the SHOPPING_CART, these attributes are included in this relation, which
results in the following:

SHOPPING_CART(Cart_ID, Customer_ID, Inventory_ID, Material, Color,
Quantity)

Now that Jim had completed the database design for the WebStore, he shared
all the design information with his project team so that the design could be
turned into a working database during implementation. We read more about the
WebStore’s implementation in the next chapter.

Key Points Review
1. Concisely define each of the following key

database design terms: relation, primary
key, functional dependency, foreign key,
referential integrity, field, data type, null
value, denormalization, file organization,
index, and secondary key.

A relation is a named, two-dimensional table of
data. Each relation consists of a set of named
columns and an arbitrary number of unnamed
rows. In logical database design, a relation cor-
responds to an entity or a many-to-many rela-
tionship from an E-R data model. One or more
columns of each relation compose the primary
key of the relation, values for which distinguish
each row of data in the relation. A functional
dependency is a particular relationship between
two attributes. For a given relation, attribute B is
functionally dependent on attribute A if, for
every valid value of A, that value of A uniquely
determines the value of B. The functional
dependence of B on A is represented by A:B.
The primary goal of logical database design is to
develop relations in which all the nonprimary
key attributes of a relation functionally depend

on the whole primary key and nothing but the
primary key. Relationships between relations are
represented by placing the primary key of the
table on the one side of the relationship as an
attribute (also known as a foreign key) in the
relation on the many side of the relationship.
Foreign keys must satisfy referential integrity,
which means that the value (or existence) of an
attribute depends on the value (or existence) of
the same attribute in another relation. The spec-
ifications for a database in terms of relations
must be transformed into technology-related
terms before the database can be implemented. A
field is the smallest unit of stored data in a data-
base and typically corresponds to an attribute in
a relation. Each field has a data type, which is a
coding scheme recognized by system software
for representing organizational data. A null value
for a field is a special field value, distinct from 0,
blank, or any other value, that indicates that the
value for the field is missing or otherwise un-
known. Denormalization is an important process
in designing a physical database, by which nor-
malized relations are split or combined into

310 Part IV Systems Design

physical tables based on affinity of use of rows
and fields. A file organization is a technique for
physically arranging the records of a physical
file. Many types of file organizations utilize an
index, which is a table (not related to the E-R
diagram for the application) used to determine
the location of rows in a file that satisfy some
condition. An index can be created on a primary
or a secondary key, which is one or a combina-
tion of fields for which more than one row may
have the same combination of values.

2. Explain the role of designing databases in
the analysis and design of an information
system.

Databases are defined during the systems
design phase of the systems development life
cycle. They are designed usually in parallel with
the design of system interfaces. To design a data-
base, a systems analyst must understand the con-
ceptual database design for the application,
usually specified by an E-R diagram, and the data
requirements of each system interface (report,
form, screen, etc.). Thus, database design is a
combination of top-down (driven by an E-R dia-
gram) and bottom-up (driven by specific informa-
tion requirements in system interfaces) processes.
Besides data requirements, systems analysts
must also know physical data characteristics
(e.g., length and format), frequency of use of the
system interfaces, and the capabilities of data-
base technologies.

3. Transform an entity-relationship (E-R) dia-
gram into an equivalent set of well-structured
(normalized) relations.

An E-R diagram is transformed into normalized
relations by following well-defined principles
summarized in Table 9-1. For example, each en-
tity becomes a relation and each many-to-many
relationship or associative entity also becomes a
relation. The principles also specify how to add
foreign keys to relations to represent one-to-
many relationships. You may want to review
Table 9-1 at this point.

4. Merge normalized relations from separate
user views into a consolidated set of well-
structured relations.

Separate sets of normalized relations are
merged (this process is also called view integra-
tion) to create a consolidated logical database de-
sign. The different sets of relations come from the
conceptual E-R diagram for the application,
known human system interfaces (reports,
screens, forms, etc.), and known or anticipated
queries for data that meet certain qualifications.
The result of merging is a comprehensive, nor-
malized set of relations for the application.

Merging is not simply a mechanical process. A
systems analyst must address issues of syn-
onyms, homonyms, and dependencies between
nonkeys during view integration.

5. Choose storage formats for fields in data-
base tables.

Fields in the physical database design repre-
sent the attributes (columns) of relations in the
logical database design. Each field must have a
data type and potentially other characteristics,
such as a coding scheme to simplify the storage
of business data, default value, input mask,
range control, referential integrity control, or
null value control. A storage format is chosen to
balance four objectives: (1) minimize storage
space, (2) represent all possible values of the
field, (3) improve data integrity for the field,
and (4) support all data manipulations desired
on the field.

6. Translate well-structured relations into effi-
cient database tables.

Whereas normalized relations possess properties
of well-structured relations, the design of a physi-
cal table attempts to achieve two goals different
from those of normalization: efficient use of sec-
ondary storage and data-processing speed.
Efficient use of storage means that the amount of
extra (or overhead) information is minimized. So,
file organizations, such as sequential, are efficient
in the use of storage because little or no extra in-
formation, besides the meaningful business data,
are kept. Data-processing speed is achieved by
keeping storage data close together that are used
together and by building extra information in the
database that allows data to be quickly found based
on primary or secondary key values or by sequence.

7. Explain when to use different types of file
organizations to store computer files.

Table 9-3 summarizes the performance charac-
teristics of different types of file organizations.
The systems analyst must decide which perfor-
mance factors are most important for each appli-
cation and the associated database. These factors
are storage space, sequential retrieval speed,
random-row retrieval speed, speed of retrieving
data based on multiple key qualifications, and the
speed to perform data maintenance activities of
row deletion, addition, and updating.

8. Describe the purpose of indexes and the im-
portant considerations in selecting attributes
to be indexed.

An index is information about the primary or
secondary keys of a file. Each index entry contains
the key value and a pointer to the row that contains
that key value. Using indexes involves a trade-off
between improved performance for retrievals and

Chapter 9 Designing Databases 311

Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

1. Calculated (or computed or
derived) field (p. 295)

2. Data type (p. 294)
3. Default value (p. 296)
4. Denormalization (p. 298)
5. Field (p. 294)
6. File organization (p. 299)
7. Foreign key (p. 283)
8. Functional dependency (p. 282)
9. Hashed file organization (p. 303)

10. Homonym (p. 290)

11. Index (p. 302)
12. Indexed file organization (p. 302)
13. Input mask (p. 296)
14. Normalization (p. 281)
15. Null value (p. 297)
16. Physical file (p. 299)
17. Physical table (p. 297)
18. Pointer (p. 299)
19. Primary key (p. 276)
20. Recursive foreign key (p. 288)
21. Referential integrity (p. 284)

22. Relation (p. 280)
23. Relational database model (p. 280)
24. Second normal form (2NF) (p. 282)
25. Secondary key (p. 302)
26. Sequential file organization (p. 301)
27. Synonyms (p. 290)
28. Third normal form (3NF) (p. 283)
29. Well-structured relation (or table)

(p. 280)

Match each of the key terms above with the definition that best fits it.

1. A named, two-dimensional table of data.
Each relation consists of a set of named
columns and an arbitrary number of
unnamed rows.

2. A relation that contains a minimum
amount of redundancy and allows users to
insert, modify, and delete the rows without
errors or inconsistencies.

3. The process of converting complex data
structures into simple, stable data structures.

4. A particular relationship between two
attributes.

5. A relation for which every nonprimary key
attribute is functionally dependent on the
whole primary key.

6. A relation that is in second normal form
and has no functional (transitive)
dependencies between two (or more)
nonprimary key attributes.

7. An attribute that appears as a nonprimary
key attribute in one relation and as a
primary key attribute (or part of a primary
key) in another relation.

8. An integrity constraint specifying that the
value (or existence) of an attribute in one
relation depends on the value (or
existence) of the same attribute in another
relation.

9. A foreign key in a relation that references
the primary key values of that same
relation.

10. Two different names that are used for the
same attribute.

11. A single attribute name that is used for two
or more different attributes.

12. The smallest unit of named application
data recognized by system software.

13. A coding scheme recognized by system
software for representing organizational
data.

14. A field that can be derived from other
database fields.

15. The value a field will assume unless an
explicit value is entered for that field.

16. A pattern of codes that restricts the width
and possible values for each position
of a field.

17. A special field value, distinct from 0, blank,
or any other value, that indicates that the
value for the field is missing or otherwise
unknown.

18. A named set of rows and columns
that specifies the fields in each row of
the table.

19. The process of splitting or combining
normalized relations into physical

Key Terms Checkpoint

degrading performance for inserting, deleting, and
updating the rows in a file. Thus, indexes should be
used generously for databases intended primarily
to support data retrievals, such as for decision sup-
port applications. Because they impose additional
overhead, indexes should be used judiciously for

databases that support transaction processing and
other applications with heavy updating require-
ments. Typically, you create indexes on a file for its
primary key, foreign keys, and other attributes
used in qualification and sorting clauses in queries,
forms, reports, and other system interfaces.

312 Part IV Systems Design

Problems and Exercises
1. Assume that at Pine Valley Furniture products

consist of components, products are assigned
to salespersons, and components are produced
by vendors. Also assume that in the relation
PRODUCT(Prodname, Salesperson, Compname,
Vendor) Vendor is functionally dependent on
Compname, and Compname is functionally
dependent on Prodname. Eliminate the transi-
tive dependency in this relation and form 3NF
relations.

2. Transform the E-R diagram of Figure 7-20 into a
set of 3NF relations. Make up a primary key and
one or more nonkeys for each entity that does
not already have them listed.

3. Transform the E-R diagram of Figure 9-21 into a
set of 3NF relations.

4. Consider the list of individual 3NF relations that
follow. These relations were developed from sev-
eral separate normalization activities.

PATIENT(Patient_ID, Room_Number, Admit_
Date,_Address)

ROOM(Room_Number, Phone, Daily_Rate)
PATIENT(Patient_Number,

Treatment_Description, Address)
TREATMENT(Treatment_ID, Description, Cost)
PHYSICIAN(Physician_ID, Name,

Department)
PHYSICIAN(Physician_ID, Name,

Supervisor_ID)

a. Merge these relations into a consolidated set
of 3NF relations. Make and state whatever

tables based on affinity of use of rows
and fields.

20. A named set of table rows stored in a
contiguous section of secondary memory.

21. A technique for physically arranging the
records of a file.

22. A field of data that can be used to locate a
related field or row of data.

23. The rows in the file are stored in sequence
according to a primary key value.

24. The rows are stored either sequentially or
nonsequentially, and an index is created that
allows software to locate individual rows.

Review Questions
1. What is the purpose of normalization?
2. List five properties of relations.
3. What problems can arise during view integration

or merging relations?
4. How are relationships between entities repre-

sented in the relational data model?
5. What is the relationship between the primary key

of a relation and the functional dependencies
among all attributes within that relation?

6. How is a foreign key represented in relational
notation?

7. Can instances of a relation (sample data) prove
the existence of a functional dependency? Why
or why not?

8. In what way does the choice of a data type for a
field help to control the integrity of that field?

9. Contrast the differences between range control
and referential integrity when controlling data
integrity.

10. What is the purpose of denormalization? Why
might you not want to create one physical table
or file for each relation in a logical data model?

11. What factors influence the decision to create an
index on a field?

12. Explain the purpose of data compression
techniques.

13. What are the goals of designing physical tables?
14. What are the seven factors that should be con-

sidered in selecting a file organization?
15. What are the four key steps in logical database

modeling and design?
16. What are the four steps in transforming an E-R

diagram into normalized relations?

25. A table used to determine the location of
rows in a file that satisfy some condition.

26. One or a combination of fields for which
more than one row may have the same
combination of values.

27. The address for each row is determined
using an algorithm.

28. An attribute whose value is unique across
all occurrences of a relation.

29. Data represented as a set of related tables
or relations.

Chapter 9 Designing Databases 313

PART
Item_Number
Description

VENDOR
Vendor_ID
Address

PRICE QUOTE
Quote_Quantity
Price

PART RECEIPT
Order_Number
Date
Order_Quantity

Priced_at

FIGURE 9-21
E-R diagram for Problem
and Exercise 3.

assumptions you consider necessary to re-
solve any potential problems you identify in
the merging process.

b. Draw an E-R diagram for your answer to part a.

5. Consider the following 3NF relations about a
sorority or fraternity:

MEMBER(Member_ID, Name, Address,
Dues_Owed)

OFFICE(Office_Name, Officer_ID,
Term_Start_Date, Budget)

EXPENSE(Ledger_Number,
Office_Name, _Expense_Date, Amt_Owed)

PAYMENT(Check_Number, Expense_Ledger_
Number, Amt_Paid)

RECEIPT(Member_ID, Receipt_Date,
Dues_Received)

COMMITTEE(Committee_ID, Officer_
in_Charge)

WORKERS(Committee_ID, Member_ID)

a. Foreign keys are not indicated in these rela-
tions. Decide which attributes are foreign keys
and justify your decisions.

b. Draw an E-R diagram for these relations, using
your answer to part a.

c. Explain the assumptions you made about car-
dinalities in your answer to part b. Explain
why it is said that the E-R data model is more
expressive or more semantically rich than the
relational data model.

6. Consider the following functional dependencies:

Applicant_ID:Applicant_Name
Applicant_ID:Applicant_Address
Position_ID:Position_Title
Position_ID:Date_Position_Opens
Position_ID:Department
Applicant_ID � Position_ID:Date_Applied
Applicant_ID � Position_ID �

Date_Interviewed?:

a. Represent these attributes with 3NF relations.
Provide meaningful relation names.

b. Represent these attributes using an E-R dia-
gram. Provide meaningful entity and relation-
ship names.

7. Suppose you were designing a file of student
records for your university’s placement office.
One of the fields that would likely be in this file is
the student’s major. Develop a coding scheme for
this field that achieves the objectives outlined in
this chapter for field coding.

8. In Problem and Exercise 3, you developed inte-
grated normalized relations. Choose primary
keys for the files that would hold the data for
these relations. Did you use attributes from the
relations for primary keys or did you design new
fields? Why or why not?

9. Suppose you created a file for each relation in your
answer to Problem and Exercise 3. If the following
queries represented the complete set of accesses
to this database, suggest and justify what primary
and secondary key indexes you would build.

a. For each PART, list all vendors and their asso-
ciated prices for that part.

b. List all PART RECEIPTs, including related
PART fields for all the parts received on a par-
ticular day.

c. For a particular VENDOR, list all the PARTs and
their associated prices that VENDOR can supply.

10. Suppose you were designing a default value for the
marriage status field in a student record at your
university. What possible values would you con-
sider and why? How would the default value
change depending on other factors, such as type of
student (undergraduate, graduate, professional)?

11. Consider Figure 9-19B. Explain a query that
would likely be processed more quickly using the
denormalized relations rather than the normal-
ized relations.

314 Part IV Systems Design

Case Problems
1. Pine Valley Furniture

Development work on Pine Valley Furniture’s
new Customer Tracking System is proceeding
according to plan and is on schedule. The project
team has been busy designing the human inter-
faces, and you have just completed the new track-
ing system’s Customer Profile Form, Products by
Demographics Summary Report, and Customer
Purchasing Frequency Report.

Because you are now ready for a new task,
Jim Woo asks you to prepare logical data models
for the form and two reports that you have just
designed and drop them by his office this after-
noon. At that time, the two of you will prepare a
consolidated database model, translate the Cus-
tomer Tracking System’s E-R data model into nor-
malized relations, and then integrate the logical

data models into a final logical data model for the
Customer Tracking System.

a. Develop logical data models for the form and
two reports mentioned in the case scenario.

b. Perform view integration on the logical mod-
els developed for part a.

c. What view integration problems, if any, exist?
How should you correct these problems?

d. Have a fellow classmate critique your logical
data model. Make any necessary corrections.

2. Hoosier Burger
As the lead analyst on the Hoosier Burger proj-

ect, you have had the opportunity to learn more
about the systems development process, work
with project team members, and interact with
the system’s end users, especially with Bob and

Discussion Questions
1. Many database management systems offer the

ability to enforce referential integrity. Why would
using such a feature be a good idea? Are there
any situations in which referential integrity
might not be important?

2. Assume you are part of the systems development
team at a medium-sized organization. You have
just completed the database design portion of the
systems design phase, and the project sponsor
would like a status update. Assuming the project
sponsor is a VP in the marketing department,
with only a high-level understanding of technical
subjects, how would you go about presenting the
database design you have just completed? How
would your presentation approach change if the
project sponsor were the manager of the data-
base team?

3. Discuss what additional information should be
collected during requirements analysis that is
needed for file and database design and that is

not especially useful for earlier phases of sys-
tems development.

4. Find out what database management systems are
available at your university for student use. Inves-
tigate which data types these DBMSs support.
Compare these DBMSs based upon data types
supported and suggest which types of applica-
tions each DBMS is best suited for based on this
comparison.

5. Find out what database management systems
are available at your university for student use.
Investigate what physical file and database
design decisions need to be made. Compare
this list of decisions to those discussed in this
chapter. For physical database and design deci-
sions (or options) not discussed in the chapter,
investigate what choices you have and how you
should choose among these choices. Submit a
report to your instructor with your findings.

12. Consider your answers to parts a and b of Prob-
lem and Exercise 11 in Chapter 7.

a. Transform the E-R diagram you developed in
part a into a set of 3NF relations. Clearly iden-
tify primary and foreign keys. Explain how
you determined the primary key for any many-
to-many relationships or associative entities.

b. Transform the E-R diagram you developed in
part b into a set of 3NF relations. Clearly identify

primary and foreign keys. Explain how you de-
termined the primary key for any many-to-many
relationships or associative entities.

13. Model a set of typical family relationships—
spouse, father, and mother—in a single 3NF
relation. Also include nonkey attributes name
and birth date. Assume that each person has only
one spouse, one father, and one mother. Show
foreign keys with dashed underlining.

Chapter 9 Designing Databases 315

Thelma. You have just completed the design work
for the various forms and reports that will be used
by Bob, Thelma, and their employees. Now it is
time to prepare logical and physical database
designs for the new Hoosier Burger system.

During a meeting with Hoosier Burger project
team members, you review the four steps in logi-
cal database modeling and design. It will be your
task to prepare the logical models for the Cus-
tomer Order Form, Customer Account Balance
Form, Daily Delivery Sales Report, and Inventory
Low-in-Stock Report. At the next meeting, the
E-R model will be translated and a final logical
model produced.

a. Develop logical models for each of the inter-
faces mentioned in the case scenario.

b. Integrate the logical models prepared for part
a into a consolidated logical model.

c. What types of problems can arise from view
integration? Did you encounter any of these
problems when preparing the consolidated
logical model?

d. Using your newly constructed logical model,
determine which fields should be indexed.
Which fields should be designated as calcu-
lated fields?

3. PlowMasters
PlowMasters is a locally owned and operated

snow removal business. PlowMasters provides
residential and commercial snow removal for

clients throughout a large metropolitan area. Typ-
ical services include driveway and walkway snow
removal, as well as parking lot snow maintenance
for larger commercial clients.

PlowMasters’ clientele has grown over the past
several snow seasons. Recent heavy snowfall,
coupled with a successful advertising campaign,
has increased current demand even more, and
this increase in demand is expected to continue.
In order to provide faster, more efficient service,
PlowMasters has hired your consulting company
to design, develop, and implement a computer-
based system. Your development team is cur-
rently preparing the logical and physical database
designs for PlowMasters.

a. What are the four steps in logical database
modeling and design?

b. Several relations have been identified for this
project, including removal technician, cus-
tomer, service provided, equipment inventory,
and services offered. What relationships exist
among these relations? How should these re-
lationships be represented?

c. Think of the attributes that would most likely
be associated with the relations identified in
the part b. For each data integrity control
method discussed in the chapter, provide a
specific example.

d. What are the guidelines for choosing indexes?
Identify several fields that should be indexed.

CASE: PETRIE’S ELECTRONICS

Designing Databases
Jim Watanabe, assistant director of IT for Petrie’s
Electronics and the manager of the “No Customer
Escapes” customer loyalty system project, was walk-
ing down the hall from his office to the cafeteria. It
was 4 P.M., but Jim was nowhere close to going home
yet. The deadlines he had imposed for the project
were fast approaching. His team was running behind,
and he had a lot of work to do over the next week to
try to get things back on track. He needed to get some
coffee for the start of what was going to be a late night.

As Jim approached the cafeteria, he saw Sanjay
Agarwal and Sam Waterston walking toward him.
Sanjay was in charge of systems integration for
Petrie’s, and Sam was one of the company’s top
interface designers. They were both on the customer

loyalty program team. They were having an intense
conversation as Jim approached.

“Hi guys,” Jim said.
“Oh, hi, Jim,” Sanjay replied. “Glad I ran into you—

we are moving ahead on the preliminary database de-
signs. We’re translating the earlier conceptual
designs into physical designs.”

“Who’s working on that? Stephanie?” Jim asked.
Stephanie Welch worked for Petrie’s database
administrator.

“Yes,” Sanjay replied. “But she is supervising a
couple of interns who have been assigned to her for
this task.”

“So how is that going? Has she approved their work?”
“Yeah, I guess so. It all seems to be under control.”
“I don’t want to second-guess Stephanie, but I’m

curious about what they’ve done.”

316 Part IV Systems Design

MEMO

To: Stephanie Welch

From: Xin Zhu & Anton Washington

Re: Preliminary physical database design for “No Customer Escapes”

Date: June 1, 2012

We were charged with converting the conceptual database designs for the customer loyalty
system to physical database designs. We started with one of the initial ERDs (see Figure 7-1),
designed at a very high level. The ERD identified six entities: Customer, Product, Service,
Promotion,Transaction, and Coupon.We discovered that all of these entities are already defined
in Petrie’s existing systems. The only entity not already defined is Coupon. Product and Service
are defined as part of the product database. Promotion is defined as part of the marketing data-
base. Customer and Transaction are defined as part of the core database.

However, after considerable consideration, we are not sure if some of these already identified
and defined entities are the same as those identified in the preliminary ERD we were given.
Specifically, we have questions about Customer, Transaction and Promotion.

Customer: The Customer entity is more complex than it appears. There are several ways to think
about the instances of this entity. For example, we can divide Customers into those who shop
online and those who shop in the Brick-and-Mortar stores. And there is of course some overlap.
The biggest distinction between these two groups is that we know the names of (and other
information about) the Customers who shop online, but we may have very little identifying
information about those who shop only in the stores. For example, if an individual shops only
at a store and pays only with cash, that individual meets the definition of Customer
(see Table 7-1), but we collect no data on that individual at all. We raise these issues to call
attention to the relationship between Customers and members of the customer loyalty program:
All members are Customers, but not all Customers are members. We suggest that the entity
called Customer in the preliminary ERD be renamed ‘Member,’ as we think that is a better name
for this entity. We are prepared to map out the table design when this change is approved.

Transaction: Petrie’s already has a relational table called Transaction, but that applies to all
transactions in all stores and online. The customer loyalty program focuses on the transactions
of its Members, so the program involves only a subset of Transactions. We suggest that the ERD
be redesigned to take this fact into account, and that what is now called Transaction be
renamed ‘Member Transaction.’ The relational tables should then be designed accordingly.

Promotion: Petrie’s already has a relational table called Promotion. Again, the customer loyalty
program, while having some interest in general promotions, focuses primarily on promotions
created specifically for Members of the program. What is called Promotion in the ERD is really
a subset of all of Petrie’s promotions. We recommend a name change to ‘Member Promotion’
with the associated relational table design.

Finally, for the Coupon entity, which is new, we note from the ERD that Coupon only has one
relationship, and that is with the Customer. As it is a one-to-many relationship, the PK from Cus-
tomer will be an FK in Coupon. We recommend the following table design:

COUPON (Coupon ID, Customer ID, Creation Date, Expiration Date, Value)

PE FIGURE 9-1
Memo on issues related to
physical database design for
Petrie’s Electronic’s customer
loyalty program.

“Do you really have time to review interns’ work?”
Sanjay asked. “OK, let me send you the memo
Stephanie sent me [PE Figure 9-1].”

“You’re right, I don’t have time,” Jim said, “but
I’m curious. It won’t take long to read the memo,
right?”

“OK, I’ll send it as soon as I get back to my desk.”
“OK, thanks.” Jim walked on to the cafeteria, and

he poured himself a big cup of coffee.

Case Questions

1. In the questions associated with the Petrie’s Elec-
tronics case at the end of Chapter 7, you were asked
to modify the E-R diagram given in PE Figure 7-1 to
include any other entities and the attributes you
identified from the Petrie’s case. Review your an-
swers to these questions, and add any additional
needed relations to the document in PE Figure 9-1.

Chapter 9 Designing Databases 317

2. Study your answer to Question 1. Verify that the
relations you say represent the Petrie’s Electron-
ics database are in third normal form. If they are,
explain why. If they are not, change them so that
they are.

3. The E-R diagram you developed in questions in
the Petrie’s Electronics case at the end of
Chapter 7 should have shown minimum cardinal-
ities on both ends of each relationship. Are mini-
mum cardinalities represented in some way in
the relations in your answer to Question 2? If not,
how are minimum cardinalities enforced in the
database?

4. Using your answer to Question 2, select data
types, formats, and lengths for each attribute of
each relation. Use the data types and formats sup-
ported by Microsoft Access. What data type
should be used for nonintelligent primary keys?

5. Complete all table and field definitions for
the Petrie’s Electronics case database using
Microsoft Access. Besides the decisions you have
made in answers to the preceding questions, fill in
all other field definition parameters for each field
of each table.

6. The one decision for a relational database that
usually influences efficiency the most is index
definition. What indexes do you recommend for
this database? Justify your selection of each index.

7. Using Microsoft Visio, develop an E-R diagram
with all the supporting database properties for
decisions you made in Questions 1–6. Can all the
database design decisions you made be docu-
mented in Visio? Finally, use Visio to generate
Microsoft Access table definitions. Did the table
generation create the table definitions you would
create manually?

318

Systems Implementation
and Operation

� Describe the process of coding, testing, and
installing an organizational information system
and outline the deliverables and outcomes of
the process.

� Apply four installation strategies: direct, parallel,
single location, and phased installation.

� List the deliverables for documenting the
system and for training and supporting users.

� Compare the many modes available for
organizational information system training.

� Discuss the issues of providing support for
end users.

� Explain why systems implementation
sometimes fails.

� Explain and contrast four types of
maintenance.

� Describe several factors that influence the cost
of maintaining an information system.

After studying this chapter, you should be able to:

ten
C

h
a

p
te

r
O

b
je

c
ti
v
e

s

ag
e

fo
to

sto
ck

/
Su

pe
rS

to
ck

Chapter Preview . . .

The implementation and operation phase of
the systems development life cycle is the most

expensive and time-consuming phase of the en-

tire life cycle. This phase is expensive because so

many people are involved in the process. It is

time consuming because of all the work that has

to be completed through the entire life of the

system. During implementation and operation,

physical design specifications must be turned

into working computer code. Then the code is

tested until most of the errors have been de-

tected and corrected, the system is installed,

user sites are prepared for the new system, and

users must come to rely on the new system

rather than the existing one to get their work

done. Even once the system is installed, new

features are added to the system, new business

requirements and regulations demand system

improvements, and corrections are made as

flaws are identified from use of the system in

new circumstances. These changes will have rip-

ple effects, causing rework in many systems de-

velopment phases. The seven major activities we

are concerned with in this chapter are coding,

testing, installation, documentation, training,

support, and maintenance. These and other

activities are highlighted in Figure 10-1. Our

intent is not to explain how to program and test

systems—most of you have already learned

about writing and testing programs in other

courses. Rather, this chapter shows you where

coding and testing fit in the overall scheme of

319

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

Coding
Testing
Installation
Documentation
Training
Support
Maintenance

✓
✓
✓
✓
✓
✓
✓

FIGURE 10-1
The activities of the systems
implementation and operation
phase of the SDLC.

Systems Implementation and Operation
Systems implementation and operation is made up of seven major activities:

� Coding

� Testing

� Installation

� Documentation

� Training

� Support

� Maintenance

The purpose of these steps is to convert the final physical system specifications
into working and reliable software and hardware, document the work that has
been done, and provide help for current and future users and caretakers of the
system. Usage of the system leads to changes, so during maintenance, users and
others submit maintenance requests; requests are transformed into specific
changes to the system; the system is redesigned to accept the changes; and the
changes are implemented.

These steps are often done by other project team members besides analysts,
although analysts may do some programming and other steps. Often a separate an-
alyst and developer team from those who developed the original system is re-
sponsible for testing, documenting, training, and maintenance activities. In any
case, analysts are responsible for ensuring that all of these various activities are
properly planned and executed. We briefly discuss these activities in three groups:

1. Activities that lead to the system going into operation—coding, testing,
and installation

2. Activities that are necessary for successful system operation—
documenting the system and training and supporting users

3. Activities that are ongoing and needed to keep the system working and up
to date—maintenance

320 Part V Systems Implementation and Operation

implementation and stresses the view of imple-

mentation as an organizational change process

that is not always successful.

In addition, you will learn about providing doc-

umentation about the new system for the informa-

tion systems personnel who will maintain the

system; likewise, you will learn about providing

documentation and conducting training for the

system’s users. Once training has ended and the

system is accepted and used, you must provide a

means for users to get answers to their additional

questions and to identify needs for further training.

Your first job after graduation may well be as a

maintenance programmer/analyst. Maintenance

can begin soon after the system is installed.

A question many people have about maintenance

relates to how long organizations should main-

tain a system. Five years? Ten years? Longer?

This question has no simple answer, but it is most

often an issue of economics. In other words, at

what point does it make financial sense to dis-

continue updating an older system and build or

purchase a new one? Upper IS management gives

significant attention to assessing the trade-offs

between maintenance and new development.

In this chapter, we describe the maintenance

process and the issues that must be considered

when maintaining systems. At the end of the

chapter, we describe the process of resolving a

maintenance request at Pine Valley Furniture.

Chapter 10 Systems Implementation and Operation 321

The Processes of Coding,Testing, and Installation
Coding, as we mentioned before, is the process through which the physical
design specifications created by the design team are turned into working com-
puter code by the programming team. Depending on the size and complexity of
the system, coding can be an involved, intensive activity. Once coding has be-
gun, the testing process can begin and proceed in parallel. As each program
module is produced, it can be tested individually, then as part of a larger pro-
gram, and then as part of a larger system. You learn about the different strate-
gies for testing later in the chapter. We should emphasize that although testing
is done during implementation, you must begin planning for testing earlier in the
project. Planning involves determining what needs to be tested and collecting
test data. These activities are often done during the analysis phase, because
testing requirements are related to system requirements.

Installation is the process during which the current system is replaced by the
new system. It includes conversion of existing data, software, documentation,
and work procedures to those consistent with the new system. Users must give
up the old ways of doing their jobs, whether manual or automated, and adjust
to accomplishing the same tasks with the new system. Users will sometimes re-
sist these changes, and you must help them adjust. However, you cannot control
all the dynamics of user-system interaction involved in the installation process.

Deliverables and Outcomes from Coding,Testing,
and Installation
Table 10-1 shows the deliverables from the coding, testing, and installation
processes. The most obvious outcome is the code itself, but just as important as
the code is documentation of the code. Modern programming languages, such
as Visual Basic, are said to be largely self-documenting. When standard naming
and program design conventions are used, the code itself spells out much about
the program’s logic, the meaning of data and variables, and the locations where
data are accessed and output. But even well-documented codes can be myste-
rious to maintenance programmers who must maintain the system for years af-
ter the original system was written and the original programmers have moved
on to other jobs. Therefore, clear, complete documentation for all individual
modules and programs is crucial to the system’s continued smooth operation.

TABLE 10-1: Deliverables from Coding,Testing, and Installation

Action Deliverable

Coding Code

Program documentation

Testing Test scenarios (test plan) and test data

Results of program and system testing

Installation User guides

User training plan

Installation and conversion plan

Hardware and software installation schedule

Data conversion plan

Site and facility remodeling plan

322 Part V Systems Implementation and Operation

Increasingly, automated tools are used to maintain the documentation needed
by systems professionals.

The results of program and system testing are important deliverables from
the testing process because they document the tests, as well as the test
results. For example, what type of test was conducted? What test data were
used? How did the system handle the test? The answers to these questions
can provide important information for system maintenance as changes
require retesting, and similar testing procedures will be used during the main-
tenance process.

The next two deliverables, user guides and the user training plan, result from
the installation process. User guides provide information on how to use the
new system, and the training plan is a strategy for training users so they can
quickly learn the new system. The development of the training plan probably
began earlier in the project, and some training on the concepts behind the new
system may have already taken place. During the early stages of implementa-
tion, the training plans are finalized and training on the use of the system
begins. Similarly, the installation plan lays out a strategy for moving from the
old system to the new. Installation includes installing the system (hardware and
software) at central and user sites. The installation plan answers such ques-
tions as when and where the new system will be installed, what people and
resources are required, which data will be converted and cleansed, and how
long the installation process will take. It is not enough that the system is
installed; users must actually use it.

As an analyst, your job is to ensure that all of these deliverables are produced
and done well, whether by you or by others. Coding, testing, and installation
work may be done by IS professionals in your organization, by contractors,
hardware designers, and, increasingly, by users. The extent of your responsibil-
ities will vary according to the size and standards of the organization you work
for, but your ultimate role includes ensuring that all the coding, testing, and in-
stallation work leads to a system that meets the specifications developed in
earlier project phases.

The Processes of Documenting the System,Training Users,
and Supporting Users
Although the process of documentation proceeds throughout the life cycle, it
receives formal attention now, because once the system is installed, the analy-
sis team’s involvement in system development usually ceases. As the team is
getting ready to move on to new projects, you and the other analysts need to
prepare documents that reveal all of the important information you have
learned about this system during its development and implementation. The two
audiences for this final documentation are (1) the information systems person-
nel who will maintain the system throughout its productive life, and (2) the peo-
ple who will use the system as part of their daily lives.

Larger organizations also tend to provide training and support to computer
users throughout the organization, sometimes as part of a corporate univer-
sity. Some of the training and support is directed to off-the-shelf software
packages. For example, it is common to find courses on Microsoft Windows
and Office in organization-wide training facilities. Analysts typically work
with corporate trainers to provide training and support tailored to particular
computer applications they have helped develop. Centralized information sys-
tem training facilities tend to have specialized staff who can help with train-
ing and support issues. In smaller organizations that cannot afford to have
well-staffed centralized training and support facilities, fellow users are the
best source of training and support that users have, whether the software is
customized or off the shelf.

Chapter 10 Systems Implementation and Operation 323

Deliverables and Outcomes from Documenting
the System,Training Users, and Supporting Users
Table 10-2 shows the deliverables from documenting the system, training users,
and supporting users. User documentation can be paper based, but it should
also include computer-based modules. For modern information systems, this
documentation includes any online help designed as part of the system inter-
face. The development team should think through the user training process:
Who should be trained? How much training is adequate for each training audi-
ence? What do different types of users need to learn during training? The train-
ing plan should be supplemented by actual training modules, or at least outlines
of such modules, that at a minimum address the three questions stated previ-
ously. Finally, the development team should also deliver a user support plan that
addresses such issues as how users will be able to find help once the informa-
tion system has become integrated into the organization. The development
team should consider a multitude of support mechanisms and modes of deliv-
ery. Each deliverable is addressed in more detail later in the chapter.

The Process of Maintaining Information Systems
Throughout this book, we have drawn the systems development life cycle as a
circle where one phase leads to the next, with overlap and feedback loops. This
means that the process of maintaining an information system is the process of
returning to the beginning of the SDLC and repeating development steps,
focusing on the needs for system change, until the change is implemented.

Four major activities occur within maintenance:

1. Obtaining maintenance requests

2. Transforming requests into changes

3. Designing changes

4. Implementing changes

Obtaining maintenance requests requires that a formal process be established
whereby users can submit system change requests. Earlier in the book, we pre-
sented a user request document called a system service request (SSR). Most
companies have some sort of document like an SSR to request new develop-
ment, to report problems, or to request new system features for an existing sys-
tem. When developing the procedures for obtaining maintenance requests,
organizations must also specify an individual within the organization to collect
these requests and manage their dispersal to maintenance personnel. The
process of collecting and dispersing maintenance requests is described in much
greater detail later in the chapter.

TABLE 10-2: Deliverables from Documenting the System,
Training Users, and Supporting Users

Documentation

System documentation

User documentation

User Training Plan

Classes

Tutorials

User Training Modules

Training materials

Computer-based training aids

User Support Plan

Help desk

Online help

Bulletin boards and other support
mechanisms

324 Part V Systems Implementation and Operation

Obtaining Maintenance Requests

Transform
ing R

equests into C
hanges

Designing Changes

Im
pl

em
en

tin
g

C
ha

ng
es

Systems
Planning and

Selection

Systems
Analysis

Systems
Design

Systems
Implementation
and Operation SDLC

FIGURE 10-2
Maintenance activities in relation to the SDLC.

Once a request is received, analysis must be conducted to gain an understand-
ing of the scope of the request. It must be determined how the request will affect
the current system and the duration of such a project. As with the initial develop-
ment of a system, the size of a maintenance request can be analyzed for risk and
feasibility (see Chapter 4). Next, a change request can be transformed into a for-
mal design change, which can then be fed into the maintenance implementation
phase. Thus, many similarities exist between the SDLC and the activities within
the maintenance process. Figure 10-2 equates SDLC phases to the maintenance
activities described previously. The figure shows that the first phase of the
SDLC—systems planning and selection—is analogous to the maintenance
process of obtaining a maintenance request (step 1). The SDLC phase systems
analysis is analogous to the maintenance process of transforming requests into a
specific system change (step 2). The systems design phase of the SDLC, of course,
equates to the designing changes process (step 3). Finally, the SDLC phase imple-
mentation and operation equates to implementing changes (step 4). This similar-
ity between the maintenance process and the SDLC is no accident. The concepts
and techniques used to develop a system initially are also used to maintain it.

Deliverables and Outcomes from Maintaining
Information Systems
Because maintenance is basically a subset of the activities of the entire develop-
ment process, the deliverables and outcomes from the process are the develop-
ment of a new version of the software and new versions of all design documents
and training materials developed or modified during the maintenance process.

Chapter 10 Systems Implementation and Operation 325

All documents created or modified during the maintenance effort, including the
system itself, represent the deliverables and outcomes of the process. Those pro-
grams and documents that did not change may also be part of the new system.
Because most organizations archive prior versions of systems, all prior programs
and documents must be kept to ensure the proper versioning of the system. This
enables prior versions of the system to be recreated if needed. A more detailed
discussion of configuration management and change control is presented later
in the chapter.

Because of the similarities between the steps, deliverables, and outcomes of
new development and maintenance, you may be wondering how to distinguish
between these two processes. One difference is that maintenance reuses most
existing system modules in producing the new system version. Other distinc-
tions are that we develop a new system when there is a change in the hardware
or software platform or when fundamental assumptions and properties of the
data, logic, or process models change.

Software Application Testing
As we mentioned previously, analysts prepare system specifications that are
passed on to programmers for coding. Testing software begins earlier in the sys-
tems development life cycle, even though many of the actual testing activities
are carried out during implementation. During analysis, you develop an overall
test plan. During design, you develop a unit test plan, an integration test plan,
and a system test plan. During implementation, these various plans are put into
effect, and the actual testing is performed.

The purpose of these written test plans is to improve communication among
all the people involved in testing the application software. The plan specifies
what each person’s role will be during testing. The test plans also serve as
checklists you can use to determine whether all testing steps have been com-
pleted. The overall test plan is not just a single document but is a collection of
documents. Each of the component documents represents a complete test plan
for one part of the system or for a particular type of test.

Some organizations have specially trained personnel who supervise and sup-
port testing. Testing managers are responsible for developing test plans, estab-
lishing testing standards, integrating testing and development activities in the
life cycle, and ensuring that test plans are completed. Testing specialists help
develop test plans, create test cases and scenarios, execute the actual tests, and
analyze and report test results.

Seven Different Types of Tests
Software application testing is an umbrella term that covers several types of
tests. Tests can be done with or without executing the code, and they may be
manual or automated. Using this framework, we can categorize types of tests as
shown in Table 10-3.

TABLE 10-3: A Categorization of Test Types

Manual Automated

Without code execution Inspections Syntax checking

With code execution Walkthroughs

Desk checking

Unit testing

Integration testing

System testing

Stub testing

Desk checking
A testing technique in which the
program code is sequentially
executed manually by the
reviewer.

326 Part V Systems Implementation and Operation

Let’s examine each type of test in turn. Inspections are formal group activi-
ties in which participants manually examine code for occurrences of well-
known errors. Syntax, grammar, and some other routine errors can be checked
in early stages of coding by automated inspection software, so manual inspec-
tion checks are used for more subtle errors. Code inspection participants com-
pare the code they are examining to a checklist of well-known errors for that
particular language. Exactly what the code does is not investigated in an in-
spection. Code inspections have been used by organizations to detect from
60 to 90 percent of all software defects, as well as to provide programmers with
feedback that enables them to avoid making the same types of errors in future
work. The inspection process can also be used to ensure that design specifica-
tions are accomplished.

Unlike inspections, what the code does is an important question in a
walkthrough. Using structured walkthroughs is an effective method of detecting
errors in code. As you saw in Chapter 4, structured walkthroughs can be used to
review many systems development deliverables, including design specifications
and code. Whereas specification walkthroughs tend to be formal reviews, code
walkthroughs tend to be informal. Informality makes programmers less appre-
hensive of criticism and, thus, helps increase the frequency of walkthroughs. Code
walkthroughs should be done frequently when the pieces of work reviewed are
relatively small and before the work is formally tested. If walkthroughs are not
held until the entire program is tested, the programmer will have already spent too
much time looking for errors that the programming team could have found much
more quickly. Further, the longer a program goes without being subjected to a
walkthrough, the more defensive the programmer becomes when the code is re-
viewed. Although each organization that uses walkthroughs conducts them dif-
ferently, you can follow a basic structure that works well (see Figure 10-3).

It should be stressed that the purpose of a walkthrough is to detect errors, not
to correct them. It is the programmer’s job to correct the errors uncovered in a
walkthrough. Sometimes it can be difficult for the reviewers to refrain from sug-
gesting ways to fix the problems they find in the code, but increased experience
with the process can help change reviewers’ behavior.

What the code does is also important in desk checking, an informal process
where the programmer or someone else who understands the logic of the pro-
gram works through the code with a paper and pencil. The programmer exe-
cutes each instruction, using test cases that may or may not be written down. In
one sense, the reviewer acts as the computer, mentally checking each step and
its results for the entire set of computer instructions.

Syntax checking is typically done by a compiler. Errors in syntax are uncov-
ered, but the code is not executed. For the other three automated techniques,
the code is executed.

1.

2.

3.

4.
5.

6.

Have the review meeting chaired by the project manager or chief
programmer, who is also responsible for scheduling the meeting, reserving
a room, setting the agenda, inviting participants, and so on.
The programmer presents his or her work to the reviewers. Discussion
should be general during the presentation.
Following the general discussion, the programmer walks through the code in
detail, focusing on the logic of the code rather than on specific test cases.
Reviewers ask to walk through specific test cases.
The chair resolves disagreements if the review team cannot reach agreement
among themselves and assigns duties, usually to the programmer, for
making specific changes.
A second walkthrough is then scheduled if needed.

GUIDELINES FOR CONDUCTING A CODE WALKTHROUGH
FIGURE 10-3
Guidelines for conducting a
code walkthrough.

Source: Walkthrough based
on Yourdon, 1989.

Inspection
A testing technique in which
participants examine program
code for predictable language-
specific errors.

Stub testing
A technique used in testing
modules, especially where
modules are written and tested in
a top-down fashion, where a few
lines of code are used to
substitute for subordinate
modules.

System testing
The bringing together for testing
purposes of all the programs that
a system comprises. Programs
are typically integrated in a top-
down, incremental fashion.

Integration testing
The process of bringing together
for testing purposes all of the
modules that a program
comprises. Modules are typically
integrated in a top-down,
incremental fashion.

Unit testing
Each module is tested alone in
an attempt to discover any errors
in its code.

Chapter 10 Systems Implementation and Operation 327

The first such technique is unit testing, sometimes called module or func-
tional testing. In unit testing, each module (roughly a section of code that per-
forms a single function) is tested alone in an attempt to discover any errors that
may exist in the module’s code. Yet, because modules coexist and work with
other modules in programs and systems, they must be tested together in larger
groups. Combining modules and testing them is called integration testing.
Integration testing is gradual. First you test the highest level, or coordinating
module, and only one of its subordinate modules. The process assumes a typi-
cal structure for a program, with one highest-level, or main, module and various
subordinate modules referenced from the main module. Each subordinate mod-
ule may have a set of modules subordinate to it, and so on, similar to an organi-
zation chart. Next, you continue testing subsequent modules at the same level
until all subordinate to the highest-level module have been successfully tested to-
gether. Once the program has been tested successfully with the high-level mod-
ule and all of its immediate subordinate modules, you add modules from the next
level one at a time. Again, you move forward only when tests are successfully
completed. If an error occurs, the process stops, the error is identified and cor-
rected, and the test is redone. The process repeats until the entire program—all
modules at all levels—is successfully integrated and tested with no errors.

System testing is a similar process, but instead of integrating modules into
programs for testing, you integrate programs into systems. System testing fol-
lows the same incremental logic that integration testing does. Under both inte-
gration and system testing, not only do individual modules and programs get
tested many times, so do the interfaces between modules and programs.

Current practice (as previously outlined) calls for a top-down approach to
writing and testing modules. Under a top-down approach, the coordinating
module is written first. Then the modules at the next level are written, followed
by the modules at the next level, and so on, until all of the modules in the sys-
tem are done. Each module is tested as it is written. Because top-level modules
contain many calls to subordinate modules, you may wonder how they can be
tested if the lower-level modules haven’t been written yet. The answer is stub
testing. Stubs are two or three lines of code written by a programmer to stand
in for the missing modules. During testing, the coordinating module calls the
stub instead of the subordinate module. The stub accepts control and then
returns it to the coordinating module.

System testing is more than simply expanded integration testing, where you are
testing the interfaces between programs in a system rather than testing the inter-
faces between modules in a program. System testing is also intended to demon-
strate whether a system meets its objectives. The system test is typically
conducted by information systems personnel led by the project team leader,
although it can also be conducted by users under the guidance of information sys-
tems personnel.

The Testing Process
Up to this point, we have talked about an overall test plan and seven different types
of tests for software applications. We haven’t said much about the process of test-
ing itself. Two important things to remember about testing information systems are:

1. The purpose of testing is confirming that the system satisfies
requirements.

2. Testing must be planned.

Testing is not haphazard. You must pay attention to many different aspects of a
system, such as response time, response to extreme data values, response to no
input, response to heavy volumes of input, and so on. You must test anything
(within resource constraints) that could go wrong or be wrong with a system.

328 Part V Systems Implementation and Operation

Pine Valley Furniture Company
Test Case Description and Summary

Test Case Number:
Test Case Description:

Program/Module Name:
Testing State:
Test Case Prepared By:
Test Administrator:
Description of Test Data:

Expected Results:

Actual Results:

Explanation of Differences between Actual and Expected Results:

Suggestions for Next Steps:

Date:

FIGURE 10-4
Test case description
and summary form.

At a minimum, you should test the most frequently used parts of the system and
as many other paths through the system as time permits. Planning gives analysts
and programmers an opportunity to think through all the potential problem
areas, list these areas, and develop ways to test for problems. As indicated pre-
viously, one part of a test plan is creating a set of test cases, each of which must
be carefully documented. See Figure 10-4 for an outline of a test case descrip-
tion and summary.

A test case is a specific scenario of transactions, queries, or navigation paths
that represent a typical, critical, or abnormal use of the system. A test case
should be repeatable so that it can be rerun as new versions of the software are
tested. This is important for all codes, whether written in-house, developed by
a contractor, or purchased. Test cases need to determine that new software
works with other existing software with which it must share data. Even though
analysts often do not do the testing, systems analysts, because of their intimate
knowledge of applications, often make up or find test data. The people who cre-
ate the test cases should not be the same people who coded and tested the sys-
tem. In addition to a description of each test case, there must also be a summary
of the test results, with an emphasis on how the actual results differed from the
expected results. The testing summary will indicate why the results were dif-
ferent and what, if anything, should be done to change the software. Further,
this summary will then suggest the need for retesting, possibly introducing new
tests necessary to discover the source of the differences.

One important reason to keep such a thorough description of test cases and
results is so that testing can be repeated for each revision of an application.
Although new versions of a system may necessitate new test data to validate
new features of the application, previous test data usually can and should be

Beta testing
User testing of a completed
information system using real
data in the real user environment.

Alpha testing
User testing of a completed
information system using
simulated data.

Acceptance testing
The process whereby actual users
test a completed information
system, the end result of which is
the users’ acceptance of it once
they are satisfied with it.

Testing harness
An automated testing
environment used to review code
for errors, standards violations,
and other design flaws.

Chapter 10 Systems Implementation and Operation 329

reused. Results from use of the test data with prior versions are compared to
new versions to show that changes have not introduced new errors and that the
behavior of the system, including response time, is no worse.

Testing often requires a great deal of labor. Manual code reviews can be time-
consuming and tedious work; and, most importantly, are not always the best
solution. As such, special-purpose testing software, called a testing harness,
has been developed for a variety of environments to help designers automati-
cally review the quality of their code. In many situations, a testing harness
greatly enhances, the testing process because they can automatically expand
the scope of the tests beyond the current development platform, as well as be
run every time with each new version of the software. For instance, with the
testing harness called NUnit (see Figure 10-5), an open-source unit testing
framework for .NET, a developer can answer questions such as: How stable is
the code? Does the code follow standard rules? Will the code work across mul-
tiple platforms? When deploying large scale, multiplatform projects, automatic
code review systems have become a necessity.

Acceptance Testing by Users
Once the system tests have been satisfactorily completed, the system is ready
for acceptance testing, which is testing the system in the environment
where it will eventually be used. Acceptance refers to the fact that users typ-
ically sign off on the system and “accept” it once they are satisfied with it. The
purpose of acceptance testing is for users to determine whether the system
meets their requirements. The extent of acceptance testing will vary with the
organization and with the system in question. The most complete acceptance
testing will include alpha testing, (also called mock client testing), where
simulated but typical data are used for system testing; beta testing, in which
live data are used in the users’ real working environment; and a system audit
conducted by the organization’s internal auditors or by members of the qual-
ity assurance group.

FIGURE 10-5
NUnit, a unit testing framework
for .NET.

Phased installation
Changing from the old
information system to the new
one incrementally, starting with
one or a few functional
components and then gradually
extending the installation to cover
the whole new system.

Single location
installation
Trying out a new information
system at one site and using the
experience to decide if and how
the new system should be
deployed throughout the
organization.

Parallel installation
Running the old information
system and the new one at the
same time until management
decides the old system can be
turned off.

Direct installation
Changing over from the old
information system to a new one
by turning off the old system
when the new one is turned on.

Installation
The organizational process of
changing over from the current
information system to a new one.

330 Part V Systems Implementation and Operation

During alpha testing, the entire system is implemented in a test environment
to discover whether the system is overtly destructive to itself or to the rest of
the environment. The types of tests performed during alpha testing include the
following:

� Recovery testing. Forces the software (or environment) to fail in order
to verify that recovery is properly performed.

� Security testing. Verifies that protection mechanisms built into the
system will protect it from improper penetration.

� Stress testing. Tries to break the system (e.g., what happens when a
record is written to the database with incomplete information or what
happens under extreme online transaction loads or with a large
number of concurrent users).

� Performance testing. Determines how the system performs on the
range of possible environments in which it may be used (e.g., different
hardware configurations, networks, operating systems); often the goal
is to have the system perform with similar response time and other
performance measures in each environment.

In beta testing, a subset of the intended users run the system in their own en-
vironments using their own data. The intent of the beta test is to determine
whether the software, documentation, technical support, and training activi-
ties work as intended. In essence, beta testing can be viewed as a rehearsal of
the installation phase. Problems uncovered in alpha and beta testing in any of
these areas must be corrected before users can accept the system.

Installation
The process of moving from the current information system to the new one is
called installation. All employees who use a system, regardless of whether
they were consulted during the development process or not, must give up their
reliance on the current system and begin to rely on the new system. Four dif-
ferent approaches to installation have emerged over the years:

� Direct
� Parallel
� Single location
� Phased

These four approaches are highlighted in Figure 10-6 and Table 10-4. The
approach (or combination) an organization decides to use will depend on the
scope and complexity of the change associated with the new system and the or-
ganization’s risk aversion. In practice, you will rarely choose a single strategy to
the exclusion of all others; most installations will rely on a combination of two
or more approaches. For example, if you choose a single location strategy, you
have to decide how installation will proceed there and at subsequent sites. Will
it be direct, parallel, or phased?

Planning Installation
Each installation strategy involves converting not only software but also data
and (potentially) hardware, documentation, work methods, job descriptions,
offices and other facilities, training materials, business forms, and other as-
pects of the system. For example, it is necessary to recall or replace all the cur-
rent system documentation and business forms, which suggests that the IS

Chapter 10 Systems Implementation and Operation 331

Time

Current System

New System

Install New
System

FIGURE 10-6
Comparison of installation strategies: (A) Direct installation, (B) Parallel installation, (C) Single
location installation (with direct installation at each location), (D) Phased installation.

Time

Current System

New System

Install New
System

Current System

New System

Install New
System

Current System

New System

Location 1

Location 2Install New
System

Current
System Current System

without Module 1 Current System without Modules 1 and 2

New Module 1

New Module 2

Install
Module 1

Install
Module 2

A

C

D

B

department must keep track of who has these items so that they can be noti-
fied and receive replacement items.

Of special interest in the installation process is the conversion of data. Because
existing systems usually contain data required by the new system, current data
must be made error-free, unloaded from current files, combined with new data,
and loaded into new files. Data may need to be reformatted to be consistent with
more advanced data types supported by newer technology used to build the new
system. New data fields may have to be entered in large quantities so that every
record copied from the current system has all the new fields populated. Manual
tasks, such as taking a physical inventory, may need to be done in order to vali-
date data before they are transferred to the new files. The total data conversion

332 Part V Systems Implementation and Operation

process can be tedious. Furthermore, this process may require that current sys-
tems be shut off while the data are extracted so that updates to old data, which
would contaminate the extract process, cannot occur.

Any decision that requires the current system to be shut down, in whole or
in part, before the replacement system is in place must be done with care.
Typically, off-hours are used for installations that require a lapse in system

TABLE 10-4: Approaches to Information Systems Installation

Characteristics Positive Aspects Hazards/Risks

Direct Installation

• Abrupt

• “Cold turkey”

• Low cost

• High interest in making installation
a success

• May be the only possible approach
if new and existing systems cannot
coexist in some form

• Operational errors have direct impact
on users and organization

• It may take too long to restore old
system, if necessary

• Time-consuming, and benefits may be
delayed until whole system is installed

Parallel Installation

• Old and new systems
coexist

• Safe

• New systems can be checked against
old systems

• Impact of operational errors are
minimized because old system
is also processing all data

• Not all aspects of new systems can be
compared to old system

• Very expensive because of duplication
of effort to run and maintain two
systems

• Can be confusing to users

• May be a delay until benefits result

• May not be feasible because of costs
or system size

Single Location
Installation

• Pilot approach

• Middle-of-the-road
approach

• May involve a series of
single location installations

• Each location may be
branch office, factory, or
department

• Learning can occur and problems
fixed by concentrating on one site

• Limits potential harm and costs from
system errors or failure to selected
pilot sites

• Can use early success to convince
others to convert to new system

• Burden on IS staff to maintain old and
new systems

• If different sites require data sharing,
extra programs need to be written to
“bridge” the two systems

• Some parts of organization get
benefits earlier than other parts

Phased Installation

• Staged, incremental,
gradual, based on system
functional components

• Similar to bringing system
out via multiple releases

• Allows for system development also to be
phased

• Limits potential harm and costs from
system error or failure to certain business
activities/functions

• Risk spread over time

• Some benefits can be achieved early

• Each phase is small and more manageable

• Old and new systems must be able to
work together and share data, which
likely will require extra programming
to “bridge” the two systems

• Conversion is constant and may
extend over a long period, causing
frustration and confusion for users

User documentation
Written or other visual
information about how an
application system works,
and how to use it.

External documentation
System documentation that
includes the outcome of
structured diagramming
techniques such as data-flow
and entity-relationship diagrams.

Internal documentation
System documentation that is part
of the program source code or is
generated at compile time.

System documentation
Detailed information about a
system’s design specifications, its
internal workings, and its
functionality.

Chapter 10 Systems Implementation and Operation 333

support. Whether a lapse in service is required or not, the installation schedule
should be announced to users well in advance to let them plan their work
schedules around outages in service and periods when their system support
might be erratic. Successful installation steps should also be announced, and
special procedures put in place so that users can easily inform you of problems
they encounter during installation periods. You should also plan for emergency
staff to be available in case of system failure so that business operations can
be recovered and made operational as quickly as possible. Another considera-
tion is the business cycle of the organization. Most organizations face heavy
workloads at particular times of the year and relatively light loads at other
times. A well-known example is the retail industry, where the busiest time of
the year is the fall, right before the year’s major gift-giving holidays. You
wouldn’t want to schedule installation of a new point-of-sale system to begin
December 1, for a department store.

Planning for installation may begin as early as the analysis of the organization
supported by the system. Some installation activities, such as buying new hard-
ware, remodeling facilities, validating data to be transferred to the new system,
and collecting new data to be loaded into the new system, must be done before
the software installation can occur. Often the project team leader is responsible
for anticipating all installation tasks and assigns responsibility for each to
different analysts.

Each installation process involves getting workers to change the way they
work. As such, installation should be looked at not as simply installing a new
computer system, but as an organizational change process. More than just a
computer system is involved—you are also changing how people do their jobs
and how the organization operates.

Documenting the System
In one sense, every information systems development project is unique and will
generate its own unique documentation. In another sense, though, system
development projects are probably more alike than they are different. Each
project shares a similar systems development life cycle, which dictates that cer-
tain activities be undertaken and that each of those activities be documented.
Specific documentation will vary depending on the life cycle you are following,
and the format and content of the documentation may be mandated by the
organization you work for. Start developing documentation elements early, as
the information needed is captured.

We can simplify the situation by dividing documentation into two basic types,
system documentation and user documentation. System documentation
records detailed information about a system’s design specifications, its internal
workings, and its functionality. System documentation can be further divided
into internal and external documentation. Internal documentation is part of
the program source code or is generated at compile time. External documen-
tation includes the outcome of all of the structured diagramming techniques
you have studied in this book, such as data-flow and entity-relationship dia-
grams. User documentation is written or other visual information about how
an application system works and how to use it. Although not part of the code
itself, external documentation can provide useful information to the primary
users of system documentation—maintenance programmers. For example,
data-flow diagrams provide a good overview of a system’s structure. In the past,
external documentation was typically discarded after implementation, primarily
because it was considered too costly to keep up to date but today’s integrated
development environment makes it possible to maintain and update external
documentation as long as desired.

334 Part V Systems Implementation and Operation

FIGURE 10-7
Online user documentation for
Microsoft Visio.

Source: Microsoft product screen
shot(s). Reprinted with permission
from Microsoft Corporation.

Whereas system documentation is intended primarily for maintenance pro-
grammers, user documentation is intended mainly for users. An organization
should have definitive standards on system documentation. These standards
may include the outline for the project dictionary and specific pieces of docu-
mentation within it. Standards for user documentation are not as explicit.

User Documentation
User documentation consists of written or other visual information about an
application system, how it works, and how to use it. An excerpt of online user
documentation for Microsoft Visio appears in Figure 10-7. The documentation
lists the item necessary to perform the task the user inquired about. The user
controls how much of the help is shown.

Figure 10-7 represents the content of a reference guide, just one type of user
documentation. Other types of user documentation include a quick reference
guide, user’s guide, release description, system administrator’s guide, and ac-
ceptance sign-off. Most online reference guides allow you to search by topic area
or by typing in the first few letters of your keyword. Reference guides are great
for specific information (as in Figure 10-7) but are not as good for the broader pic-
ture of how to perform all the steps required for a given task. The quick reference
guide provides essential information about operating a system in a short, concise
format. Where computer resources are shared and many users perform similar
tasks on the same machines (as with airline reservation or mail-order-catalog
clerks), quick reference guides are often printed on index cards or as small books
and mounted on or near the computer terminal. The purpose of a reference guide
is to provide information on how users can use computer systems to perform spe-
cific tasks. The information in a user’s guide is typically ordered by how often
tasks are performed and how complex they are. Increasingly, software vendors
are using Web sites to provide additional user-guide content. Figure 10-8 shows
the Microsoft Visio help page. Web-based documentation allows the vendor to
provide more up-to-date reference material without issuing new software CDs.

Because most software is reissued as new features are added, a release de-
scription contains information about a new system release, including a list of

Chapter 10 Systems Implementation and Operation 335

FIGURE 10-8
Structure of an online reference
user’s guide.

Source: Microsoft product screen
shot(s). Reprinted with permission
from Microsoft Corporation.

complete documentation for the new release, features and enhancements,
known problems and how they have been dealt with in the new release, and
information about installation. A system administrator’s guide is intended pri-
marily for a particular type of user—those who will install and administer a new
system—and contains information about the network on which the system will
run, software interfaces for peripherals such as printers, troubleshooting, and
setting up user accounts. Finally, the acceptance sign-off allows users to test for
proper system installation and then signify their acceptance of the new system
and its documentation with their signatures.

Preparing User Documentation
User documentation, regardless of its content or intended audience, is now
most often delivered online in hypertext format. In all its forms, user documen-
tation is an investment that reduces training and consultation costs. As a future
analyst, you need to consider the source of documentation, its quality, and
whether its focus is on the information system’s functionality or on the tasks the
system can be used to perform.

The traditional source of user and system documentation has been the orga-
nization’s information systems department. Until recently, the bulk of this doc-
umentation was system documentation, intended for analysts, programmers,
and those who must maintain the system.

In today’s end-user information systems environment, users interact directly
with many computing resources; users have many options or querying capabil-
ities from which to choose when using a system; and users are able to develop
many local applications themselves. Analysts often serve as consultants for
these local end-user applications. For end-user applications, the nature and pur-
pose of documentation has changed from documentation intended for the

Support
Providing ongoing educational
and problem-solving assistance
to information system users.
Support material and jobs must
be designed along with the
associated information system.

336 Part V Systems Implementation and Operation

maintenance programmer to documentation for the end user. Application-
oriented documentation, whose purpose is to increase user understanding and
utilization of the organization’s computing resources, has also come to be
important. Although some of this user-oriented documentation continues to be
supplied by the information systems department, much of it now originates with
vendors and with users themselves.

Training and Supporting Users
Training and support are critical for the success of an information system. As
the person responsible for the new system, you and other analysts on the proj-
ect team must ensure that high-quality training and support are available. Train-
ing and support help people adequately use computer systems to do their
primary work. Without proper training and the opportunity to ask questions and
gain assistance/consultation when needed, users will misuse, underuse, or not
use the information system you develop.

Although training and support can be talked about as if they are two separate
things, in organizational practice, the distinction between the two is not all that
clear, as the two sometimes overlap. After all, both deal with learning about com-
puting. It is clear that support mechanisms are also a good way to provide train-
ing, especially for intermittent users of a system. Intermittent or occasional
system users are not interested in, nor would they profit from, typical user train-
ing methods. Intermittent users must be provided with “point-of-need support,”
specific answers to specific questions at the time the answers are needed. A
variety of mechanisms, such as the system interface itself and online help facil-
ities, can be designed to provide both training and support at the same time.

Training Information System Users
Many organizations tend to underinvest in computer skills training. It is true
that some organizations institutionalize high levels of information system train-
ing, but many others offer no systematic training at all. Many studies show that
training users to be effective with the systems they have now can be a cost-
effective way to increase productivity, even more so than installing hardware
and software upgrades.

The type of necessary training will vary by type of system and expertise of
users. The list of potential topics from which you must determine whether train-
ing will be useful include the following:

� Use of the system (e.g., how to enter a class registration request)

� General computer concepts (e.g., computer files and how to copy them)

� Information system concepts (e.g., batch processing)

� Organizational concepts (e.g., FIFO inventory accounting)

� System management (e.g., how to request changes to a system)

� System installation (e.g., how to reconcile current and new systems
during phased installation)

As you can see from this partial list, many topics go beyond simply how to use
the new system. It may be necessary for you to develop training for users in
other areas so that they will be ready, conceptually and psychologically, to use
the new system. Some training, such as concept training, should begin early in
the project because this training can assist in convincing users of the need for
system and organizational change.

Each element of training can be delivered in a variety of ways. Table 10-5 lists
the most common training methods used by information system departments.

Electronic performance
support system (EPSS)
Component of a software
package or application in which
training and educational
information is embedded. An
EPSS may include a tutorial,
expert system, and hypertext
jumps to reference material.

Chapter 10 Systems Implementation and Operation 337

The most common delivery method for corporate training remains traditional
instructor-led classroom training. Many times users turn to the resident expert
and to fellow users for training. Users are more likely to turn to local experts for
help than to the organization’s technical support staff, because the local expert
understands both the users’ primary work and the computer systems they use.
Given their dependence on fellow users for training, it should not be surprising that
end users describe their most common mode of computer training as “self-training.”

One conclusion from the experience with user training methods is that an
effective strategy for training on a new system is first to train a few key users
and then to organize training programs and support mechanisms that involve
these users to provide further training, both formal and on-demand. Often, train-
ing is most effective if you customize it to particular user groups, and the lead
trainers from these groups are in the best position for this task.

Increasingly, corporations are turning to e-learning as a key delivery mode for
training. Although the term e-learning is not precisely defined, it generally
means the same thing as distance learning, i.e., a formalized learning system
designed to be carried out remotely, using computer-based electronic commu-
nication. You may have taken a distance learning course at your school, or you
may have experience in on-campus classes with some of the dominant software
packages used in e-learning, such as WebCT, Blackboard, or Desire2Learn.
E-learning courses can be delivered over the Internet or over company in-
tranets. Such courses can be purchased from vendors or prepared by the cor-
poration’s in-house training staff. E-learning is relatively inexpensive, compared
to traditional classroom training, and it has the additional advantage of being
available anytime from just about anywhere. Students can also learn at their
own pace. E-learning systems can make available several different elements
that enhance the learning experience, including simulations, online access to
mentors and experts, e-books, net meetings, and video on-demand. Another
trend in corporate training is blended learning, the combining of e-learning with
instructor-led classroom training. A recent survey reported that over 80 percent
of respondents were using e-learning or blended learning to train their employ-
ees. Half of the respondents in the study believed that e-learning would become
the dominant training delivery method in their organizations by 2010.

Another training method listed in Table 10-5 is software help components. One
common type is called an electronic performance support system (EPSS).
Electronic performance support systems are online help systems that go be-
yond simply providing help—they embed training directly into a software pack-
age. An EPSS may take on one or more forms: It can be an online tutorial,
provide hypertext-based access to context-sensitive reference material, or con-
sist of an expert system shell that acts as a coach. The main idea behind the
development of an EPSS is that the user never has to leave the application to get
the benefits of training. Users learn a new system or unfamiliar features at their

TABLE 10-5: Types of Training Methods

Method of Training

Formal courses—several people taught at the same time

Resident expert

E-learning/distance learning

Blended learning (combination of instructor-led training and e-learning)

Software help components

External sources, such as vendors

Help desk
A single point of contact for all
user inquiries and problems
about a particular information
system or for all users in a
particular department.

Issue tracking system
Typically a Web-based tool for
logging, tracking, and assigning
system bugs and change
requests to developers.

338 Part V Systems Implementation and Operation

own pace and on their own machines, without having to lose work time to at-
tend remote group-training sessions. Furthermore, this learning is on-demand
when the user is most motivated to learn, because the user has a task to do.
EPSS is sometimes referred to as “just-in-time knowledge.”

Supporting Information System Users
Historically, computing support for users has been provided in one of a few
forms: paper, online versions of paper-based support, as well as help desks pro-
vided by vendors or resident experts within the same organization. As we stated
earlier, support, whatever its form, has often been inadequate for users’ needs.
Yet users consider support to be extremely important.

As computing spreads throughout organizations, especially with the advent of
personal computers, the need for support increased as more and more employ-
ees came to rely on computing to do their jobs. As organizations moved to
client/server architectures, their need for support increased even more, and or-
ganizations relied more and more on vendor support. This increased need for
support comes in part from the lack of standards governing client/server prod-
ucts and the resulting need to make equipment and software from different ven-
dors compatible.

Automated Issue Tracking Bugs and change requests in any software
release are inevitable. Previously, we talked about using a system service
request (see also Chapter 3), a standard form for requesting systems
development work. To automate this process, many organizations are deploying
a Web-based issue tracking system to provide a systematic way to log, track,
and assign system bugs and change requests to developers (see Figure 10-9); the
types of information typically captured within an issue tracking system are
summarized in Table 10-6.

Automating Support As vendors have primarily shifted their offerings from
expensive mainframe packages to inexpensive off-the-shelf software, they have
found that they can no longer bear the cost of providing support for free. Most
vendors now charge for support, and many have instituted toll-free numbers and
other automated support mechanisms or sell customers unlimited support for a
given monthly or annual charge. Common methods for automating support
include online support forums (on private Web sites) and voice-response systems.
Online support forums provide users access to information on new releases, bugs,
and tips for more effective usage. Voice-response systems allow users to navigate
option menus that lead to prerecorded messages about usage, problems, and
workarounds. Organizations have established similar support mechanisms for
systems developed or purchased by the organization. Internal e-mail and instant
messaging can be used to support such capabilities within an organization.

Providing Support through a Help Desk Whether assisted by vendors
or going it alone, the center of support activities for a specific information
system in many organizations is the help desk. A help desk is an information
systems department function, staffed by IS personnel. The help desk is the first
place users should call when they need assistance with an information system.
The help desk staff either deals with the users’ questions or refers the users to
the most appropriate person.

Today, help desks are increasingly common as management comes to appre-
ciate the special combination of technical skills and people skills needed to
make good help desk staffers. Many software packages exist to automate the
record keeping for a help desk. Records must be kept on each user contact, the
content of the question or problem, and the status and resolution of the prob-
lem. Help desk managers use the software to track problems with different

Chapter 10 Systems Implementation and Operation 339

FIGURE 10-9
Bugzilla is a popular Web-
based issue tracking system.

information systems, assess help desk personnel efficiency and effectiveness,
and identify users who require training.

Help desk personnel need to be good at communicating with users, by listen-
ing to their problems and intelligently communicating potential solutions.

340 Part V Systems Implementation and Operation

These personnel also need to understand the technology they are helping users
with. It is crucial, however, that help desk personnel know when new systems
and releases are being implemented and when users are being trained for new
systems. Help desk personnel themselves should be well trained on new sys-
tems. One sure recipe for disaster is to train users on new systems but not train
the help desk personnel these same users will turn to for their support needs.

Support Issues for the Analyst to Consider
Support is more than just answering user questions about how to use a system
to perform a particular task or about the system’s functionality. Support also
consists of such tasks as providing for recovery and backup, disaster recovery,
and PC maintenance; writing newsletters and offering other types of proactive
information sharing; and setting up user groups. It is the responsibility of ana-
lysts for a new system to be sure that all forms of support are in place before
the system is installed.

For medium-to-large organizations with active information system units,
many of these issues are dealt with centrally. For example, users may be pro-
vided with backup software by the central information systems unit and a
schedule for routine backup. Policies may also be in place for initiating recov-
ery procedures in case of system failure. Similarly, disaster recovery plans are
almost always established by the central IS unit. Also, IS unit specialists may be
in charge of composing and transmitting newsletters or overseeing automated
bulletin boards and organizing user groups.

When all of these (and more) services are provided by central IS, you must fol-
low the proper procedures to include any new system and its users in the lists of
those to whom support is provided. You must design training for the support staff
on the new system, and you must make sure that system documentation will be
available to it. You must make the support staff aware of the installation sched-
ule. You must also keep these people informed as the system evolves. Similarly,
any new hardware and off-the-shelf software have to be registered with the cen-
tral IS authorities.

When no official IS support function is available to provide support services,
you must come up with a creative plan to provide as many services as possible.
You may have to write backup and recovery procedures and schedules, and the
users’ departments may have to purchase and be responsible for the maintenance

TABLE 10-6: Information Captured in an Issue Tracking System

Information in an Issue
Tracking System Rationale for Capturing This Information

Version of product • Is used in the planning of the next version of the product

• Specifically identifies problems that might carry over from different versions

Which customer has encountered the issue • Tracks not only the issue but the origination of the issue

• Allows for deeper analysis when designing a solution

Severity of the issue • Allows developers to prioritize bugs and changes so that the most critical
issues are addressed first

Who fixed the issue • Creates accountability for the developers

• Allows managers to track developer productivity

Who verified the fix • Ensures that all software fixes are tested and retested for reliability

• Provides a critical aspect of the system maintenance process

Chapter 10 Systems Implementation and Operation 341

of their hardware. In some cases, software and hardware maintenance may
have to be outsourced to vendors or other capable professionals. In such situa-
tions, user interaction and information dissemination may have to be more in-
formal than formal: informal user groups may meet over lunch or over a
coffeepot rather than in officially formed and sanctioned forums.

Why Implementation Sometimes Fails
Despite the best efforts of the systems development team to design and build a
quality system and to manage the change process in the organization, the im-
plementation effort sometimes fails. Sometimes employees will not use the new
system that has been developed for them, or if they do use the system, their level
of satisfaction with it is low.

The conventional wisdom that has emerged over the years is that at least two
conditions are necessary for a successful implementation effort: management
support of the system under development and the involvement of users in the
development process. Yet, despite the support and active participation of man-
agement and users, information systems implementation still sometimes fails.

Let’s review some insights about the implementation process:

� Risk. User involvement in the development process can help reduce
the risk of failure when the system is complex, but it can also make
failure more likely when financial and time constraints affect the
development process.

� Commitment to the project. The system development project should be
managed so that the problem being solved is well understood and that
the system being developed to deal with the problem actually solves it.

� Commitment to change. Users and managers must be willing to
change behaviors, procedures, and other aspects of the organization.

� Extent of project definition and planning. The more extensive the
planning effort, the less likely is implementation failure.

� Realistic user expectations. The more realistic a user’s early
expectations about a new system and its capabilities, the more likely it
is that the user will be satisfied with the new system and actually use it.

Whether a system implementation fails or succeeds also depends on your def-
inition of success. Although determining whether an implementation has been
successful can be done in a number of ways, the two most common and trusted
are the extent to which the system is used and the user’s satisfaction with the
system. Whether a user will actually use a new system depends on several ad-
ditional factors:

1. How relevant the system is to the work the user performs.

2. System ease of use and reliability.

3. User demographics, such as age and degree of computer experience.

4. The more users can do with a system and the more creative ways they can
develop to benefit from the system, the more they will use it. Then the
more people use the system, the more likely they are to find even more
ways to benefit from the system.

5. The more satisfied the users are with the system, the more they will use it.
The more they use it, the more satisfied they will be.

It should be clear that, as an analyst and as someone responsible for the
successful implementation of an information system, you have more control
over some factors than others. For example, you have considerable influence
over the system’s ease of use and reliability, and you may have some influence

342 Part V Systems Implementation and Operation

over the levels of support that will be provided for users of the system. You have
no direct control over a user’s demographics, relevance of the system, manage-
ment support, or the urgency of the problem to the user. However, you can’t ig-
nore these factors. You need to understand these factors well, because you will
have to balance them with the factors you can change in your system design and
implementation strategy. You may not be able to change a user’s demographics
or personal stake in a system, but you can help design the system and your im-
plementation strategy with these factors in mind.

The factors mentioned so far are straightforward. For example, a lack of com-
puter experience can make a user hesitant, inefficient, and ineffective with a
system, leading to a system’s not achieving its full potential benefit. If top man-
agement does not seem to care about the system, why should subordinates
care? However, additional factors can be categorized as political, and may be
more hidden, difficult to effect, and even unrelated to the system you are im-
plementing, yet instrumental to the system’s success.

The basis for political factors is that individuals who work in an organization
have their own self-interested goals, which they pursue in addition to the goals
of their departments and of their organizations. For example, people may act to
increase their own power relative to that of their coworkers, and at other times,
people will act to prevent coworkers with more power (such as bosses) from us-
ing that power or from gaining more. Because information is power, information
systems are often seen as instruments of one’s ability to influence and exert
power. For example, an information system that provides information about the
inventory and production capabilities of plant A to other plants, may be seen as
undesirable to managers in plant A, even if this information makes the company
operate more efficiently overall. Users in plant A may resist participation in sys-
tems development activities, may continue (if possible) to use old systems and
ignore the new one, or may initiate delaying tactics to stall the installation of the
new system (such as asking for more studies and analysis work to “perfect” the
system). Thus, you must attempt to understand the history and politics around
an information system and deal with negative political factors, as well as the
more objective and operational ones.

Project Closedown
In Chapter 3, you learned about the various phases of project management,
from project initiation to closing down the project. If you are the project man-
ager and have successfully guided your project through all of the phases of the
systems development life cycle presented so far in this book, you are now ready
to close down your project. Although systems operation is just about to begin,
the development project itself is over. As you will see in the following sections,
maintenance can be thought of as a series of smaller development projects,
each with its own series of project management phases.

As you recall from Chapter 3, your first task in closing down the project in-
volves many different activities, from dealing with project personnel to plan-
ning a celebration of the project’s ending. You will likely have to evaluate your
team members, reassign most to other projects, and perhaps terminate others.
As project manager, you will also have to notify all of the affected parties that
the development project is ending and that you are now switching to operation
and maintenance mode.

Your second task is to conduct post-project reviews with both your manage-
ment and your customers. In some organizations, these postproject reviews
follow formal procedures and may involve internal or electronic data process-
ing (EDP) auditors. The point of a project review is to critique the project, its
methods, its deliverables, and its management. You can learn many lessons to
improve future projects from a thorough postproject review.

Corrective maintenance
Changes made to a system to
repair flaws in its design,
coding, or implementation.

Maintenance
Changes made to a system to fix
or enhance its functionality.

Chapter 10 Systems Implementation and Operation 343

The third major task in project closedown is closing out the customer con-
tract. Any contract that has been in effect between you and your customers dur-
ing the project (or as the basis for the project) must be completed. This may
involve a formal “signing-off ” by the clients that your work is complete and
acceptable. Maintenance activities will typically be covered under new con-
tractual agreements. If your customer is outside of your organization, you will
also likely negotiate a separate support agreement.

Some organizations conduct a post-implementation audit of a system shortly af-
ter it goes into operation, during, or shortly after project closedown. A system au-
dit may be conducted by a member of an internal audit staff, responsible for
checking any data-handling procedure change in the organization. Sometimes a
system audit is conducted by an outside organization, such as a management con-
sulting firm or a public accounting firm. The purpose of a system audit is to ver-
ify that a system works properly by itself and in combination with other systems.
A system audit is similar to a system test but is done on a system in operation. A
system audit not only checks that the operational system works accurately, but
the audit is also likely to review the development process for the system. Such a
process audit checks that sound practices were used to design, develop, and test
the system. For example, a process audit will review the testing plan and sum-
mary of results. Errors found during an audit will generate requests for system
maintenance, and in an extreme case, could force a system to cease operation.

As an analyst member of the development team, your job on this particular
project ends during project closedown. You will likely be reassigned to another
project dealing with some other organizational problem. During your career as
a systems analyst, many of your job assignments will be to perform mainte-
nance on existing systems. We cover this important part of the systems imple-
mentation and operation phase next.

Conducting Systems Maintenance
A significant portion of an organization’s budget for information systems does
not go to the development of new systems but to the maintenance of existing
systems. We describe various types of maintenance, factors influencing the
complexity and cost of maintenance, alternatives for managing maintenance,
and the role of automated development tools during maintenance. Given that
maintenance activities consume the majority of information systems–related
expenditures, gaining an understanding of these topics will yield numerous ben-
efits to your career as an information systems professional.

Types of Maintenance
You can perform several types of maintenance on an information system, as
described in Table 10-7. By maintenance, we mean the fixing or enhancing of an
information system. Corrective maintenance refers to changes made to repair
defects in the design, coding, or implementation of the system. For example, if
you purchase a new home, corrective maintenance would involve repairs made
to things that had never worked as designed, such as a faulty electrical outlet or
misaligned door. Most corrective maintenance problems surface soon after in-
stallation. When corrective maintenance problems arise, they are typically urgent
and need to be resolved to curtail possible interruptions in normal business ac-
tivities. Some corrective maintenance is due to incompatibilities between the new
system and other information systems with which it must exchange data. Cor-
rective maintenance adds little or no value to the organization; it simply focuses
on removing defects from an existing system without adding new functionality.

Adaptive maintenance involves making changes to an information system
to evolve its functionality to changing business needs or to migrate it to a

Adaptive maintenance
Changes made to a system to
evolve its functionality to
changing business needs or
technologies.

Preventive maintenance
Changes made to a system to
avoid possible future problems.

Perfective maintenance
Changes made to a system to
add new features or to improve
performance.

344 Part V Systems Implementation and Operation

different operating environment. Within a home, adaptive maintenance might
be adding storm windows to improve its energy efficiency. Adaptive mainte-
nance is usually less urgent than corrective maintenance because business and
technical changes typically occur over some period of time. Contrary to cor-
rective maintenance, adaptive maintenance is generally a small part of an orga-
nization’s maintenance effort but does add value to the organization.

Perfective maintenance involves making enhancements to improve pro-
cessing performance, interface usability, or to add desired, but not necessarily
required, system features (“bells and whistles”). In our home example, perfec-
tive maintenance would be adding a new room. Many system professionals feel
that perfective maintenance is not really maintenance but new development.

Preventive maintenance involves changes made to a system to reduce the
chance of future system failure. An example of preventive maintenance might
be to increase the number of records that a system can process far beyond
what is currently needed. In our home example, preventive maintenance
could be painting the exterior to better protect the home from severe weather
conditions. As with adaptive maintenance, both perfective and preventive
maintenance are typically a much lower priority than corrective maintenance.
Adaptive, perfective, and preventive maintenance activities can lead to cor-
rective maintenance activities if not carefully designed and implemented.

The Cost of Maintenance
Information systems maintenance costs are a significant expenditure. For some
organizations, as much 60–80 percent of their information systems budget is
allocated to maintenance activities. This proportion has risen from roughly
50 percent twenty years ago because many organizations have accumulated
more and more older systems that require more and more maintenance. It
means that you must understand the factors influencing the maintainability of
systems. Maintainability is the ease with which software can be understood,
corrected, adapted, and enhanced. Systems with low maintainability result in
uncontrollable maintenance expenses.

Numerous factors influence the maintainability of a system. These factors, or
cost elements, determine the extent to which a system has high or low main-
tainability. Of these factors, three are most significant: number of latent defects,
number of customers, and documentation quality. The others—personnel,
tools, and software structure—have noticeable, but less, influence.

� Latent defects: This is the number of unknown errors existing in the
system after it is installed. Because corrective maintenance accounts
for most maintenance activity, the number of latent defects in a system
influences most of the costs associated with maintaining a system.

� Number of customers for a given system: In general, the greater the
number of customers, the greater the maintenance costs. For

TABLE 10-7: Types of Maintenance

Type Description
Approximate Percentage

of Maintenance Effort

Corrective Repair design and programming errors 70

Adaptive Modify system to environmental changes 10

Perfective Add new features or improve system
performance

15

Preventive Safeguard system from future problems 5

Chapter 10 Systems Implementation and Operation 345

example, if a system has only one customer, problem and change
requests will come from only one source. Also, training, reporting
errors, and support will be simpler. Maintenance requests are less
likely to be contradictory or incompatible.

� Quality of system documentation: Without quality documentation,
maintenance effort can increase exponentially. Quality documentation
makes it easier to find code that needs to be changed and to
understand how the code needs to be changed. Good documentation
also explains why a system does what it does and why alternatives
were not feasible, which saves wasted maintenance efforts.

� Maintenance personnel: In some organizations, the best programmers
are assigned to maintenance. Highly-skilled programmers are needed
because the maintenance programmer is typically not the original program-
mer and must quickly understand and carefully change the software.

� Tools: Tools that can automatically produce system documentation
where none exists can also lower maintenance costs. Also, tools that
can automatically generate new code based on system specification
changes can dramatically reduce maintenance time and costs.

� Well-structured programs: Well-designed programs are easier to
understand and fix.

Since the mid-1990s, many organizations have taken a new approach to man-
aging maintenance costs. Rather than develop custom systems internally or
through contractors, they have chosen to buy packaged application software.
Although vendors of packaged software charge an annual maintenance fee for
updates, these charges are more predictable and lower than those for custom-
developed systems. Internal maintenance work is often still necessary when us-
ing packages. One major maintenance task is to make the packaged software
compatible with other packages and internally developed systems with which it
must cooperate. When new releases of the purchased package appear, mainte-
nance may be needed to make all the packages continue to share and exchange
data. Some companies are minimizing this effort by buying comprehensive
packages, called enterprise resource planning (ERP) packages, which provide
information services for a wide range of organizational functions (from human
resources to accounting, manufacturing, and sales and marketing). Although
the initial costs to install such ERP packages can be significant, they promise
great potential for drastically reducing system maintenance costs.

Measuring Maintenance Effectiveness
Because maintenance can be so costly, it is important to measure its effective-
ness. To measure effectiveness, you must measure these factors:

� Number of failures

� Time between each failure

� Type of failure

Measuring the number of and time between failures will provide you with the
basis to calculate a widely-used measure of system quality. This measure is
referred to as the mean time between failures (MTBF). As its name
implies, the MTBF measure shows the average length of time between the
identification of one system failure until the next. Over time, you should expect
the MTBF value to increase rapidly after a few months of use (and corrective
maintenance) of the system. If the MTBF does not rapidly increase over time,
it will be a signal to management that major problems exist within the system
that are not being adequately resolved through the maintenance process.

Mean time between
failures (MTBF)
A measurement of error
occurrences that can be tracked
over time to indicate the quality
of a system.

346 Part V Systems Implementation and Operation

A more revealing method of measurement is to examine the failures that are oc-
curring. Over time, logging the types of failures provides a clear picture of where,
when, and how failures occur. For example, knowing that a system repeatedly
fails logging new account information to the database when a particular customer
is using the system can provide invaluable information to the maintenance per-
sonnel. Were the users adequately trained? Is there something unique about this
user? Is there something unique about an installation that is causing the failure?
What activities were being performed when the system failed?

Tracking the types of failures also provides important management informa-
tion for future projects. For example, if a higher frequency of errors occurs
when a particular development environment is used, such information can help
guide personnel assignments, training courses, or the avoidance of a particular
package, language, or environment during future development. The primary les-
son here is that without measuring and tracking maintenance activities, you
cannot gain the knowledge to improve or know how well you are doing relative
to the past. To manage effectively and to improve continuously, you must meas-
ure and assess performance over time.

Controlling Maintenance Requests
Another maintenance activity is managing maintenance requests. From a man-
agement perspective, a key issue is deciding which requests to perform and
which to ignore. Because some requests will be more critical than others, some
method of prioritizing requests must be determined.

Figure 10-10 shows a flowchart that suggests one possible method for dealing
with maintenance change requests. First, you must determine the type of request.
If, for example, the request is an error—that is, a corrective maintenance request—
then a question related to the error’s severity must be asked. If the error is “very se-
vere,” then the request has top priority and is placed at the top of a queue of tasks
waiting to be performed on the system. If, however, the error is considered “not
very severe,” then the change request can be categorized and prioritized based
upon its type and relative importance. Categorization and prioritization may be
done by the same review panel or board that evaluates new system requests.

If the change request is not an error, then you must determine whether the re-
quest is to adapt the system to technology changes and/or business require-
ments or to enhance the system with new business functionality. Adaptation
requests will also need to be evaluated, categorized, prioritized, and placed in
the queue. Enhancement-type requests must first be evaluated for alignment
with future business and information systems plans. If not aligned, the request
will be rejected, and the requester will be informed. If the enhancement is
aligned with business and information systems’ plans, it can then be prioritized
and placed into the queue of future tasks. Part of the prioritization process in-
cludes estimating the scope and feasibility of the change. Techniques used for
assessing the scope and feasibility of entire projects should be used when
assessing maintenance requests (see Chapter 4).

Managing the queue of pending tasks is an important activity. The queue of
maintenance tasks is dynamic—growing and shrinking based upon business
changes and errors. In fact, some lower-priority change requests may never be
accomplished, because only a limited number of changes can be accomplished
at a given time. In other words, changes in business needs between the time the
request was made and when the task finally rises to the top of the queue may re-
sult in the request being deemed unnecessary or no longer important given cur-
rent business directions.

Although each change request goes through an approval process as depicted
in Figure 10-10, changes are usually implemented in batches, forming a new re-
lease of the software. It is too difficult to manage a lot of small changes. Further,

Chapter 10 Systems Implementation and Operation 347

Change Request

Type?

Type? Severity

Action

Evaluate,
Categorize,
Prioritize

Evaluate,
Categorize,
Prioritize

Evaluate,
Categorize

Inform
Requester Prioritize

Select Next
Task from

Top of Queue

Top
Priority

Adaptation

Other Error

Enhancement

Kill Do

Very Not Very

FIGURE 10-10
Flowchart showing how to control maintenance requests.

Source: Pressman, R.S. (2010). Software Engineering: A Practitioner's Approach. 7th ed. New York:
McGraw Hill.

batching changes can reduce maintenance work when several change requests
affect the same or highly related modules. Frequent releases of new system
versions may also confuse users if the appearance of displays, reports, or data-
entry screens changes.

Configuration Management
A final aspect of managing maintenance is configuration management, which is
the process of ensuring that only authorized changes are made to a system. Once
a system has been implemented and installed, the programming code used to con-
struct the system represents the baseline modules of the system. In these soft-
ware modules for the most recent version of a system, each module has passed the
organization’s quality assurance process and documentation standards. A system
librarian controls the baseline source code modules. If maintenance personnel
are assigned to make changes to a system, they must first check out a copy of
the baseline system modules because no one is allowed to modify the baseline

Baseline modules
Software modules that have been
tested, documented, and
approved to be included in the
most recently created version of a
system.

Configuration
management
The process of ensuring that only
authorized changes are made to
a system.

System librarian
A person responsible for
controlling the checking out and
checking in of baseline modules
when a system is being
developed or maintained.

348 Part V Systems Implementation and Operation

modules directly. Only modules that have been checked out and have gone
through a formal check-in process can reside in the library. Before any code can
be checked back in to the librarian, the code must pass the quality-control pro-
cedures, testing, and documentation standards established by the organization.

When various maintenance personnel working on different maintenance
tasks complete each task, the librarian notifies those still working that updates
have been made to the baseline modules. All tasks being worked on must now
incorporate the latest baseline modules before being approved for check-in.
Following a formal process of checking modules out and in, a system librarian
helps to ensure that only tested and approved modules become part of the base-
line system. It is also the librarian’s responsibility to keep copies of all prior ver-
sions of all system modules, including the build routines. Build routines are
guidelines that list the instructions to construct an executable system from the
baseline source code. Because it may be important to reconstruct old versions
of the system if new ones fail, or to support users that cannot run newer ver-
sions on their computer system, build routines are archived so that any version
of the system can be created. Specialized packaged system software exists to
support all of the functions of configuration management.

Role of Automated Development Tools in Maintenance
In traditional systems development, much of the time is spent on coding and
testing. When software changes are approved, code is first changed and then
tested. Once the functionality of the code is verified, the documentation and
specification documents are updated to reflect system changes. Over time, the
process of keeping all system documentation current can be a tedious and time-
consuming activity that is often neglected. This neglect makes future mainte-
nance by the same or different programmers difficult.

A primary objective of using automated tools for systems development and
maintenance is to change radically how code and documentation are modified
and updated. When using an integrated development environment, analysts main-
tain design documents such as data-flow diagrams and screen designs, not source
code. In other words, design documents are modified and then code generators
automatically create a new version of the system from these updated designs.
Also, because the changes are made at the design-specification level, most docu-
mentation changes such as an updated data-flow diagram will have already been
completed during the maintenance process itself. One of the biggest advantages
to using these tools, for example, is the benefits during system maintenance.

In addition to using general automated tools for maintenance, two special-
purpose tools, reverse engineering and reengineering tools, are primarily used
to maintain older systems. These tools are often referred to as design recovery
tools because their primary benefit is to create high-level design documents of
a program by reading and analyzing its source code. When original documen-
tation is not available, these tools can save considerable maintenance time by
helping maintenance personnel to understand program and data structures.

Web Site Maintenance
All of the discussion on maintenance in this chapter applies to any type of in-
formation system, no matter on what platform it runs. Some special issues and
procedures are needed for Web sites, however, because of their nature and
operational status. These issues and procedures include:

� 24 � 7 � 365: Most Web sites are never purposely down. In fact an
e-commerce Web site has the advantage of continuous operation.
Thus, maintenance of pages and the overall site usually must be done
without taking the site off-line. However, it may be necessary to lock

Build routines
Guidelines that list the instructions
to construct an executable system
from the baseline source code.

Chapter 10 Systems Implementation and Operation 349

out use of pages in a portion of a Web site while changes are made to
those pages. Inserting a “Temporarily Out of Service” notice on the
main page of the section being maintained and disabling all links
within that segment is a common approach. Alternatively, references
to the main page of the section can be temporarily rerouted to an
alternative location where the current pages are kept while
maintenance is performed to create new versions of those pages. The
really tricky nuance is keeping the site consistent for a user during a
session: that is, it can be confusing to a user to see two different
versions of a page within the same online session. Browser caching
functions may bring up an old version of a page even when that page
changes during the session. One precaution against confusion is
locking, as previously explained. Another approach is to not lock a
page being changed but to include a date and time stamp of the most
recent change. Giving the page visitor an indication of the change may
reduce confusion.

� Check for broken links: Arguably the most common maintenance
issue for any Web site (besides changing the content of the site) is
validating that links from site pages (especially for links that go
outside the source site) are still accurate. Periodic checks need to be
performed to make sure active pages are found from all links. Various
software such as CyberSpyder (www.cyberspyder.com) or Google
Webmaster (www.google.com/webmasters) provide such checking
features. In addition, periodic human checks need to be performed to
make sure that the content found at a still-existing referenced page is
still the intended content.

� Reregistration: It may be necessary to reregister a Web site with
search engines when the content of your site significantly changes.
Reregistration may be necessary for visitors to find your site based on
the new or changed content.

� Future editions: One of the most important issues to address to
ensure effective Web site use is to avoid confusing visitors. Especially
frequent visitors can be confused if the site is constantly changing. To
avoid confusion, you can post indications of future enhancements to
the site and, as with all information systems, you can batch changes to
reduce the frequency of site changes.

Maintaining an Information System at Pine Valley Furniture
Early one Saturday evening, Juanita Lopez, head of the manufacturing support
unit of the purchasing department at Pine Valley Furniture (PVF), was develop-
ing a new four-week production schedule to prepare purchase orders for nu-
merous material suppliers. She was working on Saturday evening because she
was leaving the next day for a long-overdue two-week vacation to the Black
Hills of South Dakota. Before she could leave, however, she needed to prepare
purchase orders for all material requirements for the next four weeks so that or-
ders could be placed during her absence. She was using the Purchasing Fulfill-
ment System to assist her with this activity.

Midway through the process of developing a new production schedule, the
system failed and could not be restarted. When she tried to restart the program,
an error message was displayed on the terminal:

Data Integrity Error: Corrupt or missing supplier file.

Given that her plane for Rapid City left in less than 12 hours, Juanita had to
figure out some way to overcome this catastrophic system error. Her first

www.cyberspyder.com

www.google.com/webmasters

350 Part V Systems Implementation and Operation

thought was to walk over to the offices of the information systems development
group within the same building. When she did, she found no one there. Her next
idea was to contact Chris Ryan, the project manager for the development and
maintenance of the system. She placed a call to Chris’s home and found that he
was at the grocery store but would be home soon. Juanita left a message for
Chris to call her ASAP at the office.

Within 30 minutes, Chris returned the call and was on his way into the of-
fice to help Juanita. Although not a common occurrence, it is not the first
time that Chris has gone into the office to assist users when systems have
failed during off-hours. Chris was looking forward to the day when he could
handle all problems from home using a home PC and secure, high-speed In-
ternet connection as he had been able to do when he needed to scan data files
for errors or issue a command to restore a database. Based on Juanita’s ex-
planation of the problem and a few quick inquiries from his home PC, Chris
decided he had better make the trip to the office where he had a variety of
tools at his disposal.

PVF’s systems development methodology for performing system mainte-
nance is a formal process in which a user must first write a system service re-
quest (SSR) before maintenance is performed. After it is reviewed by the project
manager, it is then forwarded to the Systems Priority Board. For catastrophic
problems requiring instant correction so as not to delay normal business oper-
ations, the project manager has the discretion to circumvent the normal request
process. After arriving on the scene, reviewing the error messages, and learning
of Juanita’s pending vacation, Chris believed that the failure with the Purchas-
ing Fulfillment System was an instance where he could circumvent the normal
maintenance process. His quick investigation suggested a failure in a new ver-
sion of a system module that had been installed late on Friday afternoon. Chris
noticed that the automated development tool records showed that this replace-
ment module had not been tested against a standard test data set related to the
type of work Juanita was doing, which made him suspect that it was the source
of the problem. After patching the system to make it run, he would have to go
back and document and test his changes so that they conformed to the devel-
opment standards of PVF.

Over the next two hours, Chris used system backups to rebuild the supplier
database. He reinstalled a previous version of the system’s potentially faulty
module (stored in the system library) that seemed more reliable, and then he
quickly ran a test data set to check that the patches would hold the system to-
gether for now. He had to refresh himself on how to mount a tape cartridge on
which the backup supplier data had been archived. Juanita was able to com-
plete her task on time to easily make her flight the next morning. She thanked
Chris for “going beyond the call of duty.” Her appreciation made Chris feel good,
but he was still uneasy. When making the “quick fix” on the system, he did not
perform carefully planned testing, nor did he confirm what had caused the er-
ror. He knew that the system could fail at any time. He did, however, have a copy
of all of Juanita’s actions just prior to the system failure. He hoped that through
a careful review of those actions he would be able to learn why the system
failed. But that would be a job for Monday morning.

Pine Valley Furniture WebStore: Systems Implementation
and Operation
In the last chapter, you read how Jim Woo and the Pine Valley Furniture devel-
opment team transformed the conceptual data model for the WebStore into a
set of normalized relations. Here we examine how the WebStore system was
tested before it was installed and brought online.

Chapter 10 Systems Implementation and Operation 351

Systems Implementation and Operation
for Pine Valley Furniture’s WebStore
The programming of all WebStore software modules is now complete. The pro-
grammers extensively tested each unique module, and it was now time to per-
form a system-wide test of the WebStore. In this section, we examine how test
cases were developed, how bugs were recorded and fixed, and how alpha and
beta testing was conducted.

Developing Test Cases for the WebStore To begin the systemwide
testing process, Jim and the PVF development team developed test cases to
examine every aspect of the system. Jim knew that system testing, like all other
aspects of the SDLC, needed to be a tightly structured and planned process.
Before opening the WebStore to the general public, every module and
component of the system needed to be tested within a controlled environment.
Based upon his experience in implementing other systems, Jim felt that they
would need to develop approximately 150–200 separate test cases to fully
examine the WebStore. To help focus the development of test cases and to
assign primary responsibility to members of his team to specific areas of the
system, Jim developed the following list of testing categories:

� Simple functionality: Add to cart, list section, calculate tax, change
personal data

� Multiple functionality: Add item to cart and change quantity, create
user account, and change address

� Function chains: Add item to cart, check out, create user account,
purchase

� Elective functions: Returned items, lost shipments, item out-of-stock

� Emergency/crisis: Missing orders, hardware failure, security attacks

The development group broke into five separate teams, each working to de-
velop an extensive set of cases for each of the testing categories. Each team
had one day to develop its test cases. Once developed, each team would lead a
walkthrough so that everyone would know the totality of the testing process
and to facilitate extensive feedback to each team so that the testing process
would be as comprehensive as possible. To make this point, Jim stated, “What
happens when a customer repeatedly enters the same product into the shop-
ping cart? Can we handle that? What happens when the customer repeatedly
enters and then removes a single product? Can we handle that? Although some
of these things are unlikely to ever occur, we need to be confident that the sys-
tem is robust enough to handle any type of customer interaction. We must de-
velop every test case necessary to give us confidence that the system will
operate as intended, 24/7!”

A big part of successful system testing is to make sure that no information is
lost and that all tests are described in a consistent way. Jim provided all teams
with a standard form for documenting each case and for recording the results
of each test. This form had the following sections:

Test Case ID
Category/Objective of Test
Description
System Version
Completion Date
Participant(s)
Machine Characteristics (processor, operating system, memory, browser, etc.)
Test Result
Comments

352 Part V Systems Implementation and Operation

The teams also developed standard codes for each general type of test that was
used to create the Test Case ID. For example, all tests related to “simple func-
tionality” were given an ID with SF as a prefix and a number as the suffix—for
example, SF001. The teams also developed standards for categorizing, listing
objectives, and writing other test-form contents. Establishing these standards
assured that the testing process would be documented consistently.

Bug Tracking and System Evolution An outcome of the testing process
is the identification of system bugs. Consequently, in addition to setting a standard
method for writing and documenting test cases, Jim and the teams established
several other rules to ensure a smooth testing process. Experienced developers
have long known that an accurate bug tracking process is essential for rapid
troubleshooting and repair during the testing process. You can think of bug
tracking as creating a “paper trail” that makes it much easier for programmers to
find and repair the bug. To make sure that all bugs were documented in a similar
way, the team developed a bug tracking form that had the following categories:

Bug Number (simple incremental number)
Test Case ID That Generated the Bug
Is the Bug Replicable?
Effects
Description
Resolution
Resolution Date
Comments

The PVF development team agreed that bug fixes would be made in batches,
because all test cases would have to be redone every time the software was
changed. Redoing all the test cases each time the software is changed is done to
ensure that in the process of fixing the bug, no other bugs were introduced into the
system. As the system moves along in the testing process—as batches of bugs are
fixed—the version number of the software is incremented. During the development
and testing phases, the version is typically below the “1.0” first release version.

Alpha and Beta Testing the WebStore After completing all system test
cases and resolving all known bugs, Jim moved the WebStore into the alpha testing
phase where the entire PVF development team and personnel around the company
would put the WebStore through its paces. To motivate employees throughout
the company to participate actively in testing the WebStore, several creative
promotions and giveaways were held. All employees were given a T-shirt with the
motto “I shop at the WebStore, do you?” Additionally, all employees were given $100
to shop at the WebStore and were offered a free lunch for their entire department
if they found a system bug while shopping on the system. Also during alpha testing,
the development team conducted extensive recovery, security, stress, and
performance testing. Table 10-8 provides a sample of the types of tests performed.

After completing alpha testing, PVF recruited several of their established
customers to help in beta testing the WebStore. As real-world customers used
the system, Jim was able to monitor the system and fine-tune the servers for
optimal system performance. As the system moved through the testing process,
fewer and fewer bugs were found. After several days of “clean” usage, Jim felt
confident that it was now time to open the WebStore for business.

WebStore Installation Throughout the testing process, Jim kept PVF
management aware of each success and failure. Fortunately, because Jim and
the development team followed a structured and disciplined development
process, they experienced far more successes than failures. In fact, he was now
confident that the WebStore was ready to go online and would recommend to
PVF’s top management that it was now time to “flip the switch” and let the world
enter the WebStore.

Chapter 10 Systems Implementation and Operation 353

Key Points Review
1. Describe the process of coding, testing, and

converting an organizational information
system and outline the deliverables and out-
comes of the process.

Coding is the process whereby the physical
design specifications created by the design team
are turned into working computer code by the
programming team. Once coding has begun, the
testing process can begin and proceed in parallel.
As each program module is produced, it can be
tested individually, then as part of a larger pro-
gram, and then as part of a larger system. Instal-
lation is the process during which the current
system is replaced by the new system. This
includes conversion of existing data, software,
documentation, and work procedures to those
consistent with the new system. The deliverables
and outcomes from coding, testing, and conver-
sion are program and system code with associ-
ated documentation; testing plans, data, and
results; and installation user guides, training plan,
and conversion plan for hardware, software, data,
and facilities.

2. Apply four installation strategies: direct, par-
allel, single location, and phased installation.

Direct installation is the changing over from the
old information system to a new one by turning off
the old system when the new one is turned on.
Parallel installation means running the old infor-
mation system and the new one at the same time
until management decides the old system can be
turned off. Single location installation is trying out

a new information system at one site and using the
experience to decide if and how the new system
should be deployed throughout the organization.
Phased installation is changing from the old infor-
mation system to the new one incrementally, start-
ing with one or a few functional components and
then gradually extending the installation to cover
the whole new system. Often, a combination or
hybrid of these four strategies is employed for a
particular information system installation. The ap-
proach (or combination) an organization decides to
use depends on the scope and complexity of the
change associated with the new system and the
organization’s risk aversion.

3. List the deliverables for documenting the
system and for training and supporting users.

The deliverables are system and user documen-
tation; user training plan for classes and tutorials;
user training materials, including computer-
based training aids; and a user support plan,
including such elements as a help desk, online
help materials, bulletin boards, and other support
mechanisms.

4. Compare the many modes available for orga-
nizational information system training.

While formal instructor led courses is the most
common method of training, other approaches in-
clude: resident experts, software help compo-
nents, e-learning/distance learning, and external
sources such as vendors. Increasingly, organiza-
tions are using e-learning/distance learning to
meet their employee training needs.

TABLE 10-8: Sample of Tests Conducted on the WebStore
during Alpha Testing

Test Type Sample of Tests Performed

Recovery Unplug main server to test power backup system.

Security Switch off main server to test the automatic switching to backup server.

Stress Try to purchase without being a customer.

Performance Try to examine server directory files both within the PVF domain
and when connecting from an outside Internet service provider.

Have multiple users simultaneously establish accounts, process
purchases, add to shopping cart, remove from shopping cart, etc.

Examine response time using different connection speeds,
processors, memory, browsers, and other system configurations.

Examine response time when backing up server data.

354 Part V Systems Implementation and Operation

5. Discuss the issues of providing support for
end users.

Support is more than just answering user ques-
tions about how to use a system to perform a par-
ticular task or about the system’s functionality.
Support also consists of such tasks as providing
for recovery and backup, disaster recovery, and
PC maintenance; writing newsletters and offering
other types of proactive information sharing; and
setting up user groups. It is the responsibility of an-
alysts for a new system to be sure that all forms of
support are in place before the system is installed.
For medium-to-large organizations with active in-
formation system units, many of these issues are
dealt with centrally. When no official IS support
function is available to provide support services,
you must come up with a creative plan to provide
as many services as possible. You may have to
write backup and recovery procedures and sched-
ules, and the users’ departments may have to pur-
chase and be responsible for the maintenance of
their hardware. In some cases, software and hard-
ware maintenance may have to be outsourced to
vendors or other capable professionals.

6. Explain why systems implementation some-
times fails.

Even well-executed systems development proj-
ects, which have identified the right requirements
and designed and installed a sound system, can
fail. Research and experience have shown that
management support of the system under devel-
opment and the involvement of users in the devel-
opment process can be important but are not
sufficient to achieve success. In addition, users
must have a commitment to the project and a
commitment to change. Poorly done project defi-
nition and planning can set up a project for failure.
Users also must have realistic and consistent ex-
pectations of the system’s capabilities. Of course,
the system must be relevant to the work the user
performs. Also important are the ease of use and
reliability of the system and user demographics,

such as age and degree of computer experience.
The more users can do with a system and the more
creative ways they can develop to benefit from the
system, the more they will use it. Then more use
leads users to find even more ways to benefit from
the system. The more satisfied the users are with
the system, the more they will use it. The more
they use it, the more satisfied they will be.

7. Explain and contrast four types of
maintenance.

Corrective maintenance repairs flaws in a sys-
tem’s design, coding, or implementation. Adaptive
maintenance implements changes to a system
to evolve its functionality to changing business
needs or technologies. Perfective maintenance
adds new features or improves system perform-
ance. Preventive maintenance avoids possible fu-
ture problems. Corrective maintenance is the
most frequent, by far, and should occur primarily
shortly after a system release is installed. Correc-
tive maintenance must be made, and usually
quickly. Adaptive maintenance also usually must
be done. Some adaptive maintenance and all
perfective and preventive maintenance are discre-
tionary and must be categorized and prioritized.

8. Describe several factors that influence the
cost of maintaining an information system.

The factors that influence the cost of main-
taining an information system are: (1) latent
defects, which are unknown errors existing in
the system after it is installed; (2) number of
customers for a given system; (3) quality of sys-
tem documentation; (4) maintenance personnel;
(5) tools that can automatically produce system
documentation where none exists; and (6) well-
structured programs. The most influential of
these are latent defects, number of customers,
and quality of documentation. Also, some
companies have adopted a strategy of using
packaged application software, especially enter-
prise resource planning systems, to reduce
maintenance costs.

Key Terms Checkpoint
Here are the key terms from the chapter. The page where each term is first explained is in parentheses after
the term.

6. Build routines (p. 348)
7. Configuration management

(p. 347)
8. Corrective maintenance (p. 343)
9. Desk checking (p. 326)

10. Direct installation (p. 330)

11. Electronic performance support
system (EPSS) (p. 337)

12. External documentation (p. 333)
13. Help desk (p. 338)
14. Inspection (p. 326)
15. Installation (p. 330)

1. Acceptance testing (p. 329)
2. Adaptive maintenance

(p. 343)
3. Alpha testing (p. 329)
4. Baseline modules (p. 347)
5. Beta testing (p. 329)

Chapter 10 Systems Implementation and Operation 355

21. Parallel installation (p. 330)
22. Perfective maintenance (p. 344)
23. Phased installation (p. 330)
24. Preventive maintenance (p. 344)
25. Single location installation (p. 330)
26. Stub testing (p. 327)
27. Support (p. 336)

28. System documentation (p. 333)
29. System librarian (p. 347)
30. System testing (p. 327)
31. Testing harness (p. 329)
32. Unit testing (p. 327)
33. User documentation (p. 333)

16. Integration testing (p. 327)
17. Internal documentation

(p. 333)
18. Issue tracking system (p. 338)
19. Maintenance (p. 343)
20. Mean time between failures

(MTBF) (p. 345)

Match each of the key terms with the definition that best fits it.

1. A testing technique in which participants
examine program code for predictable
language-specific errors.

2. A testing technique in which the program
code is sequentially executed manually by
the reviewer.

3. Component of a software package or
application in which training and
educational information is embedded. An
EPSS may include a tutorial, expert system,
and hypertext jumps to reference material.

4. Written or other visual information about
how an application system works, and how
to use it.

5. Changing over from the old information
system to a new one by turning off the old
system when the new one is turned on.

6. Changes made to a system to evolve its
functionality to changing business needs or
technologies.

7. Each module is tested alone in an attempt
to discover any errors in its code.

8. The organizational process of changing
over from the current information system
to a new one.

9. A measurement of error occurrences that
can be tracked over time to indicate the
quality of a system.

10. System documentation that includes the
outcome of structured diagramming
techniques such as data-flow and entity-
relationship diagrams.

11. The process whereby actual users
test a completed information system,
the end result of which is the users’
acceptance of it once they are satisfied
with it.

12. Guidelines that list the instructions to
construct an executable system from the
baseline source code.

13. Changes made to a system to avoid
possible future problems.

14. Detailed information about a system’s
design specifications, its internal workings,
and its functionality.

15. Running the old information system and
the new one at the same time until
management decides the old system can be
turned off.

16. The process of bringing together for testing
purposes all of the modules that a program
comprises. Modules are typically integrated
in a top-down, incremental fashion.

17. Changes made to a system to add new
features or to improve performance.

18. A technique used in testing modules,
especially modules that are written and
tested in a top-down fashion, where a few
lines of code are used to substitute for
subordinate modules.

19. Software modules that have been tested,
documented, and approved to be included
in the most recently created version of a
system.

20. A person responsible for controlling the
checking out and checking in of baseline
modules when a system is being developed
or maintained.

21. Changing from the old information system
to the new one incrementally, starting with
one or a few functional components and
then gradually extending the installation to
cover the whole new system.

22. The process of ensuring that only
authorized changes are made to a system.

23. The bringing together for testing purposes
of all the programs that a system comprises.
Programs are typically integrated in a top-
down, incremental fashion.

24. Changes made to a system to fix or
enhance its functionality.

25. System documentation that is part of the
program source code or is generated at
compile time.

26. Providing ongoing educational and
problem-solving assistance to information
system users. Support material and jobs
must be designed along with the associated
information system.

356 Part V Systems Implementation and Operation

1. What are the deliverables from coding, testing,
and installation?

2. Explain the testing process for code.
3. What are the four approaches to installation?

Which is the most expensive? Which is the most
risky? How does an organization decide which
approach to use?

4. List and define the factors that are important to
successful implementation efforts.

5. What is the difference between system docu-
mentation and user documentation?

6. List and define the various methods of user
training.

7. Describe the delivery methods many vendors
employ for providing support.

8. List the steps in the maintenance process and
contrast them with the phases of the systems de-
velopment life cycle.

27. User testing of a completed information
system using real data in the real user
environment.

28. Changes made to a system to repair flaws
in its design, coding, or implementation.

29. Trying out a new information system at
one site and using the experience to decide
if and how the new system should be
deployed throughout the organization.

30. User testing of a completed information
system using simulated data.

31. A single point of contact for all user
inquiries and problems about a particular
information system or for all users in a
particular department.

32. An automated testing environment used to
review code for errors, standards
violations, and other design flaws.

33. Typically a Web-based tool for logging,
tracking, and assigning system bugs and
change requests to developers.

9. What are the different types of maintenance and
how do they differ?

10. Describe the factors that influence the cost of
maintenance. Are any factors more important?
Why?

11. What types of measurements must be taken to
gain an understanding of the effectiveness of
maintenance? Why is tracking mean time be-
tween failures an important measurement?

12. Describe the process for controlling mainte-
nance requests. Should all requests be handled in
the same way or are there situations when you
should be able to circumvent the process? If so,
when and why?

13. What is meant by configuration management?
Why do you think organizations have adopted the
approach of using a systems, librarian?

Problems and Exercises
1. Consider the reasons implementations fail. For

at least three of these reasons, explain why this
happens, if there is one (or more) type of imple-
mentation likely to minimize the occurrence, and
if there is one (or more) type of installation more
likely to induce failure for this reason.

2. Two members of your project development team
are disagreeing about the relative importance of
training and documentation. Sam strongly be-
lieves that training is far more important because
it will ensure the successful implementation of
the information system and that the early usage
is a positive experience. Pat encounters that the
user documentation is far more important be-
cause its impact can help not only the current
users, but also future users. Which do you think
is right, and why?

3. Why is it important to keep a history of test cases
and the results of those test cases even after a
system has been revised several times?

4. What is the purpose of electronic performance
support systems? How would you design one to
support a word processing package? A database
package?

5. Due to advances in technology and widespread
computer literacy, many organizations use
e-learning extensively to train employees. If you
were managing a system implementation and had
to train on a limited budget, you may find yourself
choosing between e-learning or conducting face-
to-face training with a subset of users who would
then train their departments (called train-the-
trainers). Which would you choose and why?

6. Is it good or bad for corporations to rely on ven-
dors for computing support? List arguments both
for and against reliance on vendors as part of
your answer.

7. Suppose you were responsible for establishing a
training program for users of Hoosier Burger’s in-
ventory control system (described in previous

Review Questions

Chapter 10 Systems Implementation and Operation 357

chapters). Which forms of training would you
use? Why?

8. Suppose you work in a senior management posi-
tion for a large corporation. A member of your
team has suggested that your company outsource
the help desk functions. Would you support a plan
to outsource your help desk? Support your answer.

9. If you were an analyst on a project team devel-
oping a new information system and you were
given the task of organizing the user documenta-
tion, you would probably not be able to create all
of the content by yourself from memory. List
three sources you would tap for the documenta-
tion and explain how you would have to modify
it for end-users.

10. In what ways is a request to change an informa-
tion system handled differently from a request
for a new information system?

11. What can a systems analyst do to reduce the fre-
quency of corrective maintenance, the most com-
mon form of maintenance?

12. What other information should be collected on a
system service request for maintenance as
opposed to a system service request for a new
system?

13. What can a systems analyst do to facilitate future
maintenance?

14. Suppose an information system was developed
following a rapid application development ap-
proach like prototyping. How might maintenance
be different than if the system had been devel-
oped following the traditional life cycle? Why?

15. This chapter contains a warning that mainte-
nance activities could lead to further corrective
maintenance work if not carefully designed and
implemented. What processes or procedures can
organizations use to reduce the likelihood of this
occurring?

Discussion Questions
1. If possible, ask a systems analyst you know or have

access to about implementation. Ask what the an-
alyst believes is necessary for a successful imple-
mentation. Compare what the analyst believes are
the factors that influence successful implementa-
tion to the factors discussed in this chapter.

2. Talk with people you know who use computers
in their work. Ask them to get copies of the user
documentation they rely on for the systems they
use. Analyze the documentation. Would you con-
sider it good or bad? Support your answer.
Whether good or bad, how might you improve it?

3. Volunteer to work for a shift at a help desk at your
school’s computer center. Keep a journal of your
experiences. What kind of users did you have to
deal with? What kinds of questions did you get?
Do you think help desk work is easy or hard? What
skills are needed by someone in this position?

4. Let’s say your professor has asked you to help him
or her train a new secretary on how to prepare class
notes for electronic distribution to class members.
Your professor uses word processing software and
an e-mail package to prepare and distribute the
notes. Assume the secretary knows nothing about
either package. Prepare a user task guide that
shows the secretary how to complete this task.

5. Study an information systems department with
which you are familiar or to which you have
access. How does this department measure the
effectiveness of systems maintenance? What spe-
cific metrics are used, and how are these metrics
used to effect changes in maintenance practices?
If a history of measurements has been collected
over several years, how can changes in the mea-
surements be explained?

Case Problems
1. Pine Valley Furniture

Pine Valley Furniture’s Customer Tracking
System is now entering the final phases of the
systems development life cycle. It is a busy time
for the project team; project team members
are busy coding, testing, training end users, and
finalizing the system’s documentation.

To enhance your learning experience, Jim Woo
has asked you to participate in the implementa-
tion process. As a result of this assignment, you
have been attending all meetings concerning cod-
ing, testing, installation, end-user training, and
documentation. During several of these meetings,
the installation strategies, necessary end-user

358 Part V Systems Implementation and Operation

Systems Implementation and Operation
Jim Watanabe was in his new car, driving down I-5, on
his way to work. He dreaded the phone call he knew he
was going to have to make.

The original go-live date for a pilot implementation
of Petrie’s Electronics’ new customer relationship
management (CRM) system was July 31. That was
only six weeks away, and Jim knew there was no way
they were going to be ready. The XRA CRM they were

licensing turned out to be a lot more complex than
they had thought. They were behind schedule in im-
plementing it. Sanjay Agarwal, who was a member of
Jim’s team and who was in charge of systems integra-
tion for Petrie’s, wanted Jim to hire some consultants
with XRA experience to help with implementation. So
far, Jim had been able to stay under budget, but miss-
ing his deadlines and hiring some consultants would
push him over his budget limit.

CASE: PETRIE’S ELECTRONICS

training, and required documentation have been
discussed. You recall from your recent systems
analysis and design course that several options
for each of these areas are available.

a. Locate a technical-writing article on the Web.
Briefly summarize this article.

b. Which installation options are available for the
Customer Tracking System? Which would you
recommend?

c. How can you determine if implementation has
been successful?

d. What conditions are necessary for a success-
ful implementation effort?

2. Hoosier Burger
The development of Hoosier Burger’s informa-

tion system is nearing completion. At recent
project meetings, the types of testing, training,
documentation, and installation strategies appro-
priate for Hoosier Burger have been discussed.
The end users have little computer experience
and thus, require several types of training and
supporting documentation.

Fred Jones, one of the project’s team members,
has recommended using a direct installation
approach. Because Hoosier Burger’s information
system is relatively small, he feels that the direct
approach is the best installation strategy to pursue.
The new system could be installed at the beginning
of the week and be up and running for the weekend
traffic. However, Paula Freeman does not like this
idea. She feels that a parallel approach is more
appropriate. She worries that if the system crashes,
it may be difficult to return to the old system.

a. What types of training will Hoosier Burger’s
end users need?

b. What types of documentation would you rec-
ommend for Hoosier Burger’s end users?

c. Which installation strategy would you recom-
mend pursuing?

d. What support issues should be considered?

3. Kitchen Plus
Kitchen Plus is one of the nation’s top kitchen-

ware producers. The company has several prod-
uct lines, including cookware, small appliances,
cutlery, and tableware. Over the past several
years, the company has watched its market share
begin to slip. Several information system projects
were rushed into development, including an MRP
project. Kitchen Plus executives felt that the new
MRP system would enable the company to reduce
escalating costs, especially in the areas of inven-
tory, labor, and shipping.

The new MRP system has just been installed,
and it is now time to close down the project. As
project manager, one of your tasks is to evaluate
project team members. Most of the team mem-
bers performed well, and their work is exemplary.
However, Joe McIntire’s performance is a differ-
ent story. Joe was asked to complete several
tasks for this project, assisting with interviewing,
diagramming, testing, and documentation prepa-
ration. Several end users called and complained
about Joe’s interrogation methods. Additionally,
his diagrams were incomplete, sloppily done, and
not completed by the due date. During the testing
phase, Joe took a week off from work; Pauline
Applegate was assigned to take over Joe’s duties.

a. Identify the tasks involved in project closedown.

b. How would you evaluate Joe’s performance?

c. What types of maintenance problems can you
expect from this information system?

d. What factors will influence the maintainability
of this system?

Chapter 10 Systems Implementation and Operation 359

It didn’t help that John Smith, the head of marketing,
kept submitting requests for changes to the original
specifications for the customer loyalty program. As
specified in the project charter, the new system was
supposed to track customer purchases, assign points for
cumulative purchases, and allow points to be redeemed
for “rewards” at local stores. The team had determined
that those rewards would take the form of dollars-off
coupons. Customers who enrolled in the program
would be given accounts that they could access from
Petrie’s Web site. When they signed on, they could check
their account activity to see how many points they had
accumulated. If they had earned enough points, they
were rewarded with a coupon. If they wanted to use the
coupon, they would have to print it out on their home
printers and bring it in to a store to use on a purchase.
The team had decided long ago that keeping everything
electronic saved Petrie’s the considerable costs of
printing and mailing coupons to customers.

But now marketing had put in a change request
that would give customers a choice of having
coupons mailed to them automatically or printing
them from the Web site at home. This option, while
nice for customers, added complexity to the XRA
system implementation, and it added to the costs
of operation. Jim had also learned yesterday from
the marketing representative on his team, Sally
Fukuyama, that now Smith wanted another change.
Now he wanted customers to be able to use the
coupons for online purchases from Petrie’s Web site.
This change added a whole new layer of complexity,
affecting Petrie’s existing systems for ordering on-
line, in addition to altering yet again the implemen-
tation of the XRA CRM.

As if that wasn’t enough, Carmen Sanchez was now
telling Jim that she would not be ready to let the team
pilot the system in her Irvine store. Carmen was say-
ing her store would not be ready by the end of July.
Maybe that wouldn’t matter, since they were going to
miss the go-live date for the pilot. But Carmen was
hinting she would not be ready for months after that.
It seemed as if she didn’t want her store to be used for
the pilot at all. Jim didn’t understand it. But maybe he
should try to find another store to use as the pilot site.

Jim was almost at his exit. Soon he would be at the
office, and he would have to call Ella Whinston and
tell her the status of the project. He would have to tell
her that they would miss the go-live date, but in a way
it didn’t matter since he didn’t have a pilot location to
go live at. In addition to going over schedule, he was
going to have to go over budget, too. He didn’t see any
way they would be ready for the pilot anytime close
to when they had scheduled, unless he hired the con-
sultants Sanjay wanted. And he would have to stop
the latest change request filed by marketing. Even
more important, he would have to keep the rumored
change request, about using coupons for online pur-
chases, from being submitted in the first place.

Maybe, just maybe, if he could hire the consultants,
fight off the change requests, and get Carmen to
cooperate, they might be ready to go live with a pilot
in Irvine on October 15. That gave him four months
to complete the project. He and the team were going
to have to work hard to make that happen.

Jim realized he had missed his exit. Great, he
thought, I hope it gets better from here.

Case Questions

1. Why don’t information systems projects work out
as planned? What causes the differences between
the plan and reality?

2. Why is it important to document change requests?
What happens if a development team doesn’t?

3. When a project is late, do you think that adding
more people to do the work helps or not? Justify
your answer.

4. What is the role of a pilot project in information
systems analysis? Why do you think the Petrie’s
team decided to do a pilot project before rolling
out the customer loyalty system for everyone?

5. Information systems development projects are
said to fail if they are late, go over budget, or do
not contain all of the functionality they were
designed to have. Is the customer loyalty program
a failure? Justify your answer. If not, how can fail-
ure be prevented? Is it important to avert failure?
Why or why not?

This page intentionally left blank

Appendix A
Object-Oriented Analysis
and Design*

After studying this appendix, you should be able to:

� Define the following key terms: association, class diagram, event, object,
object class, operation, sequence diagram, state, state transition, Unified
Modeling Language, and use case.

� Describe the concepts and principles underlying the object-oriented
approach.

� Develop a simple requirements model using use-case diagrams.
� Develop a simple object model using class diagrams.
� Develop simple requirements models using state and sequence diagrams.

The Object-Oriented Modeling Approach
In Chapters 1 through 10, you learned about traditional methods of systems
analysis and design. You also learned how to use data-flow diagrams and entity-
relationship diagrams to model your system. In some environments, an object-
oriented rather than a traditional approach is needed. This appendix covers the
techniques and graphical diagrams that systems analysts use for object-oriented
analysis and design. As with the traditional modeling techniques, the deliver-
ables from project activities using object-oriented modeling are data-flow and
entity-relationship diagrams and repository descriptions. A major characteris-
tic of these diagrams in object-oriented modeling is how tightly they are linked
with each other. The object-oriented modeling approach provides several ben-
efits, including:

1. The ability to tackle more challenging problem domains

2. Improved communication among users, analysts, designers, and
programmers

3. Reusability of analysis, design, and programming results

4. Increased consistency among the models developed during object-
oriented analysis, design, and programming

An object-oriented systems development life cycle consists of a progressively
developing representation of a system component (what we will call an object)
through the phases of analysis, design, and implementation. In the early stages
of development, the model built is abstract, focusing on external qualities of the
application system such as data structures, timing and sequence of processing
operations, and how users interact with the system. As the model evolves, it be-
comes more and more detailed, shifting the focus to how the system will be built
and how it should function.

In the analysis phase, a model of the real-world application is developed
showing its important properties. It abstracts concepts from the application

*The original version of this appendix was written by Professor Atish P. Sinha.

361

362 Appendix A Object-Oriented Analysis and Design

Use case
A sequence of related actions
initiated by an actor; it represents
a specific way to use the system.

Actor
An external entity that interacts
with the system (similar to an
external entity in data-flow
diagramming).

Unified Modeling
Language (UML)
A notation that allows the modeler
to specify, visualize, and construct
the artifacts of software systems,
as well as business models.

domain and describes what the intended system must do, rather than how it will
be done. The model specifies the functional behavior of the system, independ-
ent of concerns relating to the environment in which it is to be finally imple-
mented. In the design phase, the application-oriented analysis model is adapted
and refined to suit the target implementation environment. That is followed by
the implementation phase, where the design is implemented using a program-
ming language and/or a database management system. The techniques and no-
tations that are incorporated into a standard object-oriented language are called
the Unified Modeling Language (UML).

The techniques and notations within UML include:

� Use cases, which represent the functional requirements or the “what”
of the system

� Class diagrams, which show the static structure of data and the
operations that act on the data

� State diagrams, which represent dynamic models of how objects
change their states in response to events

� Sequence diagrams, which represent dynamic models of interactions
between objects

The Unified Modeling Language (UML) allows the modeler to specify, visualize,
and construct the artifacts of software systems, as well as business models. It
builds upon and unifies the semantics and notations of leading object-oriented
methods and has been adopted as an industry standard.

The UML notation is useful for graphically depicting object-oriented analysis
and design models. It not only allows you to specify the requirements of a sys-
tem and capture the design decisions, but it also promotes communication
among key persons involved in the development effort. A developer can use an
analysis or design model expressed in the UML notation to communicate with
domain experts, users, and other stakeholders. To represent a complex system
effectively, the model developed needs to have a small set of independent views
of the system. UML allows you to represent multiple views of a system using a
variety of graphical diagrams, such as the use-case diagram, class diagram, state
diagram, sequence diagram, and collaboration diagram. The underlying model
integrates those views so that the system can be analyzed, designed, and imple-
mented in a complete and consistent fashion.

We first show how to develop a use-case model during the requirements analy-
sis phase. Next, we show how to model the static structure of the system using
class and object diagrams. You then learn how to capture the dynamic aspects
using state and sequence diagrams. Finally, we provide a brief description of
component diagrams, which are generated during the design and implementa-
tion phases.

Use-Case Modeling
Use-case modeling is applied to analyze the functional requirements of a
system. Use-case modeling is done in the early stages of system development
(during the analysis phase) to help developers understand the functional re-
quirements of the system without worrying about how those requirements will
be implemented. The process is inherently iterative; developers need to involve
the users in discussions throughout the model development process and finally
come to an agreement on the requirements specification.

A use-case model consists of actors and use cases. An actor is an external
entity that interacts with the system (similar to an external entity in data-flow
diagramming). It is someone or something that exchanges information with the
system. A use case represents a sequence of related actions initiated by an

Appendix A Object-Oriented Analysis and Design 363

Use-case diagram
A diagram that depicts the use
cases and actors for a system.

FIGURE A-1
Use-case diagram for a university
registration system drawn using
Microsoft Visio.

actor; it is a specific way of using the system. An actor represents a role that a
user can play. The actor’s name should indicate that role. Actors help you to
identify the use cases they carry out.

During the requirements analysis stage, the analyst sits down with the in-
tended users of the system and makes a thorough analysis of what functions
they desire from the system. These functions are represented as use cases. For
example, a university registration system has a use case for class registration
and another for student billing. These use cases, then, represent the typical
interactions the system has with its users.

In UML, a use-case model is depicted diagrammatically, as in Figure A-1. This
use-case diagram is for a university registration system, which is shown as a
box. Outside the box are four actors—Student, Registration clerk, Instructor,
and Bursar’s office—that interact with the system (shown by the lines touching
the actors). An actor is shown using a stick figure with its name below. Inside
the box are four use cases—Class registration, Registration for special class,
Prereq courses not completed, and Student billing—which are shown as
ellipses with their names inside. These use cases are performed by the actors
outside the system.

A use case is always initiated by an actor. For example, Student billing is ini-
tiated by the Bursar’s office. A use case can interact with actors other than the
one that initiated it. The Student billing use case, although initiated by the
Bursar’s office, interacts with the Students by mailing them tuition invoices.
Another use case, Class registration, is carried out by two actors, Student and
Registration clerk. This use case performs a series of related actions aimed at
registering a student for a class.

The numbers on each end of the interaction lines indicate the number of
instances of the use case with which the actor is associated. For example, the
Bursar’s office causes many (*) Student billing use-case instances to occur,
each one for exactly one student.

A use case represents a complete functionality. You should not represent an
individual action that is part of an overall function as a use case. For example,
although submitting a registration form and paying tuition are two actions per-
formed by users (students) in the university registration system, we do not
show them as use cases, because they do not specify a complete course of
events; each of these actions is executed only as part of an overall function or

364 Appendix A Object-Oriented Analysis and Design

Customer Service Person

Applicant

Supplier

Manager

Order food

Hire employee

Reorder
supplies

Track sales and
inventory data

Produce management
reports

<<include>>

<<in
clud

e>>

FIGURE A-2
Use-case diagram for
a Hoosier Burger system.

use case. You can think of “Submit registration form” as one of the actions of
the Class registration use case, and “Pay tuition” as one of the actions of the
Student billing use case.

A use case may participate in relationships with other use cases. An extends
relationship, shown in Microsoft Visio as a line with a hollow triangle pointing
toward the extended use case and labeled with the “��extends��” symbol,
extends a use case by adding new behaviors or actions. In Figure A-1, for
example, the Registration for special class use case extends the Class regis-
tration use case by capturing the additional actions that need to be performed
in registering a student for a special class. Registering for a special class
requires prior permission of the instructor, in addition to the other steps carried
out for a regular registration. You may think of Class registration as the basic
course, which is always performed—independent of whether the extension is
performed or not—and Registration for special class as an alternative course,
which is performed only under special circumstances.

Another example of an extends relationship is that between the Prereq
courses not completed and Class registration use cases. The former extends
the latter in situations where a student registering for a class has not taken the
prerequisite courses.

Figure A-2 shows a use-case diagram for Hoosier Burger. The Customer actor
initiates the Order food use case; the other actor involved is the Service Person.
A specific scenario would represent a customer placing an order with a service
person.

So far you have seen one kind of relationship, extends, between use cases. An-
other kind of relationship is included, which arises when one use case refer-
ences another use case. An include relationship is also shown diagrammatically
as a dashed line with a hollow arrowhead pointing toward the use case that is
being used; the line is labeled with the “��include��” symbol. In Figure A-2,
for example, the include relationship between the Reorder supplies and Track
sales and inventory data use cases implies that the former uses the latter while

Appendix A Object-Oriented Analysis and Design 365

Object diagram
A graph of instances that are
compatible with a given class
diagram.

Class diagram
A diagram that shows the static
structure of an object-oriented
model: the object classes, their
internal structure, and the
relationships in which they
participate.

Object class
A set of objects that shares a
common structure and a common
behavior.

Behavior
Represents how an object acts
and reacts.

State
A condition that encompasses an
object’s properties (attributes and
relationships) and the values those
properties have.

Object
An entity that has a well-defined
role in the application domain
and has state, behavior, and
identity.

executing. Simply put, when a manager reorders supplies, the sales and inven-
tory data are tracked. The same data are also tracked when management re-
ports are produced, so there is another include relationship between the
Produce management reports and Track sales and inventory data use cases.

The Track sales and inventory data is a generalized use case, representing
the common behavior among the specialized use cases, Reorder supplies and
Produce management reports. When Reorder supplies or Produce manage-
ment reports is performed, the entire Track sales and inventory data is used.

Object Modeling: Class Diagrams
In the object-oriented approach, we model the world in objects. An object is an
entity that has a well-defined role in the application domain and has state, be-
havior, and identity. An object is a concept, abstraction, or thing that makes
sense in an application context. An object could be a tangible or visible entity
(e.g., a person, place, or thing); it could be a concept or event (e.g., Department,
Performance, Marriage, Registration, etc.); or it could be an artifact of the
design process (e.g., User Interface, Controller, Scheduler, etc.).

An object has a state and exhibits behavior through operations that can
examine or affect its state. The state of an object encompasses its properties
(attributes and relationships) and the values those properties have, its behavior
represents how an object acts and reacts. An object’s state is determined by its
attribute values and links to other objects. An object’s behavior depends on its
state and the operation being performed. An operation is simply an action that
one object performs upon another in order to get a response.

Consider the example of a student, Mary Jones, represented as an object. The
state of this object is characterized by its attributes, say, name, date of birth, year,
address, and phone, and the values these attributes currently have. For example,
name is “Mary Jones,” year is “junior,” and so on. Its behavior is expressed
through operations such as calc-gpa, which is used to calculate a student’s cur-
rent grade point average. The Mary Jones object, therefore, packages both its
state and its behavior together.

All objects have an identity, that is, no two objects are the same. For example,
if two Student instances have the same name and date of birth, they are essen-
tially two different objects. Even if those two instances have identical values for
all the attributes, the objects maintain their separate identities. At the same
time, an object maintains its own identity over its life. For example, if Mary
Jones gets married and changes her name, address, and phone, she will still be
represented by the same object.

You can depict an object class (a set of objects that shares a common struc-
ture and a common behavior) graphically in a class diagram as in Figure A-3A.
A class diagram shows the static structure of an object-oriented model: the ob-
ject classes, their internal structure, and the relationships in which they partic-
ipate. In UML, a class is represented by a rectangle with three compartments
separated by horizontal lines. The class name appears in the top compartment,
the list of attributes in the middle compartment, and the list of operations in the
bottom compartment of a box. The figure shows two classes, Student and
Course, along with their attributes and operations.

Objects belonging to the same class may also participate in similar relation-
ships with other objects, for example, all students register for courses and,
therefore, the Student class can participate in a relationship called registers-for
with another class called Course.

An object diagram, also known as an instance diagram, is a graph of in-
stances that are compatible with a given class diagram. In Figure A-3B, we
have shown an object diagram with two instances, one for each of the two

366 Appendix A Object-Oriented Analysis and Design

Association role
The end of an association where
it connects to a class.

Association
A relationship among object
classes.

Encapsulation
The technique of hiding the
internal implementation details of
an object from its external view.

Operation
A function or a service that is
provided by all the instances
of a class.

name
dateOfBirth
year
address
phone

calc-age ()
calc-gpa ()
register-for (course)

Student

crse-code
crse-title
credit-hrs

enrollment ()

Course

Class
name

List of
attributes

List of
operations

FIGURE A-3
UML class and object diagrams:
(A) Class diagram showing two
classes, (B) Object diagram with
two instances.

name=Mary Jones
dateOfBirth=4/15/1978
year=junior
. . .

Mary Jones:Student

crse-code=MIS385
crse-title=Database Mgmt
credit-hrs=3

MIS385:Course

classes that appear in Figure A-3A. A static object diagram is an instance of a
class diagram, providing a snapshot of the detailed state of a system at a point
in time.

In an object diagram, an object is represented as a rectangle with two com-
partments. The names of the object and its class are underlined and shown in
the top compartment using the following syntax: objectname:classname. The
object’s attributes and their values are shown in the second compartment. For
example, we have an object called Mary Jones, who belongs to the Student
class. The values of the name, dateOfBirth, and year attributes are also shown.

An operation, such as calc-gpa in Student (see Figure A-3A), is a function or
a service that is provided by all the instances of a class. It is only through such
operations that other objects can access or manipulate the information stored
in an object. The operations, therefore, provide an external interface to a class;
the interface presents the outside view of the class without showing its internal
structure or how its operations are implemented. This technique of hiding the
internal implementation details of an object from its external view is known as
encapsulation or information hiding.

Representing Associations
An association is a relationship among object classes. As in the E-R model, the
degree of an association relationship may be one (unary), two (binary), three
(ternary), or higher (n-ary), as shown in Figure A-4. An association is depicted
as a solid line between the participating classes. The end of an association
where it connects to a class is called an association role. A role may be ex-
plicitly named with a label near the end of an association (see the “manager”
role in Figure A-4A). The role name indicates the role played by the class at-
tached to the end near which the name appears. For example, the manager role
at one end of the Manages relationship implies that an employee can play the
role of a manager.

Each role has a multiplicity, which indicates how many objects participate in
a given association relationship. In a class diagram, a multiplicity specification is

A

B

Multiplicity
An indication of how many
objects participate in a given
relationship.

Appendix A Object-Oriented Analysis and Design 367

Is-assigned0..1 1
Employee

One-to-one

One-to-many

Many-to-many

Parking
Place

Contains1 1..*Product
Line

Product

Registers-for* *
Student Course

Part

Vendor WarehouseSupplies
* *

*

shown as a text string representing an interval (or intervals) of integers in the fol-
lowing format: lower bound..upper bound. The interval is considered to be
closed, which means that the range includes both the lower and upper bounds.
In addition to integer values, the upper bound of a multiplicity can be a star char-
acter (*), which denotes an infinite upper bound. If a single integer value is spec-
ified, it means that the range includes only that value.

The most common multiplicities in practice are 0..1, *, and 1. The 0..1 multi-
plicity indicates a minimum of 0 and a maximum of 1 (optional one), whereas *

(or equivalently, 0..*) represents the range from 0 to infinity (optional many). A
single 1 stands for 1..1, implying that exactly one object participates in the rela-
tionship (mandatory one).

Figure A-4B shows three binary relationships: Is-assigned (one-to-one),
Contains (one-to-many), and Registers-for (many-to-many). A solid triangle
next to an association name shows the direction in which the association is
read. For example, the Contains association is read from Product Line to
Product.

Figure A-4C shows a ternary relationship called Supplies among Vendor, Part,
and Warehouse. As in an E-R diagram, we represent a ternary relationship using
a diamond symbol and place the name of the relationship there.

The class diagram in Figure A-5A (known as a static structure chart in
Microsoft Visio) shows binary associations between Student and Faculty,

Is-married-to

0..1

0..1

Person Manages

*

0..1 manager

Employee

FIGURE A-4
Examples of association
relationships of different degrees:
(A) Unary, (B) Binary, (C) Ternary.

A

B

C

368 Appendix A Object-Oriented Analysis and Design

FIGURE A-5
Examples of binary association
relationships: (A) University
example (a static structure chart
in Microsoft Visio), (B) Customer
order example.

1

1..*

1

*

Requests 1..**

Customer

Order

IncludesPlaces

Product
Line

Product

between Course and Course Offering, between Student and Course Offering, and
between Faculty and Course Offering. The diagram shows that a student may
have an adviser, whereas a faculty member may advise up to a maximum of ten
students. Also, although a course may have multiple offerings, a given course
offering is scheduled for exactly one course. Notice that a faculty member can
play two roles: instructor and adviser. Figure A-5B shows another example of a
class diagram, that for a customer order, using standard UML notation.

Representing Generalization
In the object-oriented approach, you can abstract the common features (attri-
butes and operations) among multiple classes, as well as the relationships they
participate in, into a more general class. This process is known as
generalization. The classes that are generalized are called subclasses, and the
class they are generalized into is called a superclass.

Consider the example shown in Figure A-6A. Here, the three types of em-
ployees are hourly employees, salaried employees, and consultants. The fea-
tures that are shared by all employees—empName, empNumber, address,
dateHired, and printLabel—are stored in the Employee superclass, whereas the

A

B

Appendix A Object-Oriented Analysis and Design 369

Employee

empName
empNumber
address
dateHired

printLabel ()

employment
type

employment
type

employment
type

{disjoint,
incomplete}

Hourly
Employee

hourlyRate

computeWages ()

Consultant

contractNumber
billingRate

computeFees ()

Salaried
Employee

annualSalary
stockOption

contributePension ()

FIGURE A-6
Examples of
generalization,
inheritance, and
constraints: (A) Employee
superclass with three
subclasses, (B) Abstract
patient class with two
concrete subclasses.

Patient

{abstract} Treated-by

patientId
admitDate

* 1 Physician

physicianId
physicianName

{complete, disjoint}

residency

Assigned-to
0..1 1 Bed

bedNumber

Outpatient

checkbackDate dateDischarged

Resident Patient

<<dynamic>>

features peculiar to a particular employee type are stored in the corresponding
subclass (e.g., hourlyRate and computeWages of Hourly Employee). A general-
ization path is shown as a solid line from the subclass to the superclass, with a
hollow arrowhead at the end of, and pointing toward, the superclass. You can
show a group of generalization paths for a given superclass as a tree with mul-
tiple branches connecting the individual subclasses, and a shared segment with
a hollow arrowhead pointing toward the superclass. In Figure A-6B, for
instance, we have combined the generalization paths from Outpatient to
Patient, and from Resident Patient to Patient, into a shared segment with an
arrowhead pointing toward Patient.

You can indicate the basis of a generalization by specifying a discriminator
next to the path. A discriminator shows which property of an object class is
being abstracted by a particular generalization relationship. For example, in
Figure A-6A, we discriminate the Employee class on the basis of employment
type (hourly, salaried, consultant).

A

B

370 Appendix A Object-Oriented Analysis and Design

Aggregation
A part-of relationship between
a component object and an
aggregate object.

Concrete class
A class that can have direct
instances.

Abstract class
A class that has no direct
instances but whose descendants
may have direct instances.

Personal
Computer

. . .CPU Hard Disk Monitor Keyboard

1..4

0..1

1..* 1 1

FIGURE A-7
Example of aggregation.

A subclass inherits all the features from its superclass. For example, in addi-
tion to its own special features—hourlyRate and computeWages—the Hourly
Employee subclass inherits empName, empNumber, address, dateHired, and
printLabel from Employee. An instance of Hourly Employee will store values
for the attributes of Employee and Hourly Employee and, when requested, will
apply the printLabel and computeWages operations.

Inheritance is one of the major advantages of using the object-oriented model.
It allows code reuse: There is no need for a programmer to write code that has
already been written for a superclass. The programmer writes only code that is
unique to the new, refined subclass of an existing class. Proponents of the
object-oriented model claim that code reuse results in productivity gains of sev-
eral orders of magnitude.

Notice that in Figure A-6B the Patient class is in italics, implying that it is an
abstract class. An abstract class is a class that has no direct instances but
whose descendants may have direct instances. A class that can have direct in-
stances (e.g., Outpatient or Resident Patient) is called a concrete class.

The Patient abstract class participates in a relationship called Treated-by
with Physician, implying that all patients, outpatients and resident patients
alike, are treated by physicians. In addition to this inherited relationship, the
Resident Patient class has its own special relationship called Assigned-to
with Bed, implying that only resident patients may be assigned to beds. Se-
mantic constraints among the subclasses can be expressed using the
complete, incomplete, disjoint, and overlapping keywords. Complete means
that every instance must be an instance of some subclass, whereas
incomplete means that an instance may be an instance of the superclass only.
Disjoint means that no instance can be an instance of more than one subclass
at the same time, whereas overlapping allows concurrent participation in
multiple subclasses.

Representing Aggregation
An aggregation expresses a part-of relationship between a component object
and an aggregate object. It is a stronger form of an association relationship
(with the added “part-of” semantics) and is represented with a hollow diamond
at the aggregate end. For example, Figure A-7 shows a personal computer as an
aggregate of CPU (up to four for multiprocessors), hard disk, monitor, key-
board, and other objects. Note that aggregation involves a set of distinct object
instances, one of which contains or is composed of the others. For example, a
Personal Computer object is related to (consists of) CPU objects, one of its
parts. In contrast, generalization relates to object classes: An object (e.g., Mary
Jones) is simultaneously an instance of its class (e.g., Graduate Student) and its
superclass (e.g., Student).

Appendix A Object-Oriented Analysis and Design 371

Event
Something that takes place
at a certain point in time; it
is a noteworthy occurrence
that triggers a state transition.

State transition
The changes in the attributes
of an object or in the links an
object has with other objects.

inquires

[current date>
school begin

date]
evaluate [acceptable]
/mail approval letter

3 months

6 months
denies
admission offer

completes all
degree requirements

admit
/issue student id

leaves school

accepts
admission offer

withd
raws

 adm
ission

 acce
ptanc

e

reacc
epts

offer

submits
application

evaluate [not
acceptable]/mail
rejection letter

Inquiry

Confirmed

Applied Rejected

Approved Withdrawn

Matriculated

Drop Out

Graduated

FIGURE A-8
State diagram for the
Student object.

Dynamic Modeling: State Diagrams
In this section, we show you how to model the dynamic aspects of a system
from the perspective of state transitions. In UML, state transitions are shown us-
ing state diagrams. A state diagram depicts the various state transitions or
changes an object can experience during its lifetime, along with the events that
cause those transitions.

A state is a condition during the life of an object during which it satisfies some
condition(s), performs some action(s), or waits for some event(s). The state
changes when the object receives some event; the object is said to undergo a
state transition. The state of an object depends on its attribute values and
links to other objects.

An event is something that takes place at a certain point in time. It is a note-
worthy occurrence that triggers a state transition. Some examples of events are:
a customer places an order, a student registers for a class, a person applies for
a loan, and a company hires a new employee. For the purpose of modeling, an
event is considered to be instantaneous, though, in reality, it might take some
time. A state, on the other hand, spans a period of time. An object remains in a
particular state for some time before transitioning to another state. For exam-
ple, an Employee object might be in the Part-time state (as specified in its
employment-status attribute) for a few months, before transitioning to a
Full-time state, based on a recommendation from the manager (an event).

In UML, a state is shown as a rectangle with rounded corners. In Figure A-8,
for example, we have shown different states of a Student object, such as Inquiry,
Applied, Approved, Rejected, and so on. This state diagram shows how the ob-
ject transitions from an initial state (shown as a small, solid, filled circle) to
other states when certain events occur or when certain conditions are satisfied.
When a new Student object is created, it is in its initial state. The event that cre-
ated the object, inquires, and transitions it from the initial state to the Inquiry
state. When a student in the Inquiry state submits an application for admission,

372 Appendix A Object-Oriented Analysis and Design

Sequence diagram
A depiction of the interactions
among objects during a certain
period of time.

the object transitions to the Applied state. The transition is shown as a solid
arrow from Inquiry (the source state) to Applied (the target state), labeled with
the name of the event, Submits application.

A transition may be labeled with a string consisting of the event name, pa-
rameters of the event, guard condition, and action expression. A transition,
however, does not have to show all the elements; it shows only those relevant
to the transition. For example, we label the transition from Inquiry to Applied
with simply the event name. But, for the transition from Applied to Approved,
we show the event name (evaluate), the guard condition (acceptable), and the
action taken by the transition (mail approval letter). It simply means that an ap-
plicant is approved for admission if the admissions office evaluates the appli-
cation and finds it acceptable. If acceptable, a letter of approval is mailed to the
student. The guard condition is shown within square brackets, and the action is
specified after the “/ ” symbol.

If the evaluate event results in a not-acceptable decision (another guard con-
dition), a rejection letter is mailed (an action), and the Student object undergoes
a state transition from the Applied to the Rejected state. It remains in that state
for three months before reaching the final state. In the diagram, we have shown
an elapsed-time event, three months, indicating the amount of time the object
waits in the current state before transitioning. The final state is shown as a bull’s
eye: a small, solid, filled circle surrounded by another circle. After transitioning
to the final state, the Student object ceases to exist.

Notice that the Student object may transition to the final state from two other
states: Inquiry and Withdrawn. For the transition from Inquiry, we have not
specified any event name or action, but we have shown a guard condition, cur-
rent date � school begin date. This condition implies that the Student object
ceases to exist beyond the first day of school unless, of course, the object has
moved in the meantime from the Inquiry state to some other state.

The state diagram shown in Figure A-8 captures all the possible states of a Stu-
dent object, the state transitions, the events or conditions that trigger those
transitions, and the associated actions. For a typical student, it captures the stu-
dent’s sojourn through college, right from the time when he or she expressed an
interest in the college until graduation.

Dynamic Modeling: Sequence Diagrams
In this section we show how to design some of the use cases we identified ear-
lier in the analysis phase. A use-case design describes how each use case is per-
formed by a set of communicating objects. In UML, an interaction diagram is
used to show the pattern of interactions among objects for a particular use case.
The two types of interaction diagrams are sequence diagrams and collaboration
diagrams. We show you how to design use cases using sequence diagrams.

A sequence diagram depicts the interactions among objects during a certain
period of time. Because the pattern of interactions varies from one use case to
another, each sequence diagram shows only the interactions pertinent to a spe-
cific use case. It shows the participating objects by their lifelines and the inter-
actions among those objects—arranged in time sequence—by the messages
they exchange with one another.

Figure A-9 shows a sequence diagram for a scenario, discussed in the next
section, of the Class registration use case in which a student registers for a
course that requires one or more prerequisite courses. The vertical axis of the
diagram represents time, and the horizontal axis represents the various partici-
pating objects. Time increases as we go down the vertical axis. The diagram has
six objects, from an instance of Registration Window on the left, to an instance
of Registration called a New Registration on the right. Each object is shown as

Appendix A Object-Oriented Analysis and Design 373

Synchronous message
A type of message in which the
caller has to wait for the receiving
object to finish executing the
called operation before it can
resume execution itself.

open ()
enterClass
(stud,
class)

Confirmed
registration

:Registration
Window

:Course
Offering

:Course :Student

a New Registration
:Registration

checkIfOpen ()

Prereqs

[existsPrereqs=“true”] checkPrereqs (prereqs)

[checkPrereqs=“true”] new ()

incrementClassSize ()

[isClassFull=“false”]

isClassFull ()

[checkIfOpen=“true”]
existsPrereqs ()

:Registration
Entry

FIGURE A-9
Sequence diagram
for a class registration
scenario with
prerequisites.

a vertical line called the lifeline; the lifeline represents the object’s existence
over a certain period of time. An object symbol—a box with the object’s name
underlined—is placed at the head of each lifeline.

A thin rectangle, superimposed on the lifeline of an object, represents an
activation of the object. An activation shows the time period during which
the object performs an operation, either directly or through a call to some
subordinate operation. The top of the rectangle, which is at the tip of an in-
coming message, indicates the initiation of the activation, and the bottom, its
completion.

Objects communicate with one another by sending messages. A message is
shown as a solid arrow from the sending object to the receiving object. For
example, the checkIfOpen message is represented by an arrow from the Regis-
tration Entry object to the Course Offering object.

There are different types of messages. Each type is indicated in a diagram by
a particular type of arrowhead. A synchronous message, shown as a solid ar-
rowhead, is one for which the caller has to wait for the receiving object to com-
plete executing the called operation before it itself can resume execution. An
example of a synchronous message is checkIfOpen. When a Registration Entry
object sends this message to a Course Offering object, the latter responds by ex-
ecuting an operation called checkIfOpen (same name as the message). After the
execution of this operation is completed, control is transferred back to the call-
ing operation within Registration Entry with a return value of “true” or “false.”

Activation
The time period during which an
object performs an operation.

374 Appendix A Object-Oriented Analysis and Design

Simple message
A message that transfers control
from the sender to the recipient
without describing the details
of the communication.

A synchronous message always has an associated return message. The mes-
sage may provide the caller with some return value(s) or simply acknowledge
to the caller that the operation called has been successfully completed. We have
not shown the return for the checkIfOpen message; it is implicit. We have
explicitly shown the return for the existsPrereqs message from Registration
Entry to Course. The tail of the return message is aligned with the base of the
activation rectangle for the existsPrereqs operation.

A simple message simply transfers control from the sender to the recipient
without describing the details of the communication. As we have seen, the
return of a synchronous message is a simple message. The “open” message in
Figure A-9 is also a simple message; it simply transfers control to the Registra-
tion Window object.

Designing a Use Case with a Sequence Diagram
Let’s see how we can design use cases. We will discuss the sequence diagram,
shown in Figure A-9, for an instance of the Class registration use case, one in
which the course has prerequisites. Here’s a description of this scenario:

1. Registration Clerk opens the registration window and enters the
registration information (student and class).

2. Check if the class is open.

3. If the class is open, check if the course has any prerequisites.

4. If the course has prerequisites, then check if the student has taken all
of those prerequisites.

5. If the student has taken those prerequisites, then register the student
for the class, and increment the class size by one.

6. Check if the class is full; if not, do nothing.

7. Display the confirmed registration in the registration window.

In response to the “open” message from Registration Clerk (external actor),
the Registration Window pops up on the screen, and the registration informa-
tion is entered. A new Registration Entry object is created, which then sends a
checkIfOpen message to the Course Offering object (representing the class the
student wants to register for). The two possible return values are true or false.
In this scenario, the assumption is that the class is open. We have, therefore
placed a guard condition, checkIfOpen � “true,” on the message existsPrereqs.
The guard condition ensures that the message will be sent only if the class is
open. The return value is a list of prerequisites; the return is shown explicitly
in the diagram.

For this scenario, the fact that the course has prerequisites is captured by the
guard condition, existsPrereqs � “true.” If this condition is satisfied, the Registra-
tion Entry object sends a checkPrereqs message, with “prereqs” as an argument,
to the Student object to determine if the student has taken those prerequisites. If
the student has taken all the prerequisites, the Registration Entry object creates an
object called a New Registration, which denotes a new registration.

Next, a New Registration sends a message called incrementClassSize to Course
Offering in order to increase the class size by one. The incrementClassSize oper-
ation within Course Offering then calls upon isClassFull, another operation
within the same object. Assuming that the class is not full, the isClassFull opera-
tion returns control to the calling operation with a value of “false.” Next, the in-
crementClassSize operation completes and relinquishes control to the calling
operation within a New Registration.

Finally, on receipt of the return message from a New Registration, the Regis-
tration Entry object destroys itself (the destruction is shown with a large X) and

Appendix A Object-Oriented Analysis and Design 375

Component diagram
A diagram that shows the
software components or modules
and their dependencies.

User Interface
Package

Business Objects
Package

Database
Package

FIGURE A-10
An example of UML packages
and dependencies.

sends a confirmation of the registration to the Registration Window. Note that
Registration Entry is not a persistent object; it is created on the fly to control the
sequence of interactions and is deleted as soon as the registration is completed.
In between, it calls several other operations within other objects by sequencing
the following messages: checkIfOpen, existsPrereqs, checkPrereqs, and new.

Apart from the Registration Entry object, a New Registration is also created
during the time period captured in the diagram. The messages that created these
objects are represented by arrows pointing directly toward the object symbols.
For example, the arrow representing the message called new is connected to
the object symbol for a New Registration. The lifeline of such an object begins
when the message that creates it is received (the vertical line is hidden behind
the activation rectangle).

Moving to Design
When you move to design, you start with the existing set of analysis models and
keep adding technical details. For example, you might add several interface
classes to your class diagrams to model the windows that you will later imple-
ment using a GUI graphical user interface development tool such as Visual C#
or Java. You would define all the operations in detail, specifying the procedures,
signatures, and return values completely. If you decide to use a relational
DBMS, you need to map the object classes and relationships to tables, primary
keys, and foreign keys. The models generated during the design phase will
therefore be much more detailed than the analysis models.

Figure A-10 shows a three-layered architecture, consisting of a User Interface
package, a Business Objects package, and a Database package. The packages
represent different generic subsystems of an information system. The dashed
arrows represent the dependencies among the packages. For example, the User
Interface package depends on the Business Objects package; the packages par-
ticipate in a client-supplier relationship. If you make changes to some of the
business objects, the interface (e.g., screens) might change.

A package consists of a group of classes. Classes within a package are
cohesive. That is, they are tightly coupled. The packages themselves should be
loosely coupled so that changes in one package do not affect the other pack-
ages a great deal. In the architecture of Figure A-10, the User Interface package
contains all the windows, the Business Objects package contains the problem-
domain objects that you identified during analysis, and the Database package
contains a Persistence class for data storage and retrieval. In the university reg-
istration system that we considered earlier, the User Interface package could
include Microsoft Windows class libraries for developing different types of
windows. The Business Objects package would include all the domain classes,
such as Student, Course, Course Offering, Registration, and so on. If you are us-
ing an SQL server, the classes in the Database package would contain opera-
tions for data storage, retrieval, and update (all using SQL commands).

During design, you would also refine the other analysis models. For example,
you may need to show the interaction between a new window object you intro-
duced during design and the other existing objects in a sequence diagram. Also,
once you have selected a programming language for each of the operations
shown in the sequence diagram, you should provide the exact names that you
will be using in the program, along with the names of all the arguments.

In addition to the types of diagrams you have seen so far, two other types of
diagrams—component diagrams and deployment diagrams—are pertinent dur-
ing the design phase. A component diagram shows the software components
or modules and their dependencies. For example, you can draw a component
diagram showing the modules for source code, binary code, and executable

376 Appendix A Object-Oriented Analysis and Design

Class
Scheduler

schedule update

schedule retrieval

registration

GUI

Class
Registration

FIGURE A-11
A component diagram for
class registration.

code and their dependency relationships. Figure A-11 shows a component dia-
gram for the university registration system. In this figure, three software com-
ponents have been identified: Class Scheduler, Class Registration, and GUI. The
small circles in the diagram represent interfaces. The registration interface, for
example, is used to register a student for a class, and the schedule update
interface is used for updating a class schedule.

Another type of diagram, a deployment diagram (not illustrated), shows how
the software components, processes, and objects are deployed into the physi-
cal architecture of the system. It shows the configuration of the hardware units
(e.g., computers, communication devices) and how the software (components,
objects, etc.) is distributed across the units. For example, a deployment diagram
for the university registration system might show the topology of nodes in a
client/server architecture and the deployment of the Class Registration compo-
nent to a Windows NT Server and of the GUI component to client workstations.

When the design phase is complete, you move on to the implementation phase
where you code the system. If you are using an object-oriented programming
language, translating the design models to code should be relatively straight-
forward. Programming of the system is followed by testing. The system is de-
veloped after going through multiple iterations, with each new iteration
providing a better version of the system. The models that you developed during
analysis, design, and implementation are navigable in both directions.

Key Points Review
1. Define the following key terms: association,

class diagram, event, object, object class,
operation, sequence diagram, state, state
transition, Unified Modeling Language,
and use case.

An association is a relationship among object
classes. A class diagram shows the static struc-
ture of an object-oriented model: the object
classes, their internal structure, and the relation-
ships in which they participate. An event is some-
thing that takes place at a certain point in time; it

is a noteworthy occurrence that triggers a state
transition. An object is an entity that has a well-
defined role in the application domain and has
state, behavior, and identity; an object class is a
set of objects that share a common structure and
a common behavior. An operation is a function or
a service that is provided by all the instances of a
class. A sequence diagram depicts the interac-
tions among objects during a certain period of
time. A state encompasses an object’s properties
(attributes and relationships) and the values

Appendix A Object-Oriented Analysis and Design 377

those properties have; a state transition is the
changes the attributes of an object or the links an
object has with other objects. The Unified Model-
ing Language (UML) is a notation that allows the
modeler to specify, visualize, and construct the
artifacts of software systems, as well as business
models. A use case is a complete sequence of
related actions initiated by an actor; it represents
a specific way to use the system.

2. Describe the concepts and principles under-
lying the object-oriented approach.

The fundamental concept of the object-oriented
approach is that we can model the world as a set of
related objects with their associated states—
attributes and behaviors. Through different uses of
an object, the object’s state changes. The internal
implementation details of an object can be hidden
from external view by the technique of encapsula-
tion. A class of objects may be a superset or subset
of other classes of objects, forming a generalization
hierarchy or network of object classes. In this way
an object may inherit the properties of the super-
classes to which it is related. An object may also be
a part of another more aggregate object.

3. Develop a simple requirements model using
use-case diagrams.

A use-case diagram consists of a set of related
actions initiated by actors. A use case represents
a complete functionality, not an individual ac-
tion. A use case may extend another use case by
adding new behaviors or actions. A use case may
use another use case when one use case calls on
another use case.

4. Develop a simple object model using class
diagrams.

A class diagram shows the static structure of
object classes, their internal structure, and the re-
lationships in which they participate. The struc-
ture of a class includes its name, attributes, and

operations. Each object has an object identifier
separate from its attributes. An object class can be
either abstract (having no direct instances) or con-
crete (having direct instances). Object classes may
have associations similar to relationships in the
entity-relationship notation with multiplicity and
degree.Theendofanassociationwhereitconnects
to a class is labeled with an association role. A class
diagram can also show the generalization relation-
ships between object classes, and subclasses can
be complete or incomplete and disjointed or over-
lapping. In addition, a class diagram may show the
aggregation association among object classes.

5. Develop simple requirements models using
state and sequence diagrams.

State and sequence diagrams show the dynamic
behavior of a system. A state diagram shows all the
possible states of an object and the events that trig-
ger an object to transition from one state to another.
A state transition occurs by changes in the attrib-
utes of an object or in the links an object has with
other objects. An object begins in an initial state and
ends in a final state. A state may have a guard con-
dition, which checks that certain object properties
exist before the transition may occur. When a state
transition occurs, specified actions may take place.
A sequence diagram depicts the interactions among
objects during a certain period of time. The vertical
axis of the diagram represents time (going down the
axis), and the horizontal axis represents the various
participating objects. Each object has a lifeline,
which represents the object’s existence over a cer-
tain period. Objects communicate with one another
by sending messages. Among the different types of
messages are synchronous (for which the caller has
to wait for the receiving object to complete the
called operation before the caller can resume exe-
cution) and simple (for which control is transferred
from the sender to the recipient).

Key Terms Checkpoint
Here are the key terms from the appendix. The page where each term is first explained is in parentheses after
the term.

1. Abstract class (p. 370)
2. Activation (p. 373)
3. Actor (p. 362)
4. Aggregation (p. 370)
5. Association (p. 366)
6. Association role (p. 366)
7. Behavior (p. 365)
8. Class diagram (p. 365)
9. Component diagram (p. 375)

10. Concrete class (p. 370)
11. Encapsulation (p. 366)
12. Event (p. 371)
13. Multiplicity (p. 366)
14. Object (p. 365)
15. Object class (p. 365)
16. Object diagram (p. 365)
17. Operation (p. 366)
18. Sequence diagram (p. 372)

19. Simple message (p. 374)
20. State (p. 365)
21. State transition (p. 371)
22. Synchronous message

(p. 373)
23. Unified Modeling Language

(UML) (p. 362)
24. Use case (p. 362)
25. Use-case diagram (p. 363)

378 Appendix A Object-Oriented Analysis and Design

Match each of the key terms above with the definition that best fits it.

1. A diagram that depicts the use cases and
actors for a system.

2. Something that takes place at a certain
point in time; it is a noteworthy occurrence
that triggers a state transition.

3. The time period during which an object
performs an operation.

4. A set of objects that share a common
structure and a common behavior.

5. A notation that allows the modeler to specify,
visualize, and construct the artifacts of
software systems, as well as business models.

6. A type of message in which the caller has
to wait for the receiving object to finish
executing the called operation before it
can resume execution itself.

7. The end of an association where it
connects to a class.

8. A graph of instances that are compatible
with a given class diagram.

9. The changes in the attributes of an object or
in the links an object has with other objects.

10. An entity that has a well-defined role in the
application domain and has state, behavior,
and identity.

11. A diagram that shows the software
components or modules and their
dependencies.

12. An external entity that interacts with the
system (similar to an external entity in
data-flow diagramming).

13. A complete sequence of related actions
initiated by an actor; it represents a
specific way to use the system.

14. A part-of relationship between a
component object and an aggregate object.

15. An indication of how many objects
participate in a given relationship.

16. The technique of hiding the internal
implementation details of an object from
its external view.

17. A function or a service that is provided by
all the instances of a class.

18. A condition that encompasses an object’s
properties (attributes and relationships)
and the values those properties have.

19. Represents how an object acts and reacts.
20. A diagram that shows the static structure

of an object-oriented model: the object
classes, their internal structure, and the
relationships in which they participate.

21. A relationship among object classes.
22. A class that has no direct instances but

whose descendants may have direct
instances.

23. A class that can have direct instances.
24. A depiction of the interactions among

objects during a certain period of time.
25. A message that transfers control from the

sender to the recipient without describing
the details of the communication.

Review Questions
1. Compare and contrast the object-oriented analy-

sis and design models with structured analysis
and design models.

2. Give an example of an abstract use case. Your ex-
ample should involve at least two other use cases
and show how they are related to the abstract
use case.

3. Explain the use of association role for an associ-
ation on a class diagram.

4. Give an example of generalization. Your example
should include at least one superclass and three

subclasses, and a minimum of one attribute and
one operation for each of the classes. Indicate the
discriminator and specify the semantic con-
straints among the subclasses.

5. Give an example of aggregation. Your example
should include at least one aggregate object and
three component objects. Specify the multiplici-
ties at each end of all the aggregation relationships.

6. Give an example of state transition. Your example
should show how the state of the object under-
goes a transition based on some event.

Problems and Exercises
1. The use-case diagram shown in Figure A-1 captures

the Student billing function but does not contain
any function for accepting tuition payment from
students. Revise the diagram to capture this func-
tionality. Also, express some common behavior

among two use cases in the revised diagram by us-
ing include relationships.

2. Suppose that the employees of the university are
not billed for tuition. Their spouses do not get a
full-tuition waiver but pay for only 25 percent of

Appendix A Object-Oriented Analysis and Design 379

the total tuition. Extend the use-case diagram of
Figure A-1 to capture these situations.

3. Draw a class diagram, showing the relevant
classes, attributes, operations, and relationships
for the following situation (if you believe that you
need to make additional assumptions, clearly
state them for each situation).

A laboratory has several chemists who work
on one or more projects. Chemists may also use
certain kinds of equipment on each project. At-
tributes of Chemist include name and phoneNo.
Attributes of Project include projectName and
startDate. Attributes of Equipment include seri-
alNo and cost. The organization wishes to record
assignDate (the date when a given equipment
item was assigned to a particular chemist work-
ing on a specified project) and totalHours (the to-
tal number of hours the chemist has used the
equipment for the project). The organization also
wants to track the usage of each type of equip-
ment by a chemist. It does so by computing the
average number of hours the chemist has used
that equipment on all assigned projects. A
chemist must be assigned to at least one project
and to one equipment item. A given equipment
item need not be assigned, and a given project
need not be assigned either a chemist or an
equipment item.

4. An organization has been entrusted with devel-
oping a Registration and Title system that main-
tains information about all vehicles registered in
a particular state. For each vehicle that is regis-
tered with the office, the system has to store the
name, address, telephone number of the owner,
the start date and end date of the registration,
plate information (issuer, year, type, and num-
ber), sticker (year, type, and number), and regis-
tration fee. In addition, the following information

is maintained about the vehicles themselves: the
number, year, make, model, body style, gross
weight, number of passengers, diesel powered
(yes/no), color, cost, and mileage. If the vehicle is
a trailer, diesel powered and number of passen-
gers are not relevant. For travel trailers, the body
number and length must be known. The system
needs to maintain information on the luggage ca-
pacity for a car, maximum cargo capacity and
maximum towing capacity for a truck, and horse-
power for a motorcycle. The system issues regis-
tration notices to owners of vehicles whose
registrations are due to expire after two months.
When the owner reviews the registration, the sys-
tem updates the registration information on the
vehicle.

a. Develop a static object model by drawing a
class diagram that shows all the object
classes, attributes, operations, relationships,
and multiplicities. For each operation, show
its argument list.

b. Draw a state diagram that captures all the pos-
sible states of a Vehicle object, right from the
time the vehicle was manufactured until it
goes to the junkyard. In drawing the diagram,
you may make any necessary assumptions, as
long as they are realistic.

c. Select any state or event from the high-level
state diagram that you have drawn and show
its fine structure (substates and their transi-
tions) in a lower-level diagram.

d. One of the use cases for this application is
Issue registration renewal notice, which is
performed once every day. Draw a sequence
diagram, in generic form, showing all possible
object interactions for this use case.

This page intentionally left blank

Appendix B

Agile Methodologies

After studying this appendix, you should be able to:

� Define Agile Methodologies.
� Explain when to use Agile Methodologies and when to use engineering-

based approaches to systems development.
� Define eXtreme Programming.
� Discuss the Agile Methodologies approach to systems requirements

determination, design specifications, and the combination of coding
and testing.

The Trend to Agile Methodologies
Systems analysis and design, or systems development, has gone through three
major phases since its inception. The first phase was undisciplined, where
developers were seen as geniuses and artists. This phase was marked by a lack
of documentation and development tools and by a high degree of dependence
on the developer for the continued ongoing operation of the system he or she
had created. As computing became more sophisticated, so, too, did the require-
ments for business applications. More and more, businesses began to see their
systems as investments. The era of the developer-as-artist was replaced with the
era of developer-as-engineer. Seeing information systems development as
engineering brought a great deal of discipline to the theory and practice of
developing systems. Principles from engineering, such as factoring and decom-
position, as well as prototyping were applied to the systems development
process. Documentation, rigorous testing, structured tools and techniques, and
computer-based tools all became standard parts of analysis and design. This
engineering-based view spawned the structured analysis and structured design
approaches to development from which many of the tools and techniques used
in this book are derived.

Although the engineering approach is still in use today, to many critics it has
become bloated and slow, no longer as useful in a global economy that runs on
Internet time. The convergence of the object-oriented approach and the Internet
economy set the stage for the current major phase in systems development.
Relying on object-orientation and the need for speed, the new approach sacri-
fices the milestones and multiple phases of the engineering approach, favoring
instead close cooperation between developers and clients, combining many life
cycle phases into few phases, and having multiple rapid releases of software.
Although many individual methods reflect the new approach, collectively they
are called the Agile Methodologies.

In this appendix, you will be introduced broadly to the Agile Methodologies,
and we will focus on the most well-known Agile Methodology, eXtreme Pro-
gramming, as an example of the approach. First, we describe Agile Methodolo-
gies and how they differ from the traditional engineering-based systems
development approaches presented in the rest of this book. We describe when
Agile methods are appropriate and when traditional approaches fit best. We
then discuss eXtreme Programming and its key principles. The remainder of the

Agile Methodologies
A family of development
methodologies characterized
by short iterative cycles and
extensive testing; active
involvement of users for
establishing, prioritizing, and
verifying requirements; and a
focus on small teams of talented,
experienced programmers.

381

382 Appendix B Agile Methodologies

appendix illustrates how requirements determination, design specifications,
and combining coding and testing are handled in the Agile Methodologies, and
what has been learned about Agile Methodologies in practice.

Agile Methodologies
Many different individual methodologies come under the umbrella of Agile
Methodologies, including the Crystal family of methodologies, Adaptive Software
Development, Scrum, Feature Driven Development, and eXtreme Programming.

In February 2001, many of the proponents of these alternative approaches to
systems analysis and design met in Utah in the United States to reach a consen-
sus on many of the underlying principles their various approaches contained. This
consensus turned into a document they called “The Agile Manifesto” (Figure B-1).
The Agile Methodologies share three key principles: (1) a focus on adaptive rather

The Manifesto for Agile Software Development

Seventeen anarchists* agree:

We are uncovering better ways of developing software by doing it and helping others do
it. Through this work we have come to value:

 • Individuals and interactions over processes and tools
 • Working software over comprehensive documentation
 • Customer collaboration over contract negotiation
 • Responding to change over following a plan

That is, while we value the items on the right in the list above, we value the items on the
left more.

We follow the following principles:

 • Our highest priority is to satisfy the customer through early and continuous delivery
 of valuable software.
 • Welcome changing requirements, even late in development. Agile processes harness
 change for the customer’s competitive advantage.
 • Deliver working software frequently, from a couple of weeks to a couple of months,
 with a preference to the shorter timescale.
 • Business people and developers work together daily throughout the project.
 • Build projects around motivated individuals. Give them the environment and support
 they need, and trust them to get the job done.
 • The most efficient and effective method of conveying information to and within a
 development team is face-to-face conversation.
 • Working software is the primary measure of progress.
 • Agile processes promote sustainable development. The sponsors, developers, and
 users should be able to maintain a constant pace indefinitely.
 • Continuous attention to technical excellence and good design enhances agility.
 • Simplicity—the art of maximizing the amount of work not done—is essential.
 • The best architectures, requirements, and designs emerge from
 self-organizing teams.
 • At regular intervals, the team reflects on how to become more effective, then
 tunes and adjusts its behavior accordingly.

*Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, Dave Thomas (www.agileAlliance.org)

FIGURE B-1
The Agile Manifesto.

(From Fowler & Highsmith, 2001.
Used by permission.) © 2001, the
above authors. This declaration
may be freely copied in any form,
but only in its entirety through
this notice.

www.agileAlliance.org

Appendix B Agile Methodologies 383

than predictive methodologies, (2) a focus on people rather than roles, and (3) a
self-adaptive process.

The Agile Methodologies group argues that software development method-
ologies adapted from engineering generally do not fit well with the reality of
developing software. In the engineering disciplines, such as civil engineering,
requirements tend to be well understood. Once the creative and difficult work of
design is completed, construction becomes more predictable. In addition, con-
struction may account for as much as 90 percent of the total project effort. For
software, on the other hand, requirements are rarely understood well, and they
change continually during the lifetime of the project. Construction may account
for as little as 15 percent of the total project effort, leaving design to constitute
as much as 50 percent of the project effort. Applying techniques that work well
for predictable, stable projects, such as building a bridge, tend not to work well
for fluid design-heavy projects, such as writing software, say the Agile Method-
ology proponents. What are needed are methodologies that embrace change and
that are able to deal with a lack of predictability. One mechanism for dealing with
a lack of predictability, which all Agile Methodologies share, is iterative devel-
opment. Iterative development focuses on the frequent production of working
versions of a system that have a subset of the total number of required features.
Iterative development provides feedback to customers and developers alike.

Second, the focus on people in Agile Methodologies is a focus on individuals
rather than on the roles that people perform. The roles that people fill, of systems
analyst or tester or manager, are not as important as the individuals who fill those
roles. Fowler argues that the focus on engineering principles applied to systems
development has resulted in a view of people as interchangeable units instead of
a view of people as talented individuals, each of whom has something unique to
bring to the development team.

Third, the Agile Methodologies also promote a self-adaptive software develop-
ment process. As software is developed, the process used to develop it should be
refined and improved. Development teams can discover these improvements
through a review process, often associated with the completion of iterations. The
implication is that, as processes are adapted, you would not expect to find a
single monolithic methodology within a given corporation or enterprise. Instead,
you would find many variations of the methodology, each of which reflects the
particular talents and experience of the team using it.

Agile Methodologies are not for every project. An Agile or adaptive process is
recommended if your project involves:

� Unpredictable or dynamic requirements

� Responsible and motivated developers

� Customers who understand and will get involved

On the other hand, a more engineering-oriented predictable process may be
necessary if the development team exceeds 100 people and the project is
operating under a fixed-price or fixed-scope contract. Thus, organizations need
various approaches for developing information systems, depending upon the
characteristics of the system and the development team.

Although not universally agreed on, the key differences in development
approaches are listed in Table B-1, based on work by Boehm and Turner (2004).
These five key factors can be used to help determine which development
approach would work best for a particular project.

As you can see from Table B-1, the size of the systems development project
is a key indicator of whether Agile Methodologies are appropriate. Agile methods
fit much better with smaller projects than with larger ones. Traditional methods
are preferred for large projects and for those dealing with safety-critical
systems, such as the control systems for nuclear power plants and missile

384 Appendix B Agile Methodologies

launch pads. The reason for using engineering-based methods for safety-critical
systems is that they have been proven to work well with such systems. Another
variable that differentiates between Agile and traditional approaches is
dynamism. Agile methods work well when the target system is to operate in a
volatile and fluid environment, where business conditions are turbulent and
frequently changing. Because of the large amount of planning that is part of
them, traditional approaches work best where the system being developed
operates in a stable environment. You read about how Agile Methodologies
stress the importance of individuals rather than roles. The implication is that an
Agile approach may not work so well unless there is a critical mass of agility
experts. Finally, Agile methods will work best in an organization culture that
thrives on uncertainty, rapid change, and chaos. Traditional methods work
where organizational roles are clearly defined and change little.

One of the best-known and most written-about Agile Methodologies is called
eXtreme Programming. Developed by Kent Beck in the late 1990s, eXtreme
Programming illustrates many of the central philosophies of this new approach
to systems development. We use eXtreme Programming as an example of the
central ideas common to many Agile methods and present it next in more detail.

eXtreme Programming
eXtreme Programming is distinguished by its short development cycles, its
incremental planning approach, its focus on automated tests written by
programmers and customers to monitor the process of development, and its
reliance on an evolutionary approach to development that lasts throughout the
lifetime of the system. One of the key emphases of eXtreme Programming is its
use of two-person programming teams, described here, and having a customer
on-site during the development process. The relevant parts of eXtreme
Programming that relate to design specifications are: (1) how planning, analy-
sis, design, and construction are all fused together into a single phase of activ-
ity, and (2) its unique way of capturing and presenting system requirements and
design specifications. All phases of the life cycle converge together into a

TABLE B-1: Five Critical Factors That Distinguish Agile and Traditional Approaches
to Systems Development

Factor Agile Methods Engineering-Based Methods

Size Well-matched to small products and teams.
Reliance on tacit knowledge limits scalability.

Methods evolved to handle large products and
teams. Hard to tailor down to small projects.

Criticality Untested on safety-critical products. Potential difficulties
with simple design and lack of documentation.

Methods evolved to handle highly critical products.
Hard to tailor down to low-criticality products.

Dynamism Simple design and continuous refactoring are excellent for
highly dynamic environments but are a source of potentially
expensive rework for highly stable environments.

Detailed plans and Big Design Up Front are excellent
for highly stable environments but are a source of
expensive rework for highly dynamic environments.

Personnel Requires continuous presence of a critical mass
of scarce experts. Risky to use non-Agile people.

Needs a critical mass of scarce experts during
project definition but can work with fewer later in the
project, unless the environment is highly dynamic.

Culture Thrives in a culture where people feel comfortable
and empowered by having many degrees of freedom
(thriving on chaos).

Thrives in a culture where people feel comfortable
and empowered by having their roles defined by
clear practices and procedures (thriving on order).

Source: Boehm & Turner, 2004. Used by permission.

Appendix B Agile Methodologies 385

series of activities based on the basic processes of coding, testing, listening,
and designing.

Under this approach, coding and testing are intimately related parts of the same
process. The programmers who write the code also write the tests. The emphasis
is on testing those things that can break or go wrong, not on testing everything.
Code is tested soon after it is written. The overall philosophy behind eXtreme
Programming is that code will be integrated into the system it is being developed
for and tested within a few hours after it has been written. Code is written, inte-
grated into the system, and then tested. If all the tests run successfully, then
development proceeds. If not, the code is reworked until the tests are successful.

Another part of eXtreme Programming that makes the code-and-test process
work more smoothly is the practice of pair programming. All coding and testing
is done by two people working together, writing code and writing tests. Pair
programming is not one person typing while the other one watches. Rather, the
two programmers work together on the problem they are trying to solve,
exchanging information and insight and sharing skills. Compared to traditional
coding practices, the advantages of pair programming include: (1) more (and
better) communication among developers, (2) higher levels of productivity,
(3) higher-quality code, and (4) reinforcement of the other practices in eXtreme
Programming, such as the code-and-test discipline. Although the eXtreme Pro-
gramming process has its advantages, just as with any other approach to systems
development, it is not for everyone and is not applicable to every project.

The Heart of the Systems Development Process
The systems development life cycle used in this book provides a convenient
way to see the systems development process and helps to organize this book.
The different phases are clearly defined, their relationships to each other are
well specified, and the sequencing of phases from one to the next, from begin-
ning to end, has a compelling logic. In the Agile Methodologies, current practice
combines the activities traditionally thought of as belonging to analysis, design,
and implementation into a single process. Instead of systems requirements
being produced in analysis, system specifications being created in design, and
coding and testing being done at the beginning of implementation, current prac-
tice combines all of these activities into a single analysis-design-code-test
process (Figure B-2). These activities are the heart of systems development, as
we suggest in Figure B-3. This combination of activities started with rapid
application development (RAD), which you read about in Chapter 1, and is seen
in many of the Agile Methodologies.

In the rest of this appendix, we will focus on the heart of systems development—
analysis, design, and implementation—from the perspective of the Agile Method-
ologies. Note that Figure B-3 shows two arrows between analysis and design.

Test Design

Code

Analyze

FIGURE B-2
The analysis-design-code-test loop.

386 Appendix B Agile Methodologies

These arrows denote the iteration between these two activities, which is at the
core of developmental agility. In the next sections you will read about the iteration
between analysis and design and where certain aspects of implementation fit it.
The first section is about requirements determination. The second section is about
design specifications, and the last section is about the combination of coding and
testing in implementation. As you read before, many flavors of the Agile Method-
ologies are available. We will illustrate how these methodologies work primarily
with the eXtreme Programming approach, but we will also reference Agile Usage-
Centered Design, originally developed by Larry Constantine and adapted for Agile
Methodologies by Jeff Patton.

Requirements Determination
Three requirements determination techniques are presented in this section.
The first is continual user involvement in the development process, a tech-
nique that works especially well with small and dedicated development teams.
The second approach is a JAD-like process called Agile Usage-Centered
Design. The third approach is the Planning Game, which was developed as
part of eXtreme Programming.

Continual User Involvement One of the criticisms of the traditional
engineering-based approach to systems development is that users were involved
only in the early stages of analysis. Once requirements had been gathered from
them, the users were not involved again in the process until the system was being
installed and they were asked to sign off on it. Typically, by the time users saw the
system again, it was nothing like what they had imagined. Also, given how their
business processes had changed since analysis had ended, the system most likely
did not adequately address user needs. To some extent, this view of limited user
participation is a stereotype of the traditional approach to development.
Nonetheless, limited user involvement has been common enough to be perceived
as a real and serious problem in systems development.

One approach to the problem of limited user involvement is to involve the
users continually throughout the entire analysis and design process. Such an
approach works best when development can follow the analysis-design-code-
test cycle favored by the Agile development methodologies (Figure B-1), as the
user can provide information on requirements and then watch and evaluate as
those requirements are designed, coded, and tested. This iterative process can
continue through several cycles until most of the major functionality of the
system has been developed. Extensive involvement of users in the analysis and
design process is a key part of many Agile approaches, but it was also a key part
of rapid application development (see Chapter 1).

Planning &
Selection

Implementation
& Operation

Design

Analysis

FIGURE B-3
The heart of systems development.

Appendix B Agile Methodologies 387

Continual user involvement was a key aspect of the success of Boeing’s Wire
Design and Wire Install system for the 757 aircraft (Bedoll, 2003). The system
was intended to support engineers who customize plane configurations for
customers, allowing them to analyze whether all 50,000 wires can possibly be
installed on a 757. A previous attempt at building a similar system took more
than three years, and the resulting system was never used. The second attempt,
relying on Agile methods, resulted in a system that was in production after only
six weeks. One of the keys to success was a user liaison who spent half of his
time with the small development team and half with the other end users. In
addition to following the analysis-design-code-test cycle, the team also had
weekly production releases. The user liaison was involved every step of the way.
Obviously, for such a requirements determination to succeed, the user who
works with the development team must be especially knowledgeable, but he or
she must also be in a position to give up his or her normal business responsi-
bilities in order to become so heavily involved in a system’s development.

Agile Usage-Centered Design Continual user involvement in systems
development is an excellent way to ensure that requirements are captured
accurately and are immediately implemented in system design. However, such
constant interaction works best when the development team is small, as was
the case in the previous Boeing example. Also, it is not always possible to
have continual access to users for the duration of a development project. So
Agile developers have come up with other means for effectively involving users
in the requirements determination process. One such method is called Agile
Usage-Centered Design, a process with nine steps, which we have adapted and
presented as eight steps in Table B-2.

Notice how similar the overall process is to a JAD meeting (see Chapter 5). All
of the experts are gathered together and work with the help of the facilitator.
What’s unique about the Agile Usage-Centered Design is the process that

TABLE B-2: Steps in the Agile Usage-Centered Design Method
for Requirements Determination

1. Gather a group of people, including analysts, users, programmers, and testing staff, and sequester them in a room
to collaborate on this design. Include a facilitator who knows this process.

2. Give everyone a chance to vent about the current system and to talk about the features everyone wants in the new system.
Record all of the complaints and suggestions for change on whiteboards or flip charts for everyone to see.

3. Determine what the most important user roles would be. Determine who will be using the system and what their goals are
for using the system. Write the roles on 3 � 5 cards. Sort the cards so that similar roles are close to each other. Patton
(2002) calls this a role model.

4. Determine what tasks user roles will have to complete in order to achieve their goals. Write these down on 3 � 5 cards.
Order tasks by importance and then by frequency. Place the cards together based on how similar the tasks are to each
other. Patton calls this a task model.

5. Task cards will be clumped together on the table based on their similarity. Each clump of cards is called an interaction
context.

6. For each task card in the interaction context, write a description of the task directly on the task card. List the steps that are
necessary to complete the task. Keep the descriptions conversational to make them easy to read. Simplify.

7. Treat each clump as a tentative set of tasks to be supported by a single aspect of the user interface, such as a screen, page,
or dialog, and create a paper-and-pencil prototype for that part of the interface. Show the basic size and placement of the
screen components.

8. Take on a user role and step through each task in the interaction context as modeled in the paper-and-pencil prototype.
Make sure the user role can achieve its goals by using the prototype. Refine the prototype accordingly.

388 Appendix B Agile Methodologies

supports it, with a focus on user roles, user goals, and the tasks necessary to
achieve those goals. Then tasks are grouped and turned into paper-and-pencil
prototypes before the meeting is over. Requirements captured from users and
developers are captured as prototyped system screens. The two most effective
aspects of this approach are the venting session, which lets everyone get their
complaints out in the open, and the use of 3 � 5 cards, which serve as very
effective communication tools. As with any analysis and design process or
technique, however, Agile Usage-Centered Design will not work for every
project or for every company.

The Planning Game The techniques used for requirements determination
in eXtreme Programming are captured in the Planning Game. The Planning
Game is really just a stylized approach to development that seeks to maximize
fruitful interaction between those who need a new system and those who build
it. The players in the Planning Game, then, are Business and Development.
Business is the customer and is ideally represented by someone who knows the
processes to be supported by the system being developed. Development is
represented by those actually designing and constructing the system. The game
pieces are what Beck calls “Story Cards.” These cards are created by Business
and contain a description of a procedure or feature to be included in the system.
Each card is dated and numbered and has space on it for tracking its status
throughout the development effort.

The Planning Game has three phases: exploration, commitment, and steering
(Figure B-4). In exploration, Business creates a Story Card for something it
wants the new system to do. Development responds with an estimation of how
long it would take to implement the procedure. At this point, it may make sense
to split a Story Card into multiple Story Cards, as the scope of features and
procedures becomes clearer during discussion. In the commitment phase,
Business sorts Story Cards into three stacks, one for essential features, one for
features that are not essential but would still add value, and one for features that
would be nice to have. Development then sorts Story Cards according to risk,
based on how well they can estimate the time needed to develop each feature.

EXPLORATION
Business writes a Story Card.

Development provides an estimate.

COMMITMENT
Business sorts Stories by necessity.
Development sorts Stories by risk.

Business chooses Stories for next release.

STEERING
Business reviews progress.

Business and Development adjust plan.

FIGURE B-4
eXtreme Programming’s
Planning Game.

Appendix B Agile Methodologies 389

Business then selects the cards that will be included in the next release of
the product. In the final phase, steering, Business has a chance to see how the
development process is progressing and to work with Development to adjust
the plan accordingly. Steering can take place as often as once every three weeks.

The Planning Game between Business and Development is followed by the
Iteration Planning Game, played only by programmers. Instead of Story Cards,
programmers write Task Cards, which are based on Story Cards. Typically,
several Task Cards are generated for each Story Card. The Iteration Planning
Game has the same three phases as the Planning Game: exploration, commit-
ment, and steering. During exploration, programmers convert Story Cards into
Task Cards. During commitment, they accept responsibility for tasks and
balance their workloads. During steering, the programmers write the code for
the feature, test it, and if it works, they integrate the feature into the product
being developed. The Iteration Planning Game takes place during the time
intervals between steering phase meetings in the Planning Game.

You can see how the Planning Game is similar in some ways to Agile Usage-
Centered Design. Both rely on participation by users, rely on cards as commu-
nication devices, and focus on tasks the system being designed is supposed to
perform. Although these approaches differ from some of the more traditional
ways of determining requirements, such as interviews and prototyping, many of
the core principles are the same. Customers, or users, remain the source for
what the system is supposed to do. Requirements are still captured and negoti-
ated. The overall process is still documented, although the extent and formality
of the documentation may differ. Given the way requirements are identified and
recorded and broken down from stories to tasks, design specifications can
easily incorporate the characteristics of quality requirements: completeness,
consistency, modifiability, and traceability.

Design Specifications
With their focus on working software over documentation, the Agile Method-
ologies promote rapid iterative movement between design and coding. Design
specifications are captured as part of the design process itself, evolving with
each iteration through the cycle of analysis-design-code-test (see Figure B-2),
leaving little room in the process for documenting the design with paper or
diagrams or in any other way than the code itself.

At one extreme, then, a project using only Agile Methodologies would not
produce design specifications of any kind other than the code. At the other
extreme, where more traditional or engineering-based methodologies are
used, detailed and complete design specifications would be generated. These
specifications would then be handed over to programming and testing teams
once they were complete. Many choices are also available between these
extremes. Whether a systems development project is organized in terms of
Agile or more traditional methodologies depends on many different consider-
ations. If a project is considered to be high risk, highly complex, and has a
development team made up of hundreds of people, then more traditional
methods will apply. Less risky, smaller, and simpler development efforts lend
themselves more to Agile methods. Other determining factors include organi-
zational practice and standards and the extent to which different parts of the
system will be contracted out to others to develop. Obviously, the larger
the proportion of the system that will be farmed out, the more detailed the
design specifications will need to be so subcontractors can understand what
is needed.

Agile Methodologies go from requirements to functional design directly to
code, where the design specifications are immediately captured and then
tested. Lengthy text specifications, computer-based specification tools, and

390 Appendix B Agile Methodologies

Refactoring
Making a program simpler after
adding a new feature.

Simple design
Creating uncomplicated software
and software components that
work to solve the current problem
rather than creating complicated
software designed for a future that
may not come.

intermediate diagrams, such as structure charts, tend to be ignored in favor of
capturing design specifications directly in the code itself. You just read that in
eXtreme Programming, users generate stories that serve as the basis for system
functions and features. These user requirements are not consolidated into a
single, detailed, and complete design specification, as would be expected in an
engineering-based development effort. Instead, requirements serve as the basis
for a design that is captured in code and then tested (Figure B-2). As the founder
of eXtreme Programming says, “Code is the one artifact that development
absolutely cannot live without. . . . It turns out that code can be used to
communicate—expressing tactical intent, describing algorithms, pointing to
spots for possible future expansion and contraction” (Beck, 2000, pp. 44–45).
After testing, all of the code that works may be integrated at the end of each
working day, and working versions of the system will be released frequently, as
often as once per week in some cases. eXtreme Programming developers design
and build working systems in short amounts of time (relative to traditionally
organized methods), and they do it without written or diagrammatic design
specifications. eXtreme Programming employs two particular techniques that
are used to continually improve the quality of the design as developers continue
to iterate through the analysis-design-code-test cycle. These techniques are
simple design and refactoring.

Simple design is exactly what it sounds like: keeping the design simple. For
many developers and programmers, it is too easy to look ahead and try to
anticipate changes in how the system will work and to design accordingly for
these changes. Many times, those anticipated future conditions never material-
ize, and the time and effort that went into designing for the uncertain future is
wasted. According to Beck (2000), design should focus on solving the immedi-
ate problem, not on solving future problems that may or may not occur. eXtreme
Programming has four constraints that pertain to what Beck means by the
simplest design:

� The system must communicate everything you want it to
communicate.

� The system must contain no duplicate code.

� The system should have the fewest possible classes.

� The system should have the fewest possible methods.

Classes and methods refer to object-oriented programming and design (see
Appendix A), and in the nonobject world, these last two constraints could
correspond to tables in a relational database and in lines of code that model
processes in a system, respectively.

Refactoring is related to the overall goal of simple design in eXtreme
Programming. Refactoring is nothing more than simplifying a system, typically
after a new feature or set of features have been added. As more features are
added to a system, it becomes more complex, and this complexity will be
reflected in the code. After a time of increasing complexity, eXtreme Program-
ming developers stop and redesign the system. The system must still pass the
test cases written for it after it has been simplified, so rework continues until
the tests can be passed. Different forms of refactoring include simplifying
complex statements, abstracting solutions from reusable code, and removing
duplicate code. Refactoring and the continuing simplification it implies
reflects the iterative nature of eXtreme Programming and the other Agile
Methodologies. As development progresses and the system gets closer to being
ready for production, the iterations and the evolution of the system slow, a
process Beck calls productionizing. A system ready to go into production is
ready to be released to users, either customers ready to buy the software or
internal users.

Appendix B Agile Methodologies 391

Implementation
Although coding and testing are in many ways part of the same process, it is not
uncommon in large and complicated systems development environments to find
the two practices separated from each other. You have seen examples of this
case in Chapter 10. Big companies and big projects often have dedicated testing
staff who develop test plans and then use the plans to test software after it has
been written. You have already seen how many different types of testing there
are, and you can deduce from that how elaborate and extensive testing can be.
With eXtreme Programming and other Agile Methodologies, coding and testing
are intimately related parts of the same process, and the programmers who write
the code also write the tests. The general idea is that code is tested soon after it
is written. If the code passes the tests, then it is integrated into the system. If it
does not pass, the code is reworked until it does pass.

What We’ve Learned about Agile Methodologies
Agile methods have been in use since “The Agile Manifesto” was issued in 2001,
and some were in use even before that. We saw one example, at Boeing, where
Agile methods were successful. In the years that Agile methods have been used,
what have we learned about their use in organizations? What can managers do
to try to ensure that Agile methods really do work? Several studies have inves-
tigated Agile methods in practice.

One study, a survey of over 100 Agile projects, found three primary critical
success factors for Agile development. The first is delivery strategy, which
refers to the continuous delivery of working software in short time scales. The
second is following Agile software engineering practices. That means managers
and programmers must continually focus on technical excellence and simple
design. The third critical success factor is team capability, which refers to the
Agile principle of building projects around motivated individuals.

Another study found that, once implemented, Agile methods can lead to
improved job satisfaction and productivity on the part of programmers. They can
also lead to increased customer satisfaction, even though the role of on-site cus-
tomer representative can be tiring and so not sustainable for very long. Agile
methods tend to work best in small projects. In some instances, it may make
sense to combine them with traditional development methods.

The best programmers for Agile methods have faith in their own abilities and
good interpersonal skills and trust. To succeed, Agile teams need to balance a
high level of individual autonomy with a high level of team responsibility and
corporate responsibility. However, high levels of team autonomy are a two-
edged sword. On the one hand, highly autonomous teams tend to be more effi-
cient. They are able to take actions that reduce the time, cost, and resources
needed to develop a system. In fact, Agile projects undertaken by efficient
teams tended to come in on time, on budget, and with the needed software func-
tionality. On the other hand, highly autonomous teams also have more ability to
say no to new user demands. Users may not be entirely happy with the result-
ing system if too many of their demands are declined.

A detailed study of one Agile development effort showed that some of the key
principles of Agile development had to be modified to help ensure success. For
example, in the Agile project studied, pair programming was not always used,
especially when resources were needed elsewhere. Second, the process of writ-
ing the test case first and then the code was followed until the system became
too complex. Third, the customer was not located in the same place as the pro-
grammers. Instead, the customer stayed in contact through regular meetings and
continual e-mail and phone communication. Even with these modifications, the
resulting system was considered a success—fewer than ten updates were issued

392 Appendix B Agile Methodologies

because of errors and none were issued because of implementing the wrong
functionalities. Working together, the users and developers were able to clarify
system requirements and create a user interface that was easy to learn and use.

In conclusion, Agile development offers managers and programmers more
choice in their efforts to produce good systems that come in on time and at or
under budget. Agile methods are here to stay, and over time, we will come to
understand them better, as well as how best to use them for the benefit of
developers and users.

Key Points Review
1. Define Agile Methodologies.

The Agile Methodologies, a collection of related
methodologies for systems development, rely on
object-orientation and the need for speed. This
approach sacrifices the milestones and multiple
phases of the engineering approach currently com-
mon in systems development, favoring instead
close cooperation between developers and clients,
combining many life cycle phases into few phases,
and having multiple rapid releases of software.
Although many individual methods reflect the new
approach, collectively they are called the Agile
Methodologies. These individual methods have in
common a focus on adaptive methodologies,
people instead of roles, and an overall self-adaptive
development process.

2. Explain when to use Agile Methodologies and
when to use engineering-based approaches to
systems development.

First, Agile methods fit much better with
smaller projects than with larger ones. Tradi-
tional methods are preferred for large projects
and for those dealing with safety-critical systems.
Second, Agile methods work well when the target
system is to operate in a volatile and fluid envi-
ronment, where business conditions are turbu-
lent and frequently changing. Because of the large
amount of planning that is part of them, tradi-
tional approaches work best where the system
being developed operates in a stable environ-
ment. Third, because Agile Methodologies stress
the importance of individuals rather than roles,
an Agile approach may not work as well unless a
critical mass of people is trained to use Agile
methods. Finally, Agile methods will work best in
an organization culture that thrives on uncer-
tainty, rapid change, and chaos. Traditional meth-
ods work where organizational roles are clearly
defined and change little.

3. Define eXtreme Programming.
eXtreme Programming was developed by Kent

Beck in the late 1990s. eXtreme Programming is

distinguished by its short development cycles, its
incremental planning approach, its focus on auto-
mated tests written by programmers and customers
to monitor the process of development, and its
reliance on an evolutionary approach to develop-
ment that lasts throughout the lifetime of the system.
One of the key emphases of eXtreme Programming is
its use of two-person programming teams. A second
emphasis is having a customer on-site during the
development process. The techniques used for re-
quirements determination in eXtreme Programming
are captured in the Planning Game, a stylized ap-
proach to development that seeks to maximize
fruitful interaction between those who need a new
system and those who build it. Other important as-
pects of eXtreme Programming are simple design
and refactoring.

4. Discuss the Agile Methodologies approach to
systems requirements determination, design
specifications, and the combination of coding
and testing.

Three methods for requirements determination
from an Agile Methodologies perspective were
presented in this appendix: (1) continual user
involvement in the development process, a tech-
nique that works especially well with small and
dedicated development teams; (2) Agile Usage-
Centered Design, a JAD-like approach; and
(3) the Planning Game, developed as part of
eXtreme Programming. Agile Methodologies pro-
mote rapid iterative movement between design
and coding, so design specifications are captured
as part of the design process itself. Specifications
evolve with each iteration, through the cycle of
analysis-design-code-test, leaving little room in
the process for documenting the design with
paper or diagrams or in any way other than the
code itself. For Agile Methodologies, coding and
testing are intimately related parts of the same
process, and the programmers who write the
code also write the tests. The general idea is that
code is tested soon after it is written.

Appendix B Agile Methodologies 393

Key Terms Checkpoint
Here are the key terms from the appendix. The page where each term is first explained is in parentheses after
the term.

1. Agile Methodologies (p. 381) 2. Refactoring (p. 390) 3. Simple design (p. 390)

1. Making a program simpler after adding a
new feature.

2. Creating uncomplicated software and
software components that work to solve
the current problem rather than creating
complicated software designed for a future
that may not come.

Match each of the key terms above with the definition that best fits it.

3. A family of development methodologies
characterized by short iterative cycles
and extensive testing; active involvement
of users for establishing, prioritizing, and
verifying requirements; and a focus on
small teams of talented, experienced
programmers.

Review Questions
1. What are Agile Methodologies?
2. Describe the three stages that information sys-

tems development has passed through.
3. What is the heart of the systems development

process? How does it fit within the larger SDLC
framework?

4. Explain eXtreme Programming.
5. What is continual user involvement?
6. What is Agile Usage-Centered Design? How is it

used for requirements determination?

7. What is the Planning Game, and what is it used for?
8. How are design specifications handled in the

Agile Methodologies?
9. What is simple design? What is refactoring?

10. Explain how testing differs in the Agile Method-
ologies and in traditional approaches.

11. What have we learned about Agile development
methods in practice?

Problems and Exercises
1. When should you use an Agile method, and when

should you use an engineering-based method for
developing a system? Support your answer.

2. Find books and articles on some of the other Agile
Methodologies, such as Scrum and Feature Driven
Development. Compare what you find to what you
have read in this appendix about eXtreme
Programming. Write a report that illustrates the
similarities and differences in these approaches.

3. How widespread are the Agile Methodologies in
the information technology industry? Research
this question and write a report that explains
what you find.

4. Using the World Wide Web, find a company or
firm near you where the Agile Methodologies are

in use. Interview developers to find out what their
approach to development looks like. Prepare a
report based on your findings.

5. Assume you have been given the task of leading a
team developing an online order-entry system.
What would your project look like using the
structured techniques featured in this book?
What would your project look like using an Agile
method? Compare and contrast these two differ-
ent approaches to developing this system. Be
sure to include important considerations, such as
project duration, personnel issues, and the quan-
tity and quality of involvement of the client.

This page intentionally left blank

References
Chapter 1: The Systems

Development Environment

Aktas, A. Z. Structured Analysis and Design
of Information Systems. Upper Saddle
River, NJ: Prentice Hall, 1987.

Bohm, C., and I. Jacopini. “Flow Diagrams,
Turing Machines, and Languages with only
Two Formation Rules.” Communications
of the ACM 9 (May 1966): 366–71.

Bourne, K. C. “Putting Rigor Back in RAD.”
Database Programming & Design 7 (8)
(August 1994): 25–30.

Coy, P. “The Future of Work.” BusinessWeek
(March 22, 2004): 50–52.

DeMarco, T. Structured Analysis and System
Specification. Upper Saddle River, NJ:
Prentice Hall, 1979.

Fowler, M. “The New Methodology.” April
2003. Accessed April 23, 2011,
www.martinfowler.com/articles/
newMethodology.html.

Gallivan, M. J., D. P. Truex, and L. Kvasny.
“Changing Perspectives in IT Skill Sets
1988–2003: A Content Analysis of
Classified Advertising.” Data Base for
Advances in Information Systems 35 (3)
(2004): 64–87.

Mumford, E. “Participative Systems Design:
A Structure and Method.” Systems,
Objectives, Solutions 1 (1) (1981): 5–19.

Naumann, J. D., and A. M. Jenkins.
“Prototyping: The New Paradigm for
Systems Development.” MIS Quarterly
6 (3) (1982): 29–44.

Vegso, J. “BLS Projects IT Work Force to Add a
Million New Jobs Between 2004 and 2014.”
CRA Bulletin. Accessed January 1, 2008,
www.cra.org/wp/index.php?p�70.2006.

Yourdon, E., and L. L. Constantine. Structured
Design. Upper Saddle River, NJ: Prentice
Hall, 1979.

Chapter 2: The Sources of Software

Applegate, L. M., and R. Montealegre.
“Eastman Kodak Company: Managing
Information Systems Through Strategic
Alliances.” Harvard Business School, Case
9-192-030. Cambridge, MA: President and
Fellows of Harvard College, 1991.

Basili, V. R., L. C. Briand, and W. L. Melo. “How
Reuse Influences Productivity in Object-
Oriented Systems.” Communications of
the ACM 39 (10) (1996): 104–116.

Computer History Museum. “Timeline of
Computer History.” Accessed December 24,
2003, www.computerhistory.org.

Cowley, S. “JP Morgan Cancels $5bn IBM
Outsourcing Deal.” ComputerWeekly.com
(September 16, 2004). Accessed October 27,
2004, www.computerweekly.com.

DeSouza, K. C., Y. Awazu, and A. Tiwana.
“Four Dynamics for Bringing Use Back
into Software Reuse.” Communications of
the ACM, 49 (1) (2006): 96–100.

“ERP Market Share and Evaluation.” 2010.
Accessed April 23, 2011, whatiserp.net/
erp-comparison/erp-vendor-evaluation-2010.

Ewing. “Strong Numbers and New Products
for SAP.” Spiegel Online International.
Accessed April 23, 2011, http://www
.spiegel.de/international/business/
0,1518,495579,00.html.

Flinders, K. 2010. “IT Will Become More
Strategic as Outsourcers Industrialise IT
Foundations.” ComputerWeekly.com
(September 20, 2010). Accessed April 23,
2011, www.computerweekly.com/blogs/
inside-outsourcing/2010/09/it-will-become-
more-strategic-as-outsourcers-
industrialise-it-foundations.html.

Grinter, R. E. “From Local to Global
Coordination: Lessons from Software
Reuse.” In Proceedings of Group ’01,
144–153. Boulder, CO: Association for
Computing Machinery, SIGGROUP, 2001.

Griss, M. “Reuse Comes in Several Flavors.”
Flashline white paper. Accessed
February 10, 2004, www.flashline.com.

Kim, Y., and E. A. Stohr. “Software Reuse:
Survey and Research Directions.”
Journal of MIS 14 (4) (1998): 113–147.

King, J., and B. Cole-Gomolski. 1999. “IT Doing
Less Development, More Installation,
Outsourcing.” Computerworld (January 25,
1999). Accessed December 28, 2003, www
.computerworld.com.

King, R. “The Outstanding Upstarts.”
BusinessWeek Online (July 31, 2007).
Accessed April 23, 2011, www
.businessweek.com/print/technology/
content/jul2007/tc20070730_998591.htm.

King, R. 2008. “How Cloud Computing is
Changing the World.” BusinessWeek
Online (August 4, 2008). Accessed April 23,
2011, http://www.businessweek.com/print/
technology/content/aug2008/
tc2008082_445669.htm.

Mackie, K. 2009. “Report: Microsoft Key to IT
Jobs Growth.” Redmondmag.com
(October 5, 2009). Accessed April 23, 2011,
http:// redmondmag.com/articles/2009/10/05/
report-microsoft-key-to-it-jobs-growth.aspx.

“Microcomputer Procurement Guidelines.”
Public Works 125 (April 15, 1994): G23 1.

Royce, W. Software Project Management:
A Unified Framework. Boston:
Addison-Wesley, 1998.

Vaughn-Nichols, S. J. “Linux Server Market
Share Keeps Growing.” Linux-Watch.com
(May 29, 2007). Accessed January 24, 2008,
www.linux-watch.com/news/
NS5369154346.html.

Wilcox, J., and M. A. Farmer. “Microsoft to
Unveil Software-for-Rent Strategy.”
CNETNews.com (July 14, 2000). Accessed
April 23, 2011, news.cnet.com.

Chapter 3: Managing the
Information Systems Project

Abdel-Hamid, T. K., K. Sengupta, and C. Swett.
“The Impact of Goals on Software Project
Management: An Experimental
Investigation.” MIS Quarterly (23) (1999): 4.

Boehm, B. W. Software Engineering
Economics. Upper Saddle River, NJ:
Prentice Hall, 1981.

Boehm, B., et al. Software Cost Estimation
with COCOMO II. Upper Saddle River,
NJ: Prentice Hall, 2000.

Butler, J. “Automating Process Trims Software
Development Fat.” Software Magazine
14 (8) (August 1994): 37–46.

Fuller, M. A, J. S. Valacich, and J. F. George.
Information Systems Project Management.
Upper Saddle River, NJ: Prentice Hall, 2008.

George, J. F., D. Batra, J. S. Valacich, and
J. A. Hoffer. Object-Oriented Analysis
and Design. 2d ed. Upper Saddle River,
NJ: Prentice Hall, 2004.

Grupe, F. H., and D. F. Clevenger. “Using
Function Point Analysis as a Software
Development Tool.” Journal of Systems
Management 42 (December 1991): 23–26.

Guinan, P. J., J. G. Cooprider, and S. Faraj.
“Enabling Software Development Team
Performance During Requirements
Definition: A Behavioral versus Technical
Approach.” Information Systems
Research 9 (2) (1998): 101–25.

Hoffer, J. A., V. Ramesh, and H. Topi. Modern
Database Management. 10th ed. Upper
Saddle River, NJ: Prentice Hall, 2011.

Keil, M., B. C. Y. Tan, K. K. Wei, T. Saarinen,
V. Tuunainen, and A. Wassenaar. “A Cross-
Cultural Study on Escalation of
Commitment Behavior in Software
Projects.” MIS Quarterly (24) (2000): 2.

Kettelhut, M. C. “Avoiding Group-Induced
Errors in Systems Development.” Journal
of Systems Management 42 (December
1991): 13–17.

395

www.computerweekly.com

www.linux-watch.com/news/NS5369154346.html

www.linux-watch.com/news/NS5369154346.html

http://www.spiegel.de/international/business/0,1518,495579,00.html

http://www.spiegel.de/international/business/0,1518,495579,00.html

http://www.spiegel.de/international/business/0,1518,495579,00.html

www.martinfowler.com/articles/newMethodology.html

www.martinfowler.com/articles/newMethodology.html

www.computerweekly.com/blogs/inside-outsourcing/2010/09/it-will-become-more-strategic-as-outsourcers-industrialise-it-foundations.html

www.computerweekly.com/blogs/inside-outsourcing/2010/09/it-will-become-more-strategic-as-outsourcers-industrialise-it-foundations.html

www.computerweekly.com/blogs/inside-outsourcing/2010/09/it-will-become-more-strategic-as-outsourcers-industrialise-it-foundations.html

www.computerweekly.com/blogs/inside-outsourcing/2010/09/it-will-become-more-strategic-as-outsourcers-industrialise-it-foundations.html

www.flashline.com

www.cra.org/wp/index.php?p=70.2006

www.computerworld.com

www.computerworld.com

www.businessweek.com/print/technology/content/jul2007/tc20070730_998591.htm

www.businessweek.com/print/technology/content/jul2007/tc20070730_998591.htm

www.businessweek.com/print/technology/content/jul2007/tc20070730_998591.htm

http://www.businessweek.com/print/technology/content/aug2008/tc2008082_445669.htm

http://www.businessweek.com/print/technology/content/aug2008/tc2008082_445669.htm

http://www.businessweek.com/print/technology/content/aug2008/tc2008082_445669.htm

www.computerhistory.org

http://redmondmag.com/articles/2009/10/05/report-microsoft-key-to-it-jobs-growth.aspx

http://redmondmag.com/articles/2009/10/05/report-microsoft-key-to-it-jobs-growth.aspx

396 References

King, J. “IT’s Global Itinerary: Offshore
Outsourcing Is Inevitable.” Accessed
September 15, 2003, www.cio.com.
Information verified September 17, 2003.

Kirsch, L. J. “Software Project Management:
An Integrated Perspective for an Emerging
Paradigm.” In Framing the Domains of IT
Management: Projecting the Future from
the Past. Edited by R. W. Zmud, Chapter 15,
285–304. Cincinnati, OH: Pinnaflex
Educational Resources.

Murch, R. Project Management: Best Practices
for IT Professionals. Upper Saddle River,
NJ: Prentice Hall, 2001.

Project Management Institute. Work
Breakdown Structures. Newton Square,
PA: Project Management Institute, 2001.

Rettig, M. “Software Teams.”
Communications of the ACM 33 (10)
(1990): 23–27.

Verma, V. K. Human Resource Skills for the
Project Manager. Newtown Square, PA:
Project Management Institute, 1996.

Verma, V. K. Managing the Project Team.
Newton Square, PA: Project Management
Institute, 1997.

Wideman, R. M. Project and Program Risk
Management. Newton Square, PA: Project
Management Institute, 1992.

Chapter 4: Systems Planning
and Selection

Applegate, L. M., R. D. Austin, and
F. W. McFarlan. Corporate Information
Strategy and Management. 7th ed. Boston:
Irwin/McGraw-Hill, 2007.

Atkinson, R. A. “The Motivations for Strategic
Planning.” Journal of Information
Systems Management 7 (4) (1990): 53–56.

Carlson, C. K., E. P. Gardner, and S. R. Ruth.
“Technology-Driven Long-Range Planning.”
Journal of Information Systems
Management 6 (3) (1989): 24–29.

DeGiglio, M. “Measure for Measure: The Value of
IT.” Accessed June 17, 2003, www.cio.com.
Information verified April 23, 2011.

Dewan, S., S. C. Michael, and C-K. Min. “Firm
Characteristics and Investments in
Information Technology: Scale and Scope
Effects.” Information Systems Research
9 (3) (1998): 219–232.

Hasselbring, W. “Information System
Integration.” Communications of the ACM
43 (6) (2000): 33–38.

IBM. “Business Systems Planning.” In
Advanced System Development/Feasibility
Techniques. Edited by J. D. Couger,
M. A. Colter, and R. W. Knapp, 236–314.
New York: Wiley, 1982.

Kerr, J. “The Power of Information Systems
Planning.” Database Programming &
Design 3 (December 1990): 60–66.

King, J. “IT’s Global Itinerary: Offshore
Outsourcing Is Inevitable.” Accessed
September 15, 2003, www.cio.com.
Information verified September 17, 2003.

King, J. L., and E. Schrems. “Cost Benefit
Analysis in Information Systems
Development and Operation.” ACM
Computing Surveys 10 (1) (1978): 19–34.

Kirsch, L. J. “Software Project Management:
An Integrated Perspective for an Emerging
Paradigm.” In Framing the Domains of IT
Management: Projecting the Future from
the Past. Edited by R. W. Zmud, Chapter 15,
285–304. Cincinnati, OH: Pinnaflex
Educational Resources, 2000.

Lederer, A. L., and J. Prasad. “Nine
Management Guidelines for Better Cost
Estimating.” Communications of the
ACM 35 (2) (1992): 51–59.

Luftman, J. N. Managing the Information
Technology Resource. With C.V. Bullen,
D. Liao, E. Nash, and C. Neumann. Upper
Saddle River, NJ: Prentice Hall, 2004.

McKeen, J. D., T. Guimaraes, and J. C. Wetherbe.
“A Comparative Analysis of MIS Project
Selection Mechanisms.” Data Base 25
(February 1994): 43–59.

Parker, M. M., and R. J. Benson. Information
Economics. Upper Saddle River, NJ:
Prentice Hall, 1988.

Parker, M. M., and R. J. Benson.
“Enterprisewide Information Management:
State-of-the-Art Strategic Planning.”
Journal of Information Systems
Management 6 (Summer 1989): 14–23.

Porter, M. Competitive Strategy: Techniques
for Analyzing Industries and
Competitors. New York: Free Press, 1980.

Porter, M. Competitive Advantage. New York:
Free Press, 1985.

Pressman, R. S. Software Engineering. 5th ed.
New York: McGraw-Hill, 2001.

Radosevich, L. “Can You Measure Web ROI?”
Datamation (July 1996): 92–96.

Ross, J., and D. Feeny. “The Evolving Role of
the CIO.” In Framing the Domains of IT
Management: Projecting the Future from
the Past. Edited by R. W. Zmud, Chapter 19,
385–402. Cincinnati, OH: Pinnaflex
Educational Resources.

Segars, A. H., and V. Grover. “Profiles of
Strategic Information Systems Planning.”
Information Systems Planning 10 (3)
(1999): 199–232.

Shank, J. K., and V. Govindarajan. Strategic Cost
Management. New York: Free Press, 1993.

Sowa, J. F., and J. A. Zachman. “Extending and
Formalizing the Framework for
Information Systems Architecture.” IBM
Systems Journal 31 (3) (1992): 590–616.

Yourdon, E. Structured Walkthroughs. 4th ed.
Upper Saddle River, NJ: Prentice Hall, 1989.

Zachman, J. A. “A Framework for Information
Systems Architecture.” IBM Systems
Journal 26 (March 1987): 276–92.

Chapter 5: Determining System
Requirements

Carmel, E. “Supporting Joint Application
Development with Electronic Meeting
Systems: A Field Study.” Unpublished
doctoral dissertation, University of
Arizona, 1991.

Carmel, E., J. F. George, and J. F. Nunamaker,
Jr. “Supporting Joint Application
Development (JAD) with Electronic
Meeting Systems: A Field Study.” In
Proceedings of the Thirteenth
International Conference on Information
Systems, 223–32. Dallas, TX, December
1992.

Carmel, E., R. Whitaker, and J. F. George.
“Participatory Design and Joint
Application Design: A Transatlantic
Comparison.” Communications of the
ACM 36 (June 1993): 40–48.

Davenport, T. H. Process Innovation:
Reengineering Work through Information
Technology. Boston: Harvard Business
School Press, 1993.

Dennis, A. R., J. F. George, L. Jessup,
J. F. Nunamaker, Jr., and D. R. Vogel.
“Information Technology to Support
Electronic Meetings.” MIS Quarterly
12 (December 1988): 591–624.

Dobyns, L., and C. Crawford-Mason. Quality
or Else. Boston: Houghton Mifflin, 1991.

Hammer, M., and J. Champy. Reengineering
the Corporation. New York: Harper
Business, 1993.

Lucas, M. A. “The Way of JAD.” Database
Programming & Design 6 (July 1993):
42–49.

Mintzberg, H. The Nature of Managerial Work.
New York: Harper & Row, 1973.

Moad, J. “After Reengineering: Taking Care of
Business.” Datamation 40 (20) (1994): 40–44.

Wood, J., and D. Silver. Joint Application
Design. New York: Wiley, 1989.

Chapter 6: Structuring System
Requirements: Process Modeling

Celko, J. “I. Data Flow Diagrams.” Computer
Language 4 (January 1987): 41–43.

DeMarco, T. Structured Analysis and System
Specification. Upper Saddle River, NJ:
Prentice Hall, 1979.

Gane, C., and T. Sarson. Structured Systems
Analysis. Upper Saddle River, NJ: Prentice
Hall, 1979.

Gibbs, W. W. “Software’s Chronic Crisis.”
Scientific American 271 (September
1994): 86–95.

www.cio.com

www.cio.com

www.cio.com

References 397

Hammer, M., and J. Champy. Reengineering
the Corporation. New York: Harper
Business, 1993.

Yourdon, E. Managing the Structured
Techniques. 4th ed. Upper Saddle River,
NJ: Prentice Hall, 1989.

Yourdon, E., and L. L. Constantine. Structured
Design. Upper Saddle River, NJ: Prentice
Hall, 1979.

Chapter 7: Structuring System
Requirements: Conceptual Data
Modeling

Aranow, E. B. “Developing Good Data
Definitions.” Database Programming &
Design 2 (8) (1989): 36–39.

Booch, G. Object-Oriented Analysis and
Design with Applications. 2d ed. Redwood
City, CA: Benjamin Cummings, 1994.

Bruce, T. A. Designing Quality Databases
with IDEF1X Information Models. New
York: Dorset House, 1992.

Chen, P. P-S. “The Entity-Relationship
Model—Toward a Unified View of Data.”
ACM Transactions on Database Systems
1 (March 1976): 9–36.

Codd, E. F. “A Relational Model of Data for
Large Relational Databases.”
Communications of the ACM 13 (6)
(1970): 77–87.

Dutka, A. F., and H. H. Hanson. Fundamentals
of Data Normalization. Reading, MA:
Addison-Wesley, 1989.

Finkelstein, R. “Breaking the Rules Has a
Price.” Database Programming & Design
1 (June 1988): 11–14.

Fleming, C. C., and B. von Halle. “An Overview
of Logical Data Modeling.” Data Resource
Management 1 (1) (1990): 5–15.

Fowler, M. UML Distilled: A Brief Guide to
the Object Modeling Language. 2d ed.
Reading, MA: Addison-Wesley, 2000.

Gibson, M., C. Hughes, and W. Remington.
“Tracking the Trade-Offs with Inverted
Lists.” Database Programming & Design
2 (January 1989): 28–34.

Gottesdiener, E. “Turning Rules into
Requirements.” Application Development
Trends 6 (7) (1999): 37–50.

Hay, D. Data Model Patterns: Conventions of
Thought. New York: Dorset House, 1996.

Hoffer, J. A., V. Ramesh, and H. Topi. Modern
Database Management. 10th ed. Upper
Saddle River, NJ: Prentice Hall, 2011.

Inmon, W. H. “Using the Generic Data Model.”
Accessed January 12, 2004, www.dmreview
.com/master.cfm?NavID=55&EdID=4820.

Kimball, R., and M. Ross. The Data Warehouse
Toolkit: The Complete Guide to
Dimensional Data Modeling. 2d ed. New
York: Wiley, 2002.

Moody, D. “The Seven Habits of Highly
Effective Data Modelers.” Database
Programming & Design 9 (October 1996):
57, 58, 60–62, 64.

Rodgers, U. “Denormalization: Why, What, and
How?” Database Programming & Design
2 (12) (1989): 46–53.

Rumbaugh, J., M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Upper Saddle River,
NJ: Prentice Hall, 1991.

Sandifer, A., and B. von Halle. “A Rule by Any
Other Name.” Database Programming &
Design 4 (2) (1991a): 11–13.

Sandifer, A., and B. von Halle. “Linking Rules
to Models.” Database Programming &
Design 4 (3) (1991b): 13–16.

Silverston, L. The Data Model Resource Book.
Vol. 1. A Library of Universal Data
Models for All Enterprises. New York:
Wiley, 2001a.

Silverston, L. The Data Model Resource Book.
Vol 2. A Library of Data Models for Specific
Industries. New York: Wiley, 2001b.

Silverston, L. “A Universal Data Model for
Relationship Development,” Accessed
April 23, 2011, http://www.information-
management.com/issues/20020301/4820-1
.html

Storey, V. C. “Relational Database Design
Based on the Entity-Relationship Model.”
Data and Knowledge Engineering 7 (1)
(1991): 47–83.

Teorey, T. J., D. Yang, and J. P. Fry. “A Logical
Design Methodology for Relational
Databases Using the Extended Entity-
Relationship Model.” Computing Surveys
18 (2) (1986): 197–221.

UML Notation Guide. Document accessed at
http://www.scribd.com/doc/8365836/UML-
Notation-Guide. Copyright held by Rational
Software Corporation, Microsoft
Corporation, Hewlett-Packard Company,
Oracle Corporation, Sterling Software, MCI
Systemhouse Corporation, Unisys
Corporation, ICON Computing, IntelliCorp,
i-Logix, IBM Corporation, ObjecTime
Limited, Platinum Technology
Incorporated, Ptech Incorporated, Taskon
A/S, Reich Technologies, Softeam.
Accessed April 23, 2011.

Chapter 8: Designing the Human
Interface

Apple Computer. Macintosh Human Interface
Guidelines. Reading, MA: Addison-Wesley,
1993.

Ash, T. Landing Page Optimization: The
Definitive Guide to Testing and Tuning
for Conversion. New York: Sybex, 2008.

Benbasat, I., A. S. Dexter, and P. Todd. “The
Influence of Color and Graphical

Information Presentation in a Managerial
Decision Simulation.” Human-Computer
Interaction 2 (1986): 65–92.

Blattner, M., and E. Schultz. “User Interface
Tutorial.” Presented at the 1988 Hawaii
International Conference on System
Sciences, Kona, Hawaii, January 1988.

Carroll, J. M. Designing Interaction. Cambridge:
Cambridge University Press, 1991.

Castro, E. XML for the World Wide Web.
Berkeley, CA: Peachpit Press, 2001.

Cooper, A., and R. M. Reimann. About Face
2.0: The Essentials of Interaction Design.
New York: Wiley, 2003.

Dumas, J. S. Designing User Interfaces for
Software. Upper Saddle River, NJ: Prentice
Hall, 1988.

Hoffer, J. A., V. Ramesh, and H. Topi. Modern
Database Management. 10th ed. Upper
Saddle River, NJ: Prentice Hall, 2011.

Jarvenpaa, S. L., and G. W. Dickson. “Graphics
and Managerial Decision Making: Research
Based Guidelines.” Communications of
the ACM 31 (6) (1988): 764–74.

Johnson, J. 2007. GUI Bloopers 2.0: Common
User Interface Design Don’ts and Dos.
2nd ed. New York: Morgan Kaufmann.

Lazar, J. User-Centered Web Development:
Theory into Practice. Sudbury, MA:
Jones & Bartlett, 2004.

Lindholm, C., and T. Keinonen. Mobile
Usability: How Nokia Changed the Face
of the Mobile Phone. Chicago: McGraw-Hill
Professional, 2003.

Loveday, L. and S. Niehaus. Web Design for
ROI: Turning Browsers into Buyers and
Prospects into Leads. Indianapolis, IN:
New Riders, 2007.

McCracken, D. D., R. J. Wolfe, and J. M. Spoll.
User-Centered Web Site Development:
A Human-Computer Interaction Approach.
Upper Saddle River, NJ: Prentice Hall, 2003.

McKay, E. N. Developing User Interfaces for
Microsoft Windows. Redmond, WA:
Microsoft Press, 1999.

Nielsen, J. “Marginalia of Web Design.” April 23,
2011; www.useit.com/alertbox/9611.html.

Nielsen, J. “Loyalty on the Web.” April 23, 2011;
www.useit.com/alertbox/9708a.html.

Nielsen, J. “Using Link Titles to Help Users
Predict Where They Are Going.” April 23,
2011a; www.useit.com/alertbox/980111.html.

Nielsen, J. “Personalization Is Over-Rated.”
April 23, 2011b; www.useit.com/alertbox/
981004.html.

Nielsen, J. “Web Pages Must Live Forever.”
April 23, 2011c; www.useit.com/alertbox/
981129.html.

Nielsen, J. “User Interface Directions for the
Web.” Communications of the ACM, 42 (1)
(1999a), 65–71.

http://www.information-management.com/issues/20020301/4820-1.html

http://www.information-management.com/issues/20020301/4820-1.html

http://www.information-management.com/issues/20020301/4820-1.html

http://www.scribd.com/doc/8365836/UML-Notation-Guide

http://www.scribd.com/doc/8365836/UML-Notation-Guide

www.useit.com/alertbox/9611.html

www.useit.com/alertbox/9708a.html\

www.useit.com/alertbox/980111.html

www.useit.com/alertbox/981129.html

www.useit.com/alertbox/981129.html

www.useit.com/alertbox/981004.html

www.useit.com/alertbox/981004.html

www.dmreview.com/master.cfm?NavID=55&EdID=4820

www.dmreview.com/master.cfm?NavID=55&EdID=4820

398 References

Nielsen, J. “Trust or Bust: Communicating
Trustworthiness in Web Design.” April 23,
2011b; www.useit.com/alertbox/990307.html.

Nielsen, J., and H. Loranger. Prioritizing Web
Usability. Indianapolis, IN: New Riders,
2006.

Norman, K. L. The Psychology of Menu
Selection. Norwood, NJ: Ablex, 1991.

Seffah, A., and H. Javahery. Multiple User
Interfaces: Cross Platform Applications
and Context-Aware Interfaces. New York:
Wiley, 2003.

Shneiderman, B., C. Plaisant, M. Cohen, and
S. Jacobs. Designing the User Interface.
5th ed. Reading, MA: Addison-Wesley, 2009.

Snyder, C. Paper Prototyping: The Fast and
Easy Way to Design and Refine User
Interfaces. San Francisco: Morgan
Kaufmann Publishers, 2003.

Sun Microsystems. Java Look and Feel Design
Guidelines. Reading, MA: Addison-Wesley,
1999.

Veeny, D. Get to the Top on Google. London:
Nicholas Brealey Publishing, 2008.

Chapter 9: Designing Databases

Babad, Y. M., and J. A. Hoffer. “Even No Data
Has a Value.” Communications of the
ACM 27 (August 1984): 748–56.

Codd, E. F. “A Relational Model of Data
for Large Relational Databases.”
Communications of the ACM 13
(June 1970): 77–87.

Gibson, M., C. Hughes, and W. Remington.
“Tracking the Trade-Offs with Inverted
Lists.” Database Programming & Design
2 (January 1989): 28–34.

Hoffer, J. A., V. Ramesh, and H. Topi. Modern
Database Management. 10th ed. Upper
Saddle River, NJ: Prentice Hall, 2011.

Navathe, S., R. Elmasri, and J. Larson.
“Integrating User Views in Database
Design.” Computer (January 1986):
50–62.

Rodgers, U. “Denormalization: Why, What, and
How?” Database Programming & Design
2 (12) (December 1989): 46–53.

Viehman, P. “24 Ways to Improve Database
Performance.” Database Programming &
Design 7 (2) (February 1994): 32–41.

Chapter 10: Systems
Implementation and Operation

Bell, P., and C. Evans. Mastering
Documentation. New York: Wiley, 1989.

Bloor, R. “The Disappearing Programmer.”
DBMS 7 (9) (August 1994): 14–16.

Brooks, F. P., Jr. The Mythical Man-Month.
Anniversary edition. Reading, MA:
Addison-Wesley, 1995.

Cole, K., O. Fischer, and P. Saltzman. “Just-in-
Time Knowledge Delivery.”
Communications of the ACM 40 (7)
(1997): 49–53.

Crowley, A. “The Help Desk Gains Respect.”
PC Week 10 (November 15, 1993): 138.

Dillon, N. “Internet-Based Training Passes
Audit.” Computerworld (November 3,
1997): 47–48.

Eason, K. Information Technology and
Organisational Change. London: Taylor &
Francis, 1988.

Galvin, T. “Industry Report.” Training
(October 2002): 24–33.

Ginzberg, M. J. “Early Diagnosis of MIS
Implementation Failure: Promising Results
and Unanswered Questions.” Management
Science 27 (4) (1981): 459–78.

Ginzberg, M. J. “Key Recurrent Issues in the
MIS Implementation Process.” MIS
Quarterly 5 (2) (June 1981): 47–59.

Hanna, M. “Using Documentation as a Life-
Cycle Tool.” Software Magazine
(December 1992): 41–46.

Henderson, J. C., and M. E. Treacy. “Managing
End-User Computing for Competitive
Advantage.” Sloan Management Review
(Winter 1986): 3–14.

Ives, B., and M. H. Olson. “User Involvement and
MIS Success: A Review of Research.”
Management Science 30 (5) (1984): 586–603.

Jones, C. “How to Measure Software Costs.”
Application Development Trends
(May 1997): 32–36.

Kaplan, S. “Now Is the Time to Pull the Plug
on Your Legacy Apps.” CIO Magazine.
(March 15, 2002). Accessed April 23, 2011,
www.cio.com.

Kim, K-J., C. J. Bonk, and T. T. Zeng. “Surveying
the Future of Workplace E-Learning: The
Rise of Blending, Interactivity, and Authentic
Learning.” eLearn Magazine (2005).
Available at http://www.elearnmag.org/
subpage.cfm?article�5-1§ion�research.
Accessed April 23, 2011.

Kling, R., and S. Iacono. “Desktop
Computerization and the Organization of
Work.” Computers in the Human Context.
Edited by T. Forester, 335–56. Cambridge,
MA: MIT Press, 1989.

Lee, D. M. S. “Usage Pattern and Sources of
Assistance for Personal Computer Users.”
MIS Quarterly, 10 (December 1986): 313–25.

Markus, M. L. “Implementation Politics: Top
Management Support and User
Involvement.” Systems, Objectives,
Solutions 1 (4) (1981): 203–15.

Martin, E. W., C. V. Brown, D. W. DeHayes,
J. A. Hoffer, and W. C. Perkins. Managing
Information Technology: What Managers
Need to Know. 4th ed. Upper Saddle River,
NJ: Prentice Hall, 2002.

Mosley, D. J. The Handbook of MIS
Application Software Testing. Englewood
Cliffs, NJ: Yourdon Press, 1993.

Nelson, R. R., and P. H. Cheney. “Training End
Users: An Exploratory Study.” MIS
Quarterly 11 (December 1987): 547–59.

Pressman, R. S. Software Engineering:
A Practitioner’s Approach. 5th ed.
New York, NY: McGraw-Hill, 2001.

Schrage, M. “Unsupported Technology:
A Prescription for Failure.”
Computerworld 27 (May 10, 1993): 31.

Schurr, A. “Support Is No. 1.” PC Week
10 (November 15, 1993): 126.

Tait, P., and I. Vessey. “The Effect of User
Involvement on System Success: A
Contingency Approach.” MIS Quarterly
12 (1) (March 1988): 91–108.

Torkzadeh, G., and W. J. Doll. “The Place and
Value of Documentation in End-User
Computing.” Information & Management
24 (3) (1993): 147–58.

Yourdon, E. Managing the Structured
Techniques. 4th ed. Upper Saddle River,
NJ: Prentice Hall, 1989.

Appendix A: Object-Oriented
Analysis and Design

Booch, G. Object-Oriented Analysis and
Design with Applications. 2d ed. Redwood
City, CA: Benjamin Cummings, 1994.

Coad, P., and E. Yourdon. Object-Oriented
Analysis. 2d ed. Upper Saddle River, NJ:
Prentice Hall, 1991.

Coad, P., and E. Yourdon. Object-Oriented
Design. Upper Saddle River, NJ: Prentice
Hall, 1991.

Eriksson, H., and M. Penker. UML Toolkit.
New York: Wiley, 1998.

Fowler, M. UML Distilled: A Brief Guide to
the Object Modeling Language. Reading,
MA: Addison-Wesley, 2000.

Jacobson, I., M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software
Engineering: A Use-Case Driven Approach.
Reading, MA: Addison-Wesley, 1992.

Rumbaugh, J., M. Blaha, W. Premerlani,
F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design. Upper Saddle River,
NJ: Prentice Hall, 1991.

UML Document Set. Version 1.0. Santa Clara,
CA: Rational Software Corp., January
1997.

UML Notation Guide. Version 1.0. Santa Clara,
CA: Rational Software Corp., January 1997.

Appendix B: Agile Methodologies

Beck, K. eXtreme Programming eXplained.
Upper Saddle River, NJ: Addison-Wesley,
2000.

www.useit.com/alertbox/990307.html

www.cio.com

http://www.elearnmag.org/subpage.cfm?article=5-1§ion=research

http://www.elearnmag.org/subpage.cfm?article=5-1§ion=research

References 399

Bedoll, R. “A Tale of Two Projects: How ‘Agile’
Methods Succeeded After ‘Traditional’
Methods Had Failed in a Critical System-
Development Project.” In Proceedings of
2003 XP/Agile Universe Conference
(2003). Accessed September 19, 2003,
www.agileuniverse.com/home.

Boehm, B., and R. Turner. Balancing Agility and
Discipline. Boston: Addision-Wesley, 2004.

Chow, T., and D-B. Cao. “A Survey Study of
Critical Success Factors in Agile Software
Projects.” Journal of Systems and
Software 81 (2008): 961–971.

Constantine, L. “Process Agility and Software
Usability: Toward Lightweight

Usage-Centered Design.” Information Age
(August/September 2002).

Dyba, T., and T. Dingsoyr. “Empirical Studies
of Agile Software Development: A
Systematic Review.” Information and
Software Technology 50 (2008): 833–859.

Fowler, M. “The New Methodology.” April
2003. Accessed April 23, 2011, www
.martinfowler.com/articles/
newMethodology.html.

Fruhling, A., and G. J. De Vreede. “Field
Experiences with eXtreme Programming:
Developing an Emergency Response
System.” Journal of MIS 22 (4) (2006):
39–68.

Lee, G., and W. Xia. “Toward Agile: An
Integrated Analysis of Quantitative and
Qualitative Field Data on Software
Development Agility.” MIS Quarterly 34
(1) (2010): 87–114.

Martin, R. C. “Iterative and Incremental
Development (IID).” Accessed April 23,
2011, www.objectmentor.com/resources/
articleIndex.

Patton, J. “Designing Requirements:
Incorporating Usage-Centered Design
into an Agile SW Development Process.”
In XP/Agile Universe 2002. Edited by
D. Wells and L. Williams, 1–12. LNCS 2418.
Berlin: Springer-Verlag, 2002.

www.agileuniverse.com/home

www.martinfowler.com/articles/newMethodology.html

www.martinfowler.com/articles/newMethodology.html

www.martinfowler.com/articles/newMethodology.html

www.objectmentor.com/resources/articleIndex

www.objectmentor.com/resources/articleIndex

This page intentionally left blank

Glossary of Acronyms

1:1 One-to-one (7)

1:N One-to-many (7)

1NF First normal form (9)

2NF Second normal form (9)

3NF Third normal form (9)

ACM Association for Computing Machinery

ATM Automated teller machine

AT&T American Telephone & Telegraph

BEA Break-even analysis (4)

BPP Baseline project plan (3)

BPR Business process reengineering (5)

CASE Computer-aided software engineering (1)

CD Compact disc

CD-ROM Compact disc read-only memory

CIO Chief information officer

COBOL COmmon Business Oriented Language

COCOMO COnstruction COst Model (3)

CPU Central processing unit

CRMS Customer relationship management system

CTS Customer Tracking System

DB2 Data Base 2

DBMS Database management system (8)

DFD Data-flow diagram (6)

EC or E-commerce Electronic commerce (4)

EDI Electronic data interchange (4)

EDS Electronic Data Systems (1)

E-mail Electronic mail

EPSS Electronic performance support system (10)

E-R Entity-relationship (7)

ERD Entity-relationship diagram (7)

ERP Enterprise resource planning (2)

ET Estimated time (3)

FIFO First in, first out

GE General Electric

GUI Graphical user interface

HTML Hypertext markup language

IBM International Business Machines (1)

IDC International Data Corporation

I/O Input/output

IS Information systems (1)

IT Information technology

JAD Joint application design (1)

LAN Local area network

MIS Management information system

M:N Many-to-many

MRP Material requirements planning

MTBF Mean time between failures (10)

NBDS Natural Best Delivery Service

NPV Net present value (4)

OO Object-oriented

OOAD Object-oriented analysis and design (A)

PC Personal computer

PCB Printed circuit board (1)

PD Participatory design (1)

PDA Personal digital assistant

PERT Program evaluation review technique (3)

PSS Project scope statement

PV Present value (4)

PVF Pine Valley Furniture (1)

RAD Rapid application development (1)

RFP Request for proposal (2)

RFQ Request for quote (2)

ROI Return on investment (4)

SaaS Software as a service

SAP Systems, Applications, and Products (1)

SDK System development kit

SDLC Systems development life cycle (1)

SPTS Sales Promotion Tracking System (3)

SQL Structured Query Language

SSR System service request (3)

TCP/IP Transmission control protocol/Internet protocol

TQM Total quality management

TVM Time value of money (4)

UML Unified Modeling Language (A)

URL Uniform resource locator

USD U.S. dollars

WBS Work breakdown structure (3)

XML Extensible Markup Language

YTD Year-to-date

Note: Some acronyms are abbreviations for entries in the Glossary of Terms. For these and some other acronym entries, we list
in parentheses the chapter or appendix in which the associated term is defined or introduced. Other acronyms are generally
used in the information systems field and are included here for your convenience.

401

This page intentionally left blank

Glossary of Terms
Abstract class A class that has no direct
instances but whose descendants may have
direct instances.

Acceptance testing The process
whereby actual users test a completed
information system, the end result of which
is the users’ acceptance of it once they are
satisfied with it.

Action stubs That part of a decision
table that lists the actions that result for
a given set of conditions.

Activation The time period during which
an object performs an operation.

Actor An external entity that interacts
with the system (similar to an external
entity in data-flow diagramming).

Adaptive maintenance Changes made
to a system to evolve its functionality to
changing business needs or technologies.

Aggregation A part-of relationship
between a component object and an
aggregate object.

Agile Methodologies A family of
development methodologies characterized
by short iterative cycles and extensive
testing; active involvement of users for
establishing, prioritizing, and verifying
requirements; and a focus on small teams
of talented, experienced programmers.

Alpha testing User testing of a
completed information system using
simulated data.

Application software Software designed
to process data and support users in an
organization. Examples of application
software include spreadsheets, word
processors, and database management
systems.

Association A relationship among object
classes.

Association role The end of an
association where it connects to a class.

Associative entity An entity type that
associates the instances of one or more
entity types and contains attributes that are
peculiar to the relationship between those
entity instances.

Attribute A named property or
characteristic of an entity that is of interest
to the organization.

Audit trail A record of the sequence of
data entries and the date of those entries.

Balancing The conservation of inputs
and outputs to a data-flow diagram process
when that process is decomposed to a
lower level.

Baseline modules Software modules
that have been tested, documented, and
approved to be included in the most
recently created version of a system.

Baseline project plan (BPP) A major
outcome and deliverable from the project
initiation and planning phase. It contains
the best estimate of the project’s scope,
benefits, costs, risks, and resource
requirements.

Behavior Represents how an object acts
and reacts.

Beta testing User testing of a completed
information system using real data in the
real user environment.

Binary relationship A relationship
between instances of two entity types.

Boundary The line that marks the inside
and outside of a system and that sets off the
system from its environment.

Break-even analysis A type of cost-
benefit analysis to identify at what point
(if ever) benefits equal costs.

Build routines Guidelines that list the
instructions to construct an executable
system from the baseline source code.

Business case A written report that
outlines the justification for an information
system. The report highlights economic
benefits and costs and the technical and
organizational feasibility of the proposed
system.

Business process reengineering
(BPR) The search for, and
implementation of, radical change in
business processes to achieve
breakthrough improvements in products
and services.

Calculated (or computed or derived)
field A field that can be derived from
other database fields.

Candidate key An attribute (or
combination of attributes) that uniquely
identifies each instance of an entity type.

Cardinality The number of instances of
entity B that can (or must) be associated
with each instance of entity A.

Class diagram A diagram that shows the
static structure of an object-oriented model:
the object classes, their internal structures,
and the relationships in which they
participate.

Closed-ended questions Questions in
interviews and on questionnaires that ask
those responding to choose from among a
set of specified responses.

Cloud computing The provision
of computing resources, including
applications, over the Internet, so
customers do not have to invest in the
computing infrastructure needed to run
and maintain the resources.

COCOMO A method for estimating a
software project’s size and cost.

Cohesion The extent to which a system
or subsystem performs a single function.

Component An irreducible part or
aggregation of parts that makes up a
system; also called a subsystem.

Component diagram A diagram that
shows the software components or
modules and their dependencies.

Computer-aided software engineering
(CASE) Software tools that provide
automated support for some portion of the
systems development process.

Conceptual data model A detailed
model that shows the overall structure of
organizational data but is independent of
any database management system or other
implementation considerations.

Concrete class A class that can have
direct instances.

Condition stubs That part of a decision
table that lists the conditions relevant to the
decision.

Configuration management The
process of ensuring that only authorized
changes are made to a system.

Constraint A limit to what a system can
accomplish.

Context diagram A data-flow diagram of
the scope of an organizational system that
shows the system boundaries, external
entities that interact with the system,
and the major information flows between
the entities and the system.

Cookie crumbs A technique for showing
a user where they are in a Web site by
placing a series of “tabs” on a Web page that
show a user where they are and where they
have been.

Corrective maintenance Changes made
to a system to repair flaws in its design,
coding, or implementation.

Coupling The extent to which
subsystems depend on each other.

Critical path The shortest time in which
a project can be completed.

Critical path scheduling A scheduling
technique in which the order and duration

403

404 Glossary of Terms

of a sequence of task activities directly
affect the completion date of a project.

Data-flow diagram (DFD) A graphic
that illustrates the movement of data
between external entities and the processes
and data stores within a system.

Data store Data at rest, which may take
the form of many different physical
representations.

Data type A coding scheme recognized
by system software for representing
organizational data.

Decision table A matrix representation
of the logic of a decision, which specifies
the possible conditions for the decision and
the resulting actions.

Decomposition The process of breaking
the description of a system down into small
components; also known as functional
decomposition.

Default value The value a field will
assume unless an explicit value is entered
for that field.

Degree The number of entity types that
participate in a relationship.

Deliverable An end product in a phase of
the systems development life cycle (SDLC).

Denormalization The process of
splitting or combining normalized relations
into physical tables based on affinity of use
of rows and fields.

Design strategy A particular approach
to developing an information system.
It includes statements on the system’s
functionality, hardware and system
software platform, and method for
acquisition.

Desk checking A testing technique in
which the program code is sequentially
executed manually by the reviewer.

DFD completeness The extent to which
all necessary components of a data-flow
diagram have been included and fully
described.

DFD consistency The extent to which
information contained on one level of a set
of nested data-flow diagrams is also
included on other levels.

Dialogue The sequence of interaction
between a user and a system.

Dialogue diagramming A formal method
for designing and representing human-
computer dialogues using box and line
diagrams.

Direct installation Changing over from
the old information system to a new one by
turning off the old system when the new
one is turned on.

Discount rate The interest rate used to
compute the present value of future cash
flows.

Disruptive technologies Technologies
that enable the breaking of long-held
business rules that inhibit organizations
from making radical business changes.

Economic feasibility A process of
identifying the financial benefits and costs
associated with a development project.

Electronic commerce (EC or
E-commerce) Internet-based
communication and other technologies that
support day-to-day business activities.

Electronic data interchange
(EDI) The use of telecommunications
technologies to transfer business
documents directly between organizations.

Electronic performance support system
(EPSS) Component of a software
package or application in which training
and educational information is embedded.
An EPSS may include a tutorial, an expert
system, and hypertext jumps to reference
material.

Encapsulation The technique of hiding
the internal implementation details of an
object from its external view.

Enterprise resource planning (ERP)
system A system that integrates
individual traditional business functions
into a series of modules so that a single
transaction occurs seamlessly within a
single information system rather than in
several separate systems.

Entity A person, place, object, event, or
concept in the user environment about which
the organization wishes to maintain data.

Entity instance (instance) A single
occurrence of an entity type.

Entity-relationship diagram (E-R
diagram) A graphical representation of
the entities, associations, and data for an
organization or business area; it is a model
of entities, the associations among those
entities, and the attributes of both the
entities and their associations.

Entity type A collection of entities that
share common properties or characteristics.

Environment Everything external to a
system that interacts with the system.

Event Something that takes place at a
certain point in time; it is a noteworthy
occurrence that triggers a state transition.

External documentation System
documentation that includes the outcome of
structured diagramming techniques, such as
data-flow and entity-relationship diagrams.

Extranet Internet-based communication
to support business-to-business activities.

Feasibility study Determines whether
the information system makes sense for the
organization from an economic and
operational standpoint.

Field The smallest unit of named
application data recognized by system
software.

File organization A technique for
physically arranging the records of a file.

Foreign key An attribute that appears as
a nonprimary key attribute in one relation
and as a primary key attribute (or part of a
primary key) in another relation.

Form A business document that contains
some predefined data and may include
some areas where additional data are to be
filled in; typically based on one database
record.

Formal system The official way a system
works, as described in organizational
documentation.

Functional dependency A particular
relationship between two attributes. For a
given relation, attribute B is functionally
dependent on attribute A if, for every valid
value of A, that value of A uniquely
determines the value of B. The functional
dependence of B on A is represented
by A → B.

Gantt chart A graphical representation
of a project that shows each task as a
horizontal bar whose length is proportional
to its time for completion.

Gap analysis The process of discovering
discrepancies between two or more sets of
data-flow diagrams or discrepancies within
a single DFD.

Hashed file organization The address
for each row is determined using an
algorithm.

Help desk A single point of contact for
all user inquiries and problems about a
particular information system or for all
users in a particular department.

Homonym A single attribute name that is
used for two or more different attributes.

Identifier A candidate key that has been
selected as the unique, identifying
characteristic for an entity type.

Incremental commitment A strategy in
systems analysis and design in which the
project is reviewed after each phase, and
continuation of the project is rejustified in
each of these reviews.

Index A table used to determine the
location of rows in a file that satisfy some
condition.

Indexed file organization The rows
are stored either sequentially or
nonsequentially, and an index is created that
allows software to locate individual rows.

Indifferent condition In a decision
table, a condition whose value does not
affect which actions are taken for two
or more rules.

Glossary of Terms 405

Informal system The way an
organization actually works.

Information systems analysis and
design The process of developing and
maintaining an information system.

Input mask A pattern of codes that
restricts the width and possible values
for each position of a field.

Inspections A testing technique in which
participants examine program code for
predictable language-specific errors.

Installation The organizational process
of changing over from the current
information system to a new one.

Intangible benefit A benefit derived
from the creation of an information system,
that cannot be easily measured in dollars
or with certainty.

Intangible cost A cost associated with
an information system, that cannot be
easily measured in terms of dollars or
with certainty.

Integration testing The process of
bringing together for testing purposes all
of the modules that a program comprises.
Modules are typically integrated in a
top-down, incremental fashion.

Interface Point of contact where a
system meets its environment or where
subsystems meet each other.

Internal documentation System
documentation that is part of the program
source code or is generated at compile time.

Internet A network of interconnected
individual networks that use a common
protocol to communicate with one another;
a global computing network to support
business-to-consumer electronic commerce.

Interrelated Dependence of one part of
the system on one or more other system
parts.

Intranet Internet-based communication
to support business activities within a
single organization.

Issue tracking system Typically a
Web-based tool for logging, tracking, and
assigning system bugs and change requests
to developers.

JAD session leader The trained
individual who plans and leads joint
application design sessions.

Joint application design (JAD)
A structured process in which users,
managers, and analysts work together for
several days in a series of intensive
meetings to specify or review system
requirements.

Key business processes The structured,
measured set of activities designed to
produce a specific output for a particular
customer or market.

Legal and contractual feasibility The
process of assessing potential legal and
contractual ramifications due to the
construction of a system.

Level-0 diagram A data-flow diagram
that represents a system’s major processes,
data flows, and data stores at a high level of
detail.

Level-n diagram A DFD that is the result
of n-nested decompositions of a series of
subprocesses from a process on a level-0
diagram.

Lightweight graphics The use of small
simple images to allow a Web page to be
displayed more quickly.

Maintenance Changes made to a system
to fix or enhance its functionality.

Mean time between failures
(MTBF) A measurement of error
occurrences that can be tracked over time
to indicate the quality of a system.

Modularity Dividing a system up into
chunks or modules of a relatively uniform
size.

Multiplicity An indication of how many
objects participate in a given relationship.

Multivalued attribute An attribute that
may take on more than one value for each
entity instance.

Network diagram A diagram that
depicts project tasks and their
interrelationships.

Normalization The process of
converting complex data structures into
simple, stable data structures.

Null value A special field value, distinct
from 0, blank, or any other value, that
indicates that the value for the field is
missing or otherwise unknown.

Object An entity that has a well-defined
role in the application domain and has
state, behavior, and identity.

Object class A set of objects that share
a common structure and a common
behavior.

Object diagram A graph of instances
that are compatible with a given class
diagram.

One-time cost A cost associated with
project initiation and development, or
system start-up.

Open-ended questions Questions in
interviews and on questionnaires that have
no prespecified answers.

Operation A function or a service that is
provided by all the instances of a class.

Operational feasibility The process of
assessing the degree to which a proposed
system solves business problems or takes
advantage of business opportunities.

Outsourcing The practice of turning over
responsibility for some or all of an
organization’s information systems
applications and operations to an outside
firm.

Parallel installation Running the old
information system and the new one at the
same time until management decides the
old system can be turned off.

Participatory design (PD) A systems
development approach that originated in
northern Europe, in which users and the
improvement of their work lives are the
central focus.

Perfective maintenance Changes made
to a system to add new features or to
improve performance.

PERT A technique that uses optimistic,
pessimistic, and realistic time estimates to
calculate the expected time for a particular
task.

Phased installation Changing from the
old information system to the new one
incrementally, starting with one or a few
functional components and then gradually
extending the installation to cover the
whole new system.

Physical file A named set of table rows
stored in a contiguous section of secondary
memory.

Physical table A named set of rows and
columns that specifies the fields in each
row of the table.

Pointer A field of data that can be used
to locate a related field or row of data.

Political feasibility The process of
evaluating how key stakeholders within
the organization view the proposed
system.

Present value The current value of a
future cash flow.

Preventive maintenance Changes made
to a system to avoid possible future
problems.

Primary key An attribute whose value
is unique across all occurrences of a
relation.

Primitive DFD The lowest level of
decomposition for a data-flow diagram.

Process The work or actions performed
on data so that they are transformed,
stored, or distributed.

Process modeling Graphically
representing the processes that capture,
manipulate, store, and distribute data
between a system and its environment and
among components within a system.

Project A planned undertaking of related
activities, having a beginning and an end, to
reach an objective.

406 Glossary of Terms

Project charter A short, high-level
document prepared for both internal and
external stakeholders to formally announce
the establishment of the project and to
briefly describe its objectives, key
assumptions, and stakeholders.

Project closedown The final phase of
the project management process, which
focuses on bringing a project to an end.

Project execution The third phase of the
project management process, in which the
plans created in the prior phases (project
initiation and planning) are put into action.

Project initiation The first phase of the
project management process, in which
activities are performed to assess the size,
scope, and complexity of the project and
to establish procedures to support later
project activities.

Project management A controlled
process of initiating, planning, executing,
and closing down a project.

Project manager A systems analyst with
a diverse set of skills—management,
leadership, technical, conflict management,
and customer relationship—who is
responsible for initiating, planning,
executing, and closing down a project.

Project planning The second phase of
the project management process, which
focuses on defining clear, discrete activities
and the work needed to complete each
activity within a single project.

Project scope statement A document
prepared for the customer that describes
what the project will deliver and that
outlines generally at a high level all work
required to complete the project.

Project workbook An online or hard-
copy repository, for all project
correspondence, inputs, outputs,
deliverables, procedures, and standards,
that is used for performing project audits,
orienting new team members,
communicating with management and
customers, identifying future projects, and
performing postproject reviews.

Prototyping Building a scaled-down
version of the desired information system.

Purpose The overall goal or function of a
system.

Rapid application development (RAD)
Systems development methodology created
to radically decrease the time needed to
design and implement information systems.

Recurring cost A cost resulting from the
ongoing evolution and use of a system.

Recursive foreign key A foreign key in a
relation that references the primary key
values of that same relation.

Refactoring Making a program simpler
after adding a new feature.

Referential integrity An integrity
constraint specifying that the value (or
existence) of an attribute in one relation
depends on the value (or existence) of the
same attribute in another relation.

Relation A named, two-dimensional table
of data. Each relation consists of a set of
named columns and an arbitrary number
of unnamed rows.

Relational database model Data
represented as a set of related tables or
relations.

Relationship An association between the
instances of one or more entity types that is
of interest to the organization.

Repeating group A set of two or more
multivalued attributes that are logically
related.

Report A business document that
contains only predefined data; it is a
passive document used only for reading or
viewing; typically contains data from many
unrelated records or transactions.

Repository A centralized database that
contains all diagrams, forms and report
definitions, data structures, data
definitions, process flows and logic, and
definitions of other organizational and
system components; it provides a set of
mechanisms and structures to achieve
seamless data-to-tool and data-to-data
integration.

Request for proposal (RFP) A
document provided to vendors to ask them
to propose hardware and system software
that will meet the requirements of a new
system.

Resources Any person, group of people,
piece of equipment, or material used in
accomplishing an activity.

Reuse The use of previously written
software resources, especially objects and
components, in new applications.

Rules That part of a decision table that
specifies which actions are to be followed
for a given set of conditions.

Schedule feasibility The process of
assessing the degree to which the potential
time frame and completion dates for all
major activities within a project meet
organizational deadlines and constraints for
effecting change.

Scribe The person who makes detailed
notes of the happenings at a joint
application design session.

Second normal form (2NF) A relation
for which every nonprimary key attribute is
functionally dependent on the whole
primary key.

Secondary key One or a combination of
fields for which more than one row may
have the same combination of values.

Sequence diagram A depiction of the
interactions among objects during a certain
period of time.

Sequential file organization The rows
in the file are stored in sequence according
to a primary key value.

Simple design Creating uncomplicated
software and software components that
work to solve the current problem rather
than creating complicated software
designed for a future that may not come.

Simple message A message that
transfers control from the sender to the
recipient without describing the details of
the communication.

Single location installation Trying out
a new information system at one site and
using the experience to decide if and how
the new system should be deployed
throughout the organization.

Slack time The amount of time that an
activity can be delayed without delaying the
project.

Source/Sink The origin and/or
destination of data; sometimes referred to
as external entities.

State A condition that encompasses an
object’s properties (attributes and
relationships) and the values those
properties have.

State transition The changes in the
attributes of an object or in the links an
object has with other objects.

Stub testing A technique used in
testing modules, especially modules that
are written and tested in a top-down
fashion, where a few lines of code are
used to substitute for subordinate
modules.

Support Providing ongoing
educational and problem-solving
assistance to information system users.
Support material and jobs must be
designed along with the associated
information system.

Synchronous message A type of
message in which the caller has to wait for
the receiving object to finish executing the
called operation before it can resume
execution itself.

Synonyms Two different names that are
used for the same attribute.

System A group of interrelated
procedures used for a business function,
with an identifiable boundary, working
together for some purpose.

System documentation Detailed
information about a system’s design
specifications, its internal workings,
and its functionality.

Glossary of Terms 407

System librarian A person responsible
for controlling the checking out and
checking in of baseline modules when a
system is being developed or maintained.

Systems analysis Phase of the SDLC in
which the current system is studied and
alternative replacement systems are proposed.

Systems analyst The organizational role
most responsible for the analysis and
design of information systems.

Systems design Phase of the SDLC in
which the system chosen for development
in systems analysis is first described
independently of any computer platform
(logical design) and is then transformed
into technology-specific details (physical
design) from which all programming and
system construction can be accomplished.

Systems development life cycle
(SDLC) The series of steps used to mark
the phases of development for an
information system.

Systems development methodology
A standard process followed in an
organization to conduct all the steps
necessary to analyze, design, implement,
and maintain information systems.

Systems implementation and
operation Final phase of the SDLC, in
which the information system is coded,
tested, and installed in the organization,
and in which the information system is
systematically repaired and improved.

Systems planning and selection The
first phase of the SDLC, in which an
organization’s total information system

needs are analyzed and arranged, and in
which a potential information systems
project is identified and an argument for
continuing or not continuing with the
project is presented.

System testing The bringing together for
testing purposes of all the programs that a
system comprises. Programs are typically
integrated in a top-down incremental
fashion.

Tangible benefit A benefit derived from
the creation of an information system, that
can be measured in dollars and with
certainty.

Tangible cost A cost associated with an
information system, that can be easily
measured in dollars and with certainty.

Technical feasibility A process of
assessing the organization’s ability to
construct a proposed system.

Template-based HTML Templates to
display and process common attributes of
higher-level, more abstract items.

Ternary relationship A simultaneous
relationship among instances of three entity
types.

Testing harness An automated testing
environment used to review code for
errors, standards violations, and other
design flaws.

Third normal form (3NF) A relation
that is in second normal form and has no
functional (transitive) dependencies
between two (or more) nonprimary key
attributes.

Time value of money (TVM) The
process of comparing present cash outlays
to future expected returns.

Unary relationship (recursive
relationship) A relationship between the
instances of one entity type.

Unified Modeling Language (UML)
A notation that allows the modeler to
specify, visualize, and construct the
artifacts of software systems, as well as
business models.

Unit testing Each module is tested alone
in an attempt to discover any errors in its
code.

Use case A complete sequence of related
actions initiated by an actor; it represents
a specific way to use the system.

Use-case diagram A diagram that depicts
the use cases and actors for a system.

User documentation Written or other
visual information about how an application
system works, and how to use it.

Walkthrough A peer group review of any
product created during the systems
development process; also called a
structured walkthrough.

Well-structured relation (table)
A relation that contains a minimum amount
of redundancy and allows users to insert,
modify, and delete the rows without errors
or inconsistencies.

Work breakdown structure The process
of dividing the project into manageable
tasks and logically ordering them to ensure
a smooth evolution between tasks.

This page intentionally left blank

Index
Page references with f indicate figures; those with t represent tables.

A
Abstract class, 370
Acceptance testing, 329–330
Action stubs, 172
Activation, 373
Actors, 362–363
Adaptive maintenance, 343–344
Ad hoc reuse, 38
Aggregation, 370
Agile Manifesto, 382f
Agile Methodologies, 381–392

eXtreme Programming, 384–385,
390, 391

implementation, 391
key principles, 382–383, 391
overview, 21
projects benefiting from, 383
requirements determination, 386–389
success factors, 391
vs. engineering-based methodologies, 383–384

Agile Usage-Centered Design, 387–388, 389
Alpha testing, 329–330, 352, 353t
Analysis paralysis, 126
Application software, 4

See also systems
Association relationships, 366–368
Association roles, 366
Associative entities, 204–206
Attributes, 199
Attributive entities, 200
Audit trails, 253

B
Balancing, of data-flow diagrams,

164–166
Baseline modules, 347–348
Baseline project plan (BPP)

defined, 89
in project management process,

59–60
reviewing, 105–108
scope of, 89–90
sections of, 99–104

BEA (break-even analysis), 96–97, 98t
Behavior, of objects, 365
Benefits, intangible, 93
Beta testing, 329, 330, 352

Bill-of-materials structure, 288
Binary relationships

in conceptual data modeling, 202f, 203
in database design, 286–288
in object-oriented analysis/design, 367, 368f

Blended learning, 337
Boeing Company, 387
Bottom-up data modeling, 195
Bottom-up project initiation, 87
Boundaries, 6f, 7
BPP. See baseline project plan
BPR (business process reengineering), 141, 169–171
Break-even analysis (BEA), 96–97, 98t
Budget creation, 59, 60f
Bug tracking, 338, 339f, 340t, 352
Build routines, 348
Business case, 89
Business forms, document analysis of, 134, 135f
Business process reengineering (BPR), 141, 169–171

C
Calculated fields, 295
Candidate keys, 199
Cardinalities, 203–204
CASE (computer-aided software engineering) tools, 18–19
Champy, James, 142, 169–170
Check digits, calculating, 253, 254f
Class diagrams, 362, 365–368
Client/server model, 10
Closed-ended questions, 129–130
Cloud computing, 32, 33t
COCOMO (COnstructive COst MOdel), 55–56
Coding

in Agile Methodologies, 389, 390
automatic updates, 348
deliverables and outcomes, 321–322
in eXtreme Programming, 385
overview, 15
process of, 321
quality vs. speed, 56f
techniques, 295–296

Coding sheets, 235
Cohesion, 10
Communication

during project execution, 62, 63t
during project planning, 57–59, 104
by systems analysts, 11

409

410 Index

Complete (subclass constraint), 370
Completeness, of data-flow diagrams, 166–167
Component-based development, 36–37
Component diagrams, 375–376
Components, 6f, 7
Compression techniques, 295–296
Computed fields, 295
Computer-aided software engineering (CASE)

tools, 18–19
Conceptual data model, 190, 195
Conceptual data modeling, 190–219

deliverables and outcomes, 191–195 (See also
E-R diagrams)

examples, 205–208, 209–213
importance of, 189–190
information gathering for, 195–197
process of, 191
relationship to SDLC, 192f

Concrete class, 370
Condition stubs, 172
Configuration management, 347–348
Consistency, of data-flow diagrams, 167
Constraints, 6f, 7, 215–216
Context diagrams, 158
Control design, 296–297, 303–304
Cookie crumbs, 264–265
Corrective maintenance, 343
Cost–benefit analysis

project assessment, 92–94, 111, 112t
techniques, 97, 98t
See also economic feasibility; project feasibility

Cost comparison, 34
Coupling, 9
Critical paths, 70–71
Critical path scheduling, 66
Customer contract, closing, 64, 343
Customer relationships, establishing, 50

D
Database design, 274–309

deliverables and outcomes, 276–279
examples, 291–293, 304–309
field design, 294–297
logical/physical, 15, 16f, 274
merging relations, 285, 289–291
normalization, 274, 281–284
physical file design, 293–294
physical table design, 297–304
process of, 274–276
purposes of, 273
relational database model, 279–281
transforming E-R diagrams into relations, 284–289

Data conversion, 331–332
Data entry fields, structuring, 251–252
Data-flow diagrams (DFDs)

as analysis tools, 166, 168–169
balancing, 164–166
in business process reengineering, 169–171
completeness of, 166–167
consistency of, 167
decomposition of, 162–164, 168
defined, 154
drawing guidelines, 166–168
examples, 158–160, 169–171, 175–177, 206
forms/reports relationship to, 234
links to data models, 195
RAD alternatives to, 155
rules governing, 160t, 161–162, 166t
symbols in, 155–158

Data input, controlling, 252–254, 265
Data integrity, controlling, 296–297
Data modeling, 191, 192f

See also conceptual data modeling
Data store, 156
Data structure, 275
Data types, 275, 294–296
Decision tables, 172–175
Decomposition, 8–9
Default values, 296
Degrees, of relationships, 202–203
Deliverables

coding, 321–322
conceptual data modeling, 191–195
database design, 276–279
defined, 46
dialogue design, 247
forms/reports design, 236–238
installation, 321–322
interface design, 247
process modeling, 154–155
project identification and selection, 87–88
project initiation, 89–90
project planning, 59, 89–90, 100, 101f (See also baseline

project plan)
role in SDLC, 236–237
software application testing, 321–322
system requirements determination, 125–126
systems maintenance, 324–325
user support and training, 323

Denormalization, 298–299, 300f
Dependencies

among subsystems, 9
functional, 282
between nonkeys, 290–291
Unified Modeling Language, 375

Enterprise resource planning (ERP) systems, 10, 31–32,
33t, 345

Enterprise solutions software, 10, 31–32, 33t, 345
Entities

associative, 204–206
in conceptual data modeling, 197–199
defined, 197
in E-R diagrams, 284, 285

Entity instances, 198
Entity-relationship data models. See E-R diagrams
Entity-relationship diagrams. See E-R diagrams
Entity types, 198, 284, 285
Environment, 6f, 7
EPSS (electronic performance support system), 337–338
E-R (entity-relationship) diagrams, 197–206

cardinalities, 203–204
in conceptual data modeling, 190–191
defined, 197
in design phase, 191
examples, 192, 193f, 207, 211–212, 213f
notation for, 192–193, 197
relationship degrees, 202–203
relationship of forms/reports to, 234
transforming into relations, 284–289
types of, 193–194

ERP (enterprise resource planning) systems, 10, 31–32, 33t, 345
Essential features, 215
Events, defined, 371
Expected time duration, 67, 68–69
Extends relationships, 364
External documentation, 333
External entities, 156–158, 159
Extranet, 110
EXtreme Programming, 384–385, 390, 391

F
Facilitated reuse, 38
Feasibility. See economic feasibility; project feasibility
Feasibility studies, defined, 47
Feedback, in interface design, 254–255
Field design, 294–297
Fields, defined, 294
File design, 293–294
File organizations, 275, 299, 301–303
Foreign keys, 283–284, 288
Formal systems, 134
Forms, defined, 234
Forms and reports design, 234–246

data integrity, 265
deliverables and outcomes, 236–238
evolving rules of, 238–239
formatting guidelines, 239–240
highlighting, 240–242

Index 411

Deployment diagrams, 376
Derived fields, 295
Designed reuse, 38
Design recovery tools, 348
Design specifications

in Agile Methodologies, 389–390
as deliverable of forms/reports design, 236–237
sections of, 237–238

Design strategies
defined, 213
example, 216–219
generating alternatives, 214–216
overview, 190
selecting best, 213–214

Desired features, 215
Desk checking, 325t, 326
DFDs. See data-flow diagrams
Dialogue design, 246–247,

258–261, 263t
Dialogue diagramming, 259–260, 261f
Dialogues, defined, 258
Direct installation, 330, 331f, 332t
Direct observation of users,

131–132, 137t
Discount rate, 95
Discriminators, 369
Disjoint (subclass constraint), 370
Disruptive technologies, 142–143
Document analysis, 132–137
Documentation, internal/external, 333
Documentation, system. See system documentation
Documentation, user, 333, 334–336
Dynamic modeling, 371–374

E
EC (electronic commerce), 109–110
Economic feasibility

assessment of, 92–98, 111, 112t
in baseline project plan, 103
cost–benefit analysis techniques, 97, 98t
defined, 92
factors influencing, 113t
overview, 14
as project planning activity, 53–54,

59, 60f
of software reuse, 37, 38t
time value of money, 94–97
See also project feasibility

E-learning, 337
Electronic commerce (EC), 109–110
Electronic data interchange (EDI), 110
Electronic performance support system (EPSS), 337–338
Encapsulation, 366

412 Index

Forms and reports design (continued)
paper vs. electronic reports, 245–246
process of, 234–236, 237f
tables and lists, 242–245
text, 242, 243f

Free slack time, 71
Functional dependency, 282
Functional testing, 325t, 327

G
Gantt charts

defined, 54
examples, 55f, 68–70
progress vs. planned activities, 74f
project schedules, 64–65, 113f
task breakdown, 54–55
tasks completion, 60, 61f
task sequence and duration, 69–70
vs. Network diagrams, 64–65, 66–67

Gap analysis, 169
General Electric, 27–28
Generalization, representing, 368–370
Generated reports, document analysis of, 134, 136f
Graphics, lightweight, 264

H
Hammer, Michael, 142, 169–170
Hashed file organizations, 301f, 303, 304t
Help, design of, 255–258
Help desks, 338–340
Highlighting, in forms and reports, 240–242
Homonyms, 290
Hoosier Burger, examples from

conceptual data modeling, 206–208
data flow diagram balancing, 164–166
data flow diagram decomposition, 162–164
data flow diagram development, 158–160
decision tables, 174–175
design strategy development, 216–219
logical database design, 291–293
physical database design, 304–306
use-case diagram, 364–365

HP, 37
HTML, template-based, 265–266

I
IBM, 30
IBM Credit Corporation, 169–171
Identifiers, 199–200
Implementation. See systems implementation and operation
Incomplete (subclass constraint), 370
Incremental commitment, 88, 108

Indexed file organizations, 301f, 302–303, 304t
Indifferent conditions, 173
Informal systems, 134
Information hiding, 366
Information systems. See systems
Information systems analysis and design, 4–6
Inheritance, 370
In-house software development, 27, 32–33
Input masks, 296
Inspections, 325t, 326
Installation

approaches, 330, 331f, 332t
defined, 330
deliverables and outcomes, 321–322
example, 352
overview, 15–16, 17
planning, 330–333
process of, 321

Instances, 198
Intangible benefits, 93
Intangible costs, 93
Integration testing, 325t, 327
Interface design, 234–266

common errors, 263t, 264t
data entry structuring, 251–252
data input control, 252–254, 265
deliverables and outcomes, 247
dialogues, 246–247, 258–261, 263t
example, 262–266
feedback, 254–255
forms and reports (See forms and reports design)
graphics, lightweight, 265
help, 255–258
layout, 247–251
navigation, 248–249, 250f, 264–265
process of, 246–247
usability assessment, 247, 250t, 260–261
web sites, 262–263, 264t

Interfaces, 6f, 7
Internal documentation, 333
Internet, 108–110
Internet application design, 111t
Interrelated components, 6f, 7
Interviewing, 126–131
Intranet, 110
Issue tracking systems, 338, 339f, 340t, 352
IT employment statistics, 11
Iteration Planning Game, 389
IT services firms, 29–30, 33t

J
JAD (joint application design), 19, 136–139, 143–145
JAD session leaders, 139

Normalization, 274, 281–284
Normalized relations, 276
NPV (net present value), 95, 96–97, 98t
Null values, 297
NUnit, 329

O
Object class, defined, 365
Object class libraries, reuse of, 37
Object diagrams, 365–366
Object modeling, 362, 365–368
Object-oriented modeling, 361–376

aggregation, 370
benefits of, 361
class diagrams, 365–368
development life cycle, 361–362
generalization, 368–370
reusing existing software, 36
sequence diagrams, 372–375
state diagrams, 371–372
systems analysis in, 361–362
systems design in, 361, 362, 375–376
Unified Modeling Language, 362
use-case modeling, 362–365

Objects, 361
Off-the-shelf software, 30–31, 33–36
One-time costs, 93, 94f
Open-ended questions, 128–129
Open-source software, 32–33
Operation. See systems implementation and operation
Operational feasibility, 98
Operations, 17, 365, 366
Oracle Corp., 31–32
Outsourcing, 28–29
Overlapping (subclass constraint), 370

P
Packaged software, 30–31, 33–36
Packaged software producers, 30–31, 33t
Packages, Unified Modeling Language, 375
Pages, 297
Parallel installation, 330, 331f, 332t
Participatory design (PD), 21
People, management of, 56–57
PeopleSoft, Inc., 31
Perfective maintenance, 344
Performance testing, 330, 352, 353t
PERT (Program Evaluation Review Technique), 67
Phased installation, 330, 331f, 332t
Physical design, 15, 16f, 274
Physical file design, 293–294
Physical files, 299

Index 413

K
Key business processes, 141–142

L
Latent defects, 344
Layout design, 247–251

See also interface design
Legal and contractual feasibility, 98
Level-0 data-flow diagrams, 159, 175–177
Level-n diagrams, 162, 163–164
Lifelines, 373
Lightweight graphics, 264
Logical design, 15, 16f, 274
Logic modeling, 171–175

M
Maintenance, 343

See also systems maintenance
Managed reuse, 38
Management. See project management
Mandatory features, 214–215
Maximum cardinality, 203–204
Mean time between failures (MTBF), 345
Methodologies, 5
Microsoft Access, 295t
Microsoft PowerPoint, 108
Microsoft Project for Windows, 66, 72–74
Microsoft Visio

in database design, 276, 277f
entity type representation, 200
E-R diagram creation, 192–193, 194f

Microsoft Visual Basic.Net, 236, 237f
Minimum cardinality, 203
Modularity, 9
Module testing, 327
MTBF (mean time between failures), 345
Multiplicities, 366–367
Multivalued attributes, 200

N
Narrative overview, 237, 238f, 247
Navigation design, 248–249, 250f, 264–265
Net present value (NPV), 95, 96–97, 98t
Network diagrams

defined, 57
estimated times/completion times in, 67, 70
examples, 68–70
scheduling project plans, 64–65, 66
task relationships and sequences in, 57, 66–67
vs. Gantt charts, 64–65, 66–67

Nonkeys, 290–291

414 Index

Physical tables, 297–304
Pine Valley Furniture Company, 44–45

See also PVF Company, examples from; PVF Company
WebStore, examples from

Planning Game, 388–389
Pointer, 299
Political feasibility, 98
Postproject reviews, 64, 66, 342
Presentation guidelines, 108, 109t
Present value, 95
Preventive maintenance, 344
Primary keys, 276, 280, 282
Primitive data-flow diagrams, 168
Procedure documents, document analysis of, 133–134
Process, 156, 157–158
Process modeling, 154–177

decision tables, 172–175
defined, 154
deliverables and outcomes, 154–155 (See also data-flow

diagrams)
example, 175–177
logic modeling, 171–172

Productionizing, 390
Project, defined, 45
Project charter, 51, 52f
Project closedown, 63–64, 342–343
Project execution, 60–63
Project feasibility

assessing, 90–91, 114
examples, 90–91, 112t, 113t
factors influencing, 90, 98–99, 113t
See also economic feasibility

Project identification and selection, 84–88
Project initiation

activities, 49–53, 88–89
defined, 49
deliverables, 89–90
examples, 45–47, 111
project workbook, 50–51
See also project planning

Project management, 44–74
defined, 48
examples, 44–45, 68–71
process of, 48
project closedown, 43f, 63–64
project execution, 43f, 60–63
project initiation, 43f, 45–47, 49–53
project planning, 43f
software tools for, 71–74
See also project planning

Project managers, 45, 48f, 49t, 342
Project planning

activities, 53, 54t, 88–89, 90t
baseline project plan, 59–60

budget, preliminary, 59
communication plan, 57–59
critical path scheduling, 66
defined, 53
deliverables, 89–90 (See also baseline project plan (BPP);

project scope statement)
expected time duration calculation, 67, 68–69
feasibility assessment (See economic feasibility; project

feasibility)
level of detail, 53f
Microsoft Project for Windows, 66
nearer-term vs. long-term projects, 53
in project management process, 53–60
project scope statement, 59
resource estimates, 55–57
risk assessment, 59
schedule, preliminary, 57
scope, alternatives, and feasibility, 53–54
standards and procedures, 59
systems analyst’s role in, 89
task division, 54–55
tools (See Gantt charts; Network diagrams)
See also project initiation

Project reports, reviewing, 73–74
Project repositories, 19, 191, 194–195
Project scope statement

example, 100–101, 102
overview, 14, 59, 89, 100

Project workbooks, 50–51, 62
Prototyping

as alternative to SDLC, 18
defined, 18
in determining system requirements, 139–140
in dialogue design, 260–261
in forms/reports design, 235
in rapid application development, 19

Purpose, 6f, 7
PVF Company, background of, 44–45
PVF Company, examples from

baseline project plan, 99–108
conceptual data modeling, 195–197, 205–206
dialogue design, 259, 260, 261f
feasibility assessment, 90–91, 92–97
forms/reports formatting, 239–240, 243, 244f,

245, 246f
forms/reports specifications,

237–238, 247
Gantt charts/Network diagrams, 68–71
logical database design, 276–284, 285–288, 289–291
maintenance, 349–350
physical database design, 278–279

PVF Company WebStore, examples from
conceptual data modeling, 209–213
database design, 306–309

interface design, 259, 263–266
process modeling, 175–177
system requirement determination, 143–146
systems implementation and operation, 350–353
systems planning and selection, 110–113

Q
Quick reference guides, 334

R
RAD (rapid application development), 19–20, 155
Range control, 296
Recovery testing, 330, 352, 353t
Recurring costs, 94, 95f
Recursive foreign keys, 288
Recursive relationships, 202, 286, 288, 367f
Reengineering processes, 141–142, 348
Refactoring, 390
Reference guides, 334
Referential integrity, 284, 296–297
Relational database model, 279–281
Relations

defined, 280
merging, 285, 289–291
normalizing, 285
transforming E-R diagrams into, 284–289

Relationships
aggregation, 370
association, 366–368
cardinalities in, 203–204
defined, 201
degrees of, 202–203
in E-R diagram transformation, 284, 286–288
generalization, 368–370

Release descriptions, 334–335
Repeating groups, 201
Reports, 234, 245–246

See also forms and reports design
Repositories, 19, 191, 194–195
Request for proposal (RFP), 35–36
Request for quote (RFQ), 35
Requirements, system, 126

use-case modeling, 362–365
See also conceptual data modeling; process modeling;

system requirements, determining
Resources, 55–57, 66
Response time, 35
Return on investment (ROI), 96, 98t
Reusing existing software, 36–39
Reverse engineering, 348
Reviews, postproject, 64
RFP (request for proposal), 35–36
RFQ (request for quote), 35

Risk assessment, 59
ROI (return on investment), 96, 98t
Rules, decision table, 172–173

S
Sample design, 247
Sample designs, 237, 238f
SAP AG, 31
Schedule feasibility, 98
Scope determination, 14, 59, 99–100

See also project scope statement
Scribes, 138, 139
SDLC (systems development life cycle)

Agile Methodologies’ approach to, 385
defined, 12, 13f
maintenance activities within, 323–324
overview, 13–17
phase 1 (See systems planning and selection)
phase 2 (See systems analysis)
phase 3 (See database design; interface design;

systems design)
phase 4 (See systems implementation and operation)
vs. rapid application development, 20f

Search engines, reregistering with, 349
Second normal form (2NF), 281, 282–283
Security testing, 330, 352, 353t
Sequence diagrams, 362, 372–375
Sequential file organizations, 301, 304t
Servers, 10
Simple design, 390
Simple messages, 374
Single location installation, 330, 331f, 332t
Slack time, 70, 71
Software application testing, 325

See also testing
Software companies, 30t
Software engineering process, 5
Software help components, 337–338
Software sources, 27–39

cloud computing, 32
comparison of, 33t
enterprise solutions software, 10, 31–32, 345
in-house development, 27, 32–33
IT services firms, 29–30
open-source software, 32–33
outsourcing, 28–29
packaged software, 30–31, 33–36
reuse, 36–39

SourceForge.net, 33
Source/sink, 156–158, 159
SSR (system service request), 46
State, of objects, 365
State diagrams, 362, 371–372

Index 415

416 Index

State transition, 371–372
Story Cards, 388–389
Stress testing, 330, 352, 353t
Stub testing, 325t, 327
Subclasses, 368–370
Subsystems, 6f, 7, 9
Superclasses, 368–370
Support, defined, 336
Supporting users, 322–323, 336, 338–341
Synchronous messages, 373–374
Synonyms, defined, 290
Syntax checking, 325t, 326
System administrator’s guides, 335
System audits, 343
System documentation, 333–336

audience of, 322, 334
automatic updating of, 348
as criterion for packaged software, 35
defined, 333
deliverables and outcomes, 323
effect on maintenance, 345
overview, 16
process of, 322
types of, 333–334
user documentation, 333, 334–336

System features, 214–216
System feedback, 254–255
System librarians, 347–348
System requirements, determining, 124–146

in Agile Methodologies, 386–389
business process reengineering, 141–142
data modeling questions, 195, 196f
deliverables and outcomes, 125–126
direct observation of users, 131–132, 137t
disruptive technologies, 142–143
document analysis, 132–137
example, 143–146
interviewing, 126–131
joint application design, 136–139
in object-oriented modeling, 363
process of, 124–125
prototyping, 139–140

System requirements, structuring, 126
See also conceptual data modeling; process modeling

Systems, 6–10, 12–17
See also SDLC

Systems acquisition. See software sources
Systems analysis

in object-oriented modeling, 361–362
overview, 14–15, 17t, 123f
system requirement determination (See system

requirements, determining)
system requirement structuring, 126 (See also conceptual

data modeling; process modeling)

Systems analysis and design
approaches to, 10–12, 18–21 (See also Agile Methodologies)
basic concepts, 4–6
history of, 27–28
role of systems analyst in, 11–12
systems development life cycle, 12–17 (See also SDLC)

Systems analysts
defined, 11
design strategy influences, 214
job market, 11
role in coding, testing, and installation, 322
role in project initiation and planning, 88, 89f
role in support, 340
role in systems development, 11–12
skills needed, 11, 12f, 124

Systems design
designing databases (See database design)
designing human interface (See interface design)
in object-oriented modeling, 361, 362, 375–376
overview, 15, 17t, 233f

Systems development methodology, 12
System service request (SSR), 46
System shut down, 332–333
Systems implementation and operation, 320–353, 329–330

in Agile Methodologies, 391
coding (See coding)
configuration management, 347–348
documentation (See system documentation)
example, 350–353
implementation failure, 341–342
installation (See installation)
maintenance (See systems maintenance)
in object-oriented modeling, 376
overview, 15–17, 319f
project closedown, 63–64, 342–343
support, 322–323, 336, 338–341
testing, 329–330 (See also testing)
training, 322–323, 336–338

Systems integration, 10
Systems maintenance

automated development tools in, 348
configuration management, 347–348
controlling requests for, 346–347
cost of, 344–345
deliverables and outcomes, 324–325
example, 349–350
factors affecting, 344–345
measuring effectiveness of, 345–346
process of, 323–324
types of, 343–344
for web sites, 348–349

Systems planning and selection, 84–113
overview, 14, 17t, 83f
project identification and selection, 84–88

Index 417

project initiation and planning (See project initiation;
project planning)

reviewing the baseline project plan, 105–108
Systems thinking, 11
System testing, 325t, 327

T
Tables, formatting, 242–245
Tangible benefits, 92
Tangible costs, 93
Task Cards, 389
Task responsibility, 103
Technical feasibility, 98
Techniques, software engineering, 5
Template-based HTML, 265–266
Ternary relationships

in conceptual data modeling, 202f, 203
in database design, 286–288
in object-oriented analysis/design, 367

Test cases, 328–329, 351–352
Testing

defined, 327
deliverables and outcomes, 321–322
in eXtreme Programming, 385
overview, 15–16
process of, 321, 325, 327–329
software application, 325
system, 325t, 327
types of tests, 325–327

Testing, acceptance, 329–330
Testing harness, 329
Testing software before purchase, 36
Text formatting, in forms and reports, 242, 243f
Third normal form (3NF), 281, 283–284
Time value of money (TVM), 94–97
Tools, software engineering, 5
Top-down data modeling, 195
Top-down project initiation, 87
Total slack time, 71
Training programs, 16
Training users, 322–323, 336–338

Turnkey systems, 30–31, 33–36
TVM (time value of money), 94–97

U
Unary relationships, 202, 286, 288, 367f
Unified Modeling Language (UML), 362, 375
Unit testing, 325t, 327
Usability assessment

in forms/reports design, 237–238
in interface/dialogue design, 247, 250t, 260–261

Use-case modeling, 362–365
Use cases, 362–365
User documentation, 333, 334–336
Users

acceptance testing by, 329–330
direct observation of, 131–132, 137t
involvement in Agile Methodologies development, 21,

386–387
involvement in participatory design, 21
role in rapid application development, 20
support of, 322–323, 336, 338–341
training of, 322–323, 336–338
understanding skills of, 235, 238

V
Vendors, software, 34–35
View integration, 274

W
Walkthroughs, 105–108, 111, 325t, 326
WBS (work breakdown structure), 54, 103
Weak entities, 200
Web sites

interface design, 262–263, 264t
maintenance of, 348–349
See also PVF Company WebStore, examples from

Well-structured relations, 280–281
Workbooks, project, 50–51, 62
Work breakdown structure (WBS),

54, 103

	Cover
	Title Page
	Copyright Page

	ISBN-13:9780132718134

		Brief Contents
	Contents
	Preface
	Acknowledgments
	About the Authors
	PART I: FOUNDATIONS FOR SYSTEMS DEVELOPMENT

	Chapter 1 The Systems Development Environment

	What Is Information Systems Analysis and Design?
	Systems Analysis and Design: Core Concepts
	Systems
	A Modern Approach to Systems Analysis and Design
	Developing Information Systems and the Systems Development Life Cycle
	Alternative Approaches to Development
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems

		Chapter 2 The Sources of Software

	Introduction
	Systems Acquisition
	Reuse
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Field Exercises
	Case: Petrie’s Electronics

		Chapter 3 Managing the Information Systems Project

	Pine Valley Furniture Company Background
	Managing the Information Systems Project
	Representing and Scheduling Project Plans
	Using Project Management Software
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		PART II: SYSTEMS PLANNING AND SELECTION

	Chapter 4 Systems Planning and Selection

	Identifying and Selecting Projects
	Initiating and Planning Systems Development Projects
	Assessing Project Feasibility
	Building the Baseline Project Plan
	Reviewing the Baseline Project Plan
	Pine Valley Furniture WebStore: Systems Planning and Selection
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		PART III: SYSTEMS ANALYSIS

	Chapter 5 Determining System Requirements

	Performing Requirements Determination
	Traditional Methods for Determining Requirements
	Modern Methods for Determining System Requirements
	Radical Methods for Determining System Requirements
	Pine Valley Furniture WebStore: Determining System Requirements
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		Chapter 6 Structuring System Requirements: Process Modeling

	Process Modeling
	Data-Flow Diagramming Mechanics
	Using Data-Flow Diagramming in the Analysis Process
	Logic Modeling
	Pine Valley Furniture WebStore: Process Modeling
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		Chapter 7 Structuring System Requirements: Conceptual Data Modeling

	Conceptual Data Modeling
	Gathering Information for Conceptual Data Modeling
	Introduction to Entity-Relationship Modeling
	Conceptual Data Modeling and the E-R Model
	An Example of Conceptual Data Modeling at Hoosier Burger
	PVF WebStore: Conceptual Data Modeling
	Selecting the Best Alternative Design Strategy
	Generating Alternative Design Strategies
	Developing Design Strategies for Hoosier Burger’s New Inventory Control System
	Selecting the Most Likely Alternative
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		PART IV: SYSTEMS DESIGN

	Chapter 8 Designing the Human Interface

	Designing Forms and Reports
	Designing Interfaces and Dialogues
	Pine Valley Furniture WebStore: Designing the Human Interface
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		Chapter 9 Designing Databases

	Database Design
	Relational Database Model
	Normalization
	Transforming E-R Diagrams into Relations
	Merging Relations
	Logical Database Design for Hoosier Burger
	Physical File and Database Design
	Designing Fields
	Designing Physical Tables
	Physical Database Design for Hoosier Burger
	Pine Valley Furniture WebStore: Designing Databases
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		PART V: SYSTEMS IMPLEMENTATION AND OPERATION

	Chapter 10 Systems Implementation and Operation

	Systems Implementation and Operation
	Software Application Testing
	Installation
	Documenting the System
	Training and Supporting Users
	Why Implementation Sometimes Fails
	Project Closedown
	Conducting Systems Maintenance
	Maintaining an Information System at Pine Valley Furniture
	Pine Valley Furniture WebStore: Systems Implementation and Operation
	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises
	Discussion Questions
	Case Problems
	Case: Petrie’s Electronics

		Appendix A: Object-Oriented Analysis and Design

	The Object-Oriented Modeling Approach
	Use-Case Modeling
	Object Modeling: Class Diagrams

	Representing Associations

		Representing Generalization
	Representing Aggregation
	Dynamic Modeling: State Diagrams
	Dynamic Modeling: Sequence Diagrams
	Designing a Use Case with a Sequence Diagram
	Moving to Design

	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises

		Appendix B: Agile Methodologies

	The Trend to Agile Methodologies
	Agile Methodologies
	eXtreme Programming
	The Heart of the Systems Development Process

	Requirements Determination
	Design Specifications
	Implementation

		What We’ve Learned about Agile Methodologies

	Key Points Review
	Key Terms Checkpoint
	Review Questions
	Problems and Exercises

		References
	Glossary of Acronyms
	Glossary of Terms

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

		Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

