Sample MATH 105-Test #2b.

		Suppose for the hypotheses H_0 :p=.25 and H_a : p \neq .25 we get a test statistic of 1.05. The p-value for this test is (circle one):					
	a) .8531	b) .1469	(c) 2938	d) 1.7062			
(some variation I suspect that the find a sample	n from bottle to the machine is mean of 290 ro the machine is versus H _a : p<3	o bottle because not filling the only the null and not filling the law and filling the	e the filling may cola bottles end d alternative hy bottles enough b) H_0	lliliters (ml) of cola. There is chinery is not perfectly preciough and I sample 50 bottles expotheses for a test to find is : p=290 versus H _a : p<290 : μ=290 versus H _a : μ<290	se.	
	3-4. A 99% confidence interval for the mean number of chips, μ , in a Chips Ahoy bag of cookies based on a sample of 32 bags was found to be (987.6, 1032.4). 3. The margin of error is						
	a) 44.8	b) 22.4	c) 1010	d) 987.6	e) 1032.4		
	4. The sample a) 44.8	b) 22.4 \overline{x}	, is	d) 987.6	e) 1032.4		
	5. If we reject the null hypothesis at the .01 significance level (α =.01), would we also reject the null hypothesis at the .05 significance level (α =.05)? (a) Yes b) No c) can't tell without more information						
	6. If we were to test the hypotheses H_0 : $p=.4$ versus H_1 : $p<.4$ at the significance level of .05 and fail to reject H_0 , then the p-value must be a) less than .05 b) greater than .05 c) can't tell based on this information						
	7. Suppose that a potato chip company advertises that the mean weight of their bags of potato chips is 2 ounces. You believe that it is less than 2 ounces so you wish to test the hypothesis H_0 : μ =2 versus H_1 : μ <2. A 95% confidence interval based on a sample of potato chip bags is (1.56< μ <1.85). Based on this confidence interval, you would						
a) Reject H ₀ b) Fail to reject H ₀							
	8. Increasing the sample size has what effect on the margin of error? a) Increases it b) Decreases it c) No effect						
9. Increasing the confidence level has what effect on the margin of error? (a) Increases it (b) Decreases it (c) No effect							
					-		

10. Suppose μ = the average lifetime of a certain type of car battery, and based on a sample of 48 car batteries we test the following hypotheses:

H_o: μ =4 years H_a: μ <4 years

- (i) A type 1 error occurs if we conclude that:
 - a) the mean battery life is less than 4 years when in fact it is not b) the mean battery life is different from 4 years when in fact it is not c) the mean battery life is four years when in fact it is less than 4 years
 - d) the mean battery life is four years when in fact it is different from 4 years
- (ii) A type II error occurs if we conclude that:
 - a) the mean battery life is less than 4 years when in fact it is not
 - b) the mean battery life is different from 4 years when in fact it is no c) the mean battery life is four years when in fact it is less than 4 years
 - d) the mean battery life is four years when in fact it is more than 4 years
- 12. According to a Gallop poll, about 73% of 18-29-year-olds said that they were registered to vote. A statistics professor asked her students whether or not they were registered to vote. In a sample of 50 of her students, 35 said they were registered to vote.

c) Does the 73% figure from the Gallop poll seem reasonable for the professor's class. Explain.

Yes since it is included in the confidence interval it is a reasonable value for p.

50 passenger cars had a sample mean of 19.95 mpg.
i) The null and alternative hypotheses are (circle one): a) H_0 : \bar{x} = 19.95 H_1 : \bar{x} < 19.95 H_0 : μ =19.95 H_1 : μ <19.95 b) H_0 : \bar{x} = 21.2 H_1 : \bar{x} < 21.2 H_1 : μ <21.2
ii) The p-value for the above test is .35. Using a significance level of .05, give a one or two sentence conclusion for the hypothesis test in context of the problem. We did not find enough evidence to reject Ho. Therefore, we can not Conduct that the mean gas mileage 13. Data on investments in the high-tech industry by venture capitalists are compiled by VentureOne Corportation and published in American's Network Telecom Investor Supplement. A random sample of 12 venture-capitol investments in the fiber optics business sector yielded the following data, in millions of dollars. Assume that s=2.0.
a) Compute a 90% confidence interval for the average amount of all venture-capitol investments in the fiber optics business sector.
$X = 6.04$ 6.04 ± 1.794 $\frac{2}{112} = (5.00)7.0$
We can be 90% confident that the average amount of all venture- capital investments is between
\$5 \$\$7.08 million.

12. According to the U.S. Department of Transportation, the mean gas mileage of passenger cars was 21.2 miles per gallon in 2001. A researcher wanted to test the claim that the gas mileage has decreased since then. In 2009, he found that a random sample of

14. A manufacturer considers his production process to be out of control when defects exceed 3%. In a random sample of 500 items, there were 28 defects. Test the claim that the production process is out of control. Use a significance level (α -level) of .05.

a) State the null and aftern	native hypotheses.	Calo Function				
Ho: P = .03	Hai p 7.03	5: IPropZTest				
b) Compute the test statist	tic.					
$\hat{p} = \frac{28}{500} = .056$	Z= .0560	S = 3.41				
c) Report the p-value.	500	<u>.</u>				
19997 = .07	003					
d) Give a one or two sentence conclusion in context of the problem.						
We can rej	ect to \$ eor	nclude that				
the producti control (de	on process 15	s out of				
control (de	tects exceed	370)				

15. Suppose that a 90% confidence interval for a population mean has been calculated to be (27.4, 29.6) based on an SRS from the population. The p-value for the following test H₀: μ =28 and H₁: μ ≠28 would be:

(a) Larger than 0.10 Smaller than 0.10

c) Can't tell based on the information