SEC. 20-1 INVERTING-AMPLIFIER CIRCUITS

- **20-1** In the probe of Fig. 20-1, $R_1=10~\mathrm{M}\Omega$, $R_2=20~\mathrm{M}\Omega$, $R_3=15~\mathrm{k}\Omega$, $R_4=15~\mathrm{k}\Omega$, and $R_5=75~\mathrm{k}\Omega$. What is the attenuation of the probe in each switch position?
- **20-2** In the ac-coupled inverting amplifier of Fig. 20-2, $R_1=1.5~\mathrm{k}\Omega,~R_f=75~\mathrm{k}\Omega,~R_L=15~\mathrm{k}\Omega,~C_1=1~\mu\mathrm{F},~C_2=4.7~\mu\mathrm{F},~\mathrm{and}~f_\mathrm{unity}=1~\mathrm{MHz}.$ What is the voltage gain in the midband of the amplifier? What are the upper and lower cutoff frequencies?
- **20–3** In the adjustable–bandwidth circuit of Fig. 20–3, $R_1=10~\mathrm{k}\Omega$ and $R_f=180~\mathrm{k}\Omega$. If the $100-\Omega$ resistor is changed to $130~\Omega$ and the variable resistor to $25~\mathrm{k}\Omega$, what is the voltage gain? What are the minimum and maximum bandwidth if $f_{\mathrm{unity}}=1~\mathrm{MHz}$?
- **20-4** What is the output voltage in Fig. 20-37? What are the minimum and maximum bandwidth? (Use $f_{\text{unity}} = 1 \text{ MHz.}$)

Figure 20-37

SEC. 20-2 NONINVERTING-AMPLIFIER CIRCUITS

- 20-5 In Fig. 20-4, $R_1=2$ k Ω , $R_f=82$ k Ω , $R_L=25$ k Ω , $C_1=2.2$ μ F, $C_2=4.7$ μ F, and $f_{unity}=3$ MHz. What is the voltage gain in the midband of the amplifier? What are the upper and lower cutoff frequencies?
- **20-6** What is the voltage gain in the midband of Fig. 20-38? What are the upper and lower cutoff frequencies?
- **20-7 IIII MultiSim** In the distribution amplifier of Fig. 20–5, $R_1 = 2 \text{ k}\Omega$, $R_f = 100 \text{ k}\Omega$, and $v_{\text{in}} = 10 \text{ mV}$. What is the output voltage for A, B, and C?
- **20-8** The JFET-switched amplifier of Fig. 20-6 has these values: $R_1 = 91 \text{ k}\Omega$, $R_f = 12 \text{ k}\Omega$, and $R_2 = 1 \text{ k}\Omega$. If $V_{\text{in}} = 2 \text{ mV}$, what is the output voltage when the gate is low? When it is high?
- **20-9** If $V_{GS(off)} = -5$ V, what are the minimum and maximum output voltage in Fig. 20-39?
- **20–10** The voltage reference of Fig. 20–7 is modified to get $R_1=10~{\rm k}\Omega$ and $R_f=10~{\rm k}\Omega$. What is the new output reference voltage?

SEC. 20-3 INVERTER/NONINVERTER CIRCUITS

- **20–11** In the adjustable inverter of Fig. 20–10, $R_1=1~{\rm k}\Omega$ and $R_2=10~{\rm k}\Omega$. What is the maximum positive gain? The maximum negative gain?
- **20–12** What is the voltage gain in Fig. 20–11 when the wiper is at the ground end? When it is 10 percent away from ground?
- **20-13** Precision resistors are used in Fig. 20-12. If R=5 k Ω , nR=75 k Ω , and nR/(n-1)R=5.36 k Ω , what are the maximum positive and negative gains?
- **20–14** In the phase shifter of Fig. 20–13, $R'=10~\mathrm{k}\Omega$, $R=22~\mathrm{k}\Omega$, and $C=0.02~\mu\mathrm{F}$. What is the phase shift when the input frequency is 100 Hz? 1 kHz? 10 kHz?

Figure 20-38

Figure 20-39

SEC. 20-4 DIFFERENTIAL AMPLIFIERS

- 20–15 The differential amplifier of Fig. 20–14 has $R_1=1.5~{\rm k}\Omega$ and $R_2=30~{\rm k}\Omega$. What is the differential voltage gain? The common–mode gain? (Resistor tolerance = $\pm 0.1~{\rm percent.}$)
- **20–16** In Fig. 20–15, $R_1=1$ k Ω and $R_2=20$ k Ω . What is the differential voltage gain? The common-mode gain? (Resistor tolerance = ± 1 percent.)
- **20–17** In the Wheatstone bridge of Fig. 20–16, $R_1=10$ k Ω , $R_2=20$ k Ω , $R_3=20$ k Ω , and $R_4=10$ k Ω . Is the bridge balanced?
- **20–18** In the typical application of Fig. 20–17, transducer resistance changes to 985 Ω . What is the final output voltage?

SEC. 20-5 INSTRUMENTATION AMPLIFIERS

- **20–19** In the instrumentation amplifier of Fig. 20–18, $R_1=1$ k Ω and $R_2=99$ k Ω . What is the output voltage if $v_{\rm in}=2$ mV? If three OP–07A op amps are used and R=10 k $\Omega\pm0.5$ percent, what is the CMRR of the instrumentation amplifier?
- **20–20** In Fig. 20–19, $v_{\rm in(\it CM)}=5$ V. If $R_3=10~{\rm k}\Omega$, what does the guard voltage equal?
- **20–21** The value of R_G is changed to 1008 Ω in Fig. 20–20. What is the differential output voltage if the differential input voltage is 20 mV?

SEC. 20-6 SUMMING AMPLIFIER CIRCUITS

- **20–22** What does the output voltage equal in Fig. 20–21 if $R=10 \text{ k}\Omega$, $v_1=-50 \text{ mV}$ and $v_2=-30 \text{ mV}$?
- **20–23 IIII MultiSim** In the summing circuit of Fig. 20–22, $R_1=10~\mathrm{k}\Omega$, $R_2=20~\mathrm{k}\Omega$, $R_3=15~\mathrm{k}\Omega$, $R_4=15~\mathrm{k}\Omega$, $R_5=30~\mathrm{k}\Omega$, and $R_f=75~\mathrm{k}\Omega$. What is the output voltage if $v_0=1~\mathrm{mV}$, $v_1=2~\mathrm{mV}$, $v_2=3~\mathrm{mV}$, and $v_3=4~\mathrm{mV}$?
- **20–24** The averaging circuit of Fig. 20–23 has $R=10 \text{ k}\Omega$. What is the output if $v_1=1.5 \text{ V}$, $v_2=2.5 \text{ V}$, and $v_3=4.0 \text{ V}$?

- **20-25** The D/A converter of Fig. 20-24 has an input of $v_0=5$ V, $v_1=0$, $v_2=5$ V, and $v_3=0$. What is the output voltage?
- **20–26** In Fig. 20–25, if the number of binary inputs is expanded to eight and D_7 to D_0 equals 10100101, determine the decimal equivalent input value, BIN.
- **20–27** In Fig. 20–25, if the binary inputs were expanded so D_7 to D_0 equaled 01100110, what would be the output voltage?
- **20–28** In Fig. 20–25, using an input reference voltage of 2.5 V, determine the smallest incremental output voltage step.

SEC. 20-7 CURRENT BOOSTERS

- 20-29 The noninverting amplifier of Fig. 20-40 has a current-boosted output. What is the voltage gain of the circuit? If the transistor has a current gain of 100, what is the short-circuit output current?
- **20–30** What is the voltage gain in Fig. 20–41? If the transistors have a current gain of 125, what is the short-circuit output current?

Figure 20-40

