24. An ICVS amplifier is saturated. A possible trouble is

- a. No supply voltages
- b. Open feedback resistor
- c. No input voltage
- d. Open load resistor

25. A VCVS amplifier has no output voltage. A possible trouble is

- a. Shorted load resistor
- b. Open feedback resistor
- c. Excessive input voltage
- d. Open load resistor

26. An ICIS amplifier is saturated. A possible trouble is

- a. Shorted load resistor
- b. R_2 is open
- c. No input voltage
- d. Open load resistor

27. An ICVS amplifier has no output voltage. A possible trouble is

- a. No positive supply voltage
- b. Open feedback resistor
- c. No feedback voltage
- d. Shorted load resistor

28. The closed-loop input impedance in a VCVS amplifier is

- a. Usually larger than the open-loop input impedance
- b. Equal to the open-loop input impedance
- c. Sometimes less than the openloop input impedance
- d. Ideally zero

Problems

In the following problems, refer to Table 18-2 as needed for the parameters of the op amps

SEC. 19-2 VCVS VOLTAGE GAIN

19-1 In Fig. 19-15, calculate the feedback fraction, the ideal closed-loop voltage gain, the percent error, and the exact voltage gain.

Figure 19-15

- 19-2 If the 68-k Ω resistor of Fig. 19-15 is changed to 39 k Ω , what is the feedback fraction? The closed-loop voltage gain.
- 19–3 In Fig. 19–15, the 2.7-k Ω resistor is changed to 4.7 k Ω . What is the feedback fraction? The closed-loop voltage gain?
- 19-4 If the LF351 of Fig. 19-15 is replaced by an LM308, what is the feedback fraction, the ideal closed-loop voltage gain, the percent error, and the exact voltage gain?

SEC. 19-3 OTHER VCVS EQUATIONS

19-5 In Fig. 19-16, the op amp has an $R_{\rm in}$ of 3 M Ω and an R_{CM} of 500 M Ω . What is the closed-loop input impedance? Use an A_{VOL} of 200,000 for the op amp.

Figure 19-16

- 19-6 What is the closed-loop output impedance in Fig. 19-16? Use an A_{VOI} of 75,000 and an $R_{\rm out}$ of 50 Ω .
- 19-7 Suppose the amplifier of Fig. 19-16 has an open-loop total harmonic distortion of 10 percent. What is the closed-loop total harmonic distortion?

SEC. 19-4 THE ICVS AMPLIFIER

19-8 III MultiSim In Fig. 19-17, the frequency is 1 kHz. What is the output voltage?

Figure 19-17

19-9 **IIII MultiSim** What is the output voltage in Fig. 19-17 if the feedback resistor is changed from 51 to 33 k Ω ?

19-10 In Fig. 19-17, the input current is changed to 10.0 μ A rms. What is the peak-to-peak output voltage?

SEC. 19-5 THE VCIS AMPLIFIER

19-11 ||| MultiSim What is the output current in Fig. 19-18? The load power?

Figure 19-18

- 19-12 If the load resistor is changed from 1 to 3 Ω in Fig. 19-18, what is the output current? The load power?
- 19-13 **IIII MultiSim** If the 2.7- Ω resistor is changed to 4.7 Ω in Fig. 19-18, what are the output current and load power?

SEC. 19-6 THE ICIS AMPLIFIER

- 19-14 III MultiSim What is the current gain in Fig. 19-19? The load power?
- 19–15 **IIII MultiSim** If the load resistor is changed from 1 to 2 Ω in Fig. 19–19, what is the output current? The load power?

Figure 19-19

19–16 If the 1.8- Ω resistor is changed to 7.5 Ω in Fig. 19–19, what are the current gain and load power?

SEC. 19-7 BANDWIDTH

- **19-17** A VCVS amplifier uses an LM324 with $(1 + A_{VOL}B) = 1000$ and $f_{2(OL)} = 2$ Hz. What is the closed-loop bandwidth?
- **19–18** If a VCVS amplifier uses an LM833 with $A_{VOL}=316{,}000$ and $f_{2(OL)}=4.5$ Hz, what is the closed-loop bandwidth for $A_{V(CL)}=75?$
- **19-19** An ICVS amplifier uses an LM318 with $A_{VOL}=20{,}000$ and $f_{2(OL)}=750$ Hz. What is the closed-loop bandwidth?
- **19–20** An ICIS amplifier uses a TL072 with $f_{2(OL)}=120$ Hz. If $(1+A_{VOL}B)=5000$, what is the closed-loop bandwidth?
- **19-21** A VCVS amplifier uses an LM741C with $f_{\text{unity}} = 1$ MHz and $S_R = 0.5$ V/ μ s. If $A_{v(Cl)} = 10$, what is the closed-loop bandwidth? The largest undistorted peak output voltage at $f_{2(Cl)}$?

Critical Thinking

- 19–22 Figure 19–20 is a current-to-voltage converter that can be used to measure current. What does the voltmeter read when the input current is 4 μ A?
- 19-23 What is the output voltage in Fig. 19-21?
- **19–24** In Fig. 19–22, what is the voltage gain of the amplifier for each position of the switch?
- **19-25** In Fig. 19-22, what is the output voltage for each position of the switch if the input voltage is 10 mV?
- **19-26** A 741C with $A_{VOL}=$ 100,000, $R_{\rm in}=$ 2 M Ω , and $R_{\rm out}=$ 75 Ω is used in Fig. 19-22. What are the closed-loop input and output impedances for each switch position?

Figure 19-20

