7. The initial slope of a sine wave is directly proportional to

- a. Slew rate
- b. Frequency
- c. Voltage gain
- d. Capacitance

8. When the initial slope of a sine wave is greater than the slew rate,

- a. Distortion occurs
- b. Linear operation occurs
- c. Voltage gain is maximum
- d. The op amp works best

9. The power bandwidth increases when

- a. Frequency decreases
- b. Peak value decreases
- c. Initial slope decreases
- d. Voltage gain increases

10. A 741C contains

- a. Discrete resistors
- b. Inductors
- c. Active-load resistors
- d. A large coupling capacitor

11. A 741C cannot work without

- a. Discrete resistors
- b. Passive loading
- c. DC return paths on the two bases
- d. A small coupling capacitor

12. The input impedance of a BIFET op amp is

- a. Low
- b. Medium
- c. High
- d. Extremely high

13. An LF157A is a

- a. Diff amp
- b. Source follower
- c. Bipolar op amp
- d. BIFET op amp

14. If the two supply voltages are \pm 12 V, the MPP value of an op amp is closest to

- a. 0 b. +12 V

c. 27 V b. +15 V

a 741C is controlled by

c. −12 V

d. 24 V

- a. A coupling capacitor
- b. The output short circuit current
- c. The power bandwidth
- d. A compensating capacitor

16. The 741C has a unity-gain frequency of

- a. 10 Hz
- c. 1 MHz d. 15 MHz b. 20 kHz

17. The unity-gain frequency equals the product of closed-loop voltage gain and the

- a. Compensating capacitance
- b. Tail current
- c. Closed-loop cutoff frequency
- d. Load resistance

18. If f_{unity} is 10 MHz and midband open-loop voltage gain is 200,000, then the open-loop cutoff frequency of the op amp is

- a. 10 Hz
- c. 50 Hz
- d. 100 Hz b. 20 Hz

19. The initial slope of a sine wave increases when

- a. Frequency decreases
- b. Peak value increases
- c. Cc increases
- d. Slew rate decreases

20. If the frequency of the input signal is greater than the power bandwidth,

- a. Slew-rate distortion occurs
- b. A normal output signal occurs
- c. Output offset voltage increases
- d. Distortion may occur

21. An op amp has an open base resistor. The output voltage will be

- b. Slightly different from zero
- c. Maximum positive or negative
- d. An amplified sine wave

22. An op amp has a voltage gain of 200,000. If the output voltage is 1 V, the input voltage is

- a. $2 \mu V$
- c. 10 mV d. 1 V
- b. 5 µV
- 23. A 741C has supply voltages of ± 15 V. If the load resistance is large, the MPP value is approximately
 - a. 0
 - d. 30 V

15. The open-loop cutoff frequency of 24. Above the cutoff frequency, the voltage gain of a 741C decreases approximately

- a. 10 dB per decade
- b. 20 dB per octave

- c. 10 dB per octave
- d. 20 dB per decade

25. The voltage gain of an op amp is unity at the

- a. Cutoff frequency
- b. Unity-gain frequency
- c. Generator frequency
- d. Power bandwidth

26. When slew-rate distortion of a sine wave occurs, the output

- a. Is larger
- b. Appears triangular
- c. Is normal
- d. Has no offset

27. A 741C has

- a. A voltage gain of 100,000
- b. An input impedance of 2 M Ω
- c. An output impedance of 75 Ω
- d. All of the above

28. The closed-loop voltage gain of an inverting amplifier equals

- a. The ratio of the input resistance to the feedback resistance
- b. The open-loop voltage gain
- c. The feedback resistance divided by the input resistance
- d. The input resistance

29. The noninverting amplifier has a

- a. Large closed-loop voltage gain
- b. Small open-loop voltage gain c. Large closed-loop input impedance
- d. Large closed-loop output impedance

30. The voltage follower has a

- a. Closed-loop voltage gain of unity
- b. Small open-loop voltage gain
- c. Closed-loop bandwidth of zero
- d. Large closed-loop output impedance

31. A summing amplifier can have

- a. No more than two input signals
- b. Two or more input signals c. A closed-loop input impedance of
- infinity d. A small open-loop voltage gain

Problems

SEC. 18-2 THE 741 OP AMP

18-1 Assume that negative saturation occurs at 1 V less than the supply voltage with an 741C. How much inverting input voltage does it take to drive the op amp of Fig. 18-29 into negative saturation?

Figure 18-29

- 18-2 What is the common-mode rejection ratio of an LF157A at low frequencies? Convert this decibel value to an ordinary number.
- 18-3 What is the open-loop voltage gain of an LF157A when the input frequency is 1 kHz? 10 kHz? 100 kHz? (Assume a first-order response, that is, 20 dB per decade rolloff.)
- 18-4 The input voltage to an op amp is a large voltage step. The output is an exponential waveform that changes 2.0 V in 0.4 μ s. What is the slew rate of the op amp?
- 18-5 An LM318 has a slew rate of 70 V/ μ s. What is the power bandwidth for a peak output voltage of 7 V?
- 18-6 Use Eq. (18-2) to calculate the power bandwidth for each of the following:
 - a. $S_R = 0.5 \text{ V}/\mu\text{s}$ and $V_p = 1 \text{ V}$
 - b. $S_R = 3 \text{ V}/\mu\text{s}$ and $V_p = 5 \text{ V}$
 - c. $S_R = 15 \text{ V}/\mu \text{s} \text{ and } V_p = 10 \text{ V}$

SEC. 18-3 THE INVERTING AMPLIFIER

18-7 | | MultiSim What are closed-loop voltage gain and bandwidth in Fig. 18-30? What is the output voltage at 1 kHz? At 10 MHz? Draw the ideal Bode plot of closed-loop voltage gain.

Figure 18-30

Figure 18-31

- **18-8** What is the output voltage in Fig. 18-31 when v_{in} is zero? Use the typical values of Table 18-1.
- 18-9 The data sheet of an LF157A lists the following worstcase parameters: $I_{in(bias)} = 50 \text{ pA}$, $I_{in(off)} = 10 \text{ pA}$, and $V_{\rm in(off)} = 2$ mV. Recalculate the output voltage when $v_{\rm in}$ is zero in Fig. 18-31.

SEC. 18-4 THE NONINVERTING AMPLIFIER

- 18-10 || MultiSim In Fig. 18-32, what are the closed-loop voltage gain and bandwidth? The ac output voltage at 100 kHz?
- 18–11 What is the output voltage when v_{in} is reduced to zero in Fig. 18-32? Use the worst-case parameters given in Prob. 18-9.

Figure 18-32

