Figure 20-13 Phase shifter.

a voltage gain of zero. The overall gain therefore equals the gain of inverting channel, which is -1, equivalent to a phase shift of -180° .

To calculate the phase shift between the two extremes, we need to calculate the cutoff frequency using the equation given in Fig. 20-13. For instance, if $C=0.022~\mu\mathrm{F}$ and variable resistor of Fig. 20-13 is set to $1~\mathrm{k}\Omega$, the cutoff frequency is:

$$f_c = \frac{1}{2\pi (1 \text{ k}\Omega)(0.022 \mu\text{F})} = 7.23 \text{ kHz}$$

With a source frequency of 1 kHz, the phase shift is:

$$\phi = -2 \arctan \frac{1 \text{ kHz}}{7.23 \text{ kHz}} = -15.7^{\circ}$$

If the variable resistor is increased to $10 \, k\Omega$, the cutoff frequency decreases to 723 Hz and the phase shift increases to:

$$\phi = -2 \arctan \frac{1 \text{ kHz}}{723 \text{ Hz}} = -108^{\circ}$$

If the variable resistor is increased to 100 k Ω , the cutoff frequency decreases to 72.3 Hz and the phase shift increases to:

$$\phi = -2 \arctan \frac{1 \text{ kHz}}{72.3 \text{ Hz}} = -172^{\circ}$$

In summary, the phase shifter produces an output voltage with the same magnitude as the input voltage, but with a phase angle that can be varied continuously between 0° and -180° .

Example 20-2

When we need to vary the amplitude of an out-of-phase signal, we can use a circuit like the one in Fig. 20-10. If $R_1 = 1.2 \text{ k}\Omega$ and $R_2 = 91 \text{ k}\Omega$, what are the values of the maximum and minimum voltage gain?

SOLUTION With the equation given in Fig. 20-10, the maximum voltage gain is:

$$A_{\nu} = \frac{-91 \text{ k}\Omega}{1.2 \text{ k}\Omega} = -75.8$$

The minimum voltage gain is zero.

PRACTICE PROBLEM 20–2 In Example 20-2, what value should R_2 be changed to for a maximum gain of -50?

Example 20-3

If $R = 1.5 \text{ k}\Omega$ and $nR = 7.5 \text{ k}\Omega$ in Fig. 20-12, what is the maximum positive voltage gain? What is the value of the other fixed resistance?

SOLUTION The value of n is:

$$n = \frac{7.5 \,\mathrm{k}\Omega}{1.5 \,\mathrm{k}\Omega} = 5$$

The maximum positive voltage gain is 5. The other fixed resistor has a value of:

$$\frac{nR}{n-1} = \frac{5(1.5 \text{ k}\Omega)}{5-1} = 1.875 \text{ k}\Omega$$

With a circuit like this, we have to use a precision resistor to get a nonstandard value like 1.875 k Ω .

PRACTICE PROBLEM 20–3 Using Fig. 20-12, if $R = 1 \text{ k}\Omega$, what is the maximum positive voltage gain and value of the other fixed resistance?

20-4 Differential Amplifiers

This section will discuss how to build a **differential amplifier** using an op amp. One of the most important characteristics of a differential amplifier is its CMRR because the typical input signal is a small differential voltage and a large common-mode voltage.

Basic Differential Amplifier

Figure 20-14 shows an op amp connected as a differential amplifier. The resistor R'_1 has the same nominal value as R_1 but differs slightly in value because of tolerances.