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Making Music Beautiful

Complex Musical Tones

Have you ever asked yourself while listening to a recording, or while
ata concert, what it is that makes the music so appealing? There are,
of course, many answers. The music may bring back memories, or
make you feel warm all over, or let you drift off into space (at least it
seems that way), or it may just be that it’s pleasing to your ear. Re-
gardless of what conclusion you come to, there’s no doubt that music
makes you feel good. So we have to ask, What is it that does this?
Melody is certainly important, as is rhythm, but there’s something
else you might not realize. The “richness” and complexity of the har-
monics also add to the enjoyment. When you play a single note on a
piano, or any other instrument, you may think you’re getting a single
tone, or single frequency, but you aren’t. Many different frequencies
are striking your eardrum, and of course, the music coming from an
orchestra is much more complex. In this chapter we will look at this
complexity and explore why it helps make music more appealing.

“Seeing” Music
Ifyou listen to a note—say middle C—played on several different in-
struments, such as a violin, piano, and a clarinet, you can easily tell
which instrument it came from. All are vibrating with the same fre-
quency, 256 Hz, but even if they all have the same loudness, they still
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sound different. And we can easily hear the difference. But if they are
different, there has to be a way to see this difference. And, indeed,
there is. What we nced is a way of looking directly at the sound so
that we can actually “see” the music. And for this we need two de-
vices: a microphone and an oscilloscope. Both are relatively complex,
so T won't go into the details of how they work, but I will give a brief
outline. Later in the book Ill talk about them in more detail.

The major part of a microphone is a pair of electrically charged
metal plates. The outer one, which is referred to as the diaphragm,
is thin enough so that it vibrates when an air pressure wave such as
the one created by your voice strikes it. These vibrations cause tiny
electrical currents to flow in an external circuit that are proportional
to the amplitude of the diaphragm; the current is therefore a “coded”
copy of the oscillations. In effect, the vibrating signal has been con-
verted to an equivalent electrical signal.

This oscillating electrical current is then fed to an oscilloscope. If
you’re not sure what an oscilloscope is, you merely have to look in
your living room or den; the heart of your television set is an oscil-
loscope. In a television set a beam of light sweeps across the screen
thousands of times a second. After each sweep it moves down slightly
so that it eventually sweeps the entire screen. This beam causes the
screen to glow with a particular intensity, and since the intensity at
each point is continually changing, we sce a picture.

In the same way, the oscillating current from our microphone is
fed to two metal plates in an oscilloscope (fig. 38). A beam passes
through the region between these plates and is deflected according
to the charge on the plates; in other words, it changes in the same
way that the oscillating electrical current that is applied to it changes.
Finally, as in the case of the television set, the beam is moved rapidly
across the screen hundreds of times per second until it has covered
the complete screen.

What we see is a “picture” of the sound wave that struck the mi-
crophone. If the sound is pure, such as that from a tuning fork, we
get a perfect sine wave and can easily determine its frequency and
wavelength by measurements made on the screen. But when the note
from a musical instrument is projected on the screen, we see imme-
diately that it looks quite different. And we can now answer the ques-
tion: why does a note such as middle C sound different on a violin, a
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Fig. 38. A simple representation of an oscilloscope.
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Fig. 39. The same note sounded on a signal generator, a violin, and
a piano.

piano, and a clarinet. If we look at the sound from each of the instru-
ments, we see that each has a frequency of 256 Hz, as expected, and
each has the same loudness (with the height, or amplitude, of the
wave measuring the loudness), but other than that their waveforms
are quite different (fig. 39).
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Timbre: The Quality of Music

The shape of these waveforms reminds us of the form we got earlier
when we superimposed two pure signals of different frequencies,
where one of the frequencies was double the other. Indeed, if we had
continued this process with wavelengths that were multiples of the
first, we would have made the wave more and more complex, but it
would have continued to be periodic. What we can conclude from
this is that any tone from a musical instrument, say middle C, is made
up of waves of several different frequencies. We will, in fact, see that
in most cases these frequencies are numerically related; in other
words, they are multiples of the first frequency. And this is what
makes the same note from various musical instruments different.
Each of them has the same overall frequency, but they have other fre-
quencies superimposed on this note that are different. We refer to
these other waves as overtones or sometimes as partia

In practice these overtones can be exact integral multiples of the
tone, which is referred to as the fundamental, or they can be ar-
bitrary. If they are integral multiples, as shown in figure 40, we refer
to them as harmonic; if not, they are inharmonic. For most instru-
ments, overtones are harmonic; only such instruments as cymbals
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Fig. 40. Overtones. The top one is the fundamental.
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and bells have inharmonic overtones. So we will direct almost all our
attention to harmonic overtones.

The difference in the waveform of a note from instrument to in-
strument is referred to as the timbre, or quality, of the tone. Without
thinking about it, you encounter timbre every day. The human voice
is also made up of various overtones, and because of this, each voice
is distinctive. This is why you can identify someone over the phone
so easily, even though you can’t see the speaker.

While the timbre, or quality, of a tone is mainly a result of over-
tones, other things also contribute to it. Consider a violin string, for
example. You know that it sounds different when you pluck it, com-
pared to when you bow it. We refer to this difference in the quality
of sound as being the result of the artack, or method of producing the
sound. Also important is the decay of the note—in other words, how
long it takes for the sound to fade away.

Complex Tones: Analyzing the Music
Although a musical note is composed of many different frequencies.
it can be broken down into pure tones or single frequencies in a pro-
cess referred to as analysis. This is now relatively easy to do with mod-
ern electronic instruments. Also important in music is the converse
process, namely the bringing together of many frequencies to pro-
duce a complex sound. The combining of frequencies is referred to
as synthesis and is done by electronic instruments called synthesizers.

Let’s look at synthesizers in more detail. A question that immedi-
ately comes to mind is whether it is possible to produce a waveform
of any shape if we add enough harmonics together? The answer is
yes. And the man that proved that it could be done was Jean-Baptiste
Fourier of France. There is little indication that Fourier was partic-
ularly interested in music, or even sound; his major interest was in
how heat flowed from one point to another, and he made many im-
portant contributions to the theory of heat. In the process, however,
he formulated what is now known as Fourier’s theorem; it applies to
all waves, and since sound, and music, are waves, it applies to them.

Fourier’s theorem can be stated as follows:

Any periodic oscillation curve, with frequency f, can be broken
up, or analyzed, into a set of simple sine curves of frequencies f;
2f; 3f, .. . each with its own amplitude.
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In the case of sound, these “simple sine curves,” or waves, are har-
monics; and as we saw, we refer to the first as the fundamental, and
the higher multiples of it as overtones. This means, for example, if
the fundamental has a frequency of 200 Hz, the first harmonic is 400
Hz, the second is 600 Hz, and so on. All these frequencies are
sounded at the same time, so that when a musician plays a single
note, he is actually playing several frequencies. Furthermore, if the
same note is played by two musicians, say, two violinists, the two
notes will not be identical, even if the two violins are perfectly in
tune. The reason is that no two instruments are exactly the same
structurally; also, no two musicians bow the instrument in the same
way. The result will be beat notes between the two violins; in fact,
beats will even occur between the second, third, and higher harmon-
ics. This, however, does not detract from the sound; the overall ef-
fect is called the chorus effect, and it is something that adds to the
richness of the sound.

Harmonic Spectra
One of the best ways to show what overtones are present and what
their amplitudes are, is by using a bar graph. It is a plot of frequency
versus loudness, or amplitude, but since the tones are distinct, it
looks like a series of vertical lines. Frequency is plotted along the
horizontal, and relative intensity is plotted in the vertical direction,
Usually the fundamental is assigned a value 1.0, and the overtones
are compared to it. The plot of a pure tone is shown in figure 41.
Most instruments, however, have relatively complex spectra, as seen
in figure 42.

These graphs give us an excellent way of “seeing” musical notes.
We can see immediately what overtones are present and also their in-
tensities. Not only does the spectrum of different instruments differ,
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Fig. 41. Bar graph (spectrum) of a pure tone.
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Fig. 42. Bar graph (spectrum of frequencies) of a flute, an oboe,
and a violin.
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but the spectrum within a single instrument depends on what note is
played (the note C, for example, will give a different spectrum than
the note F).

Formants

Since each instrument has its own distinct spectrum of harmonics, it
might seem that the spectrum for a given type of instrument would
always be the same. But this isn’t so. Several things beside the spec-
trum of harmonics characterize an instrument. One of the most im-
portant is that the harmonic structure depends on loudness. Loud
notes usually contain many more high-frequency harmonics. In ad-
dition, the musician playing the note makes a difference; each musi-
cian plays it slightly differently. And as we saw earlier, the attack and
decay of the note also make a difference. Because of this, it is useful
to supplement the harmonic spectrum of an instrument with its for-
mant. The formant of a musical note is a frequency region where
most of the sound energy is concentrated (fig. 43). It might seem that
this region would consist of the frequencies near the fundamental,
but this is not necessarily the case. Often, the high harmonics are
louder and determine the timbre of the instrument.
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Fig. 43. Bar graph showing the formant region.

How Can It Vibrate That Way? Vibrational Modes
of a Stretched String

When a string vibrates with several harmonics, they are all vibrating
at the same time. This may seem like a difficult thing for a string to
do. How can it vibrate in several ways all at once? Since several in-
struments, including the violin, the guitar, and the piano, have vi-
brating strings, it is instructive to look at the various vibrational
modes of a stretched string.

Consider a string of a certain length that is vibrating at its reso-
nant or natural frequency. Each natural frequency produces its own
characteristic vibrational mode, or standing wave pattern, and it is
these standing wave patterns that we will be looking at.

Let’s begin by attaching the string at two points, as in the diagram
shown in figure 44. The two ends are unable to move and are there-
fore nodes; in between these two nodes are one or more antinodes.
If there is only one antinode, this harmonic is the fundamental; it is
also sometimes called the first harmonic. This harmonic will have
the longest wavelength; in fact, the wavelength will be twice the
length between the two nodes (fig. 45).

The second harmonic, or first overtone, is produced when the
string vibrates with a node in the center. In this case it will have three
nodes and two antinodes (shown in fig. 46). We see from the diagram
that exactly one wavelength fits between the two end nodes, so the
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Fig. 44. The fundamental of a string.
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Fig. 45. Note that the wavelength is double the string length.
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Fig. 46. The first overtone (or second harmonic) has one wave-
length, with three nodes and two antinodes.

Fig. 47. The second overtone (or third harmonic).

wavelength (M) is equal to the string length (L). For the third har-
monic, or second overtone, we have to add another node; in all there
will therefore be four nodes and three antinodes (fig. 47).

‘The length of each loop in the higher harmonics is the same. In
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the case of the third harmonic, we have one and a half wavelengths
along the length of the string, which means there is 3/2 of a wave-
length along the length of the string. With this we can see a pattern
emerging: each higher harmonic introduces a half-wavelength. This
means that the fundamental has L = A/2, the first harmonic has L =
2/2X\ =\, and the third harmonic has L = 3/2\ and so on, and we can
easily solve each of these for \. Our results are summarized in table 3.

So far we have said nothing about frequencies. It’s well-known,
however, that the frequency of a string—for example, a guitar string—
depends on the tension in the string and the linear density of the
string (the expression for it is complicated, and we won’t get into it).
"This means that we can change the frequency by tightening or loos-
ening the string. If we assume that we have a string of, say, 70 cm, we
can tune it so that it has a frequency of 375 Hz by tightening it ap-
propriately. We also know that there is a relation between speed (v),
frequency (f), and wavelength (\), namely, v = Af. From table 3 we
can write \ = 2L/n, where 7 is an integer, so we can calculate the
speed of the waves:

375 Hz X N =375 (1.4) = 525 m/s
But the speed of the wave is dependent only on the tension and den-
sity, and not on the properties of the wave, so all waves will have the
same velocity regardless of their frequency or wavelength. We can
therefore calculate the frequency of the second harmonic from v =
Aof; where X, = L.

f=v/\,=525/.7=750 Hz.
In the same way we can calculate the frequency of the third har-
monic; it is 1,125 Hz. Again we see a pattern; it’s easy to see that f, is

Table 3. Nodes and antinodes for various harmonics in strings and in tubes

Strings Tubes

Length-
Harmonic  Wavelengths  Nodes  Antinodes Nodes  Antinodes  wavelength rel.
1 12 2 1 1 A=2L
2 1 3 2 2 3 A=L
3 32 4 3 3 4 N=2/3L
4 2 5 4 4 5 A=1/2L
5 5/2 6 5 5 6 5.
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Fig. 48. All the harmonics vibrating at the same time.

2f,, f; is 3f, and so on; in other words, the upper harmonics are inte-
gral multiples of the fundamental, as we would expect.

" It important to remember that all these harmonics are vibrating
at the same time, as shown in figure 48.

Listening to Overtones on a Piano

Since the harmonic series is the sequence of frequencies nf, where f
is the fundamental and 7 is an integer, we can express this using mu-
sical staff notation. For example, for the harmonics of the key A, (the
A above middle C) we have

ok UM
The frequency of each note has been specified; you can see that they
are integral multiples of 55 Hz.

You can actually play this series on a piano and hear the various
harmonics. Begin by slowly depressing the key A, and holding it down.
“This lifts the damper for the key but does not sound it. Now go up one
octave to A and strike it hard (and staccato, or detached). After the
sound from A; has died away, you will hear A, vibrating in its second
harmonic. Then do the same thing with E; you will hear A, vibrating
in its third harmonic. You can continue up the keyboard in this way,
striking A, C4, E, and so on, for the third, fourth, and fifth harmonics.

Vibrational Modes of a Column of Air

We have seen the vibrational modes of strings, which are common to
violins, guitars, and pianos, but many musical instruments make
their sounds using vibrating columns of air. There are, in fact, open-
end air column instruments such as the flute, the trombone, the sax-




