
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

ComputationJobForNIII
[image: profile]
strength
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

be1500.pdf

Home>Mathematics homework help>ComputationJobForNIII

Wayne State University, BE1500 Fall 2014

Introduction to Programming and

Computation for Engineers

Project One (P1):
Balancing Machine Resource Economies
in Competitive Cloud Environments.

1 Objectives

(a) Simulate a competitive cloud computing environment in MATLAB©.

(b) Understand the elementary pure Nash Equilibrium model.

(c) Take your coding up a notch!

1

2 Project One (P1): Due November 8th 2014

2.1 Introduction

Cloud computing service markets are highly competitive. Service Providers such as
Amazon Web Services, Microsoft Azure, and Google Cloud all compete against each
other to provide services to the general public such as storage, accessing, computing,
streaming, etc. Each of these Providers have an arsenal of machines ready to compute
processes for Clients who request services, e.g., requesting access to a saved document,
storing a database, downloading an MP3 �le, executing Microsoft Word 360, �nding the
best Indian food in town or seeing who is at the Fillmore tonight through a mobile device.
At any interval of time, there are thousands of Clients online that want to perform a
process and a Provider has to accommodate them. Let's look at a simple sequence of
execution simulating how this works for a single Provider, e.g., Amazon Web Services.

Balancing Economic Machines in Cloud Competitive Environments

Cloud computing service markets are highly competitive. Service providers such as Amazon

Web Services, Microsoft Azure, and Google Cloud all compete against each other to provide services to

the general public such as storage, computing, streaming, etc. Each of these providers have an army of

machines ready to accept work from Clients who request services i.e., requesting access to a saved

document, downloading an mp3 file, executing Microsoft Word 360, finding the best Indian food in town,

see who is at the Fillmore tonight, etc. At any interval of time, there are thousands of Clients online that

want “something” and a Provider has to accommodate them. Let’s look at a simple sequence of how this

works for a single Provider i.e., Amazon Web Services.

STEP 1: The interacting agents are Amazon, the Clients, and the Amazon machines.

STEP 2: Clients submit requests to an Amazon centralized system.

STEP 3: Amazon’s centralized system distributes the requests to machines in its arsenal.

Figure 2.1: Amazon Web Service Provider, Clients and Amazon Web Service machines.

Balancing Economic Machines in Cloud Competitive Environments

Cloud computing service markets are highly competitive. Service providers such as Amazon

Web Services, Microsoft Azure, and Google Cloud all compete against each other to provide services to

the general public such as storage, computing, streaming, etc. Each of these providers have an army of

machines ready to accept work from Clients who request services i.e., requesting access to a saved

document, downloading an mp3 file, executing Microsoft Word 360, finding the best Indian food in town,

see who is at the Fillmore tonight, etc. At any interval of time, there are thousands of Clients online that

want “something” and a Provider has to accommodate them. Let’s look at a simple sequence of how this

works for a single Provider i.e., Amazon Web Services.

STEP 1: The interacting agents are Amazon, the Clients, and the Amazon machines.

STEP 2: Clients submit requests to an Amazon centralized system.

STEP 3: Amazon’s centralized system distributes the requests to machines in its arsenal.

Figure 2.2: Clients submit tasks to the Amazon Web Service Provider.

2

Balancing Economic Machines in Cloud Competitive Environments

Cloud computing service markets are highly competitive. Service providers such as Amazon

Web Services, Microsoft Azure, and Google Cloud all compete against each other to provide services to

the general public such as storage, computing, streaming, etc. Each of these providers have an army of

machines ready to accept work from Clients who request services i.e., requesting access to a saved

document, downloading an mp3 file, executing Microsoft Word 360, finding the best Indian food in town,

see who is at the Fillmore tonight, etc. At any interval of time, there are thousands of Clients online that

want “something” and a Provider has to accommodate them. Let’s look at a simple sequence of how this

works for a single Provider i.e., Amazon Web Services.

STEP 1: The interacting agents are Amazon, the Clients, and the Amazon machines.

STEP 2: Clients submit requests to an Amazon centralized system.

STEP 3: Amazon’s centralized system distributes the requests to machines in its arsenal.

 Figure 2.3: Amazon Web Service distributes the tasks to it's arsenal of machines.

In Figure 2.3, Amazon Web Services must determine the best distribution of tasks to
each of it's machines. Each machine will determine it's own strategy for accepting tasks
but since they are cooperating; they have to choose the strategy that is a best response
to the choices of all the other machines. For our project, the best distribution provides
Amazon Web Services the ability to minimize the processing time for all requested
tasks where each machine attempts to maximize it's revenue since payment for services
is dependent on processing time, i.e., more processing, more revenue. Moreover, we
will equate unit pro�t to unit processing time. In the real world, the streams of task
processing requests are in real-time and arrive to the Provider near continuously. In our
model, we will create only a single, �nite stream of task processing requests called the
Request Stream. Below is a Request Stream with 8 tasks where the values of each
task represents it's processing time in milliseconds.

Task Processing Time (ms)
T1 1
T2 1
T3 1
T4 2
T5 4
T6 5
T7 6
T8 10

The strategic choices Amazon Web Service machines make are to encode themselves
with a policy to process tasks from the Request Stream. Examples of very simple poli-
cies we are going to use are identi�ed by S (shortest job �rst) & L (largest job �rst).
If a machine has policy S encoded onto it, then that machine will be responsible to
process the next available task of minimum time. On the other hand, if a machine has
policy L encoded onto it, then that machine will be responsible to process the next
available task of maximum time. Therefore, all machines are encoded with policies us-
ing pseudo-intelligent decision making by playing a game with each other to minimize
overall processing time and simultaneously attempt to maximize machine level revenues.

3

For our model, let's assume Amazon Web Services has two identical machines (meaning
they have the same disk space, processing power, etc.), where each machine can encode
itself a single policy. Let's name our machines M1 & M2, respectively. The objective
is to balance the distribution of tasks from the Request Stream so that each machine
keeps accepting tasks until that machine's load is equal to or greater than the other
machine's load. Note the selection process is not a turn-by-turn process where each
machine is given every other task to process. Rather, M1 accepts one task determined
by its policy. Then, M2 accepts one task with regard to its policy. If the load on M2 is
less than M1, then M2 accepts the next task in accordance to it's policy. Else, the load
on M2 is greater than or equal to M1, then M1 accepts the next task in accordance
to it's policy. This process continues until all tasks in the Request Stream have been
processed; where, upon completion, they are sent back to the Client in-sync.

If the policies chosen by Amazon Web Service machines can be represented as a 2-tuple,
(M1's policy, M2's policy), then every possible machine processing time combination
can be computed for the given Request Stream. We will go through the process of
distributing the tasks to machines for all possible 2-tuple policy combinations with the
Request Stream visually.

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 1 1 1 2 4 5 6 10
SL: 1 1 1 2 4 5 6 10
LS: 1 1 1 2 4 5 6 10
LL: 1 1 1 2 4 5 6 10

20 / 39

Figure 2.4: Initialization

4

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 1 1 2 4 5 6 10
SL: 1 1 2 4 5 6 10
LS: 1 1 1 2 4 5 6
LL: 1 1 1 2 4 5 6

21 / 39

Figure 2.5: Iteration 1

5

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 1 2 4 5 6 10
SL: 1 1 2 4 5 6
LS: 1 1 2 4 5 6
LL: 1 1 1 2 4 5

22 / 39

Figure 2.6: Iteration 2

6

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 2 4 5 6 10
SL: 1 2 4 5 6
LS: 1 2 4 5 6
LL: 1 1 1 2 4

23 / 39

Figure 2.7: Iteration 3

7

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 4 5 6 10
SL: 2 4 5 6
LS: 2 4 5 6
LL: 1 1 1 2

24 / 39Figure 2.8: Iteration 4

8

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 5 6 10
SL: 4 5 6
LS: 4 5 6
LL: 1 1 1

25 / 39Figure 2.9: Iteration 5

9

Evolutionary Stability - Example

G[2,8](M,J,Π)

Job Stream: 1 1 1 2 4 5 6 10

SS: 6 10
SL: 5 6
LS: 5 6
LL: 1 1

26 / 39Figure 2.10: Iteration 6

10

Figure 2.11: Iteration 7

11

Evolutionary Stability - Solution

(L,L)∈ ∆NE in G[2,8](M,J,Π)

L∈ ∆ESS in G[2,8](M,J,Π)

28 / 39Figure 2.12: Final Iteration

For each of the 2-tuple policy combinations, the sum total of the tasks per machine
represents the amount of time it spends processing. The less time spent on all the
machines in total, the more satis�ed the Clients are with Amazon Web Services. The
total processing times for this Request Stream are as follows:

M2
S L

−−
S | (S, S) (L, S)

| −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−
| M1 chooses policy S: 12 M1 chooses policy L: 14
| M2 chooses policy S: 18 M2 chooses policy S: 16
| −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−

M1 |
|

L | (S, L) (L, L)
| −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−
| M1 chooses policy S: 16 M1 chooses policy L: 15
| M2 chooses policy L: 14 M2 chooses policy L: 15
| −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−

By reducing the details, the game takes the following form:

12

M2
S L

−−−−−−−−−−−−−−−−−−−−−−−−−−−
S | (12, 18) (14, 16)

M1 |
L | (16, 14) (15, 15)

Recall machine level policy selection is not strictly dependent on the choice of the ma-
chine but takes in consideration the policy choices of the other machine's best responses.
Therefore, a decision making sequence must ensue.

The decision sequence for choosing the best policy for M1 considering M2:

1. Processing time for M1 choosing S, when M2 chooses S, (S, S): 12

2. Processing time for M1 choosing L, when M2 chooses S, (L, S): 16

3. Processing time for M1 choosing S, when M2 chooses L, (S, L): 14

4. Processing time for M1 choosing L, when M2 chooses L, (L, L): 15

If M2 chooses policy S, M1 should choose policy L to maximize machine level process-
ing. If M2 chooses policy L, M1 should choose policy L to maximize machine level
processing. In either case, M1 will choose policy L. Let's see what M2 would do de-
pendent on M1:

The decision sequence for choosing the best policy for M2 considering M1:

1. Processing time for M2 choosing S, when M1 chooses S, (S, S): 18

2. Processing time for M2 choosing L, when M1 chooses S, (L, S): 16

3. Processing time for M2 choosing S, when M1 chooses L, (S, L): 14

4. Processing time for M2 choosing L, when M1 chooses L, (L, L): 15

If M1 chooses policy S, M2 should choose policy S to maximize machine level process-
ing. If M1 chooses policy L, M2 should choose policy L to maximize machine level
processing. Since M1 will choose policy L, this constrains M2 to choose L for machine
level maximum processing (revenue) but minimum request stream processing (time).

This exercise is an example of a very simple game-theoretic model to compute pure
Nash Equilibrium. The pure Nash Equilibrium, e.g., (L, L), from the example is the so-
lution which represents the best combination of policy choices given both machines have
the same objective on this unique Request Stream, i.e., minimize the request stream pro-
cessing time for the Clients and maximize machine-level revenue for the Provider. When
the Request Stream is small, within a �nite interval of time, the number of machines
used are few, and there is only one Provider the problem is easy to solve. When the
problem gets large in all dimensions, then a more complex model needs to be developed
to compute Nash Equilibrium using this framework. Let's increase the complexity a
touch by working with a larger Request Stream. . .

13

2.2 What's Requested of You. . .

Find the pure Nash Equilibria for the described model with the following parameters:

1. Only assume one Provider.

2. The Provider has two machines.

3. Each machine encodes itself with either an S or an L policy as described in this
document.

4. The machines accept a Request Stream exactly like M1 & M2 as described in this
document.

On Blackboard, in the Project 1 folder, there is a link (Request Streams) to three
di�erent Request Streams. Compute the pure Nash Equilibrium for each of those request
streams. My suggestion is to try to replicate the process with the Request Stream in
this document before attempting the larger Request Streams. When constructing your
function, start with the following framework:

function computeNashEquilibria(gameX)

Then, the execution could mimic:

>> gameX = 'stringRequestStreamGameX.txt';
>> computeNashEquilibria(gameX)

Your code should output the distribution of tasks per machine per policy combination,
output the totals, and intelligently chooses which combination of policies will be the
pure Nash Equilibrium. Develop a method for making the comparisons and modeling
the decision making process described in this document. On Blackboard, in the Project
1 folder, there is a link (Solution Output Example) for an example for how the output
should look. Follow the presentation therein or make it better. Use MATLAB©'s input
and output protocols to upload a Request Stream and output the contents of your results
to a text �le. Your solution should be in the form of a package with the usual naming
convention and the following contents:

1. A README.txt �le describing the contents of your solution package.

2. A copy of this document.

3. The MATLAB© .m �les used for computing the Nash Equilibria.

4. All three Request Streams stored as separate text �les.

5. Solution output for each of the Request Streams as a text �le; name your solution
output �le accordingly.

6. A Final_Report (.pdf) with a cover page and all Execution, Output and Code
inserted to complete this project.

14

	Objectives
	Project One (P1): Due November 8th 2014

	Introduction
	What's Requested of You…

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

