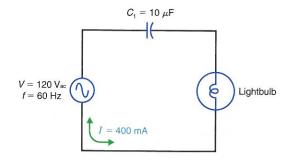

- 8. Referring to Fig. 17–8, draw three similar curves but for a sine wave of voltage with a period $T=12~\mu s$ for the full cycle. Use the same C of 240 pF. Compare the value of $X_{\rm C}$ obtained as $1/(2\pi fC)$ and $v_{\rm C}/i_{\rm C}$.
- 9. (a) What is the relationship between charge q and current i? (b) How is this comparison similar to the relation between the two formulas Q = CV and $i_c = C(dv/dt)$?

Problems

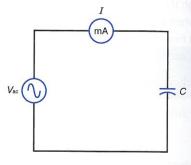
SECTION 17-1 ALTERNATING CURRENT IN A CAPACITIVE CIRCUIT

- 17-1 With the switch, S₁, closed in Fig. 17-9, how much is
 - a. the current, /, in the circuit?
 - b. the dc voltage across the 12-V lamp?
 - c. the dc voltage across the capacitor?


Figure 17-9

- 17–2 In Fig. 17–9 explain why the bulb will light for just an instant when S_1 is initially closed.
- 17–3 In Fig. 17–10, the capacitor and the lightbulb draw 400 mA from the 120-Vac source. How much current flows
 - a. to and from the terminals of the 120-Vac source?
 - b. through the lightbulb?
 - c. to and from the plates of the capacitor?
 - d. through the connecting wires?
 - e. through the dielectric of the capacitor?

Figure 17-10


526

- **17–4** In Fig. 17–11, calculate the capacitive reactance, X_{C} , for the following values of Vac and I?
 - a. Vac = 10 V and I = 20 mA.
 - b. Vac = 24 V and I = 8 mA.

- c. $Vac = 15 \text{ V} \text{ and } I = 300 \ \mu\text{A}.$
- d. $Vac = 100 \text{ V} \text{ and } l = 50 \mu\text{A}$.

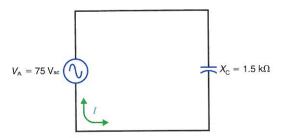
Figure 17–11

17–5 In Fig. 17–11, list three factors that can affect the amount of charge and discharge current flowing in the circuit.

SECTION 17–2 THE AMOUNT OF X_c EQUALS $\frac{1}{2\pi fC}$

- 17–6 Calculate the capacitive reactance, X_c , of a 0.1- μ F capacitor at the following frequencies:
 - a. f = 10 Hz.
 - b. f = 50 Hz.
 - c. f = 200 Hz.
 - d. f = 10 kHz.
- 17–7 Calculate the capacitive reactance, $X_{\rm cr}$ of a 10- μ F capacitor at the following frequencies:
 - a. f = 60 Hz.
 - b. f = 120 Hz.
 - c. f = 500 Hz.
 - d. f = 1 kHz.
- **17–8** What value of capacitance will provide an X_c of 1 k Ω at the following frequencies?
 - a. f = 318.3 Hz.
 - b. f = 1.591 kHz.
 - c. f = 3.183 kHz.
 - d. f = 6.366 kHz.
- 17–9 At what frequency will a 0.047– μ F capacitor provide an $X_{\rm C}$ value of
 - a. 100 k Ω ?
 - b. 5 k Ω ?
 - c. 1.5 k Ω ?
 - d. 50 Ω ?

- 17-10 How much is the capacitance of a capacitor that draws 2 mA of current from a 10-Vac generator whose frequency is 3.183 kHz?
- 17–11 At what frequency will a 820-pF capacitance have an X_c value of 250 Ω ?
- 17-12 A $0.01-\mu F$ capacitor draws 50 mA of current when connected directly across a 50-Vac source. What is the value of current drawn by the capacitor when
 - a. the frequency is doubled?
 - b. the frequency is decreased by one-half?
 - c. the capacitance is doubled to 0.02 μ F?
 - d. the capacitance is reduced by one-half to 0.005 μ F?
- 17–13 A capacitor has an $X_{\rm C}$ value of 10 k Ω at a given frequency. What is the new value of $X_{\rm C}$ when the frequency is
 - a. cut in half?
 - b. doubled?
 - c. quadrupled?
 - d. increased by a factor of 10?
- 17–14 Calculate the capacitive reactance, X_c , for the following capacitance and frequency values:
 - a. $C = 0.47 \,\mu\text{F}, f = 1 \,\text{kHz}.$
 - b. $C = 100 \mu F$, f = 120 Hz.
 - c. C = 250 pF, f = 1 MHz.
 - d. $C = 0.0022 \,\mu\text{F}$, $f = 50 \,\text{kHz}$.
- 17–15 Determine the capacitance value for the following frequency and X_c values:
 - a. $X_{\rm C} = 1 \text{ k}\Omega$, f = 3.183 kHz.
 - b. $X_c = 200 \Omega$, f = 63.66 kHz.
 - c. $X_c = 25 \text{ k}\Omega$, f = 1.592 kHz.
 - d. $X_{\rm C}=1~{\rm M}\Omega$, $f=100~{\rm Hz}$.
- 17–16 Determine the frequency for the following capacitance and X_c values:
 - a. $C = 0.05 \,\mu\text{F}, X_{C} = 4 \,\text{k}\Omega$.
 - b. $C = 0.1 \ \mu\text{F, } X_{\text{C}} = 1.591 \ \text{k}\Omega.$
 - c. $C = 0.0082 \ \mu\text{F}, X_{\text{C}} = 6.366 \ \text{k}\Omega.$
 - d. $C = 50 \mu F$, $X_C = 100 \Omega$.


SECTION 17-3 SERIES OR PARALLEL CAPACITIVE REACTANCES

- 17–17 How much is the total capacitive reactance, X_{C_i} for the following series capacitive reactances:
 - a. $X_{C_1} = 1 \text{ k}\Omega$, $X_{C_2} = 1.5 \text{ k}\Omega$, $X_{C_3} = 2.5 \text{ k}\Omega$.
 - b. $X_{C_1}=500~\Omega$, $X_{C_2}=1~\mathrm{k}\Omega$, $X_{C_3}=1.5~\mathrm{k}\Omega$.
 - c. $X_{c} = 20 \text{ k}\Omega_{r} X_{c} = 10 \text{ k}\Omega_{r} X_{c} = 120 \text{ k}\Omega$.
 - d. $X_{c_1} = 340 \,\Omega$, $X_{c_2} = 570 \,\Omega$, $X_{c_3} = 2.09 \,\mathrm{k}\Omega$.
- 17–18 What is the equivalent capacitive reactance, $X_{C_{EQ}}$, for the following parallel capacitive reactances:
 - a. $X_{\rm c} = 100 \ \Omega$ and $X_{\rm c} = 400 \ \Omega$.
 - b. $X_C = 1.2 \text{ k}\Omega$ and $X_{C_2} = 1.8 \text{ k}\Omega$.
 - c. $X_{c} = 15 \Omega_{r} X_{c_{2}} = 6 \Omega_{r} X_{c_{3}} = 10 \Omega_{r}$
 - d. $X_{c_1}^{1} = 2.5 \text{ k}\Omega$, $X_{c_2} = 10 \text{ k}\Omega$, $X_{c_3} = 2 \text{ k}\Omega$, $X_{c_4} = 1 \text{ k}\Omega$.

SECTION 17-4 OHM'S LAW APPLIED TO X_C

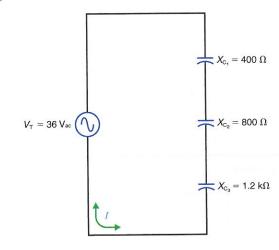

17–19 In Fig. 17–12, calculate the current, I.

Figure 17-12

- 17–20 In Fig. 17–12, what happens to the current, *l*, when the frequency of the applied voltage
 - a. decrease?
 - b. increase?
- 17-21 In Fig. 17-13, solve for
 - a. X_{C_T}.
 - b. *I*.
 - c. V_{C_1} , V_{C_2} , and V_{C_3} .

Figure 17-13

- 17-22 In Fig. 17-14, solve for
 - a. X_{C_1}, X_{C_2} and X_{C_3} .
 - b. *X*_{C_T}. c. *I*.
 - d. V_{C_1} , V_{C_2} , and V_{C_3}
 - e. C_{FO} .
- **17–23** In Fig. 17–13, solve for C_1 , C_2 , C_3 , and C_{EQ} if the applied voltage has a frequency of 318.3 Hz.
- 17-24 In Fig. 17-15, solve for
 - a. I_{C_1} , I_{C_2} , and I_{C_3} .
 - b. *I*_T.
 - c. $X_{C_{EQ}}$.