16–11 Determine the capacitance of each chip capacitor in Fig. 16–34. Use the coding scheme in Fig. 16–17.

Figure 16-34

16–12 Determine the capacitance of each chip capacitor in Fig. 16–35. Use the coding scheme in Fig. 16–18.

Figure 16-35

16–13 Determine the capacitance of each chip capacitor in Fig. 16–36.

Figure 16-36

16–14 Determine the capacitance and tolerance of each capacitor in Fig. 16–37.

Figure 16-37

- **16–15** Determine the permissible capacitance range of the capacitors in
 - a. Fig. 16-31a.
 - b. Fig. 16-31*d*.
 - c. Fig. 16-31f.
 - d. Fig. 16-32c.
 - e. Fig. 16-32d.
- **16–16** Explain the alphanumeric code, Z5U, for the capacitor in Fig. 16–32*b*.

SECTION 16-7 PARALLEL CAPACITANCES

- **16–17** A 5- μ F and 15- μ F capacitor are in parallel. How much is $C_{\rm T}$?
- **16–18** A 0.1- μ F, 0.27- μ F, and 0.01- μ F capacitor are in parallel. How much is C_1 ?
- **16–19** A 150-pF, 330-pF, and 0.001- μ F capacitor are in parallel. How much is C_T ?

16-20 In Fig. 16-38,

- a. how much voltage is across each individual capacitor?
- b. how much charge is stored by C_1 ?
- c. how much charge is stored by C_2 ?
- d. how much charge is stored by C_3 ?
- e. what is the total charge stored by all capacitors?
- f. how much is C_T ?

Figure 16-38

SECTION 16-8 SERIES CAPACITANCES

- **16–21** A 0.1- μ F and 0.4- μ F capacitor are in series. How much is the equivalent capacitance, $C_{\rm EO}$?
- **16–22** A 1500-pF and 0.001- μ F capacitor are in series. How much is the equivalent capacitance, $C_{\rm EO}$?
- **16–23** A 0.082- μ F, 0.047- μ F, and 0.012 μ F capacitor are in series. How much is the equivalent capacitance, $C_{\rm EQ}$?
- **16–24** In Fig. 16–39, assume a charging current of 180 μ A flows for 1 s. Solve for
 - a. C_{EQ} .
 - b. the charge stored by C_1 , C_2 , and C_3 .
 - c. the voltage across C_1 , C_2 , and C_3 .
 - d. the total charge stored by all capacitors.

Figure 16-39

- **16–25** In Fig. 16–40, assume a charging current of 2.4 mA flows for 1 ms. Solve for
 - a. C_{EQ} .
 - b. the charge stored by C_1 , C_2 , and C_3 .
 - c. the voltage across C_1 , C_2 , and C_3 .
 - d. the total charge stored by all capacitors.

Figure 16-40

16–26 How much capacitance must be connected in series with a 120-pF capacitor to obtain an equivalent capacitance, C_{FO} , of 100 pF.

SECTION 16-9 ENERGY STORED IN ELECTROSTATIC FIELD OF CAPACITANCE

- **16–27** How much energy is stored by a 100- μ F capacitor which is charged to
 - a. 5 V?
 - b. 10 V?
 - c. 50 V?
- **16–28** How much energy is stored by a 0.027- μ F capacitor which is charged to
 - a. 20 V?
 - b. 100 V?
 - c. 500 V?
- 16-29 Calculate the energy stored by each capacitor in Fig. 16-39.

SECTION 16–10 MEASURING AND TESTING CAPACITORS

16-30 Make the following conversions:

- a. 0.047 μ F to pF.
- b. $0.0015 \,\mu\text{F}$ to pF.
- c. 390,000 pF to μ F.
- d. 1000 pF to μ F.
- **16–31** Make the following conversions:
 - a. 15 nf to pF.
 - b. 1 nF to pF.
 - c. 680 nF to pF.
 - d. 33,000 pF to nF.
 - e. 1,000,000 pF to nF.
 - f. 560,000 pF to nF.
- **16–32** A plastic-film capacitor has a coded value of 154K. If the measured value of capacitance is 0.160 μ F, is the capacitance value within tolerance?
- **16–33** A ceramic disk capacitor is coded 102Z. If the measured value of capacitance is 680 pF, is the capacitance within tolerance?
- **16–34** A plastic-film capacitor has a coded value of 229B. If the measured value of capacitance is 2.05 pF, is the capacitance within tolerance?

SECTION 16-11 TROUBLES IN CAPACITORS

16–35 What is the ohmmeter reading for a(n)

- a. shorted capacitor.
- b. open capacitor.
- c. leaky capacitor.
- **16–36** Describe the effect of connecting a 0.47- μ F capacitor to the leads of an analog ohmmeter set to the $R \times 10$ K range.

Critical Thinking

- **16–37** Three capacitors in series have a combined equivalent capacitance C_{E0} of 1.6 nF. If $C_1 = 4C_2$ and $C_3 = 20C_1$, calculate the values for C_1 , C_2 , and C_3 .
- **16–38** A 100-pF ceramic capacitor has a temperature coefficient $T_{\rm c}$ of N500. Calculate its capacitance at (a) 75°C; (b) 125°C; (c) -25°C.