Figure 17-14

Figure 17-15

17-25 In Fig. 17-16, solve for

a. X_{C_1} , X_{C_2} , and X_{C_3} .

b. I_{C_1} , I_{C_2} , and I_{C_3} .

c. /_T.

d. $X_{C_{FO}}$.

e. *C*_T.

Figure 17-16

17–26 In Fig. 17–15, solve for C_1 , C_2 , C_3 , and C_7 if the frequency of the applied voltage is 6.366 kHz.

SECTION 17-5 APPLICATIONS OF CAPACITIVE REACTANCE

17–27 Calculate the value of capacitance, C, required to produce an $X_{\rm c}$ value of 500 Ω at the following frequencies:

a f = 100 Hz.

b. f = 2 kHz.

c. f = 50 kHz.

d. f = 10 MHz.

SECTION 17-6 SINE-WAVE CHARGE AND DISCHARGE CURRENT

17–28 Calculate the instantaneous charging current, ic. for a $0.33-\mu F$ capacitor if the voltage across the capacitor plates changes at the rate of 10 V/1 ms.

17–29 Calculate the instantaneous charging current, i_c, for a $0.01-\mu F$ capacitor if the voltage across the capacitor plates changes at the rate of

a. 100 V/s.

b. 100 V/ms.

c. $50 \text{ V/}\mu\text{s}$.

17–30 What is the instantaneous discharge current, i_{cr} for a $100-\mu F$ capacitor if the voltage across the capacitor plates decreases at the rate of

a. 10 V/s.

b. 1 V/ms.

c. 50 V/ms.

17–31 For a capacitor, what is the phase relationship between the charge and discharge current, ic, and the capacitor voltage, v_c ? Explain your answer.

17–32 A capacitor has a discharge current, i_{C} of 15 mA when the voltage across its plates decreases at the rate of 150 V/μs. Calculate C.

17–33 What rate of voltage change, $\frac{dV}{dt}$, will produce a charging current of 25 mA in a 0.01-µF capacitor? Express your answer in volts per second.

Critical Thinking

17–34 Explain an experimental procedure for determining the value of an unmarked capacitor. (Assume that a capacitance meter is not available.)

17–35 In Fig. 17–17, calculate X_{C_7} , X_{C_1} , X_{C_7} , C_1 , C_3 , V_{C_1} , V_{C_2} , V_{C_3} , I_{C_2}

Figure 17–17 Circuit for Critical Thinking Prob. 17–35.

Answers to Self-Reviews 17-1 a. 0.1 µF

b. $0.5 \mu F$

17–2 a. 200 Ω

b. 800 Ω

c. larger

17–3 a. 500Ω

b. 120 Ω

17-4 a. 300Ω

b. 66.7 Ω

17-5 a. 50Ω

b. 1000Ω

17-6 a. 90°

b. 0 or 360° c. 90°

Laboratory Application Assignment

In this lab application assignment you will examine how the capacitive reactance, X_0 , of a capacitor decreases when the frequency, f, increases. You will also see that more capacitance, C, at a given frequency results in less capacitive reactance, X_c . Finally, you will observe how X_c values combine in series and in

Equipment: Obtain the following items from your instructor.

- Function generator
- Assortment of capacitors
- DMM

Capacitive Reactance, X_c

Refer to Fig. 17–18 α . Calculate and record the value of X_c for each of the following frequencies listed below. Calculate X_c as $1/(2\pi fC)$.

_____ @ f = 200 Hz __ @ f = 400 Hz

Connect the circuit in Fig. 17–18a. Set the voltage source to exactly 5 V For each of the following frequencies listed below, measure and record the current, I. (Use a DMM to measure I.) Next, calculate X_c as V/I.

_____ @ $f = 100 \text{ Hz}; X_c = ___$ ______@f = 200 Hz; $X_c =$ ____ $g f = 400 \text{ Hz}; X_c = 1$

How do the experimental values of X_c compare to those initially

Based on your experimental values, what happens to the value of X_c each time the frequency, f, is doubled?

Figure 17-18

