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COMPLEX NUMBERS.

Why study complex numbers ?

Mathematics:

1. complex numbers make many parts of calculus much easier
- particularly differential equations and integrals

2. complex numbers can be used for many (but not all) purposes
where 2D vectors are used

3. complex numbers show that the functions sinx, cosx and e”
are basically the same thing

4. complex numbers are needed to solve the general quadratic
equation ax’ +bx+c¢ = 0 where a, b, ¢ are real constants.

Physices:
1. description of wave motion is greatly simplified using complex
numbers
2. Schrodinger matter waves are intrinsically complex
mathematical quantities
Engineering:
1. analysing AC electrical circuits
2. signal processing
3. analysing vibrations of structures



2 Definition of i.

The “square root of negative one” is written i, and satisfies

| (2.1)

so that in some sense 1 = ~-1.

Clearly no real number has the property (2.1), since the square of any real number x
(whether x is positive, zero or negative) cannot be negative.

Thus i is a non-real number, known as an imaginary number.
This is a class of numbers you may not have met before.
Apart from Eq. (2.1), all the other properties of i are determined by demanding that

i is a number obeying all the laws of algebra.

Notes:
1. Do not confuse the imaginary number i with the unit vector 1.

2. Some engineering texts use the symbol j for v- 1.
Do not confuse this with the unit vector j.



3 Imaginary Numbers.
Imaginary numbers are made by multiplying i by a real number.

Thus the following numbers are imaginary :

3i

_(2.5)i

i

i 3

— or —i

4

i(=1x1)
—i(=-1x1i).

If a is a positive real number, then — a is a real negative number and therefore
Joa =1xa = £ J1xva = £ iva.
We can check this by squaring either iva or -ia and see that we get—a. .
(iWa) = ivaxiva = #(Va) = ¢ Dxa=-a
or (— i«/g)z = (— i\/g)X(w i\/g) = (-i)z(x/g)z = 5.2(\/5)2 = (-1)xa = ~a.
This is no different to real numbers as all real numbers have two square roots differing by

a factor of —1, that is \/az = * a.

Examples:

L. J-1 =1 and -i.

2 -4 = 21 and -21.

3. J-5 = i/5 and -iv5.



4 Complex Numbers.

A complex number is defined as the sum of a real and an imaginary number.
A general complex number is often denoted by the symbol z. Thus

¢ any complex number z can be writtenas z = X + iy where x and y are real numbers

N

real part imaginary part

e x isreferred to as the real part of z and is written as X = Re(z)

e vy isreferred to as the imaginary part of z and is written as 'y = Im(z).
Note: The imaginary part of z, that is Im(z) isy not i y.

Examples of complex nunibers:

5+ 2
T-3i=7+ (-3
-+ 3.781

2 9

i it
3 10

V3 - 5i

are all complex numbers.
The real numbers suchas 6 = 6 + 0i
and the imaginary numbers such as 5i = 0 + 5i

are special cases of complex numbers.

Complex numbers can be added, subtracted, multiplied and divided using the usuaal

laws of algebra, with the addition of the definition it =-1.



5 The Arithmetic of Complex Numbers.

As a general rule you should simplify any complex number to x + iy.
Adding complex numbers.

Consider two complex numbers z; = X; + iy, and z, = X, + 1y,, then

Z; + Zn = (Xl + lyl) + (XZ + IY2)

= X; + 1y; + X + 1yy expanding out the brackets

= Xy + Xq + 1y; + 1y, rearranging the terms

= (X3 + Xp) + i(y; + ¥2) collecting real and imaginary terms together
—— e
real part imaginary part

Thus when we add two complex numbers together, we simply add the two real parts and then
add the two imaginary parts.

Example:

(B+350) + (2-4) = 3+2) + 5-41 = 5+1.

Subtracting complex numbers.

Using the complex numbers z; and z, from above, we have

Zy - Ip = (Xl + Eyl) - (Xz he IyZ)

= X +iy; - Xy - 1y; expanding out the brackets
= Xy - Xy + 1y - 1Y, rearranging the terms
= Xy - X5) + 1y - ¥2) collecting real and imaginary terms together
J \ J
A

real part imaginaty part

Thus when we subtract one complex number from another, we simply subtract the real parts
and then subtract the imaginary parts.



Example:

(3+5) - 2-4)=0G-2)+B5--D]i=0CG-2)+SE+4i = 1+9L

Multiplying complex numbers.

Now consider multiplying z; and z,:

(X; +iy) Xy +1y2)

7, X Zy
= X;Xp + Xy{iyz) + (y)xy + {dy;Niya)
= XX +ix¥y + ixpy; + Cy1¥s
= X;Xp + IX1¥y + iXy; + -1Dy1ys using i° = -1
= (X%Xp - ¥y1¥2) + (%172 + %2 ¥1).

NS S T S—

real part imaginary part

Do not try to memorize this formula as it is easy to just repeat the lines above.
Example:

G +50)Q2-4i) = 3x2 + 3(-4D) + (52 + (Si)(-4i)

il

H

6 - 12i +10i +5(- 4)i’

= 6 -12i +10i +5(-4)(-1)
6 + (-12+10)i + 20

(6 +20) + (- 12+ 10)i

26 - 2i.

1

With practice, you may be able to skip some of the steps above.

Dividing complex numbers.

This also uses ordinary algebra, but the answer is simplified by a special trick. Therefore
we will look at dividing complex numbers a little later.



Equality of complex numbers.

Two complex numbers are equal if and only if they have the same real part and the same
imaginary part.

In terms of symbols,

Consider the two complex numbers z; = X; + 1y and 2z, = X, + iy,.

Z, = Z, ifandonlyif X = X, and y; = y,.

6 The Argand Plane.

Geometric representation of complex numbers.

A complex number z = X +1y is often represented by the point (X, ¥} in a two-dimensional
(“2D”) diagram with axes, just as in plotting a point on a graph (Figure 1).

4 Im(z)

z2=(X,Y)

Re(z)
>

Figure I : Argand diagram.

This diagram is called an Argand diagram and the x —y plane in which it is drawn is known
as the complex plane or sometimes the Argand plane. The point z is here
represented by its Cartesian coordinates x and y.

The form z = x +iy is called the Cartesian form of the complex number z.
The horizontal or Re(z) axis is termed the real axis.

The vertical or Im(z) axis is termed the imaginary axis.



Example :

Draw the complex numbers z; = 2+1i and z, = -3 +4i onan Argand diagram.

z, = -3+4i

i
L
b



7  Modulus of a complex number.

The modulus, r, of a complex numbet, z, is denoted by |z|.

z=(X,Y)

Re(z)
'

Figure I : Argand diagram.

Using Pythagoras® Theorem in the triangle of Figure 1, we find that

lz| = [x+iy[ = 1/)(2 +y2. (7.1}

z[ , 18 also sometimes called the absolute value of

The modulus of the complex number z,
z, the magnitude of z or the length of z.

Example:

The modulus of 3 +2i is |3+2i = V3% +2 = VI3,

Exercise:

For the special case of a real number x = X + 0i, check that our definition of absolute
value |x +0i| agrees with the definition of the absolute value x| already encountered in

calculus.



Examples:

If p=2-7i and q = -3 QSi, find

(a)

(b)

(©

(d)

(e)

(®)

{a) 2p+gq
by 3p-2g
£y pq

(d) Re(2p+4q)

(¢)  Im(3p-2q)

®  |p|

(g) Draw p and q on an Argand diagram.

2p+q=22-71) + (-3-50) = 4-14i-3 -5
= (@4-3) + (-14-5)i = 1-19i.
3p - 2q = 3(2-70) - 2¢-3-51) = 6-21i + 6 + 10i
= (6+6)+(-21 +10)i = 12-11i.
pq = (2-Ti)-3-5) = 2(-3) +2(- 51) + (- 7i)-3) + (- Ti)(-51)

=-6-10i+211+35i> = -6-10i +21i +35(- 1)

(-6-35)+(-10+21)i = -41+11i.
Re(2p +q) = Re(l - 19i) = 1.

Im(3p-2q) = Im(12~11i) = ~ 11,

ol = [2-7i] = 22 +(¢7? = J4+49 = /53,

10



(2

A Im(z)
-3 -1 1 2 Re(z)
] 7 ! n ! >
£11-
-3
- V53
-5
q=-3-5i
ST
p=2-Ti

11



8 The complex conjugate, Z.

The complex conjugate, Z, of a complex number z = x +1y is defined as the
complex number having the same real part but imaginary part of opposite sign, thus

Z = X+1y = x-iy where x andy are real.

A Im{z)

P Re(z)

X -iy (complex conjugate)

Figure 2: Complex conjugate 7.

This is illustrated in Figure 2. We can think of the complex conjugate of z as the
reflection of z in the real (horizontal) axis.

Example:

Let z = 2+5i,then Z= 2+31 = 2-351.

The complex conjugate has the following useful property.

Multiplying an arbitrary complex number z = x +1y by its conjugate Z = x—1iy
gives

27 = (X+iyE-iy) = X+ xCiy) + Gyx + Gy)-iy)

= x% - ixy + ixy - i%y? = x% - ixy + ixy - ¢ Ly? (using i° = -1)

= x* + y?,

12



From Equation (7.1) we find that x% +y> = |z|* so that
727 = |z|2- = x% + y°.
The process of multiplying by the complex conjugate is called rationising z.

. 2 . . o
Since x* + y2 = |z[° is a real non-negative number, rationalisation converts a

complex number to a real number.
Note that by addition and subtraction of z = x +1iy and its complex conjugate,
Z = x—1iy we get

z+Z =2x and z-Z =2y

which leads to the two important formulae

Re(z) = x = %(z+i}
1
m@) =y = —(z-2).
21
Example:
Let z = 4+3i then
I 1 , . 4+4 8
Re(z) = E(Z%—Z) = 5[(4+31) + (4-3)] = =5 ° 4
1 1 3i+3i 6i
1 = —(z-7) = —|(4+31) - 4-3D| = = — = 3,
m(z) 2i( 2 2i[( ) - € )] 2i 2i

13



Properties of Complex Conjugates.

For the two complex numbers 2z; = X; +1y; and z, = X, +1iy, , we have the
following

21+ZQ = -Z—I"*"-Z—z

ZI-ZZ - 21-22

ZyZy = _Zmlgz.

Let us prove the first resuit.
We need to show that the left hand side (ILHS) equals the right hand side (RHS).

Firstly, expand the LHS

LHS = 7, + 7,

(x) +iy;) + (X +1ys)

1l

= (X; +X3) +i(y; +¥2)

(x; +%3) -i(y; +¥2)

1l

Next, expand the RHS
R}IS = EI +Ez

= X +ly] + %5 +1y»

(X; -1y + (Xp -iyq)

= (X +X3) - ¥y +¥2) (collecting real and imaginary parts)

il

= LHS
Since the RHS equals the LHS, we have proved the result.

The proofs of the remaining two results are left as an exercise.

Example:
Let z; = 4+3i and 2z, = 2+51, then

@+ 3iX2+51)

Z1Zy

[4x2+451)+ (B2 +GHGD]

I

8 +201+61-15

I

= -7+26i = -7-26i.
14



9 Dividing complex numbers in Cartesian form.

To divide two complex numbers z and w to form the complex number £ , We
W

multiply top and bottom by the complex conjugate of the bottom line, w.

This process of multiplying top and bottom does not change the value (after all we have

. qe W . .
only multiplied by — = 1) but it converts the denominator to a real number
w

_ 2 L .
ww = jw|", and division by a real number is easy.

Example:

Ifz, = 3+5i and z, = 2—4i, find 2L
2

As we are dividing by z,, we need to find the complex conjugate of z,.
Therefore Zy = 2-41 = 2+41.

Z 3+5i 3451 2+4i ] _
= = x multiply top & bottom by conjugate of z
Z, 2 -4 2-4i 2+4i (multiply top Y conjugate of z,)

(3 +51)2 + 41)
(2 -4i)2 +41)

_ 3X2 +3(4H) + G2 + (S1)(41) (expand out top and bottom)

2% 2+ 2(41) + (- 41)2 + (- 41)(41)

. . .2 . .
121+ 10i -

_ 6+121+101+221 _ 6+ T+ .01 20 (simplify using 7 = - 1)
4+ 8i-8i-16i 44+81-8i+16

_ 6-20+(2+ 10 (collect real & imaginary parts together)

4+ 16+(8-8)

- 14+ 221 14 22

= e = e e b ——] simpli
20 + 0 50t ol (SimPiny)

- -14—}}4. this must be zero
10 10

15



Check:

We claim to have found p = ka8 where z;, = 3+ 5i and z, = 2 -4i.

Zy

If this is true, we should be able to find that pz, = z,.

We can do this my multiplying p by z, and show that it is equal to z,.

PZ;

(- z + -1—1~i)(2 - 4i)
10 10
(ﬂ?ﬁ+(“1}4n+CEQ2+(HQQM)
i0 10 10 10
14 28, 22, 44
s T T —
10 10 10 10
mﬁ+_2~3_i+_2£i+ﬂi (using i* = - 1)
10 10 10 10
14 + 44) + 28 + 22} {collect real & imagi 1s)
S22 =22 real & imaginary parts
10 10 10 10 gy pe
30 530,

10

10

+ 20 = 3+5i=z.

16



10  Polar form of a complex number.

Two real numbers, x and y, are required to determine a complex numberz = x +1y.
This is termed the Cartesian form of z. But the same point (x, y) in the Argand plane

could be specified by the polar coordinates — the “moduius” r = {zl and the “argument”,

0, as shown in Figure 3.

z=(X,¥)

ﬁe(z)

Figure 3 : Polar and Cartesian forms of z.

We write 0 = arg(z).
Note that the argument, 9, is sometimes called the “phase angle”.
The form (r, 0) is termed the polar form of z.

(Later we will find a more useful representation of the polar form,

namely r exp(i8) or re'®).
Note that the argument 6 is measured anticlockwise from the real axis.

A negative angle implies clockwise rotation from the real axis.

17



Ambiguity of the argument 6.
The physical or geometric angle shown in Figure 3 is about 45° = g radians.

But the same geometric angle (i.e. 6 in figure 3) would be obtained by rotating through
an arbitrary number of complete circles. Thus, in general, the same diagram would be
obtained with a numerical angle © + 360n ( in degrees) or O + 2xrn (in radians). Here n is
an arbitrary integer. Itcouldbe O, +1,-1, +2, - 2, etc..

Thus in the particular case depicted in figure 3, the same geometric angle 9 could be
written numerically in degrees as

n=0: 45° + (0) (360%) = 45°
n=1: 457 + (1) (3607 = 405°
n=-1: 45° + (- 1) (3607 = -315°
n=2: 45° +(2) (360°) = 765°
n=-2: 45 +(-2)(360") = -675°
In radians, the same geometric angle is given by the numerical angles
n=0: Z 1 (0) 2m) = I
4
i 97
=1 - +(1) 2R = —
n p (1) 2r) 1
i n
= - 1 — +(-1)(2rn = - —
n ) (- 1) 2m) 1
T 17w
=2 — +(2)(2n = —
n ) (2) (2m) 7
T 157
=-2 — +{(-2)(2r = - —
n p (-2) (2r) I

It is customary (but not universal) to choose n so that 0 <8 <360° (or 0 <8< 2x,in

radians).
Note that in polar form, two complex numbers are equal if they have the same moduli

and their arguments differ by a multiple of 27.

18



Conversion of z from polar form to Cartesian form.

Suppose that r (= 1z/) and € are given. Then from trigonometry in triangle Ozx of
Figure 3 we find

X = recosd (10.1)
y =rsing. (10.2)
Thus Z = X+iy = rcosB +i(rsin@) = r(cosd +isind). (10.3)

Example :

Ifr=2and8 =120 then, using a calculator set to degrees, we find

2 cosi20® = -1

X =
y = 2 sinl20° = 1.7321.
4 v o 3 o 1 . *
Note : we can find sinl120" = - and cosi20” = - Y without using a calculator,

using a 60° - 30° right angled triangle, plus the basic diagram for defining sine and
cosine.

30°
2
V3
60°
4P
i
it . djacent 1
Thorefore  sinG0° = —OPPOST V3 Ll adiacent 1
hypotenuese 2 hypotenuese 2

3
2

But 5in120° = sin(180° - 60°) = sin60° =

1
c0s120° = cos(180° - 60°) = - cos60° = - 2

19



Therefore X = 2c08120° = ZX(w é—) = -1

3
y = 2sin120° = 2><3§: = V3 = L7321

And so z=~1+\/§i.

Conversion of a complex number from Cartesian to polar form.

Given z = X+ iy, we want to find the modulus r and the argument 0.

1. Calculate r from equation (7.1) is straightforward :

r= x> +y2.

2 Find 6 by dividing equation (10.2) by equation (10.1) to give

vy o_ rsin@ _ sin® - tan®.
X rcos@ cosH
That is tan® = 2 (10.4)
X

3. Calculate 8.

Use B = arctan—y—

X

Given values of x and y, the idea, from equation (10.4), is to divide these,
then to use the “inverse” “tan” functions on your calculator to find 0.
Unfortunately, if you do this without thinking, it can give you wrong
answers!! The problem is that, given any particular number t, there are
always two geometrically different angles 9, and 0, such that both

tan@; =t and tan®, =t. These angles differ by w (= 180") as

illustrated in the graph of y = tan6 in Figure 4 below.

20



tan 8

o]
3

Figure 4 : Graph of tan®.

For example, the two angles (6, =63.4° and 0, =243.4") shown by the arrows both

have tan® = 2. (This uncertainty is additional to the uncertainty of n(360%) (a whole
number of complete circles) discussed above: that uncertainty did not change the

geometric angle.)
The inverse tangent function on most calculators chooses 8 between — 90° and 90° (i.e.

between - kil and + T radians).
2 2
Thus if tan® > 0 it will give you a value of 6 between 0” and 90° (0 and g radians)

but if tan® <0 it will give you a value of 6 between - 90° and 0” (i.e. between - 3“2,.. and

0 radians).

21



However, if tan8 > 0, 0 could either be between 0° and 90° (0 and g- radians) or
. . 3n .
between 180" and 270" (1t and m{ radians),
whereas if tan0 < 0, 0 could either be between 90° and 180° (g and 7 radians) or

between 270° and 360° ( %E and 27 radians).

A Im(z)
2™ quadrant 1* quadrant
tang <0 tand > O
> Re(z)
tand >0 tand < 0
3" quadrant 4" gquadrant

Thus a calculator may or may not give you the correct value of 8.

The safest way to be sure is to sketch an argand diagram based on the given values
of xandy. _

22



Example ;

Let z; = I+ 2i. Findmodulus r; and angle 6, in degrees.

1.

Find the modulus ;.
r;_ = “\lez"{'yIz = Vlz +22 = ‘\/g
Calculate tan9, .

Y
1

tang; = il
X

Use calculator to find 6,.

Set calculator to degrees.

Use your calculator’s tan™ or inv tan button to find
91 = 63 .40 .
That means 6, = 63.4° or 63.4° +180°

that is 8, = 634" or 243.4°.

Draw z; on the Argand plane.

I

6;

P e e et e e e e e

Re(z)

You can clearly see from the argand diagram that the correct 0 is

B, = 63.4° or M

Therefore r; = /5 and 6;= 63.4°.

23



Example :

Let z3

1.

= - [ -2i Find modulus r; and angle 6, in degrees.

Find the modulus .
b= x?+yst = I 2P = 45

Calculate tan®,.

-2
t&i"iG;:X:?'*ﬁ——"—?z.
- KZ -1

Use calculator to find 6..

Set calculator to degrees.

Use your calculator’s tan™ or inv tan button to find
92 - 634D .
That means 6, = 63.4° or 63.4° +180°

that is 8, = 63.4° or 2434°.

Draw z; on the Argand plane.

Im(z)
02
- A >
:‘ & Re{z)
/e
S -2
7y = (-1, -2)

You can clearly see from the argand diagram that the correct 8 is

8, = o34 or 243.4°.

Therefore 1y = v5 and 6, = 243.4°.

24



Example :

Let z3
1.

= - [ + 2i. Find modulus r; and angle 65 in radians.
Find the modulus rs.

Iy = \/X32 “{"‘Y32 = \/(- 1)2+22 - \/g

Calculate tan®,.

tanf; = * = — = -2,
X3 - I
Use calculator to find ;.

Set calculator to radians.

Use your calculator’s tan™ or inv tan button tb find
8; = - 1.107.

Thatmeans 03 = -1.107 or -1.107 + &

that is 05 = - 1.107 or 2.034 radians.

Draw z; on the Argand plane.

Tm(z)

-1 > Re(z)

You can clearly see from the argand diagram that the correct € is

8, = BRI or 2.034 radians .

Therefore 1y = +/5 and 63= 2.034 radians .

25



Example ;

Let zy = I-2i Find modulus ry and angle 0y in radians.

1. Find the modulus 4.

b= xSyl = P2 = V5.
2. Calculate tanf,.

tan@, = i—j = w—f«- = 2.
3. Use calculator to find 8,.

Set calculator to radians.
Use your calculator’s tan™ or inv tan button to find

B, = -1.107.
Thatmeans 8, = -1.107 or -1.107+ =
that is 8, = -1.107 or 2.034 radians.

Draw z4 on the Argand plane.

1 > Re(z)

(1,-2)

S

You can clearly see from the argand diagram that the correct 8 is

9, = -1107 or TH34 radians .

Therefore 1y = V5 and 84 = -1.107 radians .

Some people, however, like to quote angles in the conventional range

0 <6< 2mn. This can be achieved by adding 2% radians. This does not change
the geometric angle but brings the numerical angle into the conventional
range. Thushere 0, = -1.107+2%n = 5.176.

Therefore 1y = 5 and 6, = 5.176 radians .

26



All this can be summed up as follows:

Calculate r = »./xz +y% .

Find tand = %
X

Calculate 0 = arctanz.
X

Use inverse tan calculator function to find 9 .
Calculate the two possible values of 6.

8 or 8+ radians

Sketch z on the argand diagram to determine which is the correct value of 6

If you have the correct geometric angle, but is not in the desired range
0 <0 < 360", add an integer number of 360°.

Important note:

Ifx=0,and y>0then §=90"= -;E radians , or

If y<Othen 6=270"= g— radians .

27



11  Multiplying and dividing complex numbers in polar form.

Let z = x; +iy; = |z;i(cos8; +isin®)) and z, = X, +iy, = |z2[(00592 +isin@,)
(see equation(10.3)). Then
Z)Zy = ;ZIIIZQI(Cosel + i8in 0 }{(cos B, + isinG,)

= z;||z,](cosB; cosB, + cos8isind, +isin®; cosh, + isingising,)

f

|zl||zz|(cosﬁl cosB, +icosBsin8, +isinb, cosO, + i2 sin®; sinf,)

|21]|72](cos6; cos6, +icosBsind, +isin@ cosh, - sind; sin6,)

il

= |z]|z2|(cos®; cosB, - sinB;sin®, +i[cosB, sinB, -+ sinb; cos,])
Using the trigonometric sum rules :
cos(8; +6,) = cosH; cosO, - sin;sind,
sin(8; +0,) = cos;sin®, + sin® cosO,
we can write z1z; as
212, = |z]|z5|[cos(®) +6,) +isin®; +0y)]. (11.1)

Comparing this with equation (10.3) z = r(cos +isinf) we see that the complex
number p = 71z has modulus p = |z/||z,| and argument y = 6; +86, .

In other words, we can multiply complex numbers by multiplying the moduli and
adding the arguments.

Example :

If z; has magnitude 3 and argument - W2 and z; has magnitude 2 and argument ©/4,
Sfind zjz>.

Therefore z; = 3 cos(— E) +isin[- E)
2 2
Zy = Z[COS(E) +isin[EJ].
_ 4 4

Therefore 717 has magnitude |z1Hzgl = 3x2 = 6 and

T T T
argument 0; +6, = —-£+Z = -7

28



Alternatively

s = ol - S on(3] (3]
v 525wl 53]
ool 5ol 5]

Similarly, we can divide complex numbers by dividing the moduli and subtracting the
arguments.

il

Zq

That is = ,LZZ‘-E—,[cos(ei -0, +isin(0; -9,)]. (11.2)
2

Z
Example :

If z) has magnitude 3 and argument - ©/2 and z; has magnitude 2 and argument n/4,

zZ
find =L
22

Therefore 7; = 3[@3(“ 35) +isin(— Eﬂ
2 2
2 COS(—TEJ +isin(£} .
4 4

Zy

Therefore 4 pas magnitude E—ll = 3 and
Zy iz 2
T R n
ent ;-6 =-—-— =-—.
argumen 1 2 5 P 4

29



Alternatively,
[3)eml-2)
3icos| - — | +1isin, - =
Zy [ 2 2
22 2 COS(E) +isin(zt—)
4 4
3 T = . T T
= —|C08 - — - — | +isin| - — - —
w33 en(- 33
3 ( 3n] . [ 375]
= —|cos| - — | +isin| - — |.
2 4 4
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12 Exponential function of imaginary argument,

Functions like sin x, cos x and exp(x) = e were defined for real numbers X in
12018CE Mathematics 1A.

By using Taylor’s series, we can develop a meaningful definition of these functions

for an arbitrary complex number z.
Taylor’s series provides an approximation for a function f{x) in terms of integer

powers of the form x™ :
f(O)X+ f (U)Xz + f (O)Xs

f(x) = f(0O) + T 2 Y + ...
For f(x) = e”, sinx and cosx . evaluation of the derivatives f, f/,f”, ... atx=0
gives the Taylor series as :
! 1 1 1 i 1 5
exp(x) = ef = 14 —X+ —X° 4 —X° + x4 —x> + ... (12.1)
1! 2! 3! 41 51
10 “1 0 1
SinX = 0+ —X + —X2 + —X° + —x" + —x° + ... (12.2)
It 21 3! 41 51
1 1 5
= X-—x"+ =% -... (12.3)
3! 5!
-1 1 .
CosX = 1o el +£x3+-—x4+—9x" . (12.4)
1! 21 3! 4! 51
1
R S S (12.5)
2! 4!

In addition to being good approximations when a finite number of terms are kept,
these particular three power series can be shown to converge exactly to the stated
functions, when the number of terms approach infinity.

Multiplying two series together and collecting terms one can use the power series

(12.1) to prove the following well-known rule :
= Mt T2 (12.6)

X; A X

ee

It then follows by induction that
(5] = e 12.7)

It is important to note that equations (12.6) and (12.7) follow from the power series
(12.1) using the laws of algebra alone. Therefore they are valid when we substitute a

complex number for z, as explained in the following,

Since (12.1) contains only integer powers of x, we can use it to define ¢” for complex
values of z.
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In particular, for imaginary z= 16,
i i 1 i 1 1
io _ s o2 s 3 s v A
g = 1+ ——1!(19)4- ——~2!(19) + —3!(1@) + —43(19) + —5§(1@) + ...

8 %6 i *e* e
= 1+j + + + +
it 2t 31 41 51
0 o 9 o
+ 1 i— +
It 21 3 4 5t

(using P =-1,F =-i,i*=1,¢ =i}

[ 0> ¢ ] .{e o® 6 ]
14— - |+ — - — .
ST RIS

By comparing this with equation (12.5) and (12.3) we then have

Il

el® = cos0 +1isin0. (12.8)

This is an important result and is known as Euler’s Formula.
In a similar fashion it can be shown that
exp(-i0) = e % = cosO-isin®. - (12.9)
Equation (12.8) can alternatively be expressed as
Re(eie) = cosh, Im(eie) = sinB.

From equation (10.3) and (12.8) we can now write a general complex number
z = x+iy as

il

Z = X+1iy = rcosB +irsin® = r{cosO +isind)

= re'® = |7e®.
Therefore the two main forms of expressing a complex number is

Z = x+iy = re'®.

e -

cartesian form polar form
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Equations (12.8) and (12.9) gives
¢'® = cos® +1sin®
e1® = cosB-ising.
Adding these equations gives
el® 4+ e1® = cosB +isin® + cos-isind
= 2c¢0s6.

Therefore dividing both sides by 2 gives

o dyie, e
cosB = 5(6 +e ) (12.10)

Subtracting (12.9) from (12.9) gives
e%. ¢ = cosB +isin® - cosO +isin®
= 2isinB.
Therefore dividing both sides by 2i gives

N Yie ie
smB--z—i(e e, (12.11)

The combination cos® +isin8 is often denoted “cis 67 so that

cisO = cosB +isin@ = exp(if) = e'®.

There is really no need for this additional notation, and it will not be used further

here. Tt is much more helpful to use the notation exp(i8) or ¢'® because this
reminds us that for all the useful properties of the exponential function can be
employed, as we will see,

The exponential of a complex number, z = x +1y is, from equations (12.6) and (12.8),

eX Y = e%e = e¥(cosy +isiny). (12.12)
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13 Multiplying complex numbers in polar form : II.

Let 7z, = ne'® and z, = re'%, then

7,2, = (rl e‘ei)(rz elel) =1 e ®el®

0, .0 B, +6

Now equation (12.6) shows that e”'e™* = e ' "2, and the exponent can be factored

to give e!® +8)  Thys the above product can be written as

7,2y = rzelel +10, = 1,2‘31(61 +8,) ]

In other words, to multiply two complex numbers we can
1. multiply the moduli, and

2. add the arguments.

This just gives us a different version of equation (11.1) which was derived from the
addition formulae for sin(6 +¢) and cos(0 + ¢).

Alternatively, we can use the present method to obtain those addition formulae
without having to remember them:

cos(B; +8,) +isin(8; +6,) = ei(e‘ ve) e!%e!%:
= (Cosel +isin9§)(cos€)2 +isin82)
= ¢086,cosB, + cosByisinG, +isinb; cosd, +isindisinG,
= cosB;cos0, +icosOsinb, + isinb, coshH, + i%5in @ sin#,
= cosB; cosB, +icosOsinb, +isind; cosH, - sin;sinb,
= (cos®; cosB, - sinb; sinéz) +1{cosO; sin®, + sind, cos 9,)
where we used multiplication of compiex numbers in Cartesian (x, y) form.
Equating the real parts of the LHS and RHS gives

cos(B; +04) = cosB cosO, - sinB;sind,

and equating the imaginary parts gives

sin(8; + 0,5) = cosH;sinb, + sinB; cosh, .
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14 De Moivre’s Theorem: Trigonometric identities.

Equation (12.7) gives
. n .
(elﬂ) - em@ i
From equation (12.8) we have el® = cosH +isind
and e'™ = cosn® +isinnd.

Substituting these into the above equation gives
(cos@ +isin@)" = cosnB +isinnd.

This result is known as De Moivre’s Theorem.

Although it is expressed in complex terms, it can be used to obtain trigonometric results
for real numbers.
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Example :
Find an expression for cos3 0 involving powers of cos@.

Putn =3 in De Moivre’s Theorem, above. That is
(cosB +isin®)’ = cos30 +isin30.
Taking the real part of both sides we obtain

Re(cos36 +isin38) = Re[(cose + isinﬁ)ﬂ

cos38 = Rel|cos’o + 3((:0329)@ sinB) + 3cos (i)(isin@)2 + (i sin@)s]
(multiplying out the brackets)

— Re| cos’0 + i3(00328)(sin 0) + i*3cos G(sine)2 +i°sin’ 9:]

= Re jcos38 + i3(00326)(sin 0) - 3cosB(sin 6)2 - isin’ 8:]
(using i =-1,7 =-1i)

= Re [(00839 - 3cosB(sin 6)2) + i(3(00328)(sin 6) - sin36):|
(collecting real and imaginary terms)

= co0s°0 - 3cosBsin® 9

= ¢0s9 - 3c088(1 - cosze) = c0s°8 - 3¢086 + 3cosH
(using sin’® = 1 —cos'0)

= 4c0s°8-3cosh .

In general, the connection between imaginary exponentials and real trigonometric
functions is a powerful tool for deriving trigonometric identities.
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Example :

Find an expression_for sin°® in terms of the trig functions of multiple angles.

Using equation (12.11)

- ca 3
0 -i8
. e -e
sin*f = | ————
21

- (e sl () e (o)

@i’
1 . : , .
— __é_‘[:e&@ _ 3626 +3e—18 _e-318:|
-0l
1] 630 30 3(619 e 19)
STl T o

- im(sin 36 -3sinb) .

Example :

Use the above to find the indefinite integral j sin“x dx

From above,

1
J.Sin3x dx J‘— Z(Sin 3x - 3sinx) dx

= - ifsirﬁx dx + 3jsinx dx
4 4

= - 1 - —1—0033)() + ~3«(~ cosx)+C
4\ 3 4

—l—cesfsx-%cosx-i-c.

12
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Another way to do the integral f sin’®x dx s by substitution using

u = cosx, sothat du = - sinx and so dx = d_u .
dx - Sinx
Isin3x dx = jsinzx sinx dx
= [(1-cos’x)sinx dx
= _{(1 ~u)sinx — (rewriting in ferms of u)
- sinx
= - J.(I ~u?)du (simplifving)
|
= o~ (u - —~u3] +C
3
I 5 s
= -u+ —3—u +C (simplifving)
1 3 o
= -CoSX+—-co§5"x+C (substituting u = cos x)

But from the first example cos3x = 4cos’x - 3cosx

I
which gives cos’x = Z(cos 3X + 3cosX).

Therefore substituting this above gives

4

1 1
jsin3x dx = - cosx + w?;-xw(COSSX +3cosx}+ C

1 1
- cOSX + —c0o83x + —cosx + C
2 4

m}mcos 3x- Ecosx +C.
12 4

which agrees with the above.
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15 nth roots of a complex number.

Imaginary numbers were originally invented to solve equations such as

w2 = -6 ,
but in fact complex numbers permit solutions of the more general equation
w' =z ' (15.1)

where z is any complex number and n is a positive infeger. One solution is obtained

immediately from the second exponential law equation (12.7), (€*)* = e"%,

by raising both sides of equation (15.1) to the power 1/n

{ 1 1
n—

W-qwn--(vv)n—~2,n

This operation can be evaluated using the polar form of z :

- /n I/
S (‘Zieie) — B 16/n / e16/11

That is, w has a modulus to the nth root of the modulus of z, and an argument 1/n
times the argument of z. For example, with n =3, a cube root (“3th root”) of

= -8 = 8" is
w = (Sei”)m = glBEi T3 o i

Although this procedure gives us one nth root, in general there are n different nth roots of
a given nonzero complex number. (Eg. There are 2 square roots (2th roots) of — 1 : they
are + 1 and —1). There are 3 cube roots of — 8.

To obtain all nth roots of z, we make use of the ambiguity of the argument discussed in
Section 7 : we can add an arbitrary integer number of whole circles to the argument of z,
without altering the number z

Thus if 7 = Izleie

then we can also write = |z ol (8 +2mm)

where m is an arbitrary integer (m = 0, £1, +2, £3,...),

Thus if z is a non-zero complex number and n is a positive integer, the equation

w'! =z

has n distinct solutions for w, known as the nth roots of z.
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These can be found by writing z in the form
7 = |Z|€:i{e + 2w m)
.. i -
and raising to the —th power, giving
n

B+ 2mT

R —
w o= }z]l e (15.2)
Using n consecutive values of m will give n distinct roots of w (eg. for n = 5, the values

m=-2-1,0, 1, 2 will suffice).
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Example :
Find all the 6™ roots of 1, that is 1. Another way to write this is, if w° = 1, find all w.

L Express 1 in polar form.

Here z =1 = 1ei0 — lei(0~f~2mn) .

2. Find an expression for w in polar form.

if wé =1

then w® = 1e/©*2™™ and therefore

w = (lei({) + 2m7) )”6 = (/60w 2mmyiE _ g imns3
3. Calculate the 6 roots.

Choose 6 consecutive values of m and substitute into the expression for w above,

Here we will choose m = -2,- 1,0, 1, 2, 3 but we could have chosen values of
mtobe m =90,1,2,3,45 orm = -5,-4,-3,-2,-1,0.

Choosem = -2:  This gives one sixthroot w_, = ™23 = o @3ni
Choosem = -1:  This gives one sixthroot w_;| = TR o o (I
Choosem = 0:  This gives one sixthroot w, = ™07 = (O =
Choosem =+ 1: This gives one sixth root w_, = ¢ ™3 = A
Choosem =+2:  This gives one sixthroot w,, = ¢™?? = (&m
Choosem =+3:  This gives one sixthroot w,; = ¢/™3?3 = BT = M o

Note that these 6 roots are equally spaced around the unit circle, each at angle
/3 = 60° = 360°/6 to the previous one.
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If we had continued on with m = 4, we would have found a root as follows:

ir(4)/3 43)mi

Choosem =+4: This gives one sixthroot w_, = e = e

4w o i i : 2 o
This root w_, with angle 5 2407 is identical with w_, at - .,;, = - 120", as can

be seen by adding a complete circle 27 radians or 360°.

The six complex roots are unique, but the quoted numerical values of the angles are not
unique. We obtained the 6 angles closest to zero by choosing m = 0,+ 1,2, 3. If we
wanted to conform to the common convention that the angles are between 0 and 27, we

could have chosen m = 0,1, 2, 3,4, 5.

Example :

Find all the fourthrootsof z = -1 + L.

Another way to write this is, if w? = -1+, Jind all values of w.

1L Express — 1 +1i in polar form.

Here z = -1+i = Re!®+27m

Need to find R and 6.

1
R=+-1+1% =2 and tan® = = =-1.

0 = tan”l(— 1)

T ¢ v 31
L B = - — Oor-— 47 = - — Or ——,
4 4 4 4

Draw argand diagram to find 6.
Im(z)

P Re(z)

- R

It

\/.Z-andezéf

: W4 - ﬁel(3n/4+2nm)
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2.

Find an expression for w in polar form.
Ifwh = -1+i

then w* = 274 +27m) 414 therefore
W = (\/561(3n/4+zm))”4 _ (\/5)1/4 (i37/4 + 2mm)d

14 .
_ (21/2) 61(37514 +2mmyd 21/861{37t/4+21tm)/4.

Calculate the 4 roots.
Choose 4 consecutive values of m and substitute into the expression for w above.

This time we will choose m = 0, 1, 2, 3 to give angles in the range 0 <0 < 2mw.

Choosem = 0: This gives one sixth root

wy = p18,I(3R/4 +2m0V4 . HLBI(3R/4+ 0V4 _ 51/8,3mi/16
Choose m = 1: This gives one sixth root

w, = Q1BI3R/4 +2m1)4 _ HUBLI(3R/4 + 2m)4 _ 5L, 1Ini/16
Choosem = 2: This gives one sixth root

Wy = QUBLIBNI4 + 2024 _ HLBI3W/4 +4m)id _ 1/8,19mi/16
Choosem = 3: This gives one sixth root

wy = QVBLI(B3m/A +2m3)4 _ 4U8I(BR/4 + 674 _ 1/8,27mi/l6
Note that these 4 roots all have magnitude 2 8 = 1.001.

Consecutive roots are equally spaced around the unit circle, each at angle
2r/4 = 90° =x/2 to the previous one.

f Im(z)
—_ W

0

Re(z)

43



Example:

Expressl the root wy from the previous example in Cartesian form.
From equation (10.3) Z = X+1y = r{cos8 +isin@).
Therefore Wy = {W3|(0056 +isin@).

But we know that |w3| = 2" and 0; = 27r/16

Therefore wy = 2"8[cos(27m/16) +isin(27m / 16)]

1.0905[0.55557 +i(- 0.83147)]
0.60585 - 0.906721.

il



