- 1. Use mathematical induction to prove that $\overline{z^n} = \overline{z}^n$ for all $n \geq 1$, where z is a complex number.
- 2. Let $p(x) = 6x^3 + kx^2 (6+5i)x + 4 + 2i$, where k is an unknown complex number. It is given that $z_0 = -\frac{1}{2} - \frac{1}{2}i$ is a zero of p(x).
 - (a) Find the value of k. (b) Is $\overline{z_0}$ also a zero of p(x)? Justify your answer.
 - (c) Does your answer in (b) contradict Theorem 3.5 on Page 28 of the textbook? Explain.
 - 3. Given that 2-3i is a zero of $f(x) = 2x^5 9x^4 + 32x^3 24x^2 + 38x 39$, find all
 - zeros of f(x). 4. For each of the following polynomials:
 - (a) Use Descartes' rules of signs to state the number of possible positive and negative zeros of the polynomial.
 - (b) Use the bounds theorem to find bounds for zeros of the polynomial. (c) Taking the results of (a) and (b) into account, use the rational root theorem
 - to list all possible rational zeros of the polynomial. (d) Find all roots of the equation.

(d) Find all zeros of p(x).

- (1) $p(x) = 24x^5 + 32x^4 26x^3 22x^2 + 6x + 4$
- (2) $p(x) = 4x^5 + 20x^4 + 37x^3 + 52x^2 + 43x + 12$
- 5. Consider the polynomial $f(x) = 2015^2 + \sum_{n=1}^{2015} (-1)^n n^2 x^n$

 - (a) Show that f(x) must have at least one positive real root.
 - (b) Show that f(x) has no negative real roots.
 - (c) Show that if x is any root of f(x), then |x| < 2.

Sketch the region bounded between the curves $y = \sin x$, $y = \cos x$, x = 0, $x = 2\pi$. Find the area of this region.

2.

L.

Let R be the region bounded by the graphs of y = x and $x = 4y - y^2$. Which is greater, the volume of the solid generated when R is revolved about the x-axis or the y-axis?

3.

Sketch the region R bounded by the curves $y = x^2$ and $y = \sqrt{x}$ between x = 0 and x = 1. Set up, but **DO NOT EVALUATE**, integrals that can be used to find the volume of the solid generated if R is revolved about the x-axis

(a) using cylindrical shells,

(b) using disks or washers.

4.

Evaluate.

(a)
$$\int (x^2 - 2x)e^{kx} dx$$
 (hint:

(a)
$$\int (x^2 - 2x)e^{kx} dx$$
 (hint: use integration by part)
(b) $\int e^{2x} \sin 3x dx$ (hint: use integration by part)

(b)
$$\int e^{2x} \sin 3x \, dx$$
 (hint: use integration by part)

(c)
$$\int \sqrt{\sin x} \cos^3 x \, dx$$

(d)
$$\int \sin^6 x \, dx.$$