
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

Java Expert only
[image: profile]
boo989
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

project6.pdf

Home>Computer Science homework help>Java Expert only

Computer Science 110 Introduction to Algorithms and Programming: Java

Programming Project #6 Polymorphism and Inheritance (30 points total)

Due Date: May 8, 2014

For Project #6, we will implement a classic Inheritance hierarchy and implement the concept of

polymorphism. A simple console based interface is all that is needed. GUI programming is NOT required

for this project, unless you want to implement the GUI phases of the project (phases 2 through 4).

Phase 1 is worth 15 points and the additional phrases are worth 5 points each. Build your classes first,

each in its own .java file, and then test them using the simple main method I have provided in this

document.

Phase 1 (15 points):

This is the set of classes you will implement and their inheritance relationship:

The specification for each class is listed on the following pages.

Shape

The generic abstract class shape will serve as the parent class to Circle, Rectangle and Triangle. This
class MUST BE ABSTRACT and it will contain abstract methods.

 Variables:
 x – Represents the x coordinate for the shape, an integer.
 y – Represents the y coordinate for the shape, an integer.

 Methods:
 A constructor with no parameters and one with x and y parameters.
 getX() – Returns the x position of this shape.
 setX() – Assigns the x position of this shape.
 getY() – Returns the y position of this shape.
 setY() – Assigns the y position of this shape.
 display() – An abstract method which returns no value and takes no arguments.

getArea() – An abstract method which takes no arguments and returns a double value.

Circle

A class to simulate a Circle object with x, y coordinates and a radius. This class must inherit from Shape.

 Variables:
 radius – An int representing the radius length of this circle.

 Methods:
 A constructor with no parameters and one with x, y and radius parameters (in that

order).
getRadius() – Returns the radius of this circle.

 setRadius() – Assigns the radius of this circle.
 display() – Displays the circle as a text string containing the word Circle and the x, y and

radius values.
 getArea() – Compute and return a double value representing the area of this circle.

Rectangle

A class to simulate a Rectangle object with 4 sides and x, y coordinates. Must also inherit from Shape.

 Variables:
 width – An int representing the width of this rectangle.
 height – An int representing the height of this rectangle.

 Methods:
 A constructor with no parameters and one with x, y, width and height

parameters (in that order).
 getHeight() – Returns the height of this rectangle.
 setHeight() – Assigns the height of this rectangle.
 getWidth() – Returns the width of this rectangle.
 setWidth() – Assigns the width of this rectangle.
 display() – Displays the rectangle as a text string containing the word Rectangle

and the x, y, width and height values.
 getArea() – Compute and return a double value representing the area of this

rectangle.

Triangle

A class to simulate an equilateral Triangle with x, y coordinates. Must also inherit from Shape.

 Variables:
 base – An int representing the base of this triangle.
 height – An int representing the height of this triangle.

 Methods:
 A constructor with no parameters and one with x, y, height and base

parameters (in that order).
 getHeight() – Returns the height of this triangle.
 setHeight() – Assigns the height of this triangle.
 getBase() – Returns the base of this triangle.
 setBase() – Assigns the base of this triangle.
 display() – Displays the triangle as a text string containing the word Triangle and

the x, y, base and height values.
 getArea() – Calculates and returns the area of this triangle.

NOTE: All display() methods should use System.out.println() to output a text description of the shape to
the console.

If you write the classes correctly, the main program on the next page should
work:

public class Project6 {

 // Create an array to hold 100 Shape objects

 private Shape[] shapeArray = new Shape[100];

 /* If adding a Project6 constructor, add it here. */

 public static void main (String [] args) {

 Project6 project6 = new Project6();

 project6.run();

 } // end of main

 public void run () {

 int count = 0;

 int offset = 0;

 double totalArea = 0.0;

 /********** Fill the array section **********/

 shapeArray[count++] = new Circle(20, 20, 40);

 shapeArray[count++] = new Triangle(70, 70, 20, 30);

 shapeArray[count++] = new Rectangle(150, 150, 40, 60);

 /********** Fill the array section done **********/

 /* The following for loop loops through all objects in

 * shapeArray, invoking the display() method on each

 * Shape object. This causes those objects to "display"

 * themselves as text strings.

 */

 for (int i = 0; i < count; i ++) {

 shapeArray[i].display();

 } // end for loop

 /* The following while loop loops through all objects

 * in shapeArray, invoking the getArea() method on each

 * Shape object and adding each object's area to totalArea.

 */

 while (shapeArray[offset] != null) {

 totalArea = totalArea + shapeArray[offset].getArea();

 offset++;

 } // end while loop

 System.out.println("The total area for " + offset

 + " Shape objects is " + totalArea);

 } // end of run() method

} // end of class Project6

When you have the main program on the previous page working, make sure it works with different
Shape objects placed in the array. When I test the program, I will provide a different “Fill the array”
section of the code and expect your program to work with the new objects. This means you must
implement all the methods listed in the class specification, exactly as specified. The new code I will
provide assumes these methods are available and will call them. Remember: I will only change (and
YOU should only change, when testing) the following section of code:

/********** Fill the array section **********/

shapeArray[count++] = new Circle(20, 20, 40);

shapeArray[count++] = new Triangle(70, 70, 20, 30);

shapeArray[count++] = new Rectangle(150, 150, 40, 60);

/********** Fill the array section done **********/

Phase 2 (5 points):

Add the following symbolic constants to the Shape parent class:

protected final static int X_MAX_SIZE = 800;

protected final static int Y_MAX_SIZE = 600;

Modify the constructor and set methods of the Shape class to ensure that the values of X and Y stay
between zero and the MAX_SIZE. If X or Y area out of range, issue an error message on the console and
set the value to zero. Be sure to write this logic into the Shape class set methods, then modify the
constructor which takes parameters so that it calls on these set methods. Do not repeat the set method
logic in the constructor which takes parameters.

This illustrates two things: How set methods and constructors can prevent invalid values from being
assigned to important instance variables. It also illustrates how updating a single parent class can
upgrade all child classes like Circle, Rectangle, and Triangle.

Phase 3 (5 points):

Add a new class Square that extends Rectangle. Make sure it has two constructors, setWidth, setHeight
and a display method which displays the square as a text string. DO NOT add any new variables to this
class. In the set methods, make sure that the width ALWAYS matches the height. In other words, if the
user changes the width, force the height to match. If the user changes the height, force the width to
match. Have the constructor which takes parameters also ensure that the width and height match.

This illustrates two things: How a class can inherit from more than one class if it is done with multiple
generations. Also, how you can upgrade and improve an OOP program without making major changes
to programs that use the inheritance/polymorphism hierarchy. The “new” Square objects can be
inserted into the object array by simply adding Square instantiation statements to the main method of
the Project6.java program.

Phase 4 (5 points):

DO NOT attempt this phase unless the rest of the assignment is completed. No points will be
awarded if phases 1, 2 and 3 are not 100% completed.

Make the Project6 code work with a GUI interface. Display the Shapes on the GUI window in addition to
displaying them in the console.

To do this, you must make a few changes to the original code:

1. The Project6 class will have to extend the JFrame class.
2. Add the following constructor to the Project6 class:

public Project6() {

 setSize(800, 600);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

}

3. A new abstract method: public abstract void display(Graphics g); should be added to the Shape
class.

4. A custom JPanel must be set up with a paintComponent method (See the MyPanel class listed
on Moodle). This MyPanel class should be pasted INTO your Project6 class, preferably just
before the Project6 class closing brace.

5. An object of the MyPanel class must be instantiated and added to the GUI window in the
Project6 constructor you added in step 2 (See the GUIComponents.java program listed on
Moodle).

6. A new, non-abstract display(Graphics g) method will have to be added to each child class of
Shape. Each shape’s display method will contain code to draw that specific type of shape on
the MyPanel object (See the GUIBasicsAndGraphics slideshow posted on Moodle). A for…each
loop in the MyPanel object’s paintComponent method is responsible for calling the
display(Graphics g) method on each object in the array.

file:///C:/Users/Benjamin/Documents/Work/CSUN/COMP110SP2013/Projects/Project6/MyPanelClass.html

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

