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MATH136 Assignment 1
Due Week 3, Friday at 5:30pm.


1. Calculate the following improper integrals, if they converge.


(a)
∫ 1


0
log x dx. (b)


∫
∞


1


x
4 + x2


dx. (c)
∫


∞


0
x−3 dx.


2. If f (t) is differentiable for t ≥ 0, the Laplace transform of f (t) is the function F(s) = L{ f (t)} defined by


F(s) =
∫


∞


0
f (t)e−st dt,


with domain of F the set of all s for which the integral converges.


(a) Use integration by parts to find the Laplace transform of the following functions. In each case, determine the
domain of L{ f (t)}.


i. f (t) = 1
ii. f (t) = t


iii. f (t) = e3t


(b) Use integration by parts to show that the Laplace transform takes differentiation to multiplication by the coordinate
function. That is if F(s) is the Laplace transform of f and G(s) is the Laplace transform of f ′ show that for s > a,


G(s) = sF(s).


3. Find and sketch the domain of each function.


(a) f (x,y) =
√


4−x2 −y2 (b) g(x,y) =
√


x2 −y2.


4. For the given functions, sketch the given level curves.


(a) The function g(x,y) = 6−3x−2x for the level curves 0,±6,±12.
(b) The function g(x,y) = xy for the level curves 0,±1,±2.


(c) The function g(x,y) = e−(x
2+y2) for the level curves 1/4,1/2,1.


5. Match each formula with a graph below.


(a) z =
1


x2 + y2
.


(b) z =−e−x
2−y2 .


(c) z = x + 2y + 3.


(d) z =−y2.


(e) z = x3 −sin y.
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6. Match each formula with the level curves below.


(a) z = x2 −y2 −2x + 4y−3.


(b) z = x2 + y2 −2x−4y + 15.


(c) z =−x2 −y2 + 2x + 4y−8.


(d) z =−x2 + y2 + 2x−4y + 3.


(e) z =
√
(x−1)2 +(y−2)2.


(f) z =−
√
(x−1)2 +(y−2)2.


7. Which of the following subsets are subspaces of the given vector spaces.


(a) W ={(x,y,z)∈R | x + y = 0} of R3 over the field R.
(b) W ={(x,y,z)∈R | xz = 0} of R3 over the field R.
(c) The set of n×n matrices with trace 0 as a subset of the n×n matrices over R. (The trace of a square matrix is the


sum of the entries on the leading diagonal.)
(d) The set of functions f which satisfy f (0) = 2.


8. Give a geometric description of the structure of all possible subspaces of R3.


9. Are the vectors
~v1 = (1,1,2,4), ~v2 = (2,3,1,2), and ~v3 = (−1,−3,4,8)


linearly independent? (Your answer to this question needs to start with the definition of linear independence, not with
a matrix.)


10. Let the set S ={~v1,~v2,...,~vn} be a linearly independent subset of a vector space V . You are standing at the origin of
V and set off in the direction of ~v1. After a certain length of time, you stop and head in the direction of ~v2 – then in
direction ~v3 and so on. Is it possible for you to return to the origin?


11. Express, if possible, −9−7x−15x2 as a linear combination of p1 = 2 + x + 4x2, p2 = 1−x + 3x2.


12. This question investigates “overloading the operators” in vector spaces, that is, redefining the + and scalar multiplication
operations.


(a) Suppse we consider R2, but where (a,b)+(c,d) = (a + c + 1,b + d + 1). Which, if any, of the 10 axioms of vector
spaces are not met?


(b) Consider the set of positive real numbers, with the following redefinition of + and ·:


x + y = xy,


c·x = xc.


What is the 0 vector? What is −3?


13. Using the axioms of a vector space, show that each element has precisely 1 inverse.
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