- A material that becomes strongly magnetized in the same direction as the magnetizing field is dassified as
- a. diamagnetic.
- ferromagnetic.
- paramagnetic.
- d toroidal.
- Mhich of the following materials are nonmagnetic?
- a air.
- b wood.
- c glass.
- d all of the above.
- The gauss (G) is a unit of
 - a flux density.
- magnetic flux.
- c permeability.
- d none of the above.
- One gauss (G) is equal to
- $=\frac{1 \text{ Mx}}{\text{m}^2}$
- $\pm \frac{1 \text{ Wb}}{\text{cm}^2}$
- $=\frac{1 \text{ Mx}}{\text{cm}^2}$
- d 1 Wb

- 18. 1 μ Wb equals
 - a. $1 \times 10^{8} \, \text{Mx}$.
 - b. 10,000 Mx.
 - c. 1×10^{-8} Mx.
 - d. 100 Mx.
- 19. A toroid
 - a. is an electromagnet.
 - b. has no magnetic poles.
 - c. uses iron for the core around which the coil is wound.
 - d. all of the above.
- When a small voltage is generated across the width of a conductor carrying current in an external magnetic field, the effect is called
 - a. the Doppler effect.
 - b. the Miller effect.
 - c. the Hall effect.
 - d. the Schultz effect.
- 21. The weber (Wb) is a unit of
 - a. magnetic flux.
 - b. flux density.
 - c. permeability.
 - d. none of the above.
- 22. The flux density in the iron core of an electromagnet is 0.25 T. When the iron core is removed, the flux

- density drops to 62.5×10^{-6} T. What is the relative permeability of the iron core?
- a. $\mu_r = 4$.
- b. $\mu_r = 250$.
- c. $\mu_r = 4000$
- d. It cannot be determined.
- 23. What is the flux density, *B*, for a magnetic flux of 500 Mx through an area of 10 cm²?
 - a. 50×10^{-3} T.
 - b. 50 G.
 - c. 5000 G.
 - d. both a and b.
- 24. The geographic North Pole of the earth has
 - a. no magnetic polarity.
 - b. south magnetic polarity.
 - c. north magnetic polarity.
 - d. none of the above.
- 25. With an electromagnet,
 - a. more current and more coil turns mean a stronger magnetic field.
 - b. less current and fewer coil turns mean a stronger magnetic field.
 - c. if there is no current in the coil, there is no magnetic field.
 - d. both a and c.

Essay Questions

- Name two magnetic materials and three nonmagnetic materials.
- Explain the difference between a permanent magnet and an electromagnet.
- Draw a horseshoe magnet and its magnetic field. Label the magnetic poles, indicate the air gap, and show the direction of flux.
- Define relative permeability, shielding, induction, and Hall voltage.
- Give the symbols, cgs units, and SI units for magnetic flux and for flux density.
- **6.** How are the north and south poles of a bar magnet determined with a magnetic compass?
- 7. Referring to Fig. 13–11, why can either end of the magnet pick up the nail?
- 8. What is the difference between flux ϕ and flux density B?

Poblems

ECTION 13–2 MAGNETIC FLUX (Φ)

- 13–1 Define (a) the maxwell (Mx) unit of magnetic flux, ϕ ; (b) the weber (Wb) unit of magnetic flux, ϕ .
- 3–2 Make the following conversions:
 - a. 0.001 Wb to Mx.
 - b. 0.05 Wb to Mx.
 - c. 15×10^{-4} Wb to Mx.
 - d. 1×10^{-8} Wb to Mx.

- 13-3 Make the following conversions:
 - a. 1000 Mx to Wb.
 - b. 10,000 Mx to Wb.
 - c. 1 Mx to Wb.
 - d. 100 Mx to Wb.
- 13-4 Make the following conversions:
 - a. 0.0002 Wb to Mx.
 - b. 5500 Mx to Wb.