
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

digital electronics problems
[image: profile]
enggsd
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

bookkk.pdf

Home>Physics homework help>digital electronics problems

167

c h a p t e r

4
Optimized Implementation of Logic

Functions

Chapter Objectives

In this chapter you will learn about:

• Synthesis of logic functions
• Analysis of logic circuits
• Techniques for deriving minimum-cost implementations of logic functions
• Graphical representation of logic functions in the form of Karnaugh maps
• Cubical representation of logic functions
• Use of CAD tools and VHDL to implement logic functions

168 C H A P T E R 4 • Optimized Implementation of Logic Functions

In Chapter 2 we showed that algebraic manipulation can be used to find the lowest-cost implementations of
logic functions. The purpose of that chapter was to introduce the basic concepts in the synthesis process.
The reader is probably convinced that it is easy to derive a straightforward realization of a logic function in
a canonical form, but it is not at all obvious how to choose and apply the theorems and properties of section
2.5 to find a minimum-cost circuit. Indeed, the algebraic manipulation is rather tedious and quite impractical
for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does
not fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is essential to
know something about this process. Most CAD tools have many features and options that are under control
of the user. To know when and how to apply these options, the user must have an understanding of what the
tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and
show how these techniques can be automated. As a first step we will discuss a graphical approach, known as
the Karnaugh map, which provides a neat way to manually derive minimum-cost implementations of simple
logic functions. Although it is not suitable for implementation in CAD tools, it illustrates a number of key
concepts. We will show how both two-level and multilevel circuits can be designed. Then we will describe a
cubical representation for logic functions, which is suitable for use in CAD tools. We will also continue our
discussion of the VHDL language.

4.1 Karnaugh Map

In section 2.6 we saw that the key to finding a minimum-cost expression for a given logic
function is to reduce the number of product (or sum) terms needed in the expression, by
applying the combining property 14a (or 14b) as judiciously as possible. The Karnaugh map
approach provides a systematic way of performing this optimization. To understand how it
works, it is useful to review the algebraic approach from Chapter 2. Consider the function
f in Figure 4.1. The canonical sum-of-products expression for f consists of minterms m0,
m2, m4, m5, and m6, so that

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3
The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both m0 and m2 include x1 and x3, but they differ in the value of x2 because m0
includes x2 while m2 includes x2. Thus

x1x2x3 + x1x2x3 = x1(x2 + x2)x3
= x1 · 1 · x3
= x1x3

4.1 Karnaugh Map 169

Row
number x1 x2 x3 f

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 4.1 The function f (x1, x2, x3) = ∑ m(0, 2, 4, 5, 6).

Hence m0 and m2 can be replaced by the single product term x1x3. Similarly, m4 and m6
differ only in the value of x2 and can be combined using

x1x2x3 + x1x2x3 = x1(x2 + x2)x3
= x1 · 1 · x3
= x1x3

Now the two newly generated terms, x1x3 and x1x3, can be combined further as

x1x3 + x1x3 = (x1 + x1)x3
= 1 · x3
= x3

These optimization steps indicate that we can replace the four minterms m0, m2, m4, and
m6 with the single product term x3. In other words, the minterms m0, m2, m4, and m6 are
all included in the term x3. The remaining minterm in f is m5. It can be combined with m4,
which gives

x1x2x3 + x1x2x3 = x1x2
Recall that theorem 7b in section 2.5 indicates that

m4 = m4 + m4
which means that we can use the minterm m4 twice—to combine with minterms m0, m2,
and m6 to yield the term x3 as explained above and also to combine with m5 to yield the
term x1x2.

We have now accounted for all the minterms in f ; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f = x3 + x1x2

170 C H A P T E R 4 • Optimized Implementation of Logic Functions

The expression has the product term x3 because f = 1 when x3 = 0 regardless of the values
of x1 and x2. The four minterms m0, m2, m4, and m6 represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly
from the truth table in Figure 4.1, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.
The preceding discussion suggests that it would be advantageous to devise a method

that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 4.2. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x1, and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m2 and m3 can be combined as

m2 + m3 = x1x2 + x1x2
= x1(x2 + x2)
= x1 · 1
= x1

4.1 Karnaugh Map 171

�
�

�
�

(a) Truth table (b) Karnaugh map

0

1

0 1

�
�

�
�

�
�

�
�

�
�
�
�

0 0

0 1

1 0

1 1

�
�

�
�

�
�

�
�

Figure 4.2 Location of two-variable minterms.

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 4.3. It corresponds to

the function f of Figure 2.15. The value of f for each valuation of the variables x1 and x2
is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause f
to be equal to 1 when the input variables have the values that correspond to either of these
cells. To indicate this fact, we have circled the cell entries in the map. Rather than using
the combining property formally, we can derive the product term intuitively. Both of the
cells are identified by x2 = 1, but x1 = 0 for the left cell and x1 = 1 for the right cell.
Thus if x2 = 1, then f = 1 regardless of whether x1 is equal to 0 or 1. The product term
representing the two cells is simply x2.

Similarly, f = 1 for both cells in the first column. These cells are identified by x1 = 0.
Therefore, they lead to the product term x1. Since this takes care of all instances where
f = 1, it follows that the minimum-cost realization of the function is

f = x2 + x1
Evidently, to find a minimum-cost implementation of a given function, it is necessary

to find the smallest number of product terms that produce a value of 1 for all cases where

�
�

�
�

1 0

1 1

� �
�

��+=
0

1

0 1

Figure 4.3 The function of Figure 2.15.

172 C H A P T E R 4 • Optimized Implementation of Logic Functions

f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product term x2, only one cell (top left) remains. Although it could be covered by
the term x1x2, it is better to combine the two cells in the left column to produce the product
term x1 because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side

by side. Figure 4.4 shows the map and indicates the locations of minterms in it. In this
case each valuation of x1 and x2 identifies a column in the map, while the value of x3
distinguishes the two rows. To ensure that minterms in the adjacent cells in the map can
always be combined into a single product term, the adjacent cells must differ in the value of
only one variable. Thus the columns are identified by the sequence of (x1, x2) values of 00,
01, 11, and 10, rather than the more obvious 00, 01, 10, and 11. This makes the second and
third columns different only in variable x1. Also, the first and the fourth columns differ only
in variable x1, which means that these columns can be considered as being adjacent. The
reader may find it useful to visualize the map as a rectangle folded into a cylinder where
the left and the right edges in Figure 4.4b are made to touch. (A sequence of codes, or
valuations, where consecutive codes differ in one variable only is known as the Gray code.
This code is used for a variety of purposes, some of which will be encountered later in the
book.)

Figure 4.5a represents the function of Figure 2.18 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
which are represented by the term x1x3. The second term is x2x3, which covers the 1s in
the bottom row. Hence the function is implemented as

f = x1x3 + x2x3
which describes the circuit obtained in Figure 2.19a.

�
�
�
�

�
� 00 01 11 10

0

1

(b) Karnaugh map

�
�
�
�

0 0

0 1

1 0

1 1

�
�

�
�

�
�

�
�

0

0

0

0

0 0

0 1

1 0

1 1

1

1

1

1

�
�

�
�

�
�

�
�

�
�

(a) Truth table

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 4.4 Location of three-variable minterms.

4.1 Karnaugh Map 173

� �
�
�
�

�
�
�
�

+=

�
�
�
�

�
�

0 0

1 0

1 1

0 1

�
�
�
�

�
�

1 1

0 0

1 1

0 1

(a) The function of Figure 2.18

� �
�

�
�
�
�

+=

(b) The function of Figure 4.1

00 01 11 10

0

1

00 01 11 10

0

1

Figure 4.5 Examples of three-variable Karnaugh maps.

In a three-variable map it is possible to combine cells to produce product terms that
correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
of a group of four adjacent cells using a single product term is illustrated in Figure 4.5b,
using the function from Figure 4.1. The four cells in the top row correspond to the (x1, x2, x3)
valuations 000, 010, 110, and 100. As we discussed before, this indicates that if x3 = 0, then
f = 1 for all four possible valuations of x1 and x2, which means that the only requirement
is that x3 = 0. Therefore, the product term x3 represents these four cells. The remaining 1,
corresponding to minterm m5, is best covered by the term x1x2, obtained by combining the
two cells in the right-most column. The complete realization of f is

f = x3 + x1x2
It is also possible to have a group of eight 1s in a three-variable map. This is the trivial
case where f = 1 for all valuations of input variables; in other words, f is equal to the con-
stant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-Variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns in a
three-variable map. Figure 4.6 shows the structure of the four-variable map and the location

174 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�
�
�

�
�
�
� 00 01 11 10

00

01

11

10

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
��

�
�

�
�

�
�

�
�

�
	

�

�
��

�
��

�
��

�
��

Figure 4.6 A four-variable Karnaugh map.

of minterms. We have included in this figure another frequently used way of designating
the rows and columns. As shown in blue, it is sufficient to indicate the rows and columns
for which a given variable is equal to 1. Thus x1 = 1 for the two right-most columns,
x2 = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1 for the
two middle rows.

Figure 4.7 gives four examples of four-variable functions. The function f1 has a group
of four 1s in adjacent cells in the bottom two rows, for which x2 = 0 and x3 = 1—they
are represented by the product term x2x3. This leaves the two 1s in the second row to
be covered, which can be accomplished with the term x1x3x4. Hence the minimum-cost
implementation of the function is

f1 = x2x3 + x1x3x4
The function f2 includes a group of eight 1s that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1s were implemented separately,
the result would be the product term x1x3x4. Implementing these 1s as a part of a group of
four 1s, as shown in the figure, gives the less expensive product term x1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product term x2x4. This case is depicted by the function f3. In addition to this group
of 1s, there are four other 1s that must be covered to implement f3. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f4 provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
terms x1x3 and x1x3, respectively. This leaves the two 1s that correspond to the term x1x2x3.
But these two 1s can be realized more economically by treating them as a part of a group
of four 1s. They can be included in two different groups of four, as shown in the figure.

4.1 Karnaugh Map 175

�
�
�
�

�
�
�
�

1

00 01 11 10

0 0 1

0 0 0 0

1 1 1 0

1 1 0 1

00

01

11

10

�
�
�
�

�
�
�
�

1

00 01 11 10

1 1 0

1 1 1 0

0 0 1 1

0 0 1 1

00

01

11

10

�
�
�
�

�
�
�
�

0

00 01 11 10

0 0 0

0 0 1 1

1 0 0 1

1 0 0 1

00

01

11

10

�
�
�
�

�
�
�
�

0

00 01 11 10

0 0 0

0 0 1 1

1 1 1 1

1 1 1 1

00

01

11

10

�
�

�
�
�
�

�
�
�
�
�
�

+= �
�

�
�

�
�
�
�

+=

�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

+ += �
�

�
�
�
�

�
�
�
�

+ +=
�
�
�
�

�
�
��

or

Figure 4.7 Examples of four-variable Karnaugh maps.

One choice leads to the product term x1x2, and the other leads to x2x3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x2x3 does not imply an increased cost in comparison
with x1x2, because this complement must be generated anyway to produce the term x1x3,
which is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and x5 = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 4.8. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value of x5. The same is true for the
two groups of two 1s in the second row. The 1 in the top-right corner appears only in the

176 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�
�
�

�
�
�
� 00 01 11 10

1 1

1 1

1 1

00

01

11

10

�
�
�
�

�
�
�
� 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

+ +=

�
�

�=�
�

�=

Figure 4.8 A five-variable Karnaugh map.

right map, where x5 = 1; it is a part of the group of two 1s realized by the term x1x2x3x5.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from
the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideas involved in the minimization process.

4.2 Strategy for Minimization

For the examples in the preceding section, we used an intuitive approach to decide how the 1s
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of 1. Each group
of 1s has to comprise cells that can be represented by a single product term. The larger
the group of 1s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable. Instead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are

4.2 Strategy for Minimization 177

automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps. Later,
in section 4.8, we will describe a different way of representing logic functions, which is
used in CAD tools.

4.2.1 Terminology

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
To facilitate the presentation of the results, certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal
A given product term consists of some number of variables, each of which may appear

either in uncomplemented or complemented form. Each appearance of a variable, either
uncomplemented or complemented, is called a literal. For example, the product term x1x2x3
has three literals, and the term x1x3x4x6 has four literals.

Implicant
A product term that indicates the input valuation(s) for which a given function is equal

to 1 is called an implicant of the function. The most basic implicants are the minterms,
which we introduced in section 2.6.1. For an n-variable function, a minterm is an implicant
that consists of n literals.

Consider the three-variable function in Figure 4.9. There are 11 possible implicants for
this function. This includes the five minterms: x1x2x3, x1x2x3, x1x2x3, x1x2x3, and x1x2x3.
Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely, x1x2 (m0 and m1), x1x3 (m0 and m2), x1x3 (m1 and m3), x1x2 (m2 and m3),
and x2x3 (m3 and m7). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literal x1.

�
�
�
�

�
�

1 1

1 1

�
�

0 0

1 0

00 01 11 10

0

1

�
�
�
�

Figure 4.9 Three-variable function f (x1, x2, x3) =∑
m(0, 1, 2, 3, 7).

178 C H A P T E R 4 • Optimized Implementation of Logic Functions

Prime Implicant
An implicant is called a prime implicant if it cannot be combined into another implicant

that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid implicant.

In Figure 4.9 there are two prime implicants: x1 and x2x3. It is not possible to delete
a literal in either of them. Doing so for x1 would make it disappear. For x2x3, deleting
a literal would leave either x2 or x3. But x2 is not an implicant because it includes the
valuation (x1, x2, x3) = 110 for which f = 0, and x3 is not an implicant because it includes
(x1, x2, x3) = 101 for which f = 0.

Cover
A collection of implicants that account for all valuations for which a given function is

equal to 1 is called a cover of that function. A number of different covers exist for most
functions. Obviously, a set of all minterms for which f = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 4.9 a cover
consisting of minterms leads to the expression

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3
Another valid cover is given by the expression

f = x1x2 + x1x2 + x2x3
The cover comprising the prime implicants is

f = x1 + x2x3
While all of these expressions represent the function f correctly, the cover consisting of
prime implicants leads to the lowest-cost implementation.

Cost
In Chapter 2 we suggested that a good indication of the cost of a logic circuit is the

number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thus
the expression

f = x1x2 + x3x4
has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g = x1x2 + x3(x4 + x5)
is implemented using two AND gates, two OR gates, and one NOT gate to complement
(x1x2 + x3), with nine inputs. Hence the total cost is 14.

4.2 Strategy for Minimization 179

4.2.2 Minimization Procedure

We have seen that it is possible to implement a given logic function with various circuits.
These circuits may have different structures and different costs. When designing a logic
circuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
larger the circuit, the more important the cost issue becomes. In this section we will assume
that the main objective is to obtain a minimum-cost circuit.

Having said that cost is the primary concern, we should note that other optimization
criteria may be more appropriate in some cases. For instance, in Chapter 3 we described
several types of programmable-logic devices (PLDs) that have a predefined basic structure
and can be programmed to realize a variety of different circuits. For such devices the main
objective is to design a particular circuit so that it will fit into the target device. Whether or
not this circuit has the minimum cost is not important if it can be realized successfully on the
device. A CAD tool intended for design with a specific device in mind will automatically
perform optimizations that are suitable for that device. We will show in section 4.6 that the
way in which a circuit should be optimized may be different for different types of devices.

In the previous subsection we concluded that the lowest-cost implementation is
achieved when the cover of a given function consists of prime implicants. The ques-
tion then is how to determine the minimum-cost subset of prime implicants that will cover
the function. Some prime implicants may have to be included in the cover, while for others
there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not
included in any other prime implicant, then it must be included in the cover and is called an
essential prime implicant. In the example in Figure 4.9, both prime implicants are essential.
The term x2x3 is the only prime implicant that covers the minterm m7, and x1 is the only
one that covers the minterms m0, m1, and m2. Notice that the minterm m3 is covered by
both of these prime implicants. The minimum-cost realization of the function is

f = x1 + x2x3
We will now present several examples in which there is a choice as to which prime

implicants to include in the final cover. Consider the four-variable function in Figure 4.10.
There are five prime implicants: x1x3, x2x3, x3x4, x1x2x4, and x2x3x4. The essential ones
(highlighted in blue) are x2x3 (because of m11), x3x4 (because of m14), and x2x3x4 (because of
m13). They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 except m7. It is clear that m7 can be covered by either x1x3 or x1x2x4.
Because x1x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

f = x2x3 + x3x4 + x2x3x4 + x1x3
From the preceding discussion, the process of finding a minimum-cost circuit involves

the following steps:

1. Generate all prime implicants for the given function f .

2. Find the set of essential prime implicants.

180 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�
�
�

�
�
�
� 00 01 11 10

11

1 1

1 1

00

01

11

10

�
�
�
�

1 1

1

�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�

Figure 4.10 Four-variable function f (x1, . . . , x4) =∑
m(2, 3, 5, 6, 7, 10, 11, 13, 14).

3. If the set of essential prime implicants covers all valuations for which f = 1, then
this set is the desired cover of f . Otherwise, determine the nonessential prime
implicants that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and some heuristic approach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the time) has to be used. One such
approach is to arbitrarily select one nonessential prime implicant and include it in the cover
and then determine the rest of the cover. Next, another cover is determined assuming that
this prime implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 4.11. Of the six prime
implicants, only x3x4 is essential. Consider next x1x2x3 and assume first that it will be

�
�
�
�

�
�
�
� 00 01 11 10

1

1 111

1

00

01

11

10

�
�
�
�
�
�

1

1

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 4.11 The function f (x1, . . . , x4) =∑
m(0, 4, 8, 10, 11, 12, 13, 15).

4.2 Strategy for Minimization 181

included in the cover. Then the remaining three minterms, m10, m11, and m15, will require
two more prime implicants to be included in the cover. A possible implementation is

f = x3x4 + x1x2x3 + x1x3x4 + x1x2x3
The second possibility is that x1x2x3 is not included in the cover. Then x1x2x4 becomes
essential because there is no other way of covering m13. Because x1x2x4 also covers m15,
only m10 and m11 remain to be covered, which can be achieved with x1x2x3. Therefore, the
alternative implementation is

f = x3x4 + x1x2x4 + x1x2x3
Clearly, this implementation is a better choice.

Sometimes there may not be any essential prime implicants at all. An example is given
in Figure 4.12. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

f = x1x3x4 + x2x3x4 + x1x3x4 + x2x3x4
The other includes the prime implicants indicated in blue, which yields

f = x1x2x4 + x1x2x3 + x1x2x4 + x1x2x3
This procedure can be used to find minimum-cost implementations of both small and

large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce such techniques in sections 4.9 and 4.10.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.

�
�
�
�

�
�
�
� 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 4.12 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).

182 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.3 Minimization of Product-of-Sums Forms

Now that we know how to find the minimum-cost sum-of-products (SOP) implementations
of functions, we can use the same techniques and the principle of duality to obtain minimum-
cost product-of-sums (POS) implementations. In this case it is the maxterms for which
f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 4.13 depicts the same function as Figure 4.9 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)
A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 4.9, which requires only one OR gate and one AND gate.

The function from Figure 4.10 is reproduced in Figure 4.14. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)
This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 4.10, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 4.11 and 4.12 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining

�
�
�
�

�
�

1

00 01 11 10

0

1

1 0 0

1 1 1 0

�
�

�
�

+()

�
�

�
�

+()

Figure 4.13 POS minimization of f (x1, x2, x3) = �M (4, 5, 6).

4.3 Minimization of Product-of-Sums Forms 183

�
�
�
�

�
�
�
�

0

00 01 11 10

0 0 0

0 1 1 0

1 1 0 1

1 1 1 1

00

01

11

10

�
�

�
�

+()

�
�

�
�

+()

�
�

�
�

�
�

�
�

+ + +()

Figure 4.14 POS minimization of f (x1, . . . , x4) =
�M (0, 1, 4, 8, 9, 12, 15).

the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f . For example, the simplest SOP implementation of f in Figure
4.13 is

f = x1x2 + x1x3
Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3
= x1x2 · x1x3
= (x1 + x2)(x1 + x3)

which is the same result as obtained above.
Using this approach for the function in Figure 4.14 gives

f = x2x3 + x3x4 + x1x2x3x4
Complementing this expression produces

f = f = x2x3 + x3x4 + x1x2x3x4
= x2x3 · x3x4 · x1x2x3x4
= (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

which matches the previously derived implementation.

184 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.4 Incompletely Specified Functions

In digital systems it often happens that certain input conditions can never occur. For
example, suppose that x1 and x2 control two interlocked switches such that both switches
cannot be closed at the same time. Thus the only three possible states of the switches
are that both switches are open or that one switch is open and the other switch is closed.
Namely, the input valuations (x1, x2) = 00, 01, and 10 are possible, but 11 is guaranteed
not to occur. Then we say that (x1, x2) = 11 is a don’t-care condition, meaning that a circuit
with x1 and x2 as inputs can be designed by ignoring this condition. A function that has
don’t-care condition(s) is said to be incompletely specified.

Don’t-care conditions, or don’t-cares for short, can be used to advantage in the design
of logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 4.15 illustrates this idea. The required
function has a value of 1 for minterms m2, m4, m5, m6, and m10. Assuming the above-
mentioned interlocked switches, the x1 and x2 inputs will never be equal to 1 at the same
time; hence the minterms m12, m13, m14, and m15 can all be used as don’t-cares. The don’t-

�
�
�
�

�
�
�
�

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

�
�

�
�

+()

�
�

�
�

+()

�
�
�
�

�
�
�
�

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

�
�
�
�

�
�
�
�

(a) SOP implementation

(b) POS implementation

Figure 4.15 Two implementations of the function f (x1, . . . , x4) =∑
m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

4.4 Incompletely Specified Functions 185

cares are denoted by the letter d in the map. Using the shorthand notation, the function f
is specified as

f (x1, . . . , x4) =
∑

m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)
where D is the set of don’t-cares.

Part (a) of the figure indicates the best sum-of-products implementation. To form
the largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is
necessary to assume that the don’t-cares D12, D13, and D14 (corresponding to minterms
m12, m13, and m14) have the value of 1 while D15 has the value of 0. Then there are only
two prime implicants, which provide a complete cover of f . The resulting implementation
is

f = x2x3 + x3x4
Part (b) shows how the best product-of-sums implementation can be obtained. The

same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)
The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4
and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)
Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,
then there are 2k possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

In the example above, we chose the don’t-cares D12, D13, and D14 to be equal to 1 and
D15 equal to 0 for both the SOP and POS implementations. Thus the derived expressions
represent the same function, which could also be specified as

∑
m(2, 4, 5, 6, 10, 12, 13, 14).

Assigning the same values to the don’t-cares for both SOP and POS implementations is not
always a good choice. Sometimes it may be advantageous to give a particular don’t-care
the value 1 for SOP implementation and the value 0 for POS implementation, or vice versa.
In such cases the optimal SOP and POS expressions will represent different functions,
but these functions will differ only for the valuations that correspond to these don’t-cares.
Example 4.24 in section 4.14 illustrates this possibility.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real
system may seem to be somewhat contrived. However, in Chapters 6, 8, and 9 we will
encounter many examples of don’t-cares that occur in the course of practical design of
digital circuits.

186 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.5 Multiple-Output Circuits

In all previous examples we have considered single functions and their circuit implemen-
tations. In practical digital systems it is necessary to implement a number of functions
as part of some large logic circuit. Circuits that implement these functions can often be
combined into a less-expensive single circuit with multiple outputs by sharing some of the
gates needed in the implementation of individual functions.

Example 4.1 An example of gate sharing is given in Figure 4.16. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions

�
�
�
�

�
�
�
� 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

�
�
�
�

�
�
�
� 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function (b) Function

1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(c) Combined circuit for � � � �and

Figure 4.16 An example of multiple-output synthesis.

4.5 Multiple-Output Circuits 187

are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4
f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
implement them need not be duplicated. The combined circuit is shown in Figure 4.16c.
Its cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations of f1
and f2 and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.

Example 4.2Figure 4.17 shows two functions to be implemented by a single circuit. Minimum-cost
realizations of the individual functions f3 and f4 are obtained from parts (a) and (b) of the
figure.

f3 = x1x4 + x2x4 + x1x2x3
f4 = x1x4 + x2x4 + x1x2x3x4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
f3 and f4 using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 4.17c shows the best
choice of implicants, which yields the realization

f3 = x1x2x4 + x1x2x3x4 + x1x4
f4 = x1x2x4 + x1x2x3x4 + x2x4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 4.17d . It has the cost of six gates and 17 inputs, for a total of 23.

Example 4.3In Example 4.1 we sought the best SOP implementation for the functions f1 and f2 in
Figure 4.16. We will now consider the POS implementation of the same functions. The
minimum-cost POS expressions for f1 and f2 are

f1 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)
f2 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

188 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�
�
�

�
�
�
� 00 01 11 10

1

1 1

1

00

01

11

10

(a) Optimal realization of (b) Optimal realization of

1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(d) Combined circuit for � � � �and

(c) Optimal realization of �
�

1

1

�
�
�
�

�
�
�
� 00 01 11 10

1

1 1

1

00

01

11

10

11

1

�
�
�
�

�
�
�
� 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

�
�
�
�

�
�
�
� 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

and together�
�

�
�

Figure 4.17 Another example of multiple-output synthesis.

4.6 Multilevel Synthesis 189

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 4.16, it is apparent that there is
no sum term (covering the cells where f1 = f2 = 0) that can be profitably used in realizing
both f1 and f2. Thus the best choice is to implement each function separately, according to
the preceding expressions. Each function requires three OR gates, one AND gate, and 11
inputs. Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 4.1.

Example 4.4Consider now the POS realization of the functions f3 and f4 in Figure 4.17. The minimum-
cost POS expressions for f3 and f4 are

f3 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2)
f4 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2 + x4)

The first three sum terms are the same in both f3 and f4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed for f3, and one 3-input OR gate and one 4-input
AND gate are needed for f4. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 4.2.

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 4.16 and 4.17, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

4.6 Multilevel Synthesis

In the preceding sections our objective was to find a minimum-cost sum-of-products or
product-of-sums realization of a given logic function. Logic circuits of this type have two
levels (stages) of gates. In the sum-of-products form, the first level comprises AND gates
that are connected to a second-level OR gate. In the product-of-sums form, the first-level OR
gates feed the second-level AND gate. We have assumed that both true and complemented
versions of the input variables are available so that NOT gates are not needed to complement
the variables.

A two-level realization is usually efficient for functions of a few variables. However, as
the number of inputs increases, a two-level circuit may result in fan-in problems. Whether

190 C H A P T E R 4 • Optimized Implementation of Logic Functions

Part of a PAL-like block

(from interconnection wires)
�
�

�
�

�
�

�
�

�
�

�
�

�
� unused

f

Figure 4.18 Implementation in a CPLD.

or not this is an issue depends on the type of technology that is used to implement the circuit.
For example, consider the following function:

f (x1, . . . , x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7
This is a minimum-cost SOP expression. Now consider implementing f in two types of
PLDs: a CPLD and an FPGA. Figure 4.18 shows a part of one of the PAL-like blocks from
Figure 3.33. The figure indicates in blue the circuitry used to realize the function f . Clearly,
the SOP form of the function is well suited to the chip architecture of the CPLD.

Next, consider implementing f in an FPGA. For this example we will use the FPGA
shown in Figure 3.39, which contains two-input LUTs. Since the SOP expression for f
requires three- and four-input AND operations and a four-input OR, it cannot be directly
implemented in this FPGA. The problem is that the fan-in required to implement the function
is too high for our target chip architecture.

To solve the fan-in problem, f must be expressed in a form that has more than two levels
of logic operations. Such a form is called a multilevel logic expression. There are several
different approaches for synthesis of multilevel circuits. We will discuss two important
techniques known as factoring and functional decomposition.

4.6.1 Factoring

The distributive property in section 2.5 allows us to factor the preceding expression for f
as follows

f = x1x6(x3 + x4x5) + x2x7(x3 + x4x5)
= (x1x6 + x2x7)(x3 + x4x5)

4.6 Multilevel Synthesis 191

0
0
0
1

0
1
1
1

�
�

�
�

�

�

�

�

�
�

�
�

�
� �

0
1
1
1

0
0
0
1

�
�

�

�

�

�

�

�
�

�
�

�
�

�
�

0
0
0
1

�
�

�
�

�

0
0
1
0

�
�

�
�

�

Figure 4.19 Implementation in an FPGA.

The corresponding circuit has a maximum fan-in of two; hence it can be realized using
two-input LUTs. Figure 4.19 gives a possible implementation using the FPGA from Figure
3.39. Note that a two-variable function that has to be realized by each LUT is indicated in
the box that represents the LUT.

Fan-in Problem
In the preceding example, the fan-in restrictions were caused by the fixed structure

of the FPGA, where each LUT has only two inputs. However, even when the target chip
architecture is not fixed, the fan-in may still be an issue. To illustrate this situation, let us
consider the implementation of a circuit in a custom chip. Recall that custom chips usually
contain a large number of gates. If the chip is fabricated using CMOS technology, then
there will be fan-in limitations as discussed in section 3.8.8. In this technology the number
of inputs to a logic gate should be small. For instance, we may wish to limit the number
of inputs to an AND gate to be less than five. Under this restriction, if a logic expression
includes a seven-input product term, we would have to use 2 four-input AND gates, as
indicated in Figure 4.20.

Factoring can be used to deal with the fan-in problem. Suppose again that the available
gates have a maximum fan-in of four and that we want to realize the function

f = x1x2x3x4x5x6 + x1x2x3x4x5x6

192 C H A P T E R 4 • Optimized Implementation of Logic Functions

7 inputs

Figure 4.20 Using four-input AND gates to realize a
seven-input product term.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 4.21 A factored circuit.

This is a minimal sum-of-products expression. Using the approach of Figure 4.20, we will
need four AND gates and one OR gate to implement this expression. A better solution is to
factor the expression as follows

f = x1x4x6(x2x3x5 + x2x3x5)
Then three AND gates and one OR gate suffice for realization of the required function, as
shown in Figure 4.21.

Example 4.5 In practical situations a designer of logic circuits often encounters specifications that natu-
rally lead to an initial design where the logic expressions are in a factored form. Suppose
we need a circuit that meets the following requirements. There are four inputs: x1, x2, x3,
and x4. An output, f1, must have the value 1 if at least one of the inputs x1 and x2 is equal
to 1 and both x3 and x4 are equal to 1; it must also be 1 if x1 = x2 = 0 and either x3 or x4
is 1. In all other cases f1 = 0. A different output, f2, is to be equal to 1 in all cases except
when both x1 and x2 are equal to 0 or when both x3 and x4 are equal to 0.

4.6 Multilevel Synthesis 193

�
�

�
�

�
�

�
�

�
�

�
�

Figure 4.22 Circuit for Example 4.5.

From this specification, the function f1 can be expressed as

f1 = (x1 + x2)x3x4 + x1x2(x3 + x4)
This expression can be simplified to

f1 = x3x4 + x1x2(x3 + x4)
which the reader can verify by using a Karnaugh map.

The second function, f2, is most easily defined in terms of its complement, such that

f 2 = x1x2 + x3x4
Then using DeMorgan’s theorem gives

f2 = (x1 + x2)(x3 + x4)
which is the minimum-cost expression for f2; the cost increases significantly if the SOP
form is used.

Because our objective is to design the lowest-cost combined circuit that implements f1
and f2, it seems that the best result can be achieved if we use the factored forms for both
functions, in which case the sum term (x3 + x4) can be shared. Moreover, observing that
x1x2 = x1 + x2, the sum term (x1 + x2) can also be shared if we express f1 in the form

f1 = x3x4 + x1 + x2(x3 + x4)
Then the combined circuit, shown in Figure 4.22, comprises three OR gates, three AND
gates, one NOT gate, and 13 inputs, for a total of 20.

Impact on Wiring Complexity
The space on integrated circuit chips is occupied by the circuitry that implements logic

gates and by the wires needed to make connections among the gates. The amount of space

194 C H A P T E R 4 • Optimized Implementation of Logic Functions

needed for wiring is a substantial portion of the chip area. Therefore, it is useful to keep
the wiring complexity as low as possible.

In a logic expression each literal corresponds to a wire in the circuit that carries the
desired logic signal. Since factoring usually reduces the number of literals, it provides a
powerful mechanism for reducing the wiring complexity in a logic circuit. In the synthesis
process the CAD tools consider many different issues, including the cost of the circuit, the
fan-in, and the wiring complexity.

4.6.2 Functional Decomposition

In the preceding examples, which illustrated the factoring approach, multilevel circuits
were used to deal with fan-in limitations. However, such circuits may be preferable to
their two-level equivalents even if fan-in is not a problem. In some cases the multilevel
circuits may reduce the cost of implementation. On the other hand, they usually imply
longer propagation delays, because they use multiple stages of logic gates. We will explore
these issues by means of illustrative examples.

Complexity of a logic circuit, in terms of wiring and logic gates, can often be reduced by
decomposing a two-level circuit into subcircuits, where one or more subcircuits implement
functions that may be used in several places to construct the final circuit. To achieve this
objective, a two-level logic expression is replaced by two or more new expressions, which
are then combined to define a multilevel circuit. We can illustrate this idea by a simple
example.

Example 4.6 Consider the minimum-cost sum-of-products expression

f = x1x2x3 + x1x2x3 + x1x2x4 + x1x2x4
and assume that the inputs x1 to x4 are available only in their true form. Then the expression
defines a circuit that has four AND gates, one OR gate, two NOT gates, and 18 inputs
(wires) to all gates. The fan-in is three for the AND gates and four for the OR gate. The
reader should observe that in this case we have included the cost of NOT gates needed to
complement x1 and x2, rather than assume that both true and complemented versions of all
input variables are available, as we had done before.

Factoring x3 from the first two terms and x4 from the last two terms, this expression
becomes

f = (x1x2 + x1x2)x3 + (x1x2 + x1x2)x4
Now let g(x1, x2) = x1x2 + x1x2 and observe that

g = x1x2 + x1x2
= x1x2 · x1x2
= (x1 + x2)(x1 + x2)
= x1x1 + x1x2 + x2x1 + x2x2
= 0 + x1x2 + x1x2 + 0
= x1x2 + x1x2

4.6 Multilevel Synthesis 195

Then f can be written as

f = gx3 + gx4
which leads to the circuit shown in Figure 4.23. This circuit requires an additional OR gate
and a NOT gate to invert the value of g. But it needs only 15 inputs. Moreover, the largest
fan-in has been reduced to two. The cost of this circuit is lower than the cost of its two-level
equivalent. The trade-off is an increased propagation delay because the circuit has three
more levels of logic.

In this example the subfunction g is a function of variables x1 and x2. The subfunction
is used as an input to the rest of the circuit that completes the realization of the required
function f . Let h denote the function of this part of the circuit, which depends on only three
inputs: g, x3, and x4. Then the decomposed realization of f can be expressed algebraically
as

f (x1, x2, x3, x4) = h[g(x1, x2), x3, x4]
The structure of this decomposition can be described in block-diagram form as shown in
Figure 4.24.

�
�

�
�

�
�

�
�

�

g

Figure 4.23 Logic circuit for Example 4.6.

�
�

�
�

�
�

�
�

�

g

h

Figure 4.24 The structure of decomposition in Example 4.6.

196 C H A P T E R 4 • Optimized Implementation of Logic Functions

While not evident from our first example, functional decomposition can lead to great
reductions in the complexity and cost of circuits. The reader will get a good indication of
this benefit from the next example.

Example 4.7 Figure 4.25a defines a five-variable function f in the form of a Karnaugh map. In searching
for a good decomposition for this function, it is necessary to first identify the variables that
will be used as inputs to a subfunction. We can get a useful clue from the patterns of 1s in
the map. Note that there are only two distinct patterns in the rows of the map. The second
and fourth rows have one pattern, highlighted in blue, while the first and third rows have
the other pattern. Once we specify which row each pattern is in, then the pattern itself

1 11 1

1 11 1

�
�
�
�

�
�
�
� 00 01 11 10

00

01

11

10

�
�
�
�

�
�
�
� 00 01 11 10

1 1

1 1

1

1

1

00

01

11

10

1

�
�

�= �
�

�=
(a) Karnaugh map for the function f

�
�

�
�

�
�

�
�

���

g

k

(b) Circuit obtained using decomposition

Figure 4.25 Decomposition for Example 4.7.

4.6 Multilevel Synthesis 197

depends only on the variables that define columns in each row, namely, x1, x2, and x5. Let
a subfunction g(x1, x2, x5) represent the pattern in rows 2 and 4. This subfunction is just

g = x1 + x2 + x5
because the pattern has a 1 wherever any of these variables is equal to 1. To specify
the location of rows where the pattern g occurs, we use the variables x3 and x4. The
terms x3x4 and x3x4 identify the second and fourth rows, respectively. Thus the expression
(x3x4 + x3x4) · g represents the part of f that is defined in rows 2 and 4.

Next, we have to find a realization for the pattern in rows 1 and 3. This pattern has a 1
only in the cell where x1 = x2 = x5 = 0, which corresponds to the term x1x2x5. But we can
make a useful observation that this term is just a complement of g. The location of rows 1
and 3 is identified by terms x3x4 and x3x4, respectively. Thus the expression (x3x4 +x3x4) ·g
represents f in rows 1 and 3.

We can make one other useful observation. The expressions (x3x4 + x3x4) and (x3x4 +
x3x4) are complements of each other, as shown in Example 4.6. Therefore, if we let
k(x3, x4) = x3x4 + x3x4, the complete decomposition of f can be stated as

f (x1, x2, x3, x4, x5) = h[g(x1, x2, x5), k(x3, x4)]
= kg + kg

where g = x1 + x2 + x5
k = x3x4 + x3x4

The resulting circuit is given in Figure 4.25b. It requires a total of 11 gates and 19 inputs.
The largest fan-in is three.

For comparison, a minimum-cost sum-of-products expression for f is

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x3x4x5 + x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5
The corresponding circuit requires a total of 14 gates (including the five NOT gates to
complement the primary inputs) and 41 inputs. The fan-in for the output OR gate is eight.
Obviously, functional decomposition results in a much simpler implementation of this
function.

In both of the preceding examples, the decomposition is such that a decomposed sub-
function depends on some primary input variables, whereas the remainder of the imple-
mentation depends on the rest of the variables. Such decompositions are called disjoint
decompositions in the technical literature. It is possible to have a non-disjoint decomposi-
tion, where the variables of the subfunction are also used in realizing the remainder of the
circuit. The following example illustrates this possibility.

Example 4.8Exclusive-OR (XOR) is a very useful function. In section 3.9.1 we showed how it can be
realized using a special circuit. It can also be realized using AND and OR gates as shown

198 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�

�
�

�
�

�
�

⊕

�
�

�
�

�
�

�
�

g

�
�

�
�

⊕

�
�

�
�

⊕

(a) Sum-of-products implementation

(b) NAND gate implementation

(c) Optimal NAND gate implementation

Figure 4.26 Implementation of XOR.

in Figure 4.26a. In section 2.7 we explained how any AND-OR circuit can be realized as
a NAND-NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of
XOR using only NAND gates. Let the symbol ↑ represent the NAND operation so that
x1 ↑ x2 = x1 · x2. A sum-of-products expression for the XOR function is

x1 ⊕ x2 = x1x2 + x1x2

4.6 Multilevel Synthesis 199

From the discussion in section 2.7, this expression can be written in terms of NAND
operations as

x1 ⊕ x2 = (x1 ↑ x2) ↑ (x1 ↑ x2)
This expression requires five NAND gates, and it is implemented by the circuit in Figure
4.26b. Observe that an inverter is implemented using a two-input NAND gate by tying the
two inputs together.

To find a decomposition, we can manipulate the term (x1 ↑ x2) as follows:
(x1 ↑ x2) = (x1x2) = (x1(x1 + x2)) = (x1 ↑ (x1 + x2))

We can perform a similar manipulation for (x1 ↑ x2) to generate
x1 ⊕ x2 = (x1 ↑ (x1 + x2)) ↑ ((x1 + x2) ↑ x2)

DeMorgan’s theorem states that x1 + x2 = x1 ↑ x2; hence we can write
x1 ⊕ x2 = (x1 ↑ (x1 ↑ x2)) ↑ ((x1 ↑ x2) ↑ x2)

Now we have a decomposition

x1 ⊕ x2 = (x1 ↑ g) ↑ (g ↑ x2)
g = x1 ↑ x2

The corresponding circuit, which requires only four NAND gates, is given in Figure 4.26c.

Practical Issues
Functional decomposition is a powerful technique for reducing the complexity of cir-

cuits. It can also be used to implement general logic functions in circuits that have built-in
constraints. For example, in programmable logic devices (PLDs) that were introduced in
Chapter 3 it is necessary to “fit” a desired logic circuit into logic blocks that are available
on these devices. The available blocks are a target for decomposed subfunctions that may
be used to realize larger functions.

A big problem in functional decomposition is finding the possible subfunctions. For
functions of many variables, an enormous number of possibilities should be tried. This
situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that
lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this
book. An interested reader may consult other references [2–5]. Modern CAD tools use the
concept of decomposition extensively.

4.6.3 Multilevel NAND and NOR Circuits

In section 2.7 we showed that two-level circuits consisting of AND and OR gates can be
easily converted into circuits that can be realized with NAND and NOR gates, using the
same gate arrangement. In particular, anAND-OR (sum-of-products) circuit can be realized

200 C H A P T E R 4 • Optimized Implementation of Logic Functions

as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes a NOR-
NOR circuit. The same conversion approach can be used for multilevel circuits. We will
illustrate this approach by an example.

Example 4.9 Figure 4.27a gives a four-level circuit consisting of AND and OR gates. Let us first derive
a functionally equivalent circuit that comprises only NAND gates. Each AND gate is
converted to a NAND by inverting its output. Each OR gate is converted to a NAND by
inverting its inputs. This is just an application of DeMorgan’s theorem, as illustrated in
Figure 2.21a. Figure 4.27b shows the necessary inversions in blue. Note that an inversion is
applied at both ends of a given wire. Now each gate becomes a NAND gate. This accounts
for most of the inversions added to the original circuit. But, there are still four inversions
that are not a part of any gate; therefore, they must be implemented separately. These
inversions are at inputs x1, x5, x6, and x7 and at the output f . They can be implemented as
two-input NAND gates, where the inputs are tied together. The resulting circuit is shown
in Figure 4.27c.

A similar approach can be used to convert the circuit in Figure 4.27a into a circuit that
comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.
An AND becomes a NOR if its inputs are inverted, as indicated in Figure 2.21b. Using this
approach, the inversions needed for our sample circuit are shown in blue in Figure 4.28a.
Then each gate becomes a NOR gate. The three inversions at inputs x2, x3, and x4 can be
realized as two-input NOR gates, where the inputs are tied together. The resulting circuit
is presented in Figure 4.28b.

It is evident that the basic topology of a circuit does not change substantially when
converting from AND and OR gates to either NAND or NOR gates. However, it may be
necessary to insert additional gates to serve as NOT gates that implement inversions not
absorbed as a part of other gates in the circuit.

4.7 Analysis of Multilevel Circuits

The preceding section showed that it may be advantageous to implement logic functions
using multilevel circuits. It also presented the most commonly used approaches for syn-
thesizing functions in this way. In this section we will consider the task of analyzing an
existing circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR
(NAND-NAND) structure, then its output function can be written in the SOP form by
inspection. Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR)
circuit. The analysis task is more complicated for multilevel circuits because it is difficult to
write an expression for the function by inspection. We have to derive the desired expression
by tracing the circuit and determining its functionality. The tracing can be done either
starting from the input side and working towards the output, or by starting at the output side
and working back towards the inputs. At intermediate points in the circuit, it is necessary
to evaluate the subfunctions realized by the logic gates.

4.7 Analysis of Multilevel Circuits 201

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

f

f

f

(a) Circuit with AND and OR gates

(b) Inversions needed to convert to NANDs

(c) NAND-gate circuit

Figure 4.27 Conversion to a NAND-gate circuit.

202 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

f

f

(a) Inversions needed to convert to NORs

(b) NOR-gate circuit

Figure 4.28 Conversion to a NOR-gate circuit.

Example 4.10 Figure 4.29 replicates the circuit from Figure 4.27a. To determine the function f imple-
mented by this circuit, we can consider the functionality at internal points that are the outputs
of various gates. These points are labeled P1 to P5 in the figure. The functions realized at
these points are

P1 = x2x3
P2 = x5 + x6
P3 = x1 + P1 = x1 + x2x3

4.7 Analysis of Multilevel Circuits 203

�
�

�
�

�
�

�
�

�
�

�
�

�
�

f

�
�

�
�

�
�

�
�

�
�

Figure 4.29 Circuit for Example 4.10.

P4 = x4P2 = x4(x5 + x6)
P5 = P4 + x7 = x4(x5 + x6) + x7

Then f can be evaluated as

f = P3P5
= (x1 + x2x3)(x4(x5 + x6) + x7)

Applying the distributive property to eliminate the parentheses gives

f = x1x4x5 + x1x4x6 + x1x7 + x2x3x4x5 + x2x3x4x6 + x2x3x7
Note that the expression represents a circuit comprising six AND gates, one OR gate, and
25 inputs. The cost of this two-level circuit is higher than the cost of the circuit in Figure
4.29, but the circuit has lower propagation delay.

Example 4.11In Example 4.7 we derived the circuit in Figure 4.25b. In addition to AND gates and OR
gates, the circuit has some NOT gates. It is reproduced in Figure 4.30, and the internal
points are labeled from P1 to P10 as shown. The following subfunctions occur

P1 = x1 + x2 + x5
P2 = x4
P3 = x3
P4 = x3P2
P5 = x4P3
P6 = P4 + P5
P7 = P1
P8 = P6

204 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�

�
�

�
�

�
�

���

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�	

�

Figure 4.30 Circuit for Example 4.11.

P9 = P1P6
P10 = P7P8

We can derive f by tracing the circuit from the output towards the inputs as follows

f = P9 + P10
= P1P6 + P7P8
= (x1 + x2 + x5)(P4 + P5) + P1P6
= (x1 + x2 + x5)(x3P2 + x4P3) + x1x2x5P4P5
= (x1 + x2 + x5)(x3x4 + x4x3) + x1x2x5(x3 + P2)(x4 + P3)
= (x1 + x2 + x5)(x3x4 + x3x4) + x1x2x5(x3 + x4)(x4 + x3)
= x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x5x3x4 + x5x3x4 +

x1x2x5x3x4 + x1x2x5x4x3
This is the same expression as stated in Example 4.7.

Example 4.12 Circuits based on NAND and NOR gates are slightly more difficult to analyze because each
gate involves an inversion. Figure 4.31a depicts a simple NAND-gate circuit that illustrates
the effect of inversions. We can convert this circuit into a circuit with AND and OR gates
using the reverse of the approach described in Example 4.9. Bubbles that denote inversions
can be moved, according to DeMorgan’s theorem, as indicated in Figure 4.31b. Then the
circuit can be converted into the circuit in part (c) of the figure, which consists of AND and

4.7 Analysis of Multilevel Circuits 205

�
�

�
�

�
�

�
�

�
�

f

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

f

�
�

�
�

�
�

f
�
�

(c) Circuit with AND and OR gates

(b) Moving bubbles to convert to ANDs and ORs

(a) NAND-gate circuit

�
�

Figure 4.31 Circuit for Example 4.12.

OR gates. Observe that in the converted circuit, the inputs x3 and x5 are complemented.
From this circuit the function f is determined as

f = (x1x2 + x3)x4 + x5
= x1x2x4 + x3x4 + x5

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates
to determine its functionality. We can use the approach from Examples 4.10 and 4.11 to

206 C H A P T E R 4 • Optimized Implementation of Logic Functions

derive f as follows. Let P1, P2, and P3 label the internal points as shown in Figure 4.31a.
Then

P1 = x1x2
P2 = P1x3
P3 = P2x4

f = P3x5 = P3 + x5
= P2x4 + x5 = P2x4 + x5
= P1x3x4 + x5 = (P1 + x3)x4 + x5
= (x1x2 + x3)x4 + x5
= (x1x2 + x3)x4 + x5
= x1x2x4 + x3x4 + x5

Example 4.13 The circuit in Figure 4.32 consists of NAND and NOR gates. It can be analyzed as follows.

P1 = x2x3
P2 = x1P1 = x1 + P1
P3 = x3x4 = x3 + x4
P4 = P2 + P3

f = P4 + x5 = P4x5
= P2 + P3 · x5

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

Figure 4.32 Circuit for Example 4.13.

4.8 Cubical Representation 207

= (P2 + P3)x5
= (x1 + P1 + x3 + x4)x5
= (x1 + x2x3 + x3 + x4)x5
= (x1 + x2 + x3 + x4)x5
= x1x5 + x2x5 + x3x5 + x4x5

Note that in deriving the second to the last line, we used property 16a in section 2.5 to
simplify x2x3 + x3 into x2 + x3.

Analysis of circuits is much simpler than synthesis. With a little practice one can
develop an ability to easily analyze even fairly complex circuits.

We have now covered a considerable amount of material on synthesis and analysis of
logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts
involved in finding optimal implementations of logic functions. We have also shown that
logic functions can be realized in a variety of forms, both with two levels of logic and
with multiple levels. In a modern design environment, logic circuits are synthesized using
CAD tools, rather than by hand. The concepts that we have discussed in this chapter are
quite general; they are representative of the strategies implemented in CAD algorithms.
As we have said before, the Karnaugh map scheme for representing logic functions is not
appropriate for use in CAD tools. In the next section we discuss an alternative representation
of logic functions, which is suitable for use in CAD algorithms.

4.8 Cubical Representation

The Karnaugh map is an excellent vehicle for illustrating concepts, and it is even useful for
manual design if the functions have only a few variables. To deal with larger functions it is
necessary to have techniques that are algebraic, rather than graphical, which can be applied
to functions of any number of variables.

Many algebraic optimization techniques have been developed. We will not pursue these
techniques in great detail, but we will attempt to provide the reader with an appreciation
of the tasks involved. This helps in gaining an understanding of what the CAD tools can
do and what results can be expected from them. The approaches that we will present make
use of a cubical representation of logic functions.

4.8.1 Cubes and Hypercubes

So far in this book, we have encountered four different forms for representing logic func-
tions: truth tables, algebraic expressions, Venn diagrams, and Karnaugh maps. Another
possibility is to map a function of n variables onto an n-dimensional cube.

208 C H A P T E R 4 • Optimized Implementation of Logic Functions

Two-Dimensional Cube
A two-dimensional cube is shown in Figure 4.33. The four corners in the cube are

called vertices, which correspond to the four rows of a truth table. Each vertex is identified
by two coordinates. The horizontal coordinate is assumed to correspond to variable x1, and
vertical coordinate to x2. Thus vertex 00 is the bottom-left corner, which corresponds to
row 0 in the truth table. Vertex 01 is the top-left corner, where x1 = 0 and x2 = 1, which
corresponds to row 1 in the truth table, and so on for the other two vertices.

We will map a function onto the cube by indicating with blue circles those vertices for
which f = 1. In Figure 4.33 f = 1 for vertices 01, 10, and 11. We can express the function
as a set of vertices, using the notation f = {01, 10, 11}. The function f is also shown in
the form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.
Therefore, if two vertices for which f = 1 are joined by an edge, then this edge represents
that portion of the function just as well as the two individual vertices. For example, f = 1
for vertices 10 and 11. They are joined by the edge that is labeled 1x. It is customary to use
the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence 1x
means that x1 = 1, while x2 can be either 0 or 1. Similarly, vertices 01 and 11 are joined
by the edge labeled x1, indicating that x1 can be either 0 or 1, but x2 = 1. The reader must
not confuse the use of the letter x for this purpose, in contrast to the subscripted use where
x1 and x2 refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining
property 14a from section 2.5. The edge 1x is the logical sum of vertices 10 and 11. It
essentially defines the term x1, which is the sum of minterms x1x2 and x1x2. The property
14a indicates that

x1x2 + x1x2 = x1
Therefore, finding edges for which f = 1 is equivalent to applying the combining property.
Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for
which f = 1.

The edges 1x and x1 define fully the function in Figure 4.33; hence we can represent
the function as f = {1x, x1}. This corresponds to the logic expression

f = x1 + x2
which is also obvious from the truth table in the figure.

�
�

�
�

0
0
1
1

0
1
0
1

f

0
1
1
1

01

00

11

10

�
�

�
�

x1

1x

Figure 4.33 Representation of f (x1, x2) = ∑ m(1, 2, 3).

4.8 Cubical Representation 209

�
�

�
�

�
�

000

001

010

011

110

101

100

111

x10

1x00x0

x00

10x

xx0

Figure 4.34 Representation of f (x1, x2, x3) = ∑ m(0, 2, 4, 5, 6).

Three-Dimensional Cube
Figure 4.34 illustrates a three-dimensional cube. The x1, x2, and x3 coordinates are as

shown on the left. Each vertex is identified by a specific valuation of the three variables.
The function f mapped onto the cube is the function from Figure 4.1, which was used in
Figure 4.5b. There are five vertices for which f = 1, namely, 000, 010, 100, 101, and
110. These vertices are joined by the five edges shown in blue, namely, x00, 0x0, x10, 1x0,
and 10x. Because the vertices 000, 010, 100, and 110 include all valuations of x1 and x2,
when x3 is 0, they can be specified by the term xx0. This term means that f = 1 if x3 = 0,
regardless of the values of x1 and x2. Notice that xx0 represents the front side of the cube,
which is shaded in blue.

From the preceding discussion it is evident that the function f can be represented in
several ways. Some of the possibilities are

f = {000, 010, 100, 101, 110}
= {0x0, 1x0, 101}
= {x00, x10, 101}
= {x00, x10, 10x}
= {xx0, 10x}

In a physical realization each of the above terms is a product term implemented by an
AND gate. Obviously, the least-expensive circuit is obtained if f = {xx0, 10x}, which is
equivalent to the logic expression

f = x3 + x1x2
This is the expression that we derived using the Karnaugh map in Figure 4.5b.

Four-Dimensional Cube
Graphical images of two- and three-dimensional cubes are easy to draw. A four-

dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their

210 C H A P T E R 4 • Optimized Implementation of Logic Functions

corners connected. The simplest way to visualize a four-dimensional cube is to have one
cube placed inside the other cube, as depicted in Figure 4.35. We have assumed that the x1,
x2, and x3 coordinates are the same as in Figure 4.34, while x4 = 0 defines the outer cube
and x4 = 1 defines the inner cube. Figure 4.35 indicates how the function f3 of Figure 4.7
is mapped onto the four-dimensional cube. To avoid cluttering the figure with too many
labels, we have labeled only those vertices for which f3 = 1. Again, all edges that connect
these vertices are highlighted in blue.

There are two groups of four adjacent vertices for which f3 = 1 that can be represented
as planes. The group comprising 0000, 0010, 1000, and 1010 is represented by x0x0. The
group 0010, 0011, 0110, and 0111 is represented by 0x1x. These planes are shaded in the
figure. The function f3 can be represented in several ways, for example

f3 = {0000, 0010, 0011, 0110, 0111, 1000, 1010, 1111}
= {00x0, 10x0, 0x10, 0x11, x111}
= {x0x0, 0x1x, x111}

Since each x indicates that the corresponding variable can be ignored, because it can be
either 0 or 1, the simplest circuit is obtained if f = {x0x0, 0x1x, x111}, which is equivalent

0000 1000

1010

0110

0011

0010

0111 1111

0x1x

x0x0

x111

Figure 4.35 Representation of function f3 from Figure 4.7.

4.9 A Tabular Method for Minimization 211

to the expression

f3 = x2x4 + x1x3 + x2x3x4
We derived the same expression in Figure 4.7.

n-Dimensional Cube
A function that has n variables can be mapped onto an n-dimensional cube. Although

it is impractical to draw graphical images of cubes that have more than four variables, it
is not difficult to extend the ideas introduced above to a general n-variable case. Because
visual interpretation is not possible and because we normally use the word cube only for
a three-dimensional structure, many people use the word hypercube to refer to structures
with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 4.34 and 4.35, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. Next, we will
discuss minimization techniques that use the cubical representation of functions.

4.9 A Tabular Method for Minimization

Cubical representation of logic functions is well suited for implementation of minimization
algorithms that can be programmed and run efficiently on computers. Such algorithms
are included in modern CAD tools. While the CAD tools can be used effectively without
detailed knowledge of how their minimization algorithms are implemented, the reader may
find it interesting to gain some insight into how this may be accomplished. In this section
we will describe a relatively simple tabular method, which illustrates the main concepts
and indicates some of the problems that arise.

A tabular approach for minimization was proposed in the 1950s by Willard Quine [6]
and Edward McCluskey [7]. It became popular under the name Quine-McCluskey method.
While it is not efficient enough to be used in modern CAD tools, it is a simple method that
illustrates the key issues. We will present it using the cubical notation discussed in sec-
tion 4.8.

212 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.9.1 Generation of Prime Implicants

As mentioned in section 4.8, the prime implicants of a given logic function f are the largest
possible k-cubes for which f = 1. For incompletely specified functions, which include
a set of don’t-care vertices, the prime implicants are the largest k-cubes for which either
f = 1 or f is unspecified.

Assume that the initial specification of f is given in terms of minterms for which f = 1.
Also, let the don’t-cares be specified as minterms. This allows us to create a list of vertices
for which either f = 1 or it is a don’t-care condition. We can compare these vertices in
pairwise fashion to see if they can be combined into larger cubes. Then we can attempt to
combine these new cubes into still larger cubes and continue the process until we find the
prime implicants.

The basis of the method is the combining property of Boolean algebra

xixj + xixj = xi
which we used in section 4.8 to develop the cubical representation. If we have two cubes
that are identical in all variables (coordinates) except one, for which one cube has the value
0 and the other has 1, then these cubes can be combined into a larger cube. For example,
consider f (x1, . . . , x4) = {1000, 1001, 1010, 1011}. The cubes 1000 and 1001 differ only
in variable x4; they can be combined into a new cube 100x. Similarly, 1010 and 1011 can be
combined into 101x. Then we can combine 100x and 101x into a larger cube 10xx, which
means that the function can be expressed simply as f = x1x2.

Figure 4.36 shows how we can generate the prime implicants for the function, f , in
Figure 4.11. The function is defined as

f (x1, . . . , x4) =
∑

m(0, 4, 8, 10, 11, 12, 13, 15)

There are no don’t-care conditions. Since larger cubes can be generated only from the
minterms that differ in just one variable, we can reduce the number of pairwise comparisons
by placing the minterms into groups such that the cubes in each group have the same number

0 0 0 0 0

0 1 0 0
1 0 0 0

1 0 1 0
1 1 0 0

1 0 1 1
1 1 0 1

1 1 1 1

4
8

10
12

11
13

15

0,4 0 x 0 0
x 0 0 0
1 0 x 0
x 1 0 0
1 x 0 0

1 0 1 x
1 1 0 x

1 1 x 1

0,8
8,10
4,12
8,12

10,11
12,13

13,15
1 x 1 111,15

0,4,8,12 x x 0 0

List 1 List 2 List 3

Figure 4.36 Generation of prime implicants for the function in Figure 4.11.

4.9 A Tabular Method for Minimization 213

of 1s, and sort the groups by the number of 1s. Thus, it will be necessary to compare each
cube in a given group only with all cubes in the immediately preceding group. In Figure
4.36, the minterms are ordered in this way in list 1. (Note that we indicated the decimal
equivalents of the minterms as well, to facilitate our discussion.) The minterms, which are
also called 0-cubes as explained in section 4.8, can be combined into 1-cubes shown in list 2.
To make the entries easily understood we indicated the minterms that are combined to form
each 1-cube. Next, we check if the 0-cubes are included in the 1-cubes and place a check
mark beside each cube that is included. We now generate 2-cubes from the 1-cubes in list
2. The only 2-cube that can be generated is xx00, which is placed in list 3. Again, the check
marks are placed against the 1-cubes that are included in the 2-cube. Since there exists just
one 2-cube, there can be no 3-cubes for this function. The cubes in each list without a check
mark are the prime implicants of f . Therefore, the set, P, of prime implicants is

P = {10x0, 101x, 110x, 1x11, 11x1, xx00}
= {p1, p2, p3, p4, p5, p6}

4.9.2 Determination of a Minimum Cover

Having generated the set of all prime implicants, it is necessary to choose a minimum-cost
subset that covers all minterms for which f = 1. As a simple measure we will assume that
the cost is directly proportional to the number of inputs to all gates, which means to the
number of literals in the prime implicants chosen to implement the function.

To find a minimum-cost cover, we construct a prime implicant cover table in which there
is a row for each prime implicant and a column for each minterm that must be covered.
Then we place check marks to indicate the minterms covered by each prime implicant.
Figure 4.37a shows the table for the prime implicants derived in Figure 4.36. If there is a
single check mark in some column of the cover table, then the prime implicant that covers
the minterm of this column is essential and it must be included in the final cover. Such
is the case with p6, which is the only prime implicant that covers minterms 0 and 4. The
next step is to remove the row(s) corresponding to the essential prime implicants and the
column(s) covered by them. Hence we remove p6 and columns 0, 4, 8, and 12, which leads
to the table in Figure 4.37b.

Now, we can use the concept of row dominance to reduce the cover table. Observe
that p1 covers only minterm 10 while p2 covers both 10 and 11. We say that p2 dominates
p1. Since the cost of p2 is the same as the cost of p1, it is prudent to choose p2 rather than
p1, so we will remove p1 from the table. Similarly, p5 dominates p3, hence we will remove
p3 from the table. Thus, we obtain the table in Figure 4.37c. This table indicates that we
must choose p2 to cover minterm 10 and p5 to cover minterm 13, which also takes care of
covering minterms 11 and 15. Therefore, the final cover is

C = {p2, p5, p6}
= {101x, 11x1, xx00}

214 C H A P T E R 4 • Optimized Implementation of Logic Functions

1 0 x 0
1 0 1 x
1 1 0 x

1 1 x 1
1 x 1 1

�
�

�
�

�
�

�
�

�
�

�
� x x 0 0

Prime
implicant

Minterm
0 4 8 10 11 12 13 15

(a) Initial prime implicant cover table

�
�

�
�

�
�

�
�

�
�

Prime
implicant

Minterm
10 11 13 15

(b) After the removal of essential prime implicants

�
�

�
�

�
�

Prime
implicant

Minterm
10 11 13 15

(c) After the removal of dominated rows

Figure 4.37 Selection of a cover for the function in Figure 4.11.

which means that the minimum-cost implementation of the function is

f = x1x2x3 + x1x2x4 + x3x4
This is the same expression as the one derived in section 4.2.2.

In this example we used the concept of row dominance to reduce the cover table. We
removed the dominated rows because they cover fewer minterms and the cost of their prime

4.9 A Tabular Method for Minimization 215

implicants is the same as the cost of the prime implicants of the dominating rows. However,
a dominated row should not be removed if the cost of its prime implicant is less than the
cost of the dominating row’s prime implicant. An example of this situation can be found in
problem 4.25.

The tabular method can be used with don’t-care conditions as illustrated in the following
example.

Example 4.14The don’t-care minterms are included in the initial list in the same way as the minterms for
which f = 1. Consider the function

f (x1, . . . , x4) =
∑

m(0, 2, 5, 6, 7, 8, 9, 13) + D(1, 12, 15)
We encourage the reader to derive a Karnaugh map for this function as an aid in visual-
izing the derivation that follows. Figure 4.38 depicts the generation of prime implicants,
producing the result

P = {00x0, 0x10, 011x, x00x, xx01, 1x0x, x1x1}
= {p1, p2, p3, p4, p5, p6, p7}

The initial prime implicant cover table is shown in Figure 4.39a. The don’t-care
minterms are not included in the table because they do not have to be covered. There are no
essential prime implicants. Examining this table, we see that column 8 has check marks in
the same rows as column 9. Moreover, column 9 has an additional check mark in row p5.
Hence column 9 dominates column 8. We refer to this as the concept of column dominance.
When one column dominates another, we can remove the dominating column, which is

0 0 0 0 0

0 0 0 1
0 0 1 0
1 0 0 0

0 1 0 1

0 1 1 1
1 1 0 1

1 1 1 1

1
2
8

5

7
13

15

0,1 0 0 0 x
0 0 x 0
x 0 0 0
0 x 0 1
0 x 1 0
x 0 0 1
1 0 0 x

1 1 x 1

0,2
0,8
1,5
2,6
1,9
8,9

13,15
x 1 1 17,15

0,1,8,9 x 0 0 x

List 1 List 2 List 3

0 1 1 0
1 0 0 1
1 1 0 0

6
9

12
1 x 0 08,12

0 1 x 1
0 1 1 x
x 1 0 1
1 x 0 1

5,7
6,7

5,13
9,13

1 1 0 x12,13

1,5,9,13 x x 0 1
8,9,12,13 1 x 0 x

5,7,13,15 x 1 x 1

Figure 4.38 Generation of prime implicants for the function in Example 4.14.

216 C H A P T E R 4 • Optimized Implementation of Logic Functions

0 0 x 0
0 x 1 0
0 1 1 x

x x 0 1
x 0 0 x

�
�

�
�

�
�

�
�

�
�

�
� 1 x 0 x

Prime
implicant

Minterm
0 2 5 6 7 8 9

(a) Initial prime implicant cover table

�
�

�
�

�
�

�
�

�
�

Prime
implicant

Minterm

(c) After the removal of rows

�
�

�
�

Prime
implicant

Minterm
2 6

(d) After including

�
� x 1 x 1

0 2 5 6 7 8

�
�

�
�

�
�and

�
�

�
�and

13

0 0 x 0
0 x 1 0
0 1 1 x

x x 0 1
x 0 0 x

�
�

�
�

�
�

�
�

�
�

�
� 1 x 0 x

Prime
implicant

Minterm
0 2 5 6 7 8

(b) After the removal of columns 9 and 13

�
� x 1 x 1

in the cover

Figure 4.39 Selection of a cover for the function in Example 4.14.

4.9 A Tabular Method for Minimization 217

column 9 in this case. Note that this is in contrast to rows where we remove dominated
(rather than dominating) rows. The reason is that when we choose a prime implicant to
cover the minterm that corresponds to the dominated column, this prime implicant will
also cover the minterm corresponding to the dominating column. In our example, choosing
either p4 or p6 covers both minterms 8 and 9. Similarly, column 13 dominates column 5,
hence column 13 can be deleted.

After removing columns 9 and 13, we obtain the reduced table in Figure 4.39b. In
this table row p4 dominates p6 and row p7 dominates p5. This means that p5 and p6 can be
removed, giving the table in Figure 4.39c. Now, p4 and p7 are essential to cover minterms 8
and 5, respectively. Thus, the table in Figure 4.39d is obtained, from which it is obvious that
p2 covers the remaining minterms 2 and 6. Note that row p2 dominates both rows p1 and p3.

The final cover is

C = {p2, p4, p7}
= {0x10, x00x, x1x1}

and the function is implemented as

f = x1x3x4 + x2x3 + x2x4

In Figures 4.37 and 4.39, we used the concept of row and column dominance to reduce
the cover table. This is not always possible, as illustrated in the following example.

Example 4.15Consider the function

f (x1, . . . , x4) =
∑

m(0, 3, 10, 15) + D(1, 2, 7, 8, 11, 14)
The prime implicants for this function are

P = {00xx, x0x0, x01x, xx11, 1x1x}
= {p1, p2, p3, p4, p5}

The initial prime implicant cover table is shown in Figure 4.40a. There are no essential prime
implicants. Also, there are no dominant rows or columns. Moreover, all prime implicants
have the same cost because each of them is implemented with two literals. Thus, the table
does not provide any clues that can be used to select a minimum-cost cover.

A good practical approach is to use the concept of branching, which was introduced
in section 4.2.2. We can choose any prime implicant, say p3, and first choose to include
this prime implicant in the final cover. Then we can determine the rest of the final cover in
the usual way and compute its cost. Next we try the other possibility by excluding p3 from
the final cover and determine the resulting cost. We compare the costs and choose the less
expensive alternative.

Figure 4.40b gives the cover table that is left if p3 is included in the final cover. The
table does not include minterms 3 and 10 because they are covered by p3. The table indicates

218 C H A P T E R 4 • Optimized Implementation of Logic Functions

0 0 x x
x 0 x 0

x x 1 1
1 x 1 x

�
�

�
�

�
�

�
�

Prime
implicant

Minterm
0 3 10 15

(a) Initial prime implicant cover table

�
�

�
�

�
�

�
�

Prime
implicant

Minterm

(b) After including

(c) After excluding

0 15

�
�

�
� from the cover

x 0 1 x��

in the cover

�
�

�
�

�
�

�
�

Prime
implicant

Minterm
0 3 10 15

Figure 4.40 Selection of a cover for the function in
Example 4.15.

that a complete cover must include either p1 or p2 to cover minterm 0 and either p4 or p5 to
cover minterm 15. Therefore, a complete cover can be

C = {p1, p3, p4}
The alternative of excluding p3 leads to the cover table in Figure 4.40c. Here, we see that
a minimum-cost cover requires only two prime implicants. One possibility is to choose p1

4.9 A Tabular Method for Minimization 219

and p5. The other possibility is to choose p2 and p4. Hence a minimum-cost cover is just

Cmin = {p1, p5}
= {00xx, 1x1x}

The function is realized as

f = x1x2 + x1x3

4.9.3 Summary of the Tabular Method

The tabular method can be summarized as follows:

1. Starting with a list of cubes that represent the minterms where f = 1 or a don’t-care
condition, generate the prime implicants by successive pairwise comparisons of the
cubes.

2. Derive a cover table which indicates the minterms where f = 1 that are covered by
each prime implicant.

3. Include the essential prime implicants (if any) in the final cover and reduce the table
by removing both these prime implicants and the covered minterms.

4. Use the concept of row and column dominance to reduce the cover table further. A
dominated row is removed only if the cost of its prime implicant is greater than or
equal to the cost of the dominating row’s prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction of
the table is possible.

6. If the reduced cover table is not empty, then use the branching approach to determine
the remaining prime implicants that should be included in a minimum cost cover.

The tabular method illustrates how an algebraic technique can be used to generate the
prime implicants. It also shows a simple approach for dealing with the covering problem,
to find a minimum-cost cover. The method has some practical limitations. In practice,
functions are seldom defined in the form of minterms. They are usually given either in the
form of algebraic expressions or as sets of cubes. The need to start the minimization process
with a list of minterms means that the expressions or sets have to be expanded into this
form. This list may be very large. As larger cubes are generated, there will be numerous
comparisons performed and the computation will be slow. Using the cover table to select
the optimal set of prime implicants is also computationally intensive when large functions
are involved.

Many algebraic techniques have been developed, which aim to reduce the time that it
takes to generate the optimal covers. While most of these techniques are beyond the scope
of this book, we will briefly discuss one possible approach in the next section. A reader who
intends to use the CAD tools, but is not interested in the details of automated minimization,
may skip this section without loss of continuity.

220 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.10 A Cubical Technique for Minimization

Assume that the initial specification of a function f is given in terms of implicants that are not
necessarily either minterms or prime implicants. Then it is convenient to define an operation
that will generate other implicants that are not given explicitly in the initial specification,
but which will eventually lead to the prime implicants of f . One such possibility is known
as the ∗-product operation, which is usually pronounced the “star-product” operation. We
will refer to it simply as the ∗-operation.

∗-Operation
The ∗-operation provides a simple way of deriving a new cube by combining two cubes

that differ in the value of only one variable. Let A = A1A2 · · · An and B = B1B2 · · · Bn be
two cubes that are implicants of an n-variable function. Thus each coordinate Ai and Bi
is specified as having the value 0, 1, or x. There are two distinct steps in the ∗-operation.
First, the ∗-operation is evaluated for each pair Ai and Bi, in coordinates i = 1, 2, . . . , n,
according to the table in Figure 4.41. Then based on the results of using the table, a set of
rules is applied to determine the overall result of the ∗-operation. The table in Figure 4.41
defines the coordinate ∗-operation, Ai ∗Bi. It specifies the result of Ai ∗Bi for each possible
combination of values of Ai and Bi. This result is the intersection (i.e., the common part)
of A and B in this coordinate. Note that when Ai and Bi have the opposite values (0 and 1,
or vice versa), the result of the coordinate ∗-operation is indicated by the symbol ø. We say
that the intersection of Ai and Bi is empty. Using the table, the complete ∗-operation for A
and B is defined as follows:

C = A ∗ B, such that
1. C = ø if Ai ∗ Bi = ø for more than one i.
2. Otherwise, Ci = Ai ∗ Bi when Ai ∗ Bi �= ø, and Ci = x for the coordinate where

Ai ∗ Bi = ø.
For example, let A = {0x0} and B = {111}. Then A1 ∗B1 = 0∗1 = ø, A2 ∗B2 = x∗1 = 1,
and A3∗B3 = 0∗1 = ø. Because the result is ø in two coordinates, it follows from condition
1 that A ∗ B = ø. In other words, these two cubes cannot be combined into another cube,
because they differ in two coordinates.

As another example, consider A = {11x} and B = {10x}. In this case A1 ∗B1 = 1∗1 =
1, A2 ∗ B2 = 1 ∗ 0 = ø, and A3 ∗ B3 = x ∗ x = x. According to condition 2 above, C1 = 1,

o
o0 0
1 1
10 x

10 x
�
��

�

0
1
x

�
�

�
�*

Figure 4.41 The coordinate ∗-operation.

4.10 A Cubical Technique for Minimization 221

C2 = x, and C3 = x, which gives C = A ∗ B = {1xx}. A larger 2-cube is created from two
1-cubes that differ in one coordinate only.

The result of the ∗-operation may be a smaller cube than the two cubes involved in the
operation. Consider A = {1x1} and B = {11x}. Then C = A ∗ B = {111}. Notice that C
is included in both A and B, which means that this cube will not be useful in searching for
prime implicants. Therefore, it should be discarded by the minimization algorithm.

As a final example, consider A = {x10} and B = {0x1}. Then C = A ∗ B = {01x}. All
three of these cubes are the same size, but C is not included in either A or B. Hence C has
to be considered in the search for prime implicants. The reader may find it helpful to draw
a Karnaugh map to see how cube C is related to cubes A and B.

Using the ∗-Operation to Find Prime Implicants
The essence of the ∗-operation is to find new cubes from pairs of existing cubes. In

particular, it is of interest to find new cubes that are not included in the existing cubes. A
procedure for finding the prime implicants may be organized as follows.

Suppose that a function f is specified by means of a set of implicants that are represented
as cubes. Let this set be denoted as the cover Ck of f . Let ci and cj be any two cubes in
Ck . Then apply the ∗-operation to all pairs of cubes in Ck ; let Gk+1 be the set of newly
generated cubes. Hence

Gk+1 = ci ∗ cj for all ci, cj� Ck

Now a new cover for f may be formed by using the cubes in Ck and Gk+1. Some of these
cubes may be redundant because they are included in other cubes; they should be removed.
Let the new cover be

Ck+1 = Ck ∪ Gk+1 − redundant cubes
where ∪ denotes the logical union of two sets, and the minus sign (−) denotes the removal
of elements of a set. If Ck+1 �= Ck , then a new cover Ck+2 is generated using the same
process. If Ck+1 = Ck , then the cubes in the cover are the prime implicants of f . For an
n-variable function, it is necessary to repeat the step at most n times.

Redundant cubes that have to be removed are identified through pairwise comparison
of cubes. Cube A = A1A2 · · · An should be removed if it is included in some cube B =
B1B2 · · · Bn, which is the case if Ai = Bi or Bi = x for every coordinate i.

Example 4.16Consider the function f (x1, x2, x3) of Figure 4.9. Assume that f is initially specified as a set
of vertices that correspond to the minterms, m0, m1, m2, m3, and m7. Hence let the initial
cover be C0 = {000, 001, 010, 011, 111}. Using the ∗-operation to generate a new set of
cubes, we obtain G1 = {00x, 0x0, 0x1, 01x, x11}. Then C1 = C0 ∪ G1 – redundant cubes.
Observe that each cube in C0 is included in one of the cubes in G1; therefore, all cubes in
C0 are redundant. Thus C1 = G1.

The next step is to apply the ∗-operation to the cubes in C1, which yields G2 = {000,
001, 0xx, 0x1, 010, 01x, 011}. Note that all of these cubes are included in the cube 0xx;

222 C H A P T E R 4 • Optimized Implementation of Logic Functions

therefore, all but 0xx are redundant. Now it is easy to see that

C2 = C1 ∪ G2 – redundant terms
= {x11, 0xx}

since all cubes of C1, except x11, are redundant because they are covered by 0xx.
Applying the ∗-operation to C2 yields G3 = {011} and

C3 = C2 ∪ G3 – redundant terms
= {x11, 0xx}

Since C3 = C2, the conclusion is that the prime implicants of f are the cubes {x11, 0xx},
which represent the product terms x2x3 and x1. This is the same set of prime implicants that
we derived using a Karnaugh map in Figure 4.9.

Observe that the derivation of prime implicants in this example is similar to the tabular
method explained in section 4.9 because the starting point was a function, f , given as a set
of minterms.

Example 4.17 As another example, consider the four-variable function of Figure 4.10. Assume that this
function is initially specified as the cover C0 = {0101, 1101, 1110, 011x, x01x}. Then
successive applications of the ∗-operation and removing the redundant terms gives

C1 = {x01x, x101, 01x1, x110, 1x10, 0x1x}
C2 = {x01x, x101, 01x1, 0x1x, xx10}
C3 = C2

Therefore, the prime implicants are x2x3, x2x3x4, x1x2x4, x1x3, and x3x4.

4.10.1 Determination of Essential Prime Implicants

From a cover that consists of all prime implicants, it is necessary to extract a minimal
cover. As we saw in section 4.2.2, all essential prime implicants must be included in the
minimal cover. To find the essential prime implicants, it is useful to define an operation
that determines a part of a cube (implicant) that is not covered by another cube. One such
operation is called the #-operation (pronounced the “sharp operation”), which is defined as
follows.

#-Operation
Again, let A = A1A2 · · · An and B = B1B2 · · · Bn be two cubes (implicants) of an

n-variable function. The sharp operation A#B leaves as a result “that part of A that is
not covered by B.” Similar to the ∗-operation, the #-operation has two steps: Ai#Bi is
evaluated for each coordinate i, and then a set of rules is applied to determine the overall

4.10 A Cubical Technique for Minimization 223

o
01

10 x
�
��

�

0
1
x

�
�

�
�#ε ε

ε ε
ε

o

Figure 4.42 The coordinate #-operation.

result. The sharp operation for each coordinate is defined in Figure 4.42. After this operation
is performed for all pairs (Ai, Bi), the complete #-operation is defined as follows:

C = A#B, such that
1. C = A if Ai#Bi = ø for some i.
2. C = ø if Ai#Bi = ε for all i.
3. Otherwise, C = ⋃i(A1, A2, . . . , Bi, . . . , An) , where the union is for all i for which

Ai = x and Bi �= x.
The first condition corresponds to the case where cubes A and B do not intersect at all;
namely, A and B differ in the value of at least one variable, which means that no part of A
is covered by B. For example, let A = 0x1 and B = 11x. The coordinate #-products are
A1#B1 = ø, A2#B2 = 0, and A3#B3 = ε. Then from rule 1 it follows that 0x1 # 11x =
0x1. The second condition reflects the case where A is fully covered by B. For example,
0x1 # 0xx = ø. The third condition is for the case where only a part of A is covered by
B. In this case the #-operation generates one or more cubes. Specifically, it generates one
cube for each coordinate i that is x in Ai, but is not x in Bi. Each cube generated is identical
to A, except that Ai is replaced by Bi. For example, 0xx # 01x = 00x, and 0xx # 010 =
{00x, 0x1}.

We will now show how the #-operation can be used to find the essential prime impli-
cants. Let P be the set of all prime implicants of a given function f . Let pi denote one prime
implicant in the set P and let DC denote the don’t-care vertices for f . (We use superscripts
to refer to different prime implicants in this section because we are using subscripts to refer
to coordinate positions in cubes.) Then pi is an essential prime implicant if and only if

pi # (P − pi) # DC �= ø
This means that pi is essential if there exists at least one vertex for which f = 1 that is
covered by pi, but not by any other prime implicant. The #-operation is also performed with
the set of don’t-care cubes because vertices in pi that correspond to don’t-care conditions
are not essential to cover. The meaning of pi # (P − pi) is that the #-operation is applied
successively to each prime implicant in P. For example, consider P = {p1, p2, p3, p4} and
DC = {d1, d2}. To check whether p3 is essential, we evaluate

((((p3 # p1) # p2) # p4) # d 1) # d2

If the result of this expression is not ø, then p3 is essential.

224 C H A P T E R 4 • Optimized Implementation of Logic Functions

Example 4.18 In Example 4.16 we determined that the cubes x11 and 0xx are the prime implicants of
the function f in Figure 4.9. We can discover whether each of these prime implicants is
essential as follows

x11 # 0xx = 111 �= ø
0xx # x11 = {00x, 0x0} �= ø

The cube x11 is essential because it is the only prime implicant that covers the vertex 111,
for which f = 1. The prime implicant 0xx is essential because it is the only one that covers
the vertices 000, 001, and 010. This can be seen in the Karnaugh map in Figure 4.9.

Example 4.19 In Example 4.17 we found that the prime implicants of the function in Figure 4.10 are P =
{x01x, x101, 01x1, 0x1x, xx10}. Because this function has no don’t-cares, we compute

x01x # (P – x01x) = 1011 �= ø
This is computed in the following steps: x01x # x101 = x01x, then x01x # 01x1 = x01x,
then x01x # 0x1x = 101x, and finally 101x # xx10 = 1011. Similarly, we obtain

x101 # (P – x101) = 1101 �= ø
01x1 # (P – 01x1) = ø
0x1x # (P – 0x1x) = ø
xx10 # (P – xx10) = 1110 �= ø

Therefore, the essential prime implicants are x01x, x101, and xx10 because they are the
only ones that cover the vertices 1011, 1101, and 1110, respectively. This is obvious from
the Karnaugh map in Figure 4.10.

When checking whether a cube A is essential, the #-operation with one of the cubes in
P − A may generate multiple cubes. If so, then each of these cubes has to be checked using
the #-operation with all of the remaining cubes in P − A.

4.10.2 Complete Procedure for Finding a Minimal Cover

Having introduced the ∗- and #-operations, we can now outline a complete procedure for
finding a minimal cover for any n-variable function. Assume that the function f is specified
in terms of vertices for which f = 1; these vertices are often referred to as the ON-set of
the function. Also, assume that the don’t-care conditions are specified as a DC-set. Then
the initial cover for f is a union of the ON and DC sets.

Prime implicants of f can be generated using the ∗-operation, as explained in section
4.10. Then the #-operation can be used to find the essential prime implicants as presented
in section 4.10.1. If the essential prime implicants cover the entire ON-set, then they form
the minimum-cost cover for f . Otherwise, it is necessary to include other prime implicants
until all vertices in the ON-set are covered.

4.10 A Cubical Technique for Minimization 225

A nonessential prime implicant pi should be deleted if there exists a less-expensive
prime implicant pj that covers all vertices of the ON-set that are covered by pi. If the
remaining nonessential prime implicants have the same cost, then a possible heuristic ap-
proach is to arbitrarily select one of them, include it in the cover, and determine the rest of
the cover. Then an alternative cover is generated by excluding this prime implicant, and
the lower-cost cover is chosen for implementation. We already used this approach, which
is often referred to as the branching heuristic, in sections 4.2.2 and 4.9.2.

The preceding discussion can be summarized in the form of the following minimization
procedure:

1. Let C0 = ON ∪ DC be the initial cover of function f and its don’t-care conditions.
2. Find all prime implicants of C0 using the ∗-operation; let P be this set of prime

implicants.

3. Find the essential prime implicants using the #-operation. A prime implicant pi is
essential if pi # (P − pi) # DC �= ø. If the essential prime implicants cover all
vertices of the ON-set, then these implicants form the minimum-cost cover.

4. Delete any nonessential pi that is more expensive (i.e., a smaller cube) than some
other prime implicant pj if pi # DC # pj = ø.

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the
ON-set. Use the branching heuristic on the prime implicants of equal cost and retain
the cover with the lowest cost.

Example 4.20To illustrate the minimization procedure, we will use the function

f (x1, x2, x3, x4, x5) =
∑

m(0, 1, 4, 8, 13, 15, 20, 21, 23, 26, 31) + D(5, 10, 24, 28)
To help the reader follow the discussion, this function is also shown in the form of a
Karnaugh map in Figure 4.43.

�
�
�
�

�
�
�
� 00 01 11 10

1

11 1

11

00

01

11

10

�
�
�
�

�
�
�
� 00 01 11 10

d1

1

d

d

1 1

00

01

11

10

1

�
�

�= �
�

�=

d

Figure 4.43 The function for Example 4.20.

226 C H A P T E R 4 • Optimized Implementation of Logic Functions

Instead of f being specified in terms of minterms, let us assume that f is given as the
following SOP expression

f = x1x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x5 + x1x2x3x5 + x1x3x4x5 + x2x3x4x5
Also, we will assume that don’t-cares are specified using the expression

DC = x1x2x4x5 + x1x2x3x4x5 + x1x2x3x4x5
Thus, the ON-set expressed as cubes is

ON = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100}
and the don’t-care set is

DC = {11x00, 01010, 00101}
The initial cover C0 consists of the ON-set and the DC-set:

C0 = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100, 11x00, 01010, 00101}
Using the ∗-operation, the subsequent covers obtained are

C1 = {0x000, 011x1, 101x1, 1x111, x0100, 11x00, 0000x, 00x00, x1000, 010x0, 110x0,
x1010, 00x01, x1111, 0x101, 1010x, x0101, 1x100, 0010x}

C2 = {0x000, 011x1, 101x1, 1x111, 11x00, x1111, 0x101, 1x100, x010x, 00x0x, x10x0}
C3 = C2

Therefore, P = C2.
Using the #-operation, we find that there are two essential prime implicants: 00x0x

(because it is the only one that covers the vertex 00001) and x10x0 (because it is the only one
that covers the vertex 11010). The minterms of f covered by these two prime implicants
are m(0, 1, 4, 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is
10100 (m20), which is also covered by x010x and the cost of this prime implicant is lower.
Note that having removed 1x100, the prime implicant x010x becomes essential because
none of the other remaining prime implicants covers the vertex 10100. Therefore, x010x
has to be included in the final cover. It covers m(20, 21).

There remains to find prime implicants to cover m(13, 15, 23, 31). Using the branching
heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and
1x111. Thus the final cover is

Cminimum = {00x0x, x10x0, x010x, 011x1, 1x111}
The corresponding sum-of-products expression is

f = x1x2x4 + x2x3x5 + x2x3x4 + x1x2x3x5 + x1x3x4x5
Although this procedure is tedious when performed by hand, it is not difficult to write a
computer program to implement the algorithm automatically. The reader should check the
validity of our solution by finding the optimal realization from the Karnaugh map in Fig-
ure 4.43.

4.11 Practical Considerations 227

4.11 Practical Considerations

The purpose of the preceding section was to give the reader some idea about how mini-
mization of logic functions may be automated for use in CAD tools. We chose a scheme
that is not too difficult to explain. From the practical point of view, this scheme has some
drawbacks. The main difficulty is that the number of cubes that must be considered in the
process can be extremely large.

If the goal of minimization is relaxed so that it is not imperative to find a minimum-cost
implementation, then it is possible to derive heuristic techniques that produce good results
in reasonable time. A technique of this type forms the basis of the widely used Espresso
program, which is available from the University of California at Berkeley via the World
Wide Web. Espresso is a two-level optimization program. Both input to the program and
its output are specified in the format of cubes. Instead of using the ∗-operation to find the
prime implicants, Espresso uses an implicant-expansion technique. (See problem 4.30 for
an illustration of the expansion of implicants.) A comprehensive explanation of Espresso
is given in [19], while simplified outlines can be found in [3, 12].

The University of California at Berkeley also provides two software programs that
can be used for design of multilevel circuits, called MIS [20] and SIS [21]. They allow a
user to apply various multilevel optimization techniques to a logic circuit. The user can
experiment with different optimization strategies by applying techniques such as factoring
and decomposition to all or part of a circuit. SIS also includes the Espresso algorithm for
two-level minimization of functions, as well as many other optimization techniques.

Numerous commercial CAD systems are on the market. Four companies whose prod-
ucts are widely used are Cadence Design Systems, Mentor Graphics, Synopsys, and Syn-
plicity. Information on their products is available on the World Wide Web. Each company
provides logic synthesis software that can be used to target various types of chips, such as
PLDs, gate arrays, standard cells, and custom chips. Because there are many possible ways
to synthesize a given circuit, as we saw in the previous sections, each commercial product
uses a proprietary logic optimization strategy based on heuristics.

To describe CAD tools, some new terminology has been invented. In particular, we
should mention two terms that are widely used in industry: technology-independent logic
synthesis and technology mapping. The first term refers to techniques that are applied when
optimizing a circuit without considering the resources available in the target chip. Most
of the techniques presented in this chapter are of this type. The second term, technology
mapping, refers to techniques that are used to ensure that the circuit produced by logic
synthesis can be realized using the logic resources available in the target chip. A good
example of technology mapping is the transformation from a circuit in the form of logic
operations such as AND and OR into a circuit that consists of only NAND operations. This
type of technology mapping is done when targeting a circuit to a gate array that contains
only NAND gates. Another example is the translation from logic operations to lookup
tables, which is done when targeting a design to an FPGA.

Chapter 12 discusses the CAD tools in detail. It presents a typical design flow that a
designer may use to implement a digital system.

228 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.12 Examples of Circuits Synthesized from VHDL
Code

Section 2.10 shows how simple VHDL programs can be written to describe logic functions.
This section introduces additional features of VHDL and provides further examples of
circuits designed using VHDL code.

Recall that a logic signal is represented in VHDL as a data object, and each data object
has an associated type. In the examples in section 2.10, all data objects have the type BIT,
which means that they can assume only the values 0 and 1. To give more flexibility, VHDL
provides another data type called STD_LOGIC. Signals represented using this type can have
several different values.

As its name implies, STD_LOGIC is meant to serve as the standard data type for
representation of logic signals. An example using the STD_LOGIC type is given in Figure
4.44. The logic expression for f corresponds to the truth table in Figure 4.1; it describes f
in the canonical form, which consists of minterms. To use the STD_LOGIC type, VHDL
code must include the two lines given at the beginning of the figure. These statements serve
as directives to the VHDL compiler. They are needed because the original VHDL standard,
IEEE 1076, did not include the STD_LOGIC type. The way that the new type was added
to the language, in the IEEE 1164 standard, was to provide the definition of STD_LOGIC
as a set of files that can be included with VHDL code when compiled. The set of files is
called a library. The purpose of the first line in Figure 4.44 is to declare that the code will
make use of the IEEE library.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY func1 IS
PORT (x1, x2, x3 : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END func1 ;

ARCHITECTURE LogicFunc OF func1 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND NOT x3) OR
(NOT x1 AND x2 AND NOT x3) OR
(x1 AND NOT x2 AND NOT x3) OR
(x1 AND NOT x2 AND x3) OR
(x1 AND x2 AND NOT x3) ;

END LogicFunc ;

Figure 4.44 The VHDL code for the function in Figure 4.1.

4.12 Examples of Circuits Synthesized from VHDL Code 229

In VHDL there are two main aspects to the definition of a new data type. First, the set
of values that a data object of the new type can assume must be specified. For STD_LOGIC,
there are a number of legal values, but the ones that are the most important for describing
logic functions are 0, 1, Z, and −. We introduced the logic value Z, which represents
the high-impedance state, in section 3.8.8. The − logic value represents the don’t-care
condition, which we labeled as d in section 4.4. The second requirement is that all legal
uses in VHDL code of the new data type must be specified. For example, it is necessary to
specify that the type STD_LOGIC is legal for use with Boolean operators.

In the IEEE library one of the files defines the STD_LOGIC data type itself and specifies
some basic legal uses, such as for Boolean operations. In Figure 4.44 the second line of
code tells the VHDL compiler to use the definitions in this file when compiling the code.
The file encapsulates the definition of STD_LOGIC in what is known as a package. The
package is named std_logic_1164. It is possible to instruct the VHDL compiler to use only
a subset of the package, but the normal use is to specify the word all to indicate that the
entire package is of interest, as we have done in the figure.

For the examples of VHDL code given in this book, we will almost always use only
the type STD_LOGIC. Besides simplifying the code, using just one data type has another
benefit. VHDL is a strongly type-checked language. This means that the VHDL compiler
carefully checks all data object assignment statements to ensure that the type of the data
object on the left side of the assignment statement is exactly the same as the type of the data
object on the right side. Even if two data objects seem compatible from an intuitive point
of view, such as an object of type BIT and one of type STD_LOGIC, the VHDL compiler
will not allow one to be assigned to the other. Many synthesis tools provide conversion
utilities to convert from one type to another, but we will avoid this issue by using only the
STD_LOGIC data type in most cases. In the remainder of this section, a few examples of
VHDL code are presented. We show the results of synthesizing the code for implementation
in two different types of chips, a CPLD and an FPGA.

Example 4.21We compiled the VHDL code in Figure 4.44 for implementation in a CPLD, and the CAD
tools produced the expression

f = x3 + x1x2
which is the minimal sum-of-products form that we derived using the Karnaugh map in
Figure 4.5b. Figure 4.45 shows how this expression may be implemented in a CPLD. The
switches that are programmed to be closed are shown in blue. The gates used to implement
f are also highlighted in blue. Observe that only the top two AND gates are used in this
case. The bottom three AND gates have no effect because each is connected to both the
true and complemented versions of an unused input, which causes the output of the AND
gate to be 0.

Figure 4.46 gives the results of synthesizing the VHDL code in Figure 4.44 into an
FPGA. We assume that the compiler generates the same sum-of-products form as above.
Because the logic cells in the chip are four-input lookup tables, only a single logic cell is
needed for this function. The figure shows that the variables x1, x2, and x3 are connected

230 C H A P T E R 4 • Optimized Implementation of Logic Functions

Part of a PAL-like block

(from interconnection wires)
�
�

�
�

�
� unused

f

Figure 4.45 Implementation of the VHDL code in Figure 4.44.

0
0
1
1

0
1
0
1

1
0
1
0

�

0
0
1

0
1
0

1
1
1

1 1 0

0
0
0
0
1
1
1
1

d
d
d
d
d
d
d
d

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

0

�

LUT

Figure 4.46 The VHDL code in Figure 4.44 implemented in a LUT.

to the LUT inputs called i2, i3, and i4. Input i1 is not used because the function requires
only three inputs. The truth table in the LUT indicates that the unused input is treated as
a don’t-care. Thus only half of the rows in the table are shown, since the other half is
identical. The unused LUT input is shown connected to 0 in the figure, but it could just as
well be connected to 1.

It is interesting to consider the benefits provided by the optimizations used in logic
synthesis. For the implementation in the CPLD, the function was simplified from the

4.12 Examples of Circuits Synthesized from VHDL Code 231

original five product terms in the canonical form to just two product terms. However, both
the optimized and nonoptimized forms fit into a single macrocell in the chip, and thus they
have the same cost (the macrocell in Figure 4.45 has five product terms). Similarly, for
the FPGA it does not matter whether the function is minimized, because it fits in a single
LUT. The reason is that our example circuit is very small. For large circuits it is essential
to perform the optimization. Examples 4.22 and 4.23 illustrate logic functions for which
the cost of implementation is reduced when optimized.

Example 4.22The VHDL code in Figure 4.47 corresponds to the function f1 in Figure 4.7. Since there are
six product terms in the canonical form, two macrocells of the type in Figure 4.45 would
be needed. When synthesized by the CAD tools, the resulting expression might be

f = x2x3 + x1x3x4
which is the same as the expression derived in Figure 4.7. Because the optimized expression
has only two product terms, it can be realized using just one macrocell and hence results in
a lower cost.

When f1 is synthesized for implementation in an FPGA, the expression generated may
be the same as for the CPLD. Since the function has only four inputs, it needs just one LUT.

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY func2 IS
PORT (x1, x2, x3, x4 : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END func2 ;

ARCHITECTURE LogicFunc OF func2 IS
BEGIN

f <= (NOT x1 AND NOT x2 AND x3 AND NOT x4) OR
(NOT x1 AND NOT x2 AND x3 AND x4) OR
(x1 AND NOT x2 AND NOT x3 AND x4) OR
(x1 AND NOT x2 AND x3 AND NOT x4) OR
(x1 AND NOT x2 AND x3 AND x4) OR
(x1 AND x2 AND NOT x3 AND x4) ;

END LogicFunc ;

Figure 4.47 The VHDL code for f1 in Figure 4.7.

232 C H A P T E R 4 • Optimized Implementation of Logic Functions

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY func3 IS
PORT (x1, x2, x3, x4, x5, x6, x7 : IN STD LOGIC ;

f : OUT STD LOGIC) ;
END func3 ;

ARCHITECTURE LogicFunc OF func3 IS
BEGIN

f <= (x1 AND x3 AND NOT x6) OR
(x1 AND x4 AND x5 AND NOT x6) OR
(x2 AND x3 AND x7) OR
(x2 AND x4 AND x5 AND x7) ;

END LogicFunc ;

Figure 4.48 The VHDL code for the function of section 4.6.

Example 4.23 In section 4.6 we used a seven-variable logic function as a motivation for multilevel syn-
thesis. This function is given in the VHDL code in Figure 4.48. The logic expression is
in minimal sum-of-products form. When it is synthesized for implementation in a CPLD,
no optimizations are performed by the CAD tools. The function requires one macrocell.
This function is more interesting when we consider its implementation in an FPGA with
four-input LUTs. Because there are seven inputs, more than one LUT is required. If the
function is implemented directly as given in the VHDL code, then five LUTs are needed,
as depicted in Figure 4.49a. Rather than showing the truth table programmed in each LUT,
we show the logic function that is implemented at the LUT output. But, if the function is
synthesized as

f = (x1x6 + x2x7)(x3 + x4x5)
which is the expression we derived by using factoring in section 4.6, then f can be imple-
mented using only two LUTs as illustrated in Figure 4.49b. One LUT produces the term
S = x1x6 + x2x7. The other LUT implements the four-input function f = Sx3 + Sx4x5.

4.13 Concluding Remarks

This chapter has attempted to provide the reader with an understanding of various aspects
of synthesis for logic functions. Now that the reader is comfortable with the fundamental
concepts, we can examine digital circuits of a more sophisticated nature. The next chapter
describes circuits that perform arithmetic operations, which are a key part of computers.

4.14 Examples of Solved Problems 233

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

(a) Sum-of-products realization

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

+

�
�

�
�

�
�

�

(b) Factored realization

Figure 4.49 Implementation of the VHDL code in Figure 4.48.

4.14 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 4.24Problem: Determine the minimum-cost SOP and POS expressions for the function
f (x1, x2, x3, x4) = ∑ m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9).
Solution: The function can be represented in the form of a Karnaugh map as shown in
Figure 4.50a. Note that the location of minterms in the map is as indicated in Figure 4.6.

234 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�
�
�

�
�
�
� 00 01 11 10

1

d

d

00

01

11

10

1

1

d

d 1 �
�
�
�

�
�

�
�

�
�

�
�

+ + +()

�
�

�
�

+()

(a) Determination of the SOP expression

(b) Determination of the POS expression

11

1 ������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� 00 01 11 10

1

d

d

00

01

11

10

1

0

1

d

d 1

11

1�

�

� �

�
�

�
�

+()

Figure 4.50 Karnaugh maps for Example 4.24.

To find the minimum-cost SOP expression, it is necessary to find the prime implicants that
cover all 1s in the map. The don’t-cares may be used as desired. Minterm m6 is covered
only by the prime implicant x1x2, hence this prime implicant is essential and it must be
included in the final expression. Similarly, the prime implicants x1x2 and x3x4 are essential
because they are the only ones that cover m10 and m15, respectively. These three prime
implicants cover all minterms for which f = 1 except m12. This minterm can be covered
in two ways, by choosing either x1x3x4 or x2x3x4. Since both of these prime implicants
have the same cost, we can choose either of them. Choosing the former, the desired SOP
expression is

f = x1x2 + x1x2 + x3x4 + x1x3x4
These prime implicants are encircled in the map.

4.14 Examples of Solved Problems 235

The desired POS expression can be found as indicated in Figure 4.50b. In this case,
we have to find the sum terms that cover all 0s in the function. Note that we have written
0s explicitly in the map to emphasize this fact. The term (x1 + x2) is essential to cover the
0s in squares 0 and 2, which correspond to maxterms M0 and M2. The terms (x3 + x4) and
(x1 + x2 + x3 + x4) must be used to cover the 0s in squares 13 and 14, respectively. Since
these three sum terms cover all 0s in the map, the POS expression is

f = (x1 + x2)(x3 + x4)(x1 + x2 + x3 + x4)
The chosen sum terms are encircled in the map.

Observe the use of don’t-cares in this example. To get a minimum-cost SOP expression
we assumed that all four don’t-cares have the value 1. But, the minimum-cost POS expres-
sion becomes possible only if we assume that don’t-cares 3, 5, and 9 have the value 0 while
the don’t-care 7 has the value 1. This means that the resulting SOP and POS expressions are
not identical in terms of the functions they represent. They cover identically all valuations
for which f is specified as 1 or 0, but they differ in the valuations 3, 5, and 9. Of course,
this difference does not matter, because the don’t-care valuations will never be applied as
inputs to the implemented circuits.

Example 4.25Problem: Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the
function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4
assuming that there are also don’t-cares defined as D = ∑(9, 12, 14).
Solution: The Karnaugh map that represents this function is shown in Figure 4.51a. The
map is derived by placing 1s that correspond to each product term in the expression used
to specify f . The term x1x3x4 corresponds to minterms 0 and 4. The term x3x4 represents
the third row in the map, comprising minterms 3, 7, 11, and 15. The term x1x2x4 specifies
minterms 1 and 3. The fourth product term represents the minterm 13. The map also
includes the three don’t-care conditions.

To find the desired SOP expression, we must find the least-expensive set of prime
implicants that covers all 1s in the map. The term x3x4 is a prime implicant which must
be included because it is the only prime implicant that covers the minterm 7; it also covers
minterms 3, 11, and 15. Minterm 4 can be covered with either x1x3x4 or x2x3x4. Both of
these terms have the same cost; we will choose x1x3x4 because it also covers the minterm 0.
Minterm 1 may be covered with either x1x2x3 or x2x4; we should choose the latter because
its cost is lower. This leaves only the minterm 13 to be covered, which can be done with
either x1x4 or x1x2 at equal costs. Choosing x1x4, the minimum-cost SOP expression is

f = x3x4 + x1x3x4 + x2x4 + x1x4
Figure 4.51b shows how we can find the POS expression. The sum term (x3 + x4)

covers the 0s in the bottom row. To cover the 0 in square 8 we must include (x1 + x4). The

236 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�
�
�

�
�
�
� 00 01 11 10

1

1 d

1

00

01

11

10 d

1

1

1

d

1 1

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� 00 01 11 10

1

1 d

1

0

00

01

11

10 d

1

1

1

d

1 1

00

0

0
�
�

�
�

�
�

�
�

+ + +()

�
�

�
�

+()

�
�

�
�

+()

(a) Determination of the SOP expression

(b) Determination of the POS expression

Figure 4.51 Karnaugh maps for Example 4.25.

remaining 0, in square 5, must be covered with (x1 +x2 +x3 +x4). Thus, the minimum-cost
POS expression is

f = (x3 + x4)(x1 + x4)(x1 + x2 + x3 + x4)

Example 4.26 Problem: Use the tabular method of section 4.9 to derive a minimum-cost SOP expression
for the function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4
assuming that there are also don’t-cares defined as D = ∑(9, 12, 14).

4.14 Examples of Solved Problems 237

Solution: The tabular method requires that we start with the function defined in the form
of minterms. As found in Figure 4.51a, the function f can also be represented as

f (x1, . . . , x4) =
∑

m(0, 1, 3, 4, 7, 11, 13, 15) + D(9, 12, 14)
The corresponding eleven 0-cubes are placed in list 1 in Figure 4.52.

Now, perform a pairwise comparison of all 0-cubes to determine the 1-cubes shown
in list 2, which are obtained by combining pairs of 0-cubes. Note that all 0-cubes are
included in the 1-cubes, as indicated by the checkmarks in list 1. Next, perform a pairwise
comparison of all 1-cubes to obtain the 2-cubes in list 3. Some of these 2-cubes can be
generated in multiple ways, but it is not useful to list a 2-cube more than once (for example,
x0x1 in list 3 can be obtained by combining from list 2 the cubes 1,3 and 9,11 or by using
the cubes 1,9 and 3,11). Note that all but three 1-cubes are included in the 2-cubes. It is not
possible to generate any 3-cubes, hence all terms that are not included in some other term
(the unchecked terms in list 2 and all terms in list 3) are the prime implicants of f . The set
of prime implicants is

P = {000x, 0x00, x100, x0x1, xx11, 1xx1, 11xx}
= {p1, p2, p3, p4, p5, p6, p7}

To find the minimum-cost cover for f , construct the table in Figure 4.53a which shows
all prime implicants and the minterms that must be covered, namely those for which f = 1.
A checkmark is placed to indicate that a minterm is covered by a particular prime implicant.
Since minterm 7 is covered only by p5, this prime implicant must be included in the final

0 0 0 0 0

0 0 0 1
0 1 0 0
0 0 1 1

1 0 1 1
1 1 0 1

1 1 1 1

1
4
3

11
13

15

0,1 0 0 0 x
0 x 0 0
0 0 x 1
x 0 0 1
x 1 0 0

1 1 x 1

0,4
1,3
1,9

4,12

13,15

x 1 1 17,15

List 1 List 2 List 3

1 0 0 1
1 1 0 0
0 1 1 1

9
12
7

0 x 1 13,7
x 0 1 1
1 0 x 1
1 x 0 1
1 1 0 x

3,11
9,11
9,13

12,13
1 1 x 012,14

1,3,9,11 x 0 x 1

3,7,11,15 x x 1 1
9,11,13,15 1 x x 1

1 1 1 014

1 1 1 x14,15

1 x 1 111,15

12,13,14,15 1 1 x x

Figure 4.52 Generation of prime implicants for the function in Example 4.26.

238 C H A P T E R 4 • Optimized Implementation of Logic Functions

0 0 0 x
0 x 0 0
x 1 0 0

x x 1 1
x 0 x 1

�
�

�
�

�
�

�
�

�
�

�
� 1 x x 1

Prime
implicant

Minterm
0 1 3 4 7 11 13

(a) Initial prime implicant cover table

�
� 1 1 x x

15

0 0 0 x
0 x 0 0
x 0 x 1
1 x x 1

�
�

�
�

�
�

�
�

Prime
implicant

Minterm
0 1 4 13

(b) After the removal of rows , and , and columns 3, 7, 11 and 15�� ����

Figure 4.53 Selection of a cover for the function in Example 4.26.

cover. Observe that row p2 dominates row p3, hence the latter can be removed. Similarly,
row p6 dominates row p7. Removing rows p5, p3, and p7, as well as columns 3, 7, 11, and
15 (which are covered by p5), leads to the reduced table in Figure 4.53b. In this table, p2
and p6 are essential. They cover minterms 0, 4, and 13. Thus, it remains only to cover
minterm 1, which can be done by choosing either p1 or p4. Since p4 has a lower cost, it
should be chosen. Therefore, the final cover is

C = {p2, p4, p5, p6}
= {0x00, x0x1, xx11, 1xx1}

and the function is implemented as

f = x1x3x4 + x2x4 + x3x4 + x1x4

4.14 Examples of Solved Problems 239

Example 4.27Problem: Use the ∗-product operation to find all prime implicants of the function
f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D = ∑(9, 12, 14).
Solution: The ON-set for this function is

ON = {0x00, xx11, 00x1, 1101}
The initial cover, consisting of the ON-set and the don’t-cares, is

C0 = {0x00, xx11, 00x1, 1101, 1001, 1100, 1110}
Using the ∗-operation, the subsequent covers obtained are

C1 = {0x00, xx11, 00x1, 000x, x100, 11x1, 10x1, 111x, x001, 1x01, 110x, 11x0}
C2 = {0x00, xx11, 000x, x100, x0x1, 1xx1, 11xx}
C3 = C2

Therefore, the set of all prime implicants is

P = {x1x3x4, x3x4, x1x2x3, x2x3x4, x2x4, x1x4, x1x2}

Example 4.28Problem: Find the minimum-cost implementation for the function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4
assuming that there are also don’t-cares defined as D = ∑(9, 12, 14).
Solution: This is the same function used in Examples 4.25 through 4.27. In those examples,
we found that the minimum-cost SOP implementation is

f = x3x4 + x1x3x4 + x2x4 + x1x4
which requires four AND gates, one OR gate, and 13 inputs to the gates, for a total cost
of 18.

The minimum-cost POS implementation is

f = (x3 + x4)(x1 + x4)(x1 + x2 + x3 + x4)
which requires three OR gates, one AND gate, and 11 inputs to the gates, for a total cost
of 15.

We can also consider a multilevel realization for the function. Applying the factoring
concept to the above SOP expression yields

f = (x1 + x2 + x3)x4 + x1x3x4
This implementation requires two AND gates, two OR gates, and 10 inputs to the gates, for
a total cost of 14. Compared to the SOP and POS implementations, this has the lowest cost

240 C H A P T E R 4 • Optimized Implementation of Logic Functions

in terms of gates and inputs, but it results in a slower circuit because there are three levels of
gates through which the signals must propagate. Of course, if this function is implemented
in an FPGA, then only one LUT is needed.

Example 4.29 Problem: In several commercial FPGAs the logic blocks are four-input LUTs. Two such
LUTs, connected as shown in Figure 4.54, can be used to implement functions of seven
variables by using the decomposition

f (x1, . . . , x7) = f [g(x1, . . . , x4), x5, x6, x7]
It is easy to see that functions such as f = x1x2x3x4x5x6x7 and f = x1 + x2 + x3 + x4 +
x5 + x6 + x7 can be implemented in this form. Show that there exist other seven-variable
functions that cannot be implemented with 2 four-input LUTs.

Solution: The truth table for a seven-variable function can be arranged as depicted in Figure
4.55. There are 27 = 128 minterms. Each valuation of the variables x1, x2, x3, and x4 selects
one of the 16 columns in the truth table, while each valuation of x5, x6, and x7 selects one
of 8 rows. Since we have to use the circuit in Figure 4.54, the truth table for f can also be
defined in terms of the subfunction g. In this case, it is g that selects one of the 16 columns
in the truth table, instead of x1, x2, x3, and x4. Since g can have only two possible values,
0 and 1, we can have only two columns in the truth table. This is possible if there exist
only two distinct patterns of 1s and 0s in the 16 columns in Figure 4.54. Therefore, only a
relatively small subset of seven-variable functions can be realized with just two LUTs.

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�
�

�	

�	

Figure 4.54 Circuit for Example 4.29.

Problems 241

�
�

�
�

0 0
0 1
1 0
1 1

�
�

�
�

�
�

�
�

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
	

�

�
��

�
��

�
��

�
��

�
��

�
��

�
���

�
���

�
���

�
���

�
���

�
���

�
��

�
��	

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

00 00 00 10 11 01 11 11

Figure 4.55 A possible format for truth tables of seven-variable
functions.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

*4.1 Find the minimum-cost SOPand POS forms for the function f (x1, x2, x3) = ∑ m(1, 2, 3, 5).
*4.2 Repeat problem 4.1 for the function f (x1, x2, x3) = ∑ m(1, 4, 7) + D(2, 5).
4.3 Repeat problem 4.1 for the function f (x1, . . . , x4) = �M (0, 1, 2, 4, 5, 7, 8, 9, 10, 12,

14, 15).

4.4 Repeat problem 4.1 for the function f (x1, . . . , x4) = ∑ m(0, 2, 8, 9, 10, 15) + D(1, 3,
6, 7).

*4.5 Repeat problem 4.1 for the function f (x1, . . . , x5) = �M (1, 4, 6, 7, 9, 12,15, 17, 20, 21,
22, 23, 28, 31).

4.6 Repeat problem 4.1 for the function f (x1, . . . , x5) = ∑ m(0, 1, 3, 4, 6, 8, 9, 11, 13, 14, 16,
19, 20, 21, 22, 24, 25) + D(5, 7, 12, 15, 17, 23).

4.7 Repeat problem 4.1 for the function f (x1, . . . , x5) = ∑ m(1, 4, 6, 7, 9, 10, 12, 15, 17, 19,
20, 23, 25, 26, 27, 28, 30, 31) + D(8, 16, 21, 22).

4.8 Find 5 three-variable functions for which the product-of-sums form has lower cost than the
sum-of-products form.

*4.9 A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements
this majority function.

4.10 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

242 C H A P T E R 4 • Optimized Implementation of Logic Functions

*4.11 Prove or show a counter-example for the statement: If a function f has a unique minimum-
cost SOP expression, then it also has a unique minimum-cost POS expression.

*4.12 A circuit with two outputs has to implement the following functions

f (x1, . . . , x4) =
∑

m(0, 2, 4, 6, 7, 9) + D(10, 11)

g(x1, . . . , x4) =
∑

m(2, 4, 9, 10, 15) + D(0, 13, 14)
Design the minimum-cost circuit and compare its cost with combined costs of two circuits
that implement f and g separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

4.13 Repeat problem 4.12 for the following functions

f (x1, . . . , x5) =
∑

m(1, 4, 5, 11, 27, 28) + D(10, 12, 14, 15, 20, 31)
g(x1, . . . , x5) =

∑
m(0, 1, 2, 4, 5, 8, 14, 15, 16, 18, 20, 24, 26, 28, 31) + D(10, 11, 12, 27)

*4.14 Implement the logic circuit in Figure 4.23 using NAND gates only.

*4.15 Implement the logic circuit in Figure 4.23 using NOR gates only.

4.16 Implement the logic circuit in Figure 4.25 using NAND gates only.

4.17 Implement the logic circuit in Figure 4.25 using NOR gates only.

*4.18 Consider the function f = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.
Derive a minimum-cost circuit that implements this function using NOT, AND, and OR
gates.

4.19 Derive a minimum-cost circuit that implements the function f (x1, . . . , x4) = ∑ m(4, 7, 8,
11) + D(12, 15).

4.20 Find the simplest realization of the function f (x1, . . . , x4) = ∑ m(0, 3, 4, 7, 9, 10, 13, 14),
assuming that the logic gates have a maximum fan-in of two.

*4.21 Find the minimum-cost circuit for the function f (x1, . . . , x4) = ∑ m(0, 4, 8, 13, 14, 15).
Assume that the input variables are available in uncomplemented form only. (Hint: use
functional decomposition.)

4.22 Use functional decomposition to find the best implementation of the function f (x1, . . . ,
x5) = ∑ m(1, 2, 7, 9, 10, 18, 19, 25, 31) + D(0, 15, 20, 26). How does your implementa-
tion compare with the lowest-cost SOP implementation? Give the costs.

*4.23 Use the tabular method discussed in section 4.9 to find a minimum cost SOP realization for
the function

f (x1, . . . , x4) =
∑

m(0, 2, 4, 5, 7, 8, 9, 15)

4.24 Repeat problem 4.23 for the function

f (x1, . . . , x4) =
∑

m(0, 4, 6, 8, 9, 15) + D(3, 7, 11, 13)

Problems 243

4.25 Repeat problem 4.23 for the function

f (x1, . . . , x4) =
∑

m(0, 3, 4, 5, 7, 9, 11) + D(8, 12, 13, 14)
4.26 Show that the following distributive-like rules are valid

(A · B)#C = (A#C) · (B#C)
(A + B)#C = (A#C) + (B#C)

4.27 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) = ∑ m(0, 2, 4, 5, 7, 8, 9, 15).

4.28 Repeat problem 4.27 for the function f (x1, . . . , x5) = x1x3x5 + x1x2x3 + x2x3x4x5 +
x1x2x3x4 + x1x2x3x4x5 + x1x2x4x5 + x1x3x4x5.

4.29 Use the cubical representation and the method discussed in section 4.10 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) defined by the ON-set ON = {00x0,
100x, x010, 1111} and the don’t-care set DC = {00x1, 011x}.

4.30 In section 4.10.1 we showed how the ∗-product operation can be used to find the prime
implicants of a given function f . Another possibility is to find the prime implicants by
expanding the implicants in the initial cover of the function. An implicant is expanded
by removing one literal to create a larger implicant (in terms of the number of vertices
covered). A larger implicant is valid only if it does not include any vertices for which
f = 0. The largest valid implicants obtained in the process of expansion are the prime
implicants. Figure P4.1 illustrates the expansion of the implicant x1x2x3 of the function in
Figure 4.9, which is also used in Example 4.16. Note from Figure 4.9 that

f = x1x2x3 + x1x2x3 + x1x2x3

�
�
�
�

����
����

�
�

�
�

�
� ��

�
� ��

����
�
�

NONONONO

Figure P4.1 Expansion of implicant x1x2x3.

In Figure P4.1 the word NO is used to indicate that the expanded term is not valid,
because it includes one or more vertices from f . From the graph it is clear that the largest
valid implicants that arise from this expansion are x2x3 and x1; they are prime implicants
of f .

Expand the other four implicants given in the initial cover in Example 4.14 to find all
prime implicants of f . What is the relative complexity of this procedure compared to the
∗-product technique?

244 C H A P T E R 4 • Optimized Implementation of Logic Functions

4.31 Repeat problem 4.30 for the function in Example 4.17. Expand the implicants given in the
initial cover C0.

*4.32 Consider the logic expressions

f = x1x2x5 + x1x2x4x5 + x1x2x4x5 + x1x2x3x4 + x1x2x3x5 + x2x3x4x5 + x1x2x3x4x5
g = x2x3x4 + x2x3x4x5 + x1x3x4x5 + x1x2x4x5 + x1x3x4x5 + x1x2x3x5 + x1x2x3x4x5

Prove or disprove that f = g.
4.33 Repeat problem 4.32 for the following expressions

f = x1x2x3 + x2x4 + x1x2x4 + x2x3x4 + x1x2x3
g = (x2 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)(x1 + x2 + x3)(x1 + x2 + x4)

4.34 Repeat problem 4.32 for the following expressions

f = x2x3x4 + x2x3 + x2x4 + x1x2x4 + x1x2x3x5
g = (x2 + x3 + x4)(x2 + x4 + x5)(x1 + x2 + x3)(x2 + x3 + x4 + x5)

4.35 A circuit with two outputs is defined by the logic functions

f = x1x2x3 + x2x4 + x2x3x4 + x1x2x3x4
g = x1x3x4 + x1x2x4 + x1x3x4 + x2x3x4

Derive a minimum-cost implementation of this circuit. What is the cost of your circuit?

4.36 Repeat problem 4.35 for the functions

f = (x1 + x2 + x3)(x1 + x3 + x4)(x1 + x2 + x3)(x1 + x2 + x4)(x1 + x2 + x4)
g = (x1 + x2 + x3)(x1 + x2 + x4)(x2 + x3 + x4)(x1 + x2 + x3 + x4)

4.37 A given system has four sensors that can produce an output of 0 or 1. The system operates
properly when exactly one of the sensors has its output equal to 1. An alarm must be raised
when two or more sensors have the output of 1. Design the simplest circuit that can be used
to raise the alarm.

4.38 Repeat problem 4.37 for a system that has seven sensors.

4.39 Find the minimum-cost circuit consisting only of two-input NAND gates for the function
f (x1, . . . , x4) = ∑ m(0, 1, 2, 3, 4, 6, 8, 9, 12). Assume that the input variables are avail-
able in both uncomplemented and complemented forms. (Hint: Consider the complement
of the function.)

4.40 Repeat problem 4.39 for the function f (x1, . . . , x4) = ∑ m(2, 3, 6, 8, 9, 12).
4.41 Find the minimum-cost circuit consisting only of two-input NOR gates for the function

f (x1, . . . , x4) = ∑ m(6, 7, 8, 10, 12, 14, 15). Assume that the input variables are available
in both uncomplemented and complemented forms. (Hint: Consider the complement of
the function.)

4.42 Repeat problem 4.41 for the function f (x1, . . . , x4) = ∑ m(2, 3, 4, 5, 9, 10, 11, 12, 13, 15).

Problems 245

4.43 Consider the circuit in Figure P4.2, which implements functions f and g. What is the cost of
this circuit, assuming that the input variables are available in both true and complemented
forms? Redesign the circuit to implement the same functions, but at as low a cost as
possible. What is the cost of your circuit?

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure P4.2 Circuit for problem 4.43.

4.44 Repeat problem 4.43 for the circuit in Figure P4.3. Use only NAND gates in your circuit.

4.45 Write VHDL code to implement the circuit in Figure 4.25b.

4.46 Write VHDL code to implement the circuit in Figure 4.27c.

4.47 Write VHDL code to implement the circuit in Figure 4.28b.

4.48 Write VHDL code to implement the function f (x1, . . . , x4) = ∑ m(0, 1, 2, 4, 5, 7, 8, 9, 11,
12, 14, 15).

246 C H A P T E R 4 • Optimized Implementation of Logic Functions

�
�

�
�

��

��

�
�

�
�

��

��

��

�
�

��

�
�

��

�

�

Figure P4.3 Circuit for problem 4.44.

4.49 Write VHDL code to implement the function f (x1, . . . , x4) = ∑ m(1, 4, 7, 14, 15) +
D(0, 5, 9).

4.50 Write VHDL code to implement the function f (x1, . . . , x4) = �M (6, 8, 9, 12, 13).
4.51 Write VHDL code to implement the function f (x1, . . . , x4) = �M (3, 11, 14) + D(0, 2,

10, 12).

References

1. M. Karnaugh, “A Map Method for Synthesis of Combinatorial Logic Circuits,”
Transactions of AIEE, Communications and Electronics 72, part 1, November 1953,
pp. 593–599.

References 247

2. R. L. Ashenhurst, “The Decomposition of Switching Functions,” Proc. of the
Symposium on the Theory of Switching, 1957, Vol. 29 of Annals of Computation
Laboratory (Harvard University: Cambridge, MA, 1959), pp. 74–116.

3. F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,
4th ed. (Wiley: New York, 1993).

4. T. Sasao, Logic Synthesis and Optimization (Kluwer: Boston, MA, 1993).

5. S. Devadas, A. Gosh, and K. Keutzer, Logic Synthesis (McGraw-Hill: New York,
1994).

6. W. V. Quine, “The Problem of Simplifying Truth Functions,” Amer. Math. Monthly
59 (1952), pp. 521–531.

7. E. J. McCluskey Jr., “Minimization of Boolean Functions,” Bell System Tech.
Journal, November 1956, pp. 1417–1444.

8. E. J. McCluskey, Logic Design Principles (Prentice-Hall: Englewood Cliffs, NJ,
1986).

9. J. F. Wakerly, Digital Design Principles and Practices, 4th ed. (Prentice-Hall:
Englewood Cliffs, NJ, 2005).

10. J. P. Hayes, Introduction to Logic Design (Addison-Wesley: Reading, MA, 1993).

11. C. H. Roth Jr., Fundamentals of Logic Design, 5th ed. (Thomson/Brooks/Cole:
Belmont, Ca., 2004).

12. R. H. Katz and G. Borriello, Contemporary Logic Design, 2nd ed. (Pearson
Prentice-Hall: Upper Saddle River, NJ, 2005).

13. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design (Prentice-Hall: Englewood Cliffs, NJ, 1995).

14. J. P. Daniels, Digital Design from Zero to One (Wiley: New York, 1996).

15. P. K. Lala, Practical Digital Logic Design and Testing (Prentice-Hall: Englewood
Cliffs, NJ, 1996).

16. A. Dewey, Analysis and Design of Digital Systems with VHDL (PWS Publishing Co.:
Boston, MA, 1997).

17. M. M. Mano, Digital Design, 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2002).

18. D. D. Gajski, Principles of Digital Design (Prentice-Hall: Upper Saddle River, NJ,
1997).

19. R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis (Kluwer: Boston, MA, 1984).

20. R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang, “MIS: A
Multiple-Level Logic Synthesis Optimization System,” IEEE Transactions on
Computer-Aided Design, CAD-6, November 1987, pp. 1062–81.

21. E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “SIS: A System for
Sequential Circuit Synthesis,” Technical Report UCB/ERL M92/41, Electronics
Research Laboratory, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1992.

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

