
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

SPM
[image: profile]
Mannie
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

fairley_managing_and_leading_software_projects_0470294558.pdf

Home>Computer Science homework help>SPM

MANAGING AND
LEADING SOFTWARE

PROJECTS

Press Operating Committee

Chair

Linda Shafer
former Director, Software Quality Institute

The University of Texas at Austin

Editor-in-Chief

Alan Clements
Professor

University of Teesside

Board Members

David Anderson, Principal Lecturer, University of Portsmouth
Mark J. Christensen, Independent Consultant

James Conrad, Associate Professor, UNC Charlotte
Michael G. Hinchey, Director, Software Engineering Laboratory, NASA Goddard Space Flight Center

Phillip Laplante, Associate Professor, Software Engineering, Penn State University
Richard Thayer, Professor Emeritus, California State University, Sacramento

Donald F. Shafer, Chief Technology Offi cer, Athens Group, Inc.
Evan Butterfi eld, Director of Products and Services

Kate Guillemette, Product Development Editor, CS Press

IEEE Computer Society Publications
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of
authoritative computer science and engineering texts. These books are available from most retail
outlets. Visit the CS Store at http://computer.org/cspress for a list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to
produce a number of exciting new titles in areas of computer science, computing and networking
with a special focus on software engineering. IEEE Computer Society members continue to receive
a 15% discount on these titles when purchased through Wiley or at wiley.com/ieeecs

To submit questions about the program or send proposals please e-mail
or write to Books, IEEE Computer Society, 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314.
Telephone +1-714-821-8380. Additional information regarding the Computer Society authored book
program can also be accessed from our web site at http://computer.org/cspress.

MANAGING AND
LEADING SOFTWARE

PROJECTS

RICHARD E. (DICK) FAIRLEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2009 by IEEE Computer Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-470-29455-0

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

v

CONTENTS

Preface xv

 1 Introduction 1

1.1 Introduction to Software Project Management, 1
1.2 Objectives of This Chapter, 2
1.3 Why Managing and Leading Software Projects Is

Diffi cult, 2
1.3.1 Software Complexity, 3
1.3.2 Software Conformity, 4
1.3.3 Software Changeability, 4
1.3.4 Software Invisibility, 5
1.3.5 Team-Oriented, Intellect-Intensive Work, 6

1.4 The Nature of Project Constraints, 9
1.5 A Workfl ow Model for Managing Software Projects, 13
1.6 Organizational Structures for Software Projects, 16

1.6.1 Functional Structures, 16
1.6.2 Project Structures, 17
1.6.3 Matrix Structures, 17
1.6.4 Hybrid Structures, 18

1.7 Organizing the Project Team, 19
1.7.1 The System Engineering Team, 19
1.7.2 The Software Engineering Team, 20

1.8 Maintaining the Project Vision and the Product Vision, 21
1.9 Frameworks, Standards, and Guidelines, 22
1.10 Key Points of Chapter 1, 23
1.11 Overview of the Text, 23
References, 24
Exercises, 25

vi CONTENTS

Appendix 1A: Frameworks, Standards, and Guidelines for Managing
Software Projects, 28
1A.1 The CMMI-DEV-v1.2 Process

Framework, 28
1A.2 ISO/IEC and IEEE/EIA Standards 12207, 34
1A.3 IEEE/EIA Standard 1058, 36
1A.4 The PMI Body of Knowledge, 37

 2 Process Models for Software Development 39

2.1 Introduction to Process Models, 39
2.2 Objectives of This Chapter, 42
2.3 A Development-Process Framework, 42

2.3.1 Users, Customers, and Acquirers, 43
2.3.2 System Requirements and System Design, 46
2.3.3 Software Requirements, Architecture,

and Implementation, 47
2.3.4 Verifi cation and Validation, 50

2.4 Tailoring the System Engineering Framework for
Software-Only Projects, 52

2.5 Traditional Software Development Process Models, 54
2.5.1 Hacking, 54
2.5.2 Requirements-to-Code, 55
2.5.3 The Waterfall Development Model, 55
2.5.4 Guidelines for Planning and Controlling Traditional

Software Projects, 58
2.6 Iterative-Development Process Models, 58

2.6.1 The Incremental-Build Model, 59
2.6.2 The Evolutionary Model, 64
2.6.3 Agile Development Models, 66
2.6.4 The Scrum Model, 68
2.6.5 The Spiral Meta-Model, 69
2.6.6 Guidelines for Planning and Controlling Iterative-

Development Projects, 71
2.7 Designing an Iterative-Development Process, 72
2.8 The Role of Prototyping in Software Development, 74
2.9 Key Points of Chapter 2, 75
References, 76
Exercises, 77
Appendix 2A: Frameworks, Standards, and Guidelines for Software

Development Process Models, 79
2A.1 The CMMI-DEV-v1.2 Technical Solution

Process Area, 79
2A.2 Development Processes in ISO/IEC and

IEEE/EIA Standards 12207, 80
2A.3 Technical Process Plans in IEEE/EIA Standard

1058, 81
2A.4 The PMI Body of Knowledge, 81

CONTENTS vii

Appendix 2B: Considerations for Selecting an Iterative-
Development Model, 82

 3 Establishing Project Foundations 85

3.1 Introduction to Project Foundations, 85
3.2 Objectives of This Chapter, 86
3.3 Software Acquisition, 87
3.4 Requirements Engineering, 88

3.4.1 Requirements Development, 89
3.4.2 Requirements Analysis, 96
3.4.3 Technical Specifi cations, 98
3.4.4 Requirements Verifi cation, 105
3.4.5 Requirements Management, 106

3.5 Process Foundations, 109
3.5.1 Specifying the Scope of Your Project, 110
3.5.2 The Contractual Agreement, 110

3.6 Key Points of Chapter 3, 112
References, 113
Exercises, 114
Appendix 3A: Frameworks, Standards, and Guidelines for Product

Foundations, 116
3A.1 The CMMI-DEV-v1.2 Process Areas for

Requirements Development and
Requirements Management, 116

3A.2 Product Foundations in ISO/IEC and
IEEE/EIA Standards 12207, 117

3A.3 IEEE/EIA Standard 1058, 118
3A.4 The PMI Body of Knowledge, 118

 4 Plans and Planning 119

4.1 Introduction to the Planning Process, 119
4.2 Objectives of This Chapter, 120
4.3 The Planning Process, 121
4.4 The CMMI-DEV-v1.2 Process Area for Project Planning, 125

4.4.1 Planning Agile Projects, 128
4.4.2 Balancing Agility and Discipline, 129

4.5 A Minimal Project Plan, 129
4.6 A Template for Software Project Management Plans, 130

4.6.1 Front Matter, 130
4.6.2 Project Summary, 132
4.6.3 Evolution, Defi nitions, and References, 134
4.6.4 Project Organization, 136
4.6.5 Managerial Processes, 137
4.6.6 Technical Processes, 143
4.6.7 Supporting Processes, 145
4.6.8 Additional Plans, Appendixes, Index, 149

viii CONTENTS

4.7 Techniques for Preparing a Project Plan, 150
4.7.1 Tailoring the Project Plan Template, 150
4.7.2 Including Predefi ned Elements, 152
4.7.3 Using Organizational Support, 152
4.7.4 Leading a Planning Team, 153
4.7.5 Incremental Planning, 153

4.8 Key Points of Chapter 4, 154
References, 154
Exercises, 155
Appendix 4A: Frameworks, Standards, and Guidelines for Project

Planning, 156
4A.1 The CMMI-DEV-v1.2 Project Planning

Process Area, 156
4A.2 ISO/IEC and IEEE/EIA Standards

12207, 157
4A.3 IEEE/EIA Standard 1058, 158
4A.4 The PMI Body of Knowledge, 158

Appendix 4B: Annotated Outline for Software Project Management
Plans, Based on IEEE Standard 1058, 159
4B.1 Purpose, 159
4B.2 Evolution of Plans, 160
4B.3 Overview, 160
4B.4 Format of a Software Project Management

Plan, 160
4B.5 Structure and Content of the Plan, 162

 5 Project Planning Techniques 173

5.1 Introduction to Project Planning Techniques, 173
5.2 Objectives of This Chapter, 174
5.3 The Scope of Planning, 175
5.4 Rolling-Wave Planning, 175
5.5 Scenarios for Developing a Project Plan, 176
5.6 Developing the Architecture Decomposition View and

the Work Breakdown Structure, 177
5.7 Guidelines for Designing Work Breakdown

Structures, 182
5.8 Developing the Project Schedule, 188

5.8.1 The Critical-Path Method, 190
5.8.2 The PERT Method, 190
5.8.3 Task-Gantt Charts, 193

5.9 Developing Resource Profi les, 193
5.10 Resource-Gantt Charts, 199
5.11 Estimating Project Effort, Cost, and Schedule, 199
5.12 Key Points of Chapter 5, 201
References, 202
Exercises, 202

CONTENTS ix

Appendix 5A: Frameworks, Standards, and Guidelines for Project
Planning Techniques, 204
A5.1 Specifi c Practices of the CMMI-DEV-v1.2

Project Planning Process Area, 204
5A.2 ISO/IEC and IEEE/EIA Standards 12207, 205
5A.3 IEEE/EIA Standard 1058, 205
5A.4 The PMI Body of Knowledge, 206

 6 Estimation Techniques 207

6.1 Introduction to Estimation Techniques, 207
6.2 Objectives of This Chapter, 208
6.3 Fundamental Principles of Estimation, 209
6.4 Designing to Project Constraints, 214
6.5 Estimating Product Size, 216
6.6 Pragmatic Estimation Techniques, 224

6.6.1 Rule of Thumb, 224
6.6.2 Analogy, 226
6.6.3 Expert Judgment, 227
6.6.4 Delphi Estimation, 227
6.6.5 WBS/CPM/PERT, 229

6.7 Theory-Based Estimation Models, 230
6.7.1 System Dynamics, 230
6.7.2 SLIM, 231

6.8 Regression-Based Estimation Models, 234
6.8.1 COCOMO Models, 238
6.8.2 Monte Carlo Estimation, 244
6.8.3 Local Calibration, 244

6.9 Estimation Tools, 249
6.10 Estimating Life Cycle Resources, Effort, and Cost, 249
6.11 An Estimation Procedure, 251
6.12 A Template for Recording Estimates, 256
6.13 Key Points of Chapter 6, 258
References, 258
Exercises, 259
Appendix 6A: Frameworks, Standards, and Guidelines for

Estimation, 262
6A.1 Estimation Goals and Practices of the

CMMI-DEV-v1.2 Project Planning Process
Area, 262

6A.2 ISO/IEC and IEEE/EIA Standards 12207, 263
6A.3 IEEE/EIA Standard 1058, 263
6A.4 The PMI Body of Knowledge, 263

 7 Measuring and Controlling Work Products 265

7.1 Introduction to Measuring and Controlling Work Products, 265
7.2 Objectives of This Chapter, 268

x CONTENTS

7.3 Why Measure?, 268
7.4 What Should Be Measured?, 269
7.5 Measures and Measurement, 270
7.6 Measuring Product Attributes, 276

7.6.1 Measuring Operational Requirements and Technical
Specifi cations, 276

7.6.2 Measuring and Controlling Changes to Work
Products, 281

7.6.3 Measuring Attributes of Architectural Design
Specifi cations, 285

7.6.4 Measuring Attributes of Software Implementation, 288
7.6.5 Complexity Measures for Software Code, 293
7.6.6 Measuring Integration and Verifi cation of Software

Units, 298
7.6.7 Measuring System Verifi cation and Validation, 299

7.7 Measuring and Analyzing Software Defects, 301
7.8 Choosing Product Measures, 309
7.9 Practical Software Measurement, 311
7.10 Guidelines for Measuring and Controlling Work Products, 311
7.11 Rolling-Wave Adjustments Based on Product Measures and

Measurement, 313
7.12 Key Points of Chapter 7, 313
References, 314
Exercises, 315
Appendix 7A: Frameworks, Standards, and Guidelines for Measuring

and Controlling Work Products, 319
7A.1 The CMMI-DEV-v1.2 Monitoring and Control

Process Area, 319
7A.2 ISO/IEC and IEEE/EIA Standards 12207, 320
7A.3 IEEE/EIA Standard 1058, 321
7A.4 The PMI Body of Knowledge, 321
7A.5 Practical Software and Systems Measurement

(PSM), 321
Appendix 7B: Procedures and Forms for Software Inspections, 322

7B.1 Conducting a Software Inspection, 322
7B.2 The Defect Checklist, 324
7B.3 Conducting an Inspection Meeting, 325

 8 Measuring and Controlling Work Processes 333

8.1 Introduction to Measuring and Controlling Work Processes, 333
8.2 Objectives of This Chapter, 336
8.3 Measuring and Analyzing Effort, 336
8.4 Measuring and Analyzing Rework Effort, 339
8.5 Tracking Effort, Schedule, and Cost; Estimating Future

Status, 342
8.5.1 Binary Tracking, 342
8.5.2 Estimating Future Status, 345

CONTENTS xi

8.6 Earned Value Reporting, 347
8.7 Project Control Panel®, 353
8.8 Key Points of Chapter 8, 357
References, 358
Exercises, 358
Appendix 8A: Frameworks, Standards, and Guidelines for Measuring

and Controlling Work Processes, 361

 9 Managing Project Risk 363

9.1 Introduction to Managing Project Risk, 363
9.2 Objectives of This Chapter, 365
9.3 An Overview of Risk Management for Software

Projects, 366
9.4 Conventional Project Management Techniques, 369
9.5 Risk Identifi cation Techniques, 373

9.5.1 Checklists, 373
9.5.2 Brainstorming, 375
9.5.3 Expert Judgment, 375
9.5.4 SWOT, 375
9.5.5 Analysis of Assumptions and Constraints, 375
9.5.6 Lessons-Learned Files, 376
9.5.7 Cost and Schedule Modeling, 376
9.5.8 Requirements Triage, 379
9.5.9 Assets Inventory, 380
9.5.10 Trade-Off Analysis, 380

9.6 Risk Analysis and Prioritization, 381
9.7 Risk Mitigation Strategies, 382

9.7.1 Risk Avoidance, 382
9.7.2 Risk Transfer, 383
9.7.3 Risk Acceptance, 383
9.7.4 Immediate Action, 384
9.7.5 Contingent Action, 385

9.8 Top-N Risk Tracking and Risk Registers, 388
9.9 Controlling the Risk Management Process, 392
9.10 Crisis Management, 394
9.11 Risk Management at the Organizational Level, 395
9.12 Joint Risk Management, 396
9.13 Key Points of Chapter 9, 396
References, 397
Exercises, 397
Appendix 9A: Frameworks, Standards, and Guidelines for Risk

Management, 399
9A.1 The CMMI-DEV-v1.2 Risk Management

Process Area, 399
9A.2 ISO/EIC and IEEE/EIA Standards

12207, 400
9A.3 IEEE/EIA Standard 1058, 400

xii CONTENTS

9A.4 The PMI Body of Knowledge, 401
9A.5 IEEE Standard 1540, 402

Appendix 9B: Software Risk Management Glossary, 404

10 Teams, Teamwork, Motivation, Leadership, and Communication 407

10.1 Introduction, 407
10.2 Objectives of This Chapter, 408
10.3 Managing versus Leading, 408
10.4 Teams and Teamwork, 410
10.5 Maintaining Morale and Motivation, 417
10.6 Can’t versus Won’t, 418
10.7 Personality Styles, 420

10.7.1 Jungian Personality Traits, 420
10.7.2 MBTI Personality Types, 421
10.7.3 Dimensions of Social Styles, 425

10.8 The Five-Layer Behavioral Model, 427
10.9 Key Points of Chapter 10, 430
References, 430
Exercises, 432
Appendix 10A: Frameworks, Standards, and Guidelines for

Teamwork and Leadership, 433
10A.1 The CMMI-DEV-v1.2 Framework

Processes, 433
10A.2 ISO/IEC and IEEE/EIA Standards

12207, 433
10A.3 IEEE/EIA Standard 1058, 433
10A.4 The PMI Body of Knowledge, 434
10A.5 Other Sources of Information, 434

10A.5.1 The People CMM, 434
10A.5.2 The Personal Software Process, 435
10A.5.3 The Team Software Process, 436
10A.5.4 Peopleware, 436

11 Organizational Issues 439

11.1 Introduction to Organizational Issues, 439
11.2 Objectives of This Chapter, 440
11.3 The Infl uence of Corporate Culture, 441
11.4 Assessing and Nurturing Intellectual Capital, 443
11.5 Key Personnel Roles, 444
11.6 Fifteen Guidelines for Organizing and Leading Software

Engineering Teams, 449
11.6.1 Introduction to the Guidelines, 449
11.6.2 The Guidelines, 450
11.6.3 Summary of the Guidelines, 463

11.7 Key Points of Chapter 11, 464
References, 464

CONTENTS xiii

Exercises, 465
Appendix 11: Frameworks, Standards, and Guidelines for

Organizational Issues, 467
A11.1 The CMMI-DEV-v1.2 Process

Framework, 467
A11.2 ISO and IEEE Standards 12207, 469
A11.3 IEEE/EIA Standard 1058, 470
A11.4 The PMI Body of Knowledge, 470

Glossary of Terms 471

Guidance for Term Projects 481

Index 487

xv

 PREFACE

 Too often those who develop and modify software and those who manage software
development are like trains traveling different routes to a common destination. The
managers want to arrive at the customer ’ s station with an acceptable product, on
schedule and within budget. The developers want to deliver to the users a trainload
of features and quality attributes; they will delay the time of arrival to do so, if
allowed. Sometimes the two trains appear to be on the same schedule, but often one
surges ahead only to be sidetracked by traffi c of higher priority while the other
chugs onward. One or both may be unexpectedly rerouted, making it diffi cult to
rendezvous en route and at the fi nal destination.

 Managers traveling on their train often wonder why programmers cannot just
write the code that needs to be written, correctly and completely, and deliver it when
it is needed. Software developers traveling on their train wonder what their manag-
ers do all day. This text provides the insights, methods, tools, and techniques needed
to keep both trains moving in unison through their signals and switches and, better
yet, shows how they can combine their engines and freight to form a single express
train running on a pair of rails, one technical, the other managerial.

 By reading this text and working through the exercises, students, software devel-
opers, project managers, and prospective managers will learn why

 managing a large computer programming project is like managing any other large
undertaking — in more ways than most programmers believe. But in many ways it is
different — in more ways than most professional managers expect. 1

 Readers will learn how software projects differ from other kinds of projects
(i.e., construction, agricultural, manufacturing, administrative, and traditional engi-
neering projects), and they will learn how the methods and techniques of project
management must be modifi ed and adapted for software projects.

 1 The Mythical Man - Month, Anniversary Edition , Frederick P. Brooks Jr., Addison Wesley, 1995; pp. x.

xvi PREFACE

 Those who are, or will become managers of software projects, will acquire the
methods, tools, and techniques needed to effectively manage software projects, both
large and small. Software developers, both neophyte student and journeyman/jour-
neywoman professional, will gain an increased understanding of what managers do,
or should be doing all day and why managers ask them to do the things they ask/
demand. These readers will gain the knowledge they need to become project manag-
ers. Those students and software developers who have no desire to become project
managers will benefi t by gaining an increased understanding of what those other
folks do all day and why the seemingly extraneous things they, the developers, are
asked to do are important to the success of their projects.

 This text is intended as a textbook for upper division undergraduates and gradu-
ate students as well as for software practitioners and current and prospective soft-
ware project managers. Exercises are included in each chapter. Practical hints and
guidelines are included throughout the text, thus making it suitable for industrial
short courses and for self - study by practitioners and managers.

 Chapters 1 through 3 provide the context for the remainder of the text: Chapter
 1 provides an introduction to software project management; Chapter 2 covers
process models for developing software - intensive systems; Chapter 3 is concerned
with establishing the product foundations for software projects.

 Chapters 4 through 10 cover the four primary activities of software project
management:

 • Planning and estimating is covered in Chapters 4 through 6 .
 • Measuring and controlling is covered in Chapters 7 and 8 .
 • Managing risk is covered in Chapter 9 .
 • Leading, motivating, and communicating are covered in Chapter 10 .

 Chapter 11 covers organizational issues and concludes the text with a summary of
15 guidelines for organizing and leading software engineering teams.

 For each topic covered, the approach taken is to present the full scope of activi-
ties for the largest and most complex projects and to show how those activities can
be tailored, adapted, and scaled to fi t the needs of projects of various sizes and
complexities.

 Learning objectives are presented at the beginning of each chapter and each
concludes with a summary of key points from the chapter. Occasional sidebars
elaborate the material at hand. An appendix to each chapter relates the topics
covered in that chapter to four leading sources of information concerning manage-
ment of software projects:

 1. CMMI - DEV - v1.2 process framework
 2. ISO/IEC and IEEE/EIA Standards 12207
 3. IEEE/EIA Standard 1058
 4. PMI ’ s Body of Knowledge (PMBOK ®)

 The text is consistent with the guidelines contained in PMBOK and ACM/IEEE
curriculum recommendations.

 Presentation slides, document templates, and other supporting material for
the text and for term projects are available at the following URL:
 computer.org/book_extras/fairley_software_projects

PREFACE xvii

 Terms used throughout this text are defi ned in the Glossary at the end of the
text. Topics, schedule, and a template for term projects follow the Glossary and
included are some hypothetical projects that can be used as the basis for term proj-
ects in a course or as examples that practitioners and managers can use to gain
experience in preparing software project management plans. Schedule and tem-
plates for deliverables for the hypothetic projects are also provided; electronic
copies of templates and some software tools are provided at the URL previously
cited. Alternatively, practitioners and managers can apply the templates and tools
to a past, present, or future project.

 A continued example for planning and conducting a project to build the software
element of an automated teller system is presented to motivate and explain the
material contained in each chapter.

 As is well known, one learns best by doing. I strongly recommended that the
exercises at the end of each chapter be completed and that progress through the
material be accompanied by an extended exercise (i.e., a term project) to develop
some elements a project plan for a real or hypothetical software project. The plan-
ning exercise can be based on an actual project that the reader has been, is currently,
or will be involve in; or it can be based on one of the hypotheticals at the end of
the text; or it can be based on a project assigned by the instructor. A week - by - week
schedule for completing the term project on a quarter or semester basis is provided.
Completion of the planning exercise will result in a report that contains elements
similar to those presented in IEEE/EIA Standard 1058 for software project manage-
ment plans.

 The material can be presented in reading/lecture/discussion format or by assigned
readings followed by classroom or on - line discussions based on the exercises and
the term project.

 I am indebted to the pioneers who surveyed the terrain, prepared the roadbed,
laid down the tracks, and drove the golden spike so that our project trains can
proceed to their destinations. Those pioneers include Fred Brooks, the intellectual
father of us all; Winston Royce, who showed us systematic approaches to software
development and management of software projects; Barry Boehm, who was the fi rst
to address issues of software engineering economics, risk management, and so much
more; Tom DeMarco, the master tactician of software development, project manage-
ment, and peopleware; and the many others who prepared the way for this text. I
accept responsibility for any misinterpretations or misstatements of their work. My
apologies to those I have failed to credit in the text, either through ignorance or
oversight.

 Thanks to Mary Jane Fairley, Linda Shafer, and the other reviewers of the manu-
script for taking the time to read it and for the many insightful comments they
offered. Special thanks to the many students to whom I have presented this material
and from whom I have learned as much as they have learned from me.

 R ichard E. (D ick) F airley

Teller County, Colorado

1

1
 INTRODUCTION

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 In many ways, managing a large computer programming project is like managing any
other large undertaking — in more ways than most programmers believe. But in many
other ways it is different — in more ways than most professional managers expect. 1

 — Fred Brooks

 1.1 INTRODUCTION TO SOFTWARE PROJECT MANAGEMENT

 When you become (or perhaps already are) the manager of a software project you
will fi nd that experience to be one of the most challenging and most rewarding
endeavors of your career. You, as a project manager, will be (or are) responsible for
(1) delivering an acceptable product, (2) on the specifi ed delivery date, and (3)
within the constraints of the specifi ed budget, resources, and technology. In return
you will have, or should have, authority to use the resources available to you in the
ways you think best to achieve the project objectives within the constraints of
acceptable product, delivery date, and budget, resources, and technology.

 Unfortunately, software projects have the (often deserved) reputation of costing
more than estimated, taking longer than planned, and delivering less in quantity and
quality of product than expected or required. Avoiding this stereotypical situation
is the challenge of managing and leading software projects.

 There are four fundamental activities that you must accomplish if you are to be
a successful project manager:

 1 The Mythical Man - Month, Anniversary Edition , Frederick P. Brooks Jr., Addison Wesley, 1995; p. x.

2 INTRODUCTION

 1. planning and estimating,
 2. measuring and controlling,
 3. communicating, coordinating, and leading, and
 4. managing risk.

 These are the major themes of this text.

 1.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises, you should understand:

 • why managing and leading software projects is diffi cult,
 • the nature of project constraints,
 • a workfl ow model for software projects,
 • the work products of software projects,
 • the organizational context of software projects,
 • organizing a software development team,
 • maintaining the project vision and product goals, and
 • the nature of process frameworks, software engineering standards, and process

guidelines.

 Appendix 1A to this chapter provides an introduction to elements of the following
frameworks, standards, and guidelines that are concerned with managing software
projects: the SEI Capability Maturity Model ® Integration CMMI - DEV - v1.2, ISO/
IEC and IEEE/EIA Standards 12207, IEEE/EIA Standard 1058, and the Project
Management Body of Knowledge (PMBOK ®). Terms used in this chapter and
throughout this text are defi ned in a glossary at the end of the text. Presentation
slides for this chapter and other supporting material are available at the URL listed
in the Preface.

 1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS
IS DIFFICULT

 A project is a group of coordinated activities conducted within a specifi c time frame
for the purpose of achieving specifi ed objectives. Some projects are personal in
nature, for example, building a dog house or painting a bedroom. Other projects
are conducted by organizations. The focus of this text is on projects conducted
within software organizations. In a general sense, all organizational projects are
similar:

 • objectives must be specifi ed,
 • a schedule of activities must be planned,
 • resources allocated,
 • responsibilities assigned,

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 3

 • work activities coordinated,
 • progress monitored,
 • communication maintained,
 • risk factors identifi ed and confronted, and
 • corrective actions applied as necessary.

 In a specifi c sense, the methods, tools, and techniques used to manage a project
depend on the nature of the work to be accomplished and the work products to be
produced. Manufacturing projects are different from construction projects, which
are different from agricultural projects, which are different from computer hardware
projects, which are different from software engineering projects, and so on. Each
kind of project, including software projects, adapts and tailors the general proce-
dures of project management to accommodate the unique aspects of the develop-
ment processes and the nature of the product to be developed.

 Fred Brooks has famously observed that four essential properties of software
differentiate it from other kinds of engineering artifacts and make software projects
diffi cult 2 :

 1. complexity,
 2. conformity,
 3. changeability, and
 4. invisibility of software.

 1.3.1 Software Complexity

 Software is more complex, for the effort and the expense required to construct it,
than most artifacts produced by human endeavor. Assuming it costs $ 50 (USD) per
line of code to construct a one - million line program (specify, design, implement,
verify, validate, and deliver it), the resulting cost will be $ 50,000,000. While this is a
large sum of money, it is a small fraction of the cost of constructing a complex
spacecraft, a skyscraper, or a naval aircraft carrier.

 Brooks says, “ Software entities are more complex for their size [emphasis added]
than perhaps any other human construct, because no two parts are alike (at least
above the statement level). ” 3 It is diffi cult to visualize the size of a software program
because software has no physical attributes; however, if one were to print a one -
 million line program the stack of paper would be about 10 feet (roughly 3 meters)
high if the program were printed 50 lines per page. The printout would occupy a
volume of about 6.5 cubic feet. Biological entities such as human beings are of
similar volume and they are far more complex than computer software, but there
are few, if any, human - made artifacts of comparable size that are as complex as
software.

 The complexity of software arises from the large number of unique, interacting
parts in a software system. The parts are unique because, for the most part, they are
encapsulated as functions, subroutines, or objects and invoked as needed rather

 2 Ibid , pp. 182 – 186.
 3 Ibid , p. 182.

4 INTRODUCTION

than being replicated. Software parts have several different kinds of interactions,
including serial and concurrent invocations, state transitions, data couplings,
and interfaces to databases and external systems. Depiction of a software entity
often requires several different representations to portray the numerous static
structures, dynamic couplings, and modes of interaction that exist in computer
software.

 A seemingly “ small ” change in requirements is one of the many ways that com-
plexity of the product may affect management of a project. Complexity within the
parts and in the connections among parts may result in a large amount of evolution-
ary rework for the “ small ” change in requirements, thus upsetting the ability to make
progress according to plan. For this reason many experienced project managers say
there are no small requirements changes. Size and complexity can also hide defects
that may not be discovered immediately and thus require additional, unplanned
corrective rework later.

 1.3.2 Software Conformity

 Conformity is the second issue cited by Brooks. Software must conform to exacting
specifi cations in the representation of each part, in the interfaces to other internal
parts, and in the connections to the environment in which it operates. A missing
semicolon or other syntactic error can be detected by a compiler but a defect in the
program logic, or a timing error caused by failure to conform to the requirements
may be diffi cult to detect until encountered in operation. Unlike software, tolerance
among the interfaces of physical entities is the foundation of manufacturing and
construction; no two physical parts that are joined together have, or are required to
have, exact matches. Eli Whitney (of cotton gin fame) realized in 1798 that if musket
parts were manufactured to specifi ed tolerances, interchangeability of similar (but
not identical) parts could be achieved.

 There are no corresponding tolerances in the interfaces among software entities
or between software entities and their environments. Interfaces among software
parts must agree exactly in numbers and types of parameters and kind of couplings.
There are no interface specifi cations for software stating that a parameter can be
 “ an integer plus or minus 2%. ”

 Lack of conformity can cause problems when an existing software component
cannot be reused as planned because it does not conform to the needs of the product
under development. Lack of conformity might not be discovered until late in a
project, thus necessitating development and integration of an acceptable component
to replace the one that cannot be reused. This requires unplanned allocation of
resources and can delay product completion. Complexity may have made it diffi cult
to determine that the reuse component lacked the necessary conformity until the
components it would interact with were completed.

 1.3.3 Software Changeability

 Changeability is Brooks ’ s third factor that makes software projects diffi cult. Soft-
ware coordinates the operation of physical components and provides the functional-

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 5

ity in software - intensive systems. 4 Because software is the most easily changed
element (i.e., the most malleable) in a software - intensive system, it is the most fre-
quently changed element, particularly in the late stages of a project. Changes may
occur because customers change their minds; competing products change; mission
objectives change; laws, regulations, and business practices change; underlying hard-
ware and software technology changes (processors, operating systems, application
packages); and/or the operating environment of the software changes. If an early
version of the fi nal product is installed in the operating environment, it will change
that environment and result in new requirements that will require changes to the
product. Simply stated, now that the new system enables me to do A and B, I would
like for it to also allow me to do C, or to do C instead of B.

 Each proposed change in product requirements must be accompanied by an
analysis of the impact of the change on project work activities:

 • what work products will have to be changed?
 • how much time and effort will be required?
 • who is available to make the changes?
 • how will the change affect your plans for schedule, budget, resources, technol-

ogy, other product features, and the quality attributes of the product?

 The goal of impact analysis is to determine whether a proposed change is “ in scope ”
or “ out of scope. ” In - scope changes to a software product are changes that can be
accomplished with little or no disruption to planned work activities. Acceptance of
an out - of - scope change to the product requirements must be accompanied by cor-
responding adjustments to the budget, resources, and/or schedule; and/or modifi ca-
tion or elimination of other product requirements. These actions can bring a proposed
out - of - scope requirement change into revised scope.

 A commonly occurring source of problems in managing software projects is an
out - of - scope product change that is not accompanied by corresponding changes to
the schedule, resources, budget, and/or technology. The problems thus created
include burn - out of personnel from excessive overtime, and reduction in quality
because tired people make more mistakes. In addition reviews, testing, and other
quality control techniques are often reduced or eliminated because of inadequate
time and resources to accomplish the change and maintain these other activities.

 1.3.4 Software Invisibility

 The fourth of Brooks ’ s factors is invisibility. Software is said to be invisible because
it has no physical properties. While the effects of executing software on a digital
computer are observable, software itself cannot be seen, tasted, smelled, touched,
or heard. Our fi ve human senses are incapable of directly sensing software; software
is thus an intangible entity. Work products such as requirements specifi cations,
design documents, source code, and object code are representations of software, but

 4 Software - intensive systems contain one or more digital devices and may include other kinds of hardware
plus trained operators who perform manual functions. Nuclear reactors, modern aircraft, automobiles,
network servers, and laptop computers are examples of software - intensive systems.

6 INTRODUCTION

they are not the software. At the most elemental level, software resides in the mag-
netization and current fl ow in an enormous number of electronic elements within
a digital device. Because software has no physical presence we use different repre-
sentations, at different levels of abstraction, in an attempt to visualize the inherently
invisible entity.

 Because software cannot be directly observed as can, for example, a building
under construction or an agricultural plot being prepared for planting, the tech-
niques presented in this text can be used to determine the true state of progress of
a software project. An unfortunate result of failing to use these techniques is that
software products under development are often reported to be “ almost complete ”
for long periods of time with no objective evidence to support or refute the claim;
this is the well - known “ 90% complete syndrome ” of software projects. Many soft-
ware projects have been canceled after large investments of effort, time, and money
because no one could objectively determine the status of the work products or
provide a credible estimate of a completion date or the cost to complete the project.
Sad but true, this will occur again. You do not want to be the manager of one of
those projects.

 1.3.5 Team - Oriented, Intellect - Intensive Work

 In addition to the essential properties of software (complexity, conformity, change-
ability, and invisibility), one additional factor distinguishes software projects from
other kinds of projects: software projects are team - oriented, intellect - intensive endeav-
ors . In contrast, assembly - line manufacturing, construction of buildings and roads,
planting of rice, and harvesting of fruit are labor - intensive activities; the work is
arranged so that each person can perform a task with a high degree of autonomy
and a small amount of interaction with others. Productivity increases linearly with
the number of workers added; the work will proceed roughly twice as fast if the
number of workers is doubled. Although labor - saving machines have increased
productivity in some of these areas, the roles played by humans in these kinds of
projects are predominantly labor - intensive.

 Software is developed by teams of individuals who engage in creative problem
solving. Teams are necessary because it would take too much time for one person
to develop a modern software system and because it is unlikely that one individual
would possess the necessary range of skills. Suppose, for example, that the total
effort to develop a software product or system 5 results in a productivity level of
1000 lines of code per staff - month (more on this later). A one million line program
would require 1000 staff - months. Because effort (staff - months) is the product of
people and time, it would require 1 person 1000 months (about 83 years) to com-
plete the project.

 A feasible combination of people and time for a 1000 staff - month project might
be a team of 50 people working for 20 months but not 1000 people working for 1
month or even 200 people working for 5 months. The later proposals (1000 × 1 and

 5 Software products are built by vendors for sale to numerous customers; software systems are built by
 contractors for specifi c customers on a contractual basis. The terms “ system ” and “ product ” are used
interchangeably in this text unless the distinction is important; the distinction will be clarifi ed in these
cases.

1.3 WHY MANAGING AND LEADING SOFTWARE PROJECTS IS DIFFICULT 7

200 × 5) are not feasible because scheduling constraints among work activities
dictate that some activities cannot begin before other work activities are completed:
you can ’ t design (some part of a system) without some corresponding requirements,
you should not write code without a design specifi cation for (that part of) the
system, you cannot review or test code until some code has been written, you cannot
integrate software modules until they are available for integration, and so on.

 Adding people to a software development team does not, as a rule, increase
overall productivity in a linear manner because the increased overhead of commu-
nicating with and coordinating work activities among the added people decreases
the productivity of the existing team. To cite Fred Brooks once again, the number
of communication paths among n workers is n (n − 1)/2, which is the number of links
in a fully connected graph. Five workers have 20 communication paths, 10 have 45
paths, and 20 have 190. Increasing the size of a programming team from 5 to 10
members might, for example, might increase the production rate of the team from
5000 lines of code per week to 7500 lines of code per week, but not 10,000 lines of
code per week as would occur with linear scaling. In The Mythical Man - Month ,
Brooks described this phenomenon as Brooks ’ s law 6 :

 Adding manpower to a late software project makes it later .

 Brooks ’ s law is based on three factors:

 1. the time required for existing team members to indoctrinate new team
members,

 2. the learning curve for the new members, and
 3. the increased communication overhead that results from the new and existing

members working together.

 Brooks ’ s law would not be true if the work assigned to the new members did not
invoke any of these three conditions.

 A simile that illustrates the issues of team - oriented software development is that
of a team of authors writing a book as a collaborative project; a team of authors is
very much like a team of software developers. In the beginning, requirements analy-
sis must be performed to determine the kind of book to be written and the con-
straints that apply to writing it. The number and skills of team members will constrain
the kind and size of book that can be written by the available team of authors within
a specifi ed time frame. Constraints may include the number of people on the writing
team, knowledge and skills of team members, the required completion date, and the
word - processing hardware and software available to be used.

 Next the structure of the book must be designed: the number of chapters, a brief
synopsis of each, and the relationships (interfaces) among chapters must be speci-
fi ed. The book may be structured into sections that contain several chapters each
(subsystems), or the text may be structured into multiple volumes (a system of
systems). The dynamic structure of the text may fl ow linearly in time or it may
move backward and forward in time between successive chapters; primary and

 6 Ibid , pp. 25 and 274.

8 INTRODUCTION

secondary plot lines may be interleaved. An important constraint is to develop a
design structure that will allow each team member to accomplish some work while
other team members are accomplishing their work so that the work activities can
proceed in parallel. Some books are cleverly structured to have multiple endings;
readers choose the one they like.

 Design details to be decided include the format of textual layout, fonts to be used,
footnoting and referencing conventions, and stylistic guidelines (use of active and
passive voice, use of dialects and idioms). Writing of the text occurs within a prede-
termined schedule of production that includes reviews by other team members
(peer reviews) and independent reviews by copy editors (independent verifi cation).
Revisions determined by the reviews must be accomplished. The goal of the writing
team is to produce a seamless text that appears to have been written by one person
in a single setting.

 A deviation from the planned narrative by one or more team members might
produce a ripple effect that would require extensive revision of the text. If the
completed book were software, a single punctuation or grammatical error in the
text would render the book unreadable until the writers or their copy editor repaired
the defect. An editor determines that each iteration of elements of the text satisfy
the conditions placed on it by other elements (verifi cation). Finally, reviews by critics
and purchases by readers will determine the degree to which the book satisfi es its
intended purpose in its intended environment (validation).

 The various development phases of writing (analysis, high - level design, detailed
design, implementation, peer review, independent verifi cation, revision, and valida-
tion) are creative activities and thus rarely occur in linear, sequential fashion. Con-
ducting analysis, preparing and revising the design of the text, and production,
review, and revision of the various parts may be overlapped, interleaved, and iter-
ated. Team members must each do their assigned tasks, coordinate their work with
other team members, and communicate ideas, problems, and changes on a continu-
ous basis. The narrative above depicts a so - called Plan - driven approach to writing
a book and, by analogy, to developing software. An alternative is to pursue an Agile
approach by which the team members start with a basic concept and evolve the text
in an iterative manner. This approach can be successful:

 • if the team is small, say fi ve or six members (to limit the complexity of
communication);

 • if all members have in mind a common understanding of the desired structure
of the text (i.e., a “ design metaphor ”);

 • if there is a strict page limit and a completion date (the project constraints);
 • if each iteration occurs in one or a few days (to facilitate ongoing revisions in

structure; known as “ refactoring ”); and
 • if a knowledgeable reader (known as the “ customer ”) is available to review

each iteration and provide guidance for the contents of the next iteration.

 In some cases, the team members may work in pairs (“ pair programming ”) to
enhance synergy of effort.

 In reality, most software projects incorporate elements of a plan - driven approach
and an agile approach. When pursuing an agile approach, the team members must

understand the nature of the desired product to be delivered, a design metaphor
must be established, and the constraints on schedule, budget, resources, and technol-
ogy that must be observed; thus some requirements defi nition, design, and project
planning must be done. Those who pursue a plan - driven strategy often pursue an
iterative (agile) approach to developing, verifying, and validating the product to be
delivered; frequent demonstrations provide tangible evidence of progress and
permit incorporation of changes in an incremental manner.

 The approach taken in this text is to present a plan - driven strategy, based on
iterative development, that is suitable for the largest and most complex projects,
and to show how the techniques can be tailored and adapted to suit the needs of
small, simple projects as well as large, complex ones. Process models for software
development are presented in Chapter 2 .

 Over time humans have learned to conduct agricultural, construction, and manu-
facturing projects that employ teams of workers who accomplish their tasks effi -
ciently and effectively. 7 Because software is characterized by complexity, conformity,
changeability, and invisibility, and because software projects are conducted by teams
of individuals engaged in intellect - intensive teamwork, we humans are not always
as adept at conducting software projects as we are at conducting traditional kinds
of projects in agriculture, construction, and manufacturing. Nevertheless, the tech-
niques presented in this text will help you manage software projects effi ciently and
effectively, that is, with economical use of time and resources to achieve desired
outcomes.

 Your role as project manager is to plan and coordinate the work activities of your
project team so that the team can accomplish more working in a coordinated
manner than could be accomplished by each individual working with total
autonomy.

 1.4 THE NATURE OF PROJECT CONSTRAINTS

 Many of the problems you will encounter, or have encountered, in software projects
are caused by diffi culties of management and leadership (i.e., planning, estimating,
measuring, controlling, communicating, coordinating, and managing risk) rather
than technical issues (i.e., analysis, design, coding, and testing). These diffi culties
arise from multiple sources; some you can control as a project manager and some
you can ’ t. Factors you can ’ t control are called constraints , which are limitations
imposed by external agents on some or all of the operational domain, operational
requirements, product requirements, project scope, budget, resources, completion
date, and platform technology. Table 1.1 lists some typical constraints for software
projects and provides brief explanations.

 The operational domain is the environment in which the delivered software will
be used. Operational domains include virtually every area of modern society, includ-
ing health care, fi nance, transportation, communication, entertainment, business, and
manufacturing environments. Understanding the operational domain in which the
software will operate is essential to success. Operational requirements describe the

 7 To be effi cient is to accomplish a task without wasting time or resources; to be effective is to obtain the
desired result.

1.4 THE NATURE OF PROJECT CONSTRAINTS 9

10 INTRODUCTION

users ’ view (i.e., the external view) of the system to be delivered. Some desired
features, as specifi ed in the operational requirements, may be beyond the current
state of scientifi c knowledge, either at large or within your organization. Product
requirements are the developers ’ view (i.e., the internal view) of the system to be
built; they include the functional capabilities and quality attributes the delivered
product must possess in order to satisfy the operational requirements.

 Process standards specify ways of conducting the work activities of software
projects. Your organization may have standardized ways of conducting specifi c
activities, such as planning and estimating projects, and measuring project factors
such as conformance to the schedule, expenditure of resources, and measurement
of quality attributes of the evolving product. In some cases the customer may specify
standards and guidelines for conducting a project. Four of the most commonly used
frameworks for process standards are the Capability Maturity Model Integration
(CMMI), ISO/IEEE Standard 12207, IEEE Standard 1058, and the Project Manage-
ment Body of Knowledge (PMBOK). Elements of these standards and guidelines
are contained in appendixes to the chapters of this text.

 The scope of a project is the set of activities that must be accomplished to deliver
an acceptable product on schedule and within budget. Resources are the assets, both
corporate and external, that can be applied to the project. Resources have both
quality and quantity attributes; for example, you may have a suffi cient number of
software developers available (quantity of assets), but they may not have the neces-
sary skills (quality of assets). The budget is the money available to acquire and use
resources; the budget for your project may be constrained so that resources avail-
able within the organization cannot be utilized. The completion date is the day on
which the product must be fi nished and ready for delivery. In some cases there may
be multiple completion dates on which subsets of the fi nal product must be deliv-
ered. The constrained delivery date(s) may be unrealistic.

 Platform technology includes the set of methods, tools, and development environ-
ments used to produce or modify a software product. Examples include tools to
develop and document requirements and designs, compilers and debuggers to gen-

 TABLE 1.1 Typical constraints on software projects

 Constraint Explanation

 Operational domain Environment of the users
 Operational requirements Users ’ needs and desires
 Product requirements Functional capabilities and quality attributes
 Scientifi c knowledge Algorithms and data structures
 Process standards Ways of conducting work activities
 Project scope Work activities to be accomplished
 Resources Assets available to conduct a project
 Budget Money used to acquire resources
 Completion date Delivery date for work products
 Platform technology Software tools and hardware/software base
 Business goals Profi t, stability, growth
 Ethical considerations Serving best interests of humans and society

erate and check the code, version control tools to track evolving versions of a proj-
ect ’ s work products, and testing tools to aid in verify the software. Platform
technology also includes the hardware processors and operating systems on which
the software is developed and on which it will operate (which may be the same or
different). One or more aspects of the platform technology may be obsolete or
otherwise inappropriate for the work to be done.

 Business goals may constrain your project to complete the product as soon as
possible (to maximize short - term revenue), or to produce the highest possible
quality (to maintain credibility with existing customers). Ethical considerations may
constrain your project from delivering a product with known defects or from incor-
porating knowledge of a competitor ’ s product gained by unethical methods.

 Some of the most diffi cult problems you will encounter in managing software
projects arise from establishing and maintaining a balance among the constraints
on project scope, budget, resources, technology, and the scheduled delivery date:

 1. scope: the work to be done;
 2. budget: the money to acquire resources;
 3. resources: the assets to do the job;
 4. technology: methods and tools to be used; and
 5. delivery date: the date on which the system must be ready for delivery.

 The initial balance among these factors is established in your initial project plan.
The scope of your project may change during project execution because of changes
to product requirements or other factors such as the budget or delivery date. The
constraints on your budget, resources, and schedule may change because of internal
factors in your organization, changes in the operational environment of the product
to be delivered, or competitive pressures. Changes in project scope must always be
accompanied by corresponding changes in schedule, budget, resources, and (perhaps)
technology.

 The constraints listed in Table 1.1 reduce the conceptual space available in which
to plan and conduct your project. For example, it may not be possible to deliver a
satisfactory product using 10 people for 12 months, but it might be possible if the
schedule were extended to 15 months or if the number of people were increased
from 10 to 15, or if the requirements for the product were reduced to the functional-
ity that can be delivered with acceptable quality by 10 people in 12 months. In
addition to the constraints listed in Table 1.1 , there may be political and sociological
factors that you cannot control.

 Some of the fi rst things you must do in managing a software project are:

 1. establish the success criteria for your project,
 2. clarify the constraints on the project and the product, and
 3. determine whether there is a reasonable chance of meeting the success criteria

within the constraints.

 Constraints should be clarifi ed to determine whether there is any fl exibility or
possibility of trade - offs among the constraints because fewer or looser constraints

1.4 THE NATURE OF PROJECT CONSTRAINTS 11

12 INTRODUCTION

increase the options for planning and executing your project. There may be priori-
ties among the success criteria of delivering an acceptable product on schedule and
within budget; for example, delivering on schedule may be more important than the
number of features delivered, or features delivered may be more important than
cost. There may be additional success criteria, such as establishing a working rela-
tionship with a new customer, or developing a product architecture that provides a
basis for developing future products, that is, developing a product - line architecture
that consists of base elements and confi gurable elements.

 Factors you will have (or should have) some infl uence over include:

 1. establishing the success criteria,
 2. negotiating the project constraints,
 3. obtaining consensus among project stakeholders on an initial set of opera-

tional requirements, and
 4. obtaining consensus among project stakeholders on an initial set of product

requirements.

 Factors you will have responsibility for include:

 5. making initial estimates and plans;
 6. maintaining a balance among requirements, schedule, and resources as the

project evolves;
 7. measuring and controlling the progress of the work;
 8. leading the project team and coordinating their work activities;
 9. communicating with stakeholders; and

 10. managing risk factors that might interfere with, or prevent achieving a suc-
cessful outcome.

 The major activities of project management are planning and estimating, measur-
ing and controlling, communicating and leading, and managing risk factors. Planning
and estimating are concerned with determining the scope of activities that must be
accomplished, estimating effort and schedule for the overall project, and developing
estimates and plans for each major work activity. Planning for measurement involves
establishing a data collection and reporting system that will be used to determine
and report the actual status of work activities and work products on a continuing
basis. Controlling involves applying corrective actions when actual status, as indi-
cated by the measurements, does not agree with planned status.

 Communicating involves establishing and maintaining adequate communication
channels among all involved parties so that everyone is aware of progress and
problems, and so that they are constantly reminded of the goals and success criteria
for the project. Leading is concerned with providing direction to, removing road-
blocks for, and maintaining the morale of project personnel.

 Risk management is concerned with identifying risk factors (potential problems),
both initially and on a continuing basis; monitoring identifi ed risk factors; and
engaging in risk mitigation activities such as preparing contingency plans and exe-
cuting them when necessary.

 1.5 A WORKFLOW MODEL FOR MANAGING SOFTWARE PROJECTS

 The primary objective of a software project is to develop and deliver one or more
acceptable work products within the constraints of required features, quality attri-
butes, project scope, budget, resources, completion date, technology, and other
factors. The work products to be delivered (e.g., object code, training materials, and
installation instructions) result from the fl ow of intermediate work products that
are produced by and fl ow through the work processes (requirements, design, source
code, and test scenarios).

 The model of project workfl ow used in this text is presented in Figure 1.1 . All
models, including the one in Figure 1.1 , are abstractions of real situations that
emphasize some aspects of interest and suppress details that are unimportant to the
purposes of the model. Important details may be expressed in subordinate models.
Subordinate models to Figure 1.1 are presented throughout this text.

 Figure 1.1 indicates some of the processes that support the primary activity of
Product Development; they include Verifi cation and Validation (V & V), Quality
Assurance of work processes and work products (QA), Confi guration Management
(CM), and others. Some supporting processes and their purposes are listed in Table
 1.2 . Each supporting process must be accomplished in accordance with a well -
 defi ned model for accomplishing the work activities of that process.

 The model in Figure 1.1 is called a process model because it emphasizes work
activities and the fl ow of work products among work activities. Each work activity
in a process model produces one or more work products that provide inputs to
subsequent work activities. By work product we mean any document produced by
a software project (including the source code). Some work products are delivered
to the customer (called deliverable work products), while others are intermediate
work products developed to advance the creative problem - solving process in
an orderly manner. Some of the work products of software projects are listed in
Table 1.3 .

 FIGURE 1.1 A workfl ow model for managing software projects

Deliver

Work
Products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning
Activity

Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Verification
& Validation

Measuring

Controlling

Data
Retention

Estimating and
Re-estimating

Reporting
Status ReportsProject Reports

Directives and
Constraints

Change Requests Problem Reports

Configuration
Management

Other
Supporting
Processes

Start Here

End Here

1.5 A WORKFLOW MODEL FOR MANAGING SOFTWARE PROJECTS 13

14 INTRODUCTION

 As Michael Jackson has observed, the entire description of a software system or
product is usually too complex for the entire description to be written directly in a
programming language, so we must prepare different descriptions at different levels
of abstraction, and for different purposes [Jack02] . Note that each of the work
products listed in Table 1.3 is a document; software developers and software project
managers do not produce physical artifacts other than documents, which may exist
in printed or electronic form.

 As illustrated in the workfl ow model depicted in Figure 1.1 , a software project is
initiated by customer and managers. A customer is the person or organization that

 TABLE 1.2 Some supporting processes for software development

 Supporting Process Purpose

 Confi guration management Change control, baseline management, product audits,
product builds

 Verifi cation Determining the degree to which work products satisfy
the conditions placed on them by other work
products and work processes

 Validation Determining the degree of fi tness of work products for
their intended use in their intended environments

 Quality Assurance Determining conformance of work processes and work
products to policies, plans, and procedures

 Documentation Preparation and updating of intermediate and
deliverable work products

 Developer training Maintaining adequate and appropriate skills
 User and operator training Imparting skills needed to effectively use and operate

systems

 TABLE 1.3 Some work - product documents produced by software projects

 Document Content of Document

 Project plan Roadmap for conducting the project
 Status reports State of progress, cost, schedule, and quality
 Memos and meeting minutes Issues, problems, recommendations, and

resolutions
 e - Mail messages Ongoing communications
 Operational requirements User needs, desires, and expectations
 Technical specifi cation Product features and quality attributes
 Architectural design document Components and interfaces
 Detailed design specifi cation Algorithms, data structures, and interface details

of individual modules
 Source code Product implementation
 Test plan Product verifi cation criteria, test scenarios, and

facilities
 Reference manual Product encyclopedia
 Help messages Guidance for users
 Release notes Known issues, hints, and guidelines
 Installation instructions Guidance for operators
 Maintenance guide Guidance for maintainers

provides the requirements for and accepts the deliverable work products. Customers
may place constraints on a project, such as specifying a required database interface
(a product constraint) or the date when the delivered system must be available for
use (a process constraint). Managers include your management and you, the project
manager. Managers specify constraints and directives. A process constraint from
your manager might place a limit on the number of people available to conduct the
project; a management directive might require that all software projects in the
organization perform a design activity. You, the project manager, might issue direc-
tives requiring that the design be documented using UML (the Universal Modeling
Language) and that one or more design reviews be held.

 Requirements, constraints, and directives provide the inputs to the planning
process, which is (or should be) a group activity led by you, the project manager.
You should involve the customer, selected members of the development team, and
other primary stakeholders in the planning process. Planning involves estimation.
Factors to be initially estimated include a schedule for conducting the major work
activities; kinds and numbers of resources needed, when they will be needed, and
for how long; and the project milestones (points in time when progress is assessed).
Estimation is best accomplished by using historical data from a data repository. Data
at the completion of your project can be placed in a repository to aid in estimation
of future projects. Intermediate data can be retained to assess progress and prepare
completion estimates, which may result in replanning.

 The output of your planning process will include identifi cation of the roles to be
played in conducting the project, which results in assignment of personnel to those
roles. During initial planning, the major work activities to be planned include soft-
ware development and the various supporting processes such as confi guration man-
agement, process and product quality assurance, verifi cation, validation, user training;
plus other necessary activities that constitute the scope of your project. Detailed
plans for these activities will evolve as the project evolves.

 During execution of the project, data are collected and status reports are pre-
pared on a periodic basis by you and your staff. The status reports will be used by
you (the project manager), your customer, your managers, support groups, and other
project stakeholders. Status reports compare planned progress to actual progress;
they may cause you and your customer, working together, to revise plans and
requirements, or you might, for example, reassign some personnel to different
project roles (e.g., a software designer might be moved to the independent valida-
tion team). Status data are also used to provide a basis for estimating future progress
based on progress to date (which may result in replanning), and is retained to
provide a basis of estimation for future projects.

 Problem reports are generated to document defects discovered in work products
that must be reworked. Status reports, new requirements, and changes to require-
ments, constraints, directives, and problem reports provide the data needed to con-
tinually update, elaborate, and revise your project plan.

 Every organization that develops and maintains software, including yours, should
have one or more workfl ow models of software development that depicts the major
work activities and fl ow of work products. Each member of the organization should
be familiar with the workfl ow model(s) and understand the ways in which their work
activities and work products fi t into the model(s). Everyone in your software devel-
opment organization should be able to sketch and describe the workfl ow model(s)

1.5 A WORKFLOW MODEL FOR MANAGING SOFTWARE PROJECTS 15

16 INTRODUCTION

used in the organization. If there is more than one workfl ow model, everyone should
understand the kinds of projects for which the various models are appropriate.

 1.6 ORGANIZATIONAL STRUCTURES FOR SOFTWARE PROJECTS

 Projects are one - time, transient events that are initiated to accomplish a specifi c
purpose and are terminated when the project objectives are achieved (and are
sometimes cancelled before achieving the objectives). A project exists within the
context of the organization in which it is conducted; each project must adhere to
the structural model of the organization. Departments that conduct engineering
projects, including software projects, are typically organized in one of four ways:
functional structure, project structure, matrix structure, or hybrid structure.

 1.6.1 Functional Structures

 As the name implies, workers in a functional organization are grouped by the func-
tions they perform. Functional groups can be process - oriented or product - oriented.
One process - oriented functional group might, for example, specialize in require-
ments engineering, another in design of user interfaces, another in design and
implementation of code, another in product validation, and yet another in user
training. When organized by product specialty, one group might specialize in data
communication, another in database systems, another in user interfaces, and yet
another in numerical algorithms. Figure 1.2 illustrates a process - oriented functional
organization, and Figure 1.3 illustrates a product - oriented functional group.

 Each functional group has a functional manager whose job is to acquire and
maintain the quantity and quality of workers needed to support the projects within
the organization, train them as necessary, provide the necessary tools, and coordi-
nate their work activities on various projects. Different group members apply their

 FIGURE 1.2 A process - oriented functional organization

Department
Manager

Requirements
Group

Design
Group

Implementation
Group

. . .
Group

 FIGURE 1.3 A product - oriented functional organization

Department
Manager

User Interface
Group

Algorithms
Group

Database
Group

. . .
Group

expertise to different projects as needed. As a project manager in a functional orga-
nization, responsible for delivering an acceptable product on schedule and within
budget, your ability to successfully conduct your project will depend on your skill
in working with the functional managers and their team members to complete the
various work activities and develop the various work products for your project.

 1.6.2 Project Structures

 In a purely project - structured organization, you, as project manager, have full
authority and responsibility for managing budget and resources. You acquire the
kinds of workers you need to conduct your project and all project members report
directly to you; you might acquire your workers from functional groups or you might
hire them from outside. You, the project manager, have the authority to acquire staff
members within the constraints of your budget and to remove them when they are
no longer needed or are not performing up to your expectations. Your ability to
successfully conduct your project depends on acquiring the quantity and quality of
workers needed, training them as necessary, providing the necessary tools, and
coordinating their work activities. A project - structured organization is illustrated in
Figure 1.4 .

 1.6.3 Matrix Structures

 The goal of a matrix organization is to obtain the advantages of both functional and
project structures; functional specialists are assigned to projects as needed and work
for you, the project manager, while applying their expertise to your project. When
their tasks are completed, they return to their function groups and are assigned, as
needed, to other projects. Workers in a matrix organization thus have two bosses:
their functional manager and their project manager.

 An example of a matrix organization is illustrated in Figure 1.5 . The functional
groups might be, for example, a user interface group, an algorithms group, a database
group, and a communications protocol group. The numbers in the matrix indicate
the number of workers of each functional type assigned to each project; for example,
project #1 has 10 members: 2 of functional type #1 (user interface), 5 of functional
type #3 (database), and 2 of functional type #4 (communications). Project #3 is the
largest; it has 23 members. Currently 6 members of the user interface group are
assigned to this project, 8 from the algorithms group, 2 from the database group,
and 7 from communications.

 Matrix organizations can be characterized as weak or strong, depending on the
relative authority of the functional managers and the project managers. In a strong

 FIGURE 1.4 A project - oriented organization

Department
Manager

Project #1 Project #2 Project #3 Project #n

1.6 ORGANIZATIONAL STRUCTURES FOR SOFTWARE PROJECTS 17

18 INTRODUCTION

matrix, the functional managers have authority to assign workers to projects, and
project managers must accept the workers assigned to them. In a weak matrix, the
project manager controls the project budget, can reject workers from functional
groups and hire outside workers if functional groups do not have suffi cient quanti-
ties or qualities of workers.

 When a matrix organization performs as intended, functional workers apply their
specialties to different projects, under the direction of project managers, over time
while retaining membership in a group of like - minded experts. Two problems that
can occur in matrix organizations are (1) confl icts between functional managers and
project managers over the allocation of worker resources (which puts the workers
in untenable situations), and (2) frequent shifting of workers from project to project
as crises occur (know as “ fi refi ghting ” mode).

 1.6.4 Hybrid Structures

 Few, if any, organizations are purely functional, project, or matrix in nature. In a
purely functional organization, there would be no project managers; a coordinator
at the department level would assign tasks to the functional groups and work prod-
ucts would be passed from group to group as they become available. In a purely
project organization, the project would be an entirely separate organization. The
project manager would be responsible for physical facilities, janitorial service, human
resources (i.e., hiring, fi ring, payroll, health insurance, and confl ict resolution), and
other organizational functions. Similarly projects organized in matrix format do not
operate in isolation but are dependent on other functional elements of the organiza-
tion to provide physical facilities, payroll processing, and janitorial service. Figure
 1.6 illustrates the organizational continuum from pure function to pure project with
matrix organizations occupying the middle region [Youk77] .

 You, as project manager, will have fewer or more responsibilities and more or
fewer constraints on your authority depending on whether your organization has
predominantly a functional, matrix, or project structure.

 FIGURE 1.5 A matrix - structured organization

Department
Manager

Project
Manager #2

Project
Manager #1

Project
Manager #m

Functional
Manager #1

Functional
Manager #2

Functional
Manager #3

Functional
Manager #4

Project
Manager #3

2

3

1

4

86

2

5

7

2 7

4

3

9

6

 1.7 ORGANIZING THE PROJECT TEAM

 The way in which your organization is structured determines the way in which you
acquire your project members. It is your job to organize your project team, and to
participate, as appropriate as a member of other teams such as the system engineer-
ing team.

 1.7.1 The System Engineering Team

 The responsibilities of systems engineers include:

 • defi ning the operational requirements;
 • specifying system requirements;
 • developing the system design;
 • allocating system requirements to system components;
 • integrating the system components as they become available;
 • verifying that the system to be delivered is correct, complete, and consistent

with respect to its technical specifi cations; and
 • validating operation of the system with its intended users in its intended opera-

tional environment.

 System engineering, when it exists as a separate entity, is typically a specialty
function in an organization. System engineers may be assigned to projects from a
functional group within a matrix organization, or they may provide internal consult-
ing to projects while remaining in their functional group. System engineers must be
experts in their customer domains and knowledgeable of their organization ’ s capa-
bilities; they are more likely to be long - term organizational members than to be
hired from outside the organization by a project manager.

 Note that system engineers are not component specialists; they are generalists
who understand (must understand) the operational domains of their customers and
users and the capabilities of their organizations to develop systems for those domains.

 FIGURE 1.6 The organizational continuum [Youk77]

Project

Functional

Matrix

Project Coordinator orP ject Manager

 0%

100% 0%

100%

Functional
Emphasis

Project
Emphasis

1.7 ORGANIZING THE PROJECT TEAM 19

20 INTRODUCTION

System engineers work with component specialists to specify collections of compo-
nents that will satisfy user needs and customer expectations.

 A system engineering team for a complex, software - intensive system should
include hardware, software, and human factors specialists as appropriate for the
various kinds of hardware, software, and manual operations of the envisioned
system. You, as manager of the software project for a software - intensive system,
should be (must be) a member of the system engineering team. In addition the lead
technical person on your software team (if you are not that person) and a repre-
sentative of the group that will maintain the software portion of the system (if that
is not your team) should also be members of the system engineering team.

 1.7.2 The Software Engineering Team

 Every software project, whether stand - alone or a subproject of a system - level
program, should include a project manager, a lead designer/software architect, and
one or more small development teams, each with a designated team leader. On a
small project (up to 10 members), the roles of team leader, project manager, and
lead designer may be played by a single individual (you). Or, a project manager may
be assigned on a part - time basis with another individual playing the roles of lead
designer and team leader. For intermediate - size projects (11 to 20 members), there
will be (must be) separate people playing the roles of lead designer and full - time
project manager. On large projects (more than 20 members), there may be a design
team with a designated chief architect, staff members to support the project manager,
and multiple development teams.

 Figure 1.7 illustrates a hierarchical model for organizing software projects that
can be expanded or contracted to accommodate various sizes of software projects.

 FIGURE 1.7 An organizational model for software projects

Project Manager

Team
Leader #1

Team
Leader#2

Team
Leader #3

V&V CM

Member

Member Member

Member

Software Architect

Customer

XX

.

Each team has 2 to 5 members plus
a team leader

V&V: Verification and Validation
 CM: Configuration Management
 XX: other supporting processes

A very small project (5 or fewer members) may have only one team whose leader
is the project manager and software architect; a project having 5 to 10 members
may include two teams and a project manager/software architect. Intermediate - size
projects will have one individual playing the role of project manager and another
as lead designer; a project having 20 software developers might have 4 teams of
5 members, with one member of each team playing the role of team leader.
For projects of more than 50 members, the team leaders depicted in Figure 1.7
will be subsystem managers and subsystem designers with team leaders and
their teams reporting to them; a project having 100 software developers might be
decomposed into 4 subsystems with, for example, 5 teams of 5 assigned to each
subsystem.

 A hierarchical project structure, as depicted in Figure 1.7 , thus provides a
fl exible model that can be expanded and contracted as the needs of various
projects dictate. The purpose of hierarchical structures is not to restrict the fl ow
of communication within the project but rather to provide well - defi ned work
activities, roles, authorities, and responsibilities at each level in the hierarchy
that minimizes the need for communication among different groups. Communica-
tion paths among teams are not restricted to the hierarchy; the communication
paths are informal networks that are dynamically established and disbanded as
appropriate.

 To facilitate communication, a fundamental principle of software analysis and
design is that the requirements must be partitioned and the design structured so
that the work of each small team can proceed concurrently with the work of other
teams. The reason for limiting the size of each team is to control the number of
intensive communication paths among software developers who are engaged in
closely coordinated work activities. As previously mentioned, communication paths
can be modeled as links in a fully connected graph where each team member is a
node in the graph. The number of links in a fully connected graph of n nodes is
 n (n − 1)/2. Five members thus have 10 paths; 10 members have 45.

 The need to partition the work into well - defi ned work activities for multiple
teams either by process function (e.g., design, coding, testing) or product function
(e.g., database, algorithms, user interface) is particularly important if the team
members reside in functional groups or are geographically distributed. In these
cases the work to be done must be partitioned so that each functional group or
geographic group can proceed with their work activities with a large degree of
autonomy from the other groups.

 1.8 MAINTAINING THE PROJECT VISION AND
THE PRODUCT VISION

 Every software project, large or small, simple or complex, must maintain the process
vision (the project roadmap) and the product vision (the goals for the product) from
beginning to end; otherwise, it is easy to lose sight of vision and goals in the midst
of the daily work activities of a project. You, as the project manager, are the keeper
of the process vision, which is documented in the project plan (and is updated as
the project evolves). The software architect is the keeper of the product vision,

1.8 MAINTAINING THE PROJECT VISION AND THE PRODUCT VISION 21

22 INTRODUCTION

which is documented in the requirements and architectural design specifi cations
(and is updated as the product evolves). 8

 The project manager can be likened to a movie producer and the software archi-
tect to a movie director. The producer has overall responsibility for schedules,
budgets, resources, customer relations, and delivery of a satisfactory product on time
and within budget. The director is responsible for the content of the product. Pro-
ducer and director must work together to maintain and constantly communicate the
process vision and the product vision to the cast of developers and supporting per-
sonnel as well as all other project stakeholders.

 Fred Brooks observes that producer and director can be the same person on a
small project (fi ve to seven developers), but they must be different individuals on
larger projects because of the differing skills required and the number of tasks to
be performed. As Brooks points out, if you, as project manager (producer) are not
also the director (i.e., lead designer), you must “ proclaim the director ’ s technical
authority. . . . For this to be possible, the producer and director must see alike on
fundamental technical philosophy; they must talk out the main technical issues pri-
vately, before they really become timely; and the producer must have a high respect
for the director ’ s technical prowess. ” 9 We should add that, conversely, the director
must have a high respect for the producer ’ s managerial prowess.

 1.9 FRAMEWORKS, STANDARDS, AND GUIDELINES

 A process framework is a generic process model that can be tailored and adapted
to fi t the needs of particular projects and organizations. An engineering standard is
a codifi cation of methods, practices, and procedures that is usually developed and
endorsed by a professional society or independent agency. Guidelines are pragmatic
statements of practices that have been found to be effective in many practical
situations.

 Some well - known frameworks, standards, and guidelines for software engineer-
ing and the associated URLs are:

 • the Capability Maturity Model ® Integration for development (CMMI - DEV -
 v1.2) [www.sei.cmu.edu/cmmi/models];

 • ISO/IEC and IEEE/EIA Standards 12207 [www.iso.org], [standards.ieee.
org/software];

 • IEEE/EIA Standard 1058 [standards.ieee.org/software]; and
 • the Project Management Body of Knowledge (PMBOK ®) [www.pmibookstore.

org].

 Elements of these models that are relevant to managing and leading software proj-
ects are presented in appendixes to the chapters of this text, including Appendix
 1A to this chapter.

 8 Ibid , pp. 79 – 83.
 9 Ibid, p. 79.

 1.10 KEY POINTS OF CHAPTER 1

 • A project is a coordinated set of activities that occur within a specifi c time
frame to achieve specifi c objectives.

 • The primary activities of software project management are planning and
estimating; measuring and controlling; communicating, coordinating and
leading; and managing risk.

 • Software projects are inherently diffi cult because software is complex, change-
able, conformable, and invisible.

 • Software projects are conducted by teams of individuals who engage in intel-
lect - intensive teamwork.

 • Project constraints consist of limitations imposed by external agents on some
or all of the operational domain, operational requirements, product require-
ments, project scope, budget, resources, completion date, and platform
technology.

 • A workfl ow model depicts the work activities and the fl ow of work products
among work activities in a software project.

 • The entire description of a software system or product is usually too complex
for the entire description to be written directly in a programming language, so
we must prepare different descriptions at different levels of abstraction, and
for different purposes.

 • Organizations that conduct software projects use functional, project, weak
matrix, and strong matrix structures.

 • Software projects organized in a hierarchical manner provide well - defi ned
work activities, roles, authorities, and responsibilities at each level in the hier-
archy; hierarchies can expand and shrink to fi t the needs of each project.

 • Requirements must be allocated and the design structured so that the work of
each small team can proceed concurrently with the work of other teams.

 • The project manager maintains the project vision, as documented in the project
plan, and the software architect maintains the product goals, as documented in
the requirements and architectural design.

 • A software process framework is a generic process model that can be tailored
and adapted to fi t the needs of particular projects and organizations.

 • A software engineering standard is a codifi cation of methods, practices, and
procedures, usually developed and endorsed by a professional society or inde-
pendent agency.

 • SEI, ISO, IEEE, and PMI provide process frameworks, standards, and guide-
lines that contain information relevant to managing software projects (see
Appendix 1A to this chapter).

 1.11 OVERVIEW OF THE TEXT

 This text is organized into 11 chapters. The fi rst 3 chapters present the context in
which software projects are conducted. This chapter provides an overview of and
an introduction to managing software projects. Chapter 2 presents commonly used

1.11 OVERVIEW OF THE TEXT 23

24 INTRODUCTION

process models for software development and the project management consider-
ations for each of the models. Chapter 3 describes product and process foundations
for software projects. Product foundations include operational requirements, system
requirements and system design, design constraints, and software requirements.
Process foundations include the workfl ow model, the software development model,
the contractual agreement, and the project plan.

 Chapters 4 , 5 , and 6 are concerned with planning and estimation. Chapter 4
describes the planning process and the format and contents of project management
plans. Chapter 5 presents planning techniques, including work breakdown struc-
tures, work packages, activity networks (critical paths and PERT), Gantt charts, and
resource - loading histograms. Chapter 6 is concerned with estimation techniques,
including pragmatic, theory - based, and regression - based techniques.

 Chapter 7 presents an introduction to measures and measurement, and measure-
ment and control of work products, including techniques to measure and analyze
software defects. Chapter 8 presents measurement and control of work processes,
including techniques for measuring and controlling schedule, budget, progress, and
risk. Chapter 9 covers risk management, including risk identifi cation, analysis and
prioritization, mitigation strategies, action plans and action items, contingency plans
and contingent actions, and crisis management.

 Chapter 10 covers teamwork, motivation, personality styles, and leadership styles.
Chapter 11 covers organizational issues; it concludes with 15 guidelines for organiz-
ing and leading software engineering teams.

 Each chapter provides exercises; completing them will further your understand-
ing of the topics covered in the chapter. An appendix to each chapter of this text
includes relevant topics, keyed to that chapter, from the SEI Capability Maturity
Model ® Integration CMMI - DEV - v1.2, ISO/IEC and IEEE/EIA Standards 12207,
IEEE/EIA Standard 1058, and the PMI Project Management Body of Knowledge
(PMBOK ®).

 Appendix A to this text provides a glossary of terms used throughout the text.
Appendix B describes some topics for term projects and a schedule of assignments
for a term project to develop a software project management plan. Presentation
slides for each chapter and other supporting material are available at the URL listed
in the Preface.

 REFERENCES

 [Brooks95] Brooks , F. P. The Mythical Man - Month . Addison Wesley, 1995 .
 [CMMI06] SEI . CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,

 2006 .
 [IEEE1058] IEEE Std 1058 ™ — 1998 IEEE Standard for Software Project Management

Plans . IEEE Press , New York , 1998 . Also in Engineering Standards Collection.
IEEE Product: SE113. Institute of Electrical and Electronic Engineers, August
2003.

 [IEEE12207] Industry Implementation of International Standard ISO/IEC 12207:1995 Stan-
dard for Information Technology – Software Life Cycle Processes . IEEE/EIA
12207.0/.1/.2 - 1996 (March), IEEE Press , New York , 1996 . Also in Engineering

Standards Collection. IEEE Product: SE113. Institute of Electrical and Elec-
tronic Engineers, August 2003.

 [Jack02] Jackson , M. Descriptions in Software Development . Lecture Notes in Computer
Science. Springer Verlag , 2002 .

 [PMI04] PMI , A Guide to the Project Management Body of Knowledge , 3rd ed.
(PMBOK ® Guide). Project Management Institute, 2004 .

 [Youk77] Youker , R. Organizational alternatives for project managers . Project Manage-
ment Quarterly , Vol. VIII , No. 1 , (March 1977).

 URL s

 SEI Capability Maturity Model Integration (CMMI ®) [www.sei.cmu.edu/cmmi/models].
 ISO/IEC Standard 12207 – 1995 [www.iso.org].
 IEEE/EIA Software Engineering standards , including IEEE/EIA Standard 12207 – 1996 and

IEEE/EIA Standard 1058 [standards.ieee.org/software].
 PMI Project Management Body of Knowledge (PMBOK ® Guide), 3rd Ed., 2004 [www.

pmibookstore.org].

 EXERCISES

 1.1. A project is a collection of coordinated work activities conducted within a
specifi c time frame that utilizes resources to achieve specifi ed objectives.

 a. Briefl y describe a project from your personal life that you have recently
completed. State the nature of the project, the initial objectives, and planned
the starting and ending dates and the actual starting and ending dates of
the project. List any resources used (money, tools, materials, labor).

 b. List and compare the outcome of your project to the initial objectives.

 1.2. Different kinds of projects tailor and adapt the generic techniques of project
management (planning, estimating, measuring, controlling, communicating,
coordinating, leading, managing risk) to fi t the needs of the projects. For each
of the following kinds of projects, list some factors that would infl uence the
way you would plan, estimate, measure, control, communicate, coordinate,
lead, and managing risk those projects:

 a. Building construction
 b. Restaurant kitchen
 c. Fruit picking
 c. Handcrafting of race cars

 1.3. A 1,000,000 line of code program, when printed at 50 lines per page, results
in stack of paper about 10 feet high (3 meters). Show the calculation of this
result. List any assumptions made.

 1.4. In the text The Mythical Man - Month , Fred Brooks differentiates accidental
diffi culties from essential diffi culties in software engineering. Accidental

EXERCISES 25

26 INTRODUCTION

diffi culties are those that arise because of the current state of our knowledge,
processes, tools, and technology. Essential diffi culties arise from the inherent
complexity, conformity, changeability, and invisibility of software.

 a. List and briefl y describe fi ve accidental diffi culties that make software
development diffi cult.

 b. Compare and contrast the current state of your fi ve accidental diffi culties
to the state of those diffi culties in 1960.

 1.5. Describe a circumstance in which adding more people to a software project
would not invoke Brooks ’ s law; that is, a situation where the 3 factors listed
in the text would not apply.

 1.6. The text describes the ways in which a team of people writing a book is like
a team of people writing software. Read the description and develop a two -
 column table in which the activities of writing a book are listed in the fi rst
column and comparable activities of writing software are listed in the rows of
the second column.

 1.7. Describe three ways in which a team effort to develop software is not similar
to a team effort to write a book.

 1.8. Describe a circumstance in which a software team would be:

 a. effi cient but not effective and
 b. effective but not effi cient.

 1.9. Briefl y describe an example of each kind of constraint listed in Table 1.1 .

 1.10. In an example in the text, it is stated that the project discussed might be suc-
cessfully completed by 10 developers in 12 months if the 10 were outstanding
 team members . List fi ve attributes of an outstanding team member; include
some individual and some team membership skills.

 1.11. Table 1.2 lists some supporting processes for software development. List and
briefl y describe three additional supporting processes that might be needed
for some software projects.

 1.12. Authority and responsibility are major issues for project managers.

 a. Briefl y state what is meant by authority.
 b. Briefl y state what is meant by responsibility.
 c. Can authority be delegated? If not, why not? If so, give an example.
 d. Can responsibility be delegated? If not, why not? If so, give an example.
 e. Briefl y explain why authority must be commensurate with responsibility.

 1.13. Briefl y describe the work environment of a software developer working in a
software department organized as:

 a. a functional organization
 b. a project organization
 c. a matrix organization

 1.14. Figure 1.3 illustrates an organizational model for software projects. List the
kind of work each of the three teams might do if the project is organized:

 a. by process component
 b. by product component

 1.15. In the text, software project managers are compared to movie producers and
software architects to movie directors. Briefl y explain the roles comparable to
project manager and software architect if software projects are compared
to:

 a. symphony orchestras
 b. sports teams (baseball, soccer)
 c. an army platoon

 1.16. ISO and IEEE standards 12207 include fi ve activities for managing software
projects: initiation and scope defi nition, planning, execution and control,
review and evaluation, and closure. Consult a copy of either ISO 12207 or
IEEE 12207 and briefl y summarize the topics included in each of these fi ve
activities.

 1.17. The seven processes included in level 2 of the staged representation of CMMI -
 DEV - v1.2 are some of the most important processes for managing software
projects. Access CMMI - DEV - v1.2 at www.sei.cmu.edu/cmmi/models .

 a. Briefl y summarize, in your own words, the purpose of each of these seven
processes.

 b. Briefl y summarize, in your own words, the Introductory Notes for each of
these seven processes.

 c. Briefl y summarize, in your own words, the related process areas for each
of these seven processes.

 d. Briefl y explain why and how the related process areas are important for
the purposes of managing software projects.

EXERCISES 27

 APPENDIX 1A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR MANAGING
SOFTWARE PROJECTS

28

 1A.1 THE CMMI - DEV - v 1.2 PROCESS FRAMEWORK

 CMMI process frameworks are developed and supported by the Software Engineer-
ing Institute, which is an affi liate of Carnegie Mellon University [CMMI06] . As
stated on the home page for CMMI [http://www.sei.cmu.edu/cmmi/general/general.
html]:

 Capability Maturity Model ® Integration (CMMI) is a process improvement approach
that provides organizations with the essential elements of effective processes. It can be
used to guide process improvement across a project, a division, or an entire organiza-
tion. CMMI helps integrate traditionally separate organizational functions, set process
improvement goals and priorities, provide guidance for quality processes, and provide
a point of reference for appraising current processes.

 This text is not primarily focused on process improvement. However, understand-
ing the goals and adopting the specifi c practices of the process areas for project
management in the CMMI frameworks will improve your ability, and your organi-
zation ’ s ability to manage software projects. Thereby your chances of delivering
acceptable products on schedule and within budget will be enhanced.

 Version 1.2 of CMMI is structured as a framework from which various “ constel-
lations ” can be derived. CMMI - DEV - v1.2 is the fi rst constellation; see www.sei.cmu.
edu/cmmi/models . CMMI - ACQ - v1.2 for acquisition processes has just been released
at the time of writing this text. Other constellations of the version 1.2 framework
are under development. It is important to note that the v1.2 constellations are not
process models but rather frameworks for developing and improving processes that
satisfy the goals of the CMMI frameworks.

 This text is primarily concerned with the process areas related to managing soft-
ware and systems projects in CMMI - DEV - v1.2, which contains 22 process areas.
Both staged and continuous representations are provided. The staged representa-

tion places each process area into one of fi ve maturity levels numbered 1 through 5
and the continuous representation provides capability levels for each process area
on a scale of 0 to 5. In the staged representation each higher level adds more pro-
cesses. The maturity levels and their names are listed in Table 1A.1 .

 The 22 process areas in the staged representation of CMMI - DEV - v1.2 are illus-
trated in Figure 1A.1 . The purposes of each process in Figure 1A.1 are listed in Table
 1A.4 of this appendix. In the continuous representation of CMMI - DEV - v1.2 a
capability level is determined for each individual process area selected for assess-
ment. All the CMMI processes or any subset of them can be assessed and improved,
as determined by business needs of the organization. There are six capability levels,
numbered 0 through 5 and named as indicated in Table 1A.2 .

 In the continuous representation the CMMI processes are grouped into four
categories. Categories are not levels; they are a way of grouping related process
areas. The process areas in each category are as follows:

 TABLE 1A.1 CMMI maturity levels

 Maturity Level Name

 Level 1 Initial
 Level 2 Managed
 Level 3 Defi ned
 Level 4 Quantitatively managed
 Level 5 Optimizing

 FIGURE 1A.1 Staged representation of the CMMI - DEV - v1.2

requirements management
project planning
project monitoring and control
supplier agreement management
measurement and analysis
process and product quality assurance
configuration management

requirements development
technical solution
product integration
verification
validation
organizational process focus
organizational process definition + IPPD
organization training program
integrated software management + IPPD
risk management
decision analysis and resolution

level 2
(managed)

level 3
(defined)

organization process performance
quantitative project management

level 4
(quantitatively managed)

organizational innovation.
causal analysis & resolution

level 5
(optimizing)

1A.1 THE CMMI-DEV-v1.2 PROCESS FRAMEWORK 29

30 INTRODUCTION

 • Project management
 ° Project planning
 ° Project monitoring and control
 ° Supplier agreement management
 ° Integrated project management + IPPD
 ° Risk management

° Quantitative project management
 • Engineering

 ° Requirements development

° Requirements management
 ° Technical solution
 ° Product integration
 ° Verifi cation
 ° Validation

 • Support
 ° Confi guration management

° Process and product quality assurance
 ° Measurement and analysis
 ° Decision analysis and resolution
 ° Causal analysis and resolution

 • Process management
 ° Organizational process focus
 ° Organizational process defi nition + IPPD
 ° Organizational training
 ° Organizational process performance
 ° Organizational innovation and deployment

 Each of the four process categories is divided into basic and advanced process
areas. The basic and advanced process areas of project management are listed in
Table 1A.3 . Note that the basic process areas in Table 1A.3 are level 2 processes in
the staged representation of CMMI - DEV - v1.2 and the advanced processes are at
level 3 in the staged representation.

 TABLE 1A.2 Capability levels in the CMMI continuous
representations

 Capability Level Name

 Level 0 Incomplete
 Level 1 Performed
 Level 2 Managed
 Level 3 Defi ned
 Level 4 Quantitatively managed
 Level 5 Optimizing

 The generic goals and specifi c goals for a given level, plus all of the goals for lower
levels, must be satisfi ed to reach that level. It is expected that the generic and specifi c
practices will be implemented unless you can demonstrate that you are using equiv-
alent or superior processes. Informative components are illustrative in nature; they
are neither required nor expected.

 Generic goals and generic practices apply to each process area; their purpose is
to institutionalize the process areas so that they are embedded in the corporate
memory and corporate procedures. Generic goal 2 (GG2), for example, must be
satisfi ed for level 2 (managed) processes. The generic practices of GG2 are as
follows:

 GG 2 Institutionalize a managed process
 GP 2.1 Establish an organizational policy
 GP 2.2 Plan the process
 GP 2.3 Provide resources
 GP 2.4 Assign responsibility
 GP 2.5 Train people
 GP 2.6 Manage confi gurations
 GP 2.7 Identify and involve relevant stakeholders
 GP 2.8 Monitor and control the process
 GP 2.9 Objectively evaluate adherence
 GP 2.10 Review status with higher level management

 Satisfying GG3 for a process area assumes that a standard organizational process
exists and that you have tailored it to suit the needs of your project. At level 3
(managed) each process is documented (at the organizational level) to specify:

 TABLE 1A.3 Process areas for project management in the continuous representation of
 CMMI - DEV - v 1.2

 Basic process areas for project management • Project planning
 • Project monitoring and control
 • Supplier agreement management

 Advanced process areas for project
management

 • Integrated project management + IPPD
 • Risk management
 • Quantitative project management

1A.1 THE CMMI-DEV-v1.2 PROCESS FRAMEWORK 31

 Each of the 22 process areas in CMMI - DEV - V1.2 has:

 • generic and specifi c goals (required components),
 • generic and specifi c practices (expected components), and
 • informative components, which include typical work products, examples, notes,

and references

32 INTRODUCTION

 • purpose
 • inputs
 • entry criteria
 • activities
 • roles
 • measures
 • verifi cation steps
 • outputs
 • exit criteria

 At level 2, each project can satisfy the generic and specifi c goals using different
practices, but at level 3, all projects in an organization implement the process
areas in a uniform manner so that consistent data can be collected from projects
across the organization. Levels 4 and 5 are concerned with analyzing process and
product data and using the results to make improvements in processes and
technology.

 Specifi c goals and specifi c practices are, as the name implies, specifi c to each
process area. For example, the specifi c goals and specifi c practices of project plan-
ning are as follows:

 SG 1 Establish estimates
 SP 1.1 Estimate the scope of the project
 SP 1.2 Establish estimates of work product and task attributes
 SP 1.3 Defi ne project life cycle
 SP 1.4 Determine estimates of effort and cost

 SG 2 Develop a project plan
 SP 2.1 Establish the budget and schedule
 SP 2.2 Identify project risks
 SP 2.3 Plan for data management
 SP 2.4 Plan for project resources
 SP 2.5 Plan for needed knowledge and skills
 SP 2.6 Plan stakeholder involvement
 SP 2.7 Establish the project plan

 SG 3 Obtain commitment to the plan
 SP 3.1 Review plans that affect the project
 SP 3.2 Reconcile work and resource levels
 SP 3.3 Obtain plan commitment

 The purpose of the quantitative project management (QPM) process area (a level
3 process in the staged representation) is to quantitatively manage the project ’ s
defi ned process to achieve the project ’ s specifi ed quality and process - performance
objectives, namely to manage projects “ by the numbers. ” This involves defi ning
measures for each project phase and each kind of work process, collecting quantita-

1A.1 THE CMMI-DEV-v1.2 PROCESS FRAMEWORK 33

 TABLE 1A.4 Purposes of the CMMI - DEV - v 1.2 processes

 Process Area Purpose

 Requirements management Control requirements and maintain consistency of
requirements with plans and work products

 Project planning Establish and maintain the plans that defi ne the project
work activities

 Project monitoring and control Compare progress to plans and apply corrective actions
as needed

 Supplier agreement
management

 Manage acquisition of product elements from vendors
and subcontractors

 Measurement and analysis Supply status information needed to support decisions
 Process and product quality

assurance
 Evaluate processes and work products to identify areas

of noncompliance
 Confi guration management Establish and maintain control of work products
 Requirements development Obtain, analyze, and develop customer, product, and

product - component requirements
 Technical solution Design, develop, and implement solutions that satisfy

requirements
 Product integration Integrate components, validate overall functionality, and

deliver the product
 Verifi cation Ensure that selected work products meet their specifi ed

requirements
 Validation Ensure that selected work products satisfy their intended

use when placed in their intended environments
 Organizational process focus Plan and implement organizational process improvement
 Organizational process

defi nition + IPPD
 Establish and maintain a usable set of organizational

process assets
 Organizational training Develop skills and knowledge so that people can

perform their jobs effi ciently and effectively
 Integrated project

management + IPPD
 Develop and use an integrated and defi ned set of

processes that are tailored from the organization ’ s set
of standard processes

 Risk management Identify potential problems; develop and implement
strategies and techniques for mitigating them

 Decision analysis and
resolution

 Identify possible decisions using a formal evaluation
process that evaluates alternatives against established
criteria

 Quantitative project
management

 Use quantifi ed data to manage each project ’ s quality and
process - performance objectives

 Organizational process
performance

 Provide process performance data and quantitative
models to understand the organization ’ s standard
processes

 Organizational innovation and
deployment

 Select and deploy incremental and innovative
improvements that measurably improve the
organization ’ s processes and technologies

 Causal analysis and resolution Identify causes of defects and other problems and take
action to prevent them from occurring in the future

34 INTRODUCTION

tive data, performing statistical analyses, and comparing results to plans and expec-
tation on an ongoing basis.

 A staged maturity level cannot be attained until all of the generic and specifi c
goals of all processes at lower levels plus the generic and specifi c goals for the
processes in that level are satisfi ed. A higher capability level for an individual
process cannot be attained until all of the generic and specifi c goals of the lower
levels plus the generic and specifi c goals for that level have been attained for that
process.

 In general, staged representations provide a systematic approach to building
process maturity, level by level. Continuous representations allow different organi-
zations to choose the processes to be improved according to the priorities estab-
lished by those organizations.

 Note that levels 4 and 5 in both the staged and continuous representations are
termed “ quantitatively managed and optimizing. ” Quantitatively managed process
areas are those for which uniformly defi ned and measured data are collected from
all projects across an organization and analyzed for strengths and weaknesses. At
level 5 the results of level 4 data analysis are used to improve process areas and to
introduce new technologies in support of the process areas. Level 5 is “ optimizing ”
and not “ optimized. ” The latter term (optimized) implies that the organization ’ s
processes are as good as possible. In contrast, the former term (optimizing) implies
that the organization ’ s processes are being continuously improved but are not
optimum; there is always room for improvement.

 The purpose of each of the 22 processes in CMMI - DEV - v1.2 is briefl y summa-
rized in Table 1A.4 . Relevant elements of CMMI - DEV - v1.2 are presented in appen-
dixes to the chapters of this text.

 1A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 ISO/IEC Standard 12207 is a framework for organizing and conducting software
life cycle processes. ISO/IEC 12207 was published in 1995 and amended in 2002 and
2004. Amendments 1 and 2 revise 12207 to incorporate lessons learned in using
12207 and to more closely align it with ISO Standard 15504, which is a standard for
assessing the software processes within an organization to determine areas of
strength and weakness.

 ISO/IEC Standard 12207 provides a comprehensive set of life cycle processes for
acquisition, supply, development, operation, and maintenance of software. It includes
17 processes:

 • 5 primary life cycle processes,
 • 8 supporting processes, and
 • 4 organizational processes.

 The fi ve primary processes are:

 • acquisition,
 • supply,
 • development,

 • operation, and
 • maintenance.

 The acquisition and supply processes are concerned with the relationships
between a customer and a supplier. In ISO/IEC 12207, the development process
consists of 13 activities:

 1. Process implementation
 2. System requirements analysis
 3. System architectural design
 4. Software requirements analysis
 5. Software architectural design
 6. Software detailed design
 7. Software coding and testing
 8. Software integration
 9. Software qualifi cation testing

 10. System integration
 11. System qualifi cation testing
 12. Software installation
 13. Software acceptance support

 The eight supporting processes in ISO/IEC 12207 are:

 • documentation,
 • confi guration management,
 • quality assurance,
 • verifi cation,
 • validation,
 • joint review,
 • audit, and
 • problem resolution.

 The four organizational life cycle processes are:

 • management,
 • infrastructure,
 • improvement, and
 • training.

 The management process in ISO/IEC 12207 includes fi ve activities for managing
software projects:

 • initiation and scope defi nition,
 • planning,

1A.2 ISO/IEC AND IEEE/EIA STANDARDS 12207 35

36 INTRODUCTION

 • execution and control,
 • review and evaluation, and
 • closure.

 ISO/IEC 12207 is packaged in three volumes:

 • 12207.0, software life cycle processes;
 • 12207.1, life cycle data; and
 • 12207.2, implementation considerations.

 ISO/IEC 12207.0 is the primary document; in addition to specifying primary life
cycle processes, supporting processes and organizational life cycle processes, it
includes appendixes that provide guidance for tailoring the various processes to fi t
particular situations.

 ISO/IEC 12207.1 (life cycle data) includes generic guidelines for 7 types of docu-
ments (e.g., plans, descriptions, records) and specifi c guidelines for 30 kinds of docu-
ments (e.g., project management plans, software design descriptions, software quality
assurance records).

 ISO/IEC 12207.2 (implementation considerations) provides guidance, based on
industry experiences, for implementing the life cycle processes in 12207.0.

 The IEEE/EIA version of ISO/IEC Standard 12207 was developed by the Soft-
ware and Systems Engineering Standards Committee of the IEEE Computer Society
 [IEEE12207] . Simply stated, IEEE/EIA 12207 is ISO/IEC 12207 with modifi cations
and clarifi cations of wording and the addition of some appendixes. It is the umbrella
standard for the IEEE ’ s suite of approximately 40 standards for software engineer-
ing documents and processes [standards.ieee.org/software]; each of those standards
is (is intended to be) harmonious with IEEE/EIA 12207.

 According to the abstract in IEEE/EIA Standard 12207.0 – 1996, the standard
includes clarifi cations, additions, and changes accepted by the Institute of Electrical
and Electronics Engineers (IEEE) and the Electronic Industries Association (EIA).
The goal of the standard is to provide better understanding of and a basis for soft-
ware practices in both national and international business. According to the Fore-
word to IEEE/EIA 12207.2, it summarizes the best practices of the U.S. software
industry in the context of the process structure provided by ISO/IEC 12207. Rele-
vant elements of the ISO and IEEE Standards 12207 are presented in appendixes
to the chapters of this text.

 1A.3 IEEE / EIA STANDARD 1058

 Project management plans based on IEEE Std 1058 ™ – 1998 IEEE Standard for
Software Project Management Plans will include plans for [IEEE1058] :

 • managerial processes,
 • technical processes,

 • supporting processes, and
 • additional processes.

 Plans for managerial processes include:

 • a startup plan,
 • a work plan,
 • a control plan,
 • a risk management plan, and
 • a closeout plan.

 Plans for technical processes include plans for a development process model;
methods, tools, and techniques; infrastructure; and product acceptance. Supporting
process plans include plans for the eight supporting processes in IEEE/EIA Stan-
dard 12207; namely confi guration management, verifi cation and validation, docu-
mentation, quality assurance, reviews and audits, problem resolution, subcontractor
management, and process improvement.

 Plans for additional processes include plans for other processes such as user
training, installation, or ongoing maintenance and support that may not be required
on some projects.

 An overview of IEEE/EIA Standard 1058 is presented in Chapter 4 of this text.
A template for preparing project management plans based on IEEE/EIA Standard
1058 is contained in Appendix 4B to Chapter 4 of this text; an electronic copy of
the template can be accessed at the URL for the text, which is listed in the Preface.
Relevant elements of IEEE/EIA Standard 1058 are presented in appendixes to the
chapters of this text.

 1A.4 THE PMI BODY OF KNOWLEDGE

 The PMI Body of Knowledge was developed by the Project Management Institute,
which is a nonprofi t organization that promotes the profession of project manage-
ment by sponsoring chapters, special interest groups, and affi liations with colleges
and universities [www.pmi.org]. PMI has more than 200,000 members worldwide.
PMI ’ s activities include education and knowledge acquisition, professional develop-
ment and networking, career advancement and professional standards, and products
and services. PMI offers a certifi cate examination by which one can become a certi-
fi ed project management professional.

 The Guide to the PMI Body of Knowledge (PMBOK ®) covers fi ve process
groups [PMI04] :

 • project initiation,
 • project planning,
 • executing a project,
 • monitoring and controlling a project, and
 • closing a project.

1A.4 THE PMI BODY OF KNOWLEDGE 37

38 INTRODUCTION

 These fi ve process groups include 44 management processes. PMBOK also includes
34 key competencies for project managers. Titles of the chapters in A Guide to the
Project Management Body of Knowledge , 3rd ed. (PMBOK ® Guide) are listed in
Table 1A.5 ; they indicate the scope of topics addressed by PMBOK [PMI04] . Rele-
vant elements of PMBOK are presented in appendixes to the chapters of this
text.

 TABLE 1A.5 Chapters in the PMBOK ® Guide

 Chapter 1 Introduction
 Chapter 2 Project Life Cycle and Organization
 Chapter 3 Project Management Processes for a Project
 Chapter 4 Project Integration Management
 Chapter 5 Project Scope Management
 Chapter 6 Project Time Management
 Chapter 7 Project Cost Management
 Chapter 8 Project Quality Management
 Chapter 9 Project Human Resource Management
 Chapter 10 Project Communication Management
 Chapter 11 Project Risk Management
 Chapter 12 Project Procurement Management

39

2
 PROCESS MODELS FOR SOFTWARE
DEVELOPMENT

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 process A series of operations performed in the making or treatment of a product.
 — American Heritage College Dictionary , Third Edition

 2.1 INTRODUCTION TO PROCESS MODELS

 Management of software development and modifi cation is accomplished by decom-
posing high - level work activities into lower - level work activities in a hierarchical
manner. The lowest level work activities subject to management planning and
accountability are called tasks; activities are thus aggregations of tasks and subordi-
nate activities. 10 Systematic accomplishment of a task typically involves following a
set of procedures and using a set of tools and techniques (i.e., performing a
process).

 Process engineering is concerned with developing and constantly improving the
workfl ow within and among tasks to make software development more effi cient and
more effective; that is, to accomplish tasks without wasting time, effort, or resources
(i.e., effi ciently) and to achieve the desired results (i.e., effectively). Improved work
processes raise the productivity and morale of software developers, the quality
attributes of work products, and satisfaction of users and customers.

 The basis tenets of process engineering are as follows:

 1. Better work processes result in better work products, where “ better work
products ” means enhanced features, improved quality, less rework, and easier
modifi cations.

 10 The terms “ activity ” and “ task ” will be used interchangeably in this text unless the difference is impor-
tant to the topic under discussion, in which cases, the distinction will be made.

40 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 2. Work processes must be designed with the same care used to design work
products; work processes must be designed to satisfy process requirements and
process constraints, fi t the needs of individual projects, and make the work
processes effi cient and effective.

 3. Work processes for each project should be derived from a process framework.
A process framework is a generic process model that can be tailored to meet
the needs of a variety of situations. The tailoring of a framework involves
adding, deleting, and modifying elements to adapt the framework to the needs
of particular projects.

 4. Process design and process improvement result in shorter schedules, higher
quality, lower costs, happier users and customers, and happier workers and
managers.

 5. Process improvement seldom happens spontaneously. Investment in process
engineering saves more time, effort, and cost than is invested. A positive ROI
(return on investment) requires an ongoing investment of time, effort, and
resources.

 Many organizations have established frameworks for project management, for soft-
ware development, for software product lines, for business processes, for process
improvement, and many other situations. Some organizations have developed pre -
 tailored process models for various kinds of software projects, derived from the
organization ’ s process framework. In these cases you, as a project manager, would
select an appropriate process model from an inventory of models and, if necessary,
further tailor it to meet the specifi c needs of your project.

 A process framework (i.e., a workfl ow model) for software projects was intro-
duced in Chapter 1 ; it is illustrated in Figure 1.1 and repeated here as Figure
 2.1 a . Like all models the workfl ow model emphasizes aspects of relevance to
its purposes and suppresses other aspects, which can be elaborated in subordinate
models; Figure 2.1 b is a subordinate model for the box in the upper right corner
of Figure 2.1 a (i.e., development process). This chapter presents additional models
of the software development process depicted in the upper right corner of Figure
 2.1 a . Other chapters of this text elaborate other elements of the workfl ow model in
Figure 1.1 and examine their relevance to the tasks of managing and leading
software projects.

 A process model for software development emphasizes:

 • the work activities to be performed in making a software product;
 • the order in which the work activities and tasks are to be performed;
 • the ways in which work activities and tasks can be overlapped and iterated;

and
 • the work products that result from, and fl ow among, the various work

activities.

 The development process you use to develop your work products exerts a strong
infl uence on the techniques you will use during your projects to:

 FIGURE 2.1A A workfl ow model for managing software projects.

Deliver

Work
Products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning
Activity

Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Verification
& Validation

Measuring

Controlling

Data
Retention

Estimating and
Re-estimating

Reporting
Status ReportsProject Reports

Directives and
Constraints

Change Requests Problem Reports

Configuration
Management

Other
Supporting
Processes

Start Here

End Here

 • plan and estimate,
 • measure and control,
 • communicate, coordinate, and lead, and
 • manage risk.

2.1 INTRODUCTION TO PROCESS MODELS 41

 FIGURE 2.1B A process framework for developing software - intensive systems

Define
Operational
Requirements

Develop
System
Requirements

Develop
System
Architecture

Obtain
Software
Components

Integrate
Software
Components

User Needs and Desires
Customer Expectations

Acquirer Conditions

Allocate &
Refine Software
Requirements

Develop
Software
Architecture

Allocate
Hardware
Requirements

Allocate
People
Requirements

Integrate
System
Components

add other
components

Start
Here

End
Here

System Engineering Software Development

software
V&V

system
verification

system
validation

System Engineering

42 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 2.2 OBJECTIVES OF THIS CHAPTER

 This chapter presents process models for software development. After reading this
chapter and completing the exercises you should understand:

 • elements of the development process framework in Figure 2.1 b ;
 • distinctions among users, customers, and acquirers;
 • tailoring of the framework for software - only systems;
 • several commonly used process models for software development;
 • ways in which the various development process models infl uence management

of software projects; and
 • an example of process design.

 Appendix 2A to this chapter covers the elements of CMMI - DEV - v1.2, ISO/IEC
and IEEE/EIA Standards 12207, IEEE/EIA Standard 1058, and the of PMI Body
of Knowledge that are relevant to software development processes. Appendix 2B
includes guidelines for choosing among iterative development models.

 Terms used in this chapter and throughout this text are defi ned in Appendix A
to the text. Presentation slides for this chapter and other supporting material are
available at the URL listed in the Preface.

 2.3 A DEVELOPMENT - PROCESS FRAMEWORK

 Figure 2.1 b illustrates a framework for the Development Process box in the upper
right corner of Figure 2.1 a . The upper left and lower right parts of Figure 2.1 b illus-
trate a framework for systems engineering of software - intensive systems.

 As depicted in Figure 2.1 b , developing a software - intensive system may involve
developing, modifying, or procuring hardware and software and training people to
perform manual operations. The shadings of the boxes and the arrows indicate the
many iterations that are typically required to develop a software - intensive system.
There is no signifi cance attached to boxes versus ovals in Figure 2.1 b , other than to
emphasize the starting and ending points of the work activities.

 The double arrowheads on the software V & V, system verifi cation, and system
validation activities are intended to indicate that software V & V assesses the inte-
grated software components with respect to (wrt) the software architecture and
software requirements, system verifi cation wrt system requirements, and system
validation wrt operational requirements. Verifi cation is concerned with determining
the extent to which a work product is correct, complete, and consistent with respect
to other work products and work processes. Validation is concerned with determin-
ing that a work product is suitable for its intended purpose in its intended
environment.

 Hardware may include computing hardware and other devices to be built, modi-
fi ed, or procured. Software may include existing software to be used as is, software
to be developed and/or modifi ed by your project personnel, and software to be

procured. People to be trained may include end users, system operators, and opera-
tional support personnel.

 Some software - intensive systems are embedded systems . An embedded system is
a system contained within another system. For example, computers and software
are embedded within consumer products such as DVD players, game machines,
microwave ovens, cellular telephones, and automobiles and within complex systems
such as nuclear reactors, communication networks, and spacecraft. Users of embed-
ded systems interact with the interfaces of the larger system rather than directly
with the computer hardware and software. The direct users of the software are thus
hardware and other software.

 The elements of the framework depicted in Figure 2.1 b are development phases .
A development phase is a set of related work activities that produce one or more
work products. Phases can be interleaved, overlapped, and iterated as specifi ed by
the development process being used. The arrows and shadings in Figure 2.1 b indi-
cate some of the many iterative paths and ongoing revisions to, and enhancements
of, work products that attempt to accurately portray the nonlinear processes of
creativity and innovation that occur when teams of individuals work collaboratively
to develop complex software - intensive systems.

 Elements of the process framework depicted in Figure 2.1 b are presented in the
following sections:

 • Users, customers, and acquirers are covered in Section 2.3.1 .
 • Operational requirements are covered in Chapter 3 , as is the topic of require-

ments engineering for the software components of systems.
 • System requirements and system design are covered in Section 2.3.2 .
 • Developing the software architecture and obtaining the software components

are covered in Section 2.3.3 .
 • Verifi cation and validation are covered in Section 2.3.4 .

 Tailoring of the framework in Figure 2.1 b for software - only projects and commonly
used process models for software development are presented in subsequent sections
of this chapter.

 2.3.1 Users, Customers, and Acquirers

 Projects are initiated because of unsatisfi ed needs, desires, expectations, and condi-
tions. The starting point (lower left corner of Figure 2.1 b) may involve users, custom-
ers, an acquirer, as well as other stakeholders. In many cases user, customer, and
acquirer are the same person or organization, but in other cases they are distinct
entities. In addition there may be a “ project sponsor ” who is distinct from users,
customers, and acquirer, and who controls the resources for development of the
system. Users are those individuals (or other systems, as in the case of embedded
systems) that will utilize the delivered software to accomplish their work activities
or pursue recreational pastimes. Customers are those who specify requirements and
constraints, and accept the deliverable work products of a project. Your customer
might be another person or group in your department, another department in
your organization (e.g., a system engineering or marketing group), or an external

2.3 A DEVELOPMENT-PROCESS FRAMEWORK 43

44 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

organization (e.g., a manufacturing company, a fi nancial institution, or a government
agency).

 The customer is called the acquirer in situations where the contractual agreement
between customer and developer is a legally binding contract; in these cases the
development organization is called the supplier. In some cases the acquirer may be
a third - party agent who represents one or more customers or user communities
and who provides the communication interface between the supplier and the
customers/users.

 You, as a software developer, may be your own customer. Organizations some-
times develop software - intensive systems in a speculative manner without having a
specifi c customer or user group in mind. In some cases, the marketing department
plays the role of surrogate customer. In other cases, a research and development
(R & D) team may, by introspection, build a prototype or demonstration version of
a product they would want if they were the customer/user. Whatever the situation,
every software project has a customer; otherwise, there are no needs to be satisfi ed,
no one to specify the requirements and constraints, and no one to accept the deliv-
ered work products.

 Customers, users, and acquirer may be one and the same, as illustrated in Figure
 2.2 (designated as Customer), or they may be distinct entities, as illustrated in
Figure 2.3 .

 Figure 2.2 illustrates an important point: every software project is two or more
projects. At minimum, a software project includes the customer ’ s project to acquire
a system and the developer ’ s project to develop and deliver the system. There are
activities that each party must accomplish separately and activities they must do
together. The customer must, for example, determine, specify, and prioritize user
needs, state constraints (e.g., schedule and budget), and accept (or reject) the system
or product; the developer must develop and deliver an acceptable product; together,
customer and developer must negotiate requirements and constraints and periodi-
cally review progress and resolve problems.

 In the general case, users, customers, and acquirer are distinct entities. Users are
those who will use the system or product to their work activities or to recreational
activities; customers are those who specify the requirements and constraints and

 FIGURE 2.2 A simple customer – developer relationship

Customer’s
Project
Activities

Developer’s
Project
Activities

 Joint
Activities

Every Software Project Is Two or More Projects

accept the product on behalf of the users; an acquirer is the agent of one or more
customers or user groups.

 Customer and users might be different, with no formally designated acquirer.
For example, a marketing department or an aerospace department internal to your
company might be the customer who represents a user community of teenage game
players in the former case and astronauts in the latter case.

 As illustrated in Figure 2.3 , an acquirer is the agent of one or more customers. 11
An individual customer, such as a fi nancial institution, might employ a knowledge-
able acquirer to procure a new data - processing system for their organization, or
several customers might collaborate to acquire a software - intensive system for
shared usage. In the latter case an airline, a rental car agency, and a hotel chain
might ban together to acquire a comprehensive reservation and sales system. One
of the three companies might be the designated acquirer, or they might employ a
separate individual or organization to serve as their customer representative to the
system supplier (designated as the Prime Contractor in Figure 2.3). The supplier
might use one or more subcontractors to develop one or more parts of the system.
Other contractors might be working on related projects that require communication
with you, the prime contractor. Or, you might be a subcontractor; in this case your
customer is the prime contractor.

 There may be additional relationships as portrayed in Figure 2.3 , for example,
direct contact between the Prime Contractor and various Customers and User Com-
munities, with the interactions(s) being coordinated by the Acquirer.

 An important aspect of project planning is to identify all of the project stakehold-
ers and to establish well - defi ned communication paths among them. Stakeholders
include users, customers, and acquirer plus those individuals and organizations that
affect a project or will be affected by the outcomes of the project. The impact of
the new or modifi ed system on stakeholders ’ work activities must be taken into
consideration, as in the case of workers who must learn to follow new accounting
procedures and use the software for a new fi nancial transaction system.

 Note that the term “ customer ” is relative to the context: for example, users are
the customers of the marketing department, organizations that collaborate to
acquire a system are the customers of the acquirer, the acquirer is the customer of

 FIGURE 2.3 Relationships among project stakeholders

User
Community

User
Community

User
Community

Customer

Customer

Customer

Acquirer Prime
Contractor

Subcontractors

Affiliated
Contractors

 11 Some acquirer organizations are termed system integrators ; they procure and integrate components
and deliver the resulting systems to customers.

2.3 A DEVELOPMENT-PROCESS FRAMEWORK 45

46 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

the prime contractor, and the prime contractor is the customer of subcontractors if
it uses subcontractors. The term “ supplier ” (as in the acquirer – supplier relationship)
is also context dependent. Subcontractors are suppliers to the prime contractor, the
prime contractor is the supplier to the acquirer, and the acquirer is the supplier to
customers and customers are suppliers to users. The development group is a supplier
to the independent testing group; the independent testing group is a customer of
the development group.

 In this text the term “ customer ” is used to denote the individual or organization
that specifi es requirements and constraints and accepts the resulting system or
product; “ developer ” denotes the group that is responsible for delivering an accept-
able system or product on schedule and within budget. The terms “ customer, ”
 “ acquirer, ” “ supplier, ” and “ developer ” will be clarifi ed when the meanings are not
clear from the context of usage.

 2.3.2 System Requirements and System Design

 As illustrated in Figure 2.1 b , the fi rst phase of system development involves identify-
ing the project stakeholders and establishing lines of communication among them.
The next phases 12 of system development involve developing the operational
requirements, the system requirements, and the system architecture. Operational
requirements document the external view of the system; they specify the needs,
desires, expectations, and constraints of the users, customers, acquirers, and other
stakeholders. It is important that all stakeholders be identifi ed and their interests
be accounted for in the operational requirements.

 The system requirements are derived from the operational requirements; they
specify the features and quality attributes the system must provide in order to satisfy
the operational requirements. For example, the operational requirements might
state that the system must have acceptable response time. Feasibility studies, dem-
onstrations of prototypes, and discussions might result in a system requirement that
specifi es response time of less than 1 second for Type A queries and less than 5
seconds for Type B queries when the system is running at 70% load capacity (where
the details of Type A and Type B queries are also specifi ed).

 Operational requirements are sometimes vague and imprecise, but system
requirements must be quantifi ed to the extent possible because system require-
ments are the basis for design, implementation, and acceptance of the system. It is,
of course, necessary to verify that the system requirements, if satisfi ed, will result in
a system that satisfi es the operational requirements. Traceability, prototyping, and
joint reviews between customer(s) and developer are techniques that can be used
to verify that the system requirements are correct, complete, and consistent with
respect to the operational requirements. Details of requirements engineering are
presented in Chapter 3 .

 The next phase of system development in Figure 2.1 b is development of the
system architecture. The top - level architecture of a software - intensive system is
typically represented as a block diagram that illustrates the primary hardware, soft-
ware, and people elements plus the interconnections among them plus their con-

 12 A development phase is a set of related work activities that produce one or more work products. Phases
can be interleaved, overlapped, and iterated as determined by the development process being used.

nections to the environment of the system. Functional requirements and quality
attributes are allocated to the various hardware, people, and software elements in
the fi gure. Each functional requirement is allocated to an individual element of
the system, while quality attributes may apply to one, some, or all of the system
components.

 In addition the specifi cations for the hardware components, the skills required
for manual operations to be performed by the people elements, and design con-
straints on the hardware and software elements are specifi ed. A system - level block
diagram for an Automated Teller System is illustrated in Figure 2.4 . As illustrated,
a block diagram shows the major system components, information fl ows among
system components, the boundary between the system and its environment (its
context), and the information fl ows across the system boundary.

 System - level requirements are allocated to the hardware, software, and manual
elements of the system. Additional requirements may be derived to support the
higher level requirements allocated to the components.

 2.3.3 Software Requirements, Architecture, and Implementation

 System requirements allocated to software should be reviewed, revised, and elabo-
rated to suffi cient detail so that:

 1. hidden complexities are exposed (i.e., the job to be done is understood);
 2. opportunities for reuse of existing software components can be identifi ed;
 3. the necessary hardware resources such as computer memory and processor

speed can be estimated (which may result in revision of the hardware require-
ments); and

 4. estimates of effort, required skills, and schedule needed to develop the soft-
ware can be made.

 Requirements engineering is covered in Chapter 3 of this text.
 Architectural design of software, as depicted in Figure 2.1 b , is concerned

with specifying the major software components, their interrelationships, and their

 FIGURE 2.4 A system - level block diagram for an Automated Teller System

ATM TERMINAL
• Consortium Interface
• ATM Hardware
• ATM Software

FINANCIAL CONSORTIUM
• ATM Registry
• Account Validation
• ATM Interface

ACCOUNT PROCESSING
• Accounts Repository
• Account Authorization
• Account Settlement

USERS’ INTERFACES
• Customers
• Tellers
• Operational Support

^
Users

2.3 A DEVELOPMENT-PROCESS FRAMEWORK 47

48 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

connections to the environment of the software. There are several kinds of interre-
lationships among software components; they include structural, functional, behav-
ioral, and data relationships. As a result different representations (different views)
may be used to specify the different kinds of relationships among components and
the connections of components to the environment [Bass03] .

 In former times, software components were obtained by writing the code for
most, if not all, of the components. Some software routines from a math library or
an I/O library might have been incorporated, but most of the software for each
product was written by the software developers. Currently software components are
obtained using a variety of techniques, as listed in Table 2.1 .

 Implementation of software involves performing detailed design, coding, and
unit - level V & V. Detailed design is concerned with specifying the details of inter-
faces, algorithms, data structures, and other aspects of the components specifi ed at
the architectural level. Coding involves writing the software and unit - level V & V is
concerned with determining that each unit of software (i.e., each software module)
satisfi es the conditions placed on it by the requirements and the design (verifi cation)
and that each unit is suitable for its intended use in its intended environment
(validation).

 Different approaches to obtaining software components require different
approaches to managing the project. For example, developing components in - house
requires:

 • detailed planning for numbers and skills of the software developers,
 • organizing the development team(s),
 • allocating requirements to the teams,
 • specifying project metrics to be collected,
 • monitoring of progress, and
 • applying corrective actions when actual progress does not agree with planned

progress.

 Licensing of components involves:

 • evaluating candidate components;
 • selecting appropriate components; and
 • negotiating terms, conditions, and delivery dates for the selected components.

 Procurement of components involves selecting a subcontractor and negotiating a
contract that includes items such as:

 TABLE 2.1 Some ways to obtain software components

 • Implement in - house
 • License from a vendor
 • Procure from a subcontractor
 • Reuse from another system
 • Reuse from a library
 • Obtain from open source

 • the scope of work to be performed by the subcontractor;
 • work products to be delivered to the subcontractor (e.g., requirements, design

documentation, source code to be tested);
 • work products to be delivered by the subcontractor (e.g., source code, test cases,

test results);
 • the delivery date and cost of the subcontractor ’ s project;
 • metrics to be reported and frequency of reporting by the subcontractor ’ s

project;
 • schedule of joint meetings and reviews; and
 • penalties, and rights in data (i.e., who owns what).

 Reuse involves:

 • specifying the features and quality attributes of components to be reused;
 • locating candidate components;
 • evaluating their features, quality attributes, and interfaces; and
 • modifying them as necessary.

 Obtaining components from open sources involves:

 • locating components;
 • evaluating their features, quality attributes, and interfaces; and
 • determining access rights and liabilities.

 Software projects typically use more than one of these techniques to obtain the
necessary components. For example, some of the components may be developed
in - house, some reused from a library of components, and some may be obtained
from a subcontractor, a vendor, or an open source.

 Regardless of how the software components are obtained, the following activities
must be performed: verifying that each component is complete, correct, and consis-
tent with respect to the architectural design and software requirements for that
component; integrating the components; verifying that the integrated components
are correct, complete, and consistent with respect to the architectural design and
the software requirements; and validating that the integrated components will satisfy
their intended purpose when used in their intended operating environment. Itera-
tive development processes support incremental implementation, verifi cation, and
validation of software as it is being built.

 Obtaining, verifying, and integrating software components are best accomplished
in an iterative manner by which each component is systematically added to the
growing product. Project plans based on an iterative approach must incorporate
plans for iterative development, incremental verifi cation and validation, and ongoing
revisions of and enhancements to work products because these activities do not
occur in a linear sequence of steps when teams of individuals engage in the creative
and innovative work activities of iterative software development.

 For example, prototyping of the user interface during analysis of software require-
ments may indicate the need to revise the requirements for the tasks to be

2.3 A DEVELOPMENT-PROCESS FRAMEWORK 49

50 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

performed by the human elements of the system (e.g., manual operations performed
by the operators of nuclear reactors, pilots of fi ghter aircraft, or users of iPods).
Prototyping of software components during the software design activity may indi-
cate that performance requirements for a particular component cannot be achieved
in software. In this case the functionality to be provided by that component might
be re - allocated to a hardware component (e.g., data encryption and decryption will
require a special - purpose chip). In similar fashion some of the requirements for
hardware and/or manual functions may be re - allocated to software.

 2.3.4 Verifi cation and Validation

 Verifi cation is concerned with determining the degree to which a work product ful-
fi lls the requirements and conditions placed on it by other work products and work
processes. A verifi ed work product is complete, correct, and consistent with respect
to the requirements and conditions for that work product. Thus the specifi cation of
a system ’ s functional requirements and quality attributes can be verifi ed with respect
to the operational requirements; the design can be verifi ed with respect to the
operational requirements, the functional requirements, and the quality attributes;
the code can be verifi ed with respect to other work products, including the require-
ments and the architectural and detailed designs.

 Verifi cation techniques include:

 • traceability,
 • reviews,
 • prototyping,
 • analysis, demonstrations, and
 • functional testing.

 Traceability establishes logical links between two work products, for example, in
establishing that all requirements allocated to a segment of the design are covered
in that segment. Reviews are an acceptable verifi cation procedure to determine, for
example, that technical specifi cations are complete, correct, and consistent with
respect to the operational requirements. Prototyping can be used, for example, to
determine that the user interface will be complete, correct, and consistent with
respect to user needs when it is implemented in the delivered product. Analysis of
software involves establishing certain logical properties of software using formal
reasoning techniques, for example, establishing the absence of deadlock or race
conditions in concurrent software using state - based techniques. Functional testing
can be used to verify that the deliverable software is complete, correct, and consis-
tent with respect to its functional requirements and quality attributes when the
software is operated in the test environment.

 Validation is closely related to verifi cation, but it is a distinct concept. In general,
validation of a work product is concerned with determining the degree to which the
work product satisfi es its intended purpose when placed in its intended environ-
ment. Validation, like verifi cation, is a general process that can be and should be
applied to all work products, both intermediate and deliverable, throughout the
product development cycle. Thus validation of the design is concerned with deter-

mining that the design is a suitable basis for implementation (construction, review,
testing, and integration of the code) when the design specifi cation is placed in the
environment of the software developers and testers. Similarly validation of the
software/system test scenarios is concerned with determining that the test scenarios
will adequately test the software/system when it is operated in the operational
environment.

 Verifi cation is often phrased as: “ Did we construct the work product
correctly? ”

 Validation is often phrased as: “ Did we construct the correct work product? ”

 It is entirely possible for a work product to be verifi ed but not validated. For
example, an architectural design specifi ed in UML might be verifi ed to be correct,
complete, and consistent with respect to the requirements (constructed correctly),
but it would not be a valid document for the implementers and testers if they were
unfamiliar with UML (not a correct work product for them) because the design
description would not satisfy its intended purpose when placed in its intended envi-
ronment (the environment of the implementers and testers who are unfamiliar with
UML).

 Verifi cation of a system to be delivered (end - item verifi cation) is concerned with
determining that the system is correct with respect to its technical specifi cations;
that is, does it perform the specifi ed functions, and does it have the specifi ed quality
attributes (was it built correctly)? Planning for verifi cation occurs (or should occur)
during development of the system requirements and software requirements.

 End - item validation of a system is concerned with determining that the system
satisfi es its intended purpose when placed in the environment of its intended users;
that is, does it satisfy user needs (is it the correct product)? Developing plans and
procedures for verifi cation and validation of deliverable work products are impor-
tant activities that occur (or should occur) during development of the operational
requirements, system requirements, and software requirements.

 Validation techniques for deliverable work products include:

 • reviews,
 • operational testing, and
 • demonstrations.

 Reviews are an acceptable validation procedure for certain deliverable work prod-
ucts, such as test plans, test results, training materials, and installation instructions.
Operational testing and demonstrations can be used to validate that the software
satisfi es its intended purpose when operated by the intended users in the intended
environment(s).

 Planning for operational tests involves specifying input data and other environ-
mental conditions plus the required results of the tests; for example, a mathematical
function should return the correct mathematical result under all conditions except
for those that violate the range of inputs (e.g., numbers for which squaring the
input value would result in overfl ow) and invalid operational environments (e.g.,

2.3 A DEVELOPMENT-PROCESS FRAMEWORK 51

52 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

hardware failure of the math coprocessor). Additional tests should be planned and
conducted to determine that exception handling for out - of - range input values and
faulty operational environments is performed correctly.

 A demonstration differs from a test in that the acceptability of the results cannot
be predicted with certainty. For example, a demonstration of the user interface to
knowledgeable users may reveal defi ciencies from their point of view, even though
the interface provides the specifi ed features and quality attributes. Another example:
it may not be possible to predict the sequence of moves a chess - playing program
will make (testing), but experts (chess masters) can determine the level at which
the program is playing by observing demonstrations of the moves made by the
program.

 Unfortunately, it sometimes occurs that a deliverable system is verifi ed (was built
correctly in that it satisfi es its technical specifi cations) but is not valid (is not correct
in that it does not satisfy user needs). This can occur because the operational
requirements from which the technical specifi cations were generated were incorrect,
or because the correct operational requirements were not correctly translated into
technical specifi cations, or because the correct technical specifi cations were incor-
rectly translated into design and code. In these cases a system such as a satellite
launch vehicle can veer off course and have to be destroyed, or a user - intensive
system may be rejected by the users because it does satisfy their needs.

 Planning for verifi cation and validation of deliverable work products (V & V)
during development of requirements is also useful to determine the degree of
understanding of the various requirements by the system engineers and software
developers (i.e., operational requirements, functional specifi cations, and quality
attributes). Inability to specify objective criteria for V & V indicates that the associ-
ated requirements may be vague, ambiguous, or incomplete. The need for further
elaboration of the requirements is thus indicated.

 2.4 TAILORING THE SYSTEM ENGINEERING FRAMEWORK FOR
SOFTWARE - ONLY PROJECTS

 Figure 2.1 b illustrates a process framework for developing software - intensive
systems that include hardware, software, and people elements. Many software proj-
ects are concerned with developing applications software for which the hardware
and operating system are provided by an off - the - shelf computer, and no special
training is required for users, operators, or operational support personnel. The hard-
ware/software platform may be specifi ed as a design constraint or it may be selected
as part of the analysis process.

 It may be, for example, that your project will develop software that must work
in conjunction with existing software that is implemented on existing computers
that are used throughout the customer ’ s organization. Thus the hardware/software
platform is specifi ed as a design constraint.

 Figure 2.5 illustrates tailoring of the development framework in Figure 2.1 b for
these software - only projects; the system - level elements have been deleted from
Figure 2.1 b and a Specify Hardware/Software Platform activity has been added. For
software - only projects, operational requirements provide the basis for developing
the software requirements. The operational requirements provide the external, user -

 oriented specifi cation of the system; the software requirements are the internal,
developer - oriented specifi cation of the system. As before, the arrows and shadings
in Figure 2.5 depict some of the many iterative paths and revisions for software
projects.

 For the most part, this text concentrates on managing software - only projects for
which the major development processes are depicted in Figure 2.5 . Various ways of
tailoring Figure 2.5 for commonly used software - development process models are
presented in the following section.

 A fundamental tenet of software engineering is:

 the processes used to develop a software system or product must be designed with
the same care that is used to design the product.

 Product design is best accomplished by starting with an architectural framework (or
architectural style) and tailoring it to fi t the needs of the product. In a similar
manner process design is best accomplished by starting with a process framework
and tailoring it to fi t the needs of the project. Tailoring of a framework involves
adding, deleting, and modifying elements of the framework to meet the needs of
specifi c situations.

 The framework for software development in Figure 2.5 can be tailored to depict
the process models most frequently used to develop software. These development
models, in turn, can be tailored to fi t the needs of your projects. The following sec-
tions of this chapter are concerned with these models.

 Like all models, software development models emphasize aspects of interest and
suppress details that are not important to the aspects being modeled. And, like all
models, the details can be elaborated in subordinate models. Table 2.2 lists the soft-
ware development models presented in this chapter and the aspects of software
development that are emphasized by those models.

 FIGURE 2.5 A development framework for software - only projects

Document
Operational
Requirement

Obtain
Software
Components

Integrate
Software
Components

User Needs and Desires
Customer Expectations

Acquirer Conditions

Develop
 Software
Requirements

Design
Software
Architecture

Start
Here

End
Here

Software
Verification

Operational
Validation

Specify
Hardware/Software

Platform

2.4 TAILORING THE SYSTEM ENGINEERING FRAMEWORK 53

54 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 2.5 TRADITIONAL SOFTWARE DEVELOPMENT PROCESS MODELS

 This section presents the traditional software development process models that have
been, and in some cases continue, to be used.

 2.5.1 Hacking

 In software engineering, the term “ hacking ” has two meanings:

 1. to surreptitiously gain access to systems and data in an unauthorized manner;
and

 2. writing code without any preplanning.

 It is the second meaning to which we refer; a hacking development “ process ”
involves writing code without fi rst understanding or documenting user needs and
technical requirements, developing a design description, or preparing a test plan.
Hacking is characterized by the cartoon that depicts a project manager telling the
software developers, as he walks out the door, “ You start coding and I ’ ll go fi nd out
what they want. ”

 Aside from these problems, hacking prematurely forces the mental processes
involved in developing software to an inappropriate level of detail before higher
level concerns are understood. The coder is simultaneously attempting to envision
the requirements, design, and testing considerations and express them in the syntax
and semantics of the programming language. As mentioned in Chapter 1 , the entire
description of a software product is usually too complex for the entire description
to be written directly in a programming language [Jack02], so we must prepare dif-
ferent descriptions at different levels of abstraction, and for different purposes.

 To portray the Hacking model, tailoring of the framework in Figure 2.6 degener-
ates to eliminating all elements of the framework except Obtain Software Compo-
nents and rephrasing it as Write the Code. However, we should not spend time
tailoring the framework in Figure 2.6 to accommodate hacking (i.e., tailoring the
model out of existence). A better approach is: Do not allow your software developers
to hack the code!

 TABLE 2.2 Primary emphases of some software development models

 Emphasis

 Traditional models

 Hacking Writing code without analysis or planning
 Requirements - to - code Writing code based on operational requirements
 Waterfall Sequential development phases and milestone reviews

 Iterative models

 Incremental - build Iterative coding, verifi cation, and demonstration cycles
 Evolutionary Iterative evolution of requirements, design, and code
 Agile Iterative evolution of requirements and code
 Spiral A meta - model for iterative development that emphasizes

risk management and alternative approaches

 2.5.2 Requirements - to - Code

 Compared to Hacking, Requirements - to - code development has the virtue of devel-
oping an understanding of the needs to be satisfi ed by new or modifi ed software
before implementing the software. In a Requirements - to - code process, operational
requirements are elicited and may or may not be documented, but technical speci-
fi cations for the software requirements are not developed and a design specifi cation
is not generated. Depending on the rigor with which the model is implemented, the
operational requirements may or may not be placed under version control and a
validation plan based on those requirements may or may not be developed. A
Requirements - to - code process might be used to develop “ throw - away ” prototype
code to demonstrate a mock - up of a user interface.

 Omitting the design phase results in failure to systematically identify the system
components, the interconnections among them, and their connections to the envi-
ronment. Consequently requirements are not systematically allocated to compo-
nents, and opportunities for reuse of existing components are not systematically
identifi ed. As with the Hacking model, these higher level considerations, if consid-
ered at all, are accounted for at an inappropriate level of detail in the syntax and
semantics of the programming language.

 For a Requirements - to - code process, tailoring the process framework in Figure
 2.5 involves removing the Develop Software Requirements, and Design Software
Architecture, phases and the Software Verifi cation activity from the framework, as
illustrated in Figure 2.6 . Note also that the iterative feedback loops and shaded
iterations in Figure 2.5 have been removed in Figure 2.6 .

 2.5.3 The Waterfall Development Model

 In his seminal paper “ Managing the Development of Large Software Systems:
Concepts and Techniques, ” published in 1970, Winston Royce presented several
approaches to software development to illustrate the shortcomings of approaches

 FIGURE 2.6 The Requirements - to - code development model

Document
Operational
Requirement

Obtain
Software
Components

Integrate
Software
Components

User Needs and Desires
Customer Expectations

Acquirer Conditions

Start
Here

End
Here

Validate
System

Specify
Hardware/Software

Platform

2.5 TRADITIONAL SOFTWARE DEVELOPMENT PROCESS MODELS 55

56 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

such as requirements - to - code [Royce70] . One of the models he presented was a
feed - forward model that emphasizes the linear fl ow of work products through
various development phases and the associated milestone reviews whose purpose
is to verify that the work products of the various development phases are complete,
consistent, and correct with respect to previous work products. That model, not
named by him, has come to be known as the Waterfall model; Winston Royce is thus
known as the father of the Waterfall model. This is unfortunate because Royce, in
his paper, did not recommend the model; he clearly indicated the need for iteration
among the various phases of software development.

 The goal of Waterfall development is to proceed through a linear sequence
of development phases that includes a milestone review at the end of each develop-
ment phase. A Waterfall version of Figure 2.1 b is illustrated in Figure 2.7 , in
which the feedback arrows and shaded iterations have been removed from
Figure 2.1 b .

 The traditional depiction of the Waterfall model is illustrated in Figure 2.8 ; Figure
 2.7 has been “ unwound ” to highlight the linear work phases and associated mile-
stones. The model is termed a Waterfall because work products are supposed to
cascade from phase to phase in a smooth progression, as water cascades down a
Waterfall.

 The purpose of a milestone review is to verify that the work products under
review are complete, consistent, and correct with respect to (wrt) other work prod-
ucts; that is, to verify the operational requirements wrt user needs, to verify the
software requirements wrt the system requirements and operational requirements,
and so forth. A successful milestone review results in the reviewed work products

 FIGURE 2.7 Waterfall tailoring of Figure 2.1 b

Define
Operational
Requirements

Specify
System
Requirements

Develop
System
Architecture

Obtain
Software
Components

Integrate
Software
Components

User Needs and Desires
Customer Expectations

Acquirer Conditions

Allocate &
Refine Software
Requirements

Develop
Software
Architecture

Allocate the
Hardware
Requirements

Allocate the
People
Requirements

Integrate
System
Components

add other
components

Start
Here

End
Here

software
verification

system
verification

operational
validation

being placed under version control to provide a baseline (a foundation) for further
work. A successful milestone review at the end of the design phase, for example,
would result in a design baseline that has been verifi ed to be correct, complete, and
consistent with respect to requirements and user needs, and that then provides the
basis for software implementation. Subsequent changes to baselined work products
must be approved by those authorized to make the changes (i.e., a change control
board).

 Milestone reviews are sometimes referred to as “ control gates, ” meaning that the
gate will not be opened to proceed to the next phase until the problems identifi ed
during a milestone review are corrected. Or the gate might be partially opened to
let some work proceed while problems are corrected in other areas.

 The goal of the Waterfall model is to develop a system in a single pass but, as
Royce states in describing the Requirements - to - code model: “ This sort of very
simple implementation concept is in fact all that is required if the effort is suffi -
ciently small and if the fi nal product is to be operated by those who built it … ” 13 .
The same could be said of the Waterfall model.

 Planning a Waterfall project involves determining a schedule of phases and
reviews and identifying the resources needed to conduct each phase of the work.
Often a constraint on the duration of the project dictates the time available for each
development phase and scheduling of the milestone reviews. A schedule determined
in this way (a dictated schedule) may or may not be adequate. Milestone reviews
are the primary mechanism of monitoring the progress of a Waterfall project. The
primary mechanism of control is the “ control gate ” aspect of the reviews.

 The Waterfall model has many shortcomings as a model for the creative,
intellect - intensive nature of software development; for example, iterative revisions

 FIGURE 2.8 Traditional depiction of the Waterfall model with milestones

User Needs

Operational Requirements

Software Requirements

Software Design

Implementation

Software Test

System Test

Verification:
are we building
the system correctly?

Acceptance Test

SRR Validation:
did we build
the correct system?SSR

System Rqmts and Design

PDR
CDR

TRR

STR

SARSRR: System Requirements Review
SSR: Software Specification Review
PDR: Preliminary Design Review
CDR: Critical Design Review
TRR: Test Readiness Review
STR: Software Test Review
SAR: System Acceptance Review
CAR: Customer Acceptance Review

Fix
CAR

 13 Proceedings, IEEE WESCON, August, 1970, page 1.

2.5 TRADITIONAL SOFTWARE DEVELOPMENT PROCESS MODELS 57

58 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

of work products are not preplanned and thus represent disruptions to planned
work activities when they become necessary (as they always do). Other shortcom-
ings include use of infrequent milestone reviews as progress indicators. A Waterfall
development phase for a large project can take several months. Relying on mile-
stone reviews as the primary indicators of progress (or lack thereof) fails to detect
problems that might have occurred, and could have been fi xed, much earlier. Another
shortcoming is delayed validation of the deliverable work products until the fi nal
phase of the project. This results in expensive rework and delayed delivery if it is
found that the deliverable work products cannot be validated (i.e., the system will
not satisfy its intended purpose when operated by its intended users in its intended
environment).

 The fundamental problem of the Waterfall development process is linear sequenc-
ing of the project phases (analysis, design, implementation, validation). Iterative
development models overcome these problems by systematic interleaving and over-
lapping the work activities of the development phases in various ways.

 2.5.4 Guidelines for Planning and Controlling Traditional Software Projects

 Table 2.3 summarizes the primary mechanisms for planning and controlling projects
for traditional software development models (Hacking, Requirements - to - code,
Waterfall).

 2.6 ITERATIVE - DEVELOPMENT PROCESS MODELS

 Developing and modifying software involves creative processes that are subject to
many external and changeable forces. Long experience has shown that it is impos-
sible to “ get it right ” the fi rst time, and that iterative development processes are
preferable to linear development processes such as the Requirements - to - code and
Waterfall models. In iterative development, each cycle of the iteration subsumes the
software of the previous iteration and adds new capabilities to the evolving product
to produce a next, expanded version of the software.

 Iterative development processes provide the following advantages:

 • continuous integration, verifi cation and validation of the evolving product;
 • frequent demonstrations of progress;
 • early detection of defects;
 • early warning of process problems;

 TABLE 2.3 Mechanisms of planning and controlling traditional software projects

 Development Model Planning and Control Mechanisms

 Hacking None
 Requirements - to - code Requirements baseline, code validation
 Waterfall Linear development phases, milestone reviews, baselines, change

control board, verifi cation and validation

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 59

 • systematic incorporation of the inevitable rework that occurs in software devel-
opment; and

 • early delivery of subset capabilities (if desired).

 Iterative development takes many forms in software engineering:

 • iterative prototyping can be used to evolve a user interface or explore a techni-
cal issue;

 • an Incremental - build process can be used to produce weekly builds of increas-
ing product capabilities;

 • Agile development can be used to closely involve a prototypical customer in
an iterative process that may repeat on a daily basis;

 • an Evolutionary Spiral model can be used to confront and mitigate risk factors
encountered in developing the successive versions of a product based on evolv-
ing requirements.

 Each of these models is described below.

 2.6.1 The Incremental - Build Model

 Delaying validation until the fi nal phase of software development is a major short-
coming of the Waterfall model. Problems that might have been found earlier are
not found until near delivery time, and problems found last are the most expensive
to fi x. As illustrated in Figure 2.9 , fi nding and fi xing a requirements defect during
system testing may cost 100 times more to fi x than fi xing it during the requirements
phase; similarly fi nding a design defect during system testing may cost 50 times as
much to fi x as fi nding it and fi xing it during design [BOEHM81] .

 The relative cost thus increases in an exponential manner because more work
products of increasing levels of detail and volumes of content have been generated
in successive phases of development. Fixing a requirements defect during a require-
ments review may involve changing a few words, such as correcting “ the ATM will
not allow multiple transactions per session ” to “ the ATM will allow multiple transac-
tions per session. ” Fixing this defect during validation testing of the deliverable

 FIGURE 2.9 Relative cost to fi nd and fi x a software defect

Life Cycle Phase

Relative Cost

Rqmts Design Code Test Use
1

100

1000

60 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

system may require changes to the code in several different places plus rewriting
and rerunning the associated validation tests. This correction, which would have
taken less than a minute during a requirements review, could take much more than
100 minutes during validation testing. The effort required to correct a defect when
the system is installed in multiple locations (i.e., “ fi elded ”) is even greater because
the software must be reinstalled in each location (i.e., each ATM terminal).

 The Incremental - build model is a build – test – demonstrate model of iterative
development in which frequent demonstrations of progress and verifi cation and
validation of work to date are emphasized. Figure 2.10 is a tailoring of Figure 2.5
for an Incremental - build process. Note, in particular, that a design partitioning phase
has been added. Requirements are allocated to various elements of the software
architecture, and the architecture is partitioned into a prioritized sequence of builds.
Each build adds new capabilities to the incrementally growing product. Figure 2.10
has been further tailored by subsuming the Obtain Software Components and Inte-
grate Software Components into a Build and Integrate Features Set i activity. Also
a Demo Version i link has been added. The development process ends when version
 N (the fi nal version) is verifi ed, validated, demonstrated, and accepted by the
customer.

 Figure 2.11 is an “ unwound ” depiction of Figure 2.10 that illustrates the details
of the build – verify – validate – demonstrate cycles in the Incremental - build process.
A “ build cycle ” includes detailed design, implementation, integration, review, and
testing by the developers. In cases where code is to be reused without modifi cation,
some or all of an Incremental - build may consist of review, integration, and test of
the base code augmented with the reused code. Builds of demonstrable, running
versions of the system are produced frequently, typically on a weekly or bi - weekly
basis, weekly being the norm.

 FIGURE 2.10 Tailoring of Figure 2.5 for the Incremental - build process

Document
Operational

Requirements

Build, and
Integrate
Feature Set i;
Demo
Capabilities

User Needs
Customer Expectations

Acquirer Conditions

Develop
 Software

Requirements

Design
Software

Architecture

Start
Here

End
Here

Software
Verification

Operational
Validation

Partition
the Design

Demo
Versions

Specify
Hardware/Software

Platform

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 61

 Verifying a build is concerned with determining the degree to which the build is
complete, correct, and consistent with respect to the requirements and design for
the current build (which incorporates requirements, design, and code for all prior
builds). Validating a build is concerned with determining the degree to which the
demonstrated build will satisfy its intended purpose in its intended environment.
Verifying and validating may result in rework of previously developed components
to better accommodate the new components being integrated, or to fi x defects in
previously developed components exposed by addition of the new components, or
to fi x defects in the new components.

 Some (perhaps all) of the builds in an Incremental - build process are typically
demonstrated to validate progress - to - date for user representatives, customer(s),
and/or the acquirer. Other builds may be demonstrated for you (the project
manager), your development team, and perhaps for your managers to provide con-
crete evidence that the project is (or is not) proceeding according to plan. In any
case, frequent demonstrations of progress (or lack thereof) are a major benefi t of
an Incremental - build development process.

 Figure 2.12 illustrates the milestone chart for a six - month project to build a com-
piler using the Incremental - build model. The fi rst 2 months are allocated to analysis
and design followed by 8 bi - weekly build – verify – validate – demonstrate cycles. The
software developed for each increment is added to the growing base. The design is
partitioned so that each build provides the interfaces and functionality needed by
the next build.

 Figure 2.12 illustrates another advantage of the Incremental - build process, namely
the ability to gracefully make trade - offs among product features, resources, and the
delivery schedule. If, for example, the compiler is not ready for delivery as scheduled

 FIGURE 2.11 Incremental build – verify – validate – demonstrate cycles

Build & Integrate
Feature Set N

• • •
• • • • • •

Build & Integrate
Feature Set 2

Build
Feature Set 1

Time

Verify & Validate
Feature Set 1

Verify & Validate
Feature Sets 1+2

Verify & Validate
• • • • • •

Incremental
Rework

demonstrate
Feature Set 1

demonstrate
FS 1+FS 2

demo

FS1 + . . .

deliver
FS 1 + . . . + FS N

Verify & Validate
FS1. .FSN

Design
Partitioning

62 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

at the end of six months, a choice can be made between delivering a fi rst version of
the compiler without the optimizer, or extending the schedule to allow completion
of the project. Because of the frequent demo milestones, early warning of slippage
in the delivery schedule is provided and offers the option to add more or better
developers to the project to meet the delivery date (being mindful of Brooks ’ s law,
as described in Chapter 1). Because of the detailed history of progress, it should be
possible to accurately estimate the amount of time needed to deliver the fi nal
version of the compiler in case of a schedule delay.

 A large project may involve tens or even hundreds of incremental cycles, many
of which may be performed by different teams working in parallel. In these cases
planning is also incremental. The initial project schedule contains the major activi-
ties to be completed and the schedule milestones for completing them; detailed
plans are developed in an incremental manner. Incremental planning is discussed
in Chapter 4 .

 Monitoring and controlling Incremental - build projects are based on milestone
reviews for requirements and architectural design and on the frequent demonstra-
tions of progress that occur during the build – verify – validate – demonstrate cycles. In
some cases the project plan may incorporate early delivery of subset capabilities for
operational use while the remaining iterations are completed. If, for example, the
compiler depicted in Figure 2.13 , is for a new programming language, then v0.7
(error messages) could be implemented following v0.4, and the subset could be
delivered to users of the compiler so they could learn to write syntactically correct
programs while the compiler is being completed.

 Incremental verifi cation, validation, and demonstration as illustrated in Figures
 2.11 and 2.12 overcome two of the major problems of a Waterfall approach: (1)
problems are exposed early and can be corrected as they occur; (2) minor in - scope
changes to requirements that occur as a result of incremental demonstrations can
be incorporated in subsequent Incremental - builds.

 FIGURE 2.12 An Incremental - build example

V0.1: input reader

V0.2: plus output writer

V0.3: plus lexical analyzer

V0.4: plus symbol table

V0.5: plus code generator

V0.6: plus linker table

V0.7: plus error messages

V0.8: plus optimizer

1 Month

Design Implementation*

4 Months

Demo1

Demo2

Demo3

Demo4

Demo5

Demo6

Demo7

Demo &
Deliver V1.0

*implementation of each increment
Includes detailed design, coding,
review, testing, and demonstration

Design Milestone Requirements Milestone

Rqmts

1 Month

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 63

 The Incremental - build process works well when each team consists of two to fi ve
developers plus a team leader (who is also a technical contributor). Team members
may work as individuals or in pairs. Each individual or pair may produce unoffi cial
builds on a daily basis using a copy of the current offi cial version as a test bed. An
offi cial build that integrates, verifi es, validates, and demonstrates progress made by
all developer teams is produced on a weekly or bi - weekly basis.

 The Incremental - build model can be scaled up for large projects by partitioning
the architecture into well - defi ned subsystems and allocating requirements and inter-
faces to each subsystem. The subsystems can be independently tested and demon-
strated, perhaps using stubs and drivers for the subsystem interfaces, or perhaps
using early incremental versions of other evolving subsystems. System integration
can proceed incrementally as intermediate versions of the various subsystems
become operational.

 Figure 2.11 illustrates that it may be possible to overlap, in time, successive builds
of the product. It may be possible, for example, to start a detailed design of the next
version while the present version is being validated. Three factors determine the
degree of overlap that can be achieved:

 1. availability of suffi cient personnel to concurrently pursue multiple activities,
 2. adequate progress on the previous version to provide needed capabilities for

the next version, and
 3. the risk of signifi cant rework that must be accomplished if verifi cation and

validation of the previous build reveals problems that invalidate the work
accomplished on the next overlapped build.

 Signifi cant changes to requirements, design constraints, or environmental factors
(e.g., changes to middleware APIs or hardware features) may require signifi cant
rework of the design and existing code in an Incremental - build process (which is
true of all development process models).

 A signifi cant advantage of an Incremental - build process is that features built fi rst
are verifi ed, validated, and demonstrated most frequently because subsequent builds
incorporate the features of the earlier builds. In building the software to control a
nuclear reactor, for example, the emergency shutdown software could be built fi rst.
Operation of emergency shutdown (scramming) would then be verifi ed and vali-
dated in conjunction with the features of each successive build.

 Planning an Incremental - build project involves planning for analysis and design
plus planning the number of and frequency of iterative versions to be built and
demonstrated. The number of iterations is determined by the partitioning of the
design. Table 2.4 lists some partitioning criteria for incremental development. Itera-

 TABLE 2.4 Some partitioning criteria for incremental builds

 Kind of System Partitioning Criteria

 Application package Essential features fi rst; prioritized desirables next
 Safety - critical systems Safety features fi rst; prioritized others next
 User - intensive systems User interface fi rst; prioritized others next
 System software Kernel fi rst; prioritized utilities next

64 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

tions should be planned for durations of one work - week for each. One - week incre-
ments and the number of developers available to work on the project determine
the number of features that can be included in each Incremental - build. This in turn
determines the overall schedule.

 Frequent demonstrations of the growing system provide an objective mechanism
for monitoring progress in an Incremental - build process. Indicators of problems
include:

 1. failure to implement the planned number of features in a given cycle,
 2. inadequate performance or excessive use of computing resources in a build –

 verify – validate – demonstrate cycle, and
 3. excessive rework of previous versions to accommodate the current build.

 Corrective actions can be taken before problems result in a crisis situation. Cor-
rective action should be taken, for example, if the rework to fi x defects exceeds
20% of the effort on each of two successive build cycles. Corrective actions might
include revising the requirements, reworking the design, fi xing the code, acquiring
a new testing tool, providing refresher training on peer reviews, or revising the
Incremental - build schedule to allow more time to do an adequate job.

 In summary, the Incremental - build model, like all iterative models, provides the
advantages of continuous integration and validation of the evolving product, fre-
quent demonstrations of progress, early warning of problems, early delivery of
subset capabilities, and systematic incorporation of the inevitable rework that occurs
in software development.

 2.6.2 The Evolutionary Model

 The term “ evolutionary ” in an Evolutionary development process refers to the sys-
tematic evolution of requirements, design, and code. The Incremental - build model
can tolerate some minor changes (in - scope changes) to requirements and design
without renegotiating schedule and budget; in contrast, an Evolutionary model is
appropriate in cases where the requirements and software architecture cannot be
(mostly) specifi ed in advance or when they are likely to undergo signifi cant changes
during development. An Evolutionary model may be appropriate for the initial
phases of a new kind of project for which no corporate history exists.

 Figure 2.13 illustrates tailoring of Figure 2.5 for an Evolutionary development
process. As illustrated in Figure 2.13 , each iteration of an Evolutionary process is a
mini - Waterfall that involves:

 • evolving the operational requirements and software requirements,
 • designing the software for that iteration,
 • obtaining and integrating the components,
 • verifying and validating the resulting software, and
 • evaluating the outcome.

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 65

 Each cycle in an Evolutionary development process should be limited to not
more than one month to prevent the mini - Waterfall from becoming a
maxi - Waterfall.

 At the end of each development cycle, an evaluation of the outcome, based on
verifi cation, validation, and demonstration will reveal one of several possible next
steps:

 1. the chosen approach for this iteration is satisfactory and provides insight
for conducting the next cycle of analysis, design, implementation, and
evaluation;

 2. the outcome of analysis, design, and implementation for this iteration is not
satisfactory, and an alternative approach must be attempted;

 3. suffi cient knowledge has been gained on this iteration (and previous itera-
tions) to specify the remaining requirements, complete the design, partition it,
and fi nish the project using an Incremental - build approach; or

 4. the project should be canceled, perhaps because the state of knowledge or
technology cannot support the system concept.

 Figure 2.14 illustrates the Evolutionary development process as viewed by you,
the project manager. Each iterative cycle involves:

 • analyzing the current situation and deciding which of the 4 possible next steps
to pursue,

 • planning for the chosen course of action,
 • developing the software, provided alternative 4 above is not chosen, and
 • evaluating the results.

 FIGURE 2.13 Tailoring of Figure 2.5 for the Evolutionary development process

Evolve
Operational
Requirements

Obtain
Software
Components

Integrate
Software
Components

User Needs
Customer Expectations

Acquirer Conditions

Evolve
 Software
Requirements

Design
Software

Start
Here

End
Here

Verify
Software

Validate
Software

Demonstrate
Product

66 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 The Evaluation step should involve the customer, who participates in determining
which of the four outcomes has been achieved. Evaluation may result in revisions
to the system concept and the operational requirements.

 A fundamental purpose of all iterative development models is to provide fre-
quent demonstrations of progress (or lack thereof) and early warning of problems.
In keeping with this purpose, the duration of an Evolutionary cycle should never
exceed one month. One month for an Evolutionary iteration may be necessary when
evolving a large, complex system; in many cases cycles of one week duration are
appropriate. In any case, you do not want to wait 3 months, 6 months, or 12 months
to fi nd out that the design and implementation do not satisfy requirements and user
needs, or that the requirements were incorrectly stated, or that it is not feasible to
satisfy the requirements within the current state of technology. Each of these out-
comes can happen when using a Waterfall development process or an Evolutionary
cycle of extended duration.

 Using an Evolutionary development process indicates a high - risk endeavor; oth-
erwise, an Incremental - build process, based on stable requirements and architecture,
would be used. Planning must proceed in an evolutionary manner because some or
all of the requirements are unstable or unknown. The evaluation step of each evo-
lutionary cycle determines what to do next. A time constraint may be placed on the
overall undertaking, as in “ we will pursue an Evolutionary approach for not more
than 3 months; a major re - evaluation will be conducted if the requirements and
design are not stable by then. ”

 2.6.3 Agile Development Models

 Agile development models are also evolutionary, in that the requirements evolve
during implementation, but they differ from the Evolutionary model in that the
Evolutionary model is appropriate when the system concept is unclear or the feasi-
bility of the project is in question. Agile develop is best suited to small applications
projects that are conducted in the presence of a knowledgeable customer/user who
has a clear understanding of the needs to be satisfi ed by the system that is being
built. There are several variations on the Agile theme, but most Agile - process
models emphasize the following aspects [Agile] :

 1. continuously involving a representative customer/user;
 2. developing test cases and test scenarios before implementing the next version

of the product;
 3. implementing and testing the resulting version;
 4. demonstrating each version of the evolving product to the customer;

 FIGURE 2.14 Management view of the Evolutionary development process

. . .Cycle 2 Cycle 3 Cycle 1 Cycle n

Details of each Evolutionary cycle:

DevelopPlan Evaluate=> => =>Analyze

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 67

 5. eliciting the next requirement(s) from the customer; and
 6. periodic delivery into the operational environment.

 The customer ’ s roles are to provide the “ story line ” that determines the require-
ments, to review demonstrated capabilities, and to specify the next chapter of the
story line for the next iteration. An iterative process model for agile development
is depicted in Figure 2.15 . “ Story cards ” are sometimes used to record elements of
story chapters. They can be sorted by the customer to refl ect priorities; estimates of
effort can be written on them, and actual effort can be recorded and compared to
estimates.

 As indicated in Figure 2.15 , there is no explicit design step and no design docu-
mentation in an Agile development process. This is compensated for by a design
 “ metaphor ” that is shared among the developers. A design metaphor might be based
on an architectural style; for example, the system may be based on a layered style
(e.g., a 3 - tier architecture) or a separation - of - concerns architecture (e.g., a m odel –
 v iew – c ontrol architecture). Lack of explicit design requires that the developers be
highly skilled; otherwise, “ agile ” becomes a euphemism for hacking. Other develop-
ment processes are sometime characterized as “ Plan - driven, ” in contrast to the
intentional lack of emphasis on written requirements specifi cations, design docu-
mentation, and V & V plans in the Agile models.

 In many versions of the Agile process, the software developers produce a next
version of a running system within time periods not longer than one work - day. Some
Agile models use pair - programming, in which pairs of developers share one com-
puter terminal and develop software together. Experience with Agile models indi-
cates that the resulting products are rated low in defect levels and high in user
satisfaction. However, user satisfaction is critically dependent on having a knowl-
edgeable and prototypical user as the customer in the iterative development loop.
Some critics have raised the concern that an Agile process may result in a function-
ally structured product that lacks design documentation, thus making the system
hard to modify in the future. This problem can be minimized if the software devel-
opers share a common design metaphor and common coding and code documenta-
tion practices.

 FIGURE 2.15 An Agile development process

hear
customer

story

specify
requirement(s)

write
 test scenario(s)

add new features;
 review, test, and

rework

demonstrate
capabilities

customer

start
here

deliver
here

frequent
iterations

68 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 Agile development seems to be best suited to small projects that develop applica-
tions software. 14 In small projects there is no allocation of requirements to subsys-
tems and partitioning of an a priori design, which is necessary if members of large
project teams are to work concurrently. Agile processes are appropriate for applica-
tions projects because user - stories provided by the customer and design metaphors
used by developers, are best suited to end - item software that will be used by people
in pursuing their work activities or recreational pastimes, as opposed to complex
embedded and mission - critical systems.

 In common with all iterative models, planning an Agile project involves working
with the customer to develop the product vision, plan the frequency of iterations,
and plan the frequency of delivery of evolving capabilities to users. In contrast to
other iterative development models, a design metaphor must be established by the
developers, and the particular version of an Agile process to be used must be
reviewed and accepted by the project stakeholders. During project execution, it is
especially important to review with customers, developers, and other stakeholders,
on a weekly basis, factors such as the current state of the evolving product, scheduled
releases, product vision and the design metaphor, quality factors, and plans for the
next two or three months (or until the expected end of the project if less than two
or three months). Differences between the planned and actual state of affairs must
be evaluated and reconciled on an on - going basis.

 In summary, Agile development processes are suitable for projects that develop
applications software, require fewer than 10 developers, have a knowledgeable on -
 site customer (user representative), have highly skilled developers who share a
common design metaphor, have continuity of development staff; and for a product
that will undergo frequent releases and periodic deliveries into the operational
environment.

 The text Balancing Agility and Discipline by Boehm and Turner contrasts Plan -
 driven and Agile approaches to software development and presents a middle -
 ground approach to achieving a balance than incorporates aspects of both approaches,
based on the particular situation [BOEHM04] .

 2.6.4 The Scrum Model

 The Scrum model is a framework for planning and conducting software projects
based on the principles of Agile development (the term “ scrum ” is from the game
of rugby) [Schwab04] . The project manager/leader is termed the “ ScrumMaster. ”
The customer (user representative) is termed the “ Product Owner ” and the software
developers are the “ Team. ” Teams include up to 10 software developers. The Product
Owner writes User Stories, prioritizes them, and places them in the “ Product
Backlog. ”

 Development iterations are termed “ sprints, ” which are typically of 30 days dura-
tion. These result in a set of features that can be delivered to the users, if desired.
The features to be implemented in a sprint are determined during a sprint planning
meeting; the features to be included are derived from the Product Backlog and
placed in a “ Sprint Backlog. ” Brief (15 minute) stand - up meetings are held each day
during a sprint to review work accomplished the previous day and to plan the work

 14 A small project is considered to be one that involves 10 or fewer software developers.

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 69

for the present day. The daily meetings allow the ScrumMaster to determine the
rate of task completions and to anticipate and confront potential problems before
they become real problems (i.e., to manage risk factors).

 Each sprint is followed by a meeting (a “ sprint retrospective ”) during which the
Team reviews the sprint and determines how they can improve their work processes
in future sprints. The Sprint process is illustrated in Figure 2.16 [Wiki] .

 2.6.5 The Spiral Meta - Model

 Originally the Spiral model was presented as a development model [Boehm88] . In
recent times it has come to be regarded as a meta - model (i.e., a development process
framework) from which various iterative models can be derived. As illustrated in
Figure 2.17 , each cycle of a Spiral process involves:

 1. analyzing objectives, identifying alternative approaches, and establishing con-
straints for the next process cycle;

 2. planning the next cycle by evaluating alternative approaches, identifying the
risk factors of each approach, and selecting an approach;

 3. implementing the selected alternative; and
 4. evaluating the outcome and deciding what to do next.

 What - to - do - next depends on the particular instantiation of the Spiral meta -
 model. In an Evolutionary – Spiral model the next cycle may involve trying a differ-
ent approach; in an Incremental - build – Spiral model the next cycle involves building
and integrating the next set of features. Figures 2.18 and 2.19 illustrate Evolutionary
and Incremental - build instantiations of the Spiral meta - model. The duration of a
Spiral cycle might range from one day for an Agile Spiral to one month for an
Evolutionary Spiral.

 Although systematic evaluation of risk is a major theme of Spiral models, it
should not be inferred that you should always choose the lowest risk approach.
High - risk endeavors, if successful, often result in high payoffs. You might decide to
spin off a parallel investigation of a high - risk approach while implementing a lower

 FIGURE 2.16 The Sprint development process [Wiki]

Product Backlog Sprint Backlog Sprint Working incrementof the software

30 days

24 h

70 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

time

2
PLAN
evaluate alternatives;
identify & resolve risk factors;
select an alternative

3
IMPLEMENT
implement the selected
alternative

4
EVALUATE
evaluate the
outcome and
decide what to
do next x x

xx
x

x

x

x

x

x

xx
x

x

x
x

x
x

x

x

x

x

xx

x

x
x

x

x

x

x
x

x

x

x

x

x

x

xx
x

x
xx

x

x

x

xx

x

x
x

x
x x x x

x

x
x

xx
x

Start here

End here

1
ANALYZE
determine
objectives,
alternative
approaches,
and constraints

 FIGURE 2.17 The Spiral meta - model

 FIGURE 2.18 A Spiral depiction of the Evolutionary development process

time

3
IMPLEMENT
implement the selected
alternative

4
EVALUATE
evaluate outcome
with customer and
other stakeholders

x
x

xx
x

x

x

x

x

x

xx
x

x

x
x

x
x

x

x

x

x

xx

x

x
x

x

x

x

x
x

x

x

x

x

x

x

xx
x

x
xx

x

x

x

xx

x

x
x

x
x x x x

x

x
x

xx
x

1
ANALYZE
evaluate results of the
previous iteration and
develop alternative
approaches for the next
iteration

2
PLAN
evaluate risks of the
each alternative and
select one

risk alternative. The evaluation step would then weigh both outcomes, and provide
information for the next cycle.

 In summary, the concepts of the Spiral meta - model can be integrated into all
iterative process models; the Spiral meta - model adds the dimensions of systemati-
cally generating alternative approaches for the next iteration, evaluating the risk of

2.6 ITERATIVE-DEVELOPMENT PROCESS MODELS 71

each, selecting an alternative for implementation, and evaluating the outcome.
Alternatively, the Spiral meta - process provides a framework for generating iterative
development models.

 FIGURE 2.19 A Spiral depiction of the Incremental - build process

time

1
ANALYZE
review the current build;
review and revise features
to add in this next
increment

2
PLAN
revise the design as
necessary;
evaluate alternative
algorithms, data structures,
and interface details;
evaluate risks and select
algorithms, data structures,
and interface details

3
IMPLEMENT
implement the code and
integrate it into the
present version;
review and test the build;
independent persons
determine acceptability of
the build;
rework as necessary

4
EVALUATE
evaluate the build with
customer, users and other
stakeholders x

x
xx

x

x

x

x

x

x

xx
x

x

x
x

x
x

x

x

x

x

xx

x

x
x

x

x

x

x
x

x

x

x

x

x

x

xx
x

x
xx

x

x

x

xx

x

x
x

x
x x x x

x

x
x

xx
x

 TABLE 2.5 Primary mechanisms for planning and controlling iterative projects

 Development Model Planning and Control Mechanisms

 Incremental - build Frequency and content of builds, frequent build – verify –
 validate – demonstration iterations, version control

 Evolutionary What - to - do - next decisions based on evaluation of outcomes;
limited duration cycles, version control

 Agile User stories, design metaphors, periodicity of iterations,
frequency of deliveries, version control

 Spiral Systematic evaluation of alternative approaches and resolution
of risk factors on each cycle, version control

 Table 2.5 summarizes the primary mechanisms of planning and controlling for
different iterative development models.

 2.6.6 Guidelines for Planning and Controlling Iterative - Development Projects

 The following guidelines are useful when planning and conducting an iterative
development project:

 • The initial project plan must specify the kind of iterative model to be used; it
must be tailored to meet the needs of the project.

 • The duration of each iteration must be specifi ed in the initial project plan.

72 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 • Major work activities and major project milestones must be identifi ed and
included in the initial project plan.

 • As the product evolves, plans are revised and elaborated within the overall
project constraints.

 • Multiple work activities, and multiple kinds of work activities, are conducted
concurrently.

 • Automated version control is essential for establishing and maintaining the
baselines of various work products in various stages of development.

 • Iterative, independent verifi cation and validation are necessary.
 • Early warning of problems must be addressed as soon as detected.
 • Reasons for excessive rework of the growing product baseline should be identi-

fi ed and corrections made as soon as possible.
 • Frequent demonstrations of progress should be conducted for developers, users,

customers, acquirer, and other appropriate stakeholders.

 2.7 DESIGNING AN ITERATIVE - DEVELOPMENT PROCESS

 Software designers use architectural styles, design patterns, and idioms to guide the
design choices they make. In the same way you, as designer of the development
process for your project, can use the development framework in Figure 2.1 b or
Figure 2.5 , or one of the development process models described above as your start-
ing point. The processes you use to develop a software product should be designed
with the same care you use to design the product. Process design, like software
design, is facilitated by the availability of guidelines and document templates for
tailoring of process frameworks. Your organization may have internal consultants
who can help you design your development process model.

 In general, design, whether it be design of software, computer hardware, auto-
mobiles, spacecraft, or buildings, is always concerned with making choices among
alternatives to optimize certain design criteria within the limits of the design con-
straints. A software product might be designed to optimize performance, safety,
security, or ease of future modifi cation. Because some criteria may be in confl ict
(e.g., maximizing performance and minimizing memory usage), it is often necessary
to prioritize design criteria.

 In the case of a software project, your goal might be to minimize schedule while
maintaining quality; this might require increased staffi ng and omission of some
desired product features. Alternatively, your goal might be to maximize features and
quality, which would increase the schedule and/or the staffi ng level. A goal of mini-
mizing schedule and resources while simultaneously maximizing features and quality
attributes is overly constrained and probably unachievable.

 An example of a process designed for a specifi c project is illustrated in Figure
 2.20 . Project attributes included:

 • Criteria to be optimized were frequent demonstrations of progress and earliest
possible delivery of a specifi ed subset capability.

 • The most severe product constraint was the requirement that the system inter-
communicate with a system for which no interface documentation existed.

 • The product constraint was accompanied by a process constraint that the devel-
opers were not able to communicate with anyone who understood the other
system.

 • The schedule constraint required a fi xed delivery date 12 months after the start
of the project.

 • An additional process constraint was a limitation on the development staff of
seven developers plus a team leader/project manager.

 As depicted in Figure 2.20 , the development process that was designed
involved:

 • prototyping (to understand the interface to the other system and to prototype
the user interface for the system under development),

 • analysis and design (to specify the requirements and the major components of
the system),

 • incremental development (for frequent demonstrations of progress, early
warning of problems, and delivery of the subset capability), and

 • independent verifi cation and validation (by developers other than those who
implemented each version).

 The design was partitioned into three major versions with weekly incremental builds
within each version. Development of the three versions was overlapped in time.
Version 2 subsumed and incorporated version 1; version 3 subsumed and incorpo-
rated version 2. Version 2 provided the early subset capabilities delivered to users.
The numbers in the fi gure indicate the number of personnel assigned to each task
at each point in time.

 The project had seven major milestones (eight including the starting milestone
M0). The major milestones were points in time where development phases were

 FIGURE 2.20 A tailored development process

M0 M1 M2 M3 M4 M5 M6 M7

months

major
milestones

0 1 2 3 4 5 6 7 8 9

3*

4
3
2

2

2

3
1

1

2

3

2 3

4

3

prototyping

analysis & design

Version 1

Version 2

Version 3
independent
 validation

*number of people assigned:
7 staff members plus team leader

4

delivery of
subset
capability

2.7 DESIGNING AN ITERATIVE-DEVELOPMENT PROCESS 73

74 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

completed, progress was evaluated, new phases were started, and personnel were
assigned to different tasks. The weekly build – verify – validate – demonstrate cycles
provided minor milestones for the project, by which continuing demonstrations of
progress and early warning of problems were provided on a weekly basis.

 As illustrated in Figure 2.20 , the project started with three developers assigned
to prototyping and 4 assigned to analysis. During the fi rst four months of the project,
the role of the prototyping effort was to provide answers to questions posed during
analysis and design. Milestone M1 involved baselining of the requirements for the
subset capability to be delivered as version 2. The interval between M1 and M2
involved continued prototyping, analysis and the beginning of design. At M2, it was
determined that the requirements and design were suffi ciently stable to support
implementation of version 1. One member of the prototyping team and two members
of the analysis and design team became the version 1 team. At M3 it was determined
that version 2 could be started using the emerging capabilities of version 1 as a basis
for development of version 2. One member of the prototyping team and one member
of the analysis and design team became the version 2 team. Version 1 was completed
at M4. The remaining prototyping and analysis and design members became the
independent verifi cation and validation (V & V) team for version 1 plus the emerging
capabilities of version 2. The three developers of version 1 became the development
team for version 3.

 As planned, the subset capabilities of version 2 were delivered to users at mile-
stone 5. The weekly builds and incremental V & V of the weekly builds made it
possible to complete version 2, perform the fi nal validation reviews, tests, and dem-
onstration, and deliver version 2 within the same week. One member of the version
2 team was then assigned to version 3, and the other member was assigned to V & V.
This development process allowed completion of the project and delivery of the
product in 9 months, 3 months ahead of the committed delivery date of 12
months.

 Details of the incremental development process illustrated in Figure 2.20 were
elaborated as the project evolved. The initial plan incorporated prototyping, analysis
and design, incremental development of three versions, independent validation of
each version, and delivery of the early subset capability. The major milestones
included in Figure 2.20 were included in the initial plan; the timing of the milestones
and the content of the weekly builds were adjusted as the project evolved. As noted,
the system was completed in 9 months; 3 months ahead of the required delivery
date.

 Considerations for selecting an iterative - development process model based on
the characteristics of the requirements, the project team, the user community, and
project type and risk factors are presented in Appendix 2B of this chapter.

 2.8 THE ROLE OF PROTOTYPING IN SOFTWARE DEVELOPMENT

 In software engineering a prototype is a mock - up of the desired functionality of
some part of the system. This is in contrast to physical systems, where a prototype
is usually a fi rst full functionality version of a system. Software prototypes are con-
structed to investigate a situation or to evaluate a proposed approach to solving a
technical problem. A prototype of a user interface, for example, might be con-

structed to promote dialogue with users and to thus better understand their needs
and concerns. A prototype implementation of an algorithm might be undertaken to
study the performance or security aspects of the algorithm.

 Prototypes are not constructed with the same attention to architectural structure,
interfaces, documentation, and quality concerns as is devoted to product compo-
nents. Prototypes may be built using different tools than are used to build produc-
tion systems. For example, a prototype of a user interface might be rapidly developed
in Visual Basic, but the production version of the interface might be implemented
in C to provide the required performance and compatibility with other system
components.

 Many problems have been created by incorporating prototype software into
production systems. Prototyping is a useful technique that should be employed
whenever appropriate; however, prototyping is not a process model for software
development. Some organizations use the term “ prototyping, ” in conjunction with
other terms such as “ structured ” or “ rapid ” to describe their software development
model. In many cases this is a euphemism for chaotic hacking.

 Prototyping is a technique that can be used in conjunction with all software
development process models. Prototyping must be planned, monitored, and con-
trolled; it must not be used as an excuse for uncontrolled hacking. Guidelines for
prototyping include setting specifi c and limited objectives for each of the prototyp-
ing iterations, limiting the duration of iterations to 1 week or less, and using the
evaluated results as the basis for the next step. Although this sounds like the Evo-
lutionary approach, the distinction is that the iterations of Evolutionary develop-
ment follow a systematic process within a larger context; prototyping is a technique
to study a specifi c problem within a limited context.

 When building a prototype, we keep the knowledge we have gained but we do
not use the code in the deliverable version of the system

 unless we are willing to do additional work to develop production - quality code from the
prototype code.

 In many cases it is more effi cient and more effective to build the production code
 “ from scratch ” using the knowledge gained by prototyping than to re - engineer the
prototype code.

 When using an Evolutionary approach, we keep the knowledge we have gained
in each cycle of the iteration, and we may, or may not, use the code we have written
in the deliverable version of the system, depending on the evaluation of results.
When using the Incremental - build model, the goal is to keep the code we write in
each build as the next element of the deliverable system.

 2.9 KEY POINTS OF CHAPTER 2

 • The development process for each software project must be designed with the
same care used to design the product.

 • A development - process framework is a generic process model that can be tai-
lored and adapted to fi t the needs of various projects.

2.9 KEY POINTS OF CHAPTER 2 75

76 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 • Process design is best accomplished by tailoring and adapting well - known
development process models and process frameworks, just as product design is
best accomplished by tailoring and adapting well - known architectural styles
and architectural frameworks.

 • There are several well - known and widely used software development process
models, including Waterfall, Incremental - build , Evolutionary, Agile, and Spiral
models.

 • There are various ways to obtain the needed software components; different
ways of obtaining software components require different mechanism of plan-
ning, measurement, and control.

 • The development phases of a software project can be interleaved and iterated
in various ways.

 • Iterative development processes provide the advantages of continuous integra-
tion, iterative verifi cation and validation of the evolving product, frequent
demonstrations of progress, early detection of defects, early warning of process
problems, systematic incorporation of the inevitable rework that occurs in
software development, and early delivery of subset capabilities (if desired).

 • Depending on the iterative development process used, the duration of itera-
tions range from one day to one month.

 • Prototyping is a technique for gaining knowledge; it is not a development
process.

 • The mechanisms of planning, measurement, and control used in a software
project are strongly infl uenced by the development process used.

 • SEI, ISO, IEEE, and PMI, provide frameworks, standards, and guidelines rele-
vant to software development process models (see Appendix 2A to this
chapter).

 REFERENCES

 [Bass03] Bass , L. , P. Clements , and R. Kazman . Software Architecture in Practice , 2nd ed .
 Addison - Wesley , 2003 .

 [Boehm04] Boehm , B. , and R. Turner . Balancing Agility and Discipline . Addison Wesley ,
 2004 .

 [Boehm81] Boehm , B. Software Engineering Economics . Prentice Hall , 1981 , p. 40 .
 [Boehm88] Boehm , B. A Spiral model of software development and enhancement . Com-

puter , May 1988, IEEE.
 [CMMI06] SEI . CMMI ® Models and Modules , http://www.sei.cmu.edu/cmmi/models/ ,

2006.
 [IEEE1058] IEEE Std 1058 ™ — 1998 IEEE Standard for Software Project Management

Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology — Software Life
Cycle Processes . Engineering Standards Collection. IEEE Product: SE113.
Institute of Electrical and Electronic Engineers, August 2003.

 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed .
(PMBOK ® Guide). Project Management Institute , 2004 .

 [Royce70] Royce , W. Managing the development of large software systems: Concepts and
techniques . IEEE WESCON, 1970 ; reprinted in the Proceedings of the 9th
International Conference on Software Engineering , Monterey, CA . ACM Press ,
 1987 .

 [Schwab04] Schwaber , Ken. Agile Project Management with Scrum . Microsoft Press , 2004 .

 URL s

 [Agile] www.agilealliance.com/intro
 [Wiki] en.wikipedia.org/wiki/Scrum_(development)

 EXERCISES

 2.1. Briefl y compare and contrast the disciplines of system engineering and soft-
ware engineering. How are they similar? How are they different?

 2.2. CMMI - DEV - v1.2 lists fi ve related process areas for the Technical Solution
process area: requirements development, verifi cation, decision analysis,
requirements management, and organizational innovation and deployment.

 Access the CMMI Web site at http://www.sei.cmu.edu/publications/
documents/06.reports/06tr008.html . Review the Technical Solution process
area, and briefl y explain how each of the fi ve related process areas is related
to Technical Solution.

 2.3. Briefl y explain the different roles played by users, customers, and acquirers in
software development projects.

 2.4. Identify fi ve different kinds of stakeholders in a project to develop an Auto-
mated Teller System, such as the one illustrated in Figure 2.4 . Briefl y explain
the roles played by each kind of stakeholder.

 2.5. Briefl y explain the roles played in a software - intensive systems project by
operational requirements and software requirements. How are they similar?
How are they different?

 2.6. Derived requirements are included in software requirements to add details to
an operational requirement allocated to software, to elaborate a system - level
requirement, or to provide features that are not visible to end - users but must
be present to support features that are visible to end users.

 Provide two examples of derived requirements for an Automated Teller
System. For each example, fi rst state the system - level requirement or opera-
tional requirement from which the derived requirement is derived.

 2.7. Provide an example of each of the following:
 a. A structural relationship between two software components.
 b. A functional relationship between two software components.
 c. A behavioral relationship between two software components.
 d. A data relationship between two software components.

EXERCISES 77

78 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 2.8. For the Automated Teller System illustrated in Figure 2.4 , give an example of
some software that might be obtained from each of the six sources of software
components listed in Table 2.1 .

 2.9. Briefl y compare and contrast the mechanisms of planning and control used in
a Waterfall development project and those used in iterative development
projects.

 2.10. Briefl y explain the distinctions between the Incremental - build process and the
Evolutionary development process.

 2.11. There are several different versions of Agile development. Investigate and
briefl y describe three different Agile process models. Explain how they are
similar and how they are different. Hint : Do an internet search to fi nd your
three models.

 2.12. Briefl y compare and contrast the Evolutionary development process, the
Agile development process, and the prototyping technique. How are they
similar? How are they different?

 2.13. Sketch a comparable workfl ow diagram to Figures 2.18 and 2.19 for the Agile
development model illustrated in Figure 2.15 . Briefl y describe the attributes
of your fi gure.

 APPENDIX 2A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR SOFTWARE
DEVELOPMENT PROCESS MODELS

 2A.1 THE CMMI - DEV - v 1.2 TECHNICAL SOLUTION PROCESS AREA

 The purpose of the CMMI models is to provide frameworks that can be elaborated
and tailored to improve the effi ciency and effectiveness of software projects and
organizations that conduct software projects [CMMI06] . Software development
activities are covered by the Technical Solution process in CMMI - DEV - v1.2.

 As stated in the CMMI - DEV - v1.2 report 15 :

 The purpose of Technical Solution (TS) is to design, develop, and implement solutions
to requirements. Solutions, designs, and implementations encompass products, product
components, and product - related life cycle processes either singly or in combination
as appropriate.

 The specifi c goals and specifi c practices of the Technical Solution process area in
CMMI - DEV - v1.2 are:

 SG 1 Select product component solutions
 SP 1.1 Develop alternative solutions and selection criterias
 SP 1.2 Select product component solutions

 SG 2 Develop the design
 SP 2.1 Design the product or product component
 SP 2.2 Establish a technical data package
 SP 2.3 Design interfaces using criteria
 SP 2.4 Perform make, buy, or reuse analyses

79

 15 CMU/SEI - 2006 - TR - 008, page 456.

80 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 SG 3 Implement the product design
 SP 3.1 Implement the design
 SP 3.2 Develop product support documentation

 As the report states, the criteria used to select, design, and implement components
may vary signifi cantly across products, depending on product type, operational
environment, performance requirements, support requirements, and cost or delivery
schedules. The task of selecting the fi nal solution makes use of the specifi c practices
in the Decision Analysis and Resolution process area.

 The related process areas and topics relevant to the Technical Solution are:

 • Requirements development
 ° Allocation of system requirements
 ° Development of the operational concept
 ° Interface requirement defi nition

 • Verifi cation
 ° Peer reviews

° Verifi cation that product and product components meet requirements
 • Decision analysis and resolution

 ° Formal evaluation
 • Requirements management

 ° Specifi c practices of requirements management are performed interactively
with those in the Technical Solution process area

 • Organizational innovation and deployment
 ° Improving the organization ’ s technology

 2A.2 DEVELOPMENT PROCESSES IN ISO / IEC AND IEEE / EIA
STANDARDS 12207

 The development process specifi ed in the ISO/IEC and IEEE/EIA Standards 12207
consists of 13 activities [IEEE12207] :

 1. Process implementation,
 2. System requirements analysis,
 3. System architectural design,
 4. Software requirements analysis,
 5. Software architectural design,
 6. Software detailed design,
 7. Software coding and testing,
 8. Software integration,
 9. Software qualifi cation testing,

 10. System integration,
 11. System qualifi cation testing,

 12. Software installation, and
 13. Software acceptance support.

 Section 5.3 of 12207.0 states that the development process typically includes
work activities for requirements analysis, design, coding, integration, testing, and
installation and acceptance of software products. The development process may also
contain system related activities if appropriate and if specifi ed in the contractual
agreement.

 2A.3 TECHNICAL PROCESS PLANS IN IEEE / EIA STANDARD 1058

 IEEE/EIA Standard 1058 for Software Project Management Plans (SPMPs) states
that the Technical process plans will be contained in clause 6 of an SPMP. Items to
be specifi ed include:

 • the development process model,
 • the technical methods, tools, and techniques to be used,
 • plans for establishing and maintaining the project infrastructure; and
 • the product acceptance plan [IEEE1058] .

 2A.4 THE PMI BODY OF KNOWLEDGE

 The PMBOK ® Guide (A Guide to the Project Management Body of Knowledge)
presents an overview of project management processes that are generally applicable
to management of all kinds of project [PMI04] .

 As stated in Appendix D of the Guide, Application Area Extensions provide
additions to the core material that may include new or modifi ed material, elabora-
tions of existing processes, different ways for processes to interact, addition elements
or modifi cations of common process defi nitions, or special inputs, tool and tech-
niques, and/or outputs for existing processes.

 At this time (2009) there is no application area extension in the PMI Body of
Knowledge for managing the various development process models of software
engineering.

2A.4 THE PMI BODY OF KNOWLEDGE 81

 APPENDIX 2B

CONSIDERATIONS FOR SELECTING
AN ITERATIVE - DEVELOPMENT
MODEL 16

 The following tables indicate considerations for choosing among the Incremental -
 build, Evolutionary, Agile, and Spiral development process models based on char-
acteristics of the requirements, the project team, the user community, the project
type, and the risk factors. A “ yes ” indicates that the model would be a good choice
based on the characteristic in question. A “ no ” indicates that the model would not
be a good choice for that characteristic. For example, an Incremental - build model
would be appropriate if the requirements are easily defi ned or well known (yes); an
Evolutionary model would be not be appropriate in this case (no) because Incre-
mental - build is more appropriate. An Agile model might be appropriate, depending
on the desire for daily interactions with the customer (yes). In all cases a Spiral
element can be (should be) added to systematically evaluate alternatives and risk
factors on each iteration of the chosen process model.

82

 16 The tables in this appendix are based on material in Quality Software Project Management by R. Futrell,
D. Shafer and L. Shafer; Prentice Hall, 2002, pp. 147 – 152.

 TABLE 2B.1 Considerations based on characteristics of the requirements

 Requirements Incremental - build Evolutionary Agile

 If the requirements are well known or
easily defi ned

 Yes No Yes

 If the requirements can be defi ned early
in the development cycle

 Yes No No

 If the requirements are likely to change
often during the development cycle

 No Yes Yes

 If demonstrations are needed to develop
the requirements

 No Yes Yes

 If a proof of concept is needed to
determine feasibility

 No Yes No

 If the requirements indicate a large and
complex system

 Yes Yes No

 If early delivery of limited functionality
is desired

 Yes Yes Yes

 TABLE 2B.2 Considerations based on characteristics of the project team

 Project Team Incremental - build Evolutionary Agile

 If most of the team members are new to
the problem domain for the project

 No Yes No

 If most of the team members are new to
the technology domain for the project

 No Yes No

 If most of the team members are
unfamiliar with the tools to be used
on the project

 No Yes No

 If some team members will likely be
reassigned during the project
development cycle

 Yes Yes No

 If the team members will be required to
interact with a customer
representative on a daily basis

 No No Yes

 If the team ’ s progress will be closely
tracked by managers and customer

 Yes No Yes

CONSIDERATIONS FOR SELECTING AN ITERATIVE-DEVELOPMENT MODEL 83

84 PROCESS MODELS FOR SOFTWARE DEVELOPMENT

 TABLE 2B.3 Considerations based on characteristics of the user community

 User Community Incremental - build Evolutionary Agile

 If availability of user representatives
will be limited during the
development cycle

 Yes Yes No

 If user representatives are new to the
concepts of requirements defi nition

 No Yes No

 If user representatives are experts in the
problem domain

 Yes No Yes

 If user representatives want to be
involved in all phases of the
development cycle

 Yes No Yes

 If the customer wants to closely track
progress

 Yes No Yes

 TABLE 2B.4 Considerations based on characteristics of project type and risk factors

 Project Type and Risk Incremental - build Evolutionary Agile

 If the project is a new area for the
organization

 No Yes No

 If the project involves system integration Yes No No
 If the project involves enhancing an

existing system
 Yes No Yes

 If funding is expected to be unstable
during the development cycle

 No Yes Yes

 If high reliability, safety, or security of
the product is essential

 Yes No No

 If the schedule is constrained Yes No Yes
 If external interfaces to other systems

are unstable
 No Yes No

 If reusable components are available Yes No No
 If resources (people, tools, money) are

scarce
 Yes No Yes

85

3
 ESTABLISHING PROJECT
FOUNDATIONS

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 The problem is that we started in the middle. We had to go back and start over at
considerable cost, effort, and pain.

 — from a consulting client

 3.1 INTRODUCTION TO PROJECT FOUNDATIONS

 Getting started on a software project is sometimes called the initiation phase of the
project. A project to develop or modify a software - intensive system is conceived,
initiated, and conducted in the belief that the benefi ts of the resulting system or
product will offset the cost of the project. Sometimes the benefi t is calculated as a
cost/benefi t ratio that accounts for the present value of money, opportunity costs,
and anticipated rate of return on the investment, or as the breakeven point for
number of sales at a stated price. In other instances the benefi ts are less tangible;
they may involve considerations of safety, security, or convenience for a specifi c
population or for society at large. Financial considerations provide the motivation
for projects undertaken by vendors that develop products for sale to the general
public. Considerations of national security are the basis of projects undertaken by
governmental agencies such as the U.S. Department of Defense.

 Sometimes projects are initiated as the result of a bidding process by potential
contractors and award of a contract by an acquirer; sometimes they are based on a
business plan that is consistent with the mission of the organization. At other times
the benefi ts may be speculative or they may be based on political considerations. In
any case, the perceived benefi ts, determined by some criteria, must outweigh the
estimated cost of a project.

86 ESTABLISHING PROJECT FOUNDATIONS

 Successful software projects, like earthquake - resistant buildings, are built on
strong and fl exible foundations; establishing the foundation elements is thus an
important activity during project initiation. Foundation elements for software pro-
jects include foundations for both the product to be delivered and the process by
which it will be developed or modifi ed. The workfl ow model for software projects,
depicted in Figure 1.1 , has inputs of Requirements and Constraints from the cus-
tomer and Directives and Constraints from managers. Project foundations are
derived from these inputs.

 As indicated in Table 3.1 , there are four kinds of product foundations and four
kinds of process foundations. Product foundations include operational require-
ments, system requirements and architecture, software requirements, and design
constraints. An overview of product foundations was presented in Chapter 2 ; they
are elaborated in this chapter.

 Process foundations include a contractual agreement, a model of workfl ow for
managing the project, a process model for software development, and a project plan.
The contractual agreement is presented in this chapter. The workfl ow model for
software projects was presented in Chapter 1 . Selecting and tailoring of software
development models were presented in Chapter 2 . Project planning and the format
and contents of project plans are presented in Chapter 4 .

 3.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises, you should understand:

 • the nature of requirements engineering,
 • determining the scope of a project, and
 • establishing a contractual agreement.

 TABLE 3.1 Foundation elements of software projects

 Concerned with

 Product foundations

 Operational requirements External view; users ’ view of the system
 System requirements and system

architecture
 Hardware, software, and people elements;

interconnections among elements;
interfaces to the environment

 Software requirements Internal view; developers ’ view of the
software to be developed or modifi ed

 Design constraints Predetermined design decisions

 Process foundations

 Contractual agreement Statement of understanding between a
developer and customer

 Workfl ow model Managerial work activities and work
products

 Development model Technical work activities and work products
 Project plan The project roadmap

 Appendix 3A to this chapter presents the relevant elements of CMMI - DEV - v1.2,
ISO/IEC and IEEE/EIA Standards 12207, IEEE/EIA Standard 1058, and the of
PMI Body of Knowledge.

 Terms used in this chapter and throughout this text are defi ned in Appendix A
to the text. Presentation slides for this chapter and other supporting material are
available at the URL listed in the Preface.

 3.3 SOFTWARE ACQUISITION

 Contracting for software is addressed by the fi eld of software acquisition, which is
distinct from software project management; acquisition is concerned with the legally
binding issues involved in contracting with an external customer (the acquirer). An
overview of contractual issues is presented in this section, but these issues are not
considered in detail in this text.

 A contract typically specifi es the scope of a project and legal clauses such as lia-
bilities and penalties for breach of contract. It will likely include a rights - in - data
clause or an intellectual property agreement that specifi es exactly what the customer
is paying for and what will be delivered to, and owned by, the customer. This may
range from object code only, to source code, to code plus design documentation, to
code design documentation, test scenarios and test cases, or to all of the above plus
a copy of the software tools used to develop the software and control its confi gura-
tion. Rights - in - data is a particularly important issue for open source software and
software licensed from a vendor.

 There are several kinds of contracts; for example:

 • fi xed price,
 • time and materials,
 • cost plus fi xed fee, or
 • cost plus incentive fee.

 A fi xed price contract is an agreement by which the customer will pay a specifi ed
amount of money for a system or product containing specifi ed features and quality
attributes. The money may be paid in lump sum upon fi nal delivery of the contracted
work products or it may be paid in increments upon satisfactory achievement of
specifi ed milestones. Because projects to develop or modify software - intensive
systems are high risk endeavors, a fi xed price contract should include a substantial
contingency reserve in the price and the schedule. The contract should also contain
a clause that permits renegotiation of price and schedule when the requirements
are changed by the customer.

 A time and materials contract is an agreement to reimburse the supplier at a
fi xed rate for the effort and resources expended in conducting a project. Different
skill categories may be reimbursed at different rates, and there may be a ceiling
placed on the total amount to be expended. These contracts are sometimes used for
projects to maintain a system on an annual basis.

 A cost plus fi xed fee contract reimburses the cost of conducting the project plus
a fee to cover the cost of expenditures that may be necessary in areas such as the
supplier ’ s infrastructure, acquisition of equipment, or training. In addition the fee
typically includes a specifi ed profi t margin for the supplier.

3.3 SOFTWARE ACQUISITION 87

88 ESTABLISHING PROJECT FOUNDATIONS

 A cost plus incentive fee contract awards the supplier for exceeding the require-
ments and/or developing or modifying a software - intensive system at less cost and
in less time than specifi ed in the contract. Many contractors who do business with
governmental agencies rely on incentive fees to provide a margin of profi t.

 For more information on acquisition topics, see the CMMI - ACQ - v1.2 process
model that has been developed and released by the Software Engineering Institute
 [ACQ07] . CMMI - ACQ - v1.2 “ focuses on acquirer processes and integrates bodies
of knowledge that are essential for successful acquisitions. ” Additional information
on software and systems acquisition can be found in other references, such as
[SACMM02] and [CMMIAM05] .

 3.4 REQUIREMENTS ENGINEERING

 Requirements provide the basis for all that follows on a software project. Therefore
it is important that you, the project manager, understand the nature of requirements
engineering and be involved in the requirements engineering process. Product foun-
dations in CMMI - DEV - v1.2, for example, include requirements development and
requirements management [CMMI06] .

 Requirements development encompasses the following kinds of activities:

 • elicitation: understanding user needs, customer expectations, and acquirer ’ s
conditions and documenting them in a Concept of Operations document

 • analysis: translating user needs, customer expectations, and acquirer ’ s condi-
tions into technical requirements for hardware, software, and people
elements

 • allocation: allocating requirements to the hardware, software, and people
elements of the system

 • specifi cation: documenting technical requirements in standard notations and
formats; recorded in a Technical Specifi cations document

 • verifi cation: determining that the Technical Specifi cations are correct, complete,
and consistent with respect to the Concept of Operations

 • negotiation: give - and - take discussions among stakeholders to achieve consen-
sus views

 • acceptance: commitment to a requirements baseline, by all involved stakehold-
ers, that accounts for the constraints of schedule, budget, resources, technology,
and risk factors

 Requirements management is concerned with managing the evolving require-
ments baseline during system development. An important aspect of requirements
management is impact analysis , which is concerned with assessing the need for and
making necessary changes to schedules, budgets, resources, technology, and risk
factors commensurate with changes to baselined requirements.

 If your project involves specifying hardware requirements and requirements for
manual operations (i.e., those performed by people) in addition to the software
requirements, as in a complex software - intensive system, you and your lead designer
(software architect) should be members of the system engineering team. If the

3.4 REQUIREMENTS ENGINEERING 89

project is software - only, you may be responsible for developing the requirements,
or the requirements may be developed by a system analyst (or an analysis team)
and provided to you as the starting point for your project.

 In general, there are several kinds of product requirements, as illustrated in
Figure 3.1 and discussed in the following sections. A process - fl ow diagram for
requirements engineering is depicted in Figure 3.2 ; work activities are indicated in
italics and work products in bold.

 3.4.1 Requirements Development

 As illustrated in Figure 3.2 , requirements development consists of requirements
elicitation, requirements analysis, and requirements acceptance. Users ’ needs
and customer ’ s expectations that include desired product features and quality attri-
butes provide the inputs to requirements elicitation. The operational requirements

 FIGURE 3.1 A taxonomy of product requirements

Operational
Features

Technical
Specifications

Derived
Requirements

Primary
Requirements

Design
Constraints

Quality
Attributes

Design
Constraints

Operational
Requirements

Design
Goals

 FIGURE 3.2 Process - fl ow of requirements engineering

Technical
Specifications

Concept of
Operations

Requirements
Elicitation

Requirements
Analysis

Requirements
Acceptance

Negotiation

Impact
Analysis

Requirements
Baseline

Change Requests

Users’ Needs &,
Customer’s Expectations

Acquirer’s Conditions
& Design Constraints

Requirements
Management

Requirements
Verification

Process
Constraints

Baseline
Control

work activity work product

90 ESTABLISHING PROJECT FOUNDATIONS

that result from requirements elicitation are documented in a Concept of Opera-
tions that, along with the acquirer ’ s conditions and the design constraints, provide
the input to requirements analysis.

 Elicitation and analysis typically require negotiation with users and customer.
The analysis activity produces the technical specifi cations, which, along with the
process constraints, provide the input to requirements acceptance. As illustrated in
Figure 3.1 , technical specifi cations include primary requirements, derived require-
ments, design goals, and design constraints. Distinctions among the four categories
of technical specifi cations are described in Section 3.4.3 .

 Requirements verifi cation determines the degree to which the technical specifi ca-
tions are correct, complete, and consistent with respect to the operational require-
ments and process constraints; it is a necessary activity of requirements acceptance.
Completeness of technical specifi cations is determined by showing that they cover
all of the operational requirements; traceability matrices that document the corre-
spondences of operational requirements to technical specifi cations are often used
for this purpose.

 Verifi cation of work products requires that each work product not only cover the
work products completely from which it is derived but also covers them correctly
and consistently. Determining the correctness of operational requirements requires
expertise in the users ’ domain; for example, is it true that debits and credits must
always balance in a fi nancial transaction system or are there some conditions under
which they may disagree? Determining the correctness of technical specifi cation
would include answering questions such as: Is the way in which debits and credits
are to be handled correctly stated in the technical specifi cations?

 Consistency (the third verifi cation condition) requires that there be no external
inconsistencies in the relationships among work products and no internal incon-
sistencies within work products. An external inconsistency would be detected if,
for example, the operational requirements stated that the server in an Automated
Teller System must be available at all times (24 × 7) and the technical specifi cations
stated the ATS server shall provide an availability rating of 0.9, thus allowing the
system to be unavailable 10% of the time. An internal inconsistency in the require-
ments would exist if an interface parameter for the database specifi ed a parameter
in dollars while the corresponding parameter in the withdraw operation specifi ed
the parameter in euros. Taxonomies of problems in requirements can be used as
checklists for verifying the requirements. A typical checklist is presented in Table
 3.2 [HAYES03] .

 As illustrated in Figure 3.2 , the output of requirements acceptance is a require-
ments baseline, which provides the input to requirements management (i.e., the
Concept of Operations and the Technical Specifi cations are placed under baseline
control). Change requests initiate changes to the requirements baseline, which
should only be changed as the result of impact analysis and appropriate adjustments
to some or all the operational requirements, design constraints, technical specifi ca-
tions, and process constraints. The activities depicted in Figure 3.2 may occur
multiple times in an iterative development process.

 Elicitation of Operational Requirements As illustrated in Figure 3.2 (and Figures
 2.1 and 2.5), users have needs, customers have expectations, and acquirers have
conditions. Users of Automated Teller Machines (you and I, the end users of ATMs)

3.4 REQUIREMENTS ENGINEERING 91

 TABLE 3.2 Taxonomy of requirements problems and examples

 Problem Category Examples

 Incorrect Incorrect statement of an operational requirement
 Incorrect translation of an operational requirement into a

technical specifi cation
 Incorrect value or variable in a requirement
 Incorrect external constants
 Overstating or understating the computing resources assigned to

a requirement
 Incorrect description of initial system state

 Incomplete Omitted requirement
 Incomplete decomposition of a requirement
 Incomplete description of a requirement
 Failure to fully describe system input or output
 Failure to specify the initial state
 Incomplete description of initial system state

 Inconsistent Requirements that are pairwise inconsistent
 Requirements for concurrent processes, when taken pairwise, are

incompatible
 Ambiguous Meaning of requirement is unclear

 Requirements stated in a manner that is diffi cult to understand
 Infeasible Requirement impossible to achieve given the state of technology

 Requirement impossible to achieve given the current science of
algorithms

 Requirement impossible to achieve given the current skills of our
software developers

 Requirement impossible to achieve given other system factors
such as processor speed or available memory

 Diffi cult to achieve Requirement that will be diffi cult to implement with available
resources, schedule, and technology

 Requirement that will be diffi cult to achieve given the current
skills of our software developers

 Overspecifi ed Requirement exceeds operational needs, causing additional cost
 Overly constrained Constraints on performance and reliability excessive for the

operational need, causing additional cost
 Not traced Requirement has not been traced to previous or subsequent

phases
 Requirement cannot be traced to previous or subsequent phases

 Not verifi able Completeness, correctness, and consistency of the requirement
cannot be verifi ed by any reasonable verifi cation method

 Cannot be validated Requirement not stated in a manner that provides validation
criteria for implemented software

 Misplaced
requirement

 Requirement belongs in another section of the document

 Redundant
requirement

 Requirement specifi ed elsewhere in the specifi cation

 Inappropriate
information

 Schedule, budget, training plans, and other items that belong in
other documents

92 ESTABLISHING PROJECT FOUNDATIONS

have needs that range from obtaining cash at convenient times and locations to
making deposits and transferring funds between accounts. Customers (the fi nancial
institutions that acquire ATM systems) may have expectations of increased cus-
tomer satisfaction for their customers (you and me), fewer operational personnel,
and less paperwork associated with customer accounts. End users (you and I) may
be well - pleased with the ATM system but the fi nancial institution may fi nd they
need more operational personnel and have more paperwork than before. It is thus
possible to satisfy user needs and not satisfy customer expectations, and vice versa.
An acquirer (who also may or may not be the customer, who also may or may not
be a user) typically has conditions that specify constraints on process factors such
as schedule and budget.

 The needs and expectations of stakeholders other than end users and customers
must also be taken into consideration. Other stakeholders include those who
affect or are affected by the proposed system. Operations personnel for an ATM
system, for example, are stakeholders. They include bank tellers, other personnel
who work in the fi nancial institution, and those who provide operational support
for the machines, including the personnel who confi gure the machines, load money
into them, check the operation of the machines, and repair them when they
malfunction.

 These operations personnel (tellers and operations support) are not classifi ed as
end users of the system because they are under control of the customer; they can
be recruited, trained, supervised, and dismissed by the customer. In this sense they
are part of the system and not part of the operational environment of the system.
Users of an ATM system (you and I) are not under control of the customer; we are
thus elements of the operational environment.

 The process of determining user needs and customer expectations is known as
requirements elicitation. There are many techniques for eliciting operational require-
ments. Some of the more widely used techniques include the following:

 • introspection: what would I want/need/desire if I were a user of the proposed
system?

 • brainstorming: free association and generation of ideas for the proposed
system

 • Post - It notes and white board: create, modify, group, and rearrange statements
of needs and desires

 • paper prototypes and storyboards: construct interfaces and operational
scenarios.

 • questionnaires: which of the following features do you need/desire?
 • observation: watch people performing their work tasks
 • open - ended interviews: tell me how you would use the proposed system
 • focus groups: please tell us what you would want/need/desire in the proposed

system
 • operational walkthroughs: development of scenarios by interacting with users
 • demonstrations: how to you like this interface? what should be added/

removed/changed?
 • protocol analysis: document the tasks users perform and the features they

would need in the proposed system

3.4 REQUIREMENTS ENGINEERING 93

 • business case analysis: what features are needed to support the operations of
our business?

 • JAD (joint application development) sessions: facilitated meetings with users

 More information on requirements elicitation can be found in the following
references: [LEFF03] , [ROBERT06] [WEIGER03] .

 The Concept of Operations (C on O ps) The document in which operational require-
ments are recorded is termed the Concept of Operations (ConOps). Other names
for this document include Operational Concepts Document (OCD) and Vision
Statement. The format and contents of Concept of Operations documents are speci-
fi ed in IEEE Standard 1362 ™ – 1998 IEEE Guide for Information Technology –
 System Defi nition – Concept of Operations (ConOps) Document [IEEE1362] .

 Contents of a ConOps include the following:

 • needs and expectations that motivate development of a new system or
modifi cation of an existing system

 • an operational vision for the proposed system
 • modes of operation for the proposed system
 • user classes and characteristics
 • kinds of and characteristics of operations personnel
 • operational requirements
 • operational scenarios
 • prioritized system features and quality attributes
 • impact of the proposed system on the development, operational, and

maintenance environments

 User needs and customer expectations provide the impetus for undertaking a soft-
ware project. The ConOps should include a description of the defi ciencies in the
existing system or situation that provides the motivation for modifying an existing
system or developing an automated system to replace or augment manual
operations.

 An operational vision of the proposed system includes a narrative overview of
the system in its operational environment. This information is sometimes contained
in a mission statement or a marketing proposal; it may be fully contained in the
ConOps or summarized in the ConOps and fully described in a referenced docu-
ment. Different modes of operation provide different sets of behaviors for different
situations and different kinds of users. An ATM, for example, might have an on -
 line – normal mode, and on - line – assisted mode, on - line – degraded mode, an off - line –
 confi guration mode, and an off - line – diagnostic mode.

 Different modes of operation are often associated with different classes of
users and operational personnel. The on - line – degraded mode might allow limited
usage of an ATM when the communication link to the server is unavailable; for
example, accepting deposits for later posting to an account or limiting cash dispensa-
tion to $ 50 USD or less during periods of communication outage. The on - line –
 assisted mode of an ATM might be specifi ed to support users who need augmented

94 ESTABLISHING PROJECT FOUNDATIONS

support to see or hear when operating the machines. The off - line – confi guration
mode might be specifi ed to allow operational maintainers to load money into the
bins of the ATM and record the amount of money loaded into each bin. Diagnostic
mode would check the operation of the system, including the communication link
and the peripheral devices such as the camera, printer, card reader, and money
dispenser.

 Operational requirements and operational scenarios are the heart of a ConOps;
they express the desired system features and quality requirements from the external
viewpoint of users ’ needs and customer ’ s expectations. Each operational scenario
is a description of a step - by - step sequence of interactions for a transaction between
a class of users or operational personnel and a software - intensive system. Examples
of transactions include a user withdrawing money from an ATM or a bank teller
setting up a new user account. Depositing money is a different scenario than with-
drawing money because these are distinct user tasks.

 Operational scenarios describe step - by - step interactions between an external
agent (i.e., a user) and internal elements of a system. Operational scenarios should
include scenarios for normal operation of the system by its intended users, plus
scenarios for exception handling, degraded responses, generation of reports, recon-
ciliation of data, and maintenance activities, as appropriate. Techniques for docu-
menting operational scenarios include numbered lists of sequential interactions,
sequence diagrams, and state diagrams [RUMB98] .

 Use cases are often used to document operational scenarios; a template for, and
an example of a use case is provided in Table 3.3 . Additional details concerning use
cases are presented in the sidebar “ Assessing Use Cases ” in Chapter 7 of this text.
Quality requirements that apply to a use case can be documented in the Comments
section, for example, “ good response time ” during User Logon.

 Quality requirements, as expressed by users and customers, are often vague,
imprecise, and ambiguous. Users may, for example, express a desire for a system
that is highly reliable and easy to use. During requirements analysis these statements

 TABLE 3.3 Use case template and example

 Use case ID: ATM #34
 Use case name: User Logon
 Actor that initiates the use case: Bank customer
 Other actors, if any: none
 Statement of the purpose of this use case:

 this use case documents the way bank customers log onto an ATM
 Preconditions (must be true before this use case can be “ executed ”):

 customer has a valid bank card and PIN (personal identifi cation number)
 Primary scenario (to describe the main action of the use case):

 can be documented using a sequence diagram, state diagram, or narrative
 Post - conditions (what must be true after this use case “ executes ”):

 customer is logged on OR customer has received a sorry message
 Alternative scenarios (exception handling):

 invalid bank card; incorrect PIN; invalid account number; ATM is off - line
 Comments: this use case belongs to Initiate Transaction. The ATM should have good

response time during User Logon.

3.4 REQUIREMENTS ENGINEERING 95

must be translated into technical specifi cations from which objective verifi cation
and validation criteria for the deliverable system can be derived; however, users and
customers should be encouraged to express quality attributes in whatever terms are
meaningful to them because their quality statements express, however imprecisely,
user needs and customer expectations. Failure to satisfy their perceived needs and
expectations can result in rejection of the delivered system by the customer or
failure of users to adopt the product when it is installed in the operational
environment.

 As an example of the distinction between operational requirements and technical
specifi cations, an operational requirement might be expressed as:

 3.6 The ATM terminals in the Automated Teller System shall provide good response
time.

 This operational requirement, as expressed by the customer may be, after consid-
erations of user satisfaction, project schedule, effort, cost, and technology translated
into the following technical specifi cation:

 3.6 The ATM terminals in the Automated Teller System shall provide:

 • an average response time of 2 seconds and a maximum response time of 5
seconds for transaction initiation and balance inquiries

 • an average response time of 5 seconds and a maximum response time of 10
seconds for withdrawal and deposit requests.

 Average and maximum response times shall be determined for a 1 hour period of
operation during which a random mix of 3000 balance inquiries, withdrawal requests,
and deposit requests are processed.

 These response times shall be measured when 50 terminals are concurrently active and
the server is running at an average load factor of 80%.

 A prototype of the ATM user interface that provides the indicated response times
could be built to demonstrate the response times to user representatives and the
customer so that an agreement can be reached that the specifi ed response times
would be acceptable.

 Establishing priorities among system features and quality attributes is an impor-
tant step because users, customers, and other stakeholders will typically have more
needs, expectations, and desires than can be implemented within the constraints of
time, money, resources, and technology. One way to prioritize operational require-
ments is to fi rst itemize them and then place each requirement in the category of
Essential, Desirable, or Optional. Each itemized requirement should be a simple
declarative statement that contains no “ ands, ” “ ors, ” “ ifs, ” or “ buts. ”

 Essential requirements are those features and quality attributes that must be
provided if the system is to satisfy basic user needs and customer expectations.
Essential requirements for an ATM system might include the following:

 E1: allow bank tellers to create user accounts
 E2: provide a secure mechanism for users to access their accounts
 E3: allow users to withdraw money from their accounts

96 ESTABLISHING PROJECT FOUNDATIONS

 All essential requirements must be implemented; prioritization of essential require-
ments provides a basis for iterative development.

 Desirable requirements are those that add value to the system. They are imple-
mented in decreasing order as time, resources, and technology permit. Examples
for an Automated Teller System, in priority order, might provide users with the
ability to:

 D1: deposit money into an account
 D2: access both savings and checking accounts
 D3: access credit card accounts
 D4: have pre - authorized credit limits for overdrafts

 Optional requirements might include the ability to:

 O1: purchase postage stamps through the ATM interface
 O2: pay utility bills through the ATM interface

 Techniques for developing priorities among operational requirements include the
Delphi approach [Boehm81] , Quality Function Deployment (QFD) [COHEN95] ,
and the Analytical Hierarchy Process (AHP) [MIND95] , [SAATY05] .

 Your initial project plan must provide suffi cient schedule, budget, and resources
to implement the Essential requirements and as many of the Desirable ones as can
be accommodated within the project constraints (subject to negotiation with and
agreement of the customer). Optional requirements are those that might be imple-
mented if there is suffi cient time and resources and/or if they are easy to incorporate.
An important role for Optional requirements is to document ideas for features that
might be included in future versions of the system and ideas that are too “ far out ”
for today ’ s users and technologies. Requirements triage is another technique for
determining which requirements a product should satisfy given the time and
resources available to develop the product [DAVIS03] .

 It is also important to document in the ConOps the impact of the proposed
system on the development, operational, and maintenance environments. The devel-
opers of the new or modifi ed system may have to maintain the old system while
developing the new one. The customer and user representatives will have to allocate
time to meet with the developers, to try out proposed user interfaces, to view dem-
onstrations, and to critique the evolving system. New operational facilities may have
to be constructed, as in physical locations for ATM machines or control rooms for
nuclear reactors or spacecraft. Operational impacts might include setting up new
help desks and training of support personnel for applications packages or, in the
case of ATMs, hiring and training of operations support personnel and training of
bank tellers. Impacts on the maintenance environment for the system may include
acquisition of maintenance equipment, construction of maintenance facilities, and
hiring and training of maintenance personnel.

 3.4.2 Requirements Analysis

 You may fi nd that the operational requirements for your project are stated in a
vague, imprecise, and/or ambiguous manner. Such statements are termed “ design

3.4 REQUIREMENTS ENGINEERING 97

goals. ” The process of requirements analysis is concerned with clarifying operational
requirements and restating them in terms that provide objective criteria that can be
used to verify and validate that the specifi ed system, when it is ready for delivery,
will be complete, correct, and consistent with respect to the objectively stated
requirements (verifi cation) and that it will satisfy its intended purpose in its intended
environment (validation).

 You, the project manager, must not accept design goals as binding requirements.
To avoid this, you and your customer might agree, for example, that “ user friendly ”
means the system should be easy to learn and easy to use for a certain class of users.
You and your customer might further agree that “ user friendly ” will be established
by conducting experiments with a population of typical users to assess whether they
can learn to perform, and repeatedly perform, specifi ed tasks within specifi ed periods
of time.

 For example, an experiment might involve selecting, at random, 30 typical users
of a point - of - sale system such as those used in supermarkets and discount stores. It
could be agreed that the “ user friendly ” criterion would be satisfi ed if 27 of 30 users
can, after a 4 hour training course, successfully complete a set of specifi ed operations
within 30 minutes and can successfully complete the operations again one week
later after a 20 minute refresher class. The experiment might be conducted with an
early prototype of the user interface to provide feedback to the software developers
and again when verifying and validating the delivered system. In this manner the
design goal of “ user friendly ” has been converted into a requirement that can be
validated by objective means. It may be possible to specify objective criteria for
many of the operational requirements in a similar manner.

 Some operational requirements describe functionality to be provided; for
example:

 3.4 The Automated Teller Terminals must provide a mechanism for authorizing access
to individual customer accounts.

and

 3.5 ATM terminals must provide a quick cash option.

 The method of authorizing customers ’ access to their accounts (e.g., thumb print,
retinal scan, voice recognition, or ATM card and PIN) would be determined by
prototyping, feasibility studies, and discussions with the customer and user repre-
sentatives. Operational requirement 3.4 might be restated as a primary requirement
in the technical specifi cations:

 3.4 ATM cards and PINs shall be the mechanism used to authorize access to
individual customer accounts.

 Or, the requirement might be stated more precisely as:

 3.4 ATM cards having the physical dimensions of a credit card and PINs consisting
of six alphanumeric symbols will be the mechanism used to authorize access to
individual customer accounts.

98 ESTABLISHING PROJECT FOUNDATIONS

 Details concerning the information to be encoded on an ATM card would also be
stated.

 Operational requirement 3.5 might be restated as:

 3.5 ATM terminals shall provide a “ quick cash ” withdrawal option that provides $ 100
USD in denominations of $ 20 USD. Multiple transactions will not be allowed in
quick cash withdrawals.

 Note that more precise statements of technical specifi cations restrict the design
space from which solutions can be synthesized but, at the same time, provide more
specifi c expressions of users ’ needs and customer ’ s expectations. They also provide
more specifi c guidance to the system developers and provide objective validation
criteria.

 It may not be possible to restate every design goal in an objective manner. For
example, it may not be practical or even possible to objectively establish that the
delivered system is the “ world ’ s best fi nancial transaction system ” or the “ most
realistic fl ight simulator ever built. ” In these cases the design goals, while not stated
in an objective manner, may nevertheless infl uence design decisions and other
factors such as schedules, budgets, and the features and quality attributes of the
product. If, for example, “ best ” is taken to mean “ has more user features than com-
parable systems, ” this would indicate that number of features to be implemented is
of higher priority than cost or schedule; given design alternative A or B, the alterna-
tive that provides the larger number of features would be chosen. Design goals can
thus infl uence the development of a system, but they are not, and must not be,
binding requirements.

 3.4.3 Technical Specifi cations

 As illustrated in Figure 3.1 , there are three kinds of operational requirements and
4 kinds of technical specifi cations for software. The operational requirements
include:

 • operational features,
 • quality attributes, and
 • design constraints.

 The technical specifi cations, which are derived from the operational requirements,
include:

 • primary requirements,
 • derived requirements,
 • design goals, and
 • design constraints.

 Each of the four kinds of technical specifi cations (primary requirements, derived
requirements, design goals, and design constraints) should be separately identifi ed
and listed within their own category.

3.4 REQUIREMENTS ENGINEERING 99

 Primary requirements are operational features that have been translated into
objectively stated specifi cations; they include both functional requirements and
quality requirements. The second versions of requirements 3.4 and 3.5 (above) are
examples of primary requirements. Some operational requirements may be stated
in an objective, verifi able manner; those operational requirements become primary
requirements or design constraints without further translation.

 As another example of the distinction between operational requirements and
technical specifi cations, the operational requirements for a driving system simulator
might specify that the simulator should be capable of simulating a variety of driving
conditions, including clear and dry conditions as well as rain, ice, snow, and fog
conditions. The corresponding technical specifi cations might state that the coeffi -
cient of friction in the vehicle stability equations must be variable between 0.0 and
1.0, that visual acuity in the simulated fi eld of vision must be variable between 3
feet and infi nity, and that both variables must be controllable from an instructor ’ s
console.

 Both statements are necessary. In this example, the external view (operational
requirement) states, for users, customers, acquirer, developers, and other stake-
holders, the operational characteristics of the system to be built. The internal view
(technical specifi cation) provides the foundation for design, implementation, and
verifi cation that the deliverable system is complete, correct, and consistent with
respect to its technical specifi cations, design documentation, and code. The opera-
tional requirement (capable of simulating a variety of driving conditions, including
clear and dry conditions or rain, ice, snow, and fog conditions) provides validation
criteria for determining the degree to which the system will satisfy user needs and
customer expectation when placed in the operational environment.

 In many cases requirements engineers attempt to use one document to specify
both the external (operational) and internal (technical) requirements. This often
results in a document that is too technical for users and customers to understand
or too vague to be of use to the developers. Experience has shown that it is
more effi cient and more effective to develop two distinct documents for two
distinct purposes: the Concept of Operations to document the operational
requirements and the Requirements Specifi cation to document the technical require-
ments. Of course, the correspondences between the two documents must be estab-
lished and maintained. Traceability matrices are often used for this purpose (see
Table 3.6).

 Figure 3.3 illustrates tracking of the translation process from operational features
to primary requirements. An operational requirement may translate into more than
one primary requirement. In this case the operational feature should be decom-
posed so that each operational feature is translated to one and only one primary
requirement. Otherwise, some elements of some operational features may be imple-
mented more than once by different developers or development teams, and some
elements may be omitted if the mapping of an operational requirement to multiple
primary requirements is not complete and one to one. Satisfaction of this condition
may require some reorganization and decomposition of the operational require-
ments. Figure 3.3 indicates that some operational requirements do not have corre-
sponding primary requirements; perhaps the translation process is not completed
or perhaps the translation process is completed and those operational requirements
that do not have corresponding primary requirements are design goals.

100 ESTABLISHING PROJECT FOUNDATIONS

 Translating operational features into primary requirements requires some time
and effort; research, analysis, and prototyping may be required to understand the
effort, schedule, technical feasibility, cost, and levels of acceptability to users of dif-
ferent levels of quantifi cation of requirements. In a similar manner, translating
design constraints from operational requirements to technical specifi cations may
require some effort to determine acceptable trade - offs between levels of quantifi ca-
tion and effort, schedule, technical feasibility, cost, and user acceptance. Some opera-
tional requirements may remain as design goals for an extended period of time until
acceptable, quantifi ed values of the corresponding technical specifi cations can be
determined. Translation of operational requirements into technical specifi cations
may be an ongoing process.

 Note also that the number of operational features continues to grow over time
in Figure 3.3 ; this may be caused by:

 • decomposition of the operational requirements to fi ner levels of detail, or
 • “ scope creep ” in which requirements are increasing without corresponding

adjustments to schedule, budget, and/or resources (bad), or
 • ongoing redefi nition of project scope, schedule, budget, and resources to meet

changing user needs or market conditions, which is acceptable, as long as
stakeholders are in agreement.

 Derived requirements (the second kind of technical specifi cation) are require-
ments for system features and quality attributes that are not visible to users but are
necessary to support the operational requirements. Derived requirements are
included in the technical specifi cations for two reasons:

 1. to decompose high - level operational requirements into detailed technical
specifi cations, and

 2. to provide additional capabilities needed to satisfy operational requirements.

 An extreme example of the fi rst situation (decomposition of high - level opera-
tional requirements) would be derivation of the technical specifi cations for an
Automated Teller System based on a single operational requirement:

 FIGURE 3.3 Operational features and primary requirements

250

200

150

100

50

0

3rd Wk TIME1st Wk 2nd Wk 4th Wk

of primary
requirements

of operational
features

3.4 REQUIREMENTS ENGINEERING 101

 3.0 The Automated Teller System shall provide the features, performance, and quality
attributes typically provided by such systems.

 Or, famously, the single operational requirement stated by U.S. President Kennedy
in 1961:

 to put a man on the moon and return him safely to the Earth by the end of this
decade.

 As an example of providing a derived capability to satisfy an operational
requirement, the operational requirement might state:

 2.9 Each ATM transaction shall provide to the user a printed receipt containing a
record of the transaction that includes the date and time of the transaction.

 A derived requirement must be added to the technical specifi cations to specify
a clock function that will be accessed when printing customer receipts. The derived
requirement would specify a clock function having the necessary resolution
and allowable drift (e.g., a resolution of 1 millisecond and drift of not more than
5 milliseconds per day). The derived clock requirement might be allocated as a
hardware requirement, as a software requirement, or it might result in specifi cation
of the hardware and software required to obtain accurate time from an external
source such as a central server, a universal time standard, or the GPS satellite
system.

 As mentioned previously, requirements stated in a manner that does not support
objectively stated verifi cation and validation criteria are classifi ed as design goals.
Design goals are thus operational requirements that have not yet been, or cannot
be, translated into objectively stated technical specifi cations. Each design goal should
be examined for possible translation into one of the other three categories (primary
requirement, derived requirement, or design constraint). It may be possible to trans-
late some design goals, as in the previous example of “ user friendly ” , into objective
specifi cations. Other requirements such as “ world ’ s best fi nancial transaction system ”
may not be quantifi able and will thus remain as design goals. Those that cannot be
translated must not be binding requirements used to determine acceptability of the
delivered product.

 It may not be possible to translate design goals into technical specifi cations
during the initial stages of requirements development because of uncertainties
about the cost, schedule, and feasibility of implementing various levels of quantifi ca-
tion. For example, prototyping and feasibility studies may reveal that achieving an
average response time of 2 seconds and a maximum response time of 5 seconds for
balance inquiries in the Automated Teller System when 50 terminals are active and
the server is running at 80% load capacity will require expensive technology (i.e.,
CPUs in the terminals, communication bandwidth, server capacity, speed of access
to the customer - accounts database); however, an average response time of 4 seconds
and a maximum response time of 8 seconds could be achieved for much less cost.
Given the trade - off between cost and performance, the customer may agree to the
less stringent performance parameters. The more expensive performance option
might be chosen if the system were a mission critical system such as an air traffi c

102 ESTABLISHING PROJECT FOUNDATIONS

control system for communication between air traffi c controllers and pilots, rather
than an automated teller system.

 As stated above, it may never be possible to translate some design goals into
quantifi ed requirements. Suppose, for example that an operational requirement
states:

 4.1 The order processing system shall be the best in the world.

 The problem with this requirement is that it is not feasible to study all order pro-
cessing systems in the world and quantify “ best in the world ” and as a result, the
requirements engineer should not accept the contractually binding “ shall ” in the
statement. Nevertheless, this design goal expresses a desired outcome and should
be accepted as a nonbinding requirement that will determine the priorities among
cost, schedule, features, design options, and the technology to be utilized. Or, this
design goal may be dropped when the reality of the cost and schedule to build a
system that approximates “ the world ’ s best ” are presented to the customer.

 Design constraints are the fourth category of technical specifi cation. A design
constraint is a design decision stated in the requirements and for which no fl exibility
in design or implementation is allowed, as for example:

 3.12 The merge - sort algorithm shall be used to reconcile customer - account data on a
daily basis.

 Imprecisely stated design constraints must be clarifi ed. For example, which customer
data are to be reconciled? Reconciled with what? Why must the mergesort algo-
rithm be used? Is it important to state the time of day when the data are to be
reconciled?

 Design constraints may also specify operations that the system must not do, for
example:

 3.17 Withdrawals from each customer account shall not exceed $ 500 USD in any 24
hour period.

 Failure to incorporate this feature in the design of the system could result in signifi -
cant rework to incorporate it during verifi cation and validation of the delivered
system. Design constraints, as stated in the operational requirements, may be vague,
imprecise, and/or overly restrictive, but in the technical specifi cations they must be
stated in a manner that is achievable and that permits objective verifi cation of the
technical specifi cations.

 A (questionable) design constraint might be stated as follows:

 7.3 The customer - transaction database will be updated between 12:00 and 1:00 AM
each day, using the merge - sort algorithm.

 This design constraint is questionable on several counts:

 • First, the operational detail of precisely when the data are sorted does not
belong in the requirements documentation; it should be stated in an operations
manual. It should also be questioned as to the necessity of the time constraint

3.4 REQUIREMENTS ENGINEERING 103

of 12:00 to 1:00 AM when the Ops manual is reviewed by operations
personnel.

 • Second, the feasibility of completing the data sort in a 1 hour period when the
server is (presumably) running with a small number of active terminals and a
low percentage of CPU usage (i.e., late night) must be determined.

 • Third, “ small number of active terminals ” and “ low percentage of CPU usage ”
must be quantifi ed, perhaps after some analysis, and specifi ed in primary
requirements that corresponds to operational requirement 7.3 above.

 • Fourth, the necessity of using the merge - sort algorithm should be clarifi ed.

 On the other hand, a design constraint of the following form may be necessary to
provide a required interface of an Automated Teller System:

 4.4 The bank - teller interface shall provide an SQL query capability for accessing the
customer - accounts database.

 Each design constraint restricts the design space available to the software design-
ers and may result in a suboptimal design of the system. 17 Design constraints should
therefore:

 • be identifi ed as such,
 • have their necessity justifi ed,
 • provide fl exibility, if any, and
 • be restated in an objective manner.

 During the design phase, alternative approaches to satisfying the constraint, if they
exist, should be identifi ed and analyzed. The derived requirement for a clock func-
tion in the ATM machines, for example, does not restrict alternative approaches to
providing that functionality. If, however, the requirement were stated as a design
constraint that required the date and time of transactions to be obtained from a
universal time standard, it would preclude the options of obtaining time from the
ATS server, the internal clock of the ATM ’ s CPU, from GPS satellites, or from
another source. One of these options might be a better design choice within the
context of the ATS client - server software architecture.

 In some cases (e.g., a Web - based user - intensive system), the operational require-
ments, when translated into primary requirements, may provide an adequate basis
for building a software - intensive system. But often you will fi nd it necessary to
include derived requirements and quantifi ed design constraints to facilitate imple-
mentation of the directly translated operational requirements and design constraints
and to, for example, ensure interoperability of your system with other systems. In
other cases, you may receive high - level operational requirements and design con-
straints from a marketing, system engineering, or hardware group. In these cases
you will fi nd it is necessary to decompose and quantify the operational requirements,
add derived requirements, and clarify the design constraints in order to provide an

 17 An optimal system design achieves the best possible balance among prioritized features and quality
attributes. A suboptimal design is one that optimizes particular features or quality attributes at the
expense of others.

104 ESTABLISHING PROJECT FOUNDATIONS

adequate basis for developing and implementing plans to accomplish software
design, implementation, and verifi cation and validation.

 Documenting Technical Specifi cations The categories listed in Table 3.4 can be
used to organize and document technical specifi cations.

 IEEE Standard 830 ™ – 1998 is a “ Recommended Practice for Software Require-
ments Specifi cations ” [IEEE830] . Table 3.5 lists the specifi c requirements to be
documented in section 3 of a Software Requirements Specifi cation that conforms
to IEEE 830.

 As indicated in Table 3.5 , performance requirements are to be stated in quantita-
tive terms. Static performance requirements include items such as the number of
terminals to be supported; for example, “ the system shall support 50 user terminals. ”
This is similar to the “ capacities ” category in Table 3.3 . Dynamic performance
requirements specify factors such as the number of transactions to be processed in
a given time period; for example “ 90% of transactions shall complete in less than 1
second when 50 user terminals are concurrently active, ” which would be classifi ed
as a design constraint using the categories in Table 3.3 .

 The categories of technical specifi cations in Tables 3.4 and 3.5 can be organized
in various ways in a requirements specifi cation document. Technical specifi cations
for a scientifi c data processing system might be organized by listing the input – output
functions the system must perform at the top level with other categories, such as
interfaces, behavior, and performance specifi ed for each input – output function;
a user - intensive system might be organized by specifying windows, menus, and

 TABLE 3.4 Categories of technical specifi cations

 Category Description

 Interfaces To the environment and other subsystems
 Functions Stimulus – response pairs
 Performance Response time; throughput
 Behavior Sequences of system states over time
 Capacities Data; communication; memory
 Design constraints Predetermined design decisions
 Quality attributes Safety; security; reliability; others

 TABLE 3.5 Specifi c requirements in IEEE Standard 830 – 1998

 Specifi c Requirements Description

 External interfaces Inputs into and outputs from the software system
 Functions Actions taken in accepting and processing inputs

and generating outputs
 Performance requirements Static and dynamic quantifi ed requirements
 Logical database requirements Requirements for information to be placed into a

database
 Design constraints Constraints imposed by conformance to standards,

hardware limitations, etc.
 Software system attributes Reliability; availability; security; maintainability;

portability

3.4 REQUIREMENTS ENGINEERING 105

modes of interaction for each user interface with other categories of requirements
subordinated within the interface specifi cation; the technical specifi cations for a
real - time system might be organized by behaviors. Annex A of IEEE Standard
830 ™ – 1998 provides several alternative ways of organizing the information in
Tables 3.4 and 3.5 .

 3.4.4 Requirements Verifi cation

 In general, verifi cation is concerned with determining the degree to which a work
product satisfi es the conditions and constraints placed on it by other work products
and work processes. This means the work product must be complete, correct, and
consistent with respect to other work products and work processes. There are three
distinct areas of requirements verifi cation:

 1. determining the internal completeness, correctness, and consistency of each of
operational requirement and each technical specifi cation;

 2. determining that each operational requirement and each of the technical
specifi cations is externally complete, consistent, and correct with respect to the
other requirements and related work products such as test plans and test
scenarios; and

 3. determining the internal completeness, correctness, and consistency of related
test plans, test scenarios and other mechanisms of end - product verifi cation and
validation.

 Techniques for verifying the internal properties of requirements and related docu-
ments include analysis, reviews, and walkthroughs. Traceability is the primary tech-
nique for establishing external completeness, correctness, and consistency among
these four documents: (1) operational requirements (design goals and operational
design constraints), (2) technical specifi cations, (3) end - product verifi cation plans,
and (4) end - product validation plans.

 Table 3.6 is an example of a traceability matrix used to establish correspondences
between prioritized operational features and the primary requirements in a techni-

 TABLE 3.6 Traceability of operational features to primary requirements

 Primary Requirements →

 Operational Features ↓ [P1] [P2] [P3] [P4] [P5] [P6]

 [E1] X

 [E2] X

 [E3] X

 [E4]

 [D1] X

 [D2] X

 [D3]

 [D4] X

106 ESTABLISHING PROJECT FOUNDATIONS

cal specifi cation. Primary requirements are often stated as functional input – output
specifi cations. For example, the balance inquiry function accepts a user account
number and returns the amount of money in the account; a withdrawal request
accepts a user account number and a requested amount and returns a “ yes ” or “ no ”
response (after invoking the balance inquiry function, which would be implemented
fi rst in an iterative development process).

 In Table 3.6 operational feature [E3], for example, is covered by primary require-
ment [P4]; operational features [E4] and [D3] do not yet have corresponding primary
requirements. Note that in Table 3.6 each operational feature is allocated to one,
and only one, primary requirement; otherwise, an operational feature might be
implemented multiple times in the system. Operational features E4 and D3 do not
have corresponding primary requirements; this may be because the work is in prog-
ress, or it may be an oversight that must be corrected. Quality attributes (e.g., secu-
rity of user accounts) may apply to one, several, or all features of the system. Other
traceability matrices can be used to depict the allocation of quality attributes to
technical specifi cations.

 Because technical specifi cations provide the foundation for all that follows in a
software project, it is important that they be complete, consistent, and correct with
respect to the operational requirements, and that the technical specifi cations provide
objective criteria for verifying and validating that each technical requirement is
satisfi ed by the code of the deliverable system. Matrices similar to Table 3.6 can be
used to illustrate the correspondence between operational requirements and valida-
tion plans and between technical specifi cations and verifi cation plans, as well as
between primary requirements and derived requirements. Derived requirements
must also have objective verifi cation and validation plans for which traceability
matrices are necessary.

 3.4.5 Requirements Management

 The goal of requirements development is to establish an initial baseline of opera-
tional requirements and technical specifi cations, as indicated in Figure 3.2 . Require-
ments management is concerned with managing subsequent changes to the
operational requirements and technical specifi cations and keeping those changes in
balance with schedule, budget, resources, technology and other project factors.

 Depending on the scope of your project you may or may not be responsible for
developing the initial set of requirements; they may be developed and given to
you as the starting point for your project. But you will certainly be responsible
for managing changes to operational requirements and technical specifi cations as
the project evolves. Requirements may be changed by addition, modifi cation, and
deletion of operational requirements, design constraints, and technical specifi ca-
tions. Each change to requirements must be accompanied by an impact analysis to
determine the effect of the change on schedule, budget, resources, quality attributes,
technology, and other factors. Impact analysis may determine that the proposed
change is in scope, meaning that it can be handled without changes to other project
factors or the change may be out of scope, meaning that the proposed change to
the requirements cannot be accepted without compensating changes to other project
factors.

3.4 REQUIREMENTS ENGINEERING 107

 Baselines and Change Control Boards Baselines and change control boards are
the primary mechanisms used to managing requirements. A baseline is a work
product that is placed under version control and may not be further modifi ed with
the approval of a change control board (CCB). A CCB consists of one or more
individuals who have the authority to make changes to the requirements and make
the corresponding adjustments to schedule, budget, resources, and/or technology as
necessary.

 On a small project, you (as project manager and lead developer) and your cus-
tomer may be the only members of the CCB. On a large project, the CCB may
include you, an acquirer who represents a group of customers (or perhaps a market-
ing manager), and representatives of your analysis and design team, the implemen-
tation and validation teams, the support and maintenance teams, and other concerned
stakeholders.

 On a system - level project or program, your CCB may be subordinate to the
system CCB. In that case you and your chief software architect should be members
of that control board. To be effi cient and effective, CCB membership should include
those individuals who have the authority to make changes and who are directly
responsible for delivering an acceptable system on time and within budget.

 A process - fl ow diagram for a software development CCB is illustrated in Figure
 3.4 . The initial baseline of a work product (e.g., the technical specifi cations) is estab-
lished by a review and acceptance process that determines (at least, some of) the
requirements are a suitable basis (a baseline) for further work activities.

 FIGURE 3.4 Process fl ow for a software development CCB

Project
CCB

Change
Approved

Make
Change

Verify
Change

Version 0.N+1
of Work Product

Change
Communicated

CRs & PRs

Impact
Analysis

Baselines are established by a
review and acceptance process

Work Product
Version 0. N

Accept & Negotiate

- Users
- Customers
- Marketing
- Developers

- Deny
- Defer
- Accept

Negotiation

Initial
Baseline

 Once established, a baseline is changed for one of two reasons:

 1. because of a requested change to the work product or
 2. because of a defect in the work product.

108 ESTABLISHING PROJECT FOUNDATIONS

 Requested changes are submitted as CRs (Change Requests). Defects in a work
product are documented in PRs (Problem Reports). As indicated in Figure 3.4 , a
CR or DR can be submitted by any concerned stakeholder.

 The fi rst activity during impact analysis is to determine whether the submitted
request has already been received. In this case the submitter is notifi ed of the status
of the requested change. Impact analysis for a new CR or PR is conducted to deter-
mine whether the proposed change is in scope or out of scope; in the latter case an
estimate of effort and resources to implement the change is developed. In both cases
a recommended priority for the change is provided.

 The CCB (which includes you, the project manager as a member and perhaps
chair) must have the authority to accept the proposed change with a priority desig-
nation, defer the request (perhaps to the next release of the product), or to deny
the request. Deferral or denial of a change request may involve negotiation with
the submitter of the request. Acceptance of the change request may involve some
negotiation with the developers, who must incorporate the change into their work
activities if the request is in scope or modify their schedules of work activities, with
your concurrence, if the change is out of scope. Major out - of - scope changes may
require major replanning of the project.

 If the request is accepted and the change negotiated, the work is assigned, the
change is made and verifi ed to be complete, correct, and consistent, and a new
baseline version of the work product is generated. The fi nal step is to ensure that
all affected parties are notifi ed of the work product ’ s new baseline and the changes
that resulted from processing of the change request.

 The CCB relies on a confi guration management (CM) process, which involves
use of a version control tool, to maintain the current versions of work products, to
protect work products from unauthorized changes, to provide confi guration audits,
and to provide trend reports. Figure 3.5 provides an example of a trend report that
might be provided by the CM process. In iterative development the CM process
may also involve systematic integration of the evolving code modules into the
growing base, control of the code baseline, and reporting of progress.

 Figure 3.5 provides an example of several trends in tracking baselined
requirements:

 First, note that the “ stable profi le ” for the number of baselined requirements
appears to have stabilized at 200; however, the trend is labeled “ stable profi le? ”
because, as can be seen, the cumulative number of requirements changes indicates
there have been about 65 changes to the 200 requirements. The concern is whether
these changes have been accompanied with corresponding changes in schedule,
budget, resources, and technology, as needed to accommodate the changes. If so,
the requirements, although having undergone many changes, are in balance with the
current requirements baseline. If not, the project is in serious trouble because the
schedule, budget, resources, and technology are based on an outdated set of
requirements.

 Second, note that the “ unstable profi le ” is also questioned. Again, the question
is whether appropriate changes to other project variables have been made (i.e.,
schedule, budget, resources, and technology). If so, the project is stable; if not, the
project is unstable.

 Third, note that in the beginning 150 requirements were labeled as design goals,
meaning that no objective verifi cation or validation mechanisms were associated

with those requirements. As can be seen, about 100 design goals have been
converted to objectively stated requirements; however, 50 remain to be converted.
As discussed above, it may not be possible to convert all of these design goals into
objectively stated requirements, for example, as the operational requirement for
 “ the world ’ s best inventory system. ”

 Fourth, the number of untraced requirements has decreased from 100 to 25. The
trends indicate that conversion of design goals and traceability are ongoing
processes.

 In summary, a CCB:

 • identifi es the work products to be placed under version control;
 • approves initial baselines of those work products;
 • evaluates proposed changes to baselines, approves, defers, or denies change

proposals;
 • adjusts schedule, budget, resources, and technology to accommodate approved

changes;
 • schedules and tracks changes to completion;
 • analyzes change trends and responds as appropriate; and
 • has the authority to accomplish these tasks.

 Version control, change control boards, and trend analysis have been presented in
the context of requirements management; however, the same processes apply to
confi guration management of all baselined work products.

 3.5 PROCESS FOUNDATIONS

 As indicated in Table 3.1 , process foundations for software projects include the
workfl ow model, the development model, the contractual agreement, and the project

 FIGURE 3.5 Trend report for baselined requirements

250

200

150

100

50

3rd Qtr TIME1st Qtr 2nd Qtr 4th Qtr

of baselined
requirements

of untraced
requirements

stable
profile?

?
unstable
profile

0

20

40

60

80

100

of changed
requirements

of design goals

3.5 PROCESS FOUNDATIONS 109

110 ESTABLISHING PROJECT FOUNDATIONS

plan. The workfl ow model was presented in Chapter 1 , Figure 1.1 . Selecting and
tailoring a development model was presented in Chapter 2 . The following section
presents scope considerations and the contractual agreement. The format and
content of software project management plans are presented in Chapter 4 .

 3.5.1 Specifying the Scope of Your Project

 Product foundations (operational requirements, system requirements, design con-
straints, and software requirements) determine the scope of work to be accom-
plished in a project. The scope of your project may involve development of hardware
and software and training of operations personnel, or it may be a “ software - only ”
project. In the former case, your software project may be subordinated to a systems -
 level project that has several subprojects, including yours (system - level develop-
ment projects are sometimes called development programs). In the latter case
(software - only), your project may be affi liated with other projects and thus require
coordination of your work activities with the other projects, or your software - only
project may be a “ stand - alone ” that has a high degree of autonomy.

 Even in the case of autonomous software - only projects the overall system require-
ments must be determined. At minimum, the delivered software will operate on a
hardware platform and, in most cases, in the environment of system software (e.g.,
I/O drivers and a process scheduler, or a full - feature operating system). The hard-
ware and software environment for development may differ from the environment
of operation, for instance, if you are developing embedded software using a host
computer and downloading the software to a target computer. The hardware and
software to be used in developing a system may be stated as design constraints (most
likely) or you may have the freedom to choose the best development and operating
environments for the system (less likely).

 The scope of some software - only projects involves working with users, customers,
acquirer, and other stakeholders to develop the project foundations, construct a
software solution, deliver and install the resulting system, train the users, and provide
ongoing support for a specifi ed period of time. Other projects may start after the
requirements have been established and end with acceptance validation of the
delivered product. Still others may involve modifi cation of an existing version of a
system to produce a next release.

 3.5.2 The Contractual Agreement

 Project scope can be documented in a contractual agreement. In general, a contract
is a statement of understanding between two parties. The agreement may be formal
or informal. A formal agreement is a legal contract between your organization and
the acquirer ’ s organization. An informal agreement is a statement of understanding
between you, the project manager, and an internal customer. Informal contractual
agreements for software projects are documented in Memos of Understanding
(MOUs). MOUs are appropriate for in - house projects when the software project is
performed for other units of your organization or perhaps for others within your
unit.

 Formal contracts are legally binding documents that include legally enforceable
consequences to both parties if either party should violate the terms of the contract.

They are appropriate when your organization and the acquiring organization are
distinct entities and money is to be paid to the supplier (your organization) by the
acquiring organization. In this case the elements of a contractual agreement are
appended to a formal contract in the form of a Statement of Work (SOW). The
agreed - to operational requirements and technical specifi cations are appended to,
and are thus are part of, a formal contract; however, only the technical specifi cations
should be legally binding. In cases where the technical specifi cations have not been
developed, the contract must contain a caveat that operational requirements are
not binding and that technical specifi cations based on the operational requirements
will be negotiated and accepted by acquirer and supplier.

 Items typically contained in a contractual agreement include:

 • scope of work
 • deliverable work products
 • delivery date(s)
 • customer/user and developer join review schedule
 • change request procedures
 • development constraints
 • product acceptance criteria
 • additional items, as appropriate

 The scope of work includes all of the major work activities that must be accom-
plished to deliver a satisfactory product, for example, project management, analysis,
design, implementation, verifi cation, and validation; activities such as user training,
providing support for evolution of the system after delivery, and similar work activi-
ties would be included as appropriate. The deliverable work products may include
object code only, or object code plus reference and training materials, or may also
include source code and test suite, as negotiated between customer and developer
(or acquirer and supplier).

 There may be more than one agreed - to delivery date as, for example, in the case
of early delivery of one or more subset capabilities to be followed by delivery of
the full system. Delivery dates can be specifi ed as calendar dates or elapsed time
from the start of the project, the former being preferable because it sounds more
defi nite. Joint reviews between customer/user and developer (or acquirer and sup-
plier) can range from major milestone reviews in a Waterfall development process,
to frequent reviews in an Incremental - build process, to daily interactions in an Agile
process.

 Because change is inevitable in software projects, a mechanism such as the work-
fl ow diagram for change requests illustrated in Figure 3.4 and a CCB as described
in Section 3.4.5 above must be agreed to by customer and developer (or acquirer
and supplier). Development constraints may include process constraints imposed
by the customer, such as use of an Incremental - build process that incorporated fre-
quent demonstrations of progress and early delivery of subset capabilities, or product
constraints such as the hardware platform, operating system, or database facility to
be used. The product acceptance criteria must be stated in an objective manner so
that both parties can agree when the product has been satisfactorily completed.

3.5 PROCESS FOUNDATIONS 111

112 ESTABLISHING PROJECT FOUNDATIONS

 Additional items (e.g., a schedule for user training) may be included as appro-
priate. In cases of formal relationships between acquirer and supplier, items such
as price, payment schedule, rights in data, and consequences of failure to satisfy
the contractual terms will be stated in the formal contract. The items listed above
will be included in the Statement of Work, which will be an element of the
contract.

 Every software project must have a contractual agreement in the form of a Memo
of Understanding (MOU) for informal contractual agreements or a Statement of
Work (SOW) for formal contracts. Some elements of a contractual agreement may
be project constraints, for example, the delivery date(s) and development con-
straints. Other items may be completed only after an initial planning phase, for
example, the scope of work and the product acceptance criteria. The MOU or SOW
would be amended at that point.

 Some organizations use project authorization forms (sometimes called “ project
work orders ” or “ project charters ”) to offi cially launch a software project. The
MOU or SOW should be part of the project authorization document if there
is one.

 3.6 KEY POINTS OF CHAPTER 3

 • Software projects have four kinds of product foundations and four kinds of
process foundations.

 • Software requirements include operational requirements and technical
specifi cations.

 • Operational requirements include operational features, quality attributes,
design constraints.

 • Technical specifi cations include primary requirements, derived requirements,
design goals, and quantifi ed design constraints.

 • Design goals are operational requirements that have not been, or cannot be,
translated into technical specifi cations.

 • The primary activities of requirements development are elicitation of opera-
tional requirements, analysis, translation into technical specifi cations, and
acceptance baselining of the technical specifi cations.

 • Requirements management is concerned with baseline control of requirements
and with maintaining consistency among requirements, effort, schedule, budget,
and technology.

 • Confi guration management, which includes version control, a change control
board (CCB), and status reporting, is the primary mechanism of requirements
management.

 • Technical specifi cations can be categorized in various ways, and typically include
interfaces, functions, performance, behavior, capacities, design constraints, and
quality attributes

 • A contractual agreement includes items such as the scope of work to be accom-
plished, deliverable work products, development constraints, and product
acceptance criteria

 • Every project must have a contractual agreement. Informal contractual
agreements are called Memos of Understanding (MOUs). Formal contractual
agreements are called Statements of Work (SOWs)

 • SEI, ISO, IEEE, and PMI provide frameworks, standards, and guidelines rele-
vant to establishing project foundations (see Appendix 3A to this chapter)

 REFERENCES

 [ACQ07] CMMI for Acquisition, Version 1.2 Model . http://www.sei.cmu.edu/
publications/documents/07.reports/07tr017.html .

 [Boehm81] Boehm , B. Software Engineering Economics . Prentice Hall , 1981 .
 [CMMI06] CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ , 2006.
 [CMMIAM05] CMMI Acquisition Module (CMMI - AM), Version 1.1 . http://www.sei.cmu.

edu/publications/documents/05.reports/05tr011.html .
 [CMMSA02] Software Acquisition Maturity Model, Version 1.03 , http://www.sei.cmu.edu/

arm/SA - CMM.html , 2002.
 [COHEN95] Cohen , L. Quality Function Deployment . Prentice Hall , 1995 .
 [DAVIS03] Davis , A. The art of requirements triage . IEEE Computer , March 2003 .
 [HAYES03] Hayes , J. Building a requirement fault taxonomy: Experiences from a NASA

verifi cation and validation research project . Proceedings of the IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE) . Denver,
CO, November 2003 IEEE Computer Society.

 [IEEE830] IEEE Std 830 ™ – 1998. IEEE Recommended Practice for Software Require-
ments Specifi cations . IEEE Software Engineering Standards Collection.
IEEE Product SE113. Institute of Electrical and Electronic Engineers, August
2003.

 [IEEE1362] IEEE Std 1362 ™ – 1998. IEEE Guide for Information Technology – System
Defi nition – Concept of Operations (ConOps) Document . Software Engineer-
ing Standards Collection. IEEE Product SE113. Institute of Electrical and
Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology — Software Life
Cycle Processes . Engineering Standards Collection. IEEE Product SE113.
Institute of Electrical and Electronic Engineers, August 2003.

 [LEFF03] Leffi ngwell , D. , and D. Ledwig . Managing Software Requirements: A Use Case
Approach . Addison - Wesley , 2003 .

 [MIND95] The Delphi Method, Mindtools, 1995. http://www.mindtools.com/pages/
article/newTMC_95.htm .

 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed .
(PMBOK ® Guide). Project Management Institute , 2004 .

 [ROBERT06] Robertson , S. , and J. Robertson . Mastering the Requirements Process . Addison -
 Wesley , 2006 .

 [RUMB98] Rumbaugh , J. , I. Jacobson , and G. Booch . The Unifi ed Modeling Language
Reference Manual . Addison - Wesley , 1998 .

 [SAATY05] Saaty , T. Theory and Applications of the Analytic Network Process: Decision
Making with Benefi ts, Opportunities, Costs, and Risks . RWS Publications ,
 2005 .

 [WEIGER03] Weigers , K. Software Requirements . Microsoft Press , 2003 .

REFERENCES 113

114 ESTABLISHING PROJECT FOUNDATIONS

 EXERCISES

 3.1. CMMI - DEV - v1.2 lists the following related process areas for the Require-
ment Development and Requirements Management process areas:

 Project Planning
 Technical Solution
 Product Integration
 Verifi cation process
 Validation process
 Project Monitoring and Control
 Confi guration Management
 Risk Management

 Access the CMMI Web site at http://www.sei.cmu.edu/publications/
documents/06.reports/06tr008.html . Review the Requirements Development
and Requirements Management process areas, and briefl y explain how each
of the related process areas is related to Requirements Development and
Requirements Management.

 3.2. Briefl y explain why it is important that each operational requirement be stated
as a simple declarative statement that contains no “ ands, ” “ ors, ” “ ifs, ” or “ buts. ”

 3.3. Given a set of operational requirements, briefl y describe the techniques you
would use to determine which requirements to place in each of the categories:
Essential, Desirable, and Optional.

 3.4. Briefl y explain why it is desirable to categorize technical specifi cations using
the categories in Table 3.4 or 3.5 .

 3.5. Briefl y indicate how you would organize the categories of technical specifi ca-
tions in Table 3.4 for an object - oriented development project.

 3.6. Briefl y give some reasons why it might be preferable to use elapsed time
rather than calendar dates in a contractual agreement.

 3.7. Each operational feature should map to one and only one primary require-
ment. Quality attributes may apply to one, some, or all primary requirements.
Provide an example of:

 a. a quality attribute that maps to only one primary requirement in an Auto-
mated Teller System. State the quality attribute and the corresponding
primary requirement.

 b. a quality attribute that maps to some, but not all primary requirements in
an Automated Teller System. State the quality attribute and the corre-
sponding primary requirements.

 c. a quality attribute that maps to all primary requirements in the technical
specifi cations for an Automated Teller System.

 For each of the following exercises, form a small team (three or four members).
Conduct these exercises alone if it is not possible to form a team.

 A Home Control Unit (HCU) consists of a server, a user - friendly interface,
and numerous peripheral devices of various kinds. An HCU can include
various facilities, such as surveillance, security, and programmable control of
entertainment and communication devices, kitchen appliances, and sprinkler
systems.

 3.8. Conduct a brainstorming exercise to develop 10 operational features and 5
quality attributes for an HCU.

 3.9. Identify three kinds of stakeholders for a Home Control Unit and briefl y
describe how they would interact with, or be affected by, individual HCUs and
introduction of HCUs into the local community.

 3.10. State fi ve operational requirements for an HCU that would always be design
goals; that is to say, it is not likely they could be, or would be, converted into
technical specifi cations.

EXERCISES 115

 APPENDIX 3A

FRAMEWORKS, STANDARDS,
AND GUIDELINES FOR
PRODUCT FOUNDATIONS

 3A.1 THE CMMI - DEV - v 1.2 PROCESS AREAS FOR REQUIREMENTS
DEVELOPMENT AND REQUIREMENTS MANAGEMENT

 The CMMI - DEV - v1.2 process framework includes requirements development as
a level - 3 staged process and requirements management as a level - 2 staged process
 [CMMI06] . The purpose, specifi c goals, and related processes of requirements
development, as stated in CMMI - DEV - v1.2, are:

 The purpose of Requirements Development (RD) is to produce and analyze customer,
product, and product component requirements.

 SG 1 Develop Customer Requirements
 SP 1.1 Elicit Needs
 SP 1.2 Develop the Customer Requirements

 SG 2 Develop Product Requirements
 SP 2.1 Establish Product and Product Component Requirements
 SP 2.2 Allocate Product Component Requirements
 SP 2.3 Identify Interface Requirements

 SG 3 Analyze and Validate Requirements
 SP 3.1 Establish Operational Concepts and Scenarios
 SP 3.2 Establish a Defi nition of Required Functionality
 SP 3.3 Analyze Requirements
 SP 3.4 Analyze Requirements to Achieve Balance
 SP 3.5 Validate Requirements

 Related process areas:
 Requirements Management
 Technical Solution
 Product Integration
 Verifi cation process
 Validation process

116

 Risk Management
 Confi guration Management

 The term “ customer ” in CMMI includes both customer and users as those terms are
used in this text.

 The purpose, specifi c goals, and related processes of requirements management,
as stated in CMMI - DEV - v1.2, are:

 The purpose of Requirements Management (REQM) is to manage the requirements
of the project ’ s products and product components and to identify inconsistencies
between those requirements and the project ’ s plans and work products.

 SG 1 Manage Requirements
 SP 1.1 Obtain an Understanding of Requirements
 SP 1.2 Obtain Commitment to Requirements
 SP 1.3 Manage Requirements Changes
 SP 1.4 Maintain Bidirectional Traceability of Requirements
 SP 1.5 Identify Inconsistencies Between Project Work and Requirements

 Related process areas:
 Requirements Development
 Technical Solution
 Project Planning
 Confi guration Management
 Project Monitoring and Control
 Risk Management

 3A.2 PRODUCT FOUNDATIONS IN ISO / IEC AND IEEE / EIA
STANDARDS 12207

 The 12207 standards emphasize the relationship between acquirer and supplier, as
well as the acquirer ’ s role and the supplier ’ s role in a contractual relationship
 [IEEE12207] . As illustrated in fi gure 2 of IEEE/EIA Standard 12207.2 – 1997, the
acquirer must develop:

 • the system requirements,
 • the acquisition plan,
 • the acceptance criteria, and
 • a request for proposals (RFP).

 Potential suppliers must make a bid decision and prepare a response; if selected,
the supplier then prepares a project plan.

 As stated in Section 5.3 of 12207.0, activities related to establishing the technical
foundations of the supplier ’ s project include:

 • system requirements analysis,
 • system architectural design, and
 • software requirements analysis.

3A.2 PRODUCT FOUNDATIONS IN ISO/IEC AND IEEE/EIA STANDARDS 12207 117

118 ESTABLISHING PROJECT FOUNDATIONS

 3A.3 IEEE / EIA STANDARD 1058

 This chapter is predominantly concerned with establishing the product foundations
for a software project. The format and contents of the 1058 standard for software
project management plans (a process foundation) are presented in Chapter 4 .

 3A.4 THE PMI BODY OF KNOWLEDGE

 Section 1.3.3 , of A Guide to the Project Management Body of Knowledge (Projects
and Strategic Planning) [PMI04] states that projects are typically conducted to
achieve strategic goals and are typically authorized as a result of:

 • a market demand,
 • an organizational need,
 • a customer request,
 • a technological advance, or
 • a legal requirement.

 Other elements of PMBOK that relate to project initiation include developing a
project charter and a statement of project scope. The project charter is the authori-
zation document for the project. The project scope defi nes, at a high level, the project
work activities and deliverable work products, the methods to be used in controlling
the project, and methods of product acceptance.

119

4
 PLANS AND PLANNING

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 A plan in the mind of a man is not a plan.
 — Richard H. Thayer

 4.1 INTRODUCTION TO THE PLANNING PROCESS

 By defi nition, every project of every kind is an endeavor of limited duration that
uses resources to achieve stated objectives. A project plan specifi es, among other
things, the duration of the project, the resources needed, and how the resources will
be applied to achieve the stated objectives. Software requirements (discussed in
Chapter 3) provide the objectives for the product to be developed or modifi ed. The
planning process is concerned with developing the various elements of a project
plan and documenting the plan in a specifi ed format.

 Your software project management plan must be a written document; otherwise,
various stakeholders in the project will have differing interpretations of how the
project will be conducted, and there will be no documentation of plans for effort,
cost, schedule, resources, and supporting activities. The project plan also provides a
vehicle for trade studies and for negotiating trade - offs among cost, schedule, and
requirements, both initially and as changes occur. Baseline control of the written
project plan supports systematic updating of the plan and communication of
changes.

 In the best case, your planning process will begin with tailoring of your organi-
zation ’ s standard processes to fi t the management, software development, and sup-
porting processes of your project. In that case the information in this chapter can
be used as a checklist against which you can compare your organization ’ s planning
processes and document templates.

120 PLANS AND PLANNING

 In the worst case, you will have to develop your project plan without any orga-
nizational structures or guidelines. In the absence of organizational structures and
guidelines, the workfl ow model for managing software projects presented in Figure
1.1 (repeated here as Figure 4.1), the system engineering model presented in Figure
 2.1 b , and the development models and supporting processes described in Chapter
 2 , plus the information in this chapter can provide a tailorable framework for plan-
ning and executing software projects.

 Project planning, like all elements of software development, is best accomplished
in an iterative manner; details are added as understanding grows.

 4.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises, you should understand:

 • the planning process for software projects
 • the project planning process area of CMMI - DEV - v1.2
 • an approach to planning Agile projects
 • a template for software project management plans (SPMPs)
 • tailoring the SPMP template
 • techniques for preparing a SPMP

 The planning process presented in this chapter is informed by the Project Planning
process area of the CMMI - DEV - v1.2 process framework, the planning elements of
ISO and IEEE Standards 12207, IEEE Standard 1058, and the PMI Body of Knowl-
edge. These elements are described in Appendix 4A to this chapter. An annotated
version of IEEE Standard 1058 is presented in Appendix 4B .

 An electronic copy of the annotated version of IEEE Standard 1058, presentation
slides for this chapter, and other supporting material are available at the URL listed

 FIGURE 4.1 A workfl ow model for software projects

deliver

work
products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning
Activity

Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Verification
& Validation

Measuring

Controlling

Data
Retention

Estimating and
Re-estimating

Reporting
Status ReportsProject Reports

Directives and
Constraints

Change Requests Problem Reports

Configuration
Management

Other
Supporting
Processes

Start Here

End Here

in the Preface to this text. Terms used in this chapter and throughout this text are
defi ned in the Glossary at the end of the text. Mechanisms and techniques of project
planning and estimation are presented in Chapters 5 and 6 of this text.

 4.3 THE PLANNING PROCESS

 As depicted in the workfl ow model of Figure 1.1 in Chapter 1 of this text, repeated
here as Figure 4.1 , inputs to planning include the customer ’ s requirements and
constraints as well management directives and constraints. The system requirements,
system design, and software requirements may also be available or they are devel-
oped during project initiation. As discussed in Chapter 3, customer ’ s requirements
include operational features, quality attributes, and design constraints for the envi-
sioned product. Constraints imposed by the customer may include both product and
process constraints.

 A product constraint might require that the system be developed using a speci-
fi ed version of an operating system or that the new or modifi ed system provide an
SQL interface to an existing database. A process constraint might require that the
system be delivered in a staged sequence of increasing capabilities or that the source
code for the deliverable software plus the requirements and design documentation
be delivered to an independent agent for fi nal verifi cation and validation.

 Management directives may include a policy statement that all projects must
produce design documentation and verify it for completeness, correctness, and con-
sistency using peer reviews. A management constraint might limit your project
resources to a staffi ng level of 10 software developers.

 Some of your fi rst tasks as project manager are to establish a pattern of ongoing
communication with the designated customer representative (your primary point
of contact), and to clarify with him/her/them the operational requirements, develop-
ment constraints, and success criteria for the project.

 As stated in Chapter 3, each operational requirement must be prioritized as
Essential, Desirable, or Optional to facilitate achievement of a balance among
requirements, schedule, and budget. Suffi cient time and resources must be provided
to implement all of the Essential requirements and as many of the Desirable
requirements as desired by the customer.

 Depending on the nature and scope of your project, clarifying the operational
requirements and developing the system requirements, system architecture, and
software requirements may be your task. Alternatively, you may delegate it to one
or more members of your planning team, or they may be provided as the starting
point for your planning process.

 Your understanding of the operational requirements and development con-
straints will infl uence your choice of the development model to be used and the
procedures to be followed. Considerations include:

 • Development of a user - intensive system may require prototyping to clarify the
operational requirements and to provide information for design of the user
interface.

 • Development of the software for an embedded system may require the partici-
pation of you and your technical leader on the system engineering team.

4.3 THE PLANNING PROCESS 121

122 PLANS AND PLANNING

 • Development of staged delivery of system capabilities based on stable require-
ments and a stable architecture may indicate that an incremental build strategy
is appropriate.

 • Development of a fi rst - of - its - kind system may require an evolutionary develop-
ment strategy.

 • An Agile process may be appropriate for development and ongoing enhance-
ment of a Web - based application or in cases where the requirements are evolv-
ing or changing rapidly.

 Development models are presented in Chapter 2.
 An external customer (an acquirer) will typically specify the amount of money

and the time available for the project, which may have to be negotiated to achieve
a balance with the requirements. An internal customer may or may not provide
money and/or resources for the project but will undoubtedly specify a schedule
constraint for completion of the project, which may have to be negotiated. In any
case, a contractual agreement in the form of a Statement of Work or a Memo of
Understanding that contains items such as those listed in Section 3.3.2 of this text
should be negotiated and accepted by you and your customer. Other planning activi-
ties include establishing an initial baseline of requirements, preparing estimates,
and negotiating constraints to obtain a balance among requirements, cost, and
schedule.

 According to IEEE Standard 12207.1, every kind of plan, whether it is a project
plan, a confi guration management plan, a quality assurance plan, a training plan, or
other kind of plan should contain the following information [12207]:

 • needs to be satisfi ed
 • success criteria
 • work activities to be accomplished
 • schedule, budget, and resources
 • quality control measures
 • change procedures and tracking of project history
 • interfaces to relevant stakeholders
 • roles to be played
 • responsibilities and authorities
 • resource acquisition plan
 • skills acquisition plan, as needed

 In addition every kind of plan must undergo a formal review and be accepted by
the appropriate stakeholders, including the initial version of and subsequent changes
to the plan.

 In conjunction with preparing the generic information listed above, planning the
specifi cs of a software project should include the activities contained in Tables 4.1
and 4.2 .

 Although the activities in Tables 4.1 and 4.2 are in sequential order, it should
be understood that they, like most activities in software engineering, are best
ac complished in an iterative manner. It should also be understood that the planning

 TABLE 4.1 Preplanning activities for software projects

 Preplanning activities

 • Establish a working relationship with your customer/acquirer and other project
stakeholders

 • Develop and/or clarify operational requirements and development constraints
 • Prioritize operational requirements
 • Establish the initial baseline of operational requirements
 • Develop system requirements and system architecture, as appropriate
 • Develop technical specifi cations for the software requirements
 • Establish traceability among operational requirements, system requirements, and

software requirements
 • Obtain commitment to an initial version of the requirements by customer/acquirer and

other appropriate stakeholders
 • Establish an initial baseline of operational requirements and technical specifi cations
 • Identify the resources needed and a schedule for developing the initial version of the

project plan

 TABLE 4.2A Comprehensive scope of planning activities for software projects (part 1)

 Planning activities

 • Plan for ongoing interactions with the customer in reviews, demonstrations, approvals,
and acceptance of the delivered product

 • Plan for ongoing interactions with the user community in requirements elicitation,
prototype demonstrations, and operational evaluations

 • Prepare a preliminary estimate of effort, cost, and schedule to determine feasibility of
the project within the constraints on those factors

 • Refi ne the technical specifi cations for the system or product
 • Specify a development process and supporting processes
 • Develop an architecture decomposition view (ADV) of the product architecture and

allocate requirements to the elements of the ADV
 • Specify the interfaces among modules in the ADV and the interfaces between modules

and the external environment
 • Develop a work breakdown structure that includes work elements for the ADV modules
 • Develop work packages for the tasks in the work breakdown structure (WBS)
 • Defi ne a schedule of objectively measurable milestones
 • Prepare a schedule network and identify the critical path(s)
 • Prepare a PERT (Program Evaluation and Review Technique) estimate of project

duration
 • Identify numbers and kinds of resources needed, when they will be needed, and for how

long
 • Prepare an estimate of optimal effort, cost, schedule, and resources
 • Negotiate with the customer to obtain a balance among requirements, cost, resources,

and project duration that satisfi es the project constraints
 • Finalize a contractual agreement with the customer that provides a balance among

requirements, schedule, resources, and cost

4.3 THE PLANNING PROCESS 123

124 PLANS AND PLANNING

activities in Tables 4.1 and 4.2 may be more comprehensive than necessary for your
project; they should be tailored to fi t the needs of the project.

 The items tagged “ as appropriate ” in Table 4.2 may not apply to your project; all
other items in the list should be addressed at a level of detail appropriate for the
nature and scope of your project and the criticality of the system or product to be
developed. Items in Table 4.2 that are not included in your planning activities should
be noted in the project plan, and brief justifi cations should be provided for not
including them.

 If you are fortunate to work in a well - managed organization most of the activities
Tables 4.1 and 4.2 will have standard processes, procedures, and tools that will
require little, if any, tailoring for your project. For example, the confi guration man-
agement and independent testing processes may be standardized; there may be a
set of development process models to choose from; there may be organizational

 TABLE 4.2B Comprehensive scope of planning activities for software projects (part 2)

 Planning activities

 • Defi ne the organizational structure of the project team and specify roles, responsibilities,
and authorities

 • Establish the engineering environment to include standards, procedures, and tools for
software development, verifi cation, and validation

 • Specify a version control process and a version control tool
 • Establish a change control board for the project
 • Identify work products to be placed under version control
 • Establish a change control process that includes an impact analysis process
 • Specify objective acceptance criteria for placing new and modifi ed work products under

version control
 • Plan for verifi cation and validation of work products
 • Develop a measurement plan to measure and report quantity and quality of work

products, effort, cost, progress, defects and other quality measures
 • Develop a risk management plan to identify and confront risk factors on an on - going

basis
 • Develop plans, as appropriate, for the following kinds of activities:

 ° management of subcontractors and vendors
 ° coordination with associated projects and programs
 ° coordination with the Independent (big “ I ”) verifi cation and validation organization
 ° information security, including security clearances and access to information within

various organizational entities
 ° approvals as required by regulations, licensing agreements, and rights - in - data
 ° installation, user training, and transition
 ° ongoing maintenance activities
 ° management of computing resources, facilities management, physical security
 ° backup protection of product and process data

 • Prepare a plan for updating the project plan on a periodic basis and as events dictate
 • Document the project plan using the organization ’ s standard format, a tailored format

based on IEEE Standard 1058 [IEEE1058] , or the format in Table 4.4 of this text
 • Review the project plan with the customer, higher level managers, and other appropriate

stakeholders; revise as needed
 • Obtain commitment to the plan by the appropriate stakeholders
 • Place the plan under version control, thus establishing the initial baseline of the plan

units that have trained personnel, procedures, and tools for most or all of the sup-
porting processes; and there may be internal consultants to assist in tailoring a
template and preparing the project plan.

 If you are not so fortunate, the planning process can require a large amount of
effort. In this case it is tempting to circumvent most of the planning activities listed
above. The risk to project success must be assessed for the items that are not
planned; for example:

 • What risks are incurred if you don ’ t have a process for managing changes to
requirements?

 • What risks are incurred if you don ’ t have a process for assessing the impact of
changes to requirements, cost, schedule, or technology?

 • What risks are incurred if you don ’ t have a schedule with objective
milestones?

 • What risks are incurred if you don ’ t have a process for measuring effort and
defects?

 • What risks are incurred if you don ’ t practice risk management?

 These issues and other aspects of project risk are presented in Chapter 9.
 Of course, the level of detail in your plan should be appropriate to the scope and

criticality of your project. The plan may consist of a few pages for a small project
or many pages for a large project. An additional consideration is that the planning
activities listed above may not be accomplished in the order listed. For example,
some elements of the contractual agreement may be specifi ed in a legally binding
contract before you, the project manager, become involved in the project.

 Planning activities should occur in a manner that fi ts the needs of the situation;
for example, some planning activities may occur in an evolutionary manner, as in
situations where requirements evolve and schedule milestones indicate that a
working version of the system is to be demonstrated to the customer on a weekly
basis. In these situations planning what to do next will evolve as the situation
evolves.

 4.4 THE CMMI - DEV - V 1.2 PROCESS AREA FOR PROJECT PLANNING

 According to CMMI - DEV - v1.2, the purpose of the project planning process is to
establish and maintain plans that defi ne project activities. Other CMMI - DEV - v1.2
process areas related to project planning include:

 • requirements development,
 • requirements management,
 • risk management, and
 • the technical solution process areas.

 Specifi c goals of project planning in CMMI - DEV - v1.2 include establishing esti-
mates, developing a project plan, and obtaining commitment to the plan. Specifi c
practices related to these specifi c goals are listed in Table 4.3 . The nature of those

4.4 THE CMMI-DEV-V1.2 PROCESS AREA FOR PROJECT PLANNING 125

126 PLANS AND PLANNING

specifi c practices is discussed here. Techniques for accomplishing these practices are
presented in subsequent chapters, as indicated in the third column of Table 4.3 .

 An estimate of effort, schedule, and resources based on requirements and con-
straints is an essential element of a project plan; stated differently, it is not possible
to develop a plan without estimates, and it is not possible to develop estimates
without requirements. The CMMI - DEV - v1.2 process areas of requirements devel-
opment and requirements management (presented in Chapter 3) are thus closely
related to the project planning process area.

 Estimating the scope of a project is concerned with identifying all of the work
activities to be accomplished. A work breakdown structure is typically used to docu-
ment the scope of a project; work breakdown structures are presented in Chapter
5. Product size and complexity are the primary factors typically used to determine
the amount of effort that will be required to develop a software product. Other
factors include required performance, reliability, safety, and security. Therefore
establishing estimates of product attributes such as size and complexity is a specifi c
practice of specifi c goal SG 1 (SP 1.2 - 1). Other factors that will impact effort and
schedule should also be considered.

 An appropriate development model for a software project depends on the scope
of work to be accomplished, the attributes of the product, and the phases of devel-
opment to be included. SP 1.3 - 1 is concerned with defi ning a software development
model that includes a set of development phases appropriate for the project scope
and product attributes. Based on the outcomes of specifi c practices 1.1 - 1, 1.2 - 1, and

 TABLE 4.3 CMMI - DEV - v 1.2 specifi c goals and practices of project planning

 Specifi c Practices
 Chapters of
This Text

 SG 1 establish estimates

 SP 1.1 - 1 Estimate the scope of the project Chapter 3
 SP 1.2 - 1 Establish estimates of work product and task attributes Chapter 5
 SP 1.3 - 1 Defi ne project life cycle Chapter 2
 SP 1.4 - 1 Determine estimates of effort and cost Chapter 6

 SG 2 develop a project plan

 SP 2.1 - 1 Establish the budget and schedule Chapter 6
 SP 2.2 - 1 Identify project risks Chapter 9
 SP 2.3 - 1 Plan for data management Chapters 7 & 8
 SP 2.4 - 1 Plan for project resources Chapter 5
 SP 2.5 - 1 Plan for needed knowledge and skills Chapter 5
 SP 2.6 - 1 Plan stakeholder involvement Chapter 2
 SP 2.7 - 1 Establish the project plan Chapter 4

 SG 3 obtain commitment to the plan

 SP 3.1 - 1 Review plans that affect the project Chapter 4
 SP 3.2 - 1 Reconcile work and resource levels Chapter 6
 SP 3.3 - 1 Obtain plan commitment Chapter 4

1.3 - 1, an estimate of effort and cost is developed using historical data, expert judg-
ment, and other techniques presented in Chapter 6 of this text.

 Achieving specifi c goal SG 1 in Table 4.3 provides the foundation for achieving
SG 2, Develop a Project Plan. A project plan that satisfi es SG 2 will contain a
schedule and a budget that satisfy the effort and cost estimates developed in satisfy-
ing SG 1; said another way, effort, schedule, and cost estimates provide constraints
that cannot be exceeded in the project plan.

 Because effort is the product of people and time, a schedule can be derived from
an effort estimate; for example, 54 person - months of effort might be scheduled as
6 persons for 9 months. The schedule specifi es the predecessor tasks that must be
completed, and the work products produced by those tasks that must be available,
before subsequent tasks can begin; the schedule also specifi es the successor tasks
that can be performed after each task is completed. Sequencing constraints among
work activities are thereby specifi ed, and opportunities for concurrent work activi-
ties are identifi ed. The budget is then allocated to each of the tasks to be
accomplished.

 A risk is a potential problem that (should it become a problem) will adversely
impact a successful outcome of delivering an acceptable product on time and within
budget. Risk factors should be identifi ed in the project plan and appropriate miti-
gation actions planned. Risk management for software projects is presented in
Chapter 9.

 SP 2.3 - 1 in Table 4.3 involves developing a plan for management of project data,
which includes all of the data in all areas of the project (project management, devel-
opment processes, and supporting processes). The plan should specify the project
data to be collected, a schedule for collecting and validating the data, report formats
and distribution lists, and any requirements for privacy and security of project
data.

 SP 2.4 - 1 and SP 2.5 - 1 are concerned with identifying and planning for the
resources necessary to perform a project. Resources include quantities of people
and required skill levels, software tools, computing hardware, facilities, travel budget,
and all other resources needed to conduct a project (SP 2.4 - 1). Because people are
typically the most important resource for a software project, it is important to iden-
tify the knowledge and skill levels needed to perform a project (SP 2.5 - 1).

 Stakeholders are people whose involvement in a project is necessary or desirable
to ensure a successful outcome. Different kinds of people may have different kinds
and amounts of involvement during different phases of a project. For example,
involvement of user representatives is more important during requirements defi ni-
tion and product acceptance than during detailed design and coding. SP 2.6 - 1 is
concerned with planning for involvement of identifi ed stakeholders.

 Achievement of SG 2 in Table 3.1 culminates in SP 2.7 - 1 (Establish the Project
Plan). Format and contents of a software project management plan are presented
and discussed in the following section of this chapter.

 Obtain Commitment to the Plan (SG 3) includes three specifi c practices. SP 3.1 - 1
involves reviewing all plans that affect the project to understand project commit-
ments. For example, documentation of requirements, plans for some or all of the
supporting processes, and plans for activities such as installing the delivered system
and training of users are typically developed and documented separately, and
referenced in the project plan.

4.4 THE CMMI-DEV-V1.2 PROCESS AREA FOR PROJECT PLANNING 127

128 PLANS AND PLANNING

 SP 3.2 - 1 (Reconcile Work and Resource Levels) is concerned with reconciling
differences between estimates and available resources. An estimate might, for
example, indicate that 10 people having specifi ed skills will be needed to complete
a project in the required 12 months. Perhaps the budget will support only 7 people
at the requisite skill level.

 Acceptable options for reconciling differences between the work to be done,
resources, and available time include:

 • reducing the requirements (de - scoping),
 • increasing the quantity of resources (and the corresponding budget),
 • using more productive resources, and
 • extending the schedule.

 Unacceptable options for achieving a balance among the work to be done, resources,
and available time (i.e., requirements, effort, and schedule) in the project plan
include descoping plans for measurement and control, peer reviews, and verifi cation
and validation; and planning for overtime.

 The fi nal step in the CMMI ® Project Planning process area is obtaining commit-
ment to the plan by the stakeholders who are responsible for performing and sup-
porting execution of the plan. Commitments to each work activity identifi ed in SP
1.1 - 1 should be obtained from the relevant stakeholders internal to your project as
well as any external stakeholders such as senior management, external customer,
and associated projects. Organizational interfaces and technical interface specifi ca-
tions should be specifi ed and commitments must be obtained from the appropriate
stakeholders to participate in maintaining the interfaces. At minimum, stakeholders
will include you, your software architect, the quality assurance group, your manager,
and a customer representative (e.g., the marketing department, or an external
customer).

 The approach to project planning indicated in Tables 4.1 and 4.2 and by the
Project Planning process area of CMMI - DEV - v1.2 is the basis of the so - called plan -
 driven approach to managing software projects. It must be emphasized that the
comprehensive set of tasks in Tables 4.1 and 4.2 and the specifi c goals and practices
of CMMI - DEV - v1.2 are suffi cient for the largest and most complex software proj-
ects. They must be tailored and adapted to fi t the needs of each project. Unfortu-
nately, some people misinterpret the plan - driven approach and reject it as being too
cumbersome and bureaucratic without understanding that a plan must be tailored
and adapted to the needs of each situation. The plan - driven approach to project
planning is appropriate in two situations:

 1. when there is a formal contractual agreement between an acquirer and a sup-
plier, and/or

 2. for large, complex projects internal to an organization.

 4.4.1 Planning Agile Projects

 An Agile approach may be appropriate for small projects (e.g., 10 or fewer software
developers) when formal contractual conditions do not apply and in cases where

the requirements are evolving or changing on a continuing basis and frequent deliv-
ery of evolving capabilities are to be delivered to users, for example, in a web - based
application. The Agile development process is described in Section 2.5.3. As related
there, planning for an Agile project involves:

 • working with the customer to develop the product vision,
 • determining project duration and level of effort to be applied,
 • obtaining the commitment of a knowledgeable customer representative for

ongoing involvement in the project,
 • establishing the development environment,
 • planning the frequency of iterations, and
 • planning the frequency of delivery of evolving capabilities to users.

 In addition a design metaphor must be established by the developers and the
particular version of an Agile process to be used must be adopted and accepted by
the project stakeholders; the Scrum version of Agile development is discussed in
Section 2.5.3. A plan for ongoing reviews with customers, developers, and other
stakeholders must be established, as must plans for periodically reviewing the
planned and actual state of affairs and for reconciling differences. As with all soft-
ware projects, initial assessment of risk factors and plans for ongoing risk manage-
ment must be established. Planning an Agile project thus involves:

 • developing the product vision;
 • determining the project duration and level of effort;
 • obtaining commitment of a knowledgeable customer representative;
 • establishing the development environment;
 • planning the frequency of iterations;
 • planning the frequency of deliveries;
 • establishing a design metaphor;
 • adopting a version of Agile development;
 • planning for ongoing reviews by the stakeholders;
 • planning for periodic reviews of project status;
 • conducting an initial risk assessment and risk mitigation; and
 • planning for ongoing risk assessments and mitigation activities.

 4.4.2 Balancing Agility and Discipline

 As related in Chapter 2, the text Balancing Agility and Discipline by Boehm and
Turner contrasts plan - driven and Agile approaches to software development and
presents a middle - ground approach to achieving a balance that incorporates aspects
of both approaches based on each particular situation [BOEHM04] .

 4.5 A MINIMAL PROJECT PLAN

 At minimum, a plan for a software project, whether plan - driven or Agile, must
include the following information:

4.5 A MINIMAL PROJECT PLAN 129

130 PLANS AND PLANNING

 • a statement of the purpose and objectives of the project
 • identifi cation of stakeholders and their objectives
 • software development model to be used
 • software development environment to be used
 • platform technology to be used
 • scope of work activities to be completed
 • schedule of work activities including periodic, objective milestones
 • skill levels and numbers of software personnel needed
 • when various numbers and kinds of software personnel will be needed
 • resources in addition to software personnel
 • a plan for periodically reporting project status
 • a risk management plan

 As has been repeatedly emphasized, these elements of a project plan must be
based on the development model to be used and scaled to the size and complexity
of the project. Techniques for developing and documenting these elements of a
project plan are presented in subsequent chapters.

 The following sections of this chapter provide a template for and a description
of the elements of a comprehensive plan - driven plan, an example of tailoring the
template, and techniques for reducing the effort required to develop a software
project management plan.

 4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS

 In the absence of a standard format for project plans in your organization, the
template presented in Tables 4.4 a , b , and c can be used. This template is similar to
the format for project plans specifi ed in IEEE/EIA Standard 1058. The template is
comprehensive and is intended for the largest and most complex projects. It can be,
and should be, tailored to fi t the needs of each project; an example of tailoring is
presented later in this chapter. The lengthy template is presented in three tables for
ease of presentation. The topics in the tables are discussed in numerous places
throughout the text; the “ Discussed In ” column of each table indicates the chapters
and sections where the primary discussion of each topic is presented.

 An annotated version of the template is contained in Appendix 4B of this chapter.
In the appendix a series of questions is posed to assist you in preparing your project
plan. An on - line version of the template that provides an easy - to - use outline for
preparing project plans can be obtained at the URL listed in the Preface to this
text.

 An overview of the various elements of the template is presented in the following
sections.

 4.6.1 Front Matter

 There are nine major sections in the template for software project management
plans based on IEEE Standard 1058 plus the “ front matter, ” which includes a title

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 131

page, a revision history, a preface, and perhaps a table of contents, a list of fi gures,
and a list of tables. The title page should contain:

 • the project name,
 • the version number of the plan,
 • the date of issue,
 • the name of the responsible party (you),
 • your organization, and
 • your contact information (telephone numbers, e - mail address).

 Your project plan must be placed under version control as soon as commitment
to it is obtained from the appropriate stakeholders. 18 As the plan evolves, the revi-
sion history will include an entry for each prior version of the plan. Each entry
should include:

 TABLE 4.4A Template for a Software Project
Management Plan (part 1)

 Contents Discussed In

 Front matter Section 4.4.1

 Title Page
 Revision History
 Preface
 Table of Contents
 List of Figures
 List of Tables

 Project summary Section 4.4.2

 1. Project Summary
 1.1 Purpose, Scope, and Objectives
 1.2 Assumptions Section 4.4.2
 1.3 Constraints
 1.4 Project Deliverables Chapter 1
 1.5 Schedule and Budget Summary

 Evolution, references, defi nitions Section 4.4.3

 2 Evolution of the Plan
 3 References
 4 Defi nitions

 Project organization Section 4.4.4

 5. Project Organization
 5.1 Project Interfaces
 5.2 Project Structure Chapter 1
 5.3 Roles and Responsibilities Chapter 8

 18 see Section 3.2.5 for a discussion of version control

132 PLANS AND PLANNING

 • the version number,
 • date of release,
 • sections changed, and
 • the nature of the changes made.

 In some situations it may be appropriate that each version of the plan (including
the initial version) include the names, signatures, and titles of the persons who are
authorized and responsible for approving the initial plan and changes to the plan.
This person might be an external customer (the acquirer), or you, the project
manager, in the case of an internal project.

 The Preface should address the following issues:

 • the purpose of the project,
 • the context in which the project will occur, and
 • the intended audience of the plan

 Depending on the scope and formality of your project plan, it may be appropriate
to include a table of contents, a list of fi gures, and a list of tables.

 4.6.2 Project Summary

 Section 1 of a software project management plan provides a summary of the project
(sometimes referred to as the “ executive summary ”). The summary, as indicated in
Table 4.4 a , includes the purpose, scope, and objectives of the project.

 Purpose, scope, and objectives of your project plan should address the following
issues:

 • purpose: the reason your organization is doing the project and the business
needs or contractual agreements to be satisfi ed by the outcomes of the
project

 • scope: the scope of the project specifi es the major work activities to be con-
ducted and the relationship of this project to other projects and other ongoing
activities

 • objectives: the success criteria for the project; the objectives that must be satis-
fi ed to ensure an acceptable outcome; the work products to be delivered; and
methods to be used in determining that the objectives have been satisfi ed

 • exclusions: scope and objectives that are explicitly excluded from this project
and/or from the resulting work products

 The purpose should present the motivation for conducting the project, which might
be, for example, to replace an existing system, to upgrade an existing system, to
provide an automated system to replace a manual process, or to conduct a feasibility
study and build a prototype of a future product. The purpose of the ATM project,
for example, might be to replace or upgrade an existing ATM system, to provide a
fi rst - time ATM system for a fi nancial institution, or to conduct a feasibility study
and build a prototype of an advanced user interface for an ATM system. The pro-

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 133

totype might involve using thumb prints, RFID cards, retinal scans, facial scans, or
voice recognition and spoken commands for the user interface.

 The scope of work activities for a project (e.g., the ATM system) might include
refi nement of the operational requirements, development of the technical specifi ca-
tions, design and implementation of the software, validation by an independent
group, training of users, installation of the software at multiple sites. Or, it might be
limited to modifying the design of an existing product and re - implementing some
features, which would result in a new version of the product.

 The objectives of your project should specify, as clearly as possible, the success
criteria for the project. It may be that the delivery date is the most critical success
factor, even if fewer features than desired are included in the delivered product. Or,
it may be that developing an architectural structure for a family of products (a
product line) that will maximize reuse of components in future systems is of high
priority even if it means extending the schedule beyond the planned completion
date.

 In some cases it is important to clearly state what activities are excluded from
the scope of your project. It might be, for example, that based on sensitivity of the
customer ’ s data, your project will not include testing of the system in the users ’
environment. Or, because your project involves improving the performance of some
elements of a customer ’ s operational system, and because the users must not be
impacted by the changes, the user interface must not be modifi ed.

 Assumptions are conditions on which your project plan is based that you have
not verifi ed or are unable to verify at this time. You might assume, for example, that
suffi cient numbers of personnel who have the necessary skills will be available when
needed. Or, you might assume that product complexity will not be a problem
because you expect to have software developers who are familiar with this kind of
system. Section 1.2 should list the factors and conditions that you assume will be
true.

 Constraints (section 1.3 of the management plan) are externally imposed condi-
tions that your project must satisfy. Constraints are categorized as design constraints
and process constraints. A design constraint might require reuse of existing compo-
nents or building specifi ed interfaces to another system. A process constraint might
limit the money, resources, and/or time available to conduct the project.

 Section 2.3 should thus state limitations that have been imposed on factors
such as:

 • schedule,
 • budget,
 • resources,
 • software to be incorporated,
 • technologies to be used, and
 • interfaces of the product to other systems.

 Project deliverables should specify the following items:

 • work products to be delivered to the customer (see section 1.3)
 • when and where they will be delivered,

134 PLANS AND PLANNING

 • quantities and media of delivery,
 • any special packaging and handling instructions.

 Project deliverables may be limited to object code and a users ’ manual or they might
include source code, design documentation, and test suite, all under version control
using a specifi ed version control tool, perhaps because the customer intends to
maintain and evolve the delivered work products. The deliverables listed in the
project plan should refl ect those listed in the contractual agreement (MOU or
SOW) and other contractual documents. A reference to those documents should be
included.

 The fi nal item in the executive summary (section 1.5) is a summary of the sched-
ule and budget for the project. Topics to be addressed in section 1.5 include:

 • the time frame for this project (stated in elapsed time or by start and end
dates),

 • the major milestones and when are they scheduled to occur (by elapsed time
from start or by dates of occurrence),

 • the overall cost (in dollars or staff - hours), and
 • costs and schedules for supporting processes and additional plans that are not

included in this plan, with references to the documentation for those plans.

 The duration of the project can be stated in elapsed time (e.g., six months) or by
start and end dates (e.g., 3/15/20xx to 9/15/20xx). Start and end dates are preferable
because they make the plan more specifi c. Cost may be stated in monetary units or
total units of effort (e.g., staff - months). The latter measure may be preferable
because of organizational sensitivities. Major milestones, such as customer reviews
and demonstrations that involve the user community, or planned deliveries of subset
versions of the fi nal system or product, should be included in the project
summary.

 Costs and schedules for supporting processes such as subcontractor management
or verifi cation and validation by an independent organization, and additional plans
for the “ as appropriate ” activities listed in Table 4.4 a , (user training, etc.) that are
not contained in this project plan should be listed.

 Because of the nature of the information in the project summary, this section is
typically completed last.

 4.6.3 Evolution, Defi nitions, and References

 Section 2 of a project plan (evolution of the Plan) describes the plan for updating
the project plan on a periodic basis and as events dictate. The following issues should
be addressed:

 • the planned schedule for periodic updating of the plan,
 • conditions and events for which unscheduled updates will be made
 • method of controlling changes to the plan, and
 • methods used to issue updates to the appropriate stakeholders

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 135

 You might, for example, plan to update the project plan on a monthly basis and,
with the customer ’ s involvement, revise the cost, schedule, and/or requirements
when a customer ’ s change request is out of scope for the current plan. Changes to
the plan should be controlled by a (small) group of authorized individuals (the
project CCB; see Section 3.2.5) and tracked using a version control tool. As explained
in Section 3.2.5, the CCB should be scaled to fi t the needs of the project; on a small
project, the CCB may consist of you, the project manager, and the customer.
Although it may not be thought of in this way, you and the customer are the (infor-
mal) CCB if your project uses an Agile development model.

 On a large system - level program that involves multiple coordinated projects,
there may be several CCBs; you may be a member of the large program control
CCB in addition to being the chair of the software CCB. In any case, updated plans
and a brief explanation of the changes made to the project plan must be communi-
cated to appropriate stakeholders; notifi cations of changes might be distributed to
an e - mail distribution list.

 Section 3 of the template in Table 4.4 a provides references to related documents.
This section should list the documents that are related to the plan, such as the
Concept of Operations and the Technical Specifi cations, and indicate where they
can be found. As always, related documents (and the project plan) should be scaled
to fi t the needs of the project. The ConOps, for example, may be a vision statement
of a few pages or a small set of use cases. The Technical Specifi cations may be a
document of comparable size. On the other hand, the ConOps and Technical Speci-
fi cations may each be large documents if the envisioned system is large and
complex.

 Documents to be referenced should include the product and process foundation
documents listed in Table 3.1 (operational requirements, system requirements and
architecture, software requirements, design constraints, and the contractual agree-
ment). References should be provided for other applicable documents, such as
additional contractual documents, and also references to plans for associated pro-
jects. References to organizational policies and procedures, and applicable standards
and guidelines to be followed should be listed.

 Note, in particular, that requirements documentation and the project plan should
be cross - referenced and maintained for consistency among requirements, schedule,
budget, resources, and risk factors; however, they should be separate documents
because they address different issues and are intended for different audiences.
Requirements documents should not contain any information related to schedules,
budgets, resources, or facilities required to conduct the project. Similarly the project
plan should not contain any product information other than a brief overview of the
product to be developed or modifi ed and a reference to the requirements documen-
tation. Traceability matrices can be used to cross - reference the project plan and
related documents (see Section 3.2.4). Physical locations where the related docu-
ments can be found should be provided and path names and passwords for accessing
electronic fi les should be provided.

 Section 4, defi nitions, provides explanations of terms and acronyms used in the
plan that may not be familiar to the intended audience of the plan. The defi nitions
section should indicate the meanings of terms and acronyms and include references
to other documents that contain terminology needed to understand this plan (e.g.,

136 PLANS AND PLANNING

IEEE Standard 610.12 ™ — IEEE Standard Glossary of Software Engineering
Terminology).

 4.6.4 Project Organization

 Section 5 of the plan is concerned with the way in which the project is organized.
It describes the project ’ s communication interfaces, the organizational structure for
the project, and the roles and responsibilities for those who will conduct the project
work activities.

 Project interfaces (section 5.1 of the SPMP) should indicate the organizational
entities with which you and your project members will interact and the individuals
who will be the points of contact in those organizations.

 Project interfaces may exist between your project and supporting entities within
your organization such as an independent testing group and the parent organization,
and to external entities such as the acquiring organization, subcontractors, vendors,
and affi liated projects. You can use organizational charts and diagrams to depict
your project ’ s organizational interfaces. Names, titles, phone numbers, and e - mail
addresses should be listed for those with whom you will interact.

 Section 5.2, project structure, addresses the following issues:

 • how the development team will be organized;
 • how the development team will interact with supporting entities such as con-

fi guration management, quality assurance, and verifi cation and validation;
and

 • the points of contact and the lines of communication within the project.

 In particular, section 5.2 of your project plan should indicate the ways in which
you (the project manager), the software architect (who may be you), the team
leaders, and the software developers will interact. Graphical devices such as orga-
nizational charts or diagrams can be used to illustrate the lines of authority, respon-
sibility, and communication within the project. An example of an organization
structure for a software project is depicted in Figure 1.3 of this text.

 Section 5.3, roles and responsibilities, specifi es:

 • the roles that must be played to accomplish the various development activities
and supporting processes,

 • the organizational units that will play the roles, and
 • the persons responsible for playing those roles within the organizational

units.

 This section should specify the job titles and necessary skills of individuals and
organizational units that are responsible for the various work activities and support-
ing processes. The individuals whose names are known (perhaps now, perhaps later)
can be assigned to the responsibilities. But fi rst, the roles to be played in conducting
the project are identifi ed. A role (e.g., the designer role) may be played by one or
more individuals. One individual may play multiple roles, concurrently and/or
sequentially. For example, an individual may be a designer fi rst and later become a

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 137

programmer; an individual may concurrently be a tester and the keeper of evolving
product versions on a small project. One or more matrices that trace roles to devel-
opment activities and supporting processes can be used to depict project roles and
responsibilities.

 4.6.5 Managerial Processes

 Section 6 of a software project management plan, managerial processes, is the
essence of a project plan. It contains the start - up plan, the work plan, the project
control plan, the risk management plan, and the closeout plan, as listed in Table
 4.4 b .

 The start - up plan for your project (section 6.1) is concerned with developing a
plan for making initial estimates, doing the estimates, and developing a staffi ng plan,
a plan for acquiring other necessary resources, and a training plan for the project
team (if needed). Depending on the size and scope of the project, these plans may
be incorporated directly into the project plan, or the project plan may contain refer-
ence to other documents and electronic fi les that contain the start - up plans.

 The project estimation plan (section 6.1.1) should address the following issues:

 • the plan for making initial and ongoing estimates (who will do them?, when
will they be done?, who will approve them?);

 • the tools and techniques that will be used to make estimates;
 • how the estimates will be documented;

 TABLE 4.4B Template for a Software Project Management Plan (part 2)

 Contents Discussed In

 Managerial processes Section 4.4.5

 6. Managerial Processes
 6.1 Start - up Plan
 6.1.1 Project Estimation Chapter 6
 6.1.2 Staffi ng Plan Chapter 5
 6.1.3 Resource Acquisition Plan
 6.1.4 Project Staff Training Plan
 6.2 Work Plan
 6.2.1 WBS and Work Packages Chapter 5
 6.2.2 Schedule Dependencies Chapter 5
 6.2.3 Resource Allocation Chapter 5
 6.2.4 Budget Allocation Chapter 5
 6.3 Project Control Plan
 6.3.1 Requirements Chapters 3 and 7
 6.3.2 Schedule Chapter 8
 6.3.3 Budget Chapter 8
 6.3.4 Quality Chapter 7
 6.3.5 Metrics Plan Chapter 8
 6.3.6 Reporting Plan Chapters 7 and 8
 6.4 Risk Management Plan Chapter 9
 6.5 Closeout Plan

138 PLANS AND PLANNING

 • plans for periodic re - estimation of cost, schedule, staffi ng, and other resources
required to complete the project;

 • frequency of re - estimation; and
 • the plan for re - estimating when requirements or other project conditions

change.

 When an estimate is prepared, the following items should be documented:

 • person(s) who made the estimate;
 • methods, tools, and techniques used to make the estimate;
 • historical data used as the basis of estimation; and
 • the estimator ’ s level of confi dence in the estimate.

 Estimation methods, tools, and techniques are presented in Chapter 6 of this text.
 In some cases an estimate of cost, duration, and resources might be completed

and commitments made before you develop the project plan at the level of detail
indicated in Table 4.4 b . In those cases you must still validate the estimate. If you
think the estimate is not valid, you must re - negotiate requirements, schedule, and
budget; otherwise, you risk failure before you start.

 The staffi ng plan (section 6.1.2) should indicate:

 • the kinds of skills required;
 • the numbers of people needed who have those skills;
 • when they will be needed;
 • for how long;
 • how they will be obtained; and
 • the person, or persons, responsible for acquiring the necessary personnel.

 Tools such as resource Gantt charts, resource histograms, spreadsheets, and
tables can be used to depict the staffi ng plan by skill level, by project phase, and by
aggregations of skill levels and project phases. These techniques are discussed in
Chapter 5.

 The resource acquisition plan (section 6.1.3) should address the following
issues:

 • resources, in addition to personnel, that will be needed;
 • quantities of each kind of resource needed;
 • when the resources will be needed;
 • the person, or persons, responsible for obtaining the resources; and
 • approvals needed.

 The resources may include items such as computer hardware and software, service
contracts, transportation, facilities, and administrative services.

 The resource acquisition plan should specify the points in the project schedule
when the various acquisition activities should occur. Constraints on acquiring the

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 139

necessary resources should be specifi ed. This section can be expanded into addi-
tional subsections (labeled as 6.1.3.x, etc.) to accommodate acquisition plans for the
various types of resources to be acquired. References to resource acquisition plans
contained in separate documents should be included here.

 The project staff training plan (section 6.1.4) indicates the kind and extent of
training needed to ensure that the necessary skill levels, in suffi cient numbers, will
be available to successfully conduct the software project.

 The need for special training may depend on the nature of the product to be
developed and the skills needed to do the work. If training is required, a training
plan should include:

 • the types of training to be provided,
 • numbers of personnel to be trained,
 • entry and exit criteria for training, and
 • the training methods to be used (e.g., lectures, consultations, mentoring, or

computer - assisted training).

 As in all plans, the staff training plan should include:

 • schedule,
 • budget,
 • milestones, and
 • responsible parties.

 The training plan should include training needed in both technical and managerial
skills.

 The work plan (section 6.2) describes the work activities and the details of
schedules, resources, and budget for your software project. The four subsections
contain the work breakdown structure (WBS) and work packages, the work activi-
ties to be performed, schedule dependencies, resource allocation, and budget
allocation.

 Section 6.2.1 (WBS and work packages) documents:

 • the scope of work activities included in this project plan,
 • partitioning of the work activities,
 • the level of detail provided in the plan, and
 • documentation of the work activities.

 The scope of work activities and the partitioning of that work are specifi ed at the
top level of the WBS. A WBS is a hierarchical decomposition of work activities; it
is a fundamental tool for planning and controlling software projects. During project
planning an initial version of the WBS should be developed. Work activities in the
initial WBS should be decomposed so that:

 • accurate estimates of resource requirements and schedule duration for each
major work activity can be made,

140 PLANS AND PLANNING

 • opportunities for reuse of software components can be identifi ed, and
 • the project ’ s risk factors are exposed (both technical and managerial).

 The level of decomposition for different work activities in the work breakdown
structure may be different depending on factors such as the quality of the require-
ments, familiarity of the work, novelty of the technology to be used, and software
components to be reused.

 Work packages are used to specify, for each work activity, factors such as:

 • the resources needed,
 • estimated duration,
 • work products to be produced,
 • acceptance criteria for the work products,
 • predecessor and successor work activities, and
 • risk factors for the work activity.

 Techniques and guidelines for constructing work breakdown structures and prepar-
ing work packages are presented in Chapter 5.

 Schedule dependencies (section 6.2.2) indicate:

 • tasks must be completed before subsequent tasks can begin;
 • tasks that can be accomplished concurrently with other tasks; and
 • schedule constraints imposed by dependencies on external factors such as

vendor - supplied equipment and software, subcontractor - supplied software, and
interfaces to other system components.

 Tasks are the lowest level work activities in a WBS hierarchy; they are also the
elements of the schedule. The project schedule should include frequent mile -
stones that can be assessed for attainment using objective indicators to assess the
scope and quality of work products completed at those milestones. Techniques
that can be used to specify scheduling relationships include milestone charts,
activity lists, schedule networks, critical path networks, PERT charts, activity
Gantt charts, and resource Gantt charts. Examples and illustrations are provided in
Chapter 5.

 Resource allocation (section 6.2.3) documents, for each work activity in the work
breakdown structure, the following:

 • kinds and numbers of resources needed (people and other resources),
 • when they are needed, and
 • for how long.

 Resources to be allocated include personnel by skill level, and may include hard-
ware elements, software tools, travel budget, testing and simulation facilities, and
administrative support. A table that documents, for each task, the resources required
and when the task is scheduled to occur should be provided, plus an inverse table
that shows, for each resource, the tasks to which it is allocated and when the task is

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 141

scheduled to occur. The necessary data for these tables can be obtained from the
work packages and the schedule network.

 Budget allocation (section 6.2.4) documents the budget components allocated to
each work activity and task in the WBS. The task - by - task budget should include the
estimated cost for personnel by skill level to accomplish each task (in monetary
units or staff - hours) and may include, as appropriate, costs for items such as travel,
meetings with customer and users, computing resources, software development
tools, testing tools, and administrative support for each work activity.

 Budgets for higher level activities in the WBS (the sum of budgets for lower level
activities and tasks in the WBS) should be documented. The total budget for each
type of resource and their sum (the overall project budget) should be provided. The
budget allocation can be developed in tabular form using a spreadsheet.

 Section 6.3 of the project management plan (the project control plan) specifi es
the control procedures to be used in meeting product requirements, schedule,
budget, and the quality standards of work processes and work products. Also, a plan
for collecting project data and a reporting plan must be developed. Each element
of the control plan should be consistent with your organization ’ s standards, policies,
and procedures for controlling software projects and should satisfy any contractual
agreements for project control.

 The requirements control plan (section 6.3.1) should address the following
issues:

 • how the requirements will be initially accepted as a product baseline;
 • control mechanisms that will be used to measure, report, and control changes

to the requirements baseline; and
 • how the impact of requirements changes on product scope and quality, and

project schedule, budget, resources, and risk factors will be assessed.

 Confi guration management mechanisms for controlling the requirements should
include change control procedures, a version control tool, and a change control
board. Techniques that can be used to measure and control requirements include
traceability, prototyping, impact analysis, and reviews. These and other techniques
are discussed in Chapter 3 of this text.

 The schedule control plan (section 6.3.2) indicates the techniques that will be
used to:

 • measure and report the progress of work completed at the major and minor
project milestones,

 • compare actual progress to planned progress at the milestones, and
 • implement corrective action when actual progress does not conform to planned

progress.

 Achievement of schedule milestones should be assessed using objective criteria to
measure the quantity and quality of work products completed at each major and
minor milestone.

 The budget control plan (section 6.3.3) is concerned with:

142 PLANS AND PLANNING

 • how the cost of completed work is to be determined,
 • how comparisons of budgeted costs to actual costs will be made,
 • how the cost of corrective action will be tracked, and
 • tools and techniques that will be used to track and control the budget.

 The budget plan should include frequent milestones that can be assessed for achieve-
ment using objective indicators to assess the quantity and quality of work products
completed at those milestones. Mechanisms such as binary tracking and earned
value reporting should be used to measure and report schedule progress and the
cost of work completed versus work planned for completion. These mechanisms are
described in Chapter 8.

 The quality control plan (section 6.3.4) documents the mechanisms that will be
used to measure and control the quality of the work processes and the evolving
work products. Quality control mechanisms may include audits of work processes,
verifi cation and validation of work products, reviews, root cause analysis, and process
assessments. Technical performance measurement can be used to track technical
parameters that are allocated to individual elements of the system or product, such
as actual versus allocated memory bytes and execution time cycles. Details are pro-
vided in Chapters 7 and 8.

 The metrics plan (section 6.3.5) addresses the following issues:

 • process and product data to be collected;
 • how the data will be collected and validated;
 • who will collect and validate project data;
 • methods, tools, and techniques to be used;
 • frequency of collecting the various types of metrics data;
 • mechanisms for validating the metrics data; and
 • how will the data be retained for future use.

 Process and product metrics to be collected and validated should be consistent with
the needs of the project and the reporting plan.

 The reporting plan (section 6.3.6) documents:

 • the mechanisms, report formats, and information fl ows that will be used to
communicate the status of requirements, schedule, budget, scope, quality, and
other status metrics;

 • the kinds of reports that will be prepared;
 • who will prepare and distribute the reports;
 • frequency of preparing and distributing each type of report;
 • formats to be used;
 • methods, tools, and techniques that will be used; and
 • individuals who will receive copies.

 The nature of and frequency of reporting project status should be consistent with
the project scope, criticality, risk, visibility, organizational policies, and contractual
requirements. Metrics and reporting are discussed in Chapters 7 and 8.

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 143

 Section 6.4 of the plan contains the risk management plan for your project. A
risk is a potential problem that, if it materializes, will have a negative impact on
your project. The risk management plan documents the following topics:

 • mechanisms that will be used to identify, analyze, and prioritize project risk
factors;

 • mechanisms for developing action plans and contingency plans;
 • staff members who will implement the plans;
 • methods to be used to track the identifi ed risk factors, evaluate changes in the

levels of risk factors, and respond to those changes;
 • staff members who will be responsible for monitoring risk factors ; and
 • how risk factors will be continuously identifi ed, assessed, and mitigated on an

ongoing basis during the project.

 The kinds of risk factors that should be considered include:

 • risks in the acquirer - supplier relationship;
 • contractual risks;
 • technological risks;
 • risks caused by the size and complexity of the product;
 • risks in the development and target environments;
 • risks in personnel acquisition, skill levels, and retention;
 • risks to schedule and budget;
 • risks in vendor and subcontractor relations; and
 • risks in achieving customer and user acceptance of the product.

 Risk management is covered in Chapter 9.
 The project closeout plan (section 6.5) documents:

 • conditions and events that will indicate completion of the project;
 • postmortem meetings and lessons - learned briefi ngs that will be held;
 • how lessons learned and analysis of project objectives achieved (and not

achieved) will be documented, distributed, and archived;
 • the plan for archiving project work materials; and
 • how project members will be reassigned.

 The remaining elements of the template for software project management plans
(technical processes, supporting processes, additional plans, appendices, and index)
are listed in Table 4.4 c and discussed in the following sections.

 4.6.6 Technical Processes

 Section 7 of the plan (technical processes) documents the development processes
to be used. This is the section where you specify the technical methods, tools, and

144 PLANS AND PLANNING

techniques to be used; plans for establishing and maintaining the project infrastruc-
ture; and the product acceptance plan.

 Section 7.1 (development process model) specifi es:

 • the development process model that will be used to develop the software
product, and

 • tailoring of the process model for this project.

 The development process model should be described in suffi cient detail to
document:

 • the relationships among major development activities and supporting processes
(by specifying the fl ow of information and work products among activities and
tasks),

 • sequencing constraints among work products to be generated,
 • reviews to be conducted,
 • major milestones to be achieved,
 • baselines to be established,

 TABLE 4.4C Template for a Software Project Management
Plan (part 3)

 Contents Discussed In

 Technical processes Section 4.4.6

 7. Technical Processes
 7.1 Development Process Model Chapter 2
 7.2 Methods, Tools, and Techniques
 7.3 Infrastructure Plan
 7.4 Product Acceptance Plan

 Supporting processes Section 4.4.7

 8. Supporting Processes
 8.1 Confi guration Management Chapter 3
 8.2 Verifi cation and Validation Chapter 2
 8.3 Documentation Chapter 1
 8.4 Quality Assurance Chapter 1
 8.5 Reviews and Audits Chapter 2
 8.6 Problem Resolution Chapter 1
 8.7 Subcontractor Management Chapter 1
 8.8 Process Improvement

 Additional plans, appendixes, index Section 4.4.8

 9. Additional Plans
 Appendices
 Index

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 145

 • project deliverables to be completed, and
 • required approvals that span the duration of the project.

 A combination of graphical and textual notations can be used to describe the
development model. Any tailoring of an organization ’ s standard process model
should be indicated in this section. Development process models are described in
Chapter 2 of this text.

 Methods, tools, and techniques to be used to develop or modify the software are
specifi ed in section 7.2. The issues that should be addressed in this section are:

 • development methods, techniques, software tools, and programming languages
and other notations that will be used to specify, design, build, test, integrate,
document, deliver, and modify and maintain the work products;

 • technical standards, policies, procedures, and guidelines that will be used to
govern development and/or modifi cation of work products; and

 • government regulations and laws, if any, that must be observed.

 The infrastructure plan (section 7.3) addresses:

 • the plan for establishing and maintaining the development environment (hard-
ware, operating system, network, software utilities); and

 • facilities, policies, procedures, and standards.

 Infrastructure resources may include workstations, local area networks, desks, offi ce
space, and provisions for physical security, administrative personnel, and janitorial
services.

 The product acceptance plan (section 7.4) documents:

 • how user and customer acceptance of the deliverable work products will be
obtained;

 • objective criteria to be used in determining acceptability of the deliverable
work products;

 • technical processes, methods, and tools that will be used in obtaining product
acceptance; and

 • if appropriate, the formal agreement for the acceptance criteria to be prepared
and signed by representatives of the development organization and the acquir-
ing organization during initial planning.

 Validation methods such as testing, demonstration, analysis, and inspection should
be specifi ed. The relationship among the requirements, requirements - based test
plans, and the list of required deliverable work products should be indicated. Trace-
ability matrices can be used for this purpose.

 4.6.7 Supporting Processes

 Section 8 of a project management plan contains plans for the supporting processes
that span the duration of the software project. These plans may include, but are not
limited to those listed in Table 4.4 c (confi guration management, verifi cation and

146 PLANS AND PLANNING

validation, software documentation, quality assurance, reviews and audits, problem
resolution, and subcontractor management). The eight supporting processes in Table
4.4 c are those specifi ed in IEEE Standard 12207; tailoring of the template for project
plans may result in deletion or modifi cation of some supporting processes. Addi-
tional processes may be added as appropriate.

 Plans for supporting processes should be developed to a level of detail consistent
with the other sections of the plan. In particular, the plan for each supporting
process plan should include:

 • roles,
 • responsibilities,
 • authorities,
 • schedule,
 • budget,
 • resource requirements,
 • risk factors, and
 • work products.

 The nature of, and types of supporting processes required may vary from project to
project. However, the absence of a confi guration management plan, verifi cation and
validation plan, quality assurance plan, joint customer - developer review plan, or
problem resolution plan should be explicitly justifi ed in any software project man-
agement plan that does not include them.

 Plans for some supporting processes may be separately developed by the orga-
nizational entities that will provide the support. Those plans may be incorporated
directly into your software project management plan or incorporated by reference.
Referenced plans are considered to be part of the project plan. Supporting plans
may be based on the organization ’ s standard support processes, which can be
included by reference.

 The confi guration management plan (section 8.1 of the SPMP) addresses the
following issues:

 • work products to be placed under version control;
 • how readiness of work products for baselining (placement under version

control) will be determined;
 • how change requests and problem reports will be handled (logged, analyzed,

and tracked);
 • change control procedures to be used;
 • members of the change control board;
 • how stakeholders will be notifi ed of changes to baselines;
 • who will track changes in work products and analyze change trends;
 • automated tools to be used for version control; and
 • methods, tools, and conventions that must be used to satisfy your organization ’ s

policies, the contractual agreement, and post - release product support
requirements

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 147

 The verifi cation and validation plan (section 8.2) addresses:

 • who will do verifi cation and validation (V & V);
 • scope of activities that will be included;
 • methods, tools, and techniques that will be used;
 • the degree of independence between the development entities and the V & V

entities of the project;
 • automated tools to be used for V & V; and
 • How will interactions with an Independent V & V organization be coordinated,

if applicable.

 Verifi cation planning should result in plans for techniques such as traceability, mile-
stone reviews, progress reviews, peer reviews, prototyping, simulation, and modeling.
Validation planning should result in plans for techniques such as testing, demonstra-
tion, analysis, and inspection.

 The documentation plan (section 8.3) should indicate:

 • nondeliverable and deliverable documents that will be generated;
 • templates or standard formats that will be used;
 • responsible individuals for providing the necessary information, generating the

various documents, reviewing them, and accepting them;
 • documents that will be placed under version control;
 • when review copies and initial baseline versions will be required; and
 • who will get copies of the review and baselines versions of the documents.

 Nondeliverable documents may include:

 • requirement specifi cations;
 • design documentation;
 • source code;
 • traceability matrices;
 • test plans, meeting minutes;
 • review reports;
 • action items;
 • change requests; and
 • defect reports.

 Deliverable work products may include:

 • source code,
 • object code,
 • users ’ manual,
 • on - line help system,
 • regression test suite,

148 PLANS AND PLANNING

 • confi guration library,
 • principles of operation,
 • maintenance guide, and
 • any other items specifi ed in section 1.4 of the project plan (project

deliverables).

 The quality assurance plan (section 8.4) addresses:

 • how assurance will be provided that the software project is fulfi lling its com-
mitments to the planned software processes and work products as specifi ed in
the requirements, software project management plan, supporting plans, and any
policies, standards, procedures, or guidelines to which the process or the product
must adhere;

 • who will be responsible for process and product assurance; and
 • the authorities, responsibilities, and lines of communication for those who will

be responsible for process and product assurance.

 Quality assurance procedures may include analysis, reviews, audits, and assessments.
The quality assurance plan should indicate the relationships among the quality
assurance, verifi cation and validation, review, audit, confi guration management, and
assessment processes. The quality assurance plan must be developed and executed
by an organizational entity (or entities) independent of you, the project manager,
and incorporated by reference into your project plan.

 The plan for reviews and audits (section 8.5) documents:

 • the kinds of reviews and audits that will be conducted;
 • who will conduct them; and
 • schedules, resources, methods, and procedures that will be used to conduct

project reviews and project audits.

 This plan should include plans for joint customer - developer reviews, management
reviews, developer peer reviews, quality assurance audits, and customer audits. Ele-
ments of this plan should be consistent with organizational policies, the project ’ s
contractual agreement, and other contractual documents.

 The problem resolution plan (section 8.6) indicates:

 • how problems in the work processes and work products will be reported, ana-
lyzed, prioritized, and resolved;

 • how problems will be tracked to closure;
 • the roles of organizational entities such as development, confi guration manage-

ment, the change control board, verifi cation and validation, and quality assur-
ance in problem resolution;

 • how the relationship between problem resolution and risk management (section
5.4) will be managed; and

4.6 A TEMPLATE FOR SOFTWARE PROJECT MANAGEMENT PLANS 149

 • how effort devoted to problem reporting, analysis, and resolution will be sepa-
rately reported so that rework can be tracked and needed process improve-
ments identifi ed.

 Subcontractor management plans (section 8.7) address:

 • how subcontractors will be selected;
 • who will be responsible for preparing subcontractor management plans;
 • who will be responsible for providing the technical and managerial interfaces

to subcontractors; and
 • mechanisms of measurement, reporting, and control that will be used.

 Plans for subcontractor management should include the items necessary to ensure
successful completion of each subcontract. In particular, plans for:

 • requirements management,
 • monitoring of technical progress,
 • schedule and budget reporting,
 • product acceptance criteria, and
 • risk management procedures

 should be included in each subcontractor plan. Additional topics should be added
as needed for successful completion of each subcontract. A reference to the offi cial
subcontract and prime contractor/subcontractor points of contact should be
provided.

 A plan for process improvement (section 8.8) documents:

 • the frequency of assessment to determine areas for improvement,
 • who will do the project assessments,
 • who will develop and implement improvement plans, and
 • who will implement improvement plans.

 The process improvement plan should be closely related to the risk management
and problem resolution plans. For example, root cause analysis of recurring
problems may lead to simple process improvements that can signifi cantly reduce
rework during the remainder of the project. Proposed improvements should
be carefully examined to identify those processes that can be improved without
serious disruptions to your ongoing project and to identify those processes that
can best be improved by process improvement initiatives at the organizational
level.

 4.6.8 Additional Plans, Appendixes, Index

 Section 9 provides additional plans that should be included in your software project
management plan, as appropriate. The following issue should be addressed:

150 PLANS AND PLANNING

 • additional plans needed to satisfy product requirements, organizational poli-
cies, and contractual terms;

 • who will prepare them; and
 • who will execute them.

 Additional plans for a particular project may include plans for:

 • assuring that special safety or security requirements for the product are met,
 • special facilities or equipment,
 • product installation,
 • user training,
 • system integration,
 • data conversion,
 • system transition,
 • product maintenance, or
 • product support plans.

 Appendixes may be included in a project plan to provide supporting details that
would detract from the plan if included in the body of the plan. An index to the key
terms and acronyms used throughout the project plan is optional, but is recom-
mended to improve the usability of the plan.

 Details of the mechanisms used to prepare and execute a project plan are pro-
vided in subsequent chapters of this text.

 4.7 TECHNIQUES FOR PREPARING A PROJECT PLAN

 Preparing a software project management plan using the template presented in
Tables 4.4 a, b , and c and described in Section 4.4 will be overwhelming if you, alone,
are faced with developing all of the elements of the plan for a large project. Several
factors should reduce the time and effort you will have to invest in preparing a
project plan.

 4.7.1 Tailoring the Project Plan Template

 Tailoring is concerned with adding, deleting, and modifying elements of the template
for your project plan. If you are planning a project for an internal customer in a
familiar and well - defi ned development environment using a small team of experi-
enced software developers and a standard set of supporting processes your tailoring
of Tables 4.4 a, b , and c might result in the tailoring indicated by deleting the indi-
cated elements:

 Title Page
 Revision History
 Preface
 Table of Contents

 List of Figures
 List of Table
 1 Project Summary

 1.1 Purpose, Scope, and Objectives
 1.2 Assumptions and Constraints
 1.3 Project Deliverables
 1.4 Schedule and Budget

 2 Evolution of the Plan
 3 References
 4 Defi nitions
 5 Project Organization

 5.1 Project Interfaces
 5.2 Project Structure
 5.3 Roles and Responsibilities

 6 Managerial Processes
 6.1 Start - Up Plan

 6.1.1 Project Estimation
 6.1.2 Staffi ng Plan
 6.1.3 Resource Acquisition Plan
 6.1.4 Project Staff Training Plan

 6.2 Work Plan
 6.2.1 WBS and Work Packages
 6.2.2 Schedule Dependencies
 6.2.3 Resource Allocation
 6.2.4 Budget Allocation

 6.3 Project Control Plan
 6.3.1 Requirements
 6.3.2 Schedule
 6.3.3 Budget
 6.3.4 Quality
 6.3.5 Metrics Plan
 6.3.6 Reporting Plan

 6.4 Risk Management Plan
 6.5 Closeout Plan

 7 Technical Processes
 7.1 Development Process Model
 7.2 Methods, Tools, and Techniques
 7.3 Infrastructure Plan
 7.4 Product Acceptance Plan

 8 Supporting Processes
 8.1 Confi guration Management
 8.2 Verifi cation and Validation
 8.3 Documentation
 8.4 Quality Assurance
 8.5 Reviews and Audits
 8.6 Problem Resolution
 8.7 Subcontractor Management
 8.8 Process Improvement

4.7 TECHNIQUES FOR PREPARING A PROJECT PLAN 151

152 PLANS AND PLANNING

 9 Additional Plans
 Appendices
 Index

 The tailored plan would have the resulting format:

 Title Page
 Revision History
 1 Project Summary

 1.1 Purpose, Scope, and Objectives
 1.2 Assumptions and Constraints
 1.3 Project Deliverables
 1.4 Schedule and Budget

 3 References
 5.3 Roles and Responsibilities

 6 Managerial Processes
 6.1.1 Project Estimation Plan
 6.2.1 WBS and Work Packages
 6.2.2 Schedule Dependencies
 6.3.1 Requirements Control Plan

 6.4 Risk Management Plan
 7.4 Product Acceptance Plan

 Tailoring is not meant to imply that the deleted elements are unimportant but that
they will be conducted in the usual, familiar way (e.g., confi guration management,
verifi cation and validation) and do not need to be documented in the project plan,
or that they are not applicable to this project (e.g., there is no subcontractor plan
because there are no subcontractors). Cases where elements would not be deleted
are, for example, cases where the process to be used (e.g., for CM or QA) differs
from the standard organizational process.

 To maintain consistency among project plans within your organization, you
should retain the numbering scheme from the template for project plans.

 4.7.2 Including Predefi ned Elements

 Your organization may have policies, procedures, checklists, document templates,
one or more standard process models, tailoring guidelines, and examples that you
can use to guide your preparation of the initial version of your project plan. This
can signifi cantly reduce the time and effort required.

 4.7.3 Using Organizational Support

 Your organization may have internal consultants and experts who can help you with
areas such as requirements defi nition, tailoring the organization ’ s standard develop-
ment process, cost and schedule estimation, risk management, confi guration man-
agement, tailoring and preparing project plans, and specialty disciplines such as
human factors, safety, security, and reliability.

 4.7.4 Leading a Planning Team

 Small projects have small plans because the number of work activities to be planned
and coordinated is small and because the projects often occur in stable, well - defi ned
environments; large projects have correspondingly large plans. If you are the project
manager of a large project your primary planning activity may involve coordinating
the efforts of a planning team and integrating their work into a comprehensive
project management plan. Members of the team may include specialists in areas
such as those mentioned above (requirements engineering, tailoring the organiza-
tion ’ s standard development process, cost and schedule estimation, risk manage-
ment, confi guration management, tailoring and preparing project plans, and specialty
disciplines such as human factors, safety, security, and reliability).

 In the cases of large, complex projects you may need a “ plan for planning. ” Like
all plans, a plan for planning should include items such as:

 • roles,
 • responsibilities,
 • authorities,
 • schedule,
 • budget,
 • resources,
 • risk factors, and
 • work products.

 4.7.5 Incremental Planning

 Your initial project plan should be suffi ciently comprehensive to include all of the
work activities within the scope of your project. The level of detail in your initial
plan should satisfy the following criteria:

 1. the scope of the plan includes all of the major work activities to be
accomplished

 2. opportunities for reuse of existing components are identifi ed;
 3. effort, schedule, and resources for each identifi ed work activity can be esti-

mated with confi dence;
 4. predecessor and successor activities for each work activity are specifi ed and a

schedule is determined; and
 5. complexities and risk factors are identifi ed.

 Different work activities may be decomposed to different levels. Familiar work
activities and components identifi ed for reuse in the product may satisfy the criteria
at a high level; unfamiliar work, risk factors based on uncertainties, and use of new
technologies may indicate the need to incorporate prototyping and feasibility studies
in the plan.

 During project execution the plan is updated and elaborated as specifi ed in
section 2 of your plan (evolution of the plan). For example, you may plan to update

4.7 TECHNIQUES FOR PREPARING A PROJECT PLAN 153

154 PLANS AND PLANNING

your project plan on a monthly basis or when external factors such as changes in
the customer ’ s requirements, diffi culties with subcontractors, or delays in delivery
of hardware components dictate the need for replanning.

 4.8 KEY POINTS OF CHAPTER 4

 • Operational requirements, technical specifi cations, and process constraints
provide the basis for project planning.

 • A software project management plan is a baseline - controlled written docu-
ment. Appendix 4B to this chapter provides a template for developing software
project management plans based on IEEE Standard 1058; an electronic copy
is available at the URL listed in the Preface to this text.

 • The comprehensive template for software project management plans presented
in Tables 4.4 a , b , and c can be, and should be, tailored to fi t the needs of each
project, as in the example of tailoring.

 • Developing a software project management plan, like all software engineering
processes, is best accomplished in an iterative manner. The initial version of the
plan should be updated on a periodic basis and as events require.

 • The level of effort devoted to project planning, and the level of detail in a
project plan, both initially and ongoing, are determined by the risk factors
created by not doing more.

 • The level of detail in your initial project plan should satisfy the following cri-
teria: effort, schedule, and resources for each identifi ed work activity can be
estimated with confi dence; predecessor and successor activities for each work
activity can be determined; opportunities for reuse of existing components are
identifi ed; and complexities and risk factors are identifi ed.

 • Acceptable options for obtaining a balance among effort, schedule, and require-
ments in your project plan include descoping the requirements, increasing the
quantity of resources, using more productive resources, extending the schedule,
and combinations of these options.

 • Unacceptable options for achieving a balance among effort, schedule, and
requirements include descoping the plans for measurement and control, peer
reviews, verifi cation and validation, and planning for overtime effort.

 • SEI, ISO, IEEE, and PMI provide frameworks, standards, and guidelines for
project planning (see Appendix 4A to this chapter)

 REFERENCES

 [BOEHM04] Boehm , B. , and R. Turner . Balancing Agility and Discipline . Addison Wesley ,
 2004 .

 [CMMI06] SEI , CMMI ® Models and Modules . http://www.sei.cmu.edu/CMMI/models/ ,
 2006 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology – Software Life Cycle
Processes . Engineering Standards Collection. IEEE Product: SE113. Institute
of Electrical and Electronic Engineers, August 2003.

 [PMI04] A Guide to the Project Management Body of Knowledge , 3rd ed. (PMBOK ®
Guide). Project Management Institute, 2004 .

 [SACMM02] SEI, Software Acquisition Capability Maturity Model (SA - CMM), Version 1.03 .
 http://www.sei.cmu.edu/publications/documents/02.reports/02tr010.html

 EXERCISES

 4.1. CMMI - DEV - v1.2 lists four related process areas in the project planning process
area:

 requirements development,
 requirements management,
 risk management, and
 technical solution.

 Access the CMMI Web site at http://www.sei.cmu.edu/publications/docu-
ments/06.reports/06tr008.html , review the project planning process area, and
briefl y explain how each of the four related process areas is related to project
planning.

 4.2. What risk factors are created if a project does not have a written project
plan?

 4.3. What risk factors are created if a project manager does not maintain baseline
control of the project plan?

 4.4. Briefl y describe the ways in which each of the following provides a basis for
project planning:

 a. operational requirements
 b. software specifi cations
 c. process constraints
 d. product constraints

 4.5. Briefl y explain why identifying opportunities for reuse of existing components
is an important aspect of project planning.

 4.6. Why is planning for overtime effort an unacceptable option in a project
plan ?

EXERCISES 155

 APPENDIX 4A

FRAMEWORKS, STANDARDS,
AND GUIDELINES FOR
PROJECT PLANNING

 4A.1 THE CMMI - DEV - v 1.2 PROJECT PLANNING PROCESS AREA

 Project Planning is a level 2 process area in the staged representation of the CMMI -
 DEV – v1.2 process framework [CMMI06] . According to CMMI - DEV – v1.2:

 The purpose of Project Planning (PP) is to establish and maintain plans that defi ne
project activities.

 The specifi c goals and specifi c practices of project planning are:

 SG 1 Establish Estimates
 SP 1.1 Estimate the Scope of the Project
 SP 1.2 Establish Estimates of Work Product and Task Attributes
 SP 1.3 Defi ne Project Life Cycle
 SP 1.4 Determine Estimates of Effort and Cost

 SG 2 Develop a Project Plan
 SP 2.1 Establish the Budget and Schedule
 SP 2.2 Identify Project Risks
 SP 2.3 Plan for Data Management
 SP 2.4 Plan for Project Resources
 SP 2.5 Plan for Needed Knowledge and Skills
 SP 2.6 Plan Stakeholder Involvement
 SP 2.7 Establish the Project Plan

 SG 3 Obtain Commitment to the Plan
 SP 3.1 Review Plans That Affect the Project
 SP 3.2 Reconcile Work and Resource Levels
 SP 3.3 Obtain Plan Commitment

156

 Related process areas are:

 • Requirements Development
 • Requirements Management
 • Risk Management
 • Technical Solution

 4A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 As discussed in Chapter 1, IEEE/IEA Standard 12207 – 1996 is the Industry
Implementation of International Standard ISO/IEC 12207:1995; it is the umbrella
standard for software lifecycle processes for the IEEE ’ s suite of software engineer-
ing standards. 12207 consists of three documents: 12207.0, Software life cycle pro-
cesses; 12207.1: Life cycle data; and 12207.2, Implementation considerations
 [IEEE12207] .

 Section 5.2 of 12207.1, states that the generic purpose of all plans is to specify
the activities to be performed and state when, how, and by whom the activities will
be performed.

 According to 12207.1, every kind of plan, whether it is a project plan, a confi gura-
tion management plan, a quality assurance plan, a training plan, or other kind of
plan should contain the following generic information :

 • needs to be satisfi ed;
 • success criteria;
 • work activities to be accomplished;
 • schedule, budget, and resources;
 • quality control measures;
 • change procedures and tracking of project history;
 • interfaces to relevant stakeholders;
 • roles to be played;
 • responsibilities and authorities; and
 • resource acquisition plan.

 According to 12207.1, the specifi c contents of a project management plan includes
items such as

 • software life cycle model;
 • project structural relationships;
 • authority and responsibility of each organizational unit;
 • the engineering infrastructure to be used, including items such as the test envi-

ronment, standards, procedures, and tools;
 • a work breakdown structure;
 • scheduling of activities and tasks;
 • quality management plan;

4A.2 ISO/IEC AND IEEE/EIA STANDARDS 12207 157

158 PLANS AND PLANNING

 • confi guration management plan;
 • subcontractor management plans, as appropriate;
 • verifi cation and validation plans;
 • risk management plan;
 • tracking and reporting plan;
 • plans for involvement of the acquirer and users;
 • training plan; and
 • security policy.

 4A.3 IEEE / EIA STANDARD 1058

 IEEE/EIA Standard 1058 – 1998 is the IEEE Standard for Software Project Manage-
ment Plans. The format and content of project plans based on 1058 are presented
in this chapter [IEEE1058] .

 4A.4 THE PMI BODY OF KNOWLEDGE

 Section 4.3 of A Guide to the Project Management Body of Knowledge [PMI04] ,
Develop Project Management Plan, states that the project management plan inte-
grates and coordinates all subsidiary plans. Subsidiary plans include, but are not
limited to:

 • project scope management plan,
 • schedule management plan,
 • cost management plan,
 • quality management plan,
 • process improvement plan,
 • staffi ng management plan,
 • communication management plan,
 • risk management plan, and
 • procurement management plan.

 Each of the subsidiary plans is detailed to the extent required by the specifi c project.
In section 1.1, Purpose of the PMBOK ® GUIDE, it is emphasized that the project
management team is responsible for determining what is appropriate for any given
project .

 APPENDIX 4B

ANNOTATED OUTLINE FOR
SOFTWARE PROJECT MANAGEMENT
PLANS, BASED ON IEEE STANDARD
1058

 4B.1 PURPOSE

 This outline describes the format and content of software project management
plans based on IEEE Std 1058. The standard does not specify the exact techniques
to be used in developing a software project management plan, nor does it provide
examples of software project management plans. Each organization using this
standard should develop a set of practices and procedures to provide detailed guid-
ance for preparing and updating of software project management plans based on
the standard. These practices and procedures should take into account the environ-
mental, organizational, and political factors that infl uence application of the
standard.

 Not all software projects are concerned with development of source code for a
new software product. Some software projects consist of a feasibility study and
defi nition of product requirements. Other software projects terminate on comple-
tion of the product design, and some projects are concerned with major modifi ca-
tions to existing software products. The standard is applicable to all types of software
projects; applicability is not limited to projects that develop source code for new
products. Project size or type of software product does not limit application of this
standard. Small projects may require less formality in planning than large projects,
but all components of the standard should be addressed by every software
project.

 Software projects are sometimes component parts of larger projects. In these
cases the software project management plan may be a separate component of a
larger plan or it may be merged into a system - level or business - level project man-
agement plan. Various parts of a project plan may be adaptations of, or direct
implementations of the development organization ’ s policies, procedures, and guide-
lines. In these cases references to those documents can be included with the appro-
priate tailoring information. For example, the quality assurance procedures for the

159

160 PLANS AND PLANNING

project may be “ the same way we always do it. ” In that case the QA planning section
of the project plan might incorporate a reference to the organization ’ s QA policies,
standards, and procedures plus a description of the schedules and resources required
for QA on this project.

 4B.2 EVOLUTION OF PLANS

 Developing the initial version of the software project management plan should be
one of the fi rst activities to be completed for a software project. As the project
evolves, the nature of the work to be done will be better understood and plans
will become more detailed. In addition requirements will change, personnel will
come and go, and project conditions will change. Thus the project plan should
contain a plan for revising the plan at periodic intervals and on occurrence of
unusual events. Each version of the project plan should be placed under version
control, and each version should contain a schedule for subsequent updates to the
plan.

 4B.3 OVERVIEW

 The format and typical contents of software project management plans are
described in this document. A software project management plan is the controlling
document for managing a software project; it defi nes the technical and managerial
processes necessary to develop software work products that satisfy the product
requirements.

 Some organizations may have generic project plans based on this standard, so
that development of a particular project plan will involve tailoring of the generic
plan in areas such as the process model, supporting processes, and infrastructure
and adding project - unique elements such as schedule, budget, work activities, and
risk management plan.

 4B.4 FORMAT OF A SOFTWARE PROJECT MANAGEMENT PLAN

 The individual or organization responsible for conducting a software project should
also be responsible for preparing the software project management plan (the SPMP).
The outline of elements in an SPMP is provided in Table 4A1.1 .

 The ordering of elements presented in Table 4A1.1 is not meant to imply that
the sections must be developed in that order. The order of elements is intended for
ease of reading, presentation, and use, and not as a guide to the order of preparation
of the various elements of a SPMP. The various sections and subsections of a SPMP
may be included by direct incorporation or by reference to other plans and
documents.

 Each version of a SPMP based on this outline should contain a title page, a sig-
nature page, and a change history.

 TABLE 4A1.1 Format of a Software Project Management Plan

 Title Page
 Signature Page
 Change History
 Preface
 Table of Contents
 List of Figures
 List of Tables
 1 Overview

 1.1 Project Summary
 1.1.1 Purpose, Scope, and Objectives
 1.1.2 Assumptions and Constraints
 1.1.3 Project Deliverables
 1.1.4 Schedule and Budget Summary

 1.2 Evolution of the Plan
 2 References
 3 Defi nitions
 4 Project Organization

 4.1 External Interfaces
 4.2 Internal Structure
 4.3 Roles and Responsibilities

 5 Managerial Process Plans
 5.1 Start - up Plan

 5.1.1 Estimation Plan
 5.1.2 Staffi ng Plan
 5.1.3 Resource Acquisition Plan
 5.1.4 Project Staff Training Plan

 5.2 Work Plan
 5.2.1 Work Activities
 5.2.2 Schedule Allocation
 5.2.3 Resource Allocation
 5.2.4 Budget Allocation

 5.3 Control Plan
 5.3.1 Requirements Control Plan
 5.3.2 Schedule Control Plan
 5.3.3 Budget Control Plan
 5.3.4 Quality Control Plan
 5.3.5 Reporting Plan
 5.3.6 Metrics Collection Plan

 5.4 Risk Management Plan
 5.5 Closeout Plan

 6 Technical Process Plans
 6.1 Process Model
 6.2 Methods, Tools, and Techniques
 6.3 Infrastructure Plan
 6.4 Product Acceptance Plan

 7 Supporting Process Plans
 7.1 Confi guration Management Plan
 7.2 Verifi cation and Validation Plan
 7.3 Documentation Plan
 7.4 Quality Assurance Plan
 7.5 Reviews and Audits
 7.6 Problem Resolution Plan
 7.7 Subcontractor Management Plan
 7.8 Process Improvement Plan

 8 Additional Plans
 Annexes
 Index

162 PLANS AND PLANNING

 Title Page

 The title page should contain:

 project name
 version number of the plan
 issuing organization

 Signature Page

 The signature page should contain the signature(s) and title(s) of the persons
responsible for approving the SPMP.

 Change History

 The change history should include a list of all prior versions of the plan:

 version number
 date of release
 sections changed
 nature of changes

 Preface

 The preface of the SPMP should describe:

 scope and context of the plan
 intended audience
 table of contents
 list of fi gures
 list of tables

 4B.5 STRUCTURE AND CONTENT OF THE PLAN

 1 PROJECT OVERVIEW

 This section of the SPMP contains the following information: the purpose, scope,
and objectives of the project; the major assumptions and constraints, a list of project
deliverables, a summary of the project schedule and budget, and the plan for evolu-
tion of the SPMP.

 1.1 Project Summary

 1.1.1 Purpose, Scope, and Objectives (Subclause 1.1.1 of the SPMP)

 Purpose: why are we doing this project? What business or system needs are to
be satisfi ed by the outcomes of the project?

 Scope: what activities are included in this project? What is the relationship of this
project to other projects and ongoing work processes?

 Objectives: what outcomes do we desire? What work products are to be deliv-
ered? How will satisfaction of objectives be determined?

 Exclusions: what scope factors and objectives are explicitly excluded from this
project and/or the resulting work products.

 1.1.2 Assumptions and Constraints

 Assumptions: what are the conditions that we have assumed will be true for this
project?

 Constraints: what constraints have been imposed on factors such as the schedule,
budget, available resources, software to be reused, technology to be employed,
and/or interfaces of the product to other products?

 1.1.3 Project Deliverables What work products will we deliver to the customer?
When and where must we deliver them? In what quantities and on what media?
Are there any special packaging or handling instructions? Is there another docu-
ment, such as a CDRL (Contractor ’ s Data Requirements List) or PPL (Program
Parts List), that contains the deliverables list? If so, where can this document be
found?

 1.1.4 Schedule and Budget Summary What is the time frame for this project?
What is the overall cost (in dollars or staff - hours)? When are the major milestones
scheduled to occur? What are the major supporting processes and additional plans
for the project?

 1.2 Evolution of the SPMP

 What is the planned schedule for periodically updating the SPMP? Under what
conditions will unscheduled updates occur? How will changes to the plan be con-
trolled? What methods will be used to issue updates to the appropriate
stakeholders?

 2 REFERENCES

 Where can additional documents related to this plan be found? (e.g., the Concept
of Operations, system requirements specifi cation, software requirements specifi ca-
tion, and/or CDRL). Applicable standards and guidelines, such as IEEE or corpo-
rate standards for the project plan and supporting processes, should be included .
Path names should be provided for access to electronic fi les.

 3 DEFINITIONS

 What are the meanings of the terms and acronyms are used in this document? What
other documents contain terminology needed to understand this plan (e.g., IEEE
Standard 610 - 12).

4B.5 STRUCTURE AND CONTENT OF THE PLAN 163

164 PLANS AND PLANNING

 4 PROJECT ORGANIZATION

 This section of the SPMP identifi es interfaces to organizational entities external to
the project, describes the project ’ s internal organizational structure, and defi nes
roles and responsibilities for the project.

 4.1 External Interfaces

 What are the organizational entities external to the project and where are the points
of contact between the project and those entities? External interfaces may exist
between the project and the parent organization, the acquiring organization, sub-
contractors, and affi liated projects. Organizational charts and diagrams may be used
to depict the project ’ s organizational interfaces.

 4.2 Internal Structure

 How is the development team organized? How does the development team interact
with supporting entities such as confi guration management, quality assurance, and
verifi cation and validation? Where are the points of contact and what are the lines
of communication? Graphical devices such as organizational charts or diagrams can
be used to illustrate the lines of authority, responsibility, and communication within
the project.

 4.3 Roles and Responsibilities

 Which organizational units are responsible for the various work activities and sup-
porting processes? A matrix that relates work activities and supporting processes
to organizational units can be used to depict project roles and responsibilities.

 5 MANAGERIAL PROCESS PLANS

 This section of the SPMP specifi es the project start - up plan, the risk management
plan, the project work plan, the project control plan, and the project closeout
plan.

 5.1 Project Start - up Plan

 Project start - up involves developing an estimation plan and doing estimates, devel-
oping a staffi ng plan, a plan for other necessary resources, and a training plan for
the project team. Depending on the size and scope of the project, these plans may
be incorporated directly into the SPMP, or the SPMP may contain reference to other
documents and electronic fi les that contain the start - up plans.

 5.1.1 Estimation Plan What is the plan for making initial and ongoing esti-
mates? What are the details of the project cost, schedule, staff requirements, and
other resources? What methods, tools, and techniques were used to make the esti-

mates? What historical information was used? What is the estimator ’ s level of con-
fi dence in the estimate? How will periodic re - estimates be made of cost, schedule,
staffi ng, and other resources required to complete the project? How frequently will
re - estimation be done? What is the plan for re - estimating when requirements or
other project conditions change?

 5.1.2 Staffi ng Plan What skills are required? How many people having what
skill levels are needed? When will they be needed? For how long? How will the
people be obtained? Who is responsible for acquiring the necessary personnel?
Techniques such as Gantt charts, resource histograms, spreadsheets, and tables can
be used to depict the staffi ng plan by skill level, by project phase, and by aggrega-
tions of skill levels and project phases.

 5.1.3 Resource Acquisition Plan What resources, in addition to people, are
needed? When are they needed? Who is responsible for acquiring them? What
approvals are required? The resource acquisition plan may include plans for items
such as the equipment, computer hardware and software, service contracts, trans-
portation, facilities, and administrative services. The resource acquisition plan should
specify the points in the project schedule when the various acquisition activities will
be required. Constraints on acquiring the necessary resources should be specifi ed.
This section can be expanded into additional subsections of the form 5.1.3.x to
accommodate acquisition plans for the various types of resources to be acquired.
References to resource acquisition plans contained in separate documents must be
included here.

 5.1.4 Project Staff Training Plan What training is needed to ensure that neces-
sary skill levels, in suffi cient numbers are available to successfully conduct the soft-
ware project? The training schedule should include the types of training to be
provided, numbers of personnel to be trained, entry and exit criteria for training,
and the training methods; for example, lectures, consultations, mentoring, or com-
puter assisted training. The training plan should include needed training in both
technical and managerial skills.

 5.2 Work Plan

 This section of the SPMP describes the work activities, and the details of schedule,
resources, and budget for the software project.

 5.2.1 Work Activities This section contains the project work breakdown struc-
ture. Work activities in the WBS should be decomposed to a level that exposes the
project risk factors and allows accurate estimation of resource requirements and
schedule duration for each work activity. Work packages should be used to specify,
for each work activity, factors such as the necessary resources, estimated duration,
work products to be produced, acceptance criteria for the work products, and pre-
decessor and successor work activities. The level of decomposition for different
work activities in the work breakdown structure may be different depending on

4B.5 STRUCTURE AND CONTENT OF THE PLAN 165

166 PLANS AND PLANNING

factors such as the quality of the requirements, familiarity of the work, novelty of
the technology to be used, and software components to be reused.

 5.2.2 Schedule Allocation The allocated schedule provides answers to questions
such as: What are the time - sequencing constraints among work activities? Where
are the opportunities for concurrent work activities? What schedule constraints are
caused by dependencies on external factors such as vendor - supplied equipment and
software, interfaces to hardware components, and subcontractor - supplied software?
The allocated schedule should include frequent milestones that can be assessed for
attainment using objective indicators to assess the scope and quality of work pro-
ducts completed at those milestones. Techniques that can be used to specify schedule
relationships include milestone charts, activity lists, activity Gantt charts, activity
networks, critical path networks, and PERT charts.

 5.2.3 Resource Allocation What resources are allocated to the various work
activities in the work breakdown structure and the project schedule? Resources
specifi ed may include personnel by skill level and factors such as computing
resources, software tools, special testing and simulation facilities, and administrative
support. A separate line item should be provided for each type of resource needed.
Allocation of resources to activities should be indicated. A summary of resource
requirements for the various work activities can be collected from the work pack-
ages of the work breakdown structure and presented in tabular form.

 5.2.4 Budget Allocation What elements of the budget are allocated to each of
the major work activities in the work breakdown structure? The activity budget
should include the estimated cost for personnel (in dollars or staff - hours by skill
level) to accomplish each activity and may include, as appropriate, costs for factors
such as travel, meetings, computing resources, software tools, special testing and
simulation facilities, and administrative support. A separate line item should be
provided for each type of resource for each activity. The work activity budget may
be developed using a spreadsheet and presented in tabular form.

 5.3 Control Plan

 This section of the SPMP specifi es the metrics, reporting mechanisms, and control
procedures to be used in measuring, reporting, and controlling the product require-
ments, the project schedule, budget, and resources, and the quality of work processes
and work products. Each element of the control plan should be consistent with the
organization ’ s standards, policies, and procedures for controlling software projects
and with any contractual agreements for project control.

 5.3.1 Requirements Control Plan How will requirements be accepted as product
baselines? What control mechanisms will be used to measure, report, and control
changes to the requirements baseline? How will the impact of requirements changes
on product scope and quality, and project schedule, budget, resources, and risk
factors be assessed? Confi guration management mechanisms should include change

control procedures, version control, and a change control board. Techniques that
can be used for requirements control include traceability, prototyping and modeling,
impact analysis, and reviews.

 5.3.2 Schedule Control Plan What techniques will be used to measure the prog-
ress of work completed at the major and minor project milestones, to compare
actual progress to planned progress, and to implement corrective action when actual
progress does not conform to planned progress? Achievement of schedule mile-
stones should be assessed using objective criteria to measure the scope and quality
of work products completed at each milestone.

 5.3.3 Budget Control Plan How will the cost of work completed, comparisons
of planned cost to budgeted cost, and the cost of corrective action (when actual cost,
schedule, scope, or quality does not conform to plans) be accomplished? How fre-
quently will budget/cost information be provided? What tools and techniques will
be used? Who will get copies of the information? The budget plan should include
frequent milestones that can be assessed for achievement using objective indicators
to assess the scope and quality of work products completed at those milestones. A
mechanism such as earned value tracking should be used to report the budget and
schedule plan, schedule progress, and the cost of work completed.

 5.3.4 Quality Control Plan How will the quality of work processes and evolving
work products be measured and controlled? Quality control mechanisms may
include audits of work processes, verifi cation and validation of work products, joint
reviews, root cause analysis, and process assessments. Technical performance mea-
surement should be used.

 5.3.5 Reporting Plan What are the reporting mechanisms, report formats, and
information fl ows to be used in communicating the status of requirements, schedule,
budget, scope, quality, and other desired or required status metrics? The methods,
tools, and techniques of communication should be included in the reporting plan.
The frequency and nature of project measurement and control should be consistent
with the project scope, criticality, risk, visibility, and contractual requirements.

 5.3.6 Metrics Collection Plan How will necessary metrics data be collected,
validated, and retained? What methods, tools, and techniques will be used?
How frequently will various types of metrics data be collated, analyzed, and
reported?

 5.4 Risk Management Plan

 What mechanisms will be used to identify, analyze, and prioritize project risk factors?
How will contingency plans be developed? What methods will be used to track the
identifi ed risk factors, evaluate changes in the levels of risk factors, and respond to
those changes? How will risk factors be identifi ed, assessed, and mitigated on an
ongoing basis during the project? Risk factors that should be considered include

4B.5 STRUCTURE AND CONTENT OF THE PLAN 167

168 PLANS AND PLANNING

risks in the acquirer - supplier relationship, contractual risks, technological risks, risks
caused by the size and complexity of the product, risks in the development and
target environments, risks in personnel acquisition, skill levels, and retention, risks
to schedule and budget, and risks in achieving user, customer, and acquirer accep-
tance of the product.

 5.5 Project Closeout Plan

 How will the project be concluded? How will staff members be reassigned? What
postmortem meetings and briefi ngs will be held? What is the plan for archiving
project work materials? How will lessons learned and analysis of project objectives
achieved be documented?

 6 TECHNICAL PROCESS PLANS

 This section of the SPMP specifi es the development process model, the technical
methods, tools, and techniques to be used to develop the various work products;
plans for establishing and maintaining the project infrastructure; and the product
acceptance plan.

 6.1 Process Model

 What process model will be used to develop the software product? The process
model should describe the relationships among major project work activities and
supporting processes by specifying the fl ow of information and work products
among activities and functions, the timing of work products to be generated, reviews
to be conducted, major milestones to be achieved, baselines to be established,
project deliverables to be completed, and required approvals that span the duration
of the project. The process model for the project should include project initiation
and project termination activities. To describe the process model, a combination of
graphical and textual notations may be used. Any tailoring of an organization ’ s
standard process model for a project should be indicated in this section.

 6.2 Methods, Tools, and Techniques

 What development methodologies, tools, techniques, programming languages, and
other notations will be used to specify, design, build, test, integrate, document,
deliver, and modify and maintain the work products internal to the project and those
to be delivered to the customer? In addition, what technical standards, policies,
procedures, and guidelines will be used to govern development and/or modifi cation
of work products?

 6.3 Infrastructure Plan

 What are the plan for establishing and maintaining the development environment
(hardware, operating system, network, and software), and the policies, procedures,
standards, and facilities required to conduct the software project? These resources
may include workstations, local area networks, software tools for analysis, design,

implementation, testing, and project management, desks, offi ce space, and provisions
for physical security, administrative personnel, and janitorial services.

 6.4 Product Acceptance Plan

 What is the plan for user, customer, and acquirer acceptance of the deliverable work
products generated by the software project? What objective criteria will be used to
determine acceptability of the deliverable work products? Will a formal agreement
for the acceptance criteria be prepared and signed by representatives of the devel-
opment organization and the acquiring organization? Any technical processes,
methods, or tools required for product acceptance should be specifi ed in the product
acceptance plan. Validation methods such as testing, demonstration, analysis, and
inspection should be specifi ed in this plan. The relationship among the requirements,
requirements - based test plans, and the list of required deliverable work products
should be indicated — a traceability matrix can be used.

 7 SUPPORTING PROCESS PLANS

 This section of the SPMP contains plans for the supporting processes that span the
duration of the software project. These plans may include, but are not limited to,
items such as confi guration management, verifi cation and validation, software docu-
mentation, quality assurance, reviews and audits, problem resolution, and subcon-
tractor management. Plans for supporting processes should be developed to a level
of detail consistent with the other sections of the SPMP. In particular, the roles,
responsibilities, authorities, schedule, budgets, resource requirements, risk factors,
and work products for each supporting process should be specifi ed. The nature and
types of supporting processes required may vary from project to project; however,
the absence of a confi guration management plan, verifi cation and validation plan,
quality assurance plan, joint acquirer - supplier review plan, problem resolution plan,
or subcontractor management plan should be explicitly justifi ed in any software
project management plan that does not include them. Plans for supporting processes
may be incorporated directly into the software project management plan or incor-
porated by reference to other plans. Referenced plans are considered to be part of
the project plan. Supporting plans may be based on the organization ’ s standard
support processes, which can be included by reference.

 7.1 Confi guration Management Plan

 What work products will be placed under confi guration management (version
control)? How will readiness of work products for baselining be determined? How
will change requests be handled (logging, analysis, and tracking)? What will be the
change control procedures? Who will be the members of the change control board?
How will stakeholders be notifi ed of changes to baselines? Who will track changes
in progress and analyze change trends? What automated tools will be used for con-
fi guration management? What methods, tools, and conventions must be used to
satisfy corporate policies and product support requirements?

4B.5 STRUCTURE AND CONTENT OF THE PLAN 169

170 PLANS AND PLANNING

 7.2 Verifi cation and Validation Plan

 Who will do verifi cation and validation (V & V)? What scope of activities will be
included? What methods, tools, and techniques will be used? What will be the degree
of independence between the development entities and the V & V entities of the
project? What automated tools will be used for V & V? Verifi cation planning
should result in plans for techniques such as traceability, milestone reviews, progress
reviews, peer reviews, prototyping, simulation, and modeling. Validation planning
should result in plans for techniques such as testing, demonstration, analysis, and
inspection. Automated tools to be used in verifi cation and validation should be
specifi ed.

 7.3 Documentation Plan

 The documentation plan should answer the following questions: What documents
will be generated? What templates or standards will be used? Who will be respon-
sible for providing the necessary information, generating the documents, reviewing
them, and accepting them? Which documents will be placed under version control?
When will review copies and initial baseline versions be due? Who will get copies
of the review and baselines versions of the documents? Nondeliverable work prod-
ucts may include requirements specifi cations, design documentation, traceability
matrices, test plans, meeting minutes, review reports, action items, change requests,
and defect reports. Deliverable work products may include source code, object code,
users ’ manual, on - line help system, regression test suite, confi guration library, prin-
ciples of operation, a maintenance guide, and any other items specifi ed in subclause
1.1.3 of the SPMP.

 7.4 Quality Assurance Plan

 How will assurance be obtained that the software project is fulfi lling its commit-
ments to the planned software processes as specifi ed in the requirements specifi ca-
tion, the software project management plan, supporting plans, and any standards,
procedures, or guidelines to which the process or the product must adhere? Quality
assurance procedures may include analysis, inspections, reviews, audits, and assess-
ments. The quality assurance plan should indicate the relationships among the
quality assurance, verifi cation and validation, review, audit, confi guration manage-
ment, system engineering, and assessment processes.

 7.5 Reviews and Audits Plan

 What schedules, resources, methods, and procedures will be used to conduct project
reviews and audits? This plan should include plans for joint acquirer - supplier reviews,
management progress reviews, developer peer reviews, quality assurance audits, and
acquirer - conducted reviews and audits.

 7.6 Problem Resolution Plan

 How will problems in the work processes and work products be reported, analyzed,
prioritized, and resolved? What will be the roles of organizational entities such as
development, confi guration management, the change control board, and verifi cation
and validation in problem resolution? Effort devoted to problem reporting, analysis,
and resolution should be separately reported so that rework can be tracked and
process improvement accomplished.

 7.7 Subcontractor Management Plans

 How will subcontractors be selected and managed? Who will be responsible for
preparing subcontractor management plans? Who will be responsible for providing
the technical and managerial interfaces to subcontractors? Plans based on this
standard should be prepared to include the items necessary to ensure successful
completion of each subcontract. In particular, requirements management, monitor-
ing of technical progress, schedule and budget control, product acceptance criteria,
and risk management procedures should be included in each subcontractor plan.
Additional topics should be added as needed to ensure successful completion of the
subcontract. A reference to the offi cial subcontract and prime contractor/subcon-
tractor points of contact should be provided.

 7.8 Process Improvement Plan

 How and when will the project be periodically assessed to determine areas
for improvement? Who will do the project assessments? Who will develop and
implement improvement plans? The process improvement plan should be
closely related to the problem resolution plan. For example, root cause analysis
of recurring problems may lead to simple process improvements that can signifi -
cantly reduce rework during the remainder of the project. Proposed improvements
should be carefully examined to identify those processes that can be improved
without serious disruptions to an ongoing project and to identify those processes
that can best be improved by process improvement initiatives at the organizational
level.

 8 ADDITIONAL PLANS

 What additional plans are needed to satisfy product requirements and contractual
terms by systematically managing the software project? Who will prepare them and
execute them? What forms will they have? Additional plans for a particular project
may include plans for assuring that special safety, privacy, or security requirements
for the product are met, plans for special facilities or equipment, product installation
plans, user training plans, integration plans, data conversion plans, system transition
plans, product maintenance plans, and product support plans.

4B.5 STRUCTURE AND CONTENT OF THE PLAN 171

172 PLANS AND PLANNING

 APPENDIXES

 Appendixes may be included, either directly or by reference to other documents, to
provide supporting details that could detract from the SPMP if included in the body
of the plan.

 INDEX

 An index to the key terms and acronyms used throughout the SPMP is optional.
An index is nevertheless recommended to improve the usability of the SPMP.

173

5
 PROJECT PLANNING TECHNIQUES

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 Failing to plan is planning to fail.
 — Alan Lakein

 5.1 INTRODUCTION TO PROJECT PLANNING TECHNIQUES

 Previous chapters of this text have addressed the requirements, constraints, and
directives elements of the workfl ow model in Figure 1.1 of Chapter 1 (repeated here
as Figure 5.1), the roles of customer and management, and the nature of plans and
planning. This chapter is concerned with the planning, activity defi nition, and esti-
mating elements highlighted in Figure 5.1 . Additional estimation techniques are
presented in Chapter 6 .

 Planning techniques, activity defi nition, and estimation of effort and schedule
includes the following activities, which are a subset of the activities contained in
Table 4.1 b in Chapter 4 .

 • Develop an architecture decomposition view (ADV) of the product architec-
ture and allocate requirements to the elements of the ADV

 • Develop a work breakdown structure that includes work elements for the ADV
modules and the allocated requirements for each element of work

 • Develop work packages for the tasks in the work breakdown structure
(WBS)

 • Defi ne a schedule of objectively measurable milestones
 • Prepare a schedule network and identify the critical path(s)

174 PROJECT PLANNING TECHNIQUES

 • Prepare a PERT estimate of project duration
 • Identify numbers and kinds of resources needed, when they will be needed, and

for how long
 • Prepare an estimate of optimal effort, cost, schedule, and resources
 • Negotiate with the customer to obtain a balance among requirements, cost, and

project duration that satisfi es the project constraints

 It is self - evident that you cannot prepare a plan for developing a software product
if you don ’ t know what product to make. It is equally evident that the more you
understand about the product to be made, the more confi dent you will be in the
details of your plan. The initial version of your project plan will be, by necessity,
high level and imprecise; however, you can refi ne the plan as the architectural struc-
ture of the product evolves and as your understanding of the project grows based
on clarifi cation of the product foundations covered in Chapter 3 of this text (system
requirements, system architecture, software requirements, and design constraints).
Planning is thus an iterative process; the more you understand about the product
the better plan you can make.

 5.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises, you should understand:

 • the scope of planning
 • rolling - wave planning
 • scenarios for developing a project plan
 • developing an architecture decomposition view

 FIGURE 5.1 Project workfl ow, emphasizing planning, estimating, and activity defi nition

delivered

work
products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning

Activity
Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Independent
V&V

Measuring

Controlling

Data
Retention

Estimating and
Re-estimating

Reporting

Change Requests and Problem Reports

Status Reports Project Reports

Directives and
Constraints

Configuration
Management

 • developing a work breakdown structure
 • developing the project schedule
 • developing resource profi les
 • resource Gantt charts
 • estimating project cost

 The planning techniques presented in this chapter are informed by the Project
Planning process area of the CMMI - DEV - v1.2 process framework, the planning
elements of ISO and IEEE Standards 12207, IEEE Standard 1058, and the PMI
Body of Knowledge. These elements are described in Appendix 5A to this
chapter.

 Terms used in this chapter and throughout this text are defi ned in the Glossary
at the end of the text. Presentation slides for this chapter and other supporting
material are available at the URL listed in the Preface.

 5.3 THE SCOPE OF PLANNING

 The scope of your project may involve developing requirements, negotiating sched-
ule and budget, acquiring facilities and resources, building the software product, 19
installing it, training users, and maintaining the system on an ongoing basis. Or, you
may be handed a set of changes to be made along with a schedule and a budget and
be given the responsibility of managing a project to make the modifi cations. Or,
your project may fall somewhere between these extremes. In any case, this chapter
(and this entire text) considers the full scope of activities that may be required to
manage large and complex software projects. As emphasized throughout this text,
the activities of project management must be adapted and tailored to fi t the needs
of each project.

 5.4 ROLLING - WAVE PLANNING

 Rolling - wave planning acknowledges that it is impossible to develop plans at the
level of detail indicated throughout this chapter during the initial planning phase
of your software projects. When you are conducting a project, a recommended
approach is to augment the high - level master plan with detailed plans for the coming
month, for the subsequent month, and for three months hence. Each month the
plans are moved forward one month, that is, moved forward in a rolling - wave
manner. The plans for the next month should be detailed and specifi c. The plans for
two and three months hence should be as specifi c as possible. Rolling the three -
 month plan forward each month provides an opportunity to:

 19 Software products are built by vendors for sale to numerous customers; software systems are built by
 contractors for specifi c individual customers on a contractual basis. The terms “ system ” and “ product ”
are used interchangeably in this text unless the distinction is important; the distinction will be clarifi ed
in these cases.

5.4 ROLLING-WAVE PLANNING 175

176 PROJECT PLANNING TECHNIQUES

 • have resources available when they are needed,
 • clear roadblocks and coordinate work activities, and
 • identify and confront risk factors before they become problems.

 Rolling - wave planning is illustrated in Figure 5.2 .

 5.5 SCENARIOS FOR DEVELOPING A PROJECT PLAN

 At minimum, you must have some operational requirements for the product or
system to prepare the initial version of your plan. Ideally you would have prioritized
operational requirements, technical specifi cations, a functional block diagram, and
a decomposition view of the product ’ s architectural structure on which to base your
plan. However, this ideal basis is seldom realized when preparing the initial version
of a project plan.

 Initial planning typically proceeds from one of the following scenarios:

 1. You are given a set of operational requirements and constraints on one or more
of the schedule, budget, and resources. For example, a system that will have a speci-
fi ed list of operational features and quality attributes must be delivered in 9 months;
6 software developers are available to implement the system. Your fi rst task is to
determine whether it is feasible to build the envisioned product (or modify an exist-
ing product) within those parameters. This may involve working with the customer
to clarify the requirements and using historical data and rules of thumb to determine
the feasibility of the project.

 If the project is not feasible, with a high probability of success, you and your
customer must prioritize the requirements into Essential, Desirable, and Optional
categories (which is always a good thing to do). It must be possible to implement
all of the Essential requirements, with a very high probability of success, within the
development constraints on schedule, budget, and resources. The customer must
agree to accept a product that implements all of the Essential requirements and as
many of the Desirable requirements as can be implemented within the constraints
on schedule, budget, and resources. Or, the development constraints must be relaxed,
or some combination of de - scoping the requirements and relaxing the development
constraints must be pursued.

 2. You may be given a list of features and quality attributes and asked to estimate,
and then commit to, the schedule, budget, and resources needed to develop a system

 FIGURE 5.2 Rolling - wave updating of detailed plans each month

month n planning: n n+1 n+2

n+2 n+3 n+4

n+1 n+2 n+3month n+1 planning:

month n+2 planning:

project duration

5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW 177

or product having those features and quality attributes. In this case you must fi rst
review, clarify, and elaborate whatever product information is available. You should
not commit to requirements that are infeasible because of the current state of tech-
nology or lack of expertise in your organization; those requirements should be
labeled as design goals to be achieved to the extent possible. In this scenario, you
should prepare a range of estimates with associated probabilities of success and
make a commitment to an estimate having not less than 90% probability of success.
The assumptions on which your estimate and commitment are based must be docu-
mented and accepted by your customer.

 3. You may be given a completion date and a budget and be asked to determine
the characteristics of a product that can be built or modifi ed within the constraints
of specifi ed time and money. For example, what operational features and quality
attributes can you and 6 of your software developers build and deliver in 9 months
for a product of a specifi ed kind?

 In any case, your initial project plan must achieve a balance among requirements,
schedule, budget, resources, and technology. Subsequent revisions of your plan
must maintain this balance as requirements and other factors change. In all
cases, your fi rst task in developing a project plan is to review, clarify, and further
elaborate whatever information is available concerning the product to be built or
modifi ed.

 For each of the scenarios above, the next step is to refi ne the requirements to
remove areas of uncertainty and to prepare a decomposition view of the product
architecture and a work breakdown structure as a basis for preparing a more
accurate estimate.

 5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW
AND THE WORK BREAKDOWN STRUCTURE

 Architectural design of software is concerned with specifying the software modules,
their interrelationships, and their connections to the environment of the software.
Several different kinds of views are used to document different kinds of relation-
ships. The views are depicted using notations, such as those illustrated in Figure 5.3 ,
to document structural, functional, and behavioral relationships. Other architectural
views are also useful [Bass03] .

 A partial ADV for ATM software is presented in Figure 5.4 . Note that the
requirements listed in Table 5.1 are allocated to the leaf nodes of the fi nancial
transactions component of the ADV.

 Note the use of terms “ shall ” for Essential requirements, “ should ” for desirable
requirements, and “ could ” for Optional requirements. “ shall ” is a contractually
binding term; “ should ” indicates desired but not essential requirements; “ could ”
indicates options that could be included if time, budget, and resources permit.

 Figure 5.5 a illustrates a tree - structured representation of a work breakdown
structure (WBS) for the ATM project. An alternative representation (an indented
list) is presented in Figure 5.5 b . The leaf nodes of the tree (or the list) specify tasks.
A task is a smallest unit of project planning, measurement, and control. The higher
level nodes in a WBS are activities ; activities are composed of subordinate activities

178 PROJECT PLANNING TECHNIQUES

and tasks. The relationships among activities and tasks in a WBS are thus contain-
ment or “ is - part - of ” relationships in the same way that the relationships among
software module in an architectural decomposition view are “ is - part - of ” relation-
ships among the modules.

 The WBS is a fundamental tool for planning, estimating, measuring, and control-
ling a software project. The role of a WBS is to partition the activities and tasks of
a software project into manageable units with clearly defi ned roles, responsibilities,
and authorities for each unit. In addition a WBS depicts the interfaces and lines of
communication among work activities and tasks. One of the primary design criteria

 FIGURE 5.3 Three architectural views of software and examples of notations used. The
architecture decomposition view (ADV) specifi es the hierarchical “ is - part - of ” relationship
among software modules. The ADV is used by project managers (you) to develop the work
breakdown structure (WBS)

function
OO class methods
data flow diagrams

structure
OO class diagrams
ADV (architecture decomposition view)

behavior
state diagrams
sequence diagrams

 FIGURE 5.4 A partial architecture decomposition view (ADV) of ATM software

ATMHD FINAT MAINT

Processor Recorder Terminator

COMM

Validator

.

ATM
Software

ATMHD: Hardware Drivers
FINAT: Financial Transactions
MAINT: Maintenance and Diagnostics
COMM: Communications Package

E1, E2 E3, D1, D2, D3
O1, O2, O3

E4, E5 E6, D4

5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW 179

 TABLE 5.1 Some prioritized requirements for ATM software

 Essential requirements

 E1 Financial transactions shall be authorized by an ATM card and a password
 E2 Financial transactions shall be terminated if a customer fails to enter the

correct password « settable » times
 E3 Financial transaction shall allow quick cash withdrawals
 E4 Financial transaction shall provide a printed receipt for each transaction
 E5 The ATM shall retain the information listed in the requirements specifi cation,

section 3.2.1, for each customer transaction
 E6 Financial transaction shall process Terminate requests from customers

 Desirable requirements

 D1 Financial transaction should accommodate balance inquiry transactions
 D2 Financial transaction should accommodate standard withdrawal transactions
 D3 Financial transaction should accommodate deposit transactions
 D4 Customers should be allowed to conduct multiple transactions per session

 Optional requirements

 O1 Financial transaction could support debit card transactions
 O2 Financial transaction could support payment of utility bills
 O3 Financial transaction could allow customers to purchase postage stamps which

will be disbursed by the ATM hardware

 FIGURE 5.5A Tree - structured form of a WBS

 ATM
Project

2 Do System
Analysis

3 Develop
Software

4 Verify
System

5 Validate
System

6 Perform
CM

7 Prepare
Tech. Pubs.

1 Manage
 Project.

3.1. Build
ATMHD

3.2. Build
FINAT

3.3. Build
MAINT

3.2.5 Integrate
FINAT modules

3.2.1.2
CUTV

3.2.1.1
DESV

3.2.1.3
ITVM

–

–

–

–

–

–

–

–

–

3.2.2.2
CUTP

3.2.2.1
DESP

3.2.2.3
ITPM ITRM

3.2.3.2
CUTR

3.2.3.1
DESR

3.2.3.3

–

–

–

3.2.4.2 CUTT

3.2.4.1 DEST

3.2.4.3 ITTM

3.5. Integrate
ATMHD, FINAT,
MAINT & COMM

3.2.1 Build
Validator
[E1, E2]

3.2.2 Build
Processor

[E3, D1, D2, D3,
O1, O2, O3]

3.2.3 Build
Recorder
[E4, E5]

3.2.4 Build
Terminator

[E6, D4]

3.4. Buy
COMM

DESx: detailed design of module x; CUTx: coding & unit testing x; ITxC: integrating and testing of x

8 Deliver
System

180 PROJECT PLANNING TECHNIQUES

for developing the decomposition view of software architecture (the ADV) is to
decompose the product in a manner that permits assignment of concurrent work
tasks to different teams and individuals; there is thus a close relationship between
designing a software product and designing the work activities to build the product.
This criterion can be stated as follows:

 The decomposition view of software architecture (the ADV) must be structured to
provide concurrent work assignments for those available to develop the software.

 Conversely, it can be said that the structure of the team that develops the software
will infl uence the decomposition view of the delivered software [Conway68] .

 The distinction between an ADV and a WBS is often blurred by embedding the
ADV directly into the WBS without rephrasing it. This blurring must be avoided.
The elements of an ADV are product modules; they are specifi ed by noun phrases
that designate things, as in Figure 5.4 . Work breakdown structures for software

 FIGURE 5.5B Indented form of a WBS

1 Manage Project

2 Do System Analysis

3 Develop Software

3.1 Build ATM Hardware Drivers (ATMHD)

3.2 Build Financial Transaction Handler

3.2.1 Build Validator [E1, E2]

3.2.1.1 Design Validator

3.2.1.2 Code & Unit Test Validator

3.2.1.3 Integrate & Test Validator

3.2.2 Build Transaction Processor (FINAT) [3, S1, D2, D3, O1, O2, O3]

3.2.2.1 Design Transaction Processor

3.2.2.2 Code & Unit Test Transaction Processor

3.2.2.3 Integrate & Test Processor Components

3.2.3 Build Recorder [E4, E5]

3.2.3.1 Design Recorder

3.2.3.2 Code & Unit Test Recorder

3.2.3.3 Integrate & Test Recorder Module

3.2.4 Build Terminator [E6,D4]

3.2.4.1 Design Recorder

3.2.4.2 Code & Unit Test Recorder

3.2.4.3 Integrate & Test Recorder Module

3.2.5 Integrate FINAT Modules

3.3 Build Maintenance & Diagnostic Module (MAINT)

3.4 Buy the Communications Package (COMM)

3.5 Integrate ATMHD, FINAT, MAINT, and COMM

4 Verify System

5 Validate System

6 Perform CM

7 Prepare Technical Publications

8 Deliver System

5.6 DEVELOPING THE ARCHITECTURE DECOMPOSITION VIEW 181

projects are process - oriented, hierarchical decompositions of work activities and
tasks. The elements of a WBS are specifi ed by verb phrases that indicate actions to
be taken, as in Figures 5.4 a and 5.4 b (e.g., manage project, develop software, perform
CM). The elements of an ADV are related to the elements in a WBS by embedding
within the WBS the work needed to develop or otherwise obtain the software
modules.

 The top level of your WBS should include all of the major work activities within
the scope of your project; that is, the top level should encompass all work activities
necessary to satisfy the requirements, constraints, and contractual commitments for
your project (e.g., project management, system analysis, software development,
verifi cation and validation, and product delivery). Each node of the WBS in your
initial project plan should be decomposed into sublevels until each of the following
WBS decomposition criteria are satisfi ed:

 1. hidden complexities are exposed (i.e., the job to be done is understood);
 2. opportunities for reuse of existing software components can be identifi ed;
 3. the necessary hardware resources, such as computer memory and processor

speed, can be specifi ed (which may result in revision of the hardware require-
ments); and

 4. estimates of effort needed to develop the software can be made.

 Satisfying criterion 1 is necessary in order to satisfy criterion 2; this may not be
possible without prototyping, feasibility studies, and revision of the requirements.
Also the estimated effort to fi nd, assess, and modify modules to be reused must be
balanced against the effort required to develop new modules. It is much better to
confront these issues early in your project rather than later.

 The WBS depicted in Figures 5.5 a and 5.5 b is partially decomposed. Elements 1,
2, 4 to 8, and 3.1, 3.3, and 3.4 should be expanded as necessary to satisfy the WBS
decomposition criteria. For example, decomposition of element 1, Manage Project,
might be as follows:

 1 Manage Project
 1.1 Initiate project

 1.1.1 Identify stakeholders
 1.1.2 Develop/clarify requirements
 1.1.3 Prepare initial estimates
 1.1.4 Prepare initial project plan
 1.1.5 Obtain commitment to the plan

 1.2 Conduct project
 1.2.1 Measure and control project
 1.2.2 Lead and direct personnel
 1.2.3 Communicate and coordinate
 1.2.4 Manage risk

 1.3 Closeout project
 1.3.1 Obtain product acceptance
 1.3.2 Conduct postmortem sessions
 1.3.3 Prepare and distribute lessons - learned report
 1.3.4 Assist in reassigning project personnel

182 PROJECT PLANNING TECHNIQUES

 During planning the various paths in your WBS may be decomposed to different
levels in order to satisfy the WBS decomposition criteria. Familiar work of low
complexity will require less decomposition to permit confi dent estimates than a new
kind of work of uncertain complexity. An identifi ed opportunity for reuse of an
existing module will require less decomposition if you are confi dent the candidate
module will be suitable, and more decomposition to assess its suitability if you are
less confi dent in it. The elements of a WBS are typically decomposed to three or
four levels during planning; one or two additional levels are typically added during
execution of the project.

 5.7 GUIDELINES FOR DESIGNING WORK
BREAKDOWN STRUCTURES

 The work breakdown structure (WBS) is a fundamental tool for planning a software
project and for measuring and controlling the progress of a project; it integrates the
managerial and technical activities of a software project. A well - designed WBS is
thus an essential element of a software project management plan. Fifteen guidelines
for designing work breakdown structures are itemized in Table 5.2 and discussed
below. Additional guidelines for using the WBS to track the progress of your project
are presented in Chapter 11 . As indicated by these guidelines, your WBS should be
designed and structured with the same care used to design the architectural views
of the software system or product.

 TABLE 5.2 Fifteen guidelines for designing work breakdown structures

 Work Breakdown

 1: Use the Architecture Decomposition View (ADV) of the software architecture as the
basis for developing the WBS.

 2: Structure the ADV and the WBS to facilitate work assignments.
 3: Develop and use process - oriented work breakdown structures.
 4: Embed the work activities to develop and modify product modules in the WBS.
 5: Partition the scope of the project into not more than 7 or 8 functional areas at the

top level of the WBS.
 6: Limit the fan - out of each element (i.e., the scope of each element) in the WBS to

seven or less.
 7: Limit the maximum depth of the WBS to six or fewer levels.
 8: Use a decimal numbering system to systematically identify work activities and

tasks.
 9: Allocate prioritized requirements to development activities and tasks in the WBS.

 10: Design the WBS top - down, bottom - up, and middle out.
 11: Use work packages to specify project tasks.
 12: Analyze work packages for desired properties.
 13: Derive the schedule network from the work packages.
 14: Determine resource requirements using the work packages and the schedule

network.
 15: Revise and elaborate the WBS periodically and as events dictate.

Guideline

 WBS Design Guideline 1: Use the decomposition view of the software architecture
(ADV) as a basis for developing the WBS As illustrated in Figure 5.4 , the elements
of an ADV are denoted by noun phrases; they are things. The work to develop the
elements of an ADV is embedded in the WBS by adding appropriate verbs to the
noun phrases in the ADV.

 WBS Design Guideline 2: Structure the ADV to facilitate work assignments The
decomposition view of the software architecture embedded in the WBS should
provide opportunities for concurrent work activities. For example, the hardware
driver, fi nancial transaction, diagnostics, and communication modules in Figure
 5.4 can be developed or otherwise obtained by different teams working concur-
rently; the COMM package can also be procured concurrently. Similarly the valida-
tor, processor, recorder, and terminator modules of the fi nancial transaction
module can be developed by individuals or teams working concurrently on the
modules.

 WBS Design Guideline 3: Develop and use process - oriented work breakdown struc-
tures As illustrated in Figures 5.5 a and 5.5 b , a WBS specifi es work activities, tasks,
and the containment relationships among them. Each activity and task is specifi ed
by a verb phrase that indicates actions to be taken.

 WBS Design Guideline 4: Embed the work activities to develop and modify
product modules in the WBS The activities and tasks to develop or otherwise
obtain the modules in the decomposition view of the software architecture in
Figure 5.4 are embedded in the WBS of Figures 5.5 a and 5.5 b by converting the
noun phrases in Figure 5.4 to the corresponding verb phrases in Figures 5.5 a
and 5.5 b .

 WBS Design Guideline 5: Partition the scope of the project into not more than seven
or eight functional areas at the top level of the WBS The top level of a WBS should
partition all the work activities to be accomplished into seven or eight elements, as
illustrated in Figures 5.5 a and 5.5 b . Limiting the number of activities to seven or
eight elements at the top level facilitates management of the intellectual complexity
of a project by partitioning it into a small number of work activities to be directly
managed by you, the project manager, and by those who report directly to you.
Subordinate activities and tasks are assigned to team leaders and team members
who are responsible for those activities and tasks.

 WBS Design Guideline 6: Limit the fan - out of each element in the WBS to seven or
eight The fan - out of a WBS element is the number of branches connecting an
element to its immediate subordinate elements. As described above, one role of a
WBS is to designate roles, responsibilities, and authorities in a software project.
Limiting fan - out has the advantage of controlling the complexity of each work activ-
ity by limiting the number of subordinate activities or tasks that must be managed
to accomplish that work activity; intellectual manageability of a project is thus
obtained. This advantage is not dissimilar to the advantage gained by limiting the
fan - out of product modules in the architecture decomposition view of software
architecture.

5.7 GUIDELINES FOR DESIGNING WORK BREAKDOWN STRUCTURES 183

184 PROJECT PLANNING TECHNIQUES

 WBS Design Guideline 7: Limit the depth of the WBS to six or fewer levels The
depth of a WBS is the length of the longest path(s) in the WBS; in Figures 5.5 a and
 5.5 b the depth is 4, which is indicated by the number of digits in the lowest level
task designators. Limiting the depth of each path in a WBS to six or fewer levels
has similar advantages to limiting fan - out in controlling intellectual manageability
of a project. Decomposing a path more than six levels to satisfy the WBS decom-
position criteria of exposing complexity and risk factors indicates areas of the
product and/or process architecture that must be studied in greater detail and
reconfi gured as appropriate.

 Consider a software project that has 10 developers working for 12 months (480
staff - weeks). If each development task represents one staff - week of effort there
would be 480 leaf nodes in the software development sub - tree of the WBS. Assum-
ing software development (design, code, test) is 50% of the total effort, and assum-
ing all project tasks are decomposed to a level of one staff - week, the WBS would
have 960 leaf nodes. In contrast, a WBS that has 6 levels with a fan - out of 7 at each
node (a 6 × 7 WBS) would have 7 6 leaf node tasks (117,659). Clearly, a 6 × 7 WBS
is suffi cient for the largest mega - projects.

 Another design consideration: if a node in your WBS has, say, 3 or 4 sub - levels
with fan - outs of 5 or 6 at each node, this may indicate the need to “ spin off ” that
segment of the WBS into a separate subproject (a 3 × 6 WBS has 216 leaf node
tasks).

 WBS Design Guideline 8: Use a decimal numbering system to specify work activities
and tasks in the WBS The numbering system illustrated in Figures 5.5 a and 5.5 b
provides a systematic way of specifying the containment and sibling relationships
among activities and tasks. Task 3.2.4.3, in Figures 5.5 a and 5.5 b , for example, is on
level 4 of the WBS because there are 4 digits in its identifi er; it is the 3th element
of the 4th element of the 2nd element of the 3rd element in the WBS. All elements
having a 2 in the 2nd position are sibling software work activities (e.g., the Build
FINAT activities in Figures 5.5 a and 5.5 b). Some organizations specify the numbers
to be used in designating the top elements in work breakdown structures. For
example, every work element in every WBS that starts with a 3 would designate
software work, and elements of work starting with a 6 would denote confi guration
management. This convention facilitates uniform reporting and accounting practices
among projects across an organization.

 WBS Design Guideline 9: Allocate prioritized requirements to development activities
and tasks in the WBS Each activity and task in a WBS indicates work that must
be accomplished and work products that must be produced. Allocating require-
ments to development activities and tasks, as illustrated in Figures 5.5 a and 5.5 b ,
provides prioritized specifi cations for the work products to be produced by those
activities and tasks. In addition to specifying the features to be provided, the allo-
cated requirements should specify design constraints, capacities, performance, inter-
faces, and quality attributes, as appropriate.

 Product features should be uniquely allocated to tasks so that work assignments
for building the modules are clearly defi ned. Other requirements (design con-
straints, capacities, performance, interfaces, and quality attributes) may apply to
multiple modules, perhaps including the entire system or product, as discussed in

Chapter 3 . Those requirements should be allocated to the highest level activity to
which they apply and be “ fl owed down ” to the descendents of that activity.

 WBS Design Guideline 10: Design the WBS top down, bottom up, and middle out
 Designing a WBS is best done iteratively by interleaving top - down, bottom - up, and
middle - out strategies. In this regard the cognitive processes involved when develop-
ing a WBS (i.e., designing a software project) are not unlike those observed in
designers of software [Walz93] .

 Top - down development of a WBS proceeds by partitioning the scope of the
project into a set of top - level activities and successively decomposing activities until
a set of tasks is specifi ed that satisfy the WBS decomposition criteria listed above.
Bottom - up development of a WBS proceeds by identifying a set of tasks that must
be performed and grouping related tasks into activities. Middle - out development of
a WBS proceeds by identifying a mid - level activity that must be performed, decom-
posing it into tasks and/or subordinate activities, grouping it with similar activities,
and connecting the related set of activities to a higher level activity.

 WBS Design Guideline 11: Use work packages to specify development tasks Work
packages are specifi cations for the activities and tasks in a WBS. Tasks are the lowest
level elements in the WBS. Work packages for activities are aggregations of work
packages for subordinate activities and tasks.

 A work package should contain:

 • the corresponding WBS number and name,
 • a brief description of the task,
 • estimated duration,
 • resources needed,
 • predecessor and successor tasks,
 • work products to be produced,
 • work products that will be placed under version control (baselined),
 • risk factors (i.e., potential problems that might interfere with successful comple-

tion of the work package), and
 • objective acceptance criteria for the work products generated by the task.

 A template for work packages is illustrated in Table 5.3 a ; an example is provided
in Table 5.3 b .

 WBS Design Guideline 12: Analyze work packages for desired properties The
attributes of work packages, and collections of work packages, can be analyzed to
determine various project factors. For example, the estimated cost of personnel to
execute a work package can be determined from the numbers and kinds of people
specifi ed and the estimated duration of the task. In Table 5.3 b , the cost of personnel
is the loaded salaries (i.e., pay plus overhead) for 10 staff - weeks of senior designer
effort. The cost of other resources can be similarly determined: the workstation and
software tools in Table 5.3 b may be available at no cost, or a cost to be borne by
this task, or the cost may be amortized across this task and other tasks that will use

5.7 GUIDELINES FOR DESIGNING WORK BREAKDOWN STRUCTURES 185

186 PROJECT PLANNING TECHNIQUES

those resources; the cost of travel can be determined and included in the cost of
executing the work package (in Table 5.3 b , two round trips to San Diego and 3 days
travel support for 2 people).

 The estimated costs for a collection of work packages can be aggregated (i.e.,
rolled up) to determine the elements of cost for various kinds of activities and
to determine the overall cost estimate for the parent activity. Estimated costs of
development tasks and activities can be rolled up to provide an estimated cost for
software development, which can be used as a basis of estimation for the entire
project. For example, a project would be estimated to cost $ 100,000 USD if software
development was estimated to cost $ 50,000 USD and was estimated to be 50% of

 TABLE 5.3A Template for work packages

 Task identifi er: « WBS number and name »
 Task description: « brief description »
 Estimated duration: « days or weeks »
 Resources needed:
 Personnel: « numbers of people needed to complete this task »
 Skills: « personnel skills needed to complete this task »
 Tools: « software and hardware needed »
 Travel: « to where? for how long? »
 Other: « other resources needed to complete this task »
 Predecessor tasks: « to be completed before this task can begin »
 Successor tasks: « to start after this task is completed »
 Work products: « outputs of this task »
 Baselines: « work products to be placed under version control »
 Risk factors: « potential problems for this task »
 Acceptance criteria: « for the work products of this task »

 TABLE 5.3B A work package example

 Task identifi er: 3.2.2.1 Design transaction processor
 Task description: Specify internal architecture of the transaction processor module
 Estimated duration: 2 weeks
 Resources needed:
 Personnel: 2 senior telecom designers
 Skills: Designers must know UML
 Tools: One workstation running Rapsody
 Travel: Three day design review in San Diego for 2 people
 Predecessor tasks: 3.2.1 Develop system architecture
 Successor tasks: 3.3.2.2 Implement transaction processor
 Work products: Architectural specifi cation for transaction processor and test plan
 Baselines created: Architectural specifi cation for transaction processor and text plan
 Risk factors: Designers not identifi ed
 Acceptance criteria: Successful design inspection by peers and approval of transaction

processor design by the software architect

overall project cost (50% perhaps determined from historical data within the
organization).

 If the roll - up of costs results in an estimate that exceeds the constraint on the
project budget, you can start at the top level and reallocate portions of the budget
to activities and tasks in a top - down manner so that the allocations to the subordi-
nate elements of each activity do not exceed the amount allocated to that activity.
This may involve eliminating or simplifying some product requirements and/or
incurring greater levels of risk.

 WBS Design Guideline 13: Derive the schedule network from the work pack ages A
schedule network for a set of tasks can be constructed from the durations, predeces-
sors, and successors of the work packages for those tasks, as explained in the fol-
lowing section of this chapter. Constructing the schedule network may reveal
discontinuities, circularities, and other inconsistencies among predecessor and suc-
cessor tasks that can be resolved by iterative refi nement of the work package
specifi cations.

 WBS Design Guideline 14: Determine resource requirements using the work packages
and the schedule network Knowing the time in the schedule when various tasks
are planned to occur permits determination of the dates when various kinds of
resources will be needed and the durations for which they will be required;
for example, the need date for the unidentifi ed senior designers in Figure 5.5 b can
be determined from the development schedule. If the need date is three months
hence, there is adequate time to acquire the designers; if the need date is next week,
you are probably in big trouble because failure to complete the work package on
schedule will delay subsequent tasks and might delay completion of the project.
Resource profi les for the various kinds of resources needed can be produced by
summing up the resource requirements across the schedule, as illustrated later in
this chapter.

 WBS Design Guideline 15: Revise and elaborate the WBS periodically and as events
dictate The elements of the initial WBS are decomposed to levels that satisfy the
WBS decomposition criteria. As the project evolves, understanding grows and cir-
cumstances change; increased detail can be added to facilitate work assignments to
individuals and teams. Additional work elements may be identifi ed and others
revised. The WBS should be updated each month in a rolling - wave manner. Also
events such as major changes to requirements, schedule, and resources must be
refl ected in a revised WBS. The WBS must be placed under version control to clearly
identify the current version and to provide a historical record of the evolution of
the WBS.

 An alternative approach is to interchange the order of guidelines 11, 12, 13, and
14 by fi rst developing the schedule network and resource estimates for each task in
the schedule network (guidelines 13 and 14) and then using the schedule network
and resource estimates to specify and analyze the work packages (guidelines 11 and
12). In any case, as will be shown in Chapter 8 , work package specifi cations for the
WBS elements are essential for allocating the work to development teams and
tracking the progress of their work.

5.7 GUIDELINES FOR DESIGNING WORK BREAKDOWN STRUCTURES 187

188 PROJECT PLANNING TECHNIQUES

 5.8 DEVELOPING THE PROJECT SCHEDULE

 The work packages for your tasks specify the estimated durations of the tasks and
their predecessor and successor tasks. Given a collection of work packages, a task
list such as that in Table 5.4 can be developed using the predecessor and successor
information contained in the work packages. Alternatively, you can fi rst construct a
task list as an initial step in specifying the WBS and work packages. A task list can
be portrayed as a schedule network such as the one in Figure 5.6 ; the fi gure contains
the information in Table 5.4 but conveys it in a different representation. Note that
only the tasks (lowest level elements) in Table 5.4 are shown in Figure 5.6 . In addi-
tion Figure 5.6 illustrates the two critical paths in the schedule (see the following
section).

 A well - formed schedule network, such as the one in Figure 5.6 , is an acyclic
directed graph. The arrows are annotated with the corresponding WBS (and work
package) numbers and the task durations. The numbers in the nodes of the graph
are project milestones. The representation in Figure 5.6 is a task - on - arrow diagram.
Complementary representations that place the tasks in the nodes of the graph are
sometimes used; in this case the milestones are implicitly represented by the arrow-
heads because a subsequent task cannot begin until the immediately preceding tasks
have been completed.

 Note in Figure 5.6 that external event 2.1 must occur before the project can begin.
Some of your projects may have other external events (i.e., events that are not in
your control) that must occur at intermediate milestones before the project can
continue; for example, availability of an interface specifi cation or delivery of needed
hardware. These external events are depicted by arrows connected to the appropri-
ate milestones, as in the case of event 2.1.

 TABLE 5.4 A task list

 Activity
number Description Predecessors Duration

 Staff
number

 2.1 Receive approval to proceed — — —
 3.1 Analyze requirements 2.1 1 2
 3.2 Design

 3.2.1 Redesign existing components 3.1 6 4
 3.2.2 Design new components 3.1 3 1
 3.2.3 Design interfaces 3.2.2 1 2

 3.3 Implement code
 3.3.1 Implement new code 3.2.2 6 2
 3.3.2 Modify existing code 3.2.1, 3.2.3 5 1

 3.4 Finish implementation
 3.4.1 Develop integration plan 3.2.2 2 2
 3.4.2 Finish unit testing 3.3.1, 3.3.2 2 2
 3.4.3 Update documentation 3.3.1, 3.3.2 2 3

 3.5 Integrate and test
 3.5.1 Develop integration tests 3.4.1 1 3
 3.5.2 Perform integration tests 3.4.2, 3.4.3, 3.5.1 1 2

 3.6 Perform acceptance tests 3.5.2 1 1

 FIGURE 5.6 A critical - path activity network

m.n = tasks; (x) = activity duration

= milestones;

1 2

3

4 6 7

8 9 10

5

3.1

3.2.2

3.2.3

3.3.1

3.4.1
3.5.1

3.4.3

3.4.2

3.5.2 3.6

(1)

(3)

(6)

3.3.2

(5) (2)

(0)

(2)
(1)

(1) (1)
(1)

(6)

(2)

3.2.1

16 weeks

2.1

n

critical path

 Also note the “ dummy ” task of zero duration connecting milestones 7 and 8.
Inserting milestone 7 and a task of zero duration permits separate reporting of task
completions for tasks 3.4.2 and 3.4.3. Because these tasks are on critical paths (see
the following section), it is important to know when each task has been completed
and, if milestone 8 is not reached as planned, which task has been delayed. Addi-
tional milestones and dummy tasks can be inserted into a schedule network, as
desired, to improve the granularity of progress reporting.

 The numbers in the circles are project milestones that are used as progress indica-
tors during project execution. Achievement of a milestone is determined by verify-
ing that all of the tasks along the path leading to that milestone have been successfully
completed. A task is successfully completed by satisfying the acceptance criteria for
the work products produced by that task, as specifi ed in the task ’ s work package.
The milestones for Figure 5.6 are listed in Table 5.5 .

 TABLE 5.5 Milestones for the schedule network in Figure 5.6

 Event Description

 1 Project initiation
 2 Requirements analysis completed
 3 Design of new components completed
 4 Existing components redesigned; interfaces to new components designed
 5 Integration plan completed
 6 New code implemented; existing code modifi ed
 7 Documentation updated
 8 Unit testing completed; documentation updated; integration tests ready
 9 Integration tests completed

 10 Acceptance tests completed

5.8 DEVELOPING THE PROJECT SCHEDULE 189

190 PROJECT PLANNING TECHNIQUES

 Tasks 3.2.1, 3.3.1, and 3.3.2 (and perhaps 3.2.2) should be decomposed into sub-
tasks with associated work packages. This is because overruns in the long durations
of these tasks would not provide early warning of schedule problems (more on this
in Chapter 8).

 5.8.1 The Critical - Path Method

 The duration of each path through a schedule network can be determined by
summing the durations of the tasks along that path. A path that has the longest
duration is a critical path . A critical path is critical in the sense that any delays in
completing the tasks along that path will delay scheduled completion of the project
unless compensated by early completion of other tasks on that path. The critical
paths in Figure 5.6 are denoted by the bold lines. As illustrated, there may be more
than one critical path in a schedule network. The critical path (or paths) determines
the overall schedule. The durations of the two critical paths in Figure 5.6 are 16
weeks. This is the estimated duration of the project.

 This approach to determining a project schedule is termed the critical - path
method (CPM). Any schedule overruns for any tasks on a critical path will extend
the entire schedule unless other tasks on that critical path are fi nished in less time
than estimated to compensate for the overruns.

 Each path in a CPM network that is not critical has associated nonzero slack
time. For example, summing the task durations along the top - most path in Figure
 5.6 (denoted by milestones 1, 2, 3, 5, 8) indicates that milestone 8 can be reached in
7 weeks. However, the project cannot continue until tasks 3.4.2 and 3.4.3 also reach
milestone 8 at week 14. The top - most path therefore has 7 weeks of slack time
between milestones 0 and 8. Slack time can be used to adjust the scheduling of
noncritical tasks. For example, task 3.4.1 might be scheduled for weeks 8 and 9 if
the resources are not available to execute the task in weeks 5 and 6 (the earliest
start time for task 3.4.1). Slack time is also known as fl oat. Tasks on a critical path
have zero fl oat.

 5.8.2 The PERT Method

 The critical - path method provides an estimated schedule for a project but does not
provide any indication of the probability of meeting that schedule. For example,
what is the probability that the project depicted in Figure 5.6 can be completed
in the estimated 16 weeks? Is 16 weeks overly optimistic, about right, or overly
pessimistic?

 The PERT method provides probability distributions for achieving project mile-
stones on schedule, based on the probability of completing each task along the path
to that milestone. To use the PERT method, three numbers are specifi ed for each
task, as illustrated in Figure 5.7 : an optimistic (shortest probable) estimated dura-
tion, the 50% probably estimated duration, and a pessimistic (longest probable)
estimated duration. The three estimates for each task are used to compute the
expected value and standard deviation of a probability function for each task. The
expected values and standard deviations of the probability functions for the tasks
along a path to a milestone are used to compute the probability distribution of
achieving that milestone at various times (see the PERT sidebar for the PERT

 CALCULATING CRITICAL PATHS AND SLACK TIMES

 Critical paths can be found by summing the durations of the tasks on each
path through a schedule network and selecting the longest paths (or the
longest one in the case of a single critical path). An algorithmic approach to
determining critical paths and slack times for tasks not on a critical path involves
calculating the following quantities associated with each task: EST, EFT, LST,
and LFT.

 EST (Earliest Start Time)

 EST is the earliest time a task can be started. The EST of a task is the EST of
the preceding task plus the duration of that preceding task. If multiple tasks
immediately precede the starting milestone of the task for which the EST is being
computed, the preceding task having the largest EST plus the duration of that
task must be used. The duration of the project is the EST of the nonexistent task
that would follow the project completion milestone (i.e., the EST associated at
the fi nal milestone). The EST at milestone 10 of Figure 5.6 is 16 weeks.

 EFT (Earliest Finish Time)

 EFT is the earliest time at which a task can be completed. EFT is EST plus the
duration of the task.

 LST (Latest Start Time)

 LST is the latest time at which a task can be started without delaying completion
of the project. LST is computed by setting the LST at the fi nal milestone equal
to the EST at that milestone. The LST of each preceding task is computed by
subtracting the duration of the subsequent task from the LST of the subsequent
task. For example, the LST of task 3.6 in Figure 5.6 is 15 (16 − 1). If multiple tasks
emanate from the milestone on which a task terminates, the one having the
smallest LST is used. In Figure 5.6 the LST associated with task 3.2.2 is 3 because
the LSTs of tasks 3.3.1, 3.2.3, and 3.4.1 are 6, 6, and 11, respectively, and 6 (the
smallest LST) minus 3 (the duration of task 3.2.2) equals 3.

 LFT (Latest Finish Time)

 LFT is the latest time a task can be fi nished without delay completion of the
project. LFT for each task is LST plus the task duration.

 The slack time, or fl oat, associated with each task is EST − LST (or EFT − LST).
Tasks on a critical path have zero slack time. Free fl oat is the slack time available
to a task when all preceding tasks and all subsequent tasks start as early as pos-
sible (EST). Total fl oat for a task is the slack time available when all preceding
tasks on the path of that task start as early as possible (EST) and all subsequent
tasks start as late as possible (LST). Slack time available to a task is bracketed
by total fl oat minus free fl oat; however, using the entire total fl oat available to a

5.8 DEVELOPING THE PROJECT SCHEDULE 191

192 PROJECT PLANNING TECHNIQUES

 FIGURE 5.7 A PERT scheduling network

1 2

3

4 6 7

8 9 10

5

3.1

3.2.2

3.2.3

3.3.1

3.4.1
3.5.1

3.4.2

3.4.3

3.5.2 3.6

3.3.2

(4-5-8) (1-2-4)

(0)

(2-3-4)
(1-1-2)

(1-2-2) (1-1-1)
(1-3-5)

(4-6-8)

(1-2-5)

3.2.1

(1-2-3)

(1-2-4)

(5-6-8)

m.n = activities; n = milestones;
(a-m-b) = activity duration estimates

task will make all subsequent tasks on that path critical because all of those tasks
will then start as late as possible.

 CPM can also be used to track the progress of a project. Each milestone can
be checked off as it is reached; failure to achieve a milestone as scheduled pro-
vides early warning of risk to completing the project on schedule. Critical paths
can be, and should be, recalculated as the project evolves.

 A historical Note

 The critical - path method was developed in the late 1950s by M. R. Walker of E.I.
DuPont de Nemours and Co. and J. E. Kelly of Remington Rand as a mechanism
for scheduling the construction and refurbishing of chemical plants.

formulas). Computing the probability distribution for the fi nal milestone provides
a range of estimated project durations at various levels of probability.

 A straightforward approach to computing the probability of completing a project
in time T s or sooner, P (t ≤ T s), is to compute the mean value μ and standard devia-
tion σ of the probability density function for the fi nal milestone based on the prob-
ability functions of the tasks on a critical path to the fi nal milestone. The mean value
 μ is the sum of the mean values along the critical path. The standard deviation σ is
the square root of the sum of the squares of the standard deviations along the criti-
cal path (see the PERT sidebar for the PERT formulas). Critical paths can be com-
puted using the 50% probable estimates for each task.

 Various values of P (t ≤ T s) can be obtained using a standard Z - distribution table
and the formula: t Z t T= + ≤s m, .where s

 The probability is obtained by reading the value of P corresponding to the value
of Z in the Z - distribution table.

 If, for example, the mean value is μ = 12 and the standard deviation is σ = 3 for
milestone 10 in Figure 5.7 , the probability P (t ≤ T s) of completing the project at the
indicated times t or in less time are listed in Table 5.6 . Other values of P can be

obtained using the formula and a Z - distribution table. For example, it is 90% prob-
able the project can be completed in roughly 16 weeks or less if μ = 12 and σ = 3.

 TABLE 5.6 Probability of completing a project in time t
or less when μ = 12 and σ = 3

 Z P (t ≤ T s) t

 0 50% 12 weeks
 1 84% 15 weeks
 2 97.7% 18 weeks

5.9 DEVELOPING RESOURCE PROFILES 193

 5.8.3 Task - Gantt Charts

 There are two kinds of Gantt charts: task Gantts and resource Gantts. A task - Gantt
chart (the most commonly used of the two) is a plot of tasks versus the times in
which the tasks are scheduled to occur (resource Gantt charts are discussed subse-
quently). The task - Gantt chart in Figure 5.8 is derived from the CPM network in
Figure 5.6 . Note that the vertical axis depicts the WBS structure. Note also that only
tasks (lowest level elements of the WBS) are shown in Figure 5.8 ; the schedules for
higher level activities are indicated by arrows that span the extent of the tasks that
are subordinate to the activities.

 The cross - hatched tasks are those on the critical paths. Note that those tasks are
sequenced consecutively on the time line. The noncritical tasks (in the scheduling
sense) are shown with earliest start times (EST) and earliest fi nish times (EFT)
indicated. The extent of the “ box ” for each noncritical task indicates the latest fi nish
time (LFT) for that task based on scheduling constraints. The difference between
the EFT and LFT is the free fl oat for each of the tasks based on the EST for each
task (see the sidebar on calculating critical paths and slack times).

 Figure 5.9 is an augmented version of Figure 5.8 ; it contains only the tasks. The
numbers associated with the tasks in Figure 5.9 are the number people needed to
perform the tasks; they were obtained from Table 5.4 . The numbers along the x axis
are the sums of the people needed to perform all tasks in the indicated time periods.
They are obtained by summing the numbers in each column.

 Simplicity of representation is the primary advantage of task - Gantt charts. The
primary disadvantage is that schedule dependencies among noncritical tasks are not
explicitly represented. To overcome this problem, you can insert links in a Gantt
chart to show the dependencies, as in Figure 5.10 , or you can refer to the schedule
network to see the dependencies.

 5.9 DEVELOPING RESOURCE PROFILES

 A task - Gantt chart annotated with resource requirements, as in Figures 5.9 and 5.10 ,
is a convenient tool for developing the resource profi les for your project. The result-
ing staffi ng profi le, based on earliest start times for all tasks, is illustrated in Figure
 5.11 . The numbers associated with the cross - hatched areas indicate resources needed
for tasks on the critical paths. The other numbers indicate resources needed for
noncritical tasks scheduled at their earliest start times.

194 PROJECT PLANNING TECHNIQUES

 PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

 In the PERT approach, three estimates are provided for each task:

 a : the shortest estimated duration (optimistic)
 m : the 50% probable estimated duration
 b : the longest estimated duration (pessimistic)

 If beta probability distributions are assumed for the tasks, the three values can
be used to calculate the mean of the probability density function for each task.

 The mean m is computed as

 m
a m b

=
+ +4

6
.

 The square of the standard deviation σ is computed as

 s 2 =
−b a
x

.

 The value of x varies, depending on the probability levels used to assign values
to a and b . If a and b are assigned at the 5% (optimistic) and 95% (pessimistic)
levels of probability the formula is

 s 2
6

6=
−

=()b a xi e. ., .

 If a is assigned at the 20% level of probability (optimistic) and b is assigned at
the 80% level (pessimistic) the formula is

 s 2
3 2

3 2=
−

=()b a x
.

. ., . .i e

 Beta distributions are reasonable choices for the probability functions because
they are defi ned on fi nite intervals and can be skewed or symmetrical, depending
on the values of a and b in relation to m .

 The mean of the cumulative probability density μ for the tasks along a path
to a project milestone is the sum of the means of the probability densities for
the tasks on the path to that milestone. The standard deviation σ of the probabil-
ity density function at the milestone is the square root of the sum of the squares
of the individual deviations.

 Nontrivial scheduling networks have multiple paths. Comprehensive determi-
nation of the probability functions for the completion milestone of a project
would involve calculating μ and σ for each path in the network. A simple and
effective approach is to calculate the probability distribution function for the

tasks on the (or a) critical path, where the critical path is determined using the
most likely (m) values of the tasks.

 A Historical Note

 PERT was developed in the late 1950s for the POLARIS missile program by the
Program Evaluation Branch of the Special Projects offi ce of the U.S. Navy, with
the assistance of the Lockheed Missile Systems division and the consulting fi rm
of Booz - Allen and Hamilton. Because the Polaris program was a research and
development project involving numerous contractors and numerous technolo-
gies, the large number of uncertainties in conducting the program resulted in the
probabilistic approach to schedule estimation.

 Although most software projects are not as large and complex as was the
POLARIS program, they are nevertheless characterized by many uncertainties.
The PERT method is thus applicable. The biggest problem in using PERT is
estimating three durations for each task. “ What - if ” analysis (trying different
values to see the consequences of “ what if ”) can be used in the absence of solid
data on which to base the estimates.

 PERT methods are further discussed in Chapter 6 (Estimation Techniques)
and Chapter 9 (Risk Management) of this text.

5.9 DEVELOPING RESOURCE PROFILES 195

 FIGURE 5.8 Task - Gantt chart corresponding to Figure 5.6

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16

3.1

 3.2.1

 3.2.2
 3.2.3

 3.3.1

 3.4.1

 3.3.2

 3.4.2

 3.4.3

3.5.1
3.5.2

3.6

3.2

3.3

3.4

3.5

196 PROJECT PLANNING TECHNIQUES

 FIGURE 5.9 An augmented task - Gantt chart

WEEK

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16

2 5 10 8 7 3 1 4 2
1

2
4

1 2
2

2

1

1

2
2

 3.1

3.2.1

3.2.2

3.2.3
3.3.1

3.4.1

3.3.2

3.4.2

3.4.3
3.5.1
3.5.2
3.6

4 4 4

1

 FIGURE 5.10 A linked task - Gantt chart

WEEK

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16

 3.1

3.2.1

3.2.2

3.2.3
3.3.1

3.4.1

3.3.2

3.4.2

3.4.3
3.5.1
3.5.2
3.6 2 5 10 8 7 3 1 4 2

1

 The staffi ng profi le in Figure 5.11 is not realistic for most projects and most
organizations. It is not realistic to expect that people can be scheduled to “ drop in ”
and “ drop out ” of a project on a weekly basis. The alternative of keeping peak staff-
ing assigned to the project (10 people in Figure 5.11) and using staff members as
they are needed is also not realistic. What do they do the rest of the time? Stay
home? Interfere with the work of others? Go to the movies? Go fi shing? Go skiing?
And what is the impact of paying staff for unproductive time? They might work on
other projects, but scheduling resources for multiple projects at this level of granu-
larity is not practical.

 The slack times illustrated in Figures 5.8 , 5.9 , and 5.10 can be used to adjust the
staffi ng profi le in an attempt to obtain a more feasible staffi ng profi le. If, for example,
you were to schedule all noncritical tasks at their latest start times, the staffi ng
profi le in Figure 5.12 would result. This profi le is not realistic for two reasons:

 1. the peaks and valleys in the profi le and
 2. the cross - hatching indicates all paths in the schedule network are critical

because starting all tasks as late as possible means a delay in completing any
task will delay the overall schedule.

 In Figure 5.12 the cross - hatching for the original critical path is shown slanting
as in Figure 5.11 ; the cross - hatching on the upper part of Figure 5.12 depicts the
criticality of the other paths. If you try various combinations of scheduling for the
noncritical tasks in Figure 5.6 , you will fi nd that it is not possible to obtain a fl at
staffi ng profi le, such as the one illustrated in Figure 5.13 . The schedule/resource

 FIGURE 5.11 Staffi ng profi le for earliest start times for all tasks

EARLIEST START
STAFFING PROFILE

WEEK

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16

10

8

6

4

2

of
People

 FIGURE 5.12 Staffi ng profi le for latest start times for all tasks

LATEST-START
PROFILE

of
People

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

8

6

4

2

5.9 DEVELOPING RESOURCE PROFILES 197

198 PROJECT PLANNING TECHNIQUES

allocation problem in this example is caused by the large number of software devel-
opers needed in weeks 4, 5, and 6, as indicated in Figures 5.9 and 5.10 .

 The resource allocation problem is further complicated when there are multiple
kinds of resources to be allocated to the schedule (e.g., designers, coders, testers,
safety and security specialists, technical writers). Other factors that complicate the
allocation of resources include:

 • lack of suffi cient resources of various kinds, when needed, and
 • sharing of resources among multiple projects and programs.

 Despite these diffi culties it is recommended that your fi rst pass at developing a
project schedule proceed without regard to constraints on resources and resource
allocation. You can then iterate on the initial plan to achieve an acceptable balance
among schedule, resource profi les, and requirements. Acceptable options for achiev-
ing a balance include:

 • rearranging the tasks so that fewer resources are needed in peak weeks,
 • extending the schedule so that fewer resources are needed in peak weeks,
 • adding more resources to maintain the schedule,
 • using more productive resources so that fewer numbers are needed, and
 • descoping the requirements so that fewer resources and less time are needed.

 Combinations of these options may be used to achieve an acceptable balance.
 Unacceptable options include:

 • producing an unrealistic plan that has no chance of being successfully
implemented;

 • planning for overtime; and
 • reducing or eliminating quality control activities such as inspections, reviews,

and testing

 Unfortunately, the unacceptable options are often chosen. Planning for overtime is
a particularly bad choice because people will become tired and demotivated. Also

 FIGURE 5.13 A desirable but unobtainable staffi ng profi le for Table 5.4 and Figure 5.6

6

4

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of Staff

5

WEEK

most software projects hit periods when short bursts of overtime are needed. Planned
overtime leaves no reserve for those periods.

 The representations of Gantt charts in Figures 5.8 , 5.9 , and 5.10 can be used to
plan the project schedule and develop the resource profi les. When the scheduling
decisions have been made for tasks with associated slack times, a combined WBS -
 Gantt chart for that schedule can be prepared, as in Figure 5.14 . As before, the
cross - hatch bars indicate critical path tasks, and the open bars indicate tasks for
which slack time exists. Also note that only the tasks are scheduled; the schedule
for each activity spans the extent of the subordinate task schedules.

 5.10 RESOURCE - GANTT CHARTS

 Resource - Gantt charts can be used to depict the tasks assigned to various resources.
The grid - fi lled tasks in Figure 5.15 are those for which the expertise of Joe Hotshot
is needed and the time in which they have been scheduled; the tasks as scheduled
in Figures 5.8 , 5.9 , and 5.10 to which Joe is not assigned have been deleted from
Figure 5.15 . Figure 5.16 depicts the hours per week that will be required of Joe to
complete those tasks. This is clearly unworkable; each resource must be allocated
within the constraints of availability.

 5.11 ESTIMATING PROJECT EFFORT, COST, AND SCHEDULE

 Total effort for the tasks listed in Table 5.4 is 68 staff - weeks; total effort is deter-
mined by multiplying duration by the number of people for each task and
summing the products. If loaded salary per staff - week is X and the tasks in Table
 5.4 represent 50% of project cost, the estimated cost is 2 × X × 68. If, for example,

 FIGURE 5.14 A WBS - Gantt chart for a project schedule

WEEK

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16

3.1
3.2
 3.2.1
 3.2.2
 3.2.3
3.3
 3.3.1
 3.3.2
3.4
 3.4.1
 3.4.2
 3.4.3
3.5
 3.5.1
 3.5.2
3.6

5.11 ESTIMATING PROJECT EFFORT, COST, AND SCHEDULE 199

200 PROJECT PLANNING TECHNIQUES

 FIGURE 5.15 Resource - Gantt chart for Joe Hotshot

WEEK

1 3 5 7 9 11 13 152 4 6 8 10 12 14 16

 3.1

3.2.1

3.2.2

3.2.3
3.3.1

3.4.1

3.3.2

3.4.2

3.4.3
3.5.1
3.5.2
3.6

 FIGURE 5.16 Resource profi le for Joe Hotshot

80

40

1 2 3 4 5 6 7 8 9 10 11 12

Work-hours per week

Week

3.1

3.2.1
3.2.2

3.3.1

120

3.3.1
3.4.1
3.4.2

3.3.1
3.3.2

3.3.2

loaded salaries are $ 2500 USD per week, the cost of the project is estimated to be
 $ 340,000 USD. The critical path approach indicates that the project will require 16
weeks or more (e.g., more to account for scheduling constraints of scarce resources
such as Joe Hotshot). The PERT example indicates that the project can be com-
pleted in 15 weeks or less at 85% probability, subject to resource availability
constraints.

 Additional techniques for estimating effort, schedule, resources, and cost are
presented in Chapter 6 .

 5.12 KEY POINTS OF CHAPTER 5

 • Project plans must be consistent with product requirements; you cannot prepare
a plan for developing a software product if you don ’ t know what product to
make.

 • The more you understand about the product to be made, the more confi dent
you will be in the details of your plan.

 • A project plan must be updated periodically and as events dictate using a
rolling - wave approach.

 • Your initial plan and subsequent plans must maintain a balance among require-
ments, schedule, budget, and resource availability.

 • Essential elements of a project plan include a WBS, an activity network, resource
profi les for the various kinds or resources, and strategies for dealing with identi-
fi ed risk factors.

 • The work breakdown structure (WBS) is a fundamental tool for planning,
tracking, and controlling a software project.

 • The architecture decomposition view (ADV) of the software architecture pro-
vides the basis for developing a WBS.

 • The ADV is product - oriented; noun phrases are used to specify things.
 • The WBS is process - oriented; verb phrases are used to specify activities and

tasks.
 • Using the guidelines for designing a WBS will ensure that the WBS is designed

with the same care that is used to design the product.
 • Your initial WBS should be decomposed to satisfy the WBS decomposition

criteria.
 • Work packages are the specifi cations for tasks and activities in the WBS.
 • Work packages for activities are aggregations of work packages for subordinate

tasks and activities.
 • The schedule network, resource requirements, cost estimates, and risk factors

can be derived from work packages.
 • The critical path method (CPM) can be used to determine the minimum esti-

mated duration of a project and the slack times associated with noncritical
tasks.

 • The Program Evaluation and Review Technique (PERT) can be used to deter-
mine the times, at various levels of probability, required to reach project mile-
stones, including the fi nal milestone.

 • A task - Gantt chart can be used to depict the critical path, illustrate slack times
for noncritical tasks, and determine resource profi les for the various kinds of
resources.

 • A resource - Gantt chart can be used to depict the resource loading for various
resources.

 • Acceptable options for reconciling schedule/resource confl icts include recon-
fi guring the schedule network, extending the schedule so that fewer resources
are needed in peak weeks, adding more resources to maintain the schedule,
using more productive resources so that fewer numbers are needed, descoping

5.12 KEY POINTS OF CHAPTER 5 201

202 PROJECT PLANNING TECHNIQUES

the requirements so that fewer resources and less time are needed, and com-
binations of the above.

 • Unacceptable options for reconciling schedule/resource confl icts include pro-
ducing an unrealistic plan that has no chance of being successfully imple-
mented; planning for overtime; and reducing or eliminating quality control
tasks such as inspections, reviews, and testing.

 • Resource profi les can be used to calculate effort and the costs of the various
resources; project schedule can be determined from the critical path or from
PERT calculations.

 • SEI, ISO, IEEE, and PMI provide frameworks, standards, and guidelines for
project planning techniques (see Appendix 5A to this chapter).

 REFERENCES

 [Bass03] Bass , L. , P. Clements , and R. Kazman . Software Architecture in Practice , 2nd ed.
 Addison Wesley , 2003 .

 [CMMI06] SEI, CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,
2006.

 [Conway68] Conway , M. E. “ How Do Committees Invent? ” Datamation (April 1968). Vol.
 14 , No. 4 , pp. 28 – 31 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology – Software Life Cycle
Processes . Engineering Standards Collection; IEEE Product: SE113. Institute
of Electrical and Electronic Engineers, August 2003.

 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed.
(PMBOK ® Guide). Project Management Institute , 2004 .

 [Walz93] Walz , D. B. , J. Elam , and B. Curtis . Inside a software design team: Knowledge
acquisition, sharing, and integration . Communications of the ACM , 36 (October
 1993). pp. 63 – 67 .

 EXERCISES

 5.1. List and briefl y explain three factors that might prevent you, as the project
manager, from preparing a project estimate that has a 90% or greater proba-
bility of success.

 5.2. The assumptions on which your estimate and your commitment are based
must be documented and accepted by your manager and your customer. List
and briefl y explain fi ve (relevant and reasonable) assumptions you might
make in preparing an estimate that would be accepted.

 5.3. The architecture decomposition view depicts the hierarchical “ is - part - of ” con-
tainment relationship among software modules. List and briefl y explain the
desirable attributes of software modules in an ADV.

 5.4. Assume that a WBS has a depth of M with a fan - out of N at each level.
 a. State the formula for the number of leaf nodes (i.e., number of tasks) in

the WBS.
 b. How many tasks are there in a WBS of depth 4 with a fan - out of 5 at each

level?

 5.5. Refer to Figures 5.5 a and 5.5 b , and assume the following:
 • Assume that tasks 3.2.1.1, 3.2.3.1, and 3.2.4.1 each require 1 person for 2

weeks.
 • Assume that task 3.2.2.1 will require 2 persons for 4 weeks.
 • Assume that tasks 3.2.1.2 and 3.2.1.3, 3.2.3.2 and 3.2.3.3, and 3.2.4.2 and

3.2.4.3 and will each require 1 person for 1 week.
 • Assume that tasks 3.2.2.2 and 3.2.3.3 will require 2 persons for 2 weeks.
 • Assume that task 3.2.5 will require 2 persons for 2 weeks.

 a. Prepare a schedule network for the 13 tasks, showing sequential and
concurrent activities and milestones.

 b. Prepare a list of the 13 tasks. List the EST, LST, EFT, and LFT for each
task.

 c. List the tasks on the critical path using the ESTs and LSTs.
 d. Using the critical path, list the time needed to complete the 13 tasks.
 e. Prepare a staffi ng profi le for the 13 tasks using the EST for each task.

 5.6. Calculate and list the slack time for each of the tasks between milestones 0
and 8 for each of the noncritical paths in Figure 5.6 . Show your work.

 5.7. Using the template for work packages in Table 5.3 a , design work packages for
5 of the 12 tasks in Table 5.4 and Figure 5.6 . You will have to “ invent ” some
of the missing information; be creative but not ridiculous.

 5.8. In the text it is stated that 68 staff - weeks of effort is required to complete the
tasks in Table 5.4 . Perform the calculations and verify this statement. Show
your work.

 5.9. Assuming you have access to a scheduling tool such as Microsoft Project, use
the tool to accomplish the following:
 a. Replicate the task list in Table 5.4 as a combined WBS and Gantt chart.
 b. Replicate the critical - path network in Figure 5.6 .
 c. Observe and print a list of the slack times associated with each task.
 d. Replicate the PERT network in Figure 5.7 . Observe and print the probabil-

ity distribution for milestone 10.
 e. Add staff resources to each task, using the staff numbers in Table 5.4 .

Observe and print a staffi ng profi le for the project.
 f. Observe and print the resource - Gantt charts for each staff member.
 g. Briefl y describe how you would attempt to resolve the resource confl icts

in your resource - Gantt chart.

 5.10. Consult a Z - distribution table and complete the calculations for the values of
time t shown in Table 5.6 . Also fi nd the Z value that corresponds to
 P (t ≤ T s) = 90% and compute the corresponding time t .

EXERCISES 203

 APPENDIX 5A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR PROJECT
PLANNING TECHNIQUES

 5A.1 SPECIFIC PRACTICES OF THE CMMI - DEV - v 1.2 PROJECT
PLANNING PROCESS AREA

 The CMMI process framework CMMI - DEV - v1.2, [CMMI06] include specifi c prac-
tices SP 2.1 (Establish the Budget and Schedule) and SP 2.4 (Plan for Project
Resources) under specifi c goal SG 2 (Develop a Project Plan) in the project plan-
ning process area. Typical work products of SP 2.1 are:

 1. project schedules
 2. schedule dependencies
 3. project budget

 Subpractices of SP 2.1 (Establish the Budget and Schedule) include:

 1. identify major milestones
 2. identify schedule assumptions
 3. identify constraints
 4. identify task dependencies
 5. defi ne the budget and schedule
 6. establish corrective action criteria

 Typical work products of SP 2.4 (Plan for Project Resources) include:

 1. WBS task dictionary
 2. WBS work packages
 3. staffi ng requirements based on project size and scope
 4. critical facilities/equipment list

204

 5. process/workfl ow defi nitions and diagrams
 6. program administration requirements list

 Subpractices of SP 2.4 include:

 1. determine process requirements
 2. determine staffi ng requirements
 3. determine facilities, equipment, and component requirements

 5A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 Section 7.1 of ISO & IEEE Standards 12207.0 covers the management process
 [IEEE12207] . Section 7.1.2 covers planning; section 7.1.2.1 states that the following
items must be included in plans for the management processes:

 • schedules
 • effort estimates
 • adequate resources
 • allocation of tasks
 • assignment of responsibilities

 Section 6.11.3 of 12207.1 indicates that a work breakdown structure must be included
in the project management plan.

 5A.3 IEEE / EIA STANDARD 1058

 Project management plans based on IEEE Std 1058 ™ – 1998 IEEE Standard for
Software Project Management Plans [IEEE1058] will include clause 5.2 (Work
Plan), which contains the following items:

 • work activities
 • schedule allocation
 • resource allocation
 • budget allocation

 According to 1058, a work breakdown structure is used to show the work activities
and the relationships among them. Work packages can be used to specify the work
activities. 1058 states that techniques such as milestone charts, activity lists, activity
Gantt charts, activity networks, critical path networks, and PERT can be used to
specify schedule relationships. The various kinds of resources needed to accomplish
the project should be allocated to elements of the WBS and documented in the
work packages.

5A.3 IEEE/EIA STANDARD 1058 205

206 PROJECT PLANNING TECHNIQUES

 5A.4 THE PMI BODY OF KNOWLEDGE

 A Guide to the Project Management Body of Knowledge , 3rd ed. (i.e., the PMBOK ®
Guide) [PMI04] , includes sections that are relevant to the contents of this chapter:

 5.3 Create WBS
 6.5 Schedule Development
 9.1 Human Resource Planning

207

6
 ESTIMATION TECHNIQUES

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 Predictions are hard; especially about the future.
 — paraphrase of a quote variously attributed to Samuel Goldwyn and Yogi Berra

 6.1 INTRODUCTION TO ESTIMATION TECHNIQUES

 The goal of estimation is to determine a set of parameters that provide a high
level of confi dence you will be able to deliver an acceptable product within the
bounds of the project constraints. The parameters and constraints to be considered
are:

 • product features,
 • quality attributes,
 • effort,
 • other resources,
 • schedule,
 • budget, and
 • technology.

 Some of these parameters are specifi ed as constraints and others are estimated.
For example, you may be given a set of requirements and a technology base (the
constrained parameters are thus: features and quality attributes, hardware platform
and operating system), and asked to estimate how much time, effort, other resources,
and budget will be needed (the estimated parameters); you should also indicate your
level of confi dence in the estimate. Or, you may be given a schedule, budget, and

208 ESTIMATION TECHNIQUES

resources and asked to estimate the set of features and quality attributes that can
be developed within those constraints. Other combinations are possible.

 Experience has shown that developing realistic estimates for software projects is
an error - prone process. After the fact, project attributes such as actual effort, sched-
ule, resources, cost, product features, and quality attributes are often quite different
than the estimated parameters. There are several reasons for this unfortunate
situation:

 • the initial estimate of effort and schedule might have been based on vague and
changing requirements,

 • the initial estimate was not updated as knowledge was gained and as under-
standing increased,

 • the basis of estimation might not have been appropriate for the project being
estimated,

 • the method or tool used to make the estimate might not have been
appropriate,

 • the recall of experts consulted might have been incorrect or biased,
 • the fi nished product might have been larger or more complex than assumed

when making the estimate,
 • the schedule and/or resources might have been reduced without adjusting the

requirements for product features and quality attributes,
 • the requirements for product features and quality attributes might have been

increased without adjusting the schedule and resources,
 • the number of available software developers and their skill levels might not

have been as assumed when making the estimate, and
 • external factors such as unanticipated changes in hardware and software inter-

faces or late completion of work by a subcontractor might have delayed com-
pletion of the project.

 The goal of this chapter is to provide methods, tools, and techniques that can reduce
the probability of making bad estimates.

 6.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises you should understand:

 • the role of estimation in the workfl ow model for software projects;
 • three fundamental principles of estimation;
 • size measures and size measurement;
 • how to develop a size measure;
 • some pragmatic, theory - based, and regression - based estimation techniques;
 • how to develop, calibrate, and evaluate the acceptability of regression - based

estimation models;
 • capabilities of estimation tools;

 • an estimation procedure; and
 • a format for documenting estimates.

 The four sets of standards and guidelines for managing projects presented in this
text; namely the CMMI - DEV - v1.2 process framework, the ISO/IEEE standard
12207, IEEE standard 1058, and the PMI Body of Knowledge address estimation
issues to varying degrees. Aspects of estimation in these documents are presented
in Appendix 6A to this chapter.

 Terms used in this chapter and throughout this text are defi ned in Appendix A
to the text. Presentation slides for this chapter and other supporting material are
available at the URL listed in the Preface.

 6.3 FUNDAMENTAL PRINCIPLES OF ESTIMATION

 Three fundamental principles of estimation are presented and discussed in this
section. The fi rst fundamental principle of estimation for software projects is stated
as follows:

 Estimation Principle 1 A project estimate is a projection from past experiences to
the future, adjusted to account for differences between past and future.

 Three things are apparent from this principle:

 1. you must have some past experiences to draw upon (known as the basis of
estimation),

 2. you must know something about the future (requirements for the system or
product you will develop or modify, and

 3. you must make adjustments to account for the differences between past and
future (known as the adjustment factors).

 All estimation techniques for software projects incorporate, in varying ways and
to varying degrees, past experiences, knowledge of the future, and adjustment factors.
Past experiences might, for example, have resulted in a rule of thumb (a guideline)
that states software productivity in your organization, for your kind of project, is
typically 500 delivered source lines of code per staff - month (500 DSLOC/SM). If
you have estimated that the future product will be 50,000 lines of code (based on
the requirements and past experiences) and if the future project is thought to be
similar to past projects (no adjustments), it will require an estimated 100 staff -
 months of effort (50,000/500).

 In the absence of adjustment factors, you might plan the project for 10 months
using 10 software developers. If you think the product to be developed will be more
complex than past products, you might increase you effort estimate to 120 staff -
 months and plan the project for 12 months using 10 software developers; conversely,
you might lower the effort estimate if you think the product will be less complex
than past products and/or you think the software developers have gained familiarity
with this type of product building similar products.

 Historical data based on past experiences might also indicate that the number of
de fects found prior to product release is typically 10 per thousand lines of delivered

6.3 FUNDAMENTAL PRINCIPLES OF ESTIMATION 209

210 ESTIMATION TECHNIQUES

source lines of code (10D/KDSLOC) and the number found by users during the
fi rst 6 months of operation are 1 per KDSLOC. You could then estimate that 500
defects should be found prior to product release (50 × 10) and 50 will be reported
by users during the fi rst 6 months of operation.

 In making these estimates, you might have assumed several things (either explic-
itly or implicitly). For example, you might have assumed that the product will be
similar in complexity to the typical ones built in the past; therefore you have not
applied a complexity adjustment factor. You might have assumed that the develop-
ers of the future product will be similar in ability to those on which the productivity
rule of thumb is based (500 DSLOC/SM); otherwise, you would include an adjust-
ment factor to increase or decrease the estimate based on your assumption of how
the productivity of your developers will differ from productivity in the past.

 FIGURE 6.1 The estimation process

Past
Experiences

Adjustment
Factors

Product Attributes

Estimates of
 - effort
 - schedule
 - defects
 - reliability
 . . .

Estimation
Procedure

Project Constraints

Assumptions

 FIGURE 6.2 A workfl ow model for managing software projects, emphasizing estimation
and re - estimation

delivered

work
products

Requirements
and Constraints

Customer

Managers

Activity
Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Independent
V&V

Measuring

Controlling

Data
Retention

Estimation and
Re-estimation

Reporting

Change Requests and Problem Reports

Status Reports Project Reports

Directives and
Constraints

Planning
and

Replanning

Configuration
Management

 Figure 6.1 illustrates the roles played by attributes of the product to be developed
or modifi ed, the project constraints, past experiences, assumptions, and adjustment
factors. Figure 6.1 is related to the workfl ow model for software projects in Figure
1.1, repeated here as Figure 6.2 :

 A comparison of Figures 6.1 and 6.2 shows that product attributes are derived
from the customer requirements. Project constraints include customer constraints
and management directives and constraints. Past experiences are summarized by
the data retention element Figure 6.2 ; these experiences may be summarized in a
database of local completed projects, in the heads of experts, in local rules of thumb,
in industry averages, or in folklore. Adjustment factors are applied to account for
your understanding of the requirements and how they differ from past experiences,
as well as differences in project parameters such as skill levels, availability of
resources, and schedule constraints.

 Assumptions are based on factors you believe to be true or that you believe will
be true. Replanning typically involves re - estimation, which is based on changes to
requirements, directives, and constraints, and as required by problem reports.
Continuing the (simple) example above:

 • the attributes of the future product are summarized in the size estimate of
50,000 DLOC (derived from the requirements);

 • past experiences are summarized by the productivity rule of thumb (500
DSLOC/SM) and the pre - release and post - release defect densities; and

 • if no adjustment factors are applied, it is assumed that the future project will
be similar in every way to the past projects on which the estimate is based;
adjustment factors are applied to account for differences between past projects
and the future one.

 Adjustment factors are attributes that cause seemingly similar projects (i.e.,
seemingly similar products) to differ in effort, schedule, resources, cost, features,
quality attributes, and other attributes of interest. Typical adjustment factors
include:

 • relative complexity of the product,
 • skills and abilities of the developers,
 • specifi city and volatility of the requirements, and
 • excessive constraints such as schedule pressure.

 Each of these factors (and others) may be better or worse than typical past
projects.

 Adjustments factors are important in estimating software projects because no
two software projects are alike; otherwise, you could make a copy of some existing
software and give it to your customer. Stated differently, every software project
incorporates unique aspects. The reason you do software projects is to produce
software artifacts unlike any others you or your organization have developed.

 In this regard software differs from physical entities. A great deal of effort is
required to duplicate a building, an automobile, or a computer. When fi nished, the
physical entity will be similar, but not identical, to the original. The goal of manu-
facturing processes is to produce multiple copies of artifacts that are as nearly alike
as possible, within the limits of technology and economic considerations, but the
results are never identical. The primary goal of your software project is (or should
be) to produce one acceptable copy, on time and within budget. Then you can easily

6.3 FUNDAMENTAL PRINCIPLES OF ESTIMATION 211

212 ESTIMATION TECHNIQUES

produce as many identical copies of your software as desired, defects and all (witness
Microsoft and other software vendors).

 In the example above, you might think the product to be built will be more
complex than the typical ones in the past, so you might adjust the estimate upward
by 20% to account for increased complexity. You might then schedule the project
as a 10 - month project with an average staffi ng level of 12 software developers (i.e.,
12 full - time equivalents, FTEs). If the schedule duration is constrained to 9 months,
linear adjustment of staffi ng would indicate that approximately 13 FTE software
developers are needed:

 FTE
staff-months
 months

= =
120

9
13 3. .

 As will be shown later, linear compensation is not suffi cient; more than 13.3 software
developers will be needed to compensate for schedule compression because the
increased level of communication and coordination required when more people are
added.

 All estimates are based on assumptions and constraints. An assumption is a state-
ment that is taken to be true without verifying, or being able to verify, the truth of
the statement. In the example above it is assume that the productivity factor used
in your organization (500 DSLOC/SM) and the estimated defect levels (10/KDSLOC
and 1/KDSLOC) are appropriate for your project. The estimate was adjusted upward
by 20% because it was assumed that increased product complexity would require
more effort than typical past projects; the estimate might be adjusted downward
based on the assumption that you will have a team of highly skilled software
developers who will more than compensate for increased product complexity.
Assumptions that later turn out to be false invalidate the estimates based on those
assumptions.

 A constraint is an externally imposed condition that must be observed. In the
example above, the schedule might be constrained to 6 months. Completing 120
staff - months of effort in 6 months would require an average staffi ng level of more
than 20 software developers (120/6 = 20); more than 20 because the increased level
of communication and coordination required for 20 FTEs 20 compared to 10 FTEs
on a 12 - month schedule will decrease the individual productivity of each software
developer. Also the compressed schedule will likely increase the number of
pre - release and post - release defects.

 In addition it may not be possible to compress a 12 - month schedule to 6 months
because some work products have to be completed before other work can begin;
you cannot develop software until the requirements are (at least partially) known.
You cannot integrate or test the code until it is written. Constraints on factors such
as availability of qualifi ed software personnel or delivery of needed hardware
or software can also prevent compression of the schedule. Historical data may
indicate that no project in your organization has ever succeeded after compressing
a pre - planned schedule by 50% (i.e., from 12 months to 6 months).

 20 FTE is an acronym for full - time equivalent personnel. If 20 FTEs are required for a project, and if each
person is available to work on your project 50% of their time, you will need many more than 40
developers.

 These observations are stated as the second fundamental principle of estimation
for software projects:

 Estimation Principle 2 All estimates are based on a set of assumptions that must
be realized and a set of constraints that must be satisfi ed.

 Said differently, your estimate will be invalid if you fail to satisfy the assumptions
made in preparing the estimate; the project will fail to meet its goals if the
constraints are violated.

 Another way to view the assumptions and constraints on which estimates
are based is to regard assumption and constraints as risk factors for your project.
A risk factor is a potential problem that, should it become a real problem, will
create diffi culties in achieving a satisfactory outcome for your project (i.e., deliver-
ing an acceptable product on time and within budget). For example, basing an esti-
mate on the assumption of highly skilled developers creates a risk factor that will
invalidate the estimate if the software developers are not highly skilled. Attempting
to complete the project within the constraints of 6 months using more than 20
people may create problems of communication and coordination that will prevent
completion of the project on schedule and/or may result in an unsatisfactory
product.

 Estimation Principle 3 Projects must be re - estimated periodically as understand-
ing grows and aperiodically as project parameters change.

 This principle is a corollary to principle 2. As your project evolves, your understand-
ing of the product under development, the assumptions you have made, and the
impact of the constraints will become clear (clearer). For example, the product may
be more or less complex than you assumed; your developers may be more or less
skilled and more or less motivated than you assumed; the schedule constraint may
be more or less severe than you assumed. Better understanding of the product, the
validity (or invalidity) of your assumptions, and the impact of the product and
process constraints will typically result in re - estimation and refi nement of plans, as
illustrated in Figure 6.2 .

 As a rule, re - estimation and re - planning should occur on a monthly basis for
projects of less than 12 months duration, and monthly, or perhaps quarterly for
project of more than 12 months duration. The longer interval is determined by the
stability of the requirements, the resources, the technology, and the development
process.

 Projects must be re - estimated aperiodically when unanticipated changes occur
in project parameters such as:

 • a major change in requirements,
 • failure of a new technology,
 • compression of the schedule,
 • reduction of the planned budget, or
 • loss of key personnel.

6.3 FUNDAMENTAL PRINCIPLES OF ESTIMATION 213

214 ESTIMATION TECHNIQUES

 Major re - planning may be required, depending on the magnitude of the unantici-
pated change.

 As stated previously in this text, acceptable ways to accommodate changes in
project parameters include:

 • re - scoping the requirements,
 • extending the schedule,
 • adding more resources, and
 • utilizing better resources.

 Unacceptable ways include:

 • excessive overtime,
 • reduction in planned verifi cation and validation activities, and
 • reduction in planned documentation.

 If you are committed to a fi xed price - and - schedule contract with rigid require-
ments (always a bad idea), you must have suffi cient reserve in the agreed - upon price
and schedule to accommodate changes as understanding grows (projects always
become larger and more complex than assumed). The reserve may range from 10%
to 50% of estimated cost, depending on your confi dence in your original estimate.
The contract must also contain a clause stating that the contract will be re - negoti-
ated if there is an unplanned event such as a major change in customer - controlled
factors; as for example, changes to requirements, schedule, or funding, namely the
out - of - scope changes.

 6.4 DESIGNING TO PROJECT CONSTRAINTS

 The estimation process illustrated in Figure 6.1 is applicable when product attributes
such as size and complexity are used to estimate project attributes such as effort
and duration. In this case the product attributes are in fact product constraints. In
some cases effort and/or schedule and/or quality attributes are specifi ed as project
constraints and used to estimate the attributes of a product that can be developed
or modifi ed within those constraints. This approach is termed “ designing to project
constraints; ” it is illustrated in Figure 6.3 (in system engineering this approach is
known as “ designing to cost ”).

 Suppose, for example, that a project must be completed in 6 months by 5 software
developers (30 staff - months of effort). Using the rules of thumb from above, it is
estimated that the constrained 30 staff - months of effort will result in 15,000 DSLOC
(30 × 500), and that the number of defects will be 150 pre - release and 15
post - release.

 This designing - to - constraints estimate is based a productivity factor that is
assumed to be typical of the organization (500 DSLOC/SM). If the future product
is estimated to have 20,000 DLOC, the 5 - member project team will have to be 33%
more productive than the typical project team in the past (20,000/15,000) if they are
to complete the project in 6 months.

 The feasibility of the project depends on specifying one or more realistic adjust-
ment factors that can increase productivity by 33%; for example, the project might
be feasible if you could utilize 5 of the best software developers in your organiza-
tion. If you cannot assume that some realistic adjustment factors will be true, with
a high level of confi dence, there is a correspondingly high risk of project failure
(i.e., inability to deliver an acceptable product on time and within budget). If the
product size is estimated to be 30,000 DLOC, the project team will have to be twice
as productive as the typical team. This is unlikely under any scenario, and indicates
that the project, as constrained, is infeasible.

 You must be cautious that project constraints do not make it impossible to fi nd
feasible values for the estimated factors. There is an old saying: “ You can have the
software soon, good, cheap; pick any two. ” If you want your software soon and good
it won ’ t be cheap (i.e., it will be expensive); if you want it good and cheap, it won ’ t
be soon (i.e., the schedule duration will not be short); if you want your software
soon and cheap, it won ’ t be good (i.e., quality will suffer).

 The situation is illustrated in Figures 6.4 a and 6.4 b as three fundamental param-
eters of estimation — schedule, resources, and requirements — that must be balanced.
As indicated, there may be some fl exibility in one or more of the dimensions: there
may (or may not) be some contingency reserve in the schedule (i.e., the difference
between the estimated schedule and the committed schedule). There will likely be
an upper limit on the resources that can be applied to the project. There may be a
minimum, in the sense that the project is infeasible unless the minimum resources
are available, and, there will be a minimum number of features and quality attributes
that must be delivered (i.e., the Essential requirements). The solution box in Figures
 6.4 a and 6.4 b is the result of projecting the upper and lower constraints on the three
dimensions into the three - dimensional space.

 The fundamental goal of estimation is to develop and maintain estimates that
keep your projects “ in the solution box, ” both initially and as conditions change.
Keeping your project in the box means that you will deliver an acceptable product
that satisfi es all of the Essential requirements (and some of the Desirable and
Optional ones) within the constraints of an acceptable schedule and available
resources. Finishing your project at any point within the constrained solution box
indicates that you delivered an acceptable product on time and within budget (the
budget is used to obtain the resources).

 If there is no fl exibility in the requirements, the box in Figure 6.4 b becomes the
front plane of the box; if in addition there is no fl exibility in the schedule, the plane

 FIGURE 6.3 Design to project constraints

Past
Experiences

Adjustment
Factors

Product Attributes

Project Constraints
 - effort
 - schedule
 - defects
 - reliability

 . . .

Estimation
Procedure

Assumptions

6.4 DESIGNING TO PROJECT CONSTRAINTS 215

216 ESTIMATION TECHNIQUES

becomes a vertical line which indicates some fl exibility in the resources. If there is
no fl exibility in any of the three parameters, the box collapses to a single point.

 An overly constrained project is one for which there is no feasible solution in
the box or the plane or at the single point. This situation results when the con-
strained schedule is less than the estimate of time needed, and/or the resources are
less than the minimum number and kind required, and/or the number of require-
ments that can be implemented within the constraints of schedule and resources is
less than those in the Essential category. Rigidly constraining 1 or 2 of the 3 funda-
mental variables requires fl exibility in the other 1 or 2 in order to establish feasible
solution points. Rigidly constraining all 3 variables is usually a recipe for failure.

 Estimates are sometimes “ mandated. ” These “ estimates ” are the result of overly
constrained product and project factors that have no fl exibility in the estimation
parameters (i.e., your team of 5 developers must develop 60,000 lines of high - quality
code in 6 months; it must be good, cheap, and soon). This is not an estimate; it is a
disaster waiting to happen, for you, your project, your organization, and your
customer.

 6.5 ESTIMATING PRODUCT SIZE

 As indicated in Figure 6.1 , estimates of factors such as effort, schedule, resources,
cost, and quality attributes are based on estimated product attributes, project con-
straints, past experiences, and adjustment factors. Alternatively, Figure 6.3 indicates
that project constraints may dictate the attributes of a product that can be built or
modifi ed within those constraints.

 Most estimation models, tools, and techniques use some measure of size as the
fundamental product attribute on which the estimate is based, or in the case of

Schedule

Resources

Requirements

Essential

Estimate
Commitment

Maximum
Minimum

Optional
constrained
 solution box

 FIGURE 6.4A Three fundamental variables of estimation and the resulting solution box

constrained

constrained
schedule

resources constrained
requirements

 FIGURE 6.4B The constrained solution box in Figure 6.4 a

6.5 ESTIMATING PRODUCT SIZE 217

designing to project constraints (Figure 6.3), size is the product attribute that is
estimated. Depending on the nature of the product, factors in additional to size, such
as product complexity, degree of connectivity, real - time responses needed, or amount
of data to be manipulated, may infl uence the estimates of effort, schedule, resources,
quality factors, and cost; additional product factors such as these are included as
adjustment factors in most estimation models.

 Most estimation methods based on product factors use some measure of product
size as the primary factor that drives the estimate because:

 1. size has a stronger causal relationship to project attributes such as effort and
schedule than do other product attributes;

 2. size can be measured more objectively than other product attributes;
 3. some measures of size can estimated more accurately from the requirements

than can other product attributes; and
 4. data for size, effort, schedule, and other project attributes can be collected

from completed projects and stored in a database to provide a historical basis
of estimation for future projects.

 Historically, delivered source lines of code (DSLOC) has been used as the size
measure but there are several problems related to using lines of code:

 • it is diffi cult to estimate lines of code early in a project; it is diffi cult to relate
changes to the requirements to changes in estimated lines of code;

 • calculating productivity as lines of code generated per programmer - month may
encourage programmers to write lots of poor - quality lines of code rather than
fewer lines of high - quality code; and

 • modern development methods such as model - driven development, object -
 based programming, reuse of library components, and use of open source
components make the relationship between lines of code and project attributes
less relevant and less precise than in the past.

 Size measures other than lines of code have been developed to overcome the
problems of using lines of code. The function point size measure is the best known
and historically was the fi rst alternative to lines of code [Albrecht79] . Function
points (FPs) are calculated by counting the number of different kinds of inputs,
outputs, internal fi les, queries, and interfaces in a system to be estimated.

 These counts are based on objective counting rules, and each unique input,
output, internal fi le, query, and interface is weighted as simple, average, or complex.
The function point model is illustrated in Figure 6.5 .

 The weighted values are summed to provide a total number of unadjusted func-
tion points (UFPs). Adjustment factors such as the complexity of processing, trans-
action rate, and required ease of use are then applied to account for conditions that
will require more or less effort than the typical project. Further details and an
example of a function point estimate are provided in the accompanying sidebar. As
indicated in the sidebar, function point analysis has been generalized to become
functional size measurement.

218 ESTIMATION TECHNIQUES

 FIGURE 6.5 Function point factors to be counted

SYSTEM

O
u
t
p
u
t
s

I
n
p
u
t
s

Files

Queries
INterfaces

#FPs = Σ (I, O, F, Q, IN)

other
systems

 An interesting aspect of the function point size measure is that the lines of code
required to implement a given number of function points depends on the program-
ming language used to implement the software needed to process the inputs and
use the fi les, interfaces, and queries to produce the outputs. It might be, for a given
organization and a particular kind and size of product, that the conversion factor
from function points to delivered lines of code is 50 DSLOC/FP for programs
written in Java and 300 DSLOC/FP for similar programs written in assembly lan-
guage. This would indicate that Java is 6 times more expressive than assembly lan-
guage for this kind and size of product within this organization. If it is assumed that
the effort required to write, say, 100 lines of code is independent of the programming
language used (a reasonable fi rst - order approximation), it would appear that Java
programmers would be 6 times more productive than assembly language program-
mers as measured by function points implemented per programmer - week or
programmer - month.

 The qualifi er in the previous paragraph “ for a given organization and a particular
kind and size of product ” is important because the ratio of lines of code to function
points is different for different kinds of software, for different sizes of software, and
for different organizations. Although guidelines have been published to convert
function points to lines of code for various programming languages, the conversion
factor(s) should be locally derived. Within your organization you might have differ-
ent conversion factors for different kinds and sizes of software products, and the
conversion factors might not be valid in other parts of your company.

 Conversion factors between function points and lines of code are useful to:

 1. use function points as inputs to estimation tools that are calibrated to lines of
code and

6.5 ESTIMATING PRODUCT SIZE 219

 FUNCTIONAL SIZE MEASUREMENT

 The function point size measure was the fi rst functional size measure (FSM); it
was developed by Alan Albrecht in the mid - 1970s to measure the “ external size ”
of data processing applications [Albrecht79] . He called the approach “ function
point analysis ” (FPA).

 The International Function Point Users ’ Group (IFPUG; a nonprofi t organi-
zation) is now the offi cial keeper of FPA. IFPUG maintains the Function Point
Counting Practices Manual, holds annual conferences, and sponsors educational
seminars and workshops [IFPUG] . IFPUG also provides a professional certifi ca-
tion program for Certifi ed Function Point Specialists.

 Table 6.1 illustrates the function point approach to functional size measure-
ment. The example in the table shows the number of function points for inputs,
outputs, fi les, queries, and interfaces (in bold) and the weighting factors for
simple, average, and complex weightings in each case. Note that the weighting
factors for fi les and interfaces are larger than the weights for inputs, outputs, and
queries. This indicates that more effort is required to develop the functionality
for fi les and interfaces than for the other three factors.

 As indicated in Table 6.1 , the number of unadjusted function points (UFPs)
for the example is 242. If the composite adjustment factor is 1.13, the number of
adjusted function points is approximately 276 (1.13 × 242). If history data for past
projects indicates productivity of 6.5 function points per staff - month (6.5 FP/SM)
the effort estimate is approximately 42 staff - month (which could be estimated
as 6 people for 7 months).

 Several other functional size measures have been developed. The function
point method counts external factors that are important in data - intensive appli-
cation; the feature points method adds a count of algorithms for computationally
intensive systems [Jones86] . MK II function points improves on the count of
function point fi les to better account for the internals of data - rich applications
 [Symons88] .

 In 1998, COSMIC (the Common Software Measurement International Con-
sortium) was formed by a working group of the International Standards Orga-
nization (ISO) for the purpose of developing and publishing ISO standards for
functional size measurement, which is a generalization of function point analysis.
According to the COSMIC Web site [COSMIC1] :

 TABLE 6.1 A function point example

 Complexity: Simple Average Complex Total

 Inputs 3 × 3 2 × 4 0 × 6 17
 Outputs 4 × 4 6 × 5 3 × 7 67
 Files 5 × 7 2 × 10 0 × 15 55
 Queries 0 × 3 9 × 5 4 × 7 73
 Interfaces 0 × 5 0 × 7 3 × 10 30
 Total 242

220 ESTIMATION TECHNIQUES

 2. to convert historical data for projects based on lines of code to historical data
based on function points.

 Table 6.2 lists several examples of size measures in the spirit of FPA. These mea-
sures are termed external size measures (ESMs). The generic term for the units of
measure is external size units (ESUs). Function points are thus an ESM, and the
numbers of function points in a software system or product are ESUs. This terminol-
ogy is used because ESMs measure factors external to the software to be developed
or modifi ed, including:

 1. inputs that must be responded to,
 2. outputs that must be delivered, and
 3. passive interfaces.

 TABLE 6.2 Examples of external size measures

 Type of System ESM Factors Counted

 Data processing Inputs, outputs, interfaces, queries, fi les
 Process control Sensors, valves, actuators
 Embedded systems Interrupts, signals, priority levels
 User interfaces Windows, menus, items per menu
 Object - oriented Classes, associations, methods

 COSMIC - FFP (ISO 19761) is a functional size measurement method which gener-
alizes the measurement process to address management information systems issues,
as well as real - time and hybrid software projects. It conforms to the ISO meta -
 standard on functional size measurement (ISO 12143 - 1) and uses only FURs (Func-
tional User Requirements) of the software project as inputs to the measurements
process.

 The advantages of COSMIC - FFP as compared to function points are docu-
mented in [COSMIC2] .

 These three factors determine the “ external size ” of the software that, along
with conversion factors and adjustment factors, can be used to estimate factors
such as amount of effort required, time needed, the densities of pre - release and
post - release defects, and reliability. For example, if the productivity rule of thumb,
determined from past projects, is 7 function points per staff - month (7 FP/SM),
the project depicted in Table 6.1 will require roughly 35 staff - months of effort
(242/7).

 Based on these considerations, the following conjecture for external size
measures is offered:

 The ESM Conjecture:

 It is always possible to fi nd an External Size Measure that can be used, along with
historical data and adjustment factors, to develop estimates of project attributes of
interest.

6.5 ESTIMATING PRODUCT SIZE 221

 A conjecture is a statement that is believed to be true but cannot be (exhaus-
tively) proven to be true. A conjecture that includes the qualifi er “ always ” can be
refuted by a single counterexample; however, this author has not yet encountered
that counter example.

 That the ESM conjecture should be true is based on the observation that the
purpose of software is to process inputs, interact with other systems, and produce
outputs. The software to be developed is therefore directly proportional to the
numbers and kinds of inputs, outputs, and interfaces to be handled by the software,
which are measured by the ESM. The situation is illustrated in Figure 6.6 .

 FIGURE 6.6 Elements of external size measures

SYSTEM
O
u
t
p
u
t
s

I
n
p
u
t
s

Interfaces

ENVIRONMENT

 For example, suppose that you have developed an ESM for building embedded
software that uses the following parameters:

 Inputs
 number of interrupts, I
 number of priority levels, P

 Interfaces
 number of control table entries, E

 Outputs
 number of signals, S

 Also suppose you have developed the following relationship from historical data:

 ESUs = ∗ + ∗ + + ∗2 4 5I P E S.

 The weighting factors indicate the relative effort required to implement the code
to process an interrupt, handle priority levels, access control tables, and generate

222 ESTIMATION TECHNIQUES

output signals. A system having 5 different interrupts in 3 priority levels, 15 control
table interfaces, and 15 different signals would have 112 ESUs.

 Suppose further that you have examined past projects and developed the
productivity ratio of 2 ESU per staff - month (2 ESU/SM). Then estimated effort for
software development would be

 Effort staff-months= =
112

2
56 .

 The project might be scheduled using 6 software developers for 10 months.
 If you are concerned about memory constraints (i.e., the number of object bytes

to be loaded into memory), you might analyze past products to develop a relation-
ship of the form:

 Bytes ESU= ∗x ,

where x is the conversion factor Bytes/ESU. Other factors of interest could be
accounted for in a similar manner.

 The steps necessary to develop an ESM are listed in the accompanying
sidebar.

 The various techniques for estimating attributes of interest for software projects
(e.g., effort, schedule, resources, quality factors, and cost) can be categorized as
pragmatic, theory - based, and regression - based. Pragmatic estimation techniques
include:

 • rule of thumb
 • analogy
 • expert judgment
 • Delphi
 • WBS/CPM/PERT

 Theory - based estimation techniques include:

 • system dynamics
 • SLIM

 Regression - based estimation models include:

 • COCOMO
 • locally derived models

 Theory - based and regression - based models use size as the primary estimation
input; pragmatic techniques may or may not use a size measure. The nature of these
methods and examples of their uses are presented in the following sections.

6.5 ESTIMATING PRODUCT SIZE 223

 DEVELOPING AN EXTERNAL SIZE MEASURE

 External size measures for similar systems or products can be developed as
follows:

 1. Analyze some existing systems or products similar to the systems or prod-
ucts to be developed:
 a. identify some candidate ESUs to be counted in the environments of the

systems or products and
 b. develop counting rules for the ESUs.

 2. Calibrate the ESM as follows:
 c. count ESUs for some existing systems;
 d. develop weighting factors for the ESUs;
 e. apply the weighting factors to produce adjusted ESUs (AESUs);
 f. develop conversion factors from external size units to factors to be esti-

mated, such as effort, cost, lines of code, and defect density;
 g. apply the conversion factors to compute factors to be estimated;
 h. compare estimates to actual values for the past project; and
 i. adjust the weighting factors for the ESUs and develop adjustment factors

to account for variations in estimated factors for historical systems
having similar ESUs.

 3. Iterate steps 1 and 2 until your ESM estimation model satisfi es the follow-
ing criteria:
 a. the ESUs are countable at the requirements and early design phases of

your projects,
 b. the ESUs characterize the software to be implemented, and
 c. conversion factors can be derived to convert adjusted ESUs to factors

to be estimated.
 Criterion 3c should support estimation of factors such as

 Estimated LOC AESUs
LOC
ESU

= × ⎛⎝
⎞
⎠ ,

 Estimated effort AESUs
Effort
ESU

= × ⎛⎝
⎞
⎠ ,

 Estimated cost AESUs
Cost
ESU

= × ⎛⎝
⎞
⎠ ,

 Estimated defects AESUs
Defects

ESU
= × ⎛⎝

⎞
⎠ ,

224 ESTIMATION TECHNIQUES

 6.6 PRAGMATIC ESTIMATION TECHNIQUES

 Pragmatic estimation techniques are not based on theoretical models nor on regres-
sion analysis. They have been shown to be useful in practice despite having no
underlying theoretical or regression basis. Several pragmatic techniques are pre-
sented in this section.

 6.6.1 Rule of Thumb

 A rule of thumb (ROT) is a generally accepted guideline. 21 Because software
engineering, unlike other engineering disciplines, does not deal with physical enti-
ties, we lack many of the mathematical models on which traditional engineering is
based. Therefore we use many rules of thumb, some that are industrywide (e.g., in
general, it costs 50 to 100 times more to fi x a post - release defect than to fi x a
pre - release defect) and some that are locally derived (e.g., in our organization it
costs 75 times as much to fi x a product - interface defect post - release than to fi x it
pre - release).

 The productivity factor used in the example of Section 6.3 (500 DSLOC/SM)
might be an industrywide rule of thumb for a particular kind of software (e.g., sci-
entifi c applications, data processing, or telecommunications) or it might be a local
rule of thumb for your organization and your kind of software.

 When you use metrics such as 500 DSLOC/SM or 5 FP/SM, you must understand
the factors included in the metrics. Productivity metrics, for example, are determined
by counting lines of code in past products (or some other size measure), determining
the staff - months required to produce those lines and forming the ratio (e.g., 500
DSLOC/SM). You must understand how size was counted and what scope of effort
was included to use the productivity metric. Counted lines of code might have
included:

 • lines of assembly code in the load module of the program;
 • source code without comments;
 • source code with comments;
 • source lines, including comments and library routines;
 • all of the code that was written (retained plus discarded);
 • all reused, open source, and new code in the fi nal product; or
 • all of the above plus all of the test - harness code.

 21 A rule of thumb is a method or procedure that comes from practice or experience, without any formal
basis.

where

 LOC is lines of code;
 LOC/ESU, Effort/ESU, Cost/EST, and Defects/ESU are obtained from his-

torical data for past projects; and
 AESUs are adjusted ESUs, for the project being estimated, adjusted by the

adjustment factors for the project.

 The effort might have been for coding only, for coding and testing, or for all of
software development activities plus project management, system installation, and
user training. It might have included all of the software developers ’ time, including
the time they spent in unrelated meetings and maintaining other software. It might
have been recorded as 40 hours per week when in fact the developers were working
60 hours per week.

 The projects on which the rule of thumb is based might have been data - process-
ing applications, real - time embedded systems, or perhaps web - based e - commerce
applications. Those projects might have exhibited similar metrics so that an average
of the values from them is a good metric to use or they may have varied widely,
thus making their average value an unreliable rule of thumb.

 When you apply a productivity rule of thumb (or any other ROT) to make an
estimate, you are estimating the same scope of work, for the same kind of projects,
that was included in the derivation of the ROT. If, for example, a productivity ROT
of 500 DLOC/SM is based on (only the) effort to write the embedded lines
of assembly code and the developers were working 60 hours per week, your
estimate will be for the amount of effort needed to write the estimated number of
embedded assembly lines when the developers are working 60 hours per week. A
productivity rule of thumb for developing embedded real - time systems using the C
language is probably not applicable to development of business applications using
COBOL.

 If, on the other hand, the function points counted in deriving the ROT are
counted using objective counting rules and the effort includes actual hours worked
on the entire project (analysis, design, programming, testing, CM, QA, manage-
ment), your estimate will be for all of the effort required to develop and deliver
software containing the estimated number of function points.

 Another caution: you must determine that the ROT is for the same range of
product size as your estimated size. Even for similar kinds of products and systems,
the conversion factor used to relate size to effort is usually nonlinear. Thus an effort
estimate based on a productivity ROT for products that contain 500 function points
might have to be increased by a factor of 1.5 or more for products of 1000 function
points (more on this later).

 Also you must understand the variations in the past experiences used to derive
the rule of thumb. If, for example, your ROT is based on 5 past projects whose size
and effort, when counted in the same way, produce an average ROT of 5 FP/SM
but the productivity ROTs for the 5 past projects range from 3.5 FP/SM to 7 FP/SM,
you must understand the factors that resulted in these variations (i.e., the adjust-
ment factors) and use those projects that are most similar to your project.

 Despite these caveats, estimates based on rules of thumb are useful to:

 • provide rough order of magnitude estimates, and
 • they can be used when doing feasibility studies and “ what if ” scenarios.

 However,

 • it is a risky endeavor to base a project estimate on rules of thumb alone.

6.6 PRAGMATIC ESTIMATION TECHNIQUES 225

226 ESTIMATION TECHNIQUES

 6.6.2 Analogy

 Analogy is a widely used technique for estimating project attributes in software
engineering and other engineering disciplines. The goal of analogy - based estimation
is to fi nd one or more analogous projects for which the attributes of interest are
known. The closer the analogy, the more confi dent you will be in your estimate. A
rule of thumb, for example, can be used with greater confi dence if it is based on
projects that are analogous to the one you are estimating.

 Analogy - based estimates can be simple (e.g., a similar project required 5 people
for 6 months) or sophisticated. In the latter case, your organization might have a
relational database of past projects. Each row in the data schema would contain
data for a completed project. Each column would record an attribute of past
projects, such as:

 • the customer,
 • the kind of product,
 • the scope of activities included,
 • product size and the size measure used,
 • adjustment factors used (e.g., product complexity, skill level of the developers),
 • the development model used,
 • development tools used,
 • deliverable products produced,
 • estimated and actual project duration,
 • estimated and actual effort,
 • estimated and actual cost,
 • pre - release and post - release defect densities,
 • problems encountered, and
 • lessons learned.

 To make an estimate, you would specify the known characteristics of the project
you are estimating. You would then write a query that retrieves a list of projects
that match your project within a specifi ed range, for example, all projects that devel-
oped products of high complexity and that are within ± 10% of your estimated size
built by developers of average skill levels using C++ and an Incremental - build
model.

 The primary strength of analogy - based estimation is that:

 • good analogies provided a good basis of estimation for your project.

 The primary weakness is that:

 • false analogies produce inaccurate estimates.

 The estimate is no better or worse than the analogies on which it is based.

 6.6.3 Expert Judgment

 Expert judgment involves asking one or more experts for their estimates of project
attributes such as effort, time, required skill levels, and risk factors. Refering to
Figure 6.1 data retention is in the heads of one or more experts. The adjustment
factors they apply may include subjective factors such as knowing the people who
will do the work and manage the work, the politics of customer relations, and fric-
tions that may exist among internal elements of the organization. Product attributes
include whatever information is available for the experts to examine.

 Experts might tell you that the requirements are too vague and incomplete for
them to render an opinion (which is useful to know). At the other extreme, different
kinds of experts may be able to provide estimates for different elements of the
architecture decomposition view (ADV) of the envisioned system or product (e.g.,
the user interface, the database, the communication package, the algorithms).

 The primary strengths of expert judgment are that:

 • different kinds of experts can provide estimates for different kinds of product
components and

 • experts can include subjective and political factors that are not typically
recorded in databases of past projects.

 The primary weaknesses are that:

 • experts may be overoptimistic in estimating the time and resources needed for
them to do the work rather than the time and resources needed by less - expert
developers and

 • their recall of past experiences may be incorrect or incomplete.

 6.6.4 Delphi Estimation

 You can use the Delphi technique to obtain composite estimates from different
experts. 22 Each expert is given the same information concerning the future product
(e.g., operational requirements, technical specifi cations, architectural views, con-
straints). Each is asked to provide an estimate of project attributes and a brief jus-
tifi cation for their estimate. Each expert can apply rules of thumb, analogies, their
expert judgment, or theory - based and regression - based models as they choose in
developing their estimates.

 You, the coordinator, collate their estimates, provide the composite results back
to them (with names removed) plus any additional information they might have
requested, and ask them to provide a second estimate. E - mail correspondence, using
estimation templates to be completed and returned, is a convenient way to conduct
the Delphi process. An example an expert ’ s second - round estimate are provided in
Figure 6.7 .

 The interval between submitted estimates should be one to two days. This gives
each expert enough time to refl ect on the summary report from the previous round,

 22 The Delphi technique was developed in the 1940s at the Rand Corporation as a forecasting tool. It is
named for the Oracle of Delphi whose predictions were sought and relied on by the ancient Greeks.

6.6 PRAGMATIC ESTIMATION TECHNIQUES 227

228 ESTIMATION TECHNIQUES

but not so much time that they forget the details or lose interest in the process. The
anonymity of the Delphi approach combines the advantages of multiple expert
opinions while avoiding the disadvantage of undue infl uence or persuasiveness by
one or more of the experts.

 The estimates may or may not converge after 3 or 4 rounds (3 rounds is typical
in the Delphi process). If the estimates converge to a narrow range, a meeting among
the experts is convened to confi rm their estimates and to record any concerns they
might have about the proposed project. If their estimates do not converge, a meeting
is held to allow them to justify their estimates and to settle their differences among
themselves. If the estimates do not converge during the meeting, the range of esti-
mates can be used to develop a probability density function for the estimates.

 An alternative approach is called the wideband Delphi process [Boehm81] . This
approach involves convening a meeting of the experts in the beginning to discuss
the project, allowing time to refl ect and submit anonymous estimates, and holding

 FIGURE 6.7 A Delphi report

Project: ATM system

Estimation Round: 2

Estimator: Sue Smith

Round 1 estimates from 4 experts

30

44

53

35

0 10 20 30 40 50 60

1

2

3

4

E
xp

er
t

Estimated Staff-Months

Summary of rationales for round 1 from 4 estimators:

1: I don’t see any problems; should be a routine project.

2: The requirements are vague in some areas; could cause problems.

3: The new hardware interface could cause some problems.

4: Our people have lots of experience with these kinds of systems.

Your round 2 estimate: 35 staff-months

Your round 2 rationale:

I don’t think the vague requirements will be a problem because our people
have lots of experience developing these kinds of systems and have
experience working with this customer. I am increasing my estimate from
30 to 35 staff-months because of the new hardware interface mentioned in
rationale 3.

meetings after each round of estimation to discuss the assumptions and rationale
on which their estimates are based. There is some danger that some estimators may
unduly infl uence others by virtue of their personalities or positions of authority, but
each estimator is given time to refl ect on the discussions and do additional research
before submitting their next estimate, which is reported anonymously.

 A more radical approach is one where the process is completed in one meeting.
Each round of estimation is conducted by secret ballot, with discussion of the esti-
mates between rounds. This can be done effi ciently, especially if facilitated by a
groupware tool that allows each expert to anonymously enter an estimate and a
brief justifi cation from their keyboard. Each expert ’ s estimate and justifi cation is
anonymously displayed on a large screen for the group to observe and provides the
basis of discussion between estimation rounds. This approach is more effi cient than
traditional Delphi or wideband Delphi, but it is not recommended because it does
not allow suffi cient time for the experts to refl ect on the results of previous rounds,
to perhaps do some research in preparing their next estimate, and to avoid the
(perhaps inappropriate) infl uence of others in the room. 23

 A Delphi process may or may not produce a consensus result. Failure to achieve
a consensus may indicate the need for further work to be done with the customer
and your management in refi ning the requirements, examining the design con-
straints, and assessing the feasibility of the project. Another way to use nonconver-
gent results is to develop a probability function from the range of estimates and use
it to perform a quantitative risk analysis using a probabilistic model.

 The primary strengths of a Delphi estimation process are:

 • obtaining the combined opinions of experts without undue infl uence of experts
on one another ’ s estimates and

 • multiple rounds of estimation in which each expert refl ects on the anonymously
submitted rationales of others.

 Weaknesses of the Delphi process are:

 • the time and effort required of the experts,
 • the possibility of intransigence by one or more experts, and
 • the possibility of undue infl uence in the wideband Delphi meetings.

 6.6.5 WBS / CPM / PERT

 The WBS/CPM/PERT approach to estimation is based on the architecture decom-
position view embedded in the WBS and the WBS work packages. As discussed in
Chapter 5 , work packages can be used to provide bottom - up estimates of project
attributes by rolling up lower level estimates for activities and tasks. The work
package estimates can be based on other pragmatic techniques (rule of thumb,
analogy, Delphi, expert judgment) or on theory - based or regression - based estima-
tion models.

 23 I participated in one such meeting in which a participant commented “ Who is the idiot that submitted
that estimate? ” The comment was not conducive to a collegial outcome.

6.6 PRAGMATIC ESTIMATION TECHNIQUES 229

230 ESTIMATION TECHNIQUES

 In this regard the WBS/CPM/PERT approach is perhaps the most accurate of
the pragmatic techniques because of the increased level of detail at which various
estimation techniques can be applied and because positive and negative variations
in inaccuracies at lower levels may “ average out ” when aggregated at higher levels.
The PERT approach can be used to provide probability distributions for the sched-
ule durations to reach various milestones and to complete the project.

 You might not have suffi cient detail to develop an ADV, a WBS, work packages,
and a critical - path schedule network early in your project, but developing these
items should be a top priority in planning and replanning. Revised estimates based
on initial results should be made as soon as possible. The WBS, and the schedule
network will become more detailed as understanding grows and as execution of the
project progresses. Updated estimates based on the evolving WBS and schedule
network should be prepared on an ongoing basis.

 The primary strength of the WBS/CPM approach is:

 • the increased accuracy of estimates that result from an increased level of detail
and the accompanying level of understanding.

 The primary weakness is:

 • lack of suffi cient knowledge or time to prepare the ADV, WBS, work packages,
and critical path network in the early planning phase of a software project.

 6.7 THEORY - BASED ESTIMATION MODELS

 A theory - based estimation model is so called because there is an underlying theory
of software projects on which the estimation model is based. Two theory - based
models are described herein: system dynamics, which uses difference equations
to model project behavior, and the original formulation of the SLIM model, which
uses the Putnam software equation and Putnam ’ s version of the Norden – Rayleigh
equation to model software projects.

 The goal this section is not to fully explain these theory - based models but rather
to present the nature of the underlying theories, how the models incorporate the
theories, and to caution that before you use a theory - based estimation model, you
must understand the nature of the underlying theory to determine whether the
model based on that theory is appropriate for your situation.

 6.7.1 System Dynamics

 System dynamics was invented by Jay Forrester around 1960 [Forrester61] . This
approach has been used to model software development processes by [Hamid91]
and has been further investigated by Madachy and Boehm [Madachy01] . Theories
of how software projects behave are modeled using interacting continuous variables
that employ feedback loops with time as the independent variable. Simulation
models are implemented using difference equations to model the continuous
variables.

 A simple model of software production might model the production rate as the
productivity for each individual multiplied by the number of personnel, where the
number of personnel at any point in time depends on the initial number, the hiring
rate (the rate at which personnel are added to the project) and the attrition rate
(the rate at which personnel leave the project). Both the hiring rate and attrition
rate would be modeled as functions of time. Productivity, as a function of time, might
be modeled as gross productivity (e.g., lines of code per staff - week) minus the
rework rate (e.g., defective lines of code per staff - week, as a function of time). The
corresponding difference equations are as follows:

 INIT(#_STAFF) = 10
INIT(ATTRITION_FACTOR) = 0.02
INIT(GROSS_PROD_RATE) = 500
INIT(REWORK_FACTOR) = 0.8
INIT(HIRING_FACTOR) = 1.2
HIRING_RATE = HIRING_FACTOR * ATTRITION_RATE
ATTRITION_RATE = ATTRITION_ FACTOR * #_STAFF
NET_HIRING_RATE = (HIRING_RATE - ATTRITION_RATE)
#_STAFF = #_STAFF + NET_HIRING_RATE * Δ t
GROSS_PRODUCTION = #_STAFF * GROSS_PROD _RATE * Δ t
NET_PRODUCTION = GROSS_PRODUCTION * REWORK_FACTOR

 Values on the left side of each equation are updated at each time step (Δ t) using
the values computed on the right side of the equation during the previous time step.
The model could, for instance, produce a report that lists (week by week or month
by month) deliverable lines of code (or function points or other size unit) produced
that week or month and the cumulative total of lines of code produced up to that
point in time. An estimate of project duration could be determined by observing
how much time is needed to develop the estimated lines of code.

 The effects of different theories, including variations in factors such as the hiring
rate, attrition rate, and rework factor could be determined by running different
simulations with different parameter values. More sophisticated theories would
include more project factors in the model, such as the impact of the project manag-
er ’ s experience, the cohesiveness of the development team, effectiveness of version
control, an Incremental - build process, and verifi cation and validation processes,
such as design inspections.

 Iconic representations of system dynamics models can be constructed and the
models can be executed using simulation tools such as STELLA, iThink, and
DYNAMO (accessible on the Internet).

 6.7.2 SLIM

 The SLIM estimation model (Software LIfecycle Management) was developed by
Larry Putnam in the 1970s and has evolved over time to include variations on the
original model that refl ect changing practices used to develop software - intensive
systems. The theory on which the original model is based is described here
 [Putnam92] .

6.7 THEORY-BASED ESTIMATION MODELS 231

232 ESTIMATION TECHNIQUES

 The original SLIM estimation model is based on two equations in two variables;
project effort, E , and schedule duration, T . One of the equations is Putnam ’ s version
of the Norden – Rayleigh equation that models the rate of buildup and phase - down
of project staff. The other equation is Putnam ’ s software equation.

 Simplifi ed forms of the two equations are

 E T∼ MBI based on the Norden Rayleigh equation∗ −()3 ,

 E T∼
SLOC

PI
based on Putnam s software equation⎛⎝

⎞
⎠ ∗ ()

−
3

4 ’ .

 The parameters of the equations are:

 MBI: a manpower buildup index that refl ects the estimated rate of staff buildup
for the project;

 SLOC: estimated product size (expressed in source lines of code, SLOC, or in
function points, which are converted by SLIM to lines of code using an
internal table of FP/SLOC); and

 PI: the productivity index; local data can be used to calibrate the PI param-
eter, or industry - average values can be used for different types of
products.

 Simultaneous solution to the two equations results in pairs of values for E
(effort) and T (time) that satisfy the equations. The maximum effort, minimum time
solution of the equations, for given values of MBI, PI, SLOC, and some other
constants occurs at the point of intersection on the log - log scale illustrated in
Figure 6.8 . Note that the MBI line, from the Norden – Rayleigh equation, has a slope
of +3. Also note that the (SLOC/PI) 3 line, from the Putnam software equation, has
a slope of − 4.

 As indicated in Figure 6.8 , a maximum time constraint can be specifi ed, which
results in a minimum effort and maximum time solution. According to Putnam,
the point of intersection in Figure 6.8 for the minimum time, maximum effort solu-
tion to the simultaneous equations is based on empirical data that indicates no
projects have been observed to have successfully fi nished with effort and time com-
binations on the PI line above the MBI line; this region is termed the impossible
region in SLIM. Combinations of effort and time on the PI line below the MBI line
are feasible.

 An interesting aspect of the SLIM model, as implemented in the SLIM estima-
tion tool, is the use of Monte Carlo simulation to compute various combinations
of effort and schedule at various levels of probability. Estimated size (expressed
in function points or lines of code) is specifi ed using the PERT method: smallest
estimated size, 50% probable size, and largest estimated size from which the mean
and standard deviation of a beta probability function are determined. Size can be
specifi ed for the entire system or for the individual elements of the architecture
decomposition view. PI and MBI can be specifi ed as fi xed or within probability
ranges.

 The Monte Carlo technique is a simulation method by which random, indepen-
dent values are selected from each of the inverse probability distributions for size,
PI, and MBI. The resulting three numbers (one each for size, PI, and MBI) are used
to calculate an effort – time combination. Another random, independent set of input
values is then selected from the probability distributions and a second answer is
calculated. The calculations are typically repeated a few hundred or a few thousand
times. See Section 6.8.2 for a discussion of Monte Carlo simulation.

 A conceptual view of the outcome of a SLIM simulation is depicted in
Figure 6.9 , where each of the “ starred ” data points is one of the simultaneous
solutions to the Norden – Rayleigh and Putnam equations; a few hundred or a few
thousand solution points are typically computed. The solutions in Figure 6.9 are
bounded by the probability distributions of size, PI, and MBI, by the minimum time
solution, and by the constraint (if any) specifi ed for the maximum duration of the
project.

 Projecting the distribution of those solutions to the time axis provides the prob-
ability density function for the project duration; projecting them to the effort axis
provides the probability density function for effort, as illustrated in Table 6.3 .

 Interpolating Table 6.3 , with a schedule of 30 months (99.99% probable sched-
ule), it is 87% probable that the project can be completed with 500 staff - months of
effort; with 800 SM of effort (99.99% probable), it is 93% probable that the project
can be completed in 24 months. The joint probability of completing the project in
24 months with 500 staff - months of effort is roughly 0.87 × 0.93 = 0.81 (81%).

 The major strengths of the SLIM model are the simultaneous solution of effort,
 E , and duration, T , and the use of Monte Carlo simulation, which together provide
trade - off combinations of effort and schedule at various levels of probability. Alter-
natively, one of effort or duration can be specifi ed and the corresponding range of
values of the other with its associated probabilities can be calculated.

 Some people have criticized the Putnam software equation as being too sensitive
in modeling the effort – duration relationship as E ∼ T - 4 ; doubling the schedule would
reduce effort to 1/16 the original value.

 FIGURE 6.8 Simultaneous solution of the SLIM equations

MBI line:
log E ~ MBI * log T3

log T

log E
PI line:
log E ~ (SLOC/PI)3 * log T-4

Impossible
region

Simultaneous
 Time & Effort

Solutions

Minimum
Time

Maximum
Effort

Maximum
Time

Minimum
Effort

6.7 THEORY-BASED ESTIMATION MODELS 233

234 ESTIMATION TECHNIQUES

 FIGURE 6.9 A conceptual view of a SLIM estimate

log T

log E

M: 19.1 MO
σ : 3.2 MO

 E: 297 SM
σ : 146 SM

PI: 13 ± 2
SLOC: 100 ± 30

MBI: 2 ± 15%

* Monte Carlo
calculated values

Minimum Time
Solution

Maximum Time
Constraint

*
* **

* *
*

*
*

*

*
*

* **

*

* *

*
*

**
*

*
**

*

**

*

 TABLE 6.3 Probability ranges for a SLIM estimate

 50% Probable 84% Probable 97.5% Probable 99.7% Probable

 Effort, E 297 SM 443 SM 589 SM 735 SM
 Duration, T 19.1 MO 22.3 MO 25.5 MO 28.7 MO

 To recap an earlier point: you must understand the theory on which a theory -
 based model is based to know whether it is an appropriate estimation model for
your project. For example, the buildup and phase - down of project staffi ng incorpo-
rated in the original SLIM model would not be appropriate if the staffi ng profi le
for your project refl ected a constant, fi xed value such as 20 people from start to
fi nish. Newer SLIM models are appropriate for various staffi ng profi les.

 6.8 REGRESSION - BASED ESTIMATION MODELS

 Regression - based estimation models are based on equations derived from historical
data collected from past projects. Constructing equations from the data is known as
regression analysis. Equations that incorporate multiple independent variables are
derived by a procedure known as multivariate regression analysis. But in most cases
of regression - based estimation models for software projects, the primary estimation
equation is based on analysis of the relationship between a single independent vari-
able (e.g., size) and a dependent variable (e.g., effort), as in

 E a S b= ∗() ,

where E is effort, S is size, and a and b are constants.
 For example, if S is size in thousands of delivered source lines of code (KDSLOC)

and E is effort in staff - months, the equation might be

 SLIM EQUATIONS

 Without going into excessive detail, it is interesting to note a few aspects of
the original SLIM model, which is based on Putnam ’ s version of the Norden –
 Rayleigh equation and Putnam ’ s software equation.

 The Putnam software equation was derived by Larry Putnam from empirical
data collected from several large software projects in the 1970s. It is of the
form

 E
PI

T∼
SLOC⎛

⎝
⎞
⎠ ∗

−
3

4 ,

where E is effort, SLOC is source lines of code, PI is the productivity index, and
 T is time.

 The Norden – Rayleigh equation is used to model the buildup and phase - down
of staffi ng level in the original SLIM model. It is of the form “ t times e to the
minus t squared ” :

 ′ = ⎛⎝⎜
⎞
⎠⎟

− ()y
K
t

t e f t
d
2

,

 f t
t
t

() =
2

22 d
,

where y ′ is the rate of effort buildup and phase - down, K is the area under the
staffi ng curve from t = 0 to ∞ , and t d is the time at which y ′ achieves its maximum
value, as illustrated in Figure 6.10 .

 The Rayleigh equation is a particular form of a Weibull probability distribu-
tion. The equation acquired the name “ Norden – Rayleigh ” because Lord Ray-
leigh used a similar equation in the 1800s to model the scattering of sunlight
refl ected from the earth, which explains why we perceive the sky to be bright
blue on a clear sunny day (a different form of light scattering, Mie scattering,
explains why the sky looks gray on polluted or overcast days and red at sunrise
and sunset).

6.8 REGRESSION-BASED ESTIMATION MODELS 235

 FIGURE 6.10 A Norden – Rayleigh equation and curve

K: area under the curve

Effort
Rate y'

time, t

MBP

td

y' = (K/ td
2) t e-f(t)

f(t) = t2 /2td
2

236 ESTIMATION TECHNIQUES

 In the 1960s Peter Norden noted regular patterns of staff buildup and phase -
 down in hardware design projects. He modeled hardware projects as consisting
of planning and specifi cation, design, prototyping, and release. He observed that
each activity has a buildup and phase - down pattern and found that the Rayleigh
equation fi t the composite set of these overlapping activities [Norden63] . Putnam
used a similar model for software projects consisting of planning, design and
implementation, testing, and maintenance.

 The manpower buildup parameter (MBP) in Figure 6.10 determines the slope
of the Norden – Rayleigh curve (i.e., the derivation of y ′). It is expressed as

 MBP
d

=
()

K

t 3
.

 K and t d in Figure 6.10 determine the size and shape of the Norden – Rayleigh
curve. Larger K and smaller t d values result in a taller and more sharply peaked
curve than do smaller values of K and larger values of t d , that is, larger K and
smaller t d result in larger values of MBP and vice versa.

 Based on empirical data from completed software projects, Putnam found that
the MBP had a wide range of values, roughly 7 to 233. In the SLIM estimation
tool these values are keyed to the manpower buildup index (MBI), which has
six discrete values (1, 2, … , 6). MBI values can be selected to refl ect staff buildup
rates ranging from slow to extremely rapid. The MBI is used, as illustrated
in Figure 6.8 , to determine the minimum duration of a project for a given value
of MBI.

 The integral of Putnam ’ s version of the Norden – Rayleigh equation is of the
form

 y t K e f t() = ∗ −()− ()1 ,

where K is the total area under the curve and, as before, f (t) = t 2 /2 t d 2 .
 The value of y (t), for a particular time T , is the cumulative amount of effort

that will be expended from project initiation up to time T . Putnam then observed
that many projects release the product at the peak of the curve, t d , and then enter
the maintenance phase, so that K is the total life cycle effort. At time t d ,

 y t Kd() = 0 39. .

 This corresponds to the widely used rule of thumb that 40% of life cycle effort
goes to software development and 60% to software maintenance.

 Another SLIM equation calculates the minimum development time, T d for a
software project as

 T
K
C

d = ⎛⎝
⎞
⎠

0 33.

,

where T d is in years, K is in staff - years (the total area under the Norden –
Rayleigh curve), and C is a constant in the range of 14 to 15. Converting years
to months, staff - years to staff - months, and letting C = 14.5 results in

 T Ed = ()2 15 0 33. ,.

where T d is in months and E is effort in staff - months. 24
 The minimum duration for a 120 staff - month project, for example, would be

 Td months= () × =2 15 120 2 15 5 10 750 33. ∼

 This effort – development time equation corresponds to the widely used rule of
thumb that development time is proportional to the cube root of effort (some
organizations use a square root rule).

 Additional information on the theory of the original SLIM estimation model
can be found in [Putnam92] .

 24 [Boehm81] , page 470.

6.8 REGRESSION-BASED ESTIMATION MODELS 237

 E S= ∗()2 5 1 2. ..

 Thus, E ∼ 40 when S = 10 and E ∼ 91 when S = 20. Note the nonlinear increase in
effort when size is doubled.

 Size is used as the independent variable in regression - based estimation equations
because size can be determined more objectively than other product attributes. Also
size measures such as function points can be estimated more accurately than other
product attributes in the early phases of a project (and converted to lines of code,
if desired).

 The exponent b in the equation refl ects the typically nonlinear relationship
between size and effort. If b is greater than 1, the relationship exhibits diseconomy
of scale (i.e., a product of twice the size will require more than twice the effort). If
 b is less than 1, the relationship exhibits economy of scale (i.e., larger products
require disproportionately less effort). And, of course, b = 1 indicates a linear rela-
tionship between product size and development effort. In most cases b is greater
than 1, but not always.

 Referring to Figure 6.1 , note that it relates to a regression - based estimation
model in that :

 • Past Experiences are summarized in the regression equation derived from his-
torical data,

 • Product Attributes are summarized in the size estimate and some adjustment
factors (e.g., complexity), and

 • an effort adjustment factor (EAF) is applied as a multiplier in the effort – size
equation

 E a S badj EAF= ∗() ∗ .

 A similar equation can be derived to relate schedule S to effort E :

 S c E d= ∗()adj .

238 ESTIMATION TECHNIQUES

 In this relationship, the exponent d is typically in the range of 0.3 to 0.5. Similar
equations can be developed from historical data to relate, for example, number of
defects to product size.

 The following sections describe the COCOMO regression - based estimation
models and considerations involved in developing a locally derived, regression -
 based estimation model.

 6.8.1 COCOMO Models

 COCOMO is an acronym derived from the phrase “ constructive cost model. ” The
original set of COCOMO models was developed by Barry Boehm and published in
his text Software Engineering Economics in 1981 [Boehm81] . The 1981 COCOMO
models, later COCOMO models, and COCOMO - like models derived from local
historical data (i.e., regression - based) models are the most widely used estimation
models.

 To distinguish the fi rst COCOMO model from later COCOMO models, we refer
to the fi rst one as COCOMO81. There are 3 sets of estimation equations in
COCOMO81 that were derived from data collected by Boehm from 63 completed
software projects. These projects and the resulting equations are documented in the
referenced text. Each set of equations includes an equation to estimate effort as a
function of size, where size is measured in thousands of source lines of code (KSLOC)
and effort is in staff - months, plus a regression equation that relates schedule in
months to effort in staff - months.

 There are 3 sets of equations for effort and schedule in COCOMO81 because
the data from the 63 projects clustered into 3 groupings. On investigation, Boehm
determined that one set of projects required the least effort for a given size. He
termed these the “ organic ” projects, which were projects that typically developed
stand - alone applications programs. The set of projects that required the largest
amount of effort for a given size were termed “ embedded ” projects. These were
projects that developed real - time software for computers embedded within larger
systems. The intermediate projects were termed “ semidetached. ” The products
developed by these projects were typically systems programs such as compilers and
other software development tools such as debuggers, and database applications;
they were semidetached from the operating systems.

 For semidetached systems, for example, the values of a, b, c , and d result in the
estimation equations

 E = ()3 0 1 12. .KSLOC

and

 S E= ()2 5 0 35. ..

 Here KSLOC is thousands of source lines of code, E is effort in staff - months, and
 S is schedule in months.

 To explain the variations in effort for projects of the same size within the same
data set (i.e, the scatter in the historical data), Boehm and some other experts used
the Delphi technique to develop the 15 adjustment factors and the ranges of values
listed in Table 6.4 .

 TABLE 6.4 COCOMO 81 cost drivers and effort multipliers

 Ratings

 Very
Low Low Nominal High

 Very
High

 Extra
High

 Cost drivers Effort multipliers

 product attributes
 RELY (required reliability) 0.75 0.88 1.00 1.15 1.40
 DATA (database size) 0.94 1.00 1.08 1.16
 CPLX (product complexity) 0.70 0.85 1.00 1.15 1.30 1.65

 computer attributes
 TIME (execution time constraint) 1.00 1.11 1.30 1.66
 STOR (main memory constraint) 1.00 1.06 1.21 1.56
 VIRT (virtual machine volatility) 0.87 1.00 1.15 1.30
 TURN (computer turnaround time) 0.87 1.00 1.07 1.15

 personnel attributes
 ACAP (analyst capability) 1.46 1.19 1.00 0.86 0.71
 AEXP (application experience) 1.29 1.13 1.00 0.91 0.82
 PCAP (programmer capability) 1.42 1.17 1.00 0.86 0.70
 VEXP (virtual machine experience) 1.21 1.10 1.00 0.90
 LEXP (programming language

experience)
 1.14 1.07 1.00 0.95

 project attributes
 MODP (use of modern

programming practices)
 1.24 1.10 1.00 0.91 0.82

 TOOL (use of software tools) 1.24 1.10 1.00 0.91 0.83
 SCED (schedule constraint) 1.23 1.08 1.00 1.04 1.10

 The adjustment factors are called cost drivers; their values are called effort mul-
tipliers. Effort multipliers are applied to an estimate produced by the effort estima-
tion equation to account for anticipated differences between past projects and the
project being estimated. An effort multiplier value (EM) of 1.0 denotes an assump-
tion that the cost driver will have the same effect on the future project as on typical
past projects of the same size. An EM > 1 indicates an assumption that more effort
will be required to accommodate that cost driver than on the typical past project;
and EM < 1 indicates less effort will be required. Guidance for choosing multiplier
values for the mnemonics Very Low, Low, Nominal, High, Very High, and Extra
High are provided in the text.

 The ranges and relative values of the effort multipliers can be visualized by
placing them on a graph, as in Figure 6.11 where a few of the effort multipliers have
been plotted. The origin of the graph represents a mnemonic of “ Nominal ” and an
effort multiplier value of 1.0. A Nominal value does not infl uence the outcome,
which is to say that choosing a Nominal value for an effort multiplier indicates that
the multiplier will have the same effect as on the “ typical project ” from the historical

6.8 REGRESSION-BASED ESTIMATION MODELS 239

240 ESTIMATION TECHNIQUES

data set. A plot of the ranges of all 15 COCOMO81 cost drivers can be found in
the Boehm text. 25

 In comparing Table 6.4 and Figure 6.11 , it can be seen that the TIME effort mul-
tiplier has an Extra High rating of 1.66 and CPLX has an Extra High rating of 1.56.
CPLX has a Very Low rating of 0.7. Table 6.4 indicates that TIME has a Nominal
effort multiplier value of 1.0 (not shown in Figure 6.11). No effort multiplier values
are specifi ed for Low and Very Low ratings of TIME (or STOR). This is because
the absence of an execution time constraint (or a memory constraint) will not
require less effort provided the typical past project was not time or memory con-
strained; however, lack of suffi cient execution time or memory space will make a
project much harder and thus require more effort.

 Note further that in Table 6.4 and Figure 6.11 High and Very High ratings for
Product Attributes and Computer Attributes (e.g., CPLX) have effort multiplier
values greater than 1.0 and values less than 1.0 for ratings of Low and Very Low,
whereas effort multiplier values for Personnel Attributes such as ACAP and PCAP
have values less than 1.0 for High and Very High ratings and corresponding values
greater than 1.0 for Low and Very Low ratings.

 Now the Very Low rating of the SCED effort multiplier is 1.23 and the Very High
rating is 1.1. SCED has a value of 1.0 for a Nominal rating, as do all other effort
multipliers. SCED thus has a “ lazy U ” shape (as illustrated in Figure 6.14 ; page 254).

 It should also be noted that effort multiplier values other than those correspond-
ing to the mnemonics can be chosen for the cost drivers. The mnemonics are pro-
vided as an aid to selecting cost driver values.

 The product of a group of effort multipliers is called the effort adjustment factor
(EAF). The resulting COCOMO equations are of the form:

 E a badj size EAF EAF EMs= () × =, ,Π

where E adj is effort computed by the equation, adjusted by the product of the 15
effort multipliers: EAF = Π EMs. Size is measured in lines of code. Most estimation
tools based on COCOMO81 permit specifi cation of size in function points that are
converted to lines of code by a table in the tool.

 FIGURE 6.11 Ranges of values for some COCOMO81 effort multipliers

mnemonic
0.9
0.8
0.7

very
low

low high very
high

extra
high

1.3
1.2
1.1

1.6
1.5
1.4

• TIME, CPLX

• ACAP, PCAP

• ACAP
• PCAP

•CPLX

• SCED

effort
multiplier

• SCED

 25 Software Engineering Economics , Prentice Hall, 1981, p. 124.

 As described above, the schedule equation is of the form

 S c E d= ()adj .

 An example of computing an EAF is provided in Table 6.5 .

 TABLE 6.5 An example of determining the EAF

 Cost Driver Situation Rating Effort Multiplier

 RELY Similar to past projects Nominal 1.00
 DATA Low ratio of data to code Low 0.94
 CPLX Complex algorithms Very high 1.30
 TIME 80% of available cycles High 1.11
 STOR 70% of available memory High 1.06
 VIRT Stable system Nominal 1.00
 TURN Good response time Nominal 1.00
 ACAP Good senior people High 0.86
 AEXP Four years Nominal 1.00
 PCAP Good senior developers High 0.86
 VEXP Six months Low 1.10
 LEXP Twelve months Nominal 1.00
 MODP More than one year High 0.91
 TOOL Basic Low 1.10
 SCED As estimated Nominal 1.00
 EAF (Π 15 EMs) 1.17

6.8 REGRESSION-BASED ESTIMATION MODELS 241

 If the effort equation is

 E Sadj EAF= ∗() ∗3 0 1 2. ,.

and if S = 20 and EAF = 1.17, then

 Eadj staff-months= ∗() ∗3 0 20 1 17 1281 2. .. ∼

and

 S = ∗()2 5 128 13 50 35. . .. ∼ months

 If E adj is in staff - months and S in months, the average staffi ng level is approximately
9.5 full - time equivalent (FTE) software developers (128/13.5).

 Boehm also developed tables for percentage distributions of effort and schedule
across the project phases of Product Design (PD), Detailed Design (DD), Coding
and Unit Testing (CUT) and Integration and Testing (IT). These tables account for
the fact that smaller projects have a greater percentage of total effort devoted to
detailed design, coding, and unit testing than do larger projects, where larger per-
centages of effort and time are spent on analysis, design, and integration and system
testing of larger systems.

 In addition he developed tables for the percentage distribution of effort across
eight kinds of work activities within each phase of software development for
different kinds (organic, semidetached, embedded) and sizes of products:

242 ESTIMATION TECHNIQUES

 1. requirements analysis,
 2. product design,
 3. programming (detailed design, coding, and unit testing),
 4. test planning,
 5. verifi cation and validation,
 6. project offi ce,
 7. CM/QA, and
 8. manuals.

 The procedure for making an estimate using COCOMO81 is as follows:

 1. determine which set of equations to use (i.e., Is your project “ organic? ”
 “ semidetached? ” or “ embedded? ”);

 2. estimate size in thousands of delivered source instructions (KSLOC);
 3. select a multiplier value for each of the 15 cost drivers;
 4. compute the effort adjustment factor;
 5. compute estimated effort;
 6. use estimated effort to compute the schedule duration;
 7. use the tables provided in [Boehm81] to determine the phase distribution of

work activities; and
 8. use the tables provided in [Boehm81] to determine the distribution of effort

for each of eight kinds of work activities within each phase.

 COCOMO81 was developed in the era of mainframe computers and Waterfall
development processes. In 1987 Boehm published the Ada - COCOMO estimation
model for estimating embedded systems projects. Ada - COCOMO was sonamed
because it was developed in conjunction with the Ada process model to estimate
projects that use incremental development and other development processes con-
sistent with using the Ada programming language (and similar languages and
methods) to develop embedded systems programs [Boehm87] .

 Ada - COCOMO added some new cost drivers and made adjustments to some of
the COCOMO81 effort multipliers. The two most signifi cant enhancements in Ada -
 COCOMO were:

 • incorporation of four scale factors to adjust the exponent of the effort estima-
tion equation for embedded systems, and

 • an estimation procedure for incremental development of a software system or
product.

 The four scale factors introduced to allow adjustment of the exponents in the
effort and schedule equations are:

 • experience with the Ada process model,
 • design thoroughness at PDR (preliminary design review),

 • risks eliminated at PDR, and
 • requirements volatility.

 Values between 0 and 5 are selected for each of the four factors (0 being bad and
5 being good). These values are used in formulas that result in an effort exponent
that ranges between 1.04 and 1.24. The effort equation is of the form:

 E a S b= ∗() ,

where

 b jj= + ∗ ≤ ≤∑1 04 0 01 1 4. . , ,SF
and

 SFj j∑ ≤ ≤, ,1 4
is the sum of the four scale factor values.

 Making an estimate for an incremental development project, as in Ada - COCOMO,
requires that you specify:

 • the size of each increment;
 • the start of each increment with respect to the previous increment; and
 • the “ breakage factor, ” which is an estimate of the percent of code in previous

increments that will be reworked while developing the current increment.

 In 1997 Boehm published the COCOMO II model and subsequently updated it
in 2000. The model described here is COCOMO II.2000 [Boehm02] . Among the
many changes to COCOMO81 and Ada COCOMO in COCOMO II, three major
ones are:

 1. replacement of the 3 sets of estimation equations in COCOMO81 with two
equations, one for estimating effort and one for estimating schedule; each
equations has an adjustable exponent. These equations are similar to, but not
identical to, those of Ada - COCOMO,

 2. replacement of some cost drivers and addition of new cost drivers that resulted
in 17 cost drivers and associated multiplier values in COCOMO II, and

 3. a nonlinear model for estimating the cost of reusing software.

 The effort exponent in COCOMO II is of the form:

 b jj= + ∗ ≤ ≤∑0 91 0 01 1 5. . , .SF
 The fi ve exponent scale factors in COCOMO II are:

 • Precedentedness (PREC): how familiar is this kind of work?
 • Flexibility (FLEX): how much fl exibility exists in the requirements?

6.8 REGRESSION-BASED ESTIMATION MODELS 243

244 ESTIMATION TECHNIQUES

 • Resolution (RESL): how thorough is the design at PDR? are risks resolved at
PDR?

 • Team Cohesion (TEAM): do all stakeholders have a common view? are all
stakeholders willing to accommodate other stakeholders ’ objectives?

 • Process Maturity (PMAT): what is the CMMI capability maturity rating at the
start of the project?

 One of six values is selected for each of the fi ve factors. These values result in an
effort exponent that ranges between 0.91 and 1.18. A similar formula is used to
compute the schedule exponent. The schedule exponent ranges between 0.28 and
0.33.

 The reader is referred to the textbook and URL for additional information on
COCOMO II [Boehm02] , [USC] . A historical retrospective on the evolution of
COCOMO is presented in [Fairley07] .

 6.8.2 Monte Carlo Estimation

 Regression - based estimation models can be used to produce ranges of estimates at
differing levels of probability [Fairley02] . The regression equations and cost drivers
can be programmed on a spreadsheet. A simulation tool such as Crystal Ball (a tool
that incorporates a set of spreadsheet macros) can be used to specify probability
functions for the estimated size and effort multipliers in the cells of the spreadsheet,
whereby probability distributions are entered rather than single values [Crystal] .
The spreadsheet tool uses Monte Carlo simulation to repeatedly sample the prob-
ability distributions and compute solutions using those values. If the process is
repeated a few hundred or a few thousand times, a histogram of probable effort is
generated, as illustrated in Figures 6.13 a and 6.13 b .

 Note in Figure 6.13 b that the simulation was run 300 times. If 12 of 300 estimates
are computed to have the same value E , the probability that required effort will be
 E is 0.04 (12/300). The probability that a project can be completed with an amount
of effort less than or equal to E is determined by summing up all of the probabilities
for values of effort less than or equal to E . In the probability distribution of Figure
 6.13 b , for example, it is 80% probable that the project can be completed with 200
staff - months of effort or less because 80% of the calculated values of effort are at
or to the left of 200 SM.

 In a similar manner the probability range for project duration can be determined
using the probability distribution of effort in a regression equation that relates
schedule S to effort E as in the COCOMO models:

 S c E d= ∗() .

 The resulting histogram of probability density for the schedule will be similar in
concept to that of Figure 6.13 b .

 6.8.3 Local Calibration

 Rather than developing a new estimation model, you may be able to recalibrate an
existing model to the local situation within your organization. The parameters used

 DEVELOPING A REGRESSION - BASED ESTIMATION MODEL

 The details of constructing the COCOMO models presented by Boehm in Soft-
ware Engineering Economics have resulted in widespread replication of the
process. Many organizations have developed and use locally derived “ COCOMO -
 like ” estimation models. COCOMO - like models are also incorporated into com-
mercially available software estimation tools; some tools support entry of local
data and derivation of the equations using these data [CoStar] .

 Figure 6.12 illustrates derivation of an equation that relates development
effort E to product size S , where each of the starred data points represents a
completed project. If, for example, the linear equation in the log - log domain is
of the form

 log log . . log ,10 10 100 5 1 25effort size= + ∗

then the equation in the real domain is

 effort size= ∗3 3 1 25. ..

 If a similar equation relating schedule to effort is of the form

 log log . . log ,10 10 100 4 0 33schedule effort= + ∗

then

 schedule effort= ∗2 8 0 33. ..

 When the resulting equations are used, an Effort Adjustment Factor (EAF)
is applied (in the real domain) to explain the difference in effort required for
products of the same size.

 FIGURE 6.12 Derivation of a regression - based estimation model

*

*

*

*

*

*

**
**

* *

* *

*

*

*
*

*

*
*

*

log10 Size (S)
3 4 5 6

* *

*
*

*

*

*

*
*

*

*

*

1

2

3

4
log10 Effort (E)

log10 a –>

<– slope bEAF

log10 E = log10 a + b * log10 S

E = a * S b

Eadj = a * S
 b * EAF

6.8 REGRESSION-BASED ESTIMATION MODELS 245

246 ESTIMATION TECHNIQUES

 Software tools such as the free Calico calibration tool from SoftstarSystems
can be used to compute the constants and exponents of regression equations
using data from past projects, entered by you or some other member of your
organization [http://softstarsystems.com/].

 Several points should be noted. First, the historical data is transformed to the
log - log domain, the equation is derived in the log - log domain, and the result is
transformed back to the real domain. This permits the use of linear regression
techniques to derive and analyze the (typically) nonlinear relationship between
effort and size.

 A second factor to be noted in Figure 6.12 is the scatter in the data. If product
size were a perfect predictor of required effort, all data points would be on the
line of the equation. Said differently, the scatter in the data indicates that factors
other than size determine the amount of effort needed. The composite of these
other attributes is the effort adjustment factor in the COCOMO models. These
are also the adjustment factors in Figures 6.1 and 6.3 . As related to those
fi gures:

 • past experience is summarized by the regression equations derived from the
data for past projects,

 • the future product is summarized primarily in the size estimate, and
 • other product and process attributes are accounted for by the effort multi-

plier values of the cost drivers (the adjustment factors).

 The goal of regression analysis is to fi nd values of the parameters a, b, c , and
 d in the equations E = a (size) b and S = c (size) d that provide best fi ts to the
data, where E is effort and S is schedule duration. In the log - log domain, as
illustrated in Figure 6.12 , linear regression analysis is performed to fi nd values
of log a (the intercept) and b (the slope) of the linear equation. A similar process
is used to fi nd the values of c and d for the effort – duration equation. The least
squares method is typically used to derive the equations because it is relatively
simple and produces good results. It involves fi nding values of log a and b (and
log c and d) that minimize the squares of the differences between actual and
estimated values for each of the data points.

 One measure of goodness of fi t for a regression equation is the sum of the
relative errors (RE) between each estimated value and each actual value
where:

 each RE
estimate actual

actual
=

−
.

 Thus smaller REs indicate less scatter in the actual data for past projects (a better
fi t of the equation to the data) and larger REs indicate more scatter in the data
(a less good fi t of the equation to the data). RE = 0 means that the estimated
value and the actual value are the same. If all data points were on the line of the
equation, the sum of REs would be zero. In this case size would be a perfect
predictor of effort.

 The distribution of relative errors between estimated values and actual values
can be used to determine the percentage of estimated values that lie within a
given percentage of the actual data points. For example, you might fi nd that 80%
of the estimated values differ by not more than 20% from the actual values when
the actual values are normalized by the adjustment factors for the projects.
This is expressed by a PRED (predictor) function for estimation models:
PRED(0.8) = 0.2 in the example.

 The PRED function is widely accepted as a measure of the effi cacy of an
estimation model (all estimation models, including regression models). A model
that does not achieve PRED(0.8) = 0.2 is usually judged to be too inaccurate for
use, meaning there is too much scatter in the underlying historical data.

 Another measure of goodness of fi t is the correlation coeffi cient r , which is a
measure of the correspondence between estimated and actual values. r varies
between 0 and 1; r = 0 means there is no correspondence, and r = 1 means there
is perfect correspondence between estimated and actual values. In the latter case
(r = 1) all data points would be on the line of the estimation equation, and as
stated previously, size would be a perfect predictor of effort.

 In principle, development of a regression - based estimation model is simple:

 1. collect some data from past projects,

 2. use a regression analysis tool to derive some equations, and
 3. develop some cost drivers and effort multiplier values to account for

differences among seemingly similar past projects.

 In practice it is not so simple, of course. The fi rst problem you may encounter is
lack of data for past projects that is consistently recorded using consistent units
of measurement and consistent ways of counting factors such as size, effort,
schedule, and adjustment factors. If you do not have consistent historical data,
you or someone in your organization must establish a metrics collection process
that will result in the accumulation of data on which to base an estimation
model.

 The second problem you may encounter is wide scatter in the data, which
means the data values for projects of the same size are so widely dispersed that
the data do not cluster around the lines of the equations; said differently, the
residual error, correlation coeffi cient, and PRED(0.8) all indicate that past proj-
ects are so dissimilar that it is not possible to estimate future projects based on
these past experiences. This is an indicator (a symptom) of a deeper underlying
problem: chaotic development processes , namely lack of systematic development
and management practices in your organization! It is impossible to develop a
systematic approach to estimating future projects when the past projects are
characterized by chaos.

 If you succeed in overcoming mismanagement problems, it may still be diffi -
cult to fi nd a small set of cost drivers that explain the differences in effort and
schedule for projects of the same kind and size. The true cost drivers may be
political or social in nature, such as poor customer relations, indifferent manage-
ment, and/or demoralized software developers. You may be hesitant to include
such factors in an estimation model.

6.8 REGRESSION-BASED ESTIMATION MODELS 247

248 ESTIMATION TECHNIQUES

 FIGURE 6.13A Sampling using Monte Carlo estimation

Effort

Probability

50 SM

0.01

0.02

0.03

0.04

100 SM 300 SM 150 SM 200 SM 250 SM

Frequency
of occurrence

 3

 6

 9

12

300 Trials

Estimation
Equation

Probability
Density

Effort
8 10 12

S

Range of Size

0

0.25

0.5

0.75

Probability
Distribution

1.0

Random
Number 2

Random
Number 1

 FIGURE 6.13B An effort histogram

 It is not impossible to overcome these problems. Many organizations have
developed and routinely use locally derived regression - based estimation models.
Some organizations have different regression - based estimation models for dif-
ferent kinds of projects; the equations are based on robust repositories of history
data. When a project is completed the oldest data set in the repository for that
kind of project is removed, data for the just - completed project is entered, and
the model is recalibrated (i.e., the equations are re - derived using the new data).
There is thus a “ sliding window ” of historical data that constantly refreshes the
data repositories and updates the estimation models.

in most commercial estimation models are calibrated to industry averages (e.g., PI
and MBI in the SLIM tool; values of constant multipliers, exponents, and cost drivers
in the CoStar tool for COCOMO II). Local calibration allows you to adjust the
model parameters.

 You can determine if local calibration is warranted by comparing estimated
values produced by the model to recorded values for past projects and attempting
to fi nd a set of realistic parameters for the model that produces acceptably small
variations between estimated values and the known values for completed projects.
If this is not possible, the model must be recalibrated.

 The SLIM estimation tools, for example, can automatically recalibrate the PI and
MBI parameters based on history data from local past projects that you enter into
the tool. The constant multipliers a and c in the COCOMO effort and schedule

equations can be recalibrated using a least squares approximation technique that
compensates for differences between the estimated values using the old equations
and the actual values; Boehm recommends that data from at least fi ve past projects
be used to recalibrate the constant term in a regression equation [Boehm81] .

 Calibration of both the constant multipliers and exponents in the effort and
schedule equations of a regression - based estimation model is more problematic
because calculation of both the constant multiplier and exponent (i.e., the intercept
and slope of the straight line using linear regression in the log - log domain) is more
sensitive to variations in the data than is calculation of the constant multiplier alone.
Boehm recommends that consistent data from at least 10 projects that are repre-
sentative of the projects to be estimated in the future be used [Boehm81] .

 A fi nal note of caution: in light of the previous discussion, you should not use an
estimation model or tool to estimate your projects without checking the agreement
of the model to known outcomes of some completed projects in your organization
and making the necessary adjustments and recalibrations; whether the tool or model
be a COCOMO model, a SLIM model, a locally developed model, or any other
estimation model.

 6.9 ESTIMATION TOOLS

 SLIM and COCOMO are representative of estimation models for which software
tools are available to assist you in making estimates. According to Capers Jones,
there were around 50 commercially available estimation tools marketed in the
United States and 25 or so in Europe in 2002 [Jones02] . In the cited paper, Jones
lists the basic capabilities of most estimation tools, additional capabilities provided
by some but not all estimation tools, and capabilities provided by only a few, if any,
estimation tools. Some of the capabilities in his lists, plus a few other capabilities
not mentioned in his paper, are presented in Table 6.6 .

 Some estimation tools can be purchased, others can be leased, and some are
available as freeware. Most of the commercial tool vendors sell or lease additional
tools to record and report project metrics, repository tools for storing historical data
for completed projects, and calibration tools. Most also provide downloadable eval-
uation copies of their tools.

 As mentioned above, commercially available software tools are usually cali-
brated to industry - average data. You should check and adjust the calibration before
using any software tool to make estimates for your project. As discussed below, you
should always use two or more complementary estimation techniques (e.g., WBS/
CPM based on expert judgment plus a locally calibrated estimation tool) and
reconcile the differences in the estimates provided by the different techniques.

 6.10 ESTIMATING LIFE CYCLE RESOURCES, EFFORT, AND COST

 Depending on the nature of your project and your organization, you may be asked
to provide an estimate of life cycle resources, effort, and costs for developing the
software, installing it and training users, providing ongoing support and mainte-
nance, and retiring the software. You may have historical data on which to base your

6.10 ESTIMATING LIFE CYCLE RESOURCES, EFFORT, AND COST 249

250 ESTIMATION TECHNIQUES

 TABLE 6.6 Capabilities of software estimation tools [Jones02]

 Capabilities of most estimation tools

 Support for both function points and lines of code (LOC)
 Conversion between LOC and function points
 Phase - level, activity - level, and task - level estimation
 Estimation for incremental development
 Support for software reusability of various artifacts

 Additional capabilities of some, but not all estimation tools

 Support for estimates based on metrics such as object - oriented metrics
 Risk and value analysis
 Estimation templates derived from historical data
 Defect and reliability estimation
 Cost - to - complete and time - to - complete estimates
 Links to project management tools such as Artemis and Microsoft Project
 Currency conversions for international projects
 Infl ation calculations for long - term projects
 Estimates keyed to the SEI capability maturity levels

 Capabilities provided by few (if any) estimation tools

 Conversion and nationalization costs for international projects
 Fees for trademark and copyright searches
 Acquisition costs for commercial off - the - shelf software packages
 Deployment costs for enterprise resource planning applications
 Litigation costs for breach of contract if a project is late or over budget

estimate, you may use some industry averages, or the estimation method/tool you
are using may provide estimates of life cycle costs based on industry averages or
local data.

 Local historical data or industrywide averages may indicate, for example, that
development cost is typically 33% of total life cycle cost for your kind of system or
product, thus indicating that additional life cycle costs will include an additional
factor of twice your estimate for the software development project.

 You might have a local rule of thumb that indicates the defect density reported
by users is typically 0.1 defects per function point (0.1 D/FP) during the fi rst six
months of operation and 0.05 D/FP during the second six months. If your product
contains 1000 function points, you should expect users to report 100 defects during
the fi rst six months and 50 during the second six. If it takes, on average, 1 staff - week
to repair a user reported defect and distribute the updated version of the product,
and if you assume there are 25 work - weeks in 6 months, you should plan for 4 soft-
ware maintainers during the fi rst six months (100/25) and 2 during the second six
(50/25). If you must provide telephone and Web site support for users, the costs of
personnel and facilities must be estimated.

 If you use the Rayleigh profi le for effort rate, as in SLIM, the area under the
Rayleigh curve represents total life cycle effort. Based on past experiences or other
information, you might estimate that 40% of total effort will be required for product

development and 60% for maintenance (SLIM uses 39% and 61%; 0.39 being the
point on the time axis where effort reaches its maximum value in the Norden –
Rayleigh equation).

 COCOMO II estimates maintenance effort from a size estimate, Size M , (size to
be added plus size to be modifi ed during the maintenance period) multiplied by a
maintenance adjustment factor (MAF) that accounts for programmer unfamiliarity
(UNFM) and software understanding (SU). Size M can be specifi ed in function points
or lines of code. Additions and changes are specifi ed for the duration of the main-
tenance period T M , which might extend over the lifetime of the software or might
be re - estimated on an annual or semi - annual basis. The UNFM and SU factors
account for the effect of the condition of the software and its documentation on the
effort needed to understand the changes to be made; these are the same factors
used in the COCOMO II model for software reuse.

 In COCOMO II,

 Size size added size modified MAFM = +() × ,

where MAF is the maintenance adjustment factor:

 MAF
SU

UNFM= + ⎛⎝
⎞
⎠ +

⎛
⎝

⎞
⎠1 100

.

 Size M is used in the COCOMO II effort estimation equation. As is usual in COCOMO
II, an effort adjustment factor (EAF) is applied to the effort estimate determined
by the effort estimation equation:

 PM Size MAFM M= × () ×a b ,

where PM M is estimated programmer months of maintenance effort and MAF is
the product of the effort multiplier values of the cost drivers for software
maintenance.

 The average staffi ng level for software maintenance is obtained by calculating:

 FSPM
PMM

M

=
T

,

where FSPM is full - time staff for program maintenance and T M is the time period
of the maintenance effort.

 6.11 AN ESTIMATION PROCEDURE

 Estimation, like all software engineering processes, should be conducted in accor-
dance with a well - defi ned procedure (i.e., a set of steps to be followed). A multi - step
estimation procedure is listed and discussed below:

 1. Determine the purpose of, and required accuracy of the estimate.
 2. Determine the information needed and sources of it.

6.11 AN ESTIMATION PROCEDURE 251

252 ESTIMATION TECHNIQUES

 3. Plan the schedule, resources, and responsibilities for developing the
estimate.

 4. Develop the requirements in as much detail as possible and as warranted.
 5. Verify that the requirements are complete, consistent, and correct, to the

extent possible.
 6. Develop a top - level architecture decomposition view (ADV) in as much

detail as possible and as warranted.
 7. If warranted, develop the size, complexity, and required quality attributes for

each component in the ADV.
 8. Develop a work breakdown structure (WBS) in as much detail as possible

and as warranted.
 9. Supply any additional factors required by the estimation techniques to be

used (always use more than one estimation technique; for example, WBS -
 based expert judgment and a locally calibrated SLIM or COCOMO model)

 10. Prepare estimates using the selected estimation techniques.
 11. Conduct sensitivity analyses on the estimates.
 12. Reconcile differences in the estimates.
 13. Document risk factors exposed by the estimation process.
 14. Prepare a plan for updating the estimate at periodic intervals and as aperiodic

events occur.
 15. Prepare and implement a plan for baseline retention of estimation data, the

documented estimate, and ongoing updates to the estimate.
 16. Document the estimate using a standard template for estimates, to include

the information in Section 6.12 of this chapter.

 As with all processes, the procedural steps listed above should be tailored to fi t
the needs of the situation. If step 1 (determine the purpose of, and required accuracy
of the estimate) reveals that the estimate is a “ ball park ” estimate to determine the
feasibility of a contemplated project, a quick rule of thumb calculation may be suf-
fi cient. If step 1 reveals that the estimate is for the organization ’ s next major product,
on which the survival of the company may depend, the estimate should be con-
ducted with great care and may involve feasibility studies, prototyping, and analysis
of the competition.

 Several steps in the estimation procedure use the phrase “ in as much detail
as possible and as warranted. ” Depending on the purpose and criticality of the
estimate, development of an ADV and a WBS may or may not be warranted.
Depending on the quality of the requirements and the time available, it may not be
possible to develop an ADV or WBS without additional work to develop the
requirements.

 Step 9 indicates that you should always use more than one estimation technique
and step 12 calls for reconciling the difference in the estimates produced by multiple
techniques. Again, depending on the purpose of the estimate and the information
available for making the estimate, use of multiple estimation techniques may not
be warranted; however, you should use multiple techniques if you are preparing to
commit yourself and your project team to a project based on the estimates. It is
recommended that one of the techniques be based on expert judgment or local

history of effort, duration, skills, and resources needed to complete the work package
tasks in the WBS. If it is available, the second choice should be a locally calibrated
estimation tool. A third estimate might involve use of a pragmatic estimation tech-
nique such as rule of thumb, analogy, or Delphi.

 To reconcile differences produced by different estimates, step 11 in the estimation
procedure calls for conducting a sensitivity analysis on each resulting estimate.
Sensitivity analysis is concerned with determining the sensitivity of variations in the
estimated outputs based on variations in the estimation inputs. Large variations in
estimated outputs that result from small variations in the inputs indicate that the
estimation technique is sensitive to those input parameters. Knowing that the esti-
mated values are sensitive to certain input values may result in closer examination
of those inputs and may help explain why two estimates produced by two different
techniques do not agree.

 For example, product size is the most sensitive input parameter for most
estimation tools because it is the primary variable. In COCOMO II the combined
effect of the Personnel effort multipliers is the second most sensitive parameter.
The combined effect of the range of values Personnel effort multipliers, as
specifi ed in the COCOMO II text, can cause variations of approximately 10 : 1 in
effort estimates, which is consistent with the observations of others [Sack68] ,
 [DeMarco99] .

 In addition the TEAM rating used to adjust the exponent in the COCOMO II
effort estimation equation exerts a strong, non - linear effect on estimated effort as
a function of product size; for example, varying the team rating from Very Low
to Very High results in a 20% change in estimated effort for small projects. Because
of the nonlinear effect of the effort equation exponent, larger sizes will result in
larger variations in estimated effort based on the TEAM value.

 Another sensitivity factor to consider when using a COCOMO - like model is the
nonlinear trade - off between effort and schedule. In the various COCOMO models,
for example, the relationship between effort and schedule is of the form

 S c E d= ∗()adj ,

where S is schedule in months, E adj is effort in staff - months (calculated using the
effort equation and effort multipliers), c and d are constants in COCOMO81, and
 c is a constant and d is calculated in Ada - COCOMO and COCOMO II.

 Constant c is in the range of 2.5 to 3.0 for the various COCOMO models and
exponent d is on the order of 0.33 (the cube root of effort). If c = 2.5 and d = 0.33
in the schedule equation, a project estimated to require 120 staff - months of effort
would require a schedule of approximately 12.5 months which results in an average
staffi ng level of approximately 10 FTE staff members (120/12.5).

 The squareroot rule of thumb is another way to estimate schedule and average
staffi ng level for a given amount of effort [Jalote02] . If, for example, a project is
estimated to require 120 staff - months of effort, it would be scheduled as 11 months
with an average staffi ng level of 11 software developers (11 2 = 121). So, using both
a COCOMO schedule equation and the square root rule of thumb would indicate
that a 120 staff - month project could be scheduled as 11 to 12.5 months with an
average staffi ng level of 10 or 11. A reasonable choice would be a 12 month project
with an average staffi ng level of 10 people.

6.11 AN ESTIMATION PROCEDURE 253

254 ESTIMATION TECHNIQUES

 In the various COCOMO models the sensitivity of average staffi ng level to varia-
tions in the schedule is determined by the SCED cost driver; it is used to adjust
estimated effort for schedules that differ from those calculated by the COCOMO
schedule equation. Multiplier values of the SCED cost driver are listed in Table 6.4
and illustrated in Figure 6.14 .

 FIGURE 6.14 SCED effort multiplier

Optimal
Schedule

1.4

1.3

1.2

1.1

Relative
Schedule
(T / Topt)

 SCED Effort
Multiplier

0.5 0.75 1.0 1.25

 1.23

1.0

Topt

 In Figure 6.14 , T opt is the schedule duration calculated by the COCOMO schedule
equation (which is derived from historical data for past projects). T opt is optimal in
the sense that the minimum amount of effort will be required for a project of dura-
tion T opt ; durations that are both longer and shorter than T opt will require more effort
than the optimal duration. Longer durations require increased effort, and incur
increased cost in a linear manner because of the costs of personnel and facilities on
a permonth basis. A schedule of 1.6 T opt , for example, would require a 10% increase
in effort (SCED = 1.1). In the example above, a project of 12 months, 10 FTE
average - staffi ng, if extended to 19 months (1.6 × 12) would require 7 FTE average -
 staffi ng (120 × 1.1)/19.

 As illustrated in Figure 6.14 , the effort penalty for compressing the schedule is
more severe than the penalty for extending the schedule. If the schedule in the
example were compressed from 12 months to 9 months (0.75 T opt) the effort would
be increased to 147 staff - months (120 × 1.23) and the required average staffi ng
would be 16.4 (an increase of 64%). Note that a linear increase of average staffi ng
would result in average staffi ng of 13.3 (10/0.75). The additional increase to 16.4
(1.23 × 13.3) is necessary to compensate for the decreased productivity of each
individual caused by the increased effort devoted to communication and coordina-
tion among a larger group of people.

 Note that the SCED cost driver in Figure 6.14 indicates that the schedule cannot
be compressed more than 25% of T opt (i.e., to 75% of the minimum - effort schedule).
The 75% limit is based on the observation that only 4 of 63 projects in the
COCOMO81 data set were able to successfully compress their schedules below the
75% limit; these 4 projects were small (total effort of 6, 7, 8, and 15 staff - months)

and had low required reliability, high personnel capability, and good use of modern
programming practices.

 The upper portion of SCED in Figure 6.14 (not included in the COCOMO
models) indicates that excessive effort (adding too many people to a project) will
extend the schedule. This is consistent with Brook ’ s law [Brooks95] : Adding man-
power to a late software project makes it later .

 Returning to Step 11 in the estimation procedure, the considerations above allow
you to conduct sensitivity analyses of effort estimates and effort - schedule combina-
tions; you can thus determine the input values to which your estimate is particularly
sensitive, and determine the penalty to be paid for departing from an “ optimal ”
schedule that minimizes total project effort.

 As stated previously, the original SLIM model uses the following equation for
calculating the minimum development time, T d , for a software project:

 T
K
C

d = ⎛⎝
⎞
⎠

0 33.

,

where T d is in years, K is in staff - years (the total area under the Norden – Rayleigh
curve, and C is a constant in the range of 14 to 15. Converting years to months,
staff - years to staff - months, and letting C = 14.5 results in

 T Ed = ()2 15 0 33. ,.

where T d is in months and E is effort in staff - months.
 For the example project above, the minimum schedule duration for a 120 staff -

 month project would be

 Td months= () × =2 15 120 2 15 5 10 750 33. ∼

 This value is comparable to the 9 month minimum - time schedule estimated
in COCOMO. The SLIM estimation model imposes severe effort penalties for
schedule compression and, in contrast to the COCOMO models, computes
decreased effort for longer schedule durations. The effort – schedule relationship in
the SLIM model indicates that effort is proportional to schedule duration to the − 4
power:

 E T∼ −4.

 According to this relationship, decreasing the schedule from 12 months to 9 months
in the example project would increase the effort from 120 staff - months to 370 staff -
 months (0.75 4 = 0.32; 120/0.32 = 370) with an average staffi ng level of 41 personnel
(370/9) and extending the schedule to 18 months would decrease effort from 120
staff - months to approximately 24 staff - months (1.5 4 = 5.06; 120/5.06 ∼ 24) with an
average staffi ng level of 1.3 personnel (24/18).

 You can use the Monte Carlo simulation technique to conduct sensitivity analyses
of the tradeoff between effort and schedule using the SLIM estimation tool or using
a spreadsheet programmed with regression equations using Crystal Ball. The results

6.11 AN ESTIMATION PROCEDURE 255

256 ESTIMATION TECHNIQUES

you obtain from estimation methods and tools should always be subjected to a rea-
sonableness check: estimation tools and methods are aids; they are not panaceas.
Recall that the goal of estimation is to determine, at a high level of confi dence, a
set of parameters that will allow you to successfully delivering an acceptable product
within the estimated schedule and budget.

 Steps 13, 14, and 15 of the estimation procedure are concerned with documenting
the estimate. Step 13 (document risk factors exposed by the estimation process)
provides information to be included in the documented estimation; also it can be
used when preparing the risk management plan (see Chapter 9). The estimation
procedure may have revealed, for example, that the requirements are too vague to
support an accurate estimate, or that the schedule constraint results in unacceptable
risk to successfully completing the project within the constrained duration, or that
the software developers do not have suffi cient knowledge of the new development
environment to successfully use it on the project.

 Step 14 (prepare a plan for updating the estimate at periodic intervals and as
aperiodic events occur) is concerned with preparing a plan to keep the estimate
current as understanding of the project grows, and as conditions change. Many
organizations update project estimates on a monthly basis. Changes in the require-
ments, reduction of the budget, or loss of a key person are examples of aperiodic
events that would warrant revision of your estimate.

 Step 15 (prepare and implement a plan for baseline retention of estimation data,
the documented estimate, and ongoing updates to the estimate) is concerned with
version control of documented estimates, the data on which each estimate is based,
and updated versions of the estimate that are created periodically and aperiodically.
As with all revisions to all baselined work products, the following information
should be recorded for each version of an estimate:

 • the date of the revision,
 • the reasons for the revision,
 • the data used to make the revision, and
 • the elements changed

 Baseline control of documented estimates removes ambiguity as to which esti-
mate is the current one and creates an audit trail of how and why the project
changed over time.

 The fi nal step in the estimation procedure (document the estimate using a stan-
dard template for estimates) should be based on a standard template for recording
estimates that is used throughout your organization. The template should provide
for recording the information listed and discussed in the following section.

 6.12 A TEMPLATE FOR RECORDING ESTIMATES

 Questions to be answered when making estimates are typically of the form:

 • effort: how much work will be needed?
 • schedule duration: how long will it take?

 • resources: what kinds of skill levels, tools, and other resources are needed? what
quantities are needed? when will they be needed and for how long?

 • allocations: how should effort and schedule be allocated to the various work
activities?

 • milestones: what progress indicators should be observed when conducting the
project? when should they occur?

 • quality: what are the estimated quality attributes of the product (pre - delivery
and post - delivery defects, reliability, safety)?

 • cost: how much will it cost to do the project?
 • risk: what are the potential problems in these estimated factors?
 • confi dence level: how confi dent are you in the overall estimate?
 • resources needed to improve the estimate

 Various levels of probability for various combinations of the parameters can be
determined by PERT analysis (Chapter 5), by risk analysis (Chapter 9), by Monte
Carlo simulation (this chapter), and by subjective evaluation (this chapter).

 Your organization should have a standard template for recording estimates. It
should support recording and reporting of the following information:

 • project identifi er
 • version number and date of the estimate
 • total estimated effort
 • total estimated schedule
 • name(s) of the estimator(s)
 • rationale for the estimate (why is this estimate being made? feasibility, initial

estimate, periodic update, aperiodic update, etc.)
 • elements changed (for updates to an estimate)
 • amount of time and effort spent in making the estimate
 • estimation methods and tools used
 • the basis of estimation for each method or tool used (industry averages, expert

judgment, local historical data, etc.)
 • a list of assumptions made for each method or tool used
 • a list of constraints observed in making the estimates
 • a list of inputs used for each method or tool used (e.g., size, PI, MBI, adjustment

factors for SLIM)
 • estimation data provided by each estimation method or tool (e.g., total effort,

schedule, project milestones, effort for various project activities by project
phase, estimated pre - release and post - release defects, estimated reliability at
product delivery, total life cycle costs)

 • a range of estimates for effort, schedule, resources, cost, and quality attributes
with associated probabilities for each method or tool used

 • risk factors for the project
 • the estimator ’ s level of confi dence in the accuracy of the estimate (0 to 10; low,

medium, high)
 • information, resources, and time needed to make an improved estimate

6.12 A TEMPLATE FOR RECORDING ESTIMATES 257

258 ESTIMATION TECHNIQUES

 6.13 KEY POINTS OF CHAPTER 6

 • A project estimate is a projection from past to future, suitably adjusted to
account for differences between past and future.

 • All estimates are based on a set of assumptions that must be realized and a set
of constraints that must be satisfi ed.

 • Projects must be re - estimated periodically as understanding grows and aperi-
odically as project parameters change.

 • Size is the primary variable in most software estimation models.
 • The most popular size measures are lines of code and function points.
 • External size measures (ESMs) can be developed for each application area.
 • Estimation models can be categorized as pragmatic, theory - based, and

regression - based.
 • Theory - based and regression - based estimation models can be calibrated using

local data.
 • Software estimation tools provide a variety of capabilities.
 • Estimates should be prepared using at least two different methods.
 • Estimates should be documented using a standard template.
 • SEI, ISO, IEEE, and PMI provide frameworks, standards, and guidelines for

project estimation techniques (see Appendix 6A to this chapter).

 REFERENCES

 [Albrecht79] Albrecht , A. J. Measuring application development productivity . Proceedings
of the IBM Application Development Symposium , Monterey, California,
October 1979 , pp. 83 – 92 .

 [BOEHM81] Boehm , B. Software Engineering Economics . Prentice Hall , 1981 .
 [Boehm87] Boehm , B. , and W. Royce . TRW IOC Ada COCOMO: Defi nitions and Refi ne-

ments . Proceedings of the Third International COCOMO Users Group . Soft-
ware Engineering Institute, 1987 .

 [Boehm02] Boehm , B. et al. Software Cost Estimation with COCOMO II . Prentice Hall ,
 2000 .

 [Brooks95] Brooks , F. The Mythical Man - Month . Addison Wesley , 1995 .
 [CMMI06] SEI. CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,

2006.
 [DeMarco99] DeMarco , T. , and T. Lister . Peopleware , 2nd ed . Dorset , 1999 .
 [Fairley02] Fairley , R. Making accurate estimates . IEEE Software . 19 (November – Decem-

ber): 61 – 63 .
 [Fairley07] Fairley , R. The infl uence of COCOMO on software engineering education and

training . Journal of Systems and Software 80 (August 2007): pp. 1201 – 1208 .
 [Forrester61] Forrester , J. W. Industrial Dynamics . Pegasus Communications , 1961 .
 [HAMID91] Abdul - Hamid , T. K. , and Madnick , S. E. Software Project Dynamics . Prentice

Hall , 1991 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology – Software Life Cycle
Processes . Engineering Standards Collection. IEEE Product: SE113. Institute
of Electrical and Electronic Engineers, August 2003. [IFPUG] www.ifpug.org .

 [Jalote02] Jalote , P. Software Project Management in Practice . Addison Wesley , 2002 .
 [Jones86] Jones , T. C. The SPR feature point method . Software Productivity Research,

Inc. , 1986 .
 [Jones02] Jones , C. Software cost estimation in 2002 . Crosstalk . Software Technology

Support Center , June, 2002 .
 [Norden63] Norden , P. Useful tools for project management . Operation Research in

Research and Development , edited by B. V. Dean . Wiley , 1963 .
 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed .

(PMBOK ® Guide) Project Management Institute , 2004 .
 [Putnam92] Putnam , L. , and W. Myers . Measures for Excellence . Yourdon Press , 1992 .
 [Sack68] Sackman , H. , W. Erikson , and E. Grant . Exploratory Experimental Studies

Comparing On - line and Off - line Performance . Communication of the ACM . 11
(January 1968). pp. 93 – 105 .

 [Symons88] Symons , C. R. Function point analysis: Diffi culties and improvements . IEEE
Transactions in Software Engineering . 14 (January 1988). pp. 2 – 11 .

 URL s

 [COSMIC1] www.cosmicon.org .
 [COSMIC2] www.cosmicon.com/advantagecs.asp .
 [Costar] www.softstarsystems.com .
 [Crystal] www.decisioneering.com .
 [IFPUG] www.ifpug.org
 [Madachy01] www - rcf.usc.edu/ ∼ madachy/sd/sd.html .
 [PRICE] www.pricesystems.com/products/true_s_price_s.asp .
 [USC] http://sunset.usc.edu/research/COCOMOII/index.html .

 EXERCISES

 6.1. In making an estimate, an adjustment factor is typically applied to account for
the relative complexity of the product. Explain the meaning of “ relative
complexity. ”

 6.2. Estimation principle 1 indicates that historical data of some type is necessary
to makes estimates. Explain how you might go about making an estimate for
a new type of system for which there is no historical data.

 6.3. Explain the difference between an assumption and a constraint.

EXERCISES 259

260 ESTIMATION TECHNIQUES

 6.4. Briefl y explain how you could derive a conversion factor from function points
to lines of code.

 6.5. List the ways in which external size measures are superior to lines of code for
measuring product size.

 6.6. List the ways in which the steps in the sidebar “ Developing an External Size
Measure ” could have been used to develop the function point measure of
product size.

 6.7. Briefl y explain the difference between an estimation rule of thumb and an
estimation analogy.

 6.8. Explain how the SLIM estimation model accounts for the factors listed in
Figure 6.1 ; that is, how are product attributes, project constraints, past experi-
ences, adjustment factors, and assumptions accounted for in the SLIM
model?

 6.9. In relation to Table 6.3 , the text states that the joint probability of completing
the project in 24 months with 500 staff - months of effort is roughly 81%
(0.87 × 0.93). What assumption is involved in making this statistical
calculation?

 6.10. The SLIM estimation tool computes the minimum time, maximum effort
estimate. In addition the maximum time and minimum effort can be specifi ed
as constraints.
 a. Briefl y explain why you might want to constraint the maximum time for a

project.
 b. Briefl y explain why you might want to constraint the minimum effort for

a project.

 6.11. Explain how the COCOMO81 estimation model accounts for the factors
listed in Figure 6.1 ; that is, how are product attributes, project constraints,
past experiences, adjustment factors, and assumptions accounted for in
COCOMO81?

 6.12. The exponent b in the effort - size equation of regression - based estimation
models is sometimes calculated to be greater than 1 (diseconomy of scale) and
sometimes calculated to be less than 1 (economy of scale).
 a. What factors would explain why b is greater than 1 for some sets of histori-

cal data?
 b. What factors would explain why b is less than 1 for some sets of historical

data?

 6.13. In many estimation models the exponent in the equation that relates schedule
duration to effort is in the range of 0.3 to 0.5. For example, the square root
relationship (i.e., exponent = 0.5) states that a project of size 16 would require
4 units of duration while a project of size 25 would require only 5 units of
duration. What factors would explain this relationship; that is, why do projects
requiring more effort take proportionally less time than projects requiring
proportionally more effort?

 6.14. Which of the cost drivers listed in Table 6.4 might not affect an estimate (i.e.,
would have effort multiplier values of 1) when adjusting for the differences
in effort and schedule duration for projects in a stable organization that
develops Web - based client - server software?

 6.15. List, and briefl y explain three additional cost drivers you might add to Table
 6.4 to explain the differences in effort and schedule duration for some soft-
ware projects.

 6.16. Using Table 6.4 , calculate the variation in an effort estimate that can be caused
by fi rst setting all of the personnel attributes to Very Low and then setting
them to Very High.

 6.17. In Figure 6.14 the SCED effort multiplier for compressing the schedule to
75% of T opt is 1.23; however the required increase in personnel is 1.64. Show
by calculation, and explain in words, why there is a difference between the
increase in effort and the increase in personnel.

 6.18. In the text the term “ full - time equivalent ” (FTE) is used. What is the meaning
of full - time equivalent?

 6.19. When calibrating an estimation model, you should try to fi nd a realistic set of
parameters for the model that produces acceptably small variations between
estimated values and actual values for completed projects.
 a. What is an “ acceptably small ” variation?
 b. What is the meaning of “ a realistic set of parameters? ”

EXERCISES 261

 APPENDIX 6A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR ESTIMATION

 6A.1 ESTIMATION GOALS AND PRACTICES OF THE CMMI - DEV - v 1.2
PROJECT PLANNING PROCESS AREA

 CMMI - DEV - v1.2 includes estimation as specifi c goal 1 (SG 1) of the Project Plan-
ning process area. SG 1 has 4 specifi c practices [CMMI06] :

 SG 1 Establish estimates
 SP 1.1 Estimate the scope of the project
 SP 1.2 Establish estimates of work product and task attributes
 SP 1.3 Defi ne project life cycle
 SP 1.4 Determine estimates of effort and cost

 Related process areas in the CMMI Models are:

 • requirements development,
 • requirements management,
 • risk management, and
 • technical solution.

 In most cases the requirements (product features and quality attributes) are
specifi ed and a schedule, a set of resources, and a budget are estimated, as indicated
by the specifi c practices listed above. But sometimes the constraints are a schedule,
a set of resources, and a budget (time, effort, other resources, and money), and the
product features and quality attributes that can be developed within those con-
straints are estimated.

262

 6A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 Section 7.1.2.1 of 12207.0 [IEEE12207] states that management plans must
include:

 • schedules for completion of the tasks,
 • effort estimates,
 • resources needed to accomplish the tasks, and
 • costs of executing the plans.

 Annex G.9 of 12207.0 states that a management process should:

 • defi ne the scope of work, and
 • identify, size, estimate, and plan the tasks and resources needed to accomplish

the work.

 6A.3 IEEE / EIA STANDARD 1058

 Subclause 5.5.1 of IEEE Standard 1058 – 1998 for Software Project Management
Plans indicates that an estimation plan should be an element of a project plan
 [IEEE1058] . According to 1058 the subclause must specify:

 • cost and schedule for the project;
 • methods and tools used to make the estimate;
 • the basis of estimation; and
 • frequency of, and ways in which periodic re - estimates will be made.

 6A.4 THE PMI BODY OF KNOWLEDGE

 The PMBOK ® Guide of the Project Management Institute includes estimation as
an element of the Project Time Management and Project Cost Management knowl-
edge areas [PMI04] :

 Project time management
 • activity resource estimation
 • activity duration estimation
 • schedule development

 Project cost management
 • cost estimation
 • cost budgeting

6A.4 THE PMI BODY OF KNOWLEDGE 263

265

7
 MEASURING AND CONTROLLING
WORK PRODUCTS

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 When you can measure what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely in your thoughts advanced to the state
of Science, whatever the matter may be.

 — Lord Kelvin

 7.1 INTRODUCTION TO MEASURING AND CONTROLLING
WORK PRODUCTS

 Managing a software project involves planning and estimating, measuring and con-
trolling, coordinating and leading, and managing risk. One reason you should make
plans and estimates for your project is to provide objective targets against which
progress of the work and quality of the work products can be determined. Progress
is measured by periodically determining the current status of each attribute and
comparing its current status to planned status. Project status is typically measured
and reported weekly, bi - weekly, or monthly.

 Determining project status involves determining the relationships among the
project attributes (expended effort, schedule, and cost, and the current status of the
work products) in addition to the status of each attribute individually. It is entirely
possible to make good schedule progress while expending more resources than
planned, or to make good cost and schedule progress while making the wrong
product features or producing poor - quality work products. Project status is
documented in progress reports.

266 MEASURING AND CONTROLLING WORK PRODUCTS

 The purpose of a progress report is to indicate which project factors are as
planned and which need to be investigated for possible corrective action. You
should, for example, monitor both effort and personnel cost. If, in a given reporting
period, effort is as planned but personnel cost is higher than planned, you are using
more expensive (more highly skilled) software developers than planned; perhaps
the work is more diffi cult than anticipated or perhaps the work to be done by highly
skilled, and expensive, designers is taking longer than planned.

 Conversely, if, in a given reporting period, effort is as planned but personnel costs
are lower than planned, it may be that you have been unable to acquire the needed
skill levels (not good) or perhaps the work is easier than planned and highly skilled
(highly paid) personnel are not needed (good). If effort and cost are both less than
planned, this may indicate that you have not been able to acquire the planned
number of software developers and, as a result, schedule progress is slower than
planned. Or, it may be that effort and cost are higher than planned because of a
desire to accelerate schedule progress. Other costs should also be measured and
compared to plan. Travel cost may be higher (or lower) than planned; equipment
costs may similarly deviate from plan. In any case, you will need to investigate these
deviations from plan.

 Project control is exerted by applying corrective action when one or more dimen-
sions of progress deviate from plan by more than an acceptable amount or when the
relationships among project attributes becomes unbalanced; for example, a delay of
two days in achieving a major milestone may not require corrective action but being
two weeks late may constitute an unacceptable delay for which corrective action
must be taken. Similarly a 2% overrun of allocated memory for an incremental build
of embedded software may be acceptable but a 20% overrun is probably not.

 Depending on the nature of the deviation from plan, corrective action may
involve one or more of

 • extending the schedule,
 • adding more resources,
 • using superior resources,
 • improving various elements of the development process,
 • improving the technology, and/or
 • de - scoping the product.

 Resources to be improved, added, or replaced include people (being mindful of
Brooks ’ s law), software components (e.g., re - engineering a component to improve
performance), hardware components (e.g., more memory, a faster processor), and
software tools (e.g., a language processor or testing tool).

 Descoping the product can be gracefully accomplished if you have prioritized the
requirements and if you are using an iterative development process by which you
have implemented the most important features fi rst. If the delivery date is con-
strained, you may fi nd it is acceptable to deliver a subset of highest priority capabili-
ties on schedule with delivery of a subsequent full - feature version scheduled for a
later, negotiated date.

 Of course, you must be mindful of the trade - offs involved in corrective actions;
for example, changing the testing process or adding a new testing tool may increase

the number of detected defects over the long term, but it may have an unacceptable
impact on your schedule, which results from the time required to learn and
assimilate the new process or tool.

 The workfl ow model depicted in Figure 1.1 (Chapter 1), and repeated here as
Figure 7.1 , illustrates the roles of measurement and control in the workfl ow model
of software projects. The feedback loops of measuring, reporting, replanning, and
controlling are highlighted in Figure 7.1 .

 The relationship between corrective action and risk management is examined
Chapter 9 . In brief, a risk is a potential problem — a problem that hasn ’ t happened
yet but has a nonzero probability of happening; if that happens, its impact will be
negative on achieving a successful outcome. In risk management, potential problems
are identifi ed, objective indicators are monitored, and a predetermined plan of cor-
rective action is initiated when a risk indicator crosses a predetermined threshold
(the problem trigger).

 When you plan, estimate, measure, and control a software project, you are prac-
ticing institutionalized risk management. Risk management is institutionalized
because, through experience, we have learned that systematic planning, estimating,
measuring, and controlling a software project increases the probability of a success-
ful outcome; put differently, it is better to plan, estimate, measure, and control than
to not do so. Measurement and control of effort, schedule, cost, product features,
and quality attributes is thus a form of risk management; however, there are other
aspects of risk management, as explained in Chapter 9 , that augment the systematic
planning, estimation, measurement, and control you should practice on your
software projects.

 It is possible, although not highly probable, that you may be able to delivery an
acceptable product without planning, estimating, measuring, or controlling. The cost
of planning, estimating, measuring, and controlling, like the cost of risk management,
is an investment you make to increase the probability of success. Like risk

 FIGURE 7.1 A workfl ow model for software projects with emphasis on measuring,
reporting, replanning, and controlling

delivered

work
products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning

Activity
Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Independent
V&V

Measuring

Controlling

Data
Retention

Estimating and
Re-estimating

Reporting

Change Requests and Problem Reports

Status Reports Project Reports

Directives and
Constraints

Configuration
Management

7.1 INTRODUCTION TO MEASURING AND CONTROLLING WORK PRODUCTS 267

268 MEASURING AND CONTROLLING WORK PRODUCTS

management, the amount you invest in planning, estimating, measuring, and control-
ling must be balanced against the cost of failing to deliver an acceptable product
on schedule and within budget.

 7.2 OBJECTIVES OF THIS CHAPTER

 This chapter presents methods and techniques for measuring and controlling work
products. Measurement and control of effort, schedule, and cost are presented in
Chapter 8 . After reading this chapter and completing the exercises you should
understand:

 • measures and measurement scales;
 • product measures for different kinds of work products;
 • the role of confi guration management in measurement and control of work

products;
 • the roles of inspections, walkthroughs, and developer testing;
 • complexity measures for software;
 • reliability and availability measures;
 • the defect detection and repair process;
 • ways to document and analyze defects and defect repairs;
 • guidelines for choosing product measures; and
 • sources of standards and guidelines for measurement and control.

 The four sets of standards and guidelines for managing project presented in this
text, namely the CMMI - DEV - v1.2 process framework, the ISO/IEEE standard
12207, IEEE standard 1058, and the PMI Body of Knowledge address measurement
and control of work products to varying degrees. Aspects of measurement and
control in these documents are presented in Appendix 7A to this chapter. In addi-
tion the Practical Software and Systems Measurement (PSM) approach is presented
in the Appendix; an overview of PSM is provided in Section 7.8 of this chapter.

 Terms used in this chapter and throughout this text are defi ned in the Glossary
at the end of the text. Presentation slides for this chapter and other supporting
material are available at the URL listed in the Preface.

 7.3 WHY MEASURE?

 There are several reasons you should measure various attributes of your software
projects:

 • to provide frequent indicators of progress (or lack thereof),
 • to provide early warning of problems,
 • to permit analysis of trends for your project,
 • to allow estimates of the fi nal cost and completion date of your project, and
 • to build a data repository of project histories for your organization.

 The frequency of measurement may vary from daily, for example, in counting the
number of user stories implemented by way of an Agile development process; to
weekly, for example, in counting the number of use case scenarios implemented
using an Incremental - build development process; to monthly, for example, in count-
ing the number of design elements implemented in a Waterfall process. Teams may
meet briefl y each day to review progress and problem areas; team leaders and you,
the project manager, may meet on a weekly basis to review the project and meet
each month to plan the details of the coming month ’ s work. You, the project
manager, and some of your key personnel may meet with upper management and
with customers on a monthly basis to review progress and identify problem areas.

 Frequent measurement of status provides early warning of problems when actual
status does not match planned status. Early identifi cation of problems is desirable
because problems are easier to fi x when identifi ed early, namely, before defects in
work products can propagate into subsequent work products. Collection of status
information on a periodic basis supports forecasting of trends in project attributes
such as defects, cost, and schedule. If, for example, your project is determined to be
two weeks behind schedule, and if the project is estimated to be half completed, and
if progress continues at the present rate, the project will be four weeks late in com-
pletion. The “ ifs ” in the previous example are factors to be continuously monitored
and updated.

 As indicated in Chapter 6 , all estimates are projections from the past to the
future, suitably adjusted to account for differences between past and future. Esti-
mates based on local data will be more accurate than estimates based on rules of
thumb or industry averages. An important reason for measurement is thus to build
a data repository on which estimates for future projects can be based. In addition
analysis of project data collected across your organization may reveal common,
recurring problems that need to be addressed at the organizational level. For
example, analysis might show that for most projects, a large percentage of total
defects are in the interfaces among code modules. Improving training and tools for
the design of interfaces could signifi cantly reduce total defects in the organization ’ s
software products.

 7.4 WHAT SHOULD BE MEASURED?

 The attributes you measure and control depend on the success criteria for your
project: reliability and performance of the delivered software may be the most
important success criteria, or it may be that controlling the schedule and cost of the
project are uppermost. However, it is diffi cult to imagine a project for which
some level of measurement and control over each of the following attributes is not
important for a successful outcome:

 • effort: amount of work expended for various work activities
 • schedule: achievement of objectively measured milestones
 • cost: expenditures for various kinds of resources, including effort
 • progress: work products completed, accepted, and baselined
 • product features: requirements implemented and demonstrated to work

7.4 WHAT SHOULD BE MEASURED? 269

270 MEASURING AND CONTROLLING WORK PRODUCTS

 • quality attributes of the product: defects, reliability, availability, response time,
throughput, and others as specifi ed

 • risk: status of risk factors and mitigation actions

 Typically the process attributes (effort, schedule, cost, and progress) are balanced
against product attributes (features and quality attributes). Among the process
attributes, schedule may (or may not) be more important than effort or cost, and
security may be a more important product attribute than performance. Depending
on the relative importance of the various process and product attributes, more effort
may be expended on measuring and controlling some attributes than on measuring
and controlling others.

 Product and process measures are, or should be, by - products of the procedures,
methods, tools, and techniques used to develop software; if not, the development
and management processes must be improved. Excessive time, effort, and cost spent
in obtaining, analyzing, and acting on product and process measures is a symptom
of ineffective development and management processes.

 7.5 MEASURES AND MEASUREMENT

 A measure is the symbol assigned to some attribute of a real - world phenomenon;
for example, using integer or real number symbols to measure temperature. Mea-
surement is the process of mapping some attribute of a real - world phenomenon to
a set of symbols for which well - defi ned operations are specifi ed; for example,
mapping temperature to a Celsius, Fahrenheit, or Kelvin measurement scale. Dif-
ferent kinds of measurement scales permit different kinds of operations; for example,
40 degrees Celsius or Fahrenheit is hotter than 20 degrees Celsius or Fahrenheit
because the relational operation “ hotter than ” (i.e., greater than) is permitted, but
we cannot say 40 degrees is twice as hot as 20 degrees on these scales because ratio
operations are not valid for these measures (more later).

 There are fi ve commonly used measurement scales: nominal, ordinal, interval,
ratio, and absolute. These scales provide a hierarchy of permitted operations. The
hierarchy, based on the characteristics of each scale, is presented in Table 7.1 .

 A nominal scale assigns items to groups or categories. You might, for example,
list the number of personnel in each of several categories: analysis and design,
implementation, testing, user training, and so forth. Or, you might list the number
of installations of your systems by region or country. The number of items in each
category can be counted to provide frequency distributions among categories but
no ordering of the items within a category is implied. For example, your project
might have 12 implementers and 5 testers; you can say there are 7 more implement-
ers than testers but nothing can be said about the rankings of skill levels of the
implementers or the testers if you are using a nominal scale.

 Measures based on symbols that form an ordered sequence, such as (Low,
Medium, High) form ordinal scales. Skill levels or program complexity might be
measured using the symbols (Low, Medium, High) with the permitted transitive
relational operations of less than, greater than, and equal (< , > , =) defi ned on the
set {Low, Medium, High}. The intervals between adjacent symbols are not specifi ed
for ordinal measures, and there is no objectively determined zero element; thus we

cannot say that a program of High complexity is 3 or 5 or 10 times more complex
than a program of Low complexity if we are using an ordinal scale. However, transi-
tive relational operations can be applied if the symbols form an ordered sequence,
so a program of Low complexity is less complex than Medium, which is less complex
than High, and two programs of Medium complexity are of comparable complexity.
By the transitivity property, module A is less complex than module C if module A
is less complex than module B and module B is less complex than module C or if
module B is of equal complexity to module C (note the precedence among the “ and ”
and “ or ” operators in this sentence). The value Low, Medium, or High might be
determined for a program or a module using subjective criteria.

 When using an ordinal scale, elements within a category are ordered. Symbols
higher in the ordering indicate larger values but the intervals between the symbols
cannot be assumed to be equal. For example, a software developer rated High in
ability is not necessarily 3 times as capable as a developer rated Low in ability. The
zero point in an ordinal scale, if it exists, is chosen arbitrarily; for example, an ability
scale of (1, 2, 3) equated to Low, Medium, High could equally be scaled as (0, 4, 6);
see the sidebar “ Misuse of measurement scales ” on the dangers of using integers as
the measures of an ordinal measurement scale.

 Measures based on symbols that have equal intervals between any two adjacent
symbols but having an arbitrarily determined zero element form interval scales. In
an interval measurement scale a unit of measure represents the same magnitude of
a factor across the full range of the scale. For example, on the Celsius or Fahrenheit
temperature scale the difference between 30 and 40 degrees is the same as the dif-
ference between 50 and 60 degrees (10 degrees in each case). However, the zero
point on these scales does not denote the absence of temperature (i.e., is not objec-
tively determined) and ratios cannot be formed. Thus a temperature of 60 degrees
Celsius or Fahrenheit is not twice as hot as a temperature of 30 degrees.

 Daniel Fahrenheit invented the mercury thermometer in 1714 after discovering
that mercury has a linear expansion/contraction factor over a wide range of tem-
peratures, thus making it a suitable element for constructing glass thermometers
with linear markings on the glass. Mr. Fahrenheit established three points on his
measurement scale: 0 ° F was determined as the temperature of a mixture of salt, ice,
and water; 32 ° F was determined as the temperature at which water freezes without
salt; and 96 ° F was determined to be the bodily temperature of a healthy adult
person. A fourth point on the scale, 212 ° F, was later established as the boiling point
of water at sea level. This point on the Fahrenheit scale recalibrated the temperature
of a healthy adult to be 98.6 ° F. Mr. Fahrenheit could just as readily have assigned
the number 10 to his zero element and added 10 to the other calibration points.

 TABLE 7.1 Hierarchy of measurement scales

 Scale Characteristics

 Nominal Frequency distributions among measurement categories
 Ordinal Ordering within categories; arbitrary intervals among measures
 Interval Equal intervals among measures; arbitrarily determined zero element
 Ratio Equal intervals among measures; objectively determined zero element
 Absolute Similar to ratio but with uniqueness of measures

7.5 MEASURES AND MEASUREMENT 271

272 MEASURING AND CONTROLLING WORK PRODUCTS

Zero degree Fahrenheit is thus an arbitrary value, so 0 ° F does not indicate the
absence of temperature.

 The numbers used as calibration points on the Celsius temperature scale are
similarly arbitrary. Mr. Celsius established 0 ° C as the boiling point of water and
100 ° C as the freezing point. The measurement scale was later inverted to the now -
 familiar scale with 0 ° C as the freezing point and 100 ° C as the boiling point of water
at sea level. The Fahrenheit and Celsius temperature scales are interval measure-
ment scales because the intervals between measures are equidistant, but the zero
element does not denote the absence of the phenomenon being measured, namely
temperature.

 In measurement theory, measures that have equal intervals between any two
adjacent symbols and a zero element that denotes absence of the quantity being
measured form a ratio scale. On measurement scales that uses integer and real -
 number measures, for example, and that have objectively determined zero values,
the relational operations and the arithmetic operations are permitted and ratios can
be formed, as in the measurement of the number of statements in a computer
program. Because the measure of program size is in integer units of equal intervals
with an objectively zero element (the absence of statements), it can be said that a
program of 100 statements is twice as large as a program of 50 statements and the
size of the combined programs is 150 statements.

 Note that temperature measured in Kelvin (K) forms a ratio measurement scale
because the zero element is an objectively determined value; temperature in Kelvin
is a measure of the kinetic energy associated with the motion of atoms and mole-
cules. The zero point of the Kelvin temperature scale is the temperature at which
all movement at the atomic level ceases, meaning the absence of temperature. Thus
0 K is an objective measure and 200 K is twice as hot as 100 K (i.e., the kinetic energy
of the atoms is twice as much).

 An absolute measurement scale is one for which ratios are allowed (equal inter-
vals plus an objectively determined zero element that denotes absence of the phe-
nomenon) plus uniqueness of the measures. For example, measuring defect density
as an integer number of defects per line of code by measuring total number of
defects and dividing by the number of lines of code forms a ratio measurement scale
because defects per line of code can be converted to defects per thousand lines of
code by the transformation:

D
KLOC

D
LOC

= ⎛⎝
⎞
⎠ × 1000.

 If, for some reason, monotonic transformation of D/LOC were disallowed, the
measurement scale would be an absolute one. Measuring program size in function
points and disallowing any transformations, for example, into lines of code, would
form an absolute measurement scale. Stated in another way, identity is the only
transformation allowed for an absolute measurement scale.

 Ordinal, ratio, and absolute scales are the most commonly used measurement
scales in software engineering. Program complexity, as measured by (Low, Medium,
High), is an example of an ordinal measurement scale. Measuring the size of a
program as an integer number of function points and performing transformations

of function points to lines of code forms a ratio measurement scale because there
are equal intervals in both measures, and a program having no function points
or lines of code has size zero. Measuring program size in function points and
disallowing any transformations forms an absolute measurement scale.

 You must have well - defi ned rules for determining the mapping from the phe-
nomena of interest to the measures you use, such as measuring the phenomenon of
program size using the counting rules for counting function points or an algorithm
to count lines of code. Also it is important that the measures you use be applied
uniformly throughout your organization so that different projects can be compared
along different dimensions and so that trends across the organization can be deter-
mined. As the saying goes, you want to compare apples to apples (i.e., defects to
defects) and not apples to oranges by mistakenly thinking the oranges are also
apples (i.e., mistakenly comparing defects in one product to requirements changes
in another product).

 If you are counting lines of code, for example, you want each project to count in
the same way:

 • do semicolons delimit “ lines? ”
 • do end - of - line symbols delimit lines?
 • do you include comments?
 • do you count a library routine as the 1 - line “ include ” statement or as the

equivalent lines of code in the body of the included routine?
 • how do you count unmodifi ed lines of code that are reused from other software

programs?

 How do you count defects?

 • what constitutes a defect (e.g., a syntax error during compilation? a system
crash during system validation)?

 • do you have a way of categorizing defects (e.g., data, calculation, interface)?
 • how do you characterize the severity of defects (e.g., minor, major,

catastrophic)?

7.5 MEASURES AND MEASUREMENT 273

 A direct measure is obtained by applying your measurement rules directly to the
phenomenon of interest; for example, counting the lines of code in a computer
program using well - defi ned counting rules. An indirect measure is obtained by com-
bining direct measures using operations appropriate to that measurement scale. For
example, the number of function points in a program is an indirect measure that is
determined by applying the function point counting rules to determine the unique
(integer) number of inputs, outputs, fi les, interfaces, and queries in the program;
multiplying each by an integer complexity factor; and adding the results together.
Tables 7.3 and 7.4 provide examples of direct and indirect measures used in software
engineering.

 Note in Table 7.3 that “ number of defects fi xed ” could be measured as a “ prog-
ress ” measurement or as “ quality ” measurement, or both, and that “ weeks taken
to achieve a milestone ” could be used to measure “ progress ” or “ time, ” or both.

274 MEASURING AND CONTROLLING WORK PRODUCTS

 TABLE 7.2 Responses to a course evaluation survey

 Compared to other instructors
you have had, was you instructor: Much Worse Worse Same Better

 Much
Better

 Knowledgeable? 5 10

 Well prepared? 4 11

 Responsive to questions? 3 12

 Were her/his assignments
relevant?

 7 5 3

 Were her/his exam questions
appropriate?

 9 6

 Were graded materials returned
in a timely manner?

 4 11

 MISUSE OF MEASUREMENT SCALES

 You must take care that the measurement scales you use are appropriate to the
situation and are appropriately used. For example, a subjective determination of
(Low, Medium, High) may be a suffi cient characterization of program complexity
for your purposes, based on your criteria for determining the complexity rating
of a program or module, but you cannot add, subtract, multiply, or divide these
symbols. Unfortunately, this is sometimes done by equating Low to 1, Medium
to 2, and High to 3 or some other ascending numeric values. To equate Low to
1 and High to 3 and to then apply arithmetic operations implies that a program
module of High complexity is 3 times as complex as a module of Low
complexity.

 My favorite example of misusing measurement scales is the way in which
classes and professors are rated by student evaluations in many schools. In these
cases an ordinal scale is often used and treated as if it were a ratio scale. For
example, students are often asked to rate various attributes of a class or the
instructor by comparing the class or instructor to other classes or instructors they
have had on a scale of (Much Worse, Worse, Same, Better, Much Better). These
ratings are then equated to (1, 2, 3, 4, 5). This implies that a professor who receives
a rating of Much Better (equated to 5) is rated as 1.67 better than a professor
that receives a rating of Same (equated to 3).

 Objective criteria are not provided to determine the ratings, so each student
applies his or her subjective rating based on their likes, dislikes, past experiences,
and the grade they expect to receive in the class. Students ’ individual ratings are
then (incorrectly) added together and the sum is divided by the number of
responses to produce the professor ’ s average rating for each attribute measured.
Worse still, all the averaged responses are averaged together to provide an
overall “ rating ” of the class or professor. Using this nominal scale, it is incorrect
to say, for example, that Professor Fairley ’ s overall rating for all response catego-
ries is 4.2, nor can you say Professor Fairley is 80% as effective as Professor
Willshire, who received an overall rating of 4.7.

 The correct way to present nominal data is to list in a table, a histogram, or a
pie chart the number of responses at each rating level for each attribute assessed
as, for example, in Table 7.2 . The number of total responses at each rating level
can be counted and the (less than, same as, and greater than) relational operators
can be used to compare categories; for example, Professor Fairley received more
Excellent ratings for responsiveness to questions than for relevant assignments.
In addition the integer ratio scale can be used to compare the number of responses
in each category and to compute percentages; for example, 67% of responses
were Excellent for knowledgeable of the material. But it is incorrect to say that
an Excellent rating is 5/4 better than a Good rating.

 We use ordinal scales when we do not have an objective, agreed - on, method of
determining the intervals between and ratios among the individual values of the
measure being used. The evaluative measures of a Low complexity program com-
bined with a High complexity program, for example, will result in a High complex-
ity rating, based on the transitive properties of the (Low, Medium, High) complexity
measure; High complexity is more complex that Medium or Low complexity, but
we cannot say by how much: the complexity rating is not 4 (1 + 3).

7.5 MEASURES AND MEASUREMENT 275

 TABLE 7.3 Some direct measures

 Measurements Direct Measures

 Software size Lines of code
 Number of personnel by
category

 Number of programmers; number of testers

 Progress Number of requirements baselined; number changed; number
of modules baselined; number of defects found; number of
defects fi xed; weeks to achieve a milestone

 Resource usage CPU cycles used; memory bytes used
 Time Weeks taken to achieve a milestone
 Quality Number of defects fi xed; computer response time

 TABLE 7.4 Some indirect measures

 Measurement Indirect Measures

 Size Function points
 Productivity Lines of code developed per developer - month; function

points implemented per programmer - week
 Production rate Lines of code per month; function points per week
 Testing rate Tests conducted per staff - day
 Defect density Defects per thousand lines of code; defects per function

point
 Defect effi ciency Number of defects fi xed per staff - day
 Defect effectiveness Number of defects detected/total defects
 Requirements stability Current number/initial number; current number/most

recent number
 Cost performance index Actual cost/budgeted cost

276 MEASURING AND CONTROLLING WORK PRODUCTS

Categorizing a measure depends on your desired use of the measure; and a measure
may fi t into more than one category.

 Also note that size measured as lines of code is a direct measure (Table 7.3) and
that size measured as function points is an indirect measure (Table 7.4). As indicated
in Table 7.4 , productivity is the amount of output produced per unit of resource,
whereas production rate is the total amount of output in a given time period. An
effective process is one that accomplished tasks with minimal expenditure of
resources. In Table 7.4 “ number of defects fi xed per staff day ” could be used as a
productivity measurement and/or as a measure of effi ciency of defect fi xing. The
measure of effectiveness in Table 7.4 (number of defects detected during design
review/total defects) might count total defects as those detected prior to release of
a product or delivery of a system to a customer, or perhaps number of defects found
during development and the fi rst 6 months (or 12 months) of operational use. The
cost performance index in Table 7.4 is an element of earned value tracking, which
is discussed in Chapter 8 .

 7.6 MEASURING PRODUCT ATTRIBUTES

 You should verify that each work product, as it is developed, is complete, correct,
and consistent with respect to other work products. You should also validate that
each work product is fi t for its intended use in its intended environment. In addition
each kind of work product (operational requirements, technical specifi cations, archi-
tectural design, detailed design, implemented code, test plans, test results, etc.) pro-
vides unique opportunities to periodically measure the quantity and quality of the
work product. The following sections indicate some aspects of quantity and quality
that can be measured and compared to specifi ed or expected values for different
kinds of work products. Selection and tailoring of product measures is discussed in
a later section of this chapter.

 7.6.1 Measuring Operational Requirements and Technical Specifi cations

 As discussed in Chapter 3, there are three kinds of operational requirements and
four kinds of technical specifi cations:

 The operational requirements include:

 • operational feature,
 • quality attributes, and
 • design constraints.

 The technical specifi cations, which are derived from the operational requirements,
include:

 • primary requirements,
 • derived requirements,
 • quality attributes, and
 • design constraints.

7.6 MEASURING PRODUCT ATTRIBUTES 277

 Design constraints and quality attributes, as stated in the operational
requirements, may be vague and imprecise but they must be stated in the technical
specifi cations in a manner that permits objective verifi cation. The characteristics
of operational requirements and technical specifi cations are presented in
Chapter 3 .

 Operational requirements are often documented using a numbered list of state-
ments such as:

 5. The ATM terminals shall offer a “ quick cash ” option to customers.

 In contractual terms, “ shall ” indicates a contractually binding requirement; terms
such as “ should ” or “ may ” can be used to indicate nonbinding requirements; for
example, desired properties expressed as design goals may be stated using “ should ”
or “ may. ”

 Counting the number of “ shalls ” is one way to measure the number of
requirements; however, some requirements may be less precise or less detailed
than others. To account for this, each of the “ shalls ” should be assessed on a mea-
surement scale (e.g., Low, Medium, High) to indicate the degree to which each
requirement satisfi es the decomposition criteria presented in Section 5.3 of this text
namely:

 • the requirement is suffi ciently precise and detailed that areas of uncertainty,
complexity, and risk are identifi ed;

 • estimates of effort, schedule, and resources needed to implement the require-
ment can be made with confi dence; and

 • opportunities for reuse of existing components that can be used to satisfy the
requirement are identifi ed.

 If you assess an Essential or Desirable requirement to be Low in satisfying the
decomposition criteria, you should further decompose that requirement. For
example, the operational requirement that states:

 3.0 The Automated Teller System shall provide the features, performance, and quality
attributes typically provided by such systems.

would be rated Low by the decomposition criteria.
 Some requirements imply quality measures. The precision of these requirements

can be assessed by assigned ratings that indicate the level of quantifi cation. A rating
of Low quantifi cation would indicate that the requirement is stated in a vague,
imprecise, and/or ambiguous manner, and a rating of High would indicate that the
requirement is stated in a precise and unambiguous manner. Requirements rated
Low on the quantifi cation scale are categorized as design goals, as in:

 3.6. The customer terminals in the Automated Teller System shall provide good response
time.

 while a quantifi ed requirement would be rated High in precision of expression, as
in:

278 MEASURING AND CONTROLLING WORK PRODUCTS

 3.6. The customer terminals in the Automated Teller System shall provide an average
response time of 2 seconds and a maximum response time of 5 seconds for balance
inquiries; and an average response time of 5 seconds and a maximum response time of
15 seconds for withdrawal and deposit requests. All of these response times shall be
measured when 50 terminals are concurrently active and the server is running at an
average load factor of 80%. Averages are to be determined for a 1 - hour period of
operation.

 A Medium rating on the quantifi cation scale would indicate that the quantifi ca-
tion is incomplete or impractical. For example, requirement 3.6 would be rated
Medium if the last two sentences were not present. A requirement stating “ the
system shall be 100% reliable ” would likewise be rated Low in quantifi cation, even
though it is precisely stated, because it is infeasible. Requirements rated Low or
Medium on the quantifi cation scale require additional work.

 The level of quantifi cation can also be used to access the adequacy of a require-
ment as a basis for test planning. Operational requirement 4, above, would be rated
Low as a basis for test planning while primary requirement 3.6 would be rated High.
A requirement would be rated Medium in adequacy for test planning if either the
functionality to be tested or quantifi cation of a quality attribute to be achieved, as
stated, was weak.

 If assessment of the decomposition criteria, precision of expression, and adequacy
for test planning are stated as an ordered triplet, requirement 3.6 would receive a
rating of (Medium, High, High) or (M, H, H). Requirements that receive a Low
rating in decomposition criteria, precision of expression, or basis for test planning
must be further decomposed and/or quantifi ed. You might decide, in addition, that
all Essential requirements must receive a High rating in each of the three dimen-
sions, especially if the system is safety - critical or mission - critical.

 With respect to technical specifi cations, primary requirements should be catego-
rized as Essential, Desirable, or Optional. Derived requirements are, by defi nition,
Essential because they are necessary to support primary requirements. Similarly
design constraints are categorized, by defi nition, as Essential once it is determined
that the design constraints are, in fact, essential. Design goals are primary require-
ments for which objective validation criteria cannot be, or have not been, stated.
Each design goal should be categorized as Desirable or Optional, depending on the
importance of the goal. Requirements can thus be measured in several different
ways, as indicated in Table 7.5 .

 Operational requirements can be assessed and measures determined by joint
reviews between your customer/user representative (who is a knowledgeable and
appropriate spokesperson) and software engineers who are skilled in requirements
elicitation and requirements development. Technical requirements can be assessed
and measured by internal reviews.

 Some assessment ratings may be labeled TBD (to be determined) in initial meet-
ings; the status of all TBDs must be documented, reviewed periodically, resolved in
a timely manner, and tracked to closure.

 Other measures that can be used to determine the status of requirements
development are listed in Table 7.6 .

7.6 MEASURING PRODUCT ATTRIBUTES 279

 FIGURE 7.2 A template for documenting, and an example of a use case

Use case ID: ATM #34
User case name: authorize transaction
Actor that initiates the use case: bank customer
Other actors, if any: none
Statement of purpose:
 this use case documents the way bank customers log onto an ATM and

prepare to conduct a transaction
Preconditions that must be true before this use case can be “executed”:
 customer has a valid bank card and PIN
Primary scenario to describe the main action of the use case:
 sequence diagrams, state diagrams, or narratives can be used; see the

example of a state diagram in Figure 7.3
Postconditions that must be true after this use case is “executed”:
 customer is logged-on OR customer received a sorry message
Alternative scenarios for exception handling:
 incorrectly entered PIN; invalid account number; not enough money in

the account; not enough money in the machine, etc.
Comments: this use case belongs to ATM Validation Processing

 ASSESSING USE CASES

 Use cases are a popular mechanism for specifying the operational features of a
system or product [Kulak03] . Each use case specifi es a well - defi ned and self -
 contained user feature. In the ATM example, the validation, balance inquiry,
withdrawal, and deposit features should thus be expressed as separate use cases.
Use cases can “ use ” other use cases; for example, a withdrawal request use case
would make use of a balance inquiry use case to determine that there are suffi -
cient funds in the account before dispensing the requested amount. A template
for documenting use cases, with an example, is presented in Figure 7.2 .

 Scenarios are key elements of use cases. Each scenario specifi es a sequence
of interactions between an external entity (a use case “ actor ”) and the system.
Each use case provides a primary scenario (e.g., the withdrawal scenario) and
one or more secondary scenarios. Each secondary scenario specifi es an alterna-
tive action to be taken, for example, the scenario to be enacted when the user
fails to enter a correct PIN during the user validation process.

 Sequence diagrams and state diagrams are the most commonly used mecha-
nisms for specifying scenarios. A sequence diagram can be used to specify a single
scenario. A state diagram can be used to document multiple scenarios; each path
through the state diagram specifi es a scenario of operation, as illustrated in
Figure 7.3 .

 The notation used in Figure 7.3 is based on UML [Rumb05] . The names of
states are provided in the nodes of the diagram. The “ dotted ” arrow indicates the
entry point to the sate diagram (i.e., the idle state). Expressions on the arrows are
of the form xx [yy]/ zz , where xx is the trigger for taking that path, provided yy is

280 MEASURING AND CONTROLLING WORK PRODUCTS

 FIGURE 7.3 State diagram for the use case in Figure 7.2

idle
good card request

PIN

bad card/eject card

take card
message

card removed

[time-out(30)]

good PIN

[PINTry = 4]

bad PIN[PinTry < 4]/PinTry++

transaction
processing *

print
receipt

true. If yy is absent it is taken to be true. zz is the action to be taken while travers-
ing that path. Each of xx, yy , and zz is optional. An arrow with a blank expression
indicates a path to be taken as soon as the activities in the preceding state are
completed. The star (*) on the transaction processing state in Figure 7.3 indicates
that transaction processing is defi ned in a subordinate (nested) state diagram.

 The adequacy of use cases can be measured using an ordered triple to
indicate:

 1. the level of granularity specifi ed in the use case,
 2. the level of detail in the primary and secondary scenarios, and
 3. the suffi ciency of the number of secondary scenarios in specifying

alternatives to the primary scenario.

 The use case in Figures 7.2 and 7.3 might be rated as (Medium, High, Low),
indicating that the use case is of appropriate granularity (M), the level of detail
in the primary scenario is very good (H), but some secondary scenarios are
missing (L).

 Use cases rated High in granularity (excessive detail) should be examined for
merging into other use cases and use cases with Low ratings for granularity
(insuffi cient detail) should be examined for decomposition into two or more use
cases. Use cases rated Low for level of detail in the primary scenario or Low for
adequacy of secondary scenarios should be reworked. Operational scenarios
assessed as Medium or High in level of detail, and Medium or High in suffi ciency
of secondary scenarios provide good bases for generating test scenarios. Those
assessed as Low do not.

 Use cases specify user features. Quality attributes and design constraints that
apply to an individual use case can be specifi ed in the comments section of the
use case. Those that apply to multiple user cases can be specifi ed separately.

7.6 MEASURING PRODUCT ATTRIBUTES 281

 7.6.2 Measuring and Controlling Changes to Work Products

 Reporting the measures listed in Table 7.6 requires a change control process:

 1. When selected work products, including requirements, satisfy objective accep-
tance criteria, they are placed under version control, and thus become base-
lines (i.e., baselined work products). The status of baselines is periodically
reported to indicate trends in changes.

 2. If it is later found that a baselined work product is not an adequate baseline,
it is updated, and the reason for updating it (requirements change or defect)
plus the time and effort required are reported.

 TABLE 7.5 Ways to measure requirements

 • By the number of “ shalls ” in the operational requirements;
 • By the number of technical specifi cations in each of the Essential and Desirable

categories;
 • By the number of derived requirements in the Essential category;
 • By the number of design constraints in the Essential category;
 • By the number of design goals in the Desirable and Optional categories;
 • By the degree to which each technical requirement satisfi es the decomposition criteria

for requirements, measured on a scale of (Low, Medium, High);
 • By the degree of quantifi cation of quality attributes, measured on a scale of (Low,

Medium, High); and
 • By the measure of suitability of each requirement as a basis for test planning, measured

on a scale of (Low, Medium, High).

 TABLE 7.6 Some product measures for requirements activities

 • Number of requirements baselined versus number planned during this reporting period
and cumulatively

 • Number of use cases developed versus number planned during this reporting period and
cumulatively

 • Number of use cases reviewed and accepted as adequate during this reporting period
and cumulatively

 • Number of requirements - based test cases and test scenarios generated versus number
planned during this reporting period and cumulatively

 • Number of prototypes developed and reviewed versus number planned during this
reporting period and cumulatively

 • Number of * CRs and * DRs for baselined requirements submitted, number accepted,
number rejected, and number deferred during this reporting period and cumulatively

 • Number of requirements defects by defect category and severity level
 • Number of CRs and DRs for baselined requirements completed and closed during this

reporting period and cumulatively
 • Number of CRs and DRs for requirements still open from this reporting period and

from previous reporting periods
 • Amount of time required to close each CR and DR for baselined requirements
 • Status of traceability matrices (see Table 3.6 in Section 3.4.4)

 ° from operational requirements to technical specifi cations
 ° from technical specifi cations to test cases and test scenarios

 * CR: Change Request;
 * DR: Defect Report.

282 MEASURING AND CONTROLLING WORK PRODUCTS

 Acceptance of a work product as a baseline does not mean the work product is
perfect, but that it is an adequate basis for further activities that depend on, or make
use of the baselined work product. If it is later found that baselined work products
of a particular kind are not adequate baselines, the acceptance criteria for that kind
of work product must be strengthened.

 Satisfaction of the acceptance criteria for technical specifi cations is determined
by:

 • inspecting and reviewing the traceability matrices,
 • establishing the suffi ciency of requirements - based test plans,
 • examining the number of TBD design goals that remain to be translated into

technical specifi cations,
 • examining the measures in Table 7.5 , and
 • other criteria discussed above.

 Satisfaction of the acceptance criteria for technical specifi cations is determined by
requirements engineers and other appropriate stakeholders who are qualifi ed to
assess the completeness, correctness, and consistency of the specifi cations.

 In general, a baselined work product is changed, and a new version generated,
for one of two reasons:

 1. because factors that affect the work product have changed; or
 2. because the work product is found to be incomplete, incorrect, or

inconsistent.

 Change Requests (CR) are used to document requests for changes to baselines
of type 1 and Defect Reports (DR) are used to document requests for changes of
type 2. No change can be made to a baselined work product without an approved
CR or DR that authorizes the change; otherwise baseline control of work products
will not be effective. Tables 7.7 and 7.8 provide templates for CRs and DRs.

 Confi guration management (CM) is the mechanism used to implement change
control. Elements of CM include a change control process, a version control tool,
and a Change Control Board (CCB). The CCB consists of stakeholders who have
the authority to approve, defer, or deny CRs and DRs. Members of the requirements
CCB should include:

 • you (the project manager),
 • your software architect,
 • the customer,
 • a user representative, and
 • a representative of the organization that will maintain the operational

system.

 In some cases the marketing department may be the customer and the user rep-
resentative. For embedded systems projects your software project maybe subordi-
nate to, and part of, the larger program; your software CCB may include a system
engineer or program manager as your customer. In this case you (the software
project manager) and/or your software architect should be a member of the system -

7.6 MEASURING PRODUCT ATTRIBUTES 283

 level CCB. As a rule, the CCB should include the primary stakeholders but should
not be so large that it becomes an unwieldy decision - making group.

 The workfl ow of a change control process was presented in Chapter 3 ; Figure 3.5
is repeated here as Figure 7.4 . The initial baseline of a work product is established

 TABLE 7.7 Template for a change request

 Change request number:

 Submitter:

 Date submitted:

 Disposition:

 ___Accept ___Defer ___Deny ___Duplicated

 Priority (if accepted):

 ___High ___Medium ___Low

 Baselines added (names, version numbers):

 Baselines modifi ed (names, version numbers):

 Staff - hours to make change:

 Date new and modifi ed baselines approved:

 Acceptance sign - off:

 Date closed:

 Personnel notifi ed of change:

 FIGURE 7.4 Workfl ow of a change request process

Project
CCB

CR or DR
Accepted

Make
Change

Verify &
Validate

Work Product
Version 0.N+1

Change
Communicated

CRs & DRs

Impact
Analysis

Baselines are established by a
review and acceptance process

Negotiation

Work Product
Version 0.N

Originator

Negotiation
Dupl*

- Deny
- Defer

- Users
- Customer
- Marketing
-

* Duplicates
another request

Developers

Initial
Baseline

CR: Change Request
DR: Defect Report

284 MEASURING AND CONTROLLING WORK PRODUCTS

 TABLE 7.8 Template for a defect report

 Defect report number:

 Submitter:

 Date opened:

 Brief description of the failure:

 Severity level:

 ___Major ___Minor ___Inconvenience

 Priority for fi xing:

 ___Immediate ___ASAP ___Defer

 Phase in which the mistake was made:

 ___Rqmts ___Design ___Imple. ___Verif. ___Valid.

 Phase in which the mistake was found:

 ___Rqmts ___Design ___Imple. ___Verif. ___Valid. ___Ops

 Kind of mistake:

 ___Incomplete ___Incorrect ___Inconsistent

 ___Other (specify):

 How mistake was detected:

 ___Inspection ___Review ___Test ___Demo.

 ___ Other (specify):

 Baselines modifi ed to fi x mistake (names, version numbers):

 Staff - hours to fi x:

 Date new baseline approved:

 Acceptance sign - off:

 Date closed:

 Personnel notifi ed of change:

by satisfying the acceptance criteria for the work product (lower left corner of
Figure 7.4). Change requests (CRs) and defect reports (DRs) are generated by
various stakeholders (lower right corner of Figure 7.4). CRs and DRs are analyzed
for urgency and the impacts of making the change or fi xing the defect on factors
such as cost, schedule, technology, users, customer, and other stakeholders are
assessed. The originator of the request is notifi ed if the requested change has been
previously submitted.

 The CCB may accept the CR or DR for action on a specifi ed schedule, perhaps
after making adjustments to other project factors, or they may negotiate with the

7.6 MEASURING PRODUCT ATTRIBUTES 285

originator of the request, which may result in denial of the request or deferral of
action until a later date. For example, a Change Request for an additional feature
might be denied or deferred until a future release of the system.

 Some negotiation with one or more team leaders may be required to schedule
the developers and other resources make the changes. The baselined work product
to be modifi ed (version 0.N in Figure 7.4) is checked out from the version control
system. The modifi ed work product is verifi ed for completeness, correctness, and
consistency and validated to ensure that it will satisfy its intended use in its intended
environment.

 Having satisfi ed its acceptance criteria, the new baseline of the work product is
checked in to the version control system and becomes version 0.N + 1. All relevant
stakeholders are notifi ed of the new baseline.

 Small changes to a requirements baseline (or other work product baselines), over
time, indicate a stable project. Large changes, especially those that result in large
amounts of rework without compensating changes in the effort and schedule
constraints, are cause for concern.

 The baseline control process described above is presented within the context of
requirements management; however, baseline control (i.e., a change control process,
a version control tool, and a CCB) is a fundamental tool for measuring and control-
ling all work products of a software project.

 7.6.3 Measuring Attributes of Architectural Design Specifi cations

 Design is the process of synthesizing a system 26 to optimize specifi ed design criteria
while satisfying specifi ed constraints. The process of software design includes archi-
tectural design and detailed design. Architectural design is concerned with synthe-
sizing a set of components, specifying the structural and behavioral relationships
among the components, and specifying the interfaces to the software ’ s environment.
The implemented design should result in a product that satisfi es the technical speci-
fi cations and constraints and achieves, to the extent possible, the design goals for
the system or product.

 Detailed design is concerned with specifying the interface, algorithms, data struc-
tures, internal behavior, and exception handling mechanisms of each software com-
ponent to be built or modifi ed. Detailed design is part of implementation (along
with coding of modules, code documentation, integration of modules to form com-
ponents, inspections and code reviews, and testing by the implementers). Measures
for implementation are presented in the following section.

 Software architectures have several kinds of relationships among the elements
of the architecture, which result in different views of the architecture including the
 [Bass03] :

 • Decomposition,
 • Deployment,
 • Uses,
 • Class,
 • Layer,

 26 A system is a collection of interacting components that exists within and interacts with an
environment.

286 MEASURING AND CONTROLLING WORK PRODUCTS

 • Command and Control, and
 • Implementation views.

 Other structural views are also possible.
 The decomposition view of software structure, for example, is the view of hier-

archical relationships among components, it is embedded in the work breakdown
structure, as described in Chapter 5 of this text. This is the primary view that you,
as the project manager, should use to plan, organize, and control your project.

 The deployment view illustrates the relationships among components deployed
on different elements of the system hardware, as for example, in the deployment of
software components in the client - server architecture of an automated teller system.
The deployment view is useful in assessing the impact of component placement
on performance and security. The deployment view would indicate, for example,
whether customer access is to be validated by maintaining a copy of customer IDs
and passwords in each ATM or whether the validation data is kept on the server.
Keeping the validation data on each ATM will improve performance, by reducing
the number of accesses to the server, but might make the system more vulnerable
to unauthorized access to account information.

 The behavior of a system is determined by the sequential and concurrent activa-
tions of system components at run time. Activity diagrams, Petri nets, sequence
diagrams, and state diagrams are commonly used mechanisms for documenting the
behavioral aspects of software at the architectural level. Interfaces to the environ-
ment can be documented by tailoring and using a standard template, such as that
provided in [Bass03] .

 An important task for you, as project manager, and your software architect(s) is
to determine which views, representations of behavior, and interface attributes will
be provided in the documentation of the system architecture. Some attributes of
work products that can be measured during the architectural design phase, or
phases, 27 are listed in Table 7.9 .

 As indicated in Table 7.9 , updates to requirements status indicators should be
reviewed periodically during architectural design (and throughout the development
process). Small changes to the requirements baseline, increasing numbers of design
goals converted to technical specifi cations, and growing numbers of requirements -
 based test scenarios indicate a stable project for which design can proceed with
confi dence. Conversely, large changes to the requirements baseline (especially
without compensating changes to effort and schedule constraints), increasing
numbers of design goals, and lack of requirement - based test scenarios indicate an
unstable project for which design proceeds at the risk of large amounts of rework
based on instability of the requirements.

 Architectural design specifi cations provide the fi rst opportunity to assess the
impact of design decisions on the quality attributes of the product to be developed.
Quality - attributes scenarios can be used to assess the design for such attributes as
ease of changing the software for postulated changes in requirements and for the
availability, performance, security, testability, and usability of software [Bass03] .

 The architectural design specifi cation is baselined (i.e., placed under version
control) when appropriate stakeholders determine that the specifi cation, or a

 27 A work phase is characterized by the work activities accomplished and work products produced.
Various phases of work, including design, may be repeated multiple times in an iterative development
process.

7.6 MEASURING PRODUCT ATTRIBUTES 287

signifi cant part of it, satisfi es objective verifi cation and validation criteria for accep-
tance. Acceptance criteria for a design specifi cation typically involve applying:

 • traceability analyses,
 • reviews,
 • walkthroughs,
 • inspections, and
 • completion of revisions based on quality - attribute scenarios.

 A defect in the architectural design specifi cation results when the baselined
specifi cation is found to be incomplete, incorrect, and/or inconsistent with respect
to the operational requirements and the technical specifi cations:

 • the operational features,
 • quality attributes,
 • design constraints,
 • primary requirements, and
 • derived requirements.

 In addition the design specifi cation must be validated, that is, determined to be fi t
for its intended use as a basis for implementation and testing planning. Note that a
design specifi cation can be verifi ed to be complete, consistent, and correct with
respect to the requirements, but it might not be valid if it is expressed in a notation

 TABLE 7.9 Some product measures for architectural design

 • Updates to requirements * CRs, * DRs, and other requirements status indicators
 • Number of design elements in the architectural design baseline versus number planned

in this reporting period and cumulatively
 • Number of quality - attribute scenarios prepared versus number planned in this reporting

period and cumulatively
 • Number of quality - attribute scenario walkthroughs and reviews versus number of

planned in this reporting period and cumulatively
 • Number of design - based test cases generated versus number planned in this reporting

period and cumulatively
 • Number of design - baseline CRs and DRs submitted, number accepted, number rejected,

and number deferred during this reporting period and cumulatively
 • Number of design defects by defect category and severity level
 • Number of design - baseline CRs and DRs completed and closed during this reporting

period and cumulatively
 • Number of design - baseline CRs and DRs still open from this reporting period and from

previous reporting periods
 • Amount of time required to close design – baseline CRs and DRs
 • Status of traceability matrices

 ° Requirements to design components
 ° Components to test cases

 * CR: Change Request;
 * DR: Defect Report.

288 MEASURING AND CONTROLLING WORK PRODUCTS

(e.g., UML) that is unfamiliar to the implementers and testers because it would not
be fi t for its intended use in its intended environment.

 A defect in the architectural design specifi cation may be caused by a defect in
the baselined requirements or by a mistake in preparing the design specifi cation.
As discussed subsequently, it is important to identify the sources of defects.

 7.6.4 Measuring Attributes of Software Implementation

 Implementation of software includes:

 • detailed design of modules;
 • coding of modules;
 • code documentation;
 • integration of modules to form components; and
 • inspections, code reviews, and testing by the implementers.

 In many cases, existing software modules and components are modifi ed or used
without being coded in entirety. The amount of implementation to be accomplished
depends on the amount of reuse of existing software.

 Detailed design is concerned with specifying the algorithms, data structures,
internal behavior, interfaces, and exception handling mechanisms of each software
module to be built or modifi ed. The amount of detailed design to be accomplished
depends on the familiarity of the implementers with the algorithm(s) and the com-
plexity of code to be implemented. You will probably not need a detailed design
specifi cation to guide implementation of your tenth variation on the merge - sort
algorithm. However, detailed design will likely save time and effort, and improve
the quality of the implementation if you are implementing complex data compres-
sion and encryption algorithms for the fi rst time.

 Coding is concerned with implementing design specifi cations (architectural and
detailed design specs). The code must satisfy the requirements and optimize the
design criteria and design goals for the product or system being implemented. As
indicated in Section 5.3 , requirements for features and quality attributes should be
allocated to each element of the work breakdown structure to provide guidance to
the implementers and testers. The implementation techniques chosen may be deter-
mined by the requirement to enhance reliability at the expense of performance, for
example, by embedding run - time assertions in the code, or the chosen implementa-
tion technique may maximize performance at the expense of increased memory
usage, for example, by creating tables of frequently used values to avoid computing
the values on each usage. Some attributes of work products that can be measured
during the implementation phase, or phases, are listed in Table 7.10 .

 As indicated in Table 7.10 , completion of detailed design, coding, and unit testing
of modules can be forecasted by tracking the rate of progress and comparing it to
the estimated number of modules to be written or modifi ed. If, for example, the
current rate of progress is 5 modules per week, and 50 modules remain to be com-
pleted, implementation will be completed in 10 week, at the current rate of progress.
Of course, the estimates of completion should be updated weekly because the rate
of progress may vary from week to week.

7.6 MEASURING PRODUCT ATTRIBUTES 289

 Code Inspections The number of code inspections conducted versus the number
planned during a reporting period, and cumulatively, are measures cited in
Table 7.10 . A code inspection is a form of peer review conducted by the peers of
the person who developed the code. In general, a peer is one who has equal status
or standing with others who perform similar tasks. A code inspection is accom-
plished by a small team of software developers (typically 3 to 5). Managers (includ-
ing you, the project manager), customers, user representatives, and others are
excluded from participating. Peer reviews are thus free of the social and political
pressures that result when participants of differing ranks or standings are present.

 With respect to code inspections, your job as project manager is to:

 • provide training in the inspection process, if needed;
 • allow adequate time in the schedule to prepare for and conduct the

inspections;
 • review the results; and
 • make improvements in your inspection and development processes as indicated

by the reported trends found during inspections.

 In particular, the inspection process requires that you, as project manager, schedule
suffi cient time for the preparation, meeting, rework, and follow - up activities of
inspections.

 The team leader of each small software team is responsible for the work products
generated by the team, and she/he should participate in inspections of the code

 TABLE 7.10 Some product measures for software implementation

 • Updates to requirements * CRs and * DRs, architectural design CRs and DRs, and other
requirements and design status indicators

 • Number of modules baselined versus number planned in this reporting period and
cumulatively

 • Complexity measures for modules, components, subsystems, and system
 • Number of code inspections conducted versus number planned during this reporting

period and cumulatively
 • Number of code - baseline CRs and DRs submitted, number accepted, number rejected,

and number deferred during this reporting period and cumulatively
 • Number of code - baseline CRs and DRs completed and closed during this reporting

period and cumulatively
 • Number of code - baseline CRs and DRs still open from this reporting period and from

previous reporting periods
 • Amount of time required to close code - baseline CRs and DRs
 • Cumulative density of discovered defects by defect category and severity level, based on

total defects and total lines of baselined code
 • Forecast for completion of detailed design, coding and developer testing
 • Status of traceability matrices:

 ° from baselined modules and components to architecture
 ° from test cases specifi ed to modules and components
 ° from test cases successfully completed to modules and components

 * CR: Change Request;
 * DR: Defect Report.

290 MEASURING AND CONTROLLING WORK PRODUCTS

developed by their teams. Team leaders are technical contributors and are, or
should be, regarded as team members and not as having superior rank. If your
project is small (i.e., 5 or fewer software developers) and you are the project
manager, software architect, and team leader, you should participate in inspections.
You (the project manager) are excluded from participation on larger projects; oth-
erwise, candid discussions and self - corrective actions will not occur.

 As shown in the sidebar, inspections are the most effi cient and most effective
mechanism known to fi nd and fi x defects early in the development process. In most
cases inspections require less effort and fi nd more defects than testing. However,
the inspection process is labor - intensive and may appear to be an ineffi cient use of
personnel resources (but not as labor - intensive as testing per defect found and cor-
rected). You and your organization can counter the appearance of ineffi ciency of
inspections by analyzing inspection data and comparing it to similar data from
testing (e.g., effort per defect found and fi xed). There is something wrong with your
inspection process if your data do not show inspections to be effi cient and effective
because inspections have been found to be both effi cient and effective in many
situations by many organizations.

 Some organizations have found that unit testing following inspection of code
modules is not cost - effective because very few defects are found by unit testing after
inspection and repair. In these organizations, software modules are integrated into
the evolving product after a developer fi xes the defects found during an inspection.
However, inspections do not remove the need for integration testing and indepen-
dent verifi cation and validation of an evolving system, since the dynamics of interac-
tions among system components under various operational scenarios may expose
defects that cannot be found by inspections. The defects that have been found and
fi xed by inspections make integration testing, verifi cation, and validation more
effi cient. The inspection process is illustrated and discussed in the accompanying
sidebar.

 Walkthroughs Walkthroughs and inspections are two types of work product
reviews. The purpose of an inspection is to fi nd defects and to collect data for later
analysis on the kinds and numbers of defects and the effort required to fi x them.
Participation in inspections is limited to a small number of people; typically 2 to 4.
The purpose of a walkthrough is to communicate and review technical issues to a
(perhaps large) group of people. Defects may be discovered during a walkthrough,
but defect detection is not (should not be) the primary purpose of a walkthrough;
communication is (or should be) the primary purpose of a walkthrough. Some of
the distinctions between inspections and walkthroughs are listed in Table 7.11 .

 You should use both inspections and walkthroughs as appropriate: inspections to
fi nd defects and walkthroughs to communicate technical issues. Table 7.12 lists
various kinds of reviews and the purposes for which they are conducted.

 Developer Testing The “ developer tests ” cited in Table 7.10 (forecast for comple-
tion of detailed design, coding, and developer testing) are designed to validate the
features and quality attributes of each module. Developer tests are prepared by
the software developers in conjunction with preparation of the detailed design and
the code. Developer testing may require development of test harnesses to simulate
the environment in which the module will operate. If you are using an iterative

7.6 MEASURING PRODUCT ATTRIBUTES 291

 FIGURE 7.5 The inspection process

2–4 Hrs.

Planning

2

Overview

4 .

2-3 Hrs.
per

Inspector

Preparing

5

Meeting

6 Approx.
5 Hrs.

Rework

9 2–3 Hrs.

Follow-up

7

Third
 Hour

(Optional)

3 10

1 0.5-1.5
Hrs.

2 Hrs.
 Max.

Transition Times
1 Entry
2 1-3 Days (if included)
3 Immediate
4 Immediate
5 3-5 Days
6 Immediate
7 1 Day (if included)
8 Immediate
9/10 1 Wk
11 Exit

11

8

 INSPECTIONS

 There are four roles to be played in an inspection:

 1. the moderator role to convene and lead the meeting,
 2. the developer role for the developer that generated the work product,
 3. the reader role for presenting the material to the group by paraphrasing it,

and
 4. the recorder role to record defects and other areas of concern.

 The recorder role is essential because defects found during an inspection are not
fi xed at that time and concerns to be investigated are not pursued during the
inspection; they are recorded for follow - up actions. A single individual can play
more than one role. The only exclusion is that the developer must not play the
reader role. Two is thus the minimum number of people who can conduct an
inspection: one person can play the roles of moderator and reader, and the
developer can play the roles of developer and recorder. More typically, each of
four people is assigned a role and participate in the inspection; each member of
an inspection team is an inspector.

 The six phases of workfl ow for the software inspection process are illustrated
in Figure 7.5 . Planning involves the moderator and the developer. They review
the material and determine whether it is ready for inspection, identify necessary
related materials, solicit participants, and schedule the meeting. This typically
requires 2 to 4 hours. The overview session is optional; it is held if the participants
need an orientation to the material to be inspected. The overview session, if held,
typically requires ½ to 1 ½ hours.

 Each participant must spend 2 to 3 hours preparing: reviewing the material
and, using a standard form, recording defects, possible defects, and areas of
concern for discussion during the inspection meeting.

292 MEASURING AND CONTROLLING WORK PRODUCTS

 At the start of the inspection meeting, the moderator records the time spent
by each participant in preparing for the meeting; these data are the source of the
times listed in Figure 7.5 [Bush88] . If one or more of the participants has not
prepared, that person or persons are excused from the meeting, and the modera-
tor determines whether the meeting should be postponed or whether to proceed
without that person or persons.

 During the inspection meeting, the reader paraphrases small blocks of mate-
rial (i.e., code for a code inspection, design for a design inspection, requirements
for a requirements inspection, test scenario for a test plan inspection) and asks
each participant, in turn and including herself or himself, if they see any problems
or have any concerns. The recorder records, on a standard form, the defects,
issues, and concerns voiced during the meeting.

 It is important that the meeting be limited to not more than 2 hours because
participants will become tired after 2 hours of concentrated activity and because
participants can schedule the remainder of their work day, and thus are more
likely to be willing participants if they know the meeting has a defi nite starting
and ending time. With some experience, you and your organization will learn the
optimal amount of material that can be inspected in a 2 - hour meeting: too much
material makes the process ineffective because defects and concerns will be over-
looked; too little material makes the process ineffi cient because time is wasted.

 The third hour is not an extension of the 2 - hour meeting. It is an option that
can be used for informal discussions among some or all of the participants, after
a break or perhaps the next morning over coffee.

 Rework is accomplished by the developer of the material in consultation with
others as appropriate; this activity typically requires approximately 5 hours. The
developer, or the inspection team, can request another inspection after rework
is completed if the rework is substantial. However, this seldom happens in prac-
tice because the moderator and developer should not schedule an inspection
until they agree that the material is ready to be inspected.

 The moderator and developer conduct the follow - up meeting to agree that all
defects and concerns have been addressed and that all of the reporting forms
have been completed. An inspection requires about 2 weeks of elapsed time and
30 to 40 hours of total effort among 4 participants.

 In an analysis of many code inspections on a large system, one organization
reported that the effi ciency of inspections was about 1 defect per team - hour; the
typical inspection found about 37 defects per thousand lines of code inspected
at an inspection rate of 150 lines of code per team - hour (300 lines per inspection).
This result was found to be 2 to 4 times more effi cient than testing. For example,
if it takes 5 hours on average to fi nd and fi x a major defect by inspection it might
take 10 to 20 hours to fi nd and fi x the same defect by testing. Faster inspection
rates detected fewer defects; for example only 10 defects per thousand lines of
code were detected at an inspection rate of 500 lines of code per team - hour
 [Russell91] .

 Added benefi ts of inspections include the team building and mutual learning
that occurs, and the detection of defect patterns that emerge by analyzing the
records of kinds of defects found during inspection. In the latter case, for example,
it might become evident that a large percentage of defects found are in the

7.6 MEASURING PRODUCT ATTRIBUTES 293

 TABLE 7.11 Distinction between inspections and walkthroughs

 Inspections Walkthroughs

 Purpose: to fi nd defects Purpose: to communicate
 Training of participants No training of participants
 Assigned roles: moderator, reader,

recorder, developer
 No assigned roles

 Names of participants recorded Names of participants (usually) not recorded
 Developer does not present Developer typically presents
 Record keeping No record keeping
 Analysis of inspection results No analysis of the walkthrough results

 TABLE 7.12 Various kinds of reviews and their purposes

 Kind of Review Purpose

 Inspection To fi nd defects and document discovery and the repair processes
 Walkthrough To review work products and communicate issues
 Team To review progress and plan work activities
 Project To review progress, process and product constraints, and

confront risk factors
 Customer To review progress, constraints, and risk factors
 Department To review portfolios of projects, identify and confront common

risk factors, assess status of budgets and customers, and
confi rm/revise mission statement

development process (recommended) the current version of the evolving software
can be used as the test harness for unit testing of modules under development
(which will be integrated into the evolving product and will provide the test harness
for the next iteration of implementation). If you are using an agile development
process, the test cases are written before the code is written (always a good idea).

 Another of the implementation measures in Table 7.10 is complexity of modules,
components, subsystems, and system. The following section presents some complex-
ity measures for software code.

 7.6.5 Complexity Measures for Software Code

 As discussed in Chapter 1 , complexity is one of the inherent characteristics of com-
puter software. Complex software is diffi cult to understand, diffi cult to document,
diffi cult to test, diffi cult to modify, and as a consequence, diffi cult to reuse. Con-
versely, you can conclude that software that is diffi cult to understand, diffi cult
to document, diffi cult to test, diffi cult to modify and/or diffi cult to reuse is, by
defi nition, complex. Three commonly used measures of software complexity are

interfaces among modules. This might indicate that the detailed design of inter-
faces prior to coding will substantially reduce defects. Procedures for conducting
inspections and the associated recording forms are contained in Appendix 7B of
this chapter.

294 MEASURING AND CONTROLLING WORK PRODUCTS

cyclomatic complexity, the COCOMO complexity cost driver, and coupling and
cohesion.

 Cyclomatic Complexity Cyclomatic complexity is a measure from graph theory.
When applied to source code, it is a measure of the number of linearly independent
paths through the code. It is applied to software by computing the structural com-
plexity of a module ’ s control fl ow graph and can also be used to compute the com-
plexity of collections of modules. Figure 7.6 depicts a control fl ow graph in which
the nodes represent groups of sequentially executed statements and the edges rep-
resent fl ow of control among statement nodes. The dark nodes contain statements
that invoke other modules (more on this later). As indicated in Figure 7.6 , the
formula for computing cyclomatic complexity of a control fl ow graph is

 C E N= − + 2,

where E is the number of edges and N is the number of nodes in the control fl ow
graph; the entry and exit edges are not counted.

 As a rule of thumb, modules that have complexity measures greater than 10 or
12 are generally considered to be too complex; they are diffi cult to understand, dif-
fi cult to document, diffi cult to test, and diffi cult to modify. Measures of cyclomatic
complexity taken before and after software is modifi ed can be used to control soft-
ware entropy, which is the tendency of software to become more complex as it
undergoes modifi cation [Belady76] . In some cases software systems have been
retired because they have become so complex, through a series of modifi cations,
that they can no longer be modifi ed without creating unacceptable numbers of new
defects. Modules for which the complexity measure becomes too large can be
further modifi ed to reduce complexity and thereby avoid excessive entropy. This is
a form of preventative maintenance for software.

 Cyclomatic design complexity of a collection of modules is computed by retaining
only the nodes of each module (and the associated edges) that contain statements
that invoke, or are invoked by other modules. Design complexity is computed by
computing the cyclomatic complexity of each resulting module and combining those
complexities using the formula

 FIGURE 7.6 A control fl ow graph and cyclomatic complexity calculation

C(M) = 13 – 10 + 2 = 5

module A

7.6 MEASURING PRODUCT ATTRIBUTES 295

 DC S DC() = () − +∑ M Nj 1,
where DC(M j) is the design complexity of module j and N is the number of
modules.

 FIGURE 7.7 Cyclomatic design complexity

DC(S) = 8 – 4 + 1 = 5

2-2+2 =
3-3+2=

0-1+2 =

2
2

1

7 – 6 + 2 =

module A'

3

 In Figure 7.7 , module A ′ is the pruned version of module A in Figure 7.6 . The
other modules in Figure 7.7 are those invoked by module A. Collections of modules
that have design complexities greater than 40 or 50 are considered to be too
complex. In such cases the system should be separated into two or more subsystems,
each of acceptable complexity, that communicate through a single, well - defi ned
interface. A complex system might be decomposed, for example, into user interface,
database, computational, and communication subsystems with well - defi ned inter-
faces among the subsystems.

 The fact that the cyclomatic complexity of a section of source code is the count
of the number of linearly independent paths through a module (or any section of
code) can be used as a guideline for test planning because the cyclomatic complexity
measure is an upper bound on the number test cases required to achieve branch
coverage and a lower bound on the number of test cases required to achieve total
path coverage. For example, the number of test cases to achieve branch coverage
of two sequential IF – THEN – ELSE statements, as depicted in Figure 7.8 is 2. The
number of test cases to achieve path coverage is 4. The cyclomatic complexity
number is 3.

 The cyclomatic complexity metric for software was developed by Tom McCabe
in 1976 [McCabe76] . The McCabe Company markets tools to calculate the cyclo-
matic complexity of modules and systems written in various programming languages
[www.mccabe.com]. Some development tool sets also incorporate cyclomatic com-
plexity calculators.

296 MEASURING AND CONTROLLING WORK PRODUCTS

 COCOMO Complexity Cost Driver As discussed in Chapter 6 , the COCOMO
models are cost estimation models that provide estimates of effort and schedule. In
contrast to cyclomatic complexity, which is a measure of structural complexity, the
COCOMO CPLX cost driver is used to measure the complexity of operations to
be performed by a module or a collection of modules. In COCOMO, the value of
CPLX is used to increase or decrease an effort estimate.

 Determining the value of CPLX is based on evaluation of the complexity of fi ve
kinds of operations a program typically performs:

 • control operations,
 • computational operations,
 • device dependent operations,
 • data management operations, and
 • user interface management operations.

 A table is provided to select a value for each of the fi ve elements; for example, a
program estimated to have control operations that involve mostly straight - line code
with a few non - nested structured programming operators such as DOs, CASEs, and
IF – THEN – ELSEs and simple procedure calls or simple scripts would be rated Very
Low in complexity (0.73). A program estimated to have multiple resources to be
scheduled with dynamically changing priorities and with distributed real - time
control would be rated extra high in complexity (1.74) [Boehm2000] . The range of
effort multiplier values for CPLX is thus

 0 73 1 74. . .≤ ≤CPLX

 The value of CPLX for each of the fi ve complexity factors is estimated from the
requirements and from the design, if it is available; or, it can be determined from
the source code for purposes of software maintenance. The numeric value of the

 FIGURE 7.8 Control fl ow graph for two sequential IF – THEN – ELSE statements

7.6 MEASURING PRODUCT ATTRIBUTES 297

dominant complexity factor, or factors, among the fi ve factors is used as the effort
multiplier for CPLX in the effort estimation equation. A CPLX value greater than
1 indicates that the code is, or is estimated to be, more complex than the typical
product and thus the project will require more effort than the typical project; a value
less than 1 indicates that the code is, or is estimated to be, less complex than the
typical product and the project will require less effort than the typical one. CPLX,
like cyclomatic complexity and coupling and cohesion, can be applied to existing
code to determine the diffi culty of understanding, documenting, testing, and modify-
ing the code.

 Coupling and Cohesion Coupling and cohesion are measures of the relationships
among modules (coupling) and the relationships among elements within modules
(cohesion) [Myers74] . Coupling is measured on a scale of Weak to Strong; Weak
coupling is less complex than Strong coupling. Weak coupling is desirable because
it promotes ease of understanding, ease of documentation, ease of testing, ease of
modifi cation, and ease of reuse; that is to say, it results in desirable complexity of
coupling among a group of modules. Some levels of coupling are listed in Table 7.13 .
Message coupling, as in object - oriented software, and communication by passing of
parameters, in both object - oriented and functionally structured software, are the
preferred methods of coupling.

 The stronger, and less desirable, measures of coupling (stamp, control, common,
and content) are undesirable because the effect of making a change may ripple
beyond the module being changed. For example, if a data structure is changed in a
system that exhibits stamp or common coupling, all modules that directly access the
data structure will have to be changed.

 Cohesion is a measure of the relationships among the statements within a module,
on a scale of Strong to Weak. Strong cohesion is desirable because it indicates that
all of the statements in a module are contributing to the same purpose. Strong cohe-
sion reduces complexity because each module can be given a short, simple name
that indicates its purpose. This allows humans to build up mental models of collec-
tions of modules by, as psychologists say, “ chunking ” of information. For example,
if a module named “ quicksort ” does only quick - sorting of data communicated by
input and output parameters (data coupling), the internal details of the module do
not have to be recalled when reasoning about the program in which the quicksort
module is embedded. In addition highly cohesive modules have no unexpected or
surprising side effects. You would be quite surprised if, within the quicksort module,

 TABLE 7.13 Some measures of coupling complexity

 Kind of Coupling
(Weak to Strong) Explanation

 Message coupling Request for service
 Data coupling Passing of parameters
 Stamp coupling Two modules directly access the same data structure(s)
 Control coupling Modules pass fl ags to control execution paths of other modules
 Common coupling All modules directly access the same data structure(s)
 Content coupling Modules directly access the internal details of other modules

298 MEASURING AND CONTROLLING WORK PRODUCTS

you found a command to launch a guided missile. Needless to say, that module
would not be highly cohesive.

 Some levels of cohesion are listed in Table 7.14 . Object cohesion, as in object -
 oriented software and functional cohesion, in both object - oriented and functionally
structured software, are the preferred levels of cohesion.

 The weaker, and less desirable, measures of cohesion (sequential, communica-
tion, temporal, and coincidental) result in increased complexity because they
make a module diffi cult to understand, document, test, modify, and reuse.
Weak coupling (message and data) and strong cohesion (object and functional),
taken together, result in software that contains reusable modules, and is easy to
understand, document, test, and modify because the ripple effect of changes is
reduced, as compared to collections of modules that have strong coupling and weak
cohesion.

 7.6.6 Measuring Integration and Verifi cation of Software Units

 In the Waterfall development model, the unit of software to be integrated and veri-
fi ed is the collection of components for the entire system. Integration of system
components thus occurs at the end of the development process, as indicated in
Figure 2.8 . In an iterative process, integration and verifi cation (plus validation) of
software units occurs on a cyclic basis, as indicated in Figure 2.10 ; in an iterative
process the software units are growing subsets of the entire system. In any case,
software integration and verifi cation is concerned with:

 • integrating system components into larger units;
 • verifying that the larger units are implemented as designed; and
 • verifying that the units are complete, correct, and consistent with respect to

their functional and quality requirements.

 Some product measures that can be obtained during software integration and veri-
fi cation are listed in Table 7.15 .

 TABLE 7.14 Some measures for software cohesion

 Kind of Cohesion
(Strong to Weak) Explanation

 Object cohesion Each method in an object has functional cohesion and
supports the single, well - defi ned purpose of the object

 Functional cohesion All elements in a function support a single, narrowly defi ned
concept

 Sequential cohesion Output of some elements provide inputs to the following
elements in a module

 Communication cohesion All elements in a module use the same input data but for
different purposes

 Temporal cohesion The only relationship among elements is that they are
executed as a group

 Coincidental cohesion No meaningful relationships among the elements in a module

7.6 MEASURING PRODUCT ATTRIBUTES 299

 You should monitor updates to CRs and DRs for requirement, design, and code
baselines plus other product status indicators to determine whether those changes
are in scope or out of scope for your process parameters (effort, other resources,
budget, schedule, technology) and adjust those parameters as necessary. Other
measures in Table 7.15 allow you to determine whether you are making adequate
progress as measured by comparing planned progress to actual progress.

 7.6.7 Measuring System Verifi cation and Validation

 System verifi cation is concerned with determining that the system to be delivered
is correct, complete, and consistent with respect its technical specifi cations and
operational requirements when operated in the development environment. System
validation is concerned with determining the degree to which the delivered system
satisfi es its intended purpose when operated by its intended users in its intended
operational environment. The processes, methods, and techniques are similar in each
case. However, system verifi cation typically occurs in the development environment,
whereas system validation typically occurs in the operational environment and
involves real users. You (the project manager), your designated development per-
sonnel, user representatives, and customer should witness the tests and demonstra-
tions in both cases.

 Some product measures for system verifi cation and validation are listed in Table
 7.16 . You can use these measures to forecast completion of system verifi cation and
system validation. Commonly used techniques for system V & V are testing, demon-
strations, reviews, and traceability analysis.

 TABLE 7.15 Some measures for software integration and verifi cation

 • Updates to requirements, design, and code * CRs and * DRs, and other status indicators
 • Number of modules successfully integrated and verifi ed versus number planned during

this reporting period and cumulatively
 • Defect density for each component, each subsystem, and the total system
 • Number and percentage of design - based tests passed during this reporting period and

cumulatively
 • Number and percentage of design - based tests failed; during this reporting period and

cumulatively
 • Number of integration - baseline CRs and DRs submitted, number accepted, number

rejected, and number deferred during this reporting period and cumulatively
 • Number of integration - baseline CRs and DRs closed during this reporting period and

cumulatively
 • Number of integration - baseline CRs and DRs still open from this reporting period and

from previous reporting periods
 • Amount of time required to close integration - baseline CRs and DRs
 • Status of traceability matrices:

 ° from software units to successfully completed design - based test cases and test scenarios
 ° from software units to successfully completed requirements - based test cases and test

scenarios
 • Forecast for completion of integration and verifi cation

 * CR: Change Request;
 * DR: Defect Report.

300 MEASURING AND CONTROLLING WORK PRODUCTS

 Scenario - based tests and demonstrations are intended to assess the degree to
which the system provides the necessary features, functionality, and quality attri-
butes including exception handling and degraded operation. Testing and demonstra-
tion of features and functionality in a system specifi ed by use cases, for example,
would exercise all of the primary and secondary scenarios in the use cases. The sec-
ondary scenarios should cover exceptions and exception handling, for example, by
testing the response when a customer fails to enter the correct PIN in an Automated
Teller System. Degraded operation might include testing and demonstration of
specifi ed operational capabilities of ATM terminals, such as the response of ATMs
when the server or the communication channel is down.

 The difference between a test and a demonstration is as follows: a test is designed
by specifying the test environment, the input stimuli, and the expected outcome of
the test. For example, a functional test of a square - root function should return 3
when the input is 9, 3.1622 … (to a specifi ed degree of resolution) when the input
is 10, and so forth. The square - root value to be returned for negative numbers would
also be tested for conformance to the specifi cation, provided that the specifi cation
includes the outcomes for negative numbers.

 A demonstration is conducted by specifying the environment and input stimuli,
but the outcome cannot be predicted in advance. Acceptability of the result is deter-
mined by human judgment. Acceptability of a user interface, for example, is deter-
mined by representative users; the level at which a chess playing program performs
is determined by chess masters. System level demonstrations should be confi rma-
tions of previous demonstrations of prototypes and demonstrations of incremental

 TABLE 7.16 Some measures for system verifi cation and validation

 • Updates to requirements, design, code, and integration * CRs and * DRs, and other status
indicators

 • Number and percentage of scenario - based functional tests and demonstrations executed
successfully during the present reporting period and cumulatively

 • Number and percentage of scenario - based functional tests and demonstrations failed
during the present reporting period and cumulatively

 • Number and percentage of quantitative tests passed during the present reporting period
and cumulatively

 • Number and percentage of quantitative tests failed during the present reporting period
and cumulatively

 • Estimates of system reliability and availability
 • Cumulative DR density (DRs per size unit)
 • Number of system - baseline CRs and DRs submitted, number accepted, number rejected,

and number deferred during this reporting period and cumulatively
 • Number of system - baseline CRs and DRs closed during this reporting period and

cumulatively
 • Number of system - baseline CRs and DRs still open from this reporting period and from

previous reporting periods
 • Amount of time required to close system - baseline CRs and DRs
 • Forecast for completion of system verifi cation
 • Forecast for completion of system validation

 * CR: Change Request;
 * DR: Defect Report.

progress during software development; there should be no surprises in system - level
demonstrations.

 Quantitative system tests are derived from the quantitative attributes stated in
the primary requirements, derived requirements, and design constraints. These tests
are primarily concerned with verifying and validating the quality attributes of the
system such as performance under various specifi ed conditions, mean time to failure,
mean time to repair, and availability.

 Attributes such as ease of learning and ease of use, as measured by specifi c, pre-
determined experiments may also be assessed. Quantitative attributes based on
stress testing may also be performed; as for example, testing the response time of
ATM terminals when 100 terminals are concurrently active and the server is running
at 90% CPU usage.

 7.7 MEASURING AND ANALYZING SOFTWARE DEFECTS

 Software defects, when encountered during operation of a system or product, result
in failures. A failure occurs when software does not satisfy its user needs, customer
expectations, or technical specifi cations (primary requirements, derived require-
ments, design constraints) when it is operated by its users, as intended in its intended
operational environment. Some failures are more serious than others; a system crash
is more serious than an incorrect error message and incorrectly computed results
may constitute a more serious failure than a system crash.

 Incorrectly computed customer balances in an Automated Teller System, for
example, may result in serious problems for users or for the fi nancial institution,
depending on the nature of the defect that causes the failure. A system crash from
which recovery is possible using a transaction log (after the defect that caused the
crash is fi xed) may cause inconvenience during the outage but causes no long - term
harm. A type mismatch in a software interface that causes an undetected error in
navigational computations (as in a Mars orbiter that crashed into the surface of
Mars) is more serious than an in - fl ight software failure from which the system can
reboot itself, or for which a software patch can be uploaded.

 Software defects are caused by human mistakes. Unlike physical artifacts, soft-
ware does not wear out or break from repeated usage. Human mistakes are of two
kinds:

 • error of omission (not doing something that should have been done) and
 • error of commission (doing something incompletely, incorrectly, or inconsis-

tently).

 Table 7.17 lists some reasons humans make mistakes. Most of the mistakes made
during software development and modifi cation are caused by problems in commu-
nication and coordination, and by lack of knowledge, skill, or appropriate tools, but
some are caused by human fallibility. Mistakes in communication and coordination
can be reduced by better work processes. Mistakes of fallibility can be reduced, for
example, by not requiring excessive overtime, which results in mental fatigue, which
in turn results in mistakes.

7.7 MEASURING AND ANALYZING SOFTWARE DEFECTS 301

302 MEASURING AND CONTROLLING WORK PRODUCTS

 RELIABILITY, AVAILABILITY, MEAN TIME TO FAILURE, AND
MEAN TIME TO REPAIR

 Table 7.16 indicates that estimates of system reliability and availability can be
made during system verifi cation and validation. System reliability is defi ned by
three attributes:

 1. The system will perform specifi ed operations
 2. Under stated conditions
 3. For a specifi ed period of time

 A reliability rating R is the probability that a system will be reliable (i.e., will
perform specifi ed operations under stated conditions for a specifi ed period of
time). If the reliability rating for a system states that the system will operate for
5 minutes (wall - clock time) between failures, where failure means a system crash,
with 80% probability (R = 0.8), and if the system satisfi es this (absurd) require-
ment (i.e., it operates without a system crash for 5 minutes or more, 80% of the
time), the system will be said to be reliable. Mission - critical systems often have
reliability ratings on the order of 0.999995 over periods of time extending up to
several years. Redundant hardware and software is required to meet such strin-
gent reliability requirements.

 Mean Time To Failure (MTTF) is the average amount of time a system is
operational between failures. Mean Time To Repair (MTTR) is the average
amount of time it takes to return a failed system to operational status. Availability
is the probability a system will be available when needed.

 Availability can be expressed as

A =

+
MTTF

MTTF MTTR
.

 If MTTF = 80 hours and MTTR is 20 hours then A = 0.8, assuming failures are
uniformly distributed in time. It might be that an ATM system has an availability
requirement of 0.9 from 6:00 AM until 11:59 PM each day with no availability
requirement from 12:00 AM until 5:59 AM. Upgrades, account reconciliations,
and other kinds of maintenance activities could thus be scheduled during late
night hours.

 Systems that have extremely high availability requirements typically employ
multiple hardware processors with concurrent operation and majority voting of
the processors (as in the case of the NASA space shuttle ’ s on - board computers)
or with hot standby processors (as in the case of the New York stock
exchange).

 As is the usual case when dealing with statistics, the deviations as well as the
mean values should be stated and validated. Users of a system with MTTF = 80
hours having a standard deviation of 2 hours would probably rate it higher in
availability than a system having MTTF = 80 hours and a standard deviation of
40 hours even if MTTF was the same for both systems (80 hours) and MTTR
was the same for both systems (e.g., 4 hours).

 Reliability growth during system testing can be approximated as illustrated
in Figure 7.9 . During system testing the number of defects found per unit of
testing interval typically decreases in an exponential manner; defects that
are easy to fi nd are quickly exposed while fewer of the diffi cult ones are
found per testing interval. If each defect results in a failure (i.e., a departure
from specifi ed or desired behavior), the exponential decay curve in Figure 7.9 is
an inverse measure of MTTF. For example, if 16 defects are found during an 8 -
 hour day of testing, the average number of defects per test hour is 2 on that day
and the MTTF is 30 minutes for that day. The reciprocal of the defect curve is
thus a reliability growth curve. The remaining test time required to achieve a
specifi ed value of MTTF can be estimated by extrapolating the reliability growth
curve.

 The exponential and logarithmic Poisson models of reliability growth are
presented in [Mala97] . Other models can be found on the Internet.

 FIGURE 7.9 A reliability growth model

total defects, k

exponential decay

CPU test time, t

**
*

Cumulative # of defects
discovered:

 ~ k * [1 – e(-a*t)]

Residual defects

failures per
interval D t

*

7.7 MEASURING AND ANALYZING SOFTWARE DEFECTS 303

 As a project manager you should analyze defects and, to the extent possible,
endeavor to reduce mistakes. Of course, humans do make mistakes (we are not
automatons), so the probability of producing defect - free software for large, complex
systems is close to zero.

 Defects are counted as mistakes discovered during the process of accepting work
products to be baselined or mistakes discovered after a work product is baselined.
Mistakes found and corrected prior to initial baselining of a work product are not
counted as defects:

 Defects are mistakes found during baseline acceptance of work products, and mistakes
found in baselined work products.

 When a defect is discovered, a Defect Report is prepared and used to track repair-
ing of the defect (i.e., correcting of the mistake that created the defect). Figure 7.10
illustrates the process of defect detection and repair. The DR template in Table 7.8 ,
repeated here as Table 7.18 , can be used to record defect information throughout

304 MEASURING AND CONTROLLING WORK PRODUCTS

the development phases of your project and to record defects throughout the main-
tenance life cycle of a software product or system. Information from completed DRs
can be analyzed, as discussed below.

 As indicated in Table 7.18 , Defect Reports (DRs) are used to record:

 • dates of opening and closing the defect report,
 • a brief description of the failure caused by the defect,
 • how the defect was detected,
 • staff - hours spent in fi xing the defect,
 • phase in which the mistake was made that created the defect,

 TABLE 7.17 Reasons humans make mistakes on software projects

 Failures of communication and coordination

 • “ I didn ’ t receive the necessary information ”
 • “ The information changed and I wasn ’ t told ”
 • “ I misinterpreted the correct information ”
 • “ I didn ’ t know I was supposed to do that part ”
 • “ I thought I was supposed to do that part ”

 Lack of skill and tools

 • “ I didn ’ t know how to do that job ”
 • “ I have never done that job before ”
 • “ I didn ’ t have the correct tool for the job ”

 Human fallibility

 • “ I was tired, sick, troubled, … ”
 • “ My child, husband, wife, was sick ”
 • “ I was thinking about my upcoming vacation ”
 • “ I was distracted by a phone call ”
 • …

 FIGURE 7.10 Defect detection and repair process

private
work

product

acceptance
procedure

baselined
work

product

prepare and
submit DR

correct
mistake and
complete DR

. . .

t0: time of defect creation
tdj: time of defect detection
defect lifetime = t0 - tdj

t0 td1 td2

CCB
decision

defer deny

accept

 • phase in which the defect was discovered and corrected,
 • baselined work products modifi ed to fi x the mistake,
 • sign - off by a responsible party to certify the modifi ed work product successfully

passed its acceptance criteria,
 • date the new baseline was entered into the version control system, and
 • personnel notifi ed of the change.

 Data for Defect Reports can be captured during the inspection – review – testing
process of initial baseline acceptance and during confi guration management check -
 out and check - in procedures for modifying baselined work products. Data entry is
facilitated by displaying electronic templates that are completed by software devel-
opers and maintainers during check - out and check - in.

 TABLE 7.18 Template for a defect report

 Defect report number:

 Submitter:

 Date opened:

 Brief description of the failure:

 Severity level:

 ___Major ___Minor ___Inconvenience Priority for fi xing:

 ___Immediate ___ASAP ___Defer

 Phase in which the mistake was made:

 ___Rqmts ___Design ___Imple. ___Verif. ___Valid.

 Phase in which the mistake was found:

 ___Rqmts ___Design ___Imple. ___Verif. ___Valid. ___Ops Kind of mistake

 ___Incomplete ___Incorrect ___Inconsistent

 ___Other (specify):

 How mistake was detected:

 ___Inspection ___Review ___Test ___Demo.

 ___Other (specify):

 Baselines modifi ed to fi x mistake (names, version numbers):

 Staff - hour to fi x:

 Date new baseline approved:

 Acceptance sign - off:

 Date closed:

 Personnel notifi ed of change:

7.7 MEASURING AND ANALYZING SOFTWARE DEFECTS 305

306 MEASURING AND CONTROLLING WORK PRODUCTS

 Your organization should have criteria for categorizing the severity level of a
defect, for example:

 • a Major defect must be fi xed immediately because the defect may cause a ripple
effect into other work products that depend on this work product (e.g., a Major
defect would be incorrect statement of a requirement that would create defects
in the design documentation, code, and test plans);

 • a Minor defect must be fi xed in the near future but it will not propagate into
other work products (e.g, a mistake in a test scenario that must be corrected
before it is used would be classifi ed as a Minor defect);

 • an Inconvenient defect will not affect the operational behavior of the system
but might create an inconvenience for the users (e.g., a user interface feature
that requires the user to enter a sequence of control characters rather than
selecting a clickable item).

 Other categorizations of severity level are possible. For example a Catastrophic
defect in a mission - critical system might result in loss of several lives and/or cata-
strophic loss of property, a Signifi cant defect might result in loss of a single life or
signifi cant loss of property; a Serious defect might result in serious injury or serious
loss of property, and a Minor defect might result in minor injury or minor loss of
property.

 The template presented in Table 7.19 can be used to report the aging of open
defect reports by severity level. You and your organization should have goals for
closing defect reports within specifi ed period of time; for example, major defects
must be fi xed within 24 hours, minor defects within 3 days, and inconvenient defect
within 5 days.

 A report can also be generated to indicate the total number of open defects, the
number of newly reported defects, and the number carried forward from the previ-
ous reporting period, as in Table 7.20 .

 The format of Defect Reports in Table 7.18 includes entries for recording the
development phase during which the mistake was made and the development phase
in which the defect was found. These data can be used to prepare a report using the
template illustrated in Table 7.21 . Table 7.22 provides a partial legend for the entries
in Table 7.21 , which should be suffi cient to explain the remaining entries. In Table
 7.21 verifi cation and validation defects, for example, are defects found in V & V work
products such as traceability matrices, reports from inspection meetings, and in test
cases, test scenarios, test environments, and test plans.

 TABLE 7.19 Template for reporting defect aging by severity level

 Defect Type Open < 1 day Open < 3 days Open < 5 days Open > 5 days

 # major defects

 # minor defects

 # inconvenience
defects

 TABLE 7.20 Template for reporting defects by reporting period

 Defect Type Total Number Newly Reported Carried Forward

 Major defects

 Minor defects

 Inconvenient defects

 TABLE 7.21 Template for defect matrices

 Activities:
Rqmts. Design Imple. Verif. Valid. Ops. Totals

 Defects:
Rqmts.

 RDr RDd RDi RDve RDva RDo Σ RqD

 Design DDd DDi DDve DDva DDo Σ DeD
 Imple. IDi IDve IDva IDo Σ ImD
 Verif. VEve VEva VEo Σ VeD
 Valid. VAva VAo Σ VaD

 Totals: Σ RqT Σ DeT Σ ImT Σ VeT Σ VaT Σ VaO TOTAL

 TABLE 7.22 A partial legend for Table 7.21

 Defect When Found

 RDr Requirements defects found during requirements acceptance for
baselining

 RDd Requirements defects found during a design activity
 RDi Requirements defects found during an implementation activity
 RDve Requirements defects found during a verifi cation activity
 RDva Requirements defects found during a validation activity
 Σ RqD All requirements defect found during all software development activities
 Σ ImT Defects of all kinds found during an implementation activity
 TOTAL Defects of all kinds found during all software development activities and

operation

 Defect data presented in the format of Table 7.21 can be used to determine, for
example, the percentage of requirements defects found during design:

RDd
RqD∑

⎡
⎣⎢

⎤
⎦⎥

× 100,

or, for example, the percentage of design defects that “ escape ” the design process
and are discovered subsequently:

1 100− ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

×
∑
DDd

DeD
.

 Table 7.23 provides an example of a defect matrix for a completed project. The
20 total operations (Ops) defects are the defects that have been found by users

7.7 MEASURING AND ANALYZING SOFTWARE DEFECTS 307

308 MEASURING AND CONTROLLING WORK PRODUCTS

during the fi rst 6 months of operation. If, as in Table 7.23 , the number of require-
ments defects found during requirements activities was 50, the number found during
design was 25, the number found during implementation was 13, the number found
during verifi cation was 6, the number found during validation was 3, and the number
found by users during the fi rst 6 months of operation was 3, it would be apparent
that:

 1. the acceptance criteria for baseline acceptance of requirements must be
improved for other present and future projects (50% of requirements defect
found during development escaped the requirements verifi cation process);

 2. detection of requirements defects must be improved in subsequent develop-
ment phases (roughly 50% of remaining requirements defects were detected
at each subsequent stage of development; more should have been detected
during the design phase);

 3. defect detection effectiveness at each stage of development was about 50%;
and

 4. roughly 5% of total defects escaped the development process and were found
by users during the fi rst 6 months of operation (20/386; a result of the 50%
effectiveness at each stage).

 Other analyses are possible. In Table 7.23 , 3% of requirements defects escaped
the development process and were found by users (3 of 100). Also note that the
acceptance criteria for implemented code are only 53% effective (80 of 150 imple-
mentation defects we found during the implementation activity; 70 escaped). Overall,
roughly 7% of implementation defects escaped the development process (10 of
150).

 Analysis of Table 7.23 might also reveal that of the 60 design defects found during
design activities, 40 were the result of the 25 requirements defects that escaped into
the design process and another 20 design defects were created during the design
activity. Similarly analysis might show that of the 80 implementation defects found
during implementation, 50 were caused by the 43 requirements and design defects
on which implementation was based and the other 30 were created during imple-
mentation. These and similar analyses can identify areas for improvement of devel-
opment processes, procedures, methods, tools, and techniques across the development
process.

 TABLE 7.23 An example of a defect matrix for a completed project

 Phases When Defects Found:
 Rqmts. Design Imple. Verif. Valid. Ops. Totals

 Defects:
Rqmts.

 50 25 13 6 3 3 100

 Design 60 30 15 8 7 120
 Imple. 80 40 20 10 150
 Verif. 6 3 0 9
 Valid. 7 0 7

 Totals: 50 85 123 67 41 20 386

 As noted above, effectiveness of defect detection in Table 7.23 is approximately
50% at each phase of development (25 of 50 requirements defects escape into
design; 12 requirements defects are found during design and 13 escape into imple-
mentation; and so forth). It is not unreasonable that the acceptance criteria for a
work product should fi nd 70% to 80% of the defects in the work product prior to
baselining it (it is unreasonable to expect that 100% of the defects in a work product
will be found prior to baselining it).

 If 70% of requirements defects are found at each of fi ve development stages
(requirements, design, implementation, verifi cation, and validation), then only
0.073% of the 100% of requirements defects will remain to be found by users
([1 − 0.3 5] × 100). The overall effectiveness of fi nding requirements defects during
software development is thus 99.927%. By similar reasoning, 0.24% of design defects
should escape the development process, and 0.81% of implementation defects
should be released to users. This (simple) analysis is based on the assumption of a
linear, Waterfall development process. An iterative development process should do
much better than indicated because of the repeated opportunities to update base-
lined work products on successive iterations.

 The example in Table 7.23 is for a completed project and a system that has been
in operation for six months. You can prepare similar defect matrices during software
development that are updated at each reporting interval. The evolving matrix can
be analyzed for developing trends and compared to expectations, based on results
from similar past projects at similar stages of development.

 7.8 CHOOSING PRODUCT MEASURES

 Earlier sections of this chapter have presented many possibilities for measuring the
attributes of work products. Chapter 8 presents methods and techniques for measur-
ing and controlling your work processes. It is possible, although not highly probable,
that you may be able to delivery an acceptable product on schedule and within
budget without any planning, estimating, measuring, or controlling of your work
processes and work products. As stated earlier, the cost of planning, estimating,
measuring, and control, like the cost of risk management, is an investment you make
to increase the probability of success. The amount you invest in planning, estimating,
measuring, and controlling depends on the criticality of delivering an acceptable
product within the project constraints, and the cost of failure to do so.

 Given the multiple constraints that you will typically encounter in managing a
software project, you will never have enough time to do a thorough and complete
job of measuring and controlling work products or work processes (or anything else;
i.e., system engineering, requirements engineering, design, development, review,
testing, project planning, estimating, and other project activities). In the case of
measuring and controlling requirements, for example, you may decide that the
Essential requirements should receive the most attention, and perhaps only a subset
of the Essential requirements judged to be critical to product success will be con-
trolled at the level of detail indicated above. As a general guideline, however, it is
true that most problems encountered in software development are caused by insuf-
fi cient time and effort spent on requirements and design, so that the time and effort
spent on these endeavors is well spent.

7.8 CHOOSING PRODUCT MEASURES 309

310 MEASURING AND CONTROLLING WORK PRODUCTS

 Some aspects of measurement and control may be prescribed by your organiza-
tion; for example, all projects may be required to report, at prescribed intervals,
project attributes such as:

 • product size,
 • defects,
 • effort spent on various project activities
 • corrective rework of work product baselines, and
 • schedule progress in achieving prescribed milestones.

 Both current values and trends over time should be reported and analyzed.
 Goals – Questions – Metrics (GQM) is an approach that can be used to determine

the measurements that should be made on a software project [Basili94] . GQM
arrives at a set of metrics by answering the following questions:

 Goals: what do you wish to achieve?
 Questions: what questions should be answered to assure that you achieve your

goals?
 Metrics: what data should be collected and analyzed to answer the questions?

 Suppose, for example that one of your goals is to reduce defects:
 Goal: reduce defects during software development
 Questions:

 how many defects are introduced during software development?
 what percentage of total defects found during software development is intro-

duced in each phase of software development?
 what percentage of total defects found during software development is found

in each phase of software development?
 what kinds of defects are found in each phase of software development?
 by what percentage should defects found during software development be

reduced in the next 12 months?
 Metrics:

 total number of defects found during software development
 percentage of total defects introduced in each phase of software develop-

ment
 percentage of total defects found in each phase of software development
 kinds of defects found in each phase of software development

 These metrics can be determined using the techniques and formats presented in this
section. The kinds of defects found might be categorized as incorrect, incomplete,
interface, logic, and so forth; see the checklist in Appendix 7B for an example of
kinds of defects.

 The next step in reducing defects would be to fi nd the answers to the following
kinds of questions and to take the appropriate actions:

 what kinds of mistakes are being made that result in the predominant kinds of
defects?

 what kinds of actions should be taken fi rst to reduce the predominant kinds of
mistakes?

 what kinds of actions should be taken subsequently to reduce the less prominent
kinds of mistakes?

 If you are fortunate to work in a well - managed organization, there will be templates,
tailoring guidelines, and personnel to help you design a plan of measurement and
control for your work products and work processes.

 7.9 PRACTICAL SOFTWARE MEASUREMENT

 Additional guidance for choosing and implementing software measures is provided
on the Web site for and in the publications of Practical Software and Systems Mea-
surement [PSM] . Technical Measurement A Collaborative Project of PSM, INCOSE,
and Industry provides an introduction to Practical Software Measurement [Roed05] .
The report is a collaborative effort between the PSM (Practical Software and
Systems Measurement) and INCOSE (International Council on Systems Engineer-
ing) organizations. As stated in the report, technical measures include Measures of
Effectiveness (MOEs), Key Performance Parameters (KPPs), Measures of Perfor-
mance (MOPs), and Technical Performance Measures (TPMs).

 • MOEs are measures of success that are independent of the particular solution
used to achieve the operational objectives. An objective measure used to deter-
mine that a system is easy to learn and easy to use (or not), for a specifi ed group
of users, is an example of an MOE.

 • MOPs provide insight into the performance of a specifi c system. Examples of
MOPs are measurement of response time and throughput for a particular
system.

 • TPMs measure attributes of a system to determine how well a system, or some
elements of a system, satisfy specifi ed requirements. Measuring the amount of
memory used versus the amount of memory allocated, as in Figure 7.11 , is an
example of TPM.

 • KPPs are a critical subset of the performance parameters representing the most
critical capabilities or characteristics. Measures of performance that are related
to Essential requirements are examples of KPPs.

 The relationships among MOEs, MOPs, TPMs, and KPPs as illustrated in the report,
and are reproduced here in Figure 7.12 .

 Additional information concerning Practical Software and Systems Measure-
ment is included in Section 5 of Appendix 7A to this chapter.

 7.10 GUIDELINES FOR MEASURING AND CONTROLLING
WORK PRODUCTS

 The following guidelines are offered to assist you in developing and executing a
plan of measurement and control of your work products:

7.10 GUIDELINES FOR MEASURING AND CONTROLLING WORK PRODUCTS 311

312 MEASURING AND CONTROLLING WORK PRODUCTS

 G1: Confi guration management of work - product baselines, based on objective
acceptance criteria for work products, is essential.

 G2: Time and effort spent on system engineering, requirements engineering, and
design is time and effort well spent.

 G3: Time and effort spent on prototyping, development of scenarios, inspections,
and reviews of requirements and design is time and effort well spent.

 G4: Time and effort spent on traceability among work products is time and effort
well spent.

 G5: Time and effort spent on developing and executing system - level verifi cation
and validation plans, based on the operational requirements and technical
specifi cations, is time and effort well spent.

 FIGURE 7.12 Relationship of the technical measures [Roed05]

Measures
of

Performance

Technical
Performance

Measures
(TPMs)

Technical Measures are Interdependent

Increasing
Technical

Resolution
& Periodic

Insight

Increasing
Scope of
Technical
Solution

Mission Needs
or Critical

Operating Issues

Technical
Insight

(Progress
& Risk)

Measures of
Effectiveness

(MOEs)

Key
Performance
Parameters

 FIGURE 7.11 Technical Performance Measurement of memory usage

Incremental-
builds

Memory

B1 B2 B3 B4 B5

256K

225K

10% reserve

Actual

 = Plan

 G6: Time and effort spent in fi nding and fi xing defects as early as possible is time
and effort well spent.

 G7: Time and effort spent on collecting and analyzing defect data, and taking
corrective action based on the analysis is time and effort well spent.

 Guidelines for developing process measures are discussed in next chapter.

 7.11 ROLLING - WAVE ADJUSTMENTS BASED ON PRODUCT
MEASURES AND MEASUREMENT

 As discussed in Chapter 5 , evolution of detailed plans, based on current status, is
known as the rolling - wave approach to planning. Rolling - wave planning acknowl-
edges that it is impossible to develop plans at the level of detail indicated throughout
this chapter during the initial planning phase of a project.

 Examples of work activities that might be adjusted based on measures and mea-
surements of software products include:

 • remaining number of use cases to be developed,
 • remaining number of scenarios to be generated,
 • remaining number of prototypes to be constructed,
 • remaining number of test scenarios to be generated,
 • remaining number of inspections and unit tests to be conducted, and
 • remaining number of integration and system tests to be conducted.

 Adjustments that might be made to maintain a balance among requirements, effort,
schedule, cost, and technology are discussed in Chapter 8 .

 7.12 KEY POINTS OF CHAPTER 7

 • Periodic measurement of product attributes permits comparison of actual
status to planned status.

 • Control (corrective action) is exerted when actual status differs from planned
status by more than a predetermined acceptable amount.

 • Product and process measures are, or should be, a by - product of the procedures,
tools, and techniques used to develop software, if not the development process
must be modifi ed.

 • A measure is a mapping from a phenomenon of interest to a symbol.
 • Different measurement scales permit different kinds of operations on the

measures.
 • Each work product should be verifi ed and validated; in addition specifi c attri-

butes of each kind of work product can be measured.
 • Version control of work product baselines is necessary for measurement and

control of work products.
 • Inspections are the most cost - effective technique known to fi nd defects in work

products, especially in requirements and design when they are easily corrected.

7.12 KEY POINTS OF CHAPTER 7 313

314 MEASURING AND CONTROLLING WORK PRODUCTS

 • Inspections are used to fi nd defects; walkthroughs are used to communicate
technical issues.

 • Software that is hard to understand, hard to document, hard to verify and vali-
date, and hard to modify is too complex.

 • Cyclomatic complexity, the COCOMO CPLX cost driver, and coupling and
cohesion are three measures for software complexity.

 • A reliability rating is the probability that a system will not fail to perform its
intended functions within its intended environment for a stated period of
time.

 • An availability rating is the probability a system will be available for use when
needed.

 • Defects are the result of human mistakes; defects in an operational system
cause departures from specifi ed or expected behavior or results.

 • Software failures result when defects are detected during the operation of a
system by its intended users within its intended environment.

 • Systematic record keeping of the defect detection and repair process permits
analysis of defect containment and escape during the various phases of software
development.

 • The time, effort, and cost of measuring and controlling work products, like the
time, effort, and cost of risk management, is an investment you make to provide
early warning of problems and increase the probability of success.

 • Like risk management, the amount you invest in measurement and control of
work products depends on the criticality of delivering an acceptable product
within the project constraints, and the cost of failing to do so.

 • SEI, ISO, IEEE, PMI, and PSM - INCOSE provide frameworks, standards, and
guidelines for measuring and controlling product attributes (see Appendix 7A
to this chapter).

 • Procedures and forms for conducting software inspections are contained in
Appendix 7B to this chapter.

 REFERENCES

 [Basili94] Basili , V. , G. Caldiera , and H. D. Rombach . The goal question metric approach .
 Encyclopedia of Software Engineering . Wiley , 1994 , pp. 528 – 532 .

 [Bass03] Bass , L. , P. Clements , and R. Kazman . Software Architecture in Practice , 2nd ed.
 Addison Wesley , 2003 .

 [Belady76] Belady , L. , and M. Lehman . A model of large program development . IBM
Systems Journal 15 (3): 225 – 252 , 1976 .

 [Boehm00] Boehm , B. , C. Abts , A. Brown , S. Chulani , B. Clark , E. Horowitz , R. Madachy ,
 D. Reifer , and B. Steece . Software Cost Estimation with COCOMO II . Prentice
Hall , 2000 .

 [Bush88] Bush , M. Inspection results at JPL. Proceedings of 10th International Confer-
ence on Software Engineering . IEEE Computer Society Press, 1998 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection, IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003 .

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology — Software Life
Cycle Processes . Engineering Standards Collection. IEEE Product: SE113.
Institute of Electrical and Electronic Engineers, August 2003 .

 [Kulak03] Kulak , D. , and E. Guiney . Use Cases: Requirements in Context , 2nd ed. Addison
Wesley , 2003 .

 [McCabe76] McCabe , T. A complexity measure . IEEE Transactions on Software Engineer-
ing 2 (December 1976): 308 – 320 .

 [Mala97] Mala , Y. K. , and J. Denton . What do the software reliability growth model
parameters represent? Proceedings of the 8th International Symposium on
Software Reliability Engineering . IEEE Press, November 1997 .

 [Myers74] Myers , G. , and L. Constantine . Structured design . IBM Systems Journal 13
(February 1974): 115 – 139 .

 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed.
(PMBOK ® Guide). Project Management Institute , 2004 .

 [Roed05] Roedler , G. J. , and C. Jones . Technical Measurement: A Collaborative Report
of PSM, INCOSE, and Industry. INCOSE - TP - 2003 - 020 - 01, Version 1.1 (27
December 2005). Available at http://www.psmsc.com/Downloads/Technology
Papers/TechnicalMeasurementGuide_v1.0.pdf .

 [Rumb05] Rumbaugh , J. , I. Jacobron , and G. Booch . The Unifi ed Modeling Language
Reference Manual , 2nd ed. Addison Wesley , 2005 .

 [Russell91] Russell , G. Experience with inspection in ultralarge - scale developments . IEEE
Software vol. 8 , No. 1 . (January 1991). pp. 25 – 31 .

 URL s

 [PSM] www.psmsc.com/Prod_TechPapers.asp
 [SEI06] www.sei.cmu.edu/publications/documents/06.reports/06tr008.html

 EXERCISES

 7.1. CMMI - DEV - v1.2 lists two related process areas in the Monitoring and Con-
trolling process area:

 Project Planning, and
 Measurement and Analysis.

 Access the CMMI Web site at http://www.sei.cmu.edu/publications/
documents/06.reports/06tr008.html , review the Monitoring and Controlling

EXERCISES 315

316 MEASURING AND CONTROLLING WORK PRODUCTS

process area, and briefl y explain how each of the two related process areas is
related to Monitoring and Controlling.

 7.2. People who play different roles in a software project need differing kinds of
status reports concerning product attributes. For each of the following, list and
briefl y explain the kinds of product status reports that would be useful to them
(assume an iterative development process):
 a. customer
 b. project manager
 c. designers
 d. programmers
 e. testers

 7.3. Section 7.2 lists fi ve attributes of software projects to be measured and con-
trolled: effort, schedule, cost, product features, and quality attributes of the
product. List three other attributes of a software project that might be impor-
tant to measure and control. Briefl y explain why they might be important and
how they might be used.

 7.4. In Section 7.5 measurement of temperature is used to illustrate the difference
between interval and ratio scales.
 a. Celsius and Fahrenheit scales have zero values. Why are they not ratio

scales?
 b. Provide an example of an interval scale not mentioned in the text that is

not a ratio scale. If you scale has a zero element, briefl y explain why the
zero element does not make it a ratio scale.

 c. Provide an example of a ratio scale not mentioned in the text. Briefl y
explain why the zero element of your scale makes it a ratio scale.

 7.5. Use the Internet to fi nd a set of rules for counting lines of code. Briefl y explain
the rules.

 7.6. Tables 7.3 and 7.4 list some direct and some indirect measures for software
projects.
 a. List the direct and indirect measures for product attributes in the tables.
 b. List the direct and indirect measures for process attributes in the tables.
 c. List and briefl y explain three addition direct product measures that might

be used in a software project.
 d. List and briefl y explain 3 additional indirect product measures that might

be used in a software project.

 7.7. Briefl y explain why lines of code is a direct measure of product size. Briefl y
explain why function points is an indirect measure of product size.

 7.8. Figure 7.3 illustrates the state diagram for the use case in Figure 7.2 .
 a. List the states of the state diagram that provide the primary scenario for

the use case.
 b. Provide names for and list the states of 3 secondary scenarios in the state

diagram.

 c. Name and briefl y explain a missing secondary scenario that should be
added to the state diagram.

 7.9. In Section 7.6.2 it is stated that the CCB must have the authority to accept,
defer, or deny a Change Request or a Defect Report.
 a. Briefl y state a circumstance under which a CCB might defer a Change

Request
 b. Briefl y state a circumstance under which a CCB might deny a Change

Request
 c. Briefl y state a circumstance under which a CCB might defer a Defect

Report
 d. Briefl y state a circumstance under which a CCB might deny a Defect

Report

 7.10. Tables 7.6 , 7.9 , and 7.10 include “ number of defects by category and severity
level ” for requirements, architectural design, and implementation,
respectively.
 a. List three different categories of defects for requirements.
 b. List three different categories of defects for architectural design.
 c. List three different categories of defects for implementation.

 7.11. In the sidebar on inspections it is stated that the developer of the material
being inspected (i.e., the author) should never be the reader. Briefl y explain
why this is a good rule.

 7.12. Refer to Figure 7.6 .
 a. How many test cases will be required to obtain branch coverage?
 b. How many test cases will be required to obtain path coverage? (Hint : Let

N be the number of traversals of the loop.)
 c. What is the cyclomatic complexity number of the graph? What is the rela-

tionship of the answers to a and b to the cyclomatic complexity of the
graph?

 7.13. Select a program of your choosing (or a program chosen by your
instructor).
 a. Construct a control fl ow graph for one of the modules in the program.
 b. Calculate the cyclomatic complexity number for one of the modules in the

program.
 c. Construct the design fl ow graph for the program.
 d. Calculate the design complexity of the program.
 e. Assess and assign a value of Very Low, Low, Nominal, High, or Very High to

each of the fi ve complexity factors used to determine CPLX in a COCOMO
II model for the program. Briefl y explain why you chose the values you
assigned to each of the fi ve factors. (Hint : See Table II - 15, page 31, at ftp://ftp.
usc.edu/pub/soft_engineering/COCOMOII/cocomo99.0/modelman.pdf .)

 f. Assess and assign a value of Low, Medium, or High to the cohesion of each
module in the program. Briefl y explain why you chose your assigned
values.

EXERCISES 317

318 MEASURING AND CONTROLLING WORK PRODUCTS

 g. Assess and assign a value of Low, Medium, or High to the coupling of each
module in the program. Briefl y explain why you chose your assigned
values.

 7.14. A system having an MTTF of 80 hours with as standard deviation of 2 hours
would probably be rated higher in reliability than a system having an MTTF
of 80 hours and a standard deviation of 40 hours. Briefl y explain why this
would be true.

 7.15. The workfl ow model in Figure 7.11 indicates that every defect found during
acceptance of a work product or found in a baselined work product should
be reported using a Defect Report. Briefl y explain a circumstance under which
a DR might not be fi led for a detected defect. Briefl y explain the problems
that might be created by not fi ling a DR.

 7.16. Refer to Table 7.23 .
 a. What percentage of total defects were design defects?
 b. What percentage of defects found by users (Ops) were requirements

defects?

 APPENDIX 7A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR MEASURING AND
CONTROLLING WORK PRODUCTS

 7A.1 THE CMMI - DEV - v 1.2 MONITORING AND CONTROL PROCESS
AREA

 The purpose of Project Monitoring and Control is to provide an understanding of the
project ’ s progress so that appropriate corrective actions can be taken when the proj-
ect ’ s performance deviates signifi cantly from the plan.

 The specifi c goals and specifi c practices of Monitoring and Control in CMMI - DEV -
 v1.2 are [SEI06] :

 SG 1 Monitor project against plan
 SP 1.1 Monitor project planning parameters
 SP 1.2 Monitor commitments
 SP 1.3 Monitor project risks
 SP 1.4 Monitor data management
 SP 1.5 Monitor stakeholder involvement
 SP 1.6 Conduct progress reviews
 SP 1.7 Conduct milestone reviews

 SG 2 Manage corrective action to closure
 SP 2.1 Analyze issues
 SP 2.2 Take corrective action
 SP 2.3 Manage corrective action

 There are two related process areas in the CMMI - DEV - v1.2:

 1. Project Planning and
 2. Measurement and Analysis.

319

320 MEASURING AND CONTROLLING WORK PRODUCTS

 FIGURE 7A.1 Closed loop problem resolution

Corrective
Action

Initiate
Action
Item

Status
Reporting

Close
Action
Item

Evaluation
and Trend Analysis

 The Project Planning process area is covered in appendixes to Chapters 5 and 6 of
this text.

 The specifi c goals and specifi c practices of Measurement and Analysis are:

 SG 1 Align measurement and analysis activities
 SP 1.1 Establish measurement objectives
 SP 1.2 Specify measures
 SP 1.3 Specify data collection and storage procedures
 SP 1.4 Specify analysis procedures

 SG 2 Provide measurement results
 SP 2.1 Collect measurement data
 SP 2.2 Analyze measurement data
 SP 2.3 Store data and results
 SP 2.4 Communicate results

 7A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 ISO/EIC and IEEE/EIA Standards 12207 include Supplier Monitoring as an element
of the acquirer ’ s acquisition process and Execution and Control as a supplier activ-
ity [IEEE12207] . The acquirer ’ s monitoring activity is specifi ed in section 5.1.4 of
12207.0, Supplier monitoring. Section 5.1.4.1 indicates that the acquirer will monitor
the supplier using the Joint Review Process and the Audit Process, plus the Verifi ca-
tion Process and the Validation Process as necessary.

 The Supplier ’ s Execution and Control activities (section 5.2.5) include monitor-
ing and controlling progress and the quality of work products throughout the project
life cycle. This iterative activity should include monitoring of technical performance,
costs, and schedules and the reporting of project status. In addition problems should
be identifi ed, recorded, analyzed, and resolved.

 Section 6.8 of 12207.0, Problem Resolution states that the problem resolution
system should:

 • be closed loop,
 • contain a scheme for categorizing and prioritizing problems,

 • include a trend analysis procedure, and
 • provide for evaluation of problem resolutions and dispositions.

 The closed loop nature of problem resolution is illustrated in Figure 7A.1 of this
Appendix.

 7A.3 IEEE / EIA STANDARD 1058

 Clause 5.3 of IEEE Standard 1058 - 1998 for Software Project Management Plans
(SPMPs) indicates that plans for controlling the following attributes of a project
should be included in your project plan [IEEE1058] :

 • requirements
 • schedule
 • budget
 • quality

 In addition SPMPs that conform to IEEE 1058 will contain a Metrics collection plan
and a Reporting plan. The Risk Management plan is contained in clause 5.4.

 7A.4 THE PMI BODY OF KNOWLEDGE

 The PMI Body of Knowledge (PMBOK ®) includes the following chapters related
to measuring and controlling a project [PMI04] :

 • Chapter 5 Project Scope Management
 • Chapter 6 Project Time Management
 • Chapter 7 Project Cost Management
 • Chapter 8 Project Quality Management
 • Chapter 9 Project Human Resource Management
 • Chapter 10 Project Communication Management
 • Chapter 11 of PMBOK ® covers Project Risk Management.

 7A.5 PRACTICAL SOFTWARE AND SYSTEMS MEASUREMENT (PSM)

 The report Technical Measurement: A Collaborative Report of PSM, INCOSE, and
Industry is the result of a collaborative effort between the PSM (Practical Software
and Systems Measurement) and INCOSE (International Council on Systems Engi-
neering) organizations [Roed05] . The report provides guidance for choosing and
implementing technical measures for software and systems projects. An introduc-
tion to Practical Software and Systems Measurement is presented in Section 7.8 of
this chapter.

7A.5 PRACTICAL SOFTWARE AND SYSTEMS MEASUREMENT (PSM) 321

 APPENDIX 7B

PROCEDURES AND FORMS FOR
SOFTWARE INSPECTIONS

 7B.1 CONDUCTING A SOFTWARE INSPECTION

 There are fi ve (or six) steps to an inspection:

 1. Conduct a short Planning Meeting to assign team roles and schedule a time
and place for the Inspection Meeting. (Optional step: Have a walkthrough of
the document to be reviewed, led by the author, if necessary to familiarize
participants.)

 2. Prepare for the Inspection Meeting by using a Checklist and completing a
 personal Individual Preparation Log.

 3. Team members attend the Inspection Meeting, limited to 2 hours.
 4. Team members assist the author, as requested in follow - up activities.
 5. After rework, the moderator and author meet to prepare the inspection

summary report.

 A fl ow diagram for the inspection process is illustrated in Figure 7B.1 .
 Details of each step follow:

 Step 1

 The moderator and author meet to plan the inspection: who should participate; what
materials should be distributed to the participants and available for their reference;
is the author ’ s material ready for inspection?

 Step 2

 Have a Planning Meeting for your team to distribute inspection materials and to
assign roles to the team members. The author should provide an overview of mate-
rial to be reviewed, and if necessary to familiarize the participants. Also a time and
place for the Inspection Meeting is scheduled. The Review Meeting should be held

322

a few days after the Planning Meeting to allow time for Individual Preparation, but
not so long that everyone forgets their preparation. The Inspection Meeting should
be planned for 2 hours.

 There are four team roles for the four team members. One person will be the
 Moderator , whose job is to be the chairperson of the Inspection Meeting and to
prepare the fi nal Review Package with the help of the Author . Another person will
be the Reader , whose job is to paraphrase the document being reviewed during the
Inspection Meeting. One person will be Recorder . The Recorder ’ s role is to record
on an Inspection Defect List defects discovered during the Inspection Meeting. The
Author of the document to be reviewed attends the meeting to listen and answer
questions. All team members are Document Inspectors.

7B.1 CONDUCTING A SOFTWARE INSPECTION 323

 FIGURE 7B.1 Flow diagram for the inspection process

2–4 Hrs.

Planning

2

Overview

4 .
2-3 Hrs.

per
Inspector

Preparation

5

Inspection

6 Approx.5 Hrs.

Rework

9 Approx. 2–3 Hrs.

Follow-up

7

Third
Hour

(Optional)

8

3 1

1 0.5-1.5Hrs. 2 Hrs.Max.

Transition Times
1 Entry
2 1-3 Days (if included)
3 Immediate
4 Immediate
5 3-5 Days
6 Immediate
7 Immediate (if included)
8 Immediate
9/10 1 Wk Min. after Inspection
11 Exit
Two Wk Max. process

1

 Step 3

 Individual Preparation: Each person should plan to spend 2 to 3 hours preparing
for the Inspection Meeting by studying the document to be inspected and recording
discovered defects on an Individual Preparation Log. A Defect Checklist should be
used during individual preparation.

 Step 4

 The Inspection Meeting: During the Inspection Meeting, the Reader will present
the document by paraphrasing (summarizing) it. All team members, including the
Moderator, Reader, Recorder, and Author, will contribute the defects they found
during individual preparation and will (perhaps) discover new defects. See the
instructions for conducting an inspection meeting in 7B.3 . Defects will be
recorded by the recorder on the Inspection Defect List and each defect will be cat-
egorized in four ways: (1) by Finders ’ initials; (2) as Major, Minor, or Open Issue;

324 MEASURING AND CONTROLLING WORK PRODUCTS

(3) as Missing, Wrong, or Extra; and (4) by Defect Type. See the included Inspection
Defect List for more information.

 Step 5

 Follow - up: After the meeting, the Author will correct the defects found during the
inspection, with assistance if requested. This should be fi nished in two or three days.

 Step 6

 Preparing the Inspection Report: After the defects are corrected, the Author and
Moderator prepare the Review Package. The Review Package includes a Cover
Sheet, the Inspection Defect List, Individual Preparation Logs, and the Inspection
Summary Report.

 7B.2 THE DEFECT CHECKLIST

 During Individual Preparation and the Inspection Meeting, defects will be classifi ed
in four ways: (1) by Finders ’ initials; (2) as Major, Minor, or Open Issue; (3) as
Missing, Wrong, or Extra; and (4) by Defect Type.

 The Finders ’ Initials are for traceability in case the Author needs to speak with
the Finder(s) of a defect at a later time. The Finders ’ Initials are not for counting
who found the most defects.

 A Major defect is one that will cause serious problems later if not corrected now;
a Minor defect is one that must be corrected, but it can be corrected later. An Open
Issue is something that needs further investigation — for example, the possibility of
a mistake in another document or whether to classify something as Missing, Wrong,
or Extra. Missing means some needed information is not provided; Wrong means
the information is incorrect, and Extra means the information is unnecessary. Extra
could be requirements for features the users don ’ t need, or information that belongs
in another document, such as schedule and budget information or personnel
assignments.

 The Defect Checklist is different for different types of documents. An example
checklist for Code Inspections is:

 C1. Functionality — implementation of the design in the code
 C2. Logic — inputs, outputs, loop tests, branch tests, nesting, calls and returns

among modules
 C3. Data Usage — declarations, initializations, assignments and uses
 C4. Interfaces — matching of argument lists and other interfaces, return codes
 C5. Clarity — comment blocks, commenting, variable names, indentation, white

space
 C6. Maintainability — ease of understanding, traceability to detailed design, cou-

pling and cohesion, change history in the comments header block
 C7. Syntax — use of symbols and punctuation (note: a clean compile should be

inspected)

 C8. Files — declarations, opening, closing
 C9. Style — use of comment headers and in - line comments, guidelines for coding

style
 C10. Other — defects that are not of the listed defect types

 Types of Open Issues include:

 O1: Questionable changes to the design in the code
 O2: Packaging of the code modules
 O3: Other open issues

 Checklists should be tailored to the needs of the particular project and
organization.

 7B.3 CONDUCTING AN INSPECTION MEETING

 1. The Moderator fi rst states the purpose of the meeting and describes the docu-
ment to be reviewed. The Moderator then asks each person how much time
they spent preparing for the Review Meeting and ensures that everyone is
prepared. If someone is not prepared, that person is excused or the meeting
is rescheduled.

 2. The Moderator asks the Reader to begin. The Reader presents a brief over-
view of the document and paraphrases the fi rst section. The Moderator asks
if there are any comments on that section. Each team member uses their
Individual Preparation Log to contribute comments. (If there are several com-
ments, the Moderator asks each person, in turn, to contribute one comment .)
The Moderator leads a team discussion to determine whether the comment is
to be accepted as a defect. If so, the initials of the Finder(s) is recorded, and
the defect category is decided by the team: (Missing, Wrong, Extra); (Major,
Minor, Open Issue); and Defect Type. The recorder enters the information on
an Inspection Defect List and make additional notes as necessary. Before
continuing, the Moderator asks if there are any additional comments. This
continues until all comments are discussed. The Moderator then asks the next
person if they have a defect to contribute; this continues until all defects are
recorded for that section of the document.

 3. The Moderator then asks the Reader to present the next section and the
process described in step 2 is repeated until the review of the document is
fi nished.

 4. After the document review is fi nished, the Moderator collects the Inspection
Defect List from the Recorder and reviews it with the team to be sure the
team agrees on the defects discovered and to be sure that the defects are
described in a way that everyone (especially the author, who will correct them)
can understand them.

 5. The team helps the Moderator prepare the Inspection Summary Report.

7B.3 CONDUCTING AN INSPECTION MEETING 325

326 MEASURING AND CONTROLLING WORK PRODUCTS

 6. The Moderator then collates the Review Package, which includes the Cover
Sheet, the Individual Preparation Logs, the Inspection Defect Lists, and the
Inspection Summary Report.

 Everyone must remember that the purpose of the Meeting is to fi nd defects, not
to fi x them. It is the Moderator ’ s job to maintain a productive meeting and to fi nish
the meeting in two hours. The Moderator must keep the meeting moving, but not
so fast that Major defects are missed.

 The Author of the document receives a copy of the Inspection Defect List at the
end of the meeting. The Author and other team members are assigned Action Items
to be completed within one week. The Author might ask some team members to
spend an informal “ third hour ” following the Review Meeting to help the Author,
 but only if the author asks for help .

 After the Author has fi xed the Major defects (and maybe the Minors also), she
meets with the Moderator to verify that the Major defects have been fi xed and to
complete the Summary Report. The Moderator also checks on the status of any
Open Issues and generates offi cial Action Items for any remaining work to be done
before submitting copies of the Summary Report to the Software Architect and the
Chief Moderator. This meeting should occur within 5 to 10 days following the
inspection meeting.

INDIVIDUAL PREPARATION LOG

Name______________________

Project _____________________ Date Package Received____________

Inspection Type: e.g., Software Code Completion Date__________________

PREPARATION TIME Date Time Spent

 ________________ _______________

 ________________ _______________

 ________________ _______________

 ________________ _______________

 TOTAL HOURS & MINUTES: __________

DEFECTS/OPEN ISSUES

Location Type & Description

 (line number)

1 ____________________ ________________________________

2 ____________________ ________________________________

3 ____________________ ________________________________

4 ____________________ ________________________________

5 ____________________ ________________________________

6 ____________________ ________________________________

7 ____________________ ________________________________

8 ____________________ ________________________________

NOTE: Add more pages as needed

7B.3 CONDUCTING AN INSPECTION MEETING 327

328 MEASURING AND CONTROLLING WORK PRODUCTS

 INSPECTION REPORT COVER SHEET

Inspection ID #_______________________ Inspection Date:___________

Project:______________________________

 Moderator:_____________________ Phone No:____________

 e-mail:_______________

Component:_________________________

Is this a Re-inspection? _____yes _____no

Inspector Phone No. Role Inspection Type

_____________ ________ ____________ System Requirements:_____

_____________ ________ ____________ Software Requirements:___

_____________ ________ ____________ Architectural Design:_____

_____________ ________ ____________ Detailed Design:__________

_____________ ________ ____________ Source Code:_____________

_____________ ________ ____________ Test Plan:________________

_____________ ________ ____________ Test Results:_____________

_____________ ________ ____________ Other:___________________

Size of Work Product Inspected: __________________

Reference

Documents:__

 __

 __

 Comments

__

__

__

__

__

Is a Re-inspection after rework recommended? _____yes _____no

INSPECTION DEFECT LIST
 (for use by recorder and author)

Project:_____________________________ Moderator:_______________

Component:_________________________ Recorder:________________

Inspection Type:_____________________ Inspection ID #___________

Defect
Type #

Finder's
Initials

Date
Corrected**Defect #

Description:___

Location Classification
Major Minor Open /
Missing Wrong Extra#1 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#2 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#3 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#4 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#5 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#6 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#7 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#8 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#9 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#10 __________ ______ _________ ___________

7B.3 CONDUCTING AN INSPECTION MEETING 329

330 MEASURING AND CONTROLLING WORK PRODUCTS

Inspection ID #__________

Page__________ of __________ pages

Defect
Type #

Finder's
Initials

Date
Corrected**Defect #

Description:___

Location Classification
Major Minor Open /
Missing Wrong Extra#11 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#12 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#13 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#14 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#15 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#16 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#17 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#18 __________ ______ _________ ___________

Description:___

Major Minor Open /
Missing Wrong Extra#19 __________ ______ _________ ___________

Description:___

Note: Re-inspection following rework is recommended if more than
20 defects are found.

To be completed after Re-work:
 Specified completion date for rework:____________

 Actual completion date for rework:_______________

 Time spent by Author in Re-work:_______________ (hours)

Major Minor Open /
Missing Wrong Extra#20 __________ ______ _________ ___________

 INSPECTION SUMMARY REPORT

Inspection ID #_______________________ Inspection Date:___________

Project:_____________________________ Moderator:_______________

Component:_________________________ Phone No:______________

Is this a Re-Inspection?_____yes _____no e-mail:_________________

Inspection Type:

System Requirements:___ Software Requirements: ___ Architectural Design: ___

Detailed Design: ___ Source Code___ Test Plan: ___ Test Results: ___ Other: ___

Size of Work Product:_____________

Total Person-Hours Expended (m.n):

Overview Planning Individual
Preparation

Meeting Rework Follow-
Up

Third-
Hour

Total

Inspectors

Moderator

Author(s)

MAJOR DEFECTS
Number of Missing Type Defects Detected:________ Number Corrected:________

Number of Wrong Type Defects Detected:_________ Number Corrected:________

Number of Extra Type Defects Detected:__________ Number Corrected:________

TOTAL MAJOR DEFECTS:____________________

MINOR DEFECTS
Number of Missing Type Defects Detected:________ Number Corrected:________

Number of Wrong Type Defects Detected:_________ Number Corrected:________

Number of Extra Type Defects Detected:__________ Number Corrected:________

TOTAL MINOR DEFECTS:____________________

Open Issues:

Issue:_____________________________ Assignee:_____________________

Issue:_____________________________ Assignee:_____________________

Issue:_____________________________ Assignee:_____________________

7B.3 CONDUCTING AN INSPECTION MEETING 331

333

8
 MEASURING AND CONTROLLING
WORK PROCESSES

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 You can see a lot just by looking.
 — Yogi Berra

 8.1 INTRODUCTION TO MEASURING AND CONTROLLING
WORK PROCESSES

 An introduction to measures, measurement, and control is presented in Chapter 7 ,
Sections 7.1 and 7.2 . Those sections should be read as background material for this
chapter.

 There are several reasons to measure various attributes of your work
processes:

 • to provide frequent indicators of progress,
 • to provide early warning of problems,
 • to permit analysis of trends for your project,
 • to allow estimates of the fi nal cost and completion date of your project, and
 • to build a data repository of project histories for your organization.

 The workfl ow model for software projects depicted in Figure 1.1 (Chapter 1)
and repeated as Figure 7.1 illustrates the roles of measurement and control in soft-
ware projects. Measuring, reporting, replanning, and controlling are highlighted in
Figure 7.1 . Measurement of project status involves determining the current values
and cumulative values of various project attributes. As related in Chapter 7 , it is

334 MEASURING AND CONTROLLING WORK PROCESSES

diffi cult to imagine a project for which some level of measurement and control over
each of the following attributes is not important to assure a successful outcome:

 • effort: amount of work expended for various work activities
 • schedule: achievement of objectively measured milestones
 • cost: expenditures for various kinds of resources, including effort
 • progress: work products completed, accepted, and baselined
 • product features: requirements implemented and demonstrated to work
 • quality attributes of the product: defects, reliability, availability, response time,

throughput, and others as specifi ed
 • risk: status of risk factors and mitigation activities

 Measured values of these project attributes are compared to planned or specifi ed
values for each measurement interval specifi ed in your project plan. Control is
exerted when actual values deviate from planned or specifi ed values by more than
an acceptable amount; being two days late in achieving a major milestone may be
acceptable, being two weeks late is probably not acceptable, but being two months
late is certainly not acceptable.

 Depending on the relative importance of the various process and product
attributes of your project, more effort may be expended on measuring and
controlling some attributes than on measuring and controlling others. Performance
and reliability of the delivered software may be the most important product
criteria or it may be that controlling schedule and cost of the project needed to
deliver a minimally acceptable product are uppermost. However, it is diffi cult to
imagine a project in which some level of control over effort, schedule, cost, product
features, and the specifi ed quality attributes of the product do not all contribute to
a successful outcome, although some attributes may be more or less important than
others.

 Typically the process attributes (effort, schedule, and cost) are balanced against
product attributes (features and quality attributes). Among the process attributes,
schedule may be more important than effort and cost, and safety may be a more
important product attribute than reliability. Measurement and control of effort,
schedule, cost, and progress are covered in this chapter. Managing the risk factors
related to product and process attributes is covered in Chapter 9 .

 Effort, cost, and schedule have common attributes, and each has unique attri-
butes. The common attributes of effort, schedule, and cost to be measured and con-
trolled include the amount and percentage of each that you are spending on various
project activities, including project management, analysis, and design and implemen-
tation, as well as verifi cation, validation, and other supporting activities. You should
compare measured values to planned values and expected values, the latter being
derived from historical data and local rules of thumb.

 For example, projects in your organization might typically spend 5% to 10% of
total effort on measurement and control of project attributes. If you are spending
more, or less, you should determine why this is the case and apply corrective action
as appropriate. It may be, for example, that you are spending 15% to 20% of effort
on measurement and control because your organization is converting from a Water-
fall development process to Iterative development and your project is the fi rst one

8.1 INTRODUCTION TO MEASURING 335

to implement the new approach; the amount of effort you are spending on measure-
ment and control is thus appropriate.

 On the other hand, if you are spending less than 5% of effort on measurement
and control, it may be that you are not spending enough time on measurement and
control or that your (large) project does not have enough personnel assigned
to your project management group to do an effective job of measuring and
controlling.

 Relationships among effort, schedule, and cost should also be measured and
controlled. For example, it may be that you expect to spend 30% of effort and 40%
of your schedule on requirements and design. If signifi cantly more or less of either
is being spent, you should determine the reasons and take corrective action, as
indicated. The relationship between effort and personnel cost should also be meas-
ured and controlled. If, in a given reporting period, effort is as planned but personnel
cost is higher than planned, you are using more expensive (more highly skilled)
software developers than planned . The cost overrun may, of course, be because the
work is more diffi cult than anticipated or because the work to be done by highly
skilled analysts and designers is taking longer than planned.

 Conversely, if, in a given reporting period, effort is as planned but personnel
costs are lower than planned, it may be that you have been unable to acquire the
needed skill levels or that the work is easier than planned and the highly skilled
(highly paid) personnel are not needed. If effort and cost are both less than planned,
this may indicate that you have not been able to acquire the planned number of
software developers, so schedule progress is slower than planned. Or, it may be that
effort and cost are higher than planned because of a desire to accelerate schedule
progress.

 Other costs should also be measured and compared to plans. Travel cost may be
higher (or lower) than planned; equipment costs may similarly deviate from plan.
In any case, you will need to investigate these deviations from plan.

 Possibilities for corrective action, when actual values of project attributes are not
as planned or expected, include:

 • extending the schedule,
 • adding more resources,
 • using superior resources,
 • improving various elements of the development process, and/or
 • de - scoping the product requirements.

 Resources that might be improved, added, or replaced include:

 • people (be mindful of Brooks ’ s law when adding people),
 • software components (e.g., re - engineering a software component to improve

performance),
 • hardware components (e.g., more memory, a faster processor), and
 • software tools (e.g., a language processor or testing tool).

 You should never use the following techniques to “ get a project back on
track: ”

336 MEASURING AND CONTROLLING WORK PROCESSES

 • excessive levels and durations of overtime;
 • reduction or elimination of planned verifi cation and validation activities;
 • reduction or elimination of planned user documentation, training aids, and so

forth; or
 • reduction or elimination of any planned activity that would reduce the features

or quality attributes of the system to be delivered without the customer ’ s
consent.

 8.2 OBJECTIVES OF THIS CHAPTER

 This chapter presents methods and techniques for measuring and controlling
work processes (measurement and control of work products were presented in
Chapter 7). After reading this chapter and completing the exercises you should
understand how to:

 • measure and analyze original effort, evolutionary rework, and avoidable
rework;

 • use work packages to track effort, schedule, and work products;
 • use binary tracking to avoid the 90% complete syndrome, and to thus accu-

rately determine the status of effort, schedule, and work products, and to esti-
mate effort and schedule to complete a project;

 • use earned value reporting, based on binary tracking, to provide succinct and
accurate reports of effort, schedule, and work progress; and

 • use earned value techniques to forecast estimated actual cost and estimated
completion date for software projects.

 As related in Chapter 7 , CMMI - DEV - v1.2, ISO/IEEE Standard 12207 , IEEE Stan-
dard 1058 , and the PMBOK Guide of PMI all provide guidance for measurement
and control of software projects. See Appendix 7A in Chapter 7 .

 Terms used in this chapter and throughout this text are defi ned in the Glossary
at the end of the text. Presentation slides for this chapter and other supporting
material are available at the URL listed in the Preface.

 8.3 MEASURING AND ANALYZING EFFORT

 As illustrated in Figure 8.1 , there are three categories of effort [Fairley05] :

 • original work,
 • evolutionary rework, and
 • avoidable rework (retrospective and corrective).

 Original work is the effort expended in establishing initial baselines of work
products (e.g., requirements, design, code, test plans). Evolutionary rework is the
effort you spend to change baselined work products in ways that add value to an

evolving product or system. For example, the design and some of the code may have
to be reworked because of a change in requirements that results from analysis of a
competitor ’ s new product or from a change of mission for a customer ’ s mission -
 critical system.

 Avoidable rework is rework required to make changes to baselined work prod-
ucts developed during original work or evolutionary rework. In principle, avoidable
rework (as the name implies) is work that should not have to be done. Because
humans are not infallible, some small amount of avoidable rework is, unavoidable.
As indicated in Figure 8.1 , there are two kinds of avoidable rework: retrospective
and corrective. Retrospective rework occurs in Waterfall development, for example,
when the code has to be reworked because defects found during software verifi ca-
tion make it an unsuitable basis for system validation. Retrospective rework occurs
in iterative development when a baselined work product has to be reworked to
accommodate the needs of a subsequent iteration. In iterative development, for
example, an interface in baselined code might have to be redesigned and recoded
to provide a basis for the code of the next iteration that is to be integrated into the
growing product baseline. Excessive amounts of retrospective rework may indicate
the need for more attention to the design of interfaces, for example.

 Corrective rework occurs when a defect discovered in a baselined work product
is corrected. Because corrective rework is the result of defects made by human
mistakes, and because humans are human, a certain amount of avoidable rework is
to be expected. A large percentage of total effort devoted to avoidable rework, like
a high fever in a sick person, is a problem in itself; more signifi cantly, it is an indica-
tor of other serious problems. In the case of software projects, unacceptably high
levels of avoidable rework are a symptom of ineffi cient and ineffective work
processes.

 Refactoring of software during iterative development provides an example of the
distinctions among evolutionary rework, retrospective rework, and corrective
rework. Evolutionary rework occurs when refactoring of existing software is done
to accommodate new requirements that could not be foreseen in an iterative devel-
opment process. Retrospective rework occurs when a foreseen feature needed as a
basis for the current iteration is not included in the previous iteration and thus has
to be added now. Retrospective rework usually requires more effort than would
have been required to include the needed feature during the previous iteration.
Corrective rework occurs in an iterative development process when mistakes are
discovered in work products that have been reviewed, tested, and accepted.

 FIGURE 8.1 A taxonomy of project effort

effort
taxonomy

original
work

rework

evolutionary avoidable

retrospective corrective

8.3 MEASURING AND ANALYZING EFFORT 337

338 MEASURING AND CONTROLLING WORK PROCESSES

 Unfortunately, many organizations do not separately measure and report original
work, evolutionary rework, retrospective rework, and corrective rework, and are
thus unaware of how project resources are being spent. In many organizations,
avoidable rework is 50% and more of total project effort; in these organizations,
half or more of effort is thus spent in fi xing mistakes made by the software develop-
ers [Basili94] , [Boehm01] .

 Avoidable rework is the bane of most software development organizations.
Avoidable rework of 5% or less of total effort is attained in the best software
or ganizations; 20% or less avoidable rework is achievable and should be a goal for
all software organizations, including yours [Fairley05] .

 Because software development is effort - intensive, reducing avoidable rework
improves the productivity and morale of the workers and the quality of work prod-
ucts. Because avoidable rework consumes project resources that could be devoted
to original work or evolutionary rework, reducing avoidable rework improves pro-
ductivity. Because software developers can spend their time doing high - quality
original work and evolutionary rework rather than correcting mistakes, their morale
improves. Because a certain percentage of defects will escape the development
process and be found by users, reducing avoidable rework also improves the quality
of the delivered software. If, for example, avoidable rework during development
corrects 200 defects and an additional 5% of development defects are found by
users during the fi rst year of operation, the users will fi nd approximately 10 defects
during the fi rst year. On the other hand, if avoidable rework fi xes 20 defects during
software development, users will fi nd 1 defect.

 The amounts of, and ratios among, the four kinds of work (original work, evolu-
tionary rework, retrospective rework, corrective rework) should be separately meas-
ured, analyzed, and reported periodically. Measurement may reveal that large
amounts of evolutionary rework are being performed without appropriate changes
to the baselined plan for effort and schedule, or that corrective rework is a signifi -
cant fraction of total effort. Because evolutionary rework is value - adding, it should
not be a problem for you, the project manager, provided corresponding adjustments
are made to plans for effort, schedule, and other resources needed to accommodate
the changes. Evolutionary rework can be a big problem when value - adding changes
to the product or system are mandated without corresponding adjustments to other
project attributes. Avoidable rework is always a problem.

 You can measure the amount of effort for each kind of work by tracking:

 • work packages for original work from your WBS,
 • effort resulting from change requests for evolutionary rework, and
 • effort resulting from defect reports for retrospective rework and corrective

rework.

 Your confi guration management system can provide the data needed to produce
the status reports (see Chapters 3 and 7).

 Work packages (presented in Chapter 5) are a mechanism for documenting the
tasks in a work breakdown structure. Original work can be tracked by augmenting
the work package templates, as indicated in Table 8.1 , to include fi elds for recording
actual amounts of effort, schedule, and resources expended, and actual work

products produced. Because each work package produces one or more work prod-
ucts that are placed under baseline control after they satisfy their acceptance crite-
ria, templates for recording actual values can be provided as part of the check - in
process to the confi guration management system. A work package that uses binary
tracking is not closed (i.e., a task is not completed) until the work products satisfy
their acceptance criteria and the augmented values are provided. Then the actual
results can be compared to planned results for each completed task and for collec-
tions completed of tasks.

 8.4 MEASURING AND ANALYZING REWORK EFFORT

 Rework matrices, similar in format to the defect matrix presented in Chapter 7 , can
be used to record and analyze rework effort. A template for rework matrices is
presented in Table 8.2 and an example of a corrective rework matrix is presented
in Table 8.4 ; the matrix is for a system that has been in operation for 12 months.
Note that copies of the template in Table 8.2 can be used to separately report evo-
lutionary, retrospective, and corrective rework.

 Table 8.3 provides a partial legend for the entries in Table 8.2 , and these descrip-
tions should be suffi cient to explain the remaining entries. The phase “ a particular
kind of rework ” in Table 8.3 means one of evolutionary rework, retrospective
rework, or corrective rework.

 TABLE 8.1 A work package template augmented to report planned versus
actual outcomes

 Task ID: � WBS number �
 Task identifi er: � WBS name �
 Task description: � brief description �
 Estimated duration: � days or weeks �
 Resources needed:
 Personnel: � numbers of people needed to complete this task �
 Skills: � personnel skills needed to complete this task �
 Tools: � software and hardware needed �
 Travel: � to where? for how long? �
 Other: � other resources needed to complete this task �
 Predecessor tasks: � to be completed before this task can begin �
 Successor tasks: � can be started after this task is completed �
 Work products: � outputs of this task �
 Baselines: � work products to be placed under version control �
 Risk factors: � potential problems for this task �
 Acceptance criteria: � for the work products of this task �
 Starting date: planned _____________ actual _____________
 Ending date: planned _____________ actual _____________
 Personnel: planned _____________ actual _____________
 Other resources: planned _____________ actual _____________
 Work products: planned _____________ actual _____________

8.4 MEASURING AND ANALYZING REWORK EFFORT 339

340 MEASURING AND CONTROLLING WORK PROCESSES

 TABLE 8.3 A partial legend for Table 8.2

 Rework Kind of Rework

 RRr A particular kind of rework of requirements during requirements
acceptance for baselining

 RRd A particular kind of rework of requirements during a design activity
 RRi A particular kind of rework of requirements during an implementation

activity
 RRve A particular kind of rework of requirements during a verifi cation activity
 RRva A particular kind of rework of requirements during a validation activity
 Σ RqR All requirements rework of a particular kind during all software

development activities
 Σ ImT All rework of a particular kind during an implementation activity

 TOTAL All rework of a particular kind during all software development activities

 Table 8.4 provides an example of a rework - effort matrix for a hypothetical but
realistic software product during development and the fi rst 12 months of
operation.

 Note, for example, the large amount of rework effort in Table 8.4 required to
correct requirements defects that were not found during requirements work activi-
ties (1038 – 200: ∼ 80%). Also note that the 3 requirements defects found by users
(Table 8.5) requires more effort than the 50 found during review of the requirements

 TABLE 8.2 A template for rework matrices

 Kind of Rework: ____ evolutionary ____ retrospective ____ corrective

 Work Product:

 Phase When Rework Occurs:

 Totals Rqmts. Design Imple. Verif. Valid. Ops.

 Rqmts. RRr RRd RRi RRve RRva RRo Σ RqR
 Design DRd DRi DRve DRva DRo Σ DeR
 Imple. IRi IRve IRva IRo Σ ImR
 Verif. VEve VEva VEo Σ VeR
 Valid. VAva VAo Σ VaR

 Totals Σ RqT Σ DeT Σ ImT Σ VeT Σ VaT Σ VaO TOTAL

 TABLE 8.4 Rework effort in staff - hours for a hypothetical, but realistic, software product

 Rework Reported: ____ evolutionary ____ retrospective ____ × ____ corrective ____ total

 Kind of Rework:

 Phase When Rework Occurs:

 Totals Rqmts. Design Imple. Verif. Valid. Ops.

 Rqmts. 200 150 130 120 138 300 1038
 Design 360 299 300 365 701 2025
 Imple. 800 800 920 1000 3520
 Verif. 60 150 0 210
 Valid. 70 0 70

 Totals: 200 510 1229 1280 1643 2001 6863

(300 staff - hours vs. 200). On the other hand, the largest percentages of rework
effort was for defects found by users; 29% of all corrective rework occurred during
the fi rst 12 months of system operation (2001/6863). Assuming a work month is
152 staff - hours and that a work - year consists of 11 staff - months per person, main-
tenance fi xes during the fi rst year required approximately 1.2 FTE personnel
(2001/[11 * 152]).

 An alternative approach to determining rework effort can be based on a defect
matrix such as the one illustrated in Table 8.5 and an exponential rework model
such as the one depicted in Figure 8.2 .

 Figure 8.2 is normalized to 1 staff - hour to fi x a defect that is found during require-
ments work activities, 1.5 staff - hour to fi x the defect during design, 2.5 staff - hour to
fi x it during implementation, 5 staff - hour during software verifi cation, 10 staff - hour
during system validation, and 25 staff - hours if found by users (i.e., during operation
of the system). Figure 8.2 is realistic but should be verifi ed or corrected using your
local historical data. Many organizations report even greater exponential growth in
effort required to fi x defects.

 If it takes more (or less) than 1 staff - hour to fi x a defect that is found during
a requirements phase, the effort to fi x the defect should be multiplied by that
factor. For example, if it takes 4 staff - hours to fi x a requirements defect during
requirements acceptance, it will 100 staff - hours to fi x it if found by users (4 × 25).

 FIGURE 8.2 Relative effort to fi x a defect

5

10

15

20

25

Rqmts Design Imple. Verif. Ops

1

Valid.

Relative effort

Phase

1.0 1.5

5.0
2.5

11.5

25.0

8.4 MEASURING AND ANALYZING REWORK EFFORT 341

 TABLE 8.5 An example of a defect matrix for a completed project

 Kinds of Defects:

 Phases When Defects Found:

 Totals Rqmts. Design Imple. Verif. Valid. Ops.

 Rqmts. 50 25 13 6 3 3 100
 Design 60 30 15 8 7 120
 Imple. 80 40 20 10 150
 Verif. 6 3 0 9
 Valid. 7 0 7

 Totals: 50 85 123 67 41 20 386

342 MEASURING AND CONTROLLING WORK PROCESSES

Multiplication factors to fi x other kinds of defects in subsequent phases are listed
in Table 8.6 , which is based on Figure 8.2 .

 The results based on Tables 8.5 and 8.6 are in Table 8.4 , assuming it takes, on
average, 4 staff - hours to fi x a requirements defect during the requirements phase, 6
staff - hours to correct a design defect during design, and 10 staff - hours to correct an
implementation defect during implementation, a verifi cation defect during verifi ca-
tion, and a validation defect during validation. You can easily develop a spreadsheet
program to record defect data and perform the desired rework calculations.

 The relative values in Table 8.6 and the example in Table 8.4 make it apparent
that effort spent in fi nding and fi xing defects as early as possible is effort well spent.
The patterns of values in Table 8.4 indicate where process improvement efforts to
reduce rework should be concentrated.

 8.5 TRACKING EFFORT, SCHEDULE, AND COST; ESTIMATING
FUTURE STATUS

 As illustrated above, the basic mechanisms for tracking effort, schedule, and cost of
software projects are work packages for original work, and change requests and
defect reports for rework; change requests document evolutionary rework and
defect reports document avoidable rework (retrospective and corrective). Recall
that each work package, change request, or defect report must produce one or more
tangible work products that can be verifi ed using objective acceptance criteria. Data
can be collected for completed work and detailed analysis of various kinds of work
activities, such as corrective rework, can be performed. These mechanisms can also
be used to report progress at coarser levels of granularity by providing summary
reports of total effort, cost (personnel cost plus other costs) and schedule for the
work products developed or modifi ed. These data can then be used to estimate effort
and schedule needed to complete a project, as illustrated below.

 8.5.1 Binary Tracking

 Binary tracking is the fundamental technique for accurately tracking project status;
the concept was termed “ binary deliverables ” by Tom DeMarco [DeMarco82] . Each

 TABLE 8.6 Exponential growth of the effort multiplier to fi x a defect for a hypothetical,
but realistic, organization

 Work Phase

 Effort
Multiplier
for Rqmts.

 Defects

 Effort
Multiplier
for Design

 Defects

 Effort
Multiplier
for Imple.

 Defects

 Effort
Multiplier
for Verif.
 Defects

 Effort
Multiplier
for Valid.
 Defects

 Requirements 1
 Design 1.5 1
 Implementation 2.5 1.66 1
 Verifi cation 5 3.33 2 1
 Validation 11.5 7.6 4.6 2.3 1
 Operations 25 16.7 10 5 2.17

work package, change request, and defect report produces one or more work prod-
ucts that must satisfy objective acceptance criteria before the new version(s) become
baselines. A task (a work package for original work, a change request, or a defect
report) is counted as 0% complete until the associated work product satisfi es its
acceptance criteria. The work product is then counted as 100% complete; tracking
is thus binary.

 Binary tracking helps to avoid the 95% complete syndrome of software projects.
Tracking progress on a “ guesstimate ” basis often results in projects that are reported
to be 95% complete for long periods of time. Binary tracking, as depicted in Figure
 8.3 , where each “ X ” represents progress based on binary tracking of work packages,
provides accurate tracking of actual progress. Also note in Figure 8.3 that actual
progress deviates from planned progress early in the project. Corrective action
should have been taken no later than the second month of the project.

 Figure 8.3 illustrates the maxim of binary tracking:

 It is better to be 100% complete with 90% of the work, and know it is true (binary
tracking at month 10), than to think you are 90% complete with 100% of the work,
and hope it is true (the guesstimate at month 5).

 Because binary tracking does not give credit for work in progress, the accuracy of
binary tracking can be improved by tracking at fi ner levels of granularity. Figure 8.4
illustrates binary tracking of work packages in a work breakdown structure. As
illustrated, tasks (the leaf nodes of the WBS) are counted as 0% complete or 100%
complete. Percentage completions for higher level activities are calculated based on
percentages of completion of subordinate tasks and activities. For simplicity of pre-
sentation, each work package in Figure 8.4 is assumed to require equal amounts of
effort. Accuracy can be improved by weighting each task by relative amount of
effort, perhaps on a scale of 1 to 5.

 Work packages 3.1.2, 3.2.2, and 3.2.3 in Figure 8.4 may be 70% or 80% complete
(or 95%) but by binary tracking no credit is given until the associated work products
satisfy their acceptance criteria.

 FIGURE 8.3 Illustrating the 95% complete syndrome

actual
progress

reported
progress

Progress

Months
0%

20%

40%

60%

80%

100%

2 4 8 10 12

xxxx
x

x
xx

x
x

x
xx

x
xxx

x

x
x

xxx

x

planned
progress

planned delivery date

6

reported 95% complete

8.5 TRACKING EFFORT, SCHEDULE, AND COST 343

344 MEASURING AND CONTROLLING WORK PROCESSES

 The accuracy of tracking can be improved by decomposing the work into small
tasks, as illustrated in Figure 8.5 , where it can be seen that activities 3.1.2, 3.2.2, and
3.2.3 are each 50% complete using binary tracking. Again, assuming all tasks require
equal effort, the same project is 71% complete.

 Increasing the level of decomposition from Figure 8.4 to 8.5 increased the accu-
racy of status reporting from 41.5% complete to 71% complete. In general, smaller
tasks (i.e., smaller units of effort) increase the accuracy of reporting but at the risks
of micromanagement and of excessive project resources devoted to measuring and
controlling. To avoid these potential problems, tasks should be not smaller than one
staff - week of effort. Individual software developers (or pair programmers, as in
Agile development) may decompose their work into small units, for example, by

 FIGURE 8.4 Binary tracking of work packages

3.1.1

Coding

Input
Module

Process
Module

Get
Input

Edit
Data

Process
Data

3.

3.1 3.2

3.2.1 3.2.2 3.2.3
3.1.2

Check
Input

Format
Data

100%
0%

50% 33%

0%
100 0%

41.5% complete

 FIGURE 8.5 Increased detail in binary tracking of work packages

Coding

Input
Module

Process
Module

Get
Input

Edit
Data

Process
Data

3.

3.1 3.2

3.1.1 3.2.1 3.2.2 3.2.33.1.2

Check
Input

Format
Data

100%

75% 67%

100% 50%

71% complete

Edit
Incr1

Edit
Incr2

0%100%
0%

Error
Handling

100%

Scan
Input

50% 50%

Proc.
Incr1

Proc.
Incr2

0%100%

3.2.2.1 3.2.2.2 3.2.3.23.2.3.13.1.2.23.1.2.1

completing several iterations on a work product during a weekly cycle, but for
purposes of measuring and controlling, tasks should not be smaller than one
staff - week.

 After the associated work product satisfi es its acceptance criteria, a work package,
change request, or defect report is closed and never reopened. Subsequent modifi ca-
tions of work products are documented in new change requests and defect reports.

 The upper limit on task size is determined by considerations of risk. Recall that
fundamental purposes of measurement and control are to provide frequent dem-
onstrations of progress and early warning of problems when progress is not as
planned or expected. If a task is scoped to require a large amount of effort, and
completion of the task is not as planned, early warning of problems will not be
obtained. A rule of thumb is:

 each task in your software project should require between 1 staff - week and 1 staff -
 month of effort.

 Because effort is the product of people and time, a 2 staff - week task might be
accomplished by 2 people in one week, thus providing a weekly measure of progress,
which is highly desirable.

 Suppose that your project is scoped to require 5 people for 12 months (5 person -
 years of effort). If each task in the project requires 2 staff - weeks of effort, the project
would consist of 120 tasks (or 240 tasks if each task is of 1 staff - week of effort); 120
tasks would, on average, be 10 tasks to be completed each month (2 tasks per staff
member per month). As discussed in Section 5.2, planning at this level of detail is
best accomplished in an incremental, rolling - wave manner.

 Larger projects (e.g., 10 people for 12 months, 20 people for 24 months, or 200
people for 30 months) should be organized into teams of 5 or fewer staff - members
per team, as discussed in Chapter 1 and illustrated in Figure 1.3 . It is the duty of
each team leader, working with her or his team members, to negotiate weekly tasks,
assure that acceptance criteria for work products are satisfi ed, and use binary track-
ing to report progress (or lack thereof) to the project manager and other appropri-
ate stakeholders.

 8.5.2 Estimating Future Status

 Table 8.7 provides an example of using binary tracking to determine project status.
The table indicates that 270 of 300 baselined requirements are suffi ciently covered
by the product architecture. Detailed design specifi cations for 750 modules of the
architecture have been baselined, 500 code modules have been coded, verifi ed, and
accepted as baselines, 200 modules have been successfully integrated and baselined,
and the code for 43 requirements has been validated and baselined (i.e., the code
has been shown to satisfy its intended purpose in its intended environment).

 Clearly, the product is being developed in an iterative manner because code for
20% of the requirements has been validated and design of 30 requirements remain
to be completed. The “ percentage complete ” column is accurate because binary
tracking of work products is being reported. Work based on the remaining 30
requirements may be 80% or 90% completed but we do not count them as progress
measures until they are 100% complete.

8.5 TRACKING EFFORT, SCHEDULE, AND COST 345

346 MEASURING AND CONTROLLING WORK PROCESSES

 Table 8.8 is used to determine the overall percentage completed for the project.
The table contains typical percentages of effort for various types of work activities
in the organization where the project is being conducted.

 From Tables 8.7 and 8.8 it can be determined that 17% of the work is 90% com-
plete (architectural design), 26% of the work is 75% complete (detailed design),
and so forth. Combining the two tables provides the overall percentage completed
for the project:

 90 0 17 75 0 26 50 0 35 20 0 10 14 0 12 56×() + ×() + ×() + ×() + ×() =. % compllete.

 The project is 56% complete, and thus 44% of the work remains to be completed.
 Suppose the project is at the end of its seventh month and 75 staff - months of

effort has been expended thus far. If 75 staff - months is 56% of total project effort,
the remaining 44% will require 60 staff - months of effort ([44/56] × 75). Average
staffi ng level has been approximately 11 software developers (75/7); 60 staff - months
of remaining effort using 11 software developers will require roughly 5.5 additional
months (60/11). It is therefore estimated that the project will require a total schedule
of 12.5 months (7 + 5.5). The project could be completed in 11 months if 4 more
software developers could be added in a manner that did not violate Brooks ’ s law.
It is highly unlikely that the project could be completed in 9 months total time
(another 2 months) by adding 19 software developers (60/2 = 30; 30 = 11 + 19).

 A caution: The calculations above assume that the remaining work to be done
for each task is at the same level of granularity and diffi culty as work completed,
and that a constant rate of progress will prevail for the remaining work activities.
It may be that the most diffi cult parts are completed, meaning the 30 remaining
requirements are all simple and the project is more than 56% complete. Conversely,
the 30 remaining requirements may be the most complex ones and the project is
less than 56% complete.

 TABLE 8.7 Example of project status using binary tracking

 Status Percentage Complete

 270 of 300 requirements traced to design 90%
 750 of 1000 modules designed and accepted 75%
 500 of 1000 modules coded and accepted 50%
 200 of 1000 modules integrated 20%
 43 of 300 requirements validated 14%

 TABLE 8.8 Percentage of effort for various work activities

 Work Activity Percentage of Development Effort

 Architectural design 17%
 Detailed design 26%
 Coding and unit testing 35%
 Integration and verifi cation 10%
 Validation 12%

 The accuracy of the estimate to complete can be improved. First, be sure that the
decomposition criteria for requirements are satisfi ed. Recall that each requirement
should be decomposed until:

 • complexities and risk factors are exposed;
 • opportunities for reuse are identifi ed; and
 • effort to implement the requirement can be estimated.

 Then weighting factors (e.g., on a scale of 1 to 5) based on estimated effort can be
applied to each remaining requirement. It may be, for example, that some require-
ments are estimated to require 3 times or 5 times the amount of effort compared
to some of the other requirements. If a requirement is estimated to be a “ 20 ” in
relative effort compared to other requirements on a scale of 1 to 5, that requirement
clearly needs to be decomposed into a set of smaller, derived requirements. Remain-
ing effort to complete the project can be calculated more accurately using the
weighting factors.

 8.6 EARNED VALUE REPORTING

 Binary tracking of work packages for original work, change requests for evolution-
ary rework, and defect reports for avoidable rework (retrospective and corrective)
can be used to produce earned value (EV) reports. The EV approach for reporting
work package completions is as follows (change requests and defect reports can be
tracked in a similar manner):

 1. Using a rolling - wave approach, specify the planned cost and duration in the
work package for each task to be completed during the coming month.

 2. When a task is completed, credit the planned cost (effort plus other costs) for
the task as its “ earned value ” (i.e., earned value is the planned cost that is
 “ earned back ” when a task is completed).

 3. For all tasks completed to date, compare the sum of the earned values (i.e.,
the planned cost for all of the tasks) to the sum of the actual costs for the
tasks.

 4. For all tasks completed to date, compare the number of tasks that should have
been completed to those that have been completed.

 If the cumulative actual cost to complete all tasks to date is greater than the
planned cost for those tasks (step 4), the project is over budget; conversely, if actual
cost is less than planned cost, the project is under budget. Similarly, if fewer tasks
have been completed to date than planned for completion the project is behind
schedule; if more tasks have been completed than planned the project is ahead of
schedule (step 5). Binary tracking assures that the work as reported to be complete
is actually complete because the work products have passed their acceptance crite-
ria. The terminology of earned value is summarized in Table 8.9 .

 From the formulas in Table 8.9 , it can be seen that a CPI > 1 means the actual
cost is greater than the budgeted cost and a SPI > 1 means the project is behind

8.6 EARNED VALUE REPORTING 347

348 MEASURING AND CONTROLLING WORK PROCESSES

schedule; conversely, a CPI < 1 and an SPI < 1 would mean that the project is under
budget and under schedule. Other combinations of CPI and SPI are of course
possible.

 A caution: the formulas for CPI, SPI, EAC and ECD in Table 8.9 are sometimes
inverted, as in

CPI

BCWP
ACWP

= ,

SPI

BCWP
BCWS

= ,

which makes

EAC

BAC
CPI

=

and

ECD

SCD
SPI

= .

 TABLE 8.9 Earned value terminology

 Term Defi nition Explanation

 BCWP Budgeted Cost of Work
Performed

 Cumulative amount of the budget for all
tasks completed to date (i.e., the earned
value)

 ACWP Actual Cost of Work
Performed

 Actual cost of all tasks completed to date

 BCWS Budgeted Cost of Work
Scheduled

 Planned cost of all tasks scheduled for
completion to date

 BAC Budget Actual Cost Planned cost of the total project
 SCD Scheduled Completion Date Planned completion date of the project
 EAC Estimated Actual Cost Estimated actual cost of the project based

on progress to date
 ECD Estimated Completion Date Estimated completion date based on

progress to date
 CV Cost Variance CV = ACWP – BCWP
 SV Schedule Variance SV = BCWS – BCWP
 CPI Cost Performance Index CPI = ACWP / BCWP
 SPI Schedule Performance Index SPI = BCWS / BCWP
 CVC Cost Variance at Completion CVC = EAC – BAC
 SVC Schedule Variance at

Completion
 SVC = ECD – SCD

 where EAC = BAC * CPI and ECD = SCD * SPI

 In this case CPI < 1 and SPI < 1 would mean a project is over budget and behind
schedule. Both sets of formulas produce the same values of EAC and ECD if they
are consistently applied.

 An example of an earned value report is provided in Figure 8.6 . In this example,
the project is over budget because, by the formulas in Table 8.9 , the CPI is greater
than 1 (i.e., A > C) and behind schedule because the SPI is greater than 1 (i.e.,
 B > C). All 8 combinations of A, B , and C are possible, as illustrated in Table 8.10 .
The relationship among A, B , and C in column 1 of Table 8.10 is illustrated in Figure
 8.6 .

 Cost performance and schedule performance indexes can be used to calculate
the estimated actual cost and estimated completion date using the formulas in Table
 8.9 . An example is provided in Figure 8.7 . Because the CPI and SPI will vary from
one reporting period to the next, the EAC and ECD will also vary from period to
period. For example, a project may be over budget but ahead of schedule in one
reporting period, back on planned budget and schedule in the next, or on budget
but behind schedule in the next reporting period.

 The examples in Figures 8.6 and 8.7 are exaggerated for the purposes of illustra-
tion. On a well - run project, the ACWP and BCWP lines will closely track the BCWS

 FIGURE 8.6 An example of earned value reporting

ACWP

BCWS

BCWP

Effort or
Dollars

Time

A

B

C

CPI = / C
SPI = B / C

A

reporting date

 TABLE 8.10 Earned value relationships

 Orientation: A
 B
 C

 A
 C
 B

 B
 A
 C

 C
 A
 B

 B
 C
 A

 C
 B
 A Condition:

 Cost overrun X X X

 Cost savings X X X

 Schedule delay X X X

 Schedule advance X X X

 A : ACWP; B : BCWS; C : BCWP

8.6 EARNED VALUE REPORTING 349

350 MEASURING AND CONTROLLING WORK PROCESSES

line, meaning the project will remain roughly on schedule and on budget throughout
the project. Said another way, the schedule and budget variances (SV and CV) will
be near 0 and the cost and schedule performance indexes (CPI and SPI) will be
near 1 in each reporting interval; the cost and schedule variances at completion
(CVC and SVC) will be near zero and your project will deliver an acceptable system
on schedule and within budget. You can develop reports similar to those in Figures
 8.6 and 8.7 using spreadsheets to do the calculations and prepare the graphs (see
also the control panel in Section 8.4.1).

 The status of work packages for change requests and defect reports (evolutionary
and avoidable rework) can be tracked separately using binary tracking and pre-
sented as earned value reports in a manner similar to tracking and reporting pro-
gress of original work. Alternatively, a composite of all work can be reported
together (original work, evolutionary rework, avoidable rework).

 An example of earned value tracking follows: Suppose that a certain project has
just completed the third month of a 12 - month schedule. The planned budget for the
project is $ 500,000. According to the project plan, $ 40,000 of the budget should have
been completed in the fi rst three months; $ 50,000 has been completed. It has cost
 $ 60,000 to complete the work to date. Thus:

 SCD = 12 months
 EAC = $ 500,000
 BCWP = $ 50,000
 BCWS = $ 40,000
 ACWP = $ 60,000

 Using the formulas in Table 8.9 , project status at the end of month 3 is found
to be:

 FIGURE 8.7 Earned value projections of Estimated Actual Cost and Estimated
Completion Date

ACWP

BCWS

BCWP

Dollars

Time

A

B

C

CPI = C
SPI = C / B

/ A

EAC = BAC * CPI

ECD = SCD * SPI

BAC

CVC

SVC

SCD

reporting date

CPI

,
,

= =$
$

. ,
60 000
50 000

1 2

SPI

,
,

= =$
$

. ,
40 000
50 000

0 8

and the EAC and ECD are

 EAC , ,= × =$. $,500 000 1 2 600 000

 ECD months= × =12 0 8 9 6. . .

 Although binary tracking and earned value reporting are presented here for an
integrated set of work activities, as occur in a software project, the techniques can
be used to track activities that are not well integrated. For example, you can use this
approach to good advantage during the maintenance phase of the software life cycle
when various change requests and defect reports are processed on an individual
basis. Cumulative values of actual cost and time can be compared to budgeted values
for, say, all maintenance activities month by month on an annual basis.

 In summary, EV reports are a concise way of presenting:

 1. the current status of cost (effort plus other costs), schedule, and progress on
work products;

 2. trends over time; and
 3. ongoing (e.g., monthly) estimates of the fi nal cost of a project (EAC) and the

delivery date of the system (ECD) based on the ongoing current status of your
project.

 Earned value reporting based on binary tracking provides accurate measures of
work products completed because work products are not counted as complete until
they satisfy objective acceptance criteria and become baselines that are placed
under version control. Subsequent changes to baselined work products are initiated
by change requests and defect reports, which are also accepted, baselined, and
tracked using data that are tracked in a binary manner based on objective accep-
tance criteria.

 Necessary conditions for accurate earned value reporting are as follows:

 1. Specifi cation of work packages for original work, change requests, and defect
reports to be completed during the next month, updated monthly in a rolling -
 wave manner.

 2. Iterative development and baseline acceptance of work products at frequent
intervals to provide demonstrations of progress and early warning of
problems.

 3. Version control of baseline work products.
 4. Binary tracking based on objective acceptance criteria for work products.
 5. Accurate reporting of effort and time required to complete work packages,

change requests, and defect reports.

8.6 EARNED VALUE REPORTING 351

352 MEASURING AND CONTROLLING WORK PROCESSES

 6. Standard methods, tools, and formats across the organization for capturing and
reporting earned value status.

 7. Use of earned value status to forecast estimated actual cost and estimated
completion date.

 For earned value reporting to be effective, effort and time (item 5) must be accu-
rately reported. Time cards prepared on a weekly basis (e.g., each Friday afternoon)
are not acceptable because the amount of time you spend on various work activities
during the week will not be accurately recalled. Pleasant tasks will be recalled as
being much shorter than was actually required; unpleasant or diffi cult tasks will be
recalled as taking much longer than actually required, or perhaps they will not be
reported.

 Alternatives to weekly time cards include:

 1. electronic templates, completed at the end of each day or at intervals during
the day;

 2. templates for recording work activities that are generated for each work
package, change request, or defect report assigned to each software developer;
and

 3. templates attached to the version control system that require entry of data on
check - in of accepted work products.

 An alternative to automated data collection is to have a nonthreatening person,
(e.g., a clerical worker) collect the data manually from each software developer on
a daily basis, enter it into a spreadsheet, and generate earned value reports based
on composite data on a weekly basis.

 It is the responsibility of each team member to report time and effort data for
each task in a timely manner; it is the responsibility of each team leader to ensure
that accurate time and effort data are being entered by the team members. It is the
responsibility of quality assurance personnel to periodically audit the reporting
system to ensure that time and effort data are accurate and timely.

 The smallest level of granularity in effort to be reported should be in the range
of 2 to 4 work - hours. Said differently, the amount of time spent on each of the 2 to
4 most signifi cant tasks that occupy an 8 - hour work day should be reported. If, for
example, you close 6 defect reports in one day, you should report the time spent on
each. However, in general, your project is not well organized if your staff members
work on more than 4 distinct tasks per day, on average.

 Lawyers and accountants, when working for clients, often report their time in 15
minute increments. This level of granularity is not necessary for software projects.
Recall that the reasons for measuring various attributes of software projects are to
provide frequent indications of progress and early warning of problems, to permit
analysis of trends, to allow estimates of fi nal cost and completion date of your
project, and to build a data repository of completed project. These goals can be
achieved by reporting effort in units of 2 to 4 hours at the end of each day, or peri-
odically throughout the day. This level of detail is suffi cient to satisfy the purposes
of measurement while avoiding the tedium and interruption to work activities inher-
ent in more detailed reporting.

 A fi nal caution on collecting and reporting project data (both product and
process): reporting of project data should be at the level of teams (3 to 5 individ uals)
and projects (aggregations of teams). Data should never be related to individuals,
except in private meetings where the emphasis should be “ what can I do, as your
project manager (or team leader) to help you do a better job? ” and not “ how could
you be so stupid as to have made so many mistakes? ” Nothing will kill a measure-
ment program faster or more effectively than public disclosure of data related to
individual productivity and individual quality of work.

 Because of the myriad factors that infl uence productivity and quality of software,
individuals may be incorrectly credited or blamed for exceeding or failing to meet
expectations. For example, Joe Programmer may have the lowest productivity, as
measured in lines of code or function points produced per week, or defect reports
closed per week. This may be because Joe, being the best programmer in your group,
was given the most diffi cult parts or it may be that Joe thinks carefully and writes
concise, but readable and correct, code that requires fewer lines than the more
verbose and defect - prone code written by others. Or it is possible that Joe, while
excellent at some kinds of tasks, was mistakenly assigned a task for which he had
no experience or aptitude.

 8.7 PROJECT CONTROL PANEL ©

 The Project Control Panel © (PCP) is an MS Excel spreadsheet tool for entering
project status data and preparing visual representations of the data; a copy of the
tool can be downloaded by clicking on the referenced link [PROJCP] . The original
version of PCP was developed under the auspices of the Software Project Managers
Network (SPMN); it is now administered by the Integrated Computer Engineering
(ICE) Directorate of the American Systems Corporation.

 Figure 8.8 illustrates the PCP display. Five categories of project data are dis-
played: Progress (which includes Earned Value, Productivity, and Completion), Risk,
Change, Staff, and Quality. Each element in Figure 8.8 has a corresponding work-
sheet for entering data and viewing expanded displays. The corresponding work-
sheets can be accessed by clicking on the display or by clicking on the worksheet
bar at the bottom of the PCP workbook. The displays in Figure 8.8 are generated
by Visual Basic code that uses the data from the worksheets to generate the displays.
All items in the control panel display can thus be modifi ed and tailored to suit the
needs of each project and/or each organization by modifying the Visual Basic
code.

 The upper left corner of the display contains the dates of the reporting period
and the earned value presentation. The reporting period can be selected to be
 “ weekly ” or “ monthly. ” The BCWP line illustrates the BCWS and the BAC; the
project is behind schedule because the BCWP is less than the BCWS. The ACWP
line indicates that the project is over budget because the BCWP is less than the
ACWP. The EAC is projected on the ACWP line, and as can be seen, the EAC is
greater than the BAC, based on the CPI value of 0.8 displayed to the right of the
EV displays (the CPI is calculated as ACWP/BCWP and EAC is calculated as
BAC/CPI; thus a CPI less than 1 indicates that the project is currently over budget).

8.7 PROJECT CONTROL PANEL© 353

354 MEASURING AND CONTROLLING WORK PROCESSES

The Elapsed Time display shows the end date for the current reporting period. Data
for earned value calculations can be imported from Microsoft Project.

 The To - Complete Performance Index (TCPI) gauge measures the same ratio for
the remainder of the project that CPI measures up to the end of the current report-
ing period. TCPI is calculated as

BAC BCWP
EAC ACWP

−
−

.

 It is used in conjunction with the CPI gauge. According to the control panel users ’
manual, which can be downloaded from the referenced Web site:

 If TCPI is much greater than CPI, then the project team is anticipating an effi ciency
improvement to make it more effective in meeting cost estimates in the future than has
been the case to date. The estimated total cost of the project (EAC) can therefore be cali-
brated by comparing TCPI with CPI. Always question claims of future productivity
improvement that results in a 20 percent or greater increase in TCPI over CPI to ensure
they are based on sound reasoning. This is especially true of “ silver bullets ” like new
tools, languages, or methodologies that may actually decrease productivity due to training
and start - up costs. The redline on this gauge [TCPI] should be about 20 percent above
the current value of the CPI gauge to show the relationship and warning level between
the two gauges.

 The Schedule Compression gauge in Figure 8.8 shows the ratio of the Estimated
Completion Date (ECD) for this project compared to the “ nominal ” schedule,
which is computed as

 FIGURE 8.8 Display from the Project Control Panel © [PROJCP]

Earned Value
(BCVP)
1 Millions

Reporting Period

Cost
Performance
Index (CPI)

Quality Gate

Task Status This Period

Quality Gate

Tasks Completed

0

From To

11/5/2008

3 6

0.7
0.8

0.9 1.0 1.1
1.2

1.3

17Total Due

9

E
A

C

12

B
O

W
S

B
A

C

Actual Cost
(ACVP)
1 Millions 0 3 6 9 12

Elapsed Time

Months 0 3 6 9 12

12/5/2008

To-Complete
Performance
Index (TCPI)

0.7
0.8

0.9 1.0 1.1
1.2

1.3

Time

T
as

ks
C

om
pl

et
ed

D
ef

ec
tsI

m
p

ac
t

Voluntary Turnover
Per Month (%)

0.5
1.0

1.5 2.0 2.5
3.0

3.5

Requirements Volatility
Per Month (%)

0.5
1.0

1.5 2.0 2.5
3.0

3.5

Overtime Hours
Per Month (%)

Req Des

Defects by Activity

Probability

Phase discovered in:

Code Test

Req Des Code Test

10
20

30 5040
60

70

CM Volatility
Per Month (%)

0.5
0 0

Anonymous Channel
Warning Top 10 Risks

01 1

0 2 01 1

1 0 00 1

0 1 00 0

0

4
5

3
2

1

1-20 21-40 41-60 61-80 81-99

0 10 0

1.0
1.5 2.0 2.5

3.0
3.5

Schedule
Compression

(%)

70
80

90 100110
120

130

3Completed On Time

11Total Over Due

3Completed Late

D
ef

ec
ts

Req Des

Defects by Status
Code Test

Oper Closed

PROGRESS
PRODUCTIVITY

COMPLETION

RISK CHANGE STAFF QUALITY

 Nominal calendar months person-months= × ()2 5
1 3. .

 Recall from Chapter 6 that the relationship between schedule and effort is typically
involves an exponent in the range of 0.33 to 0.5. The users ’ manual for the control
panel notes that a Schedule Compression ratio less than 80% of the Nominal sched-
ule indicates a high - risk schedule; this is indicated by the shaded portion of the
Schedule Compression gauge. The 80% value is consistent with the schedule com-
pression values in the SLIM and COCOMO estimation tools.

 The Quality Gate displays in Figure 8.8 are based on binary tracking of task
completions. Total Due is the total number of tasks that should have been completed
during the current reporting period plus any overdue tasks from previous reporting
periods. Completed On Time shows the number of tasks that were completed as
scheduled. Completed Late includes tasks scheduled for completion during the
current reporting period that were completed late plus any overdue tasks from
previous periods that were completed in the current period. Total Overdue is the
total number of tasks for all previous reporting periods plus the current period that
were overdue at the end of the current reporting period:

 Total Overdue Total Due Completed on Time Completed Late= − +()..

 Total Overdue indicates the number of tasks that must be completed to get the
project back on schedule.

 The Quality Gate Tasks Completed graph shows the cumulative number of tasks
planned for completion by the end of the current reporting period (the solid line)
and the actual number completed (the dashed line). The horizontal distance between
the two lines indicates the current slippage in schedule to date, which is similar to
the horizontal distance between BCWS and BCWP in Figures 8.6 and 8.7 .

 The RISK area in Figure 8.8 shows, in the table, the number of risk factors that
have been identifi ed in each of the Consequence/Probability cells. Risk exposure is
the product of Probability × Impact (see Chapter 9); thus the risk factors in the
lower left corner of the table have the lowest risk exposures and those in the upper
right corner have the highest exposure. Clicking on the “ Top 10 Risks ” button dis-
plays a worksheet that shows the name of the risk factor, its probability, impact, and
risk exposure.

 The Anonymous Channel Warning button displays a red light when an anony-
mous warning of a potential problem (a risk factor) or an anonymous warning of a
real problem has been received. The red light switches off when all anonymously
reported risk factors and problems have been dealt with. Unfortunately, the culture
in some organizations does not provide an atmosphere in which individuals feel that
it is okay to report risk factors and problems. The anonymous reporting channel
allows them to raise issues without fear of retribution.

 The CHANGE area in Figure 8.8 indicates the percentage of Confi guration
Management Volatility and Requirements Volatility per Month. CM Volatility is
calculated as the ratio of baselined work products (i.e., confi guration items) that
have been modifi ed (or replaced) and rechecked into the confi guration manage-
ment system during the last reporting period divided by the total number of base-
lined confi guration items. As indicated in Figure 8.8 , a threshold value of 2% is an
indicator of excessive change.

8.7 PROJECT CONTROL PANEL© 355

356 MEASURING AND CONTROLLING WORK PROCESSES

 Requirements Volatility per Month is calculated by dividing the sum of new,
changed, and deleted requirements specifi ed during the current reporting period by
the total number of requirements at the end of the reporting period.

 The shaded areas indicate that the threshold for both gauges in CHANGE is set
at 2%. It should be noted that the shaded areas for all of the gauges in Figure 8.8
can be reset as desired.

 The STAFF area in Figure 8.8 indicates percentages of Voluntary Turnover per
Month and Overtime Hours per Month. Voluntary Turnover per Month is the
number of project members leaving the project during the current reporting period
(i.e., the current month) when they are still needed on the project divided by the
number of staff at the beginning of the reporting period. The percentage of Over-
time Hours per Month is calculated by dividing the total number of overtime hours
worked by all project members by the total number of hour worked on a 40 hour
per week schedule. According to the control panel users ’ manual the target range
should be less than 10% (i.e., less than 4 hours overtime per week per staff member,
on average); when the overtime rate approaches 20% (8 hours overtime per week
per person, on average) there is a high risk of future high Voluntary Turnover.

 The QUALITY area of Figure 8.8 is concerned with defects by activity and the
Open/Closed status of known defects. The Defects by Activity graph displays the
number of defects detected for the development phases of requirements, design,
code, and test. The horizontal axis of Defects by Activity indicates the phases in
which defects were discovered. The color coding of each bar graph indicates the
number of defects of each kind found in each development phase; for example, the
left - most bar graph indicates that most requirements defects were found during
requirements work activities, some were found during design, some during coding,
and some during testing. The Defects by Activity graph reports similar data as in
Table 8.4 in this chapter, but with the axes interchanged.

 The Defect Status graph indicates the number of defect reports that are open
(i.e., the defect is yet to be fi xed) and the number that have been closed (i.e., the
defect has been fi xed and the modifi ed work has been accepted as a new version of
the baselined work product).

 The next to last worksheet in the Project Control Panel provides an example of
tailoring of the spreadsheet display. The c21b users ’ manual (downloadable from
the referenced Web site) provides instruction on how to modify the Visual Basic
code to modify and create new displays. For example, you might want to have new
spreadsheets and gauges (or a different control panel) to record data about software
inspections. You might display the average rate of software inspections and the
average inspection effi ciency.

 The former display might show the rate of inspection checking by dividing the
average number of logical document pages (or function points or lines of code)
inspected per inspection meeting by the average number of work - hours spent by
inspection team members during the last reporting period; the display would show
pages (or some other measure) inspected per staff - hour. The latter display (average
inspection effi ciency) would display the number of defects found by all inspections
during the previous reporting period divided by the total number of work - hours
expended on inspections.

 The inspection displays could be monitored over time to determine increases or
decreases in inspection rates and inspection effi ciency. Similar displays could be

developed for testing effort and defects found during testing. Comparisons of rates
and effi ciencies of code inspections versus testing could be readily be made within
reporting periods and cumulatively over reporting periods.

 8.8 KEY POINTS OF CHAPTER 8

 • The purposes of process measurement are to provide frequent indications of
progress, to provide early warning of problems, to permit analysis of trends in
your project, to allow estimates of the fi nal cost and completion date of
your project, and to build a data repository of project histories for your
organization.

 • The primary dimensions of work to be measured and controlled are effort,
schedule, and cost for each of the various work processes.

 • Measurement of effort, schedule, and cost must be related to tracking of work
products produced using binary tracking.

 • The amount of effort, time, and money you invest in measurement and control
is determined by considerations of risk: what is the potential impact of not
doing enough? what is the potential impact of doing too much?

 • Possibilities for corrective action, when actual values of project attributes are
not as planned or expected, include extending the schedule, adding more
resources, using superior resources, improving various elements of the develop-
ment process, and/or de - scoping the product requirements.

 • Possibilities for corrective action that should never be used include excessive
amounts and durations of overtime; reduction or elimination of planned veri-
fi cation and validation activities; reduction of planned user documentation,
training aids, and so forth; and reduction, without agreement of the customer,
of any planned activity that would reduce the specifi ed features or quality
attributes of the system or product to be delivered.

 • Rolling - wave planning by team leaders and project managers, with detailed
plans for the coming month in the range of one to two staff - weeks per task,
provides suffi cient granularity for accurate tracking of progress.

 • Binary reporting of work packages is the only technique known to us that
avoids the 95% complete syndrome of software projects.

 • Earned value reporting based on binary tracking of completed work packages
provides concise reports of actual versus planned cost, schedule, and work
completed.

 • Reporting of time spent on tasks at intervals of 2 to 4 hours each day by each
individual is suffi ciently accurate for most software projects.

 • Productivity and quality data should be reported at the level of teams and
projects but never at the level of individual contributors.

 • The following techniques, when used together, can provide accurate status
information and accurate forecasts for software projects: rolling - wave elabo-
ration of work plans documented in work packages, change requests, and
defect reports; iterative development with frequent demonstrations of progress;
baseline control of work products; tracking and analysis of rework by kind

8.8 KEY POINTS OF CHAPTER 8 357

358 MEASURING AND CONTROLLING WORK PROCESSES

(evolutionary, retrospective, corrective); binary tracking of work packages,
change requests, and defect reports; and earned value reporting.

 • Summary displays, such as the one provided by a control panel, can provide
succinct status reports for software projects.

 REFERENCES

 [Basili94] Basili , V. , and S. Green . Software process evolution at the SEL . IEEE Software
(July 1994): 58 – 66 .

 [Boehm01] Boehm , B. , and V. Basili . Software defect reduction top 10 list . Computer
(January 2001): 135 – 137 .

 [DeMarco82] DeMarco , T. Controlling Software Projects . Yourdon Press , 1982 .
 [Fairley05] Fairley , R. E. , and M. J. Willshire . Iterative rework in software development:

The good, the bad, and the ugly . IEEE Computer (September 2005). Vol. 38 ,
No. 9 . pp 34 – 41 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product. SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology — Software Life
Cycle Processes . Engineering Standards Collection. IEEE Product: SE113.
Institute of Electrical and Electronic Engineers, August 2003.

 URLs

 [PROJCP] http://www.iceincusa.com/16CSP/content/software/tools/cntrlpnl/cpnlrgt.htm

 EXERCISES

 8.1. Why is it important to include objective measures of work products completed
when tracking effort, schedule, and cost?

 8.2. CMMI - DEV - v1.2 lists two related process areas for Project Monitoring and
Control: Project Planning, and Measurement and Analysis.

 Access the Web site Access the CMMI Web site at http://www.sei.cmu.edu/
publications/documents/06.reports/06tr008.html , review the Project Monitor-
ing and Control process area, and briefl y explain how each of the two related
process areas is related to Project Monitoring and Control.

 8.3. People who play different roles in a software project need differing kinds of
status reports concerning process attributes. For each of the following, list and
briefl y explain the kinds of process status reports that would be useful to them
(assume an iterative development process):

 a. Customer
 b. Project manager
 c. Designers
 d. Programmers
 e. Testers

 8.4. IEEE Standard 1058 specifi es, in clause 5.3, that at minimum, requirements,
schedule, budget, and quality should be measured and controlled in a software
project. List three additional attributes of a software project that might be
measured and controlled. Briefl y explain why it might be important to measure
and control each of them.

 8.5. Briefl y explain the differences among budget, cost, and price for a software
project.

 8.6. Software work consists of original work, evolutionary rework, retrospective
rework, and corrective rework. Give a brief, specifi c example of each kind of
work.

 8.7. Refer to Table 8.4 .

 a. What percentage of total effort was spent on fi xing design defects?
 b. What percentage of effort to fi x defects found by users (Ops) was spent on

fi xing requirements defects?

 8.8. Suppose that the remaining effort to complete the work in Table 8.7 is as
follows:

 Weighting of 4 for each of the remaining 30 requirements
 Weighting of 3 for each of the remaining 250 modules to be designed and

accepted
 Weighting of 1 for each of the 500 modules to be coded and accepted
 Weighting of 2 for each of the remaining 800 modules to be integrated
 Weighting of 1 for each of the remaining 257 requirements to be

validated

 a. What is the percentage of completion for the project?
 b. How many months remain to complete the project, assuming the project

has just ended its seventh month and 77 staff - months of effort have been
expended?

 8.9. Using the formulas in Table 8.9 , develop a spreadsheet program to compute
the following factors for a software project:

 Cost variance (CV)
 Schedule variance (SV)
 Cost performance index (CPI)
 Schedule performance index (SPI)
 Estimated actual cost (EAC)
 Estimated completion date (ECD)
 Cost variance at completion (CVC)
 Schedule variance at completion (SVC)

EXERCISES 359

360 MEASURING AND CONTROLLING WORK PROCESSES

 8.10. Apply the spreadsheet program developed in Exercise 8.9 to compute the
values listed in the exercise.

 a. Use the following set of data: BCWP = $ 40K, ACWP = $ 50K, and
BCWS = $ 60K. Assume that BAC = $ 200K, SCD = 12 months, and that the
project is at the end of the third month of a 12 - month schedule.

 b. Verify the correctness of your spreadsheet by performing the calculations
by hand; show your work.

 8.11. Repeat Exercise 8.10 with the following data:

 After 6 months a project has completed $ 60K of its planned budget. The plan
was to complete $ 50K of the planned budget. The cost for the work completed
is $ 45K. The project is planned for 10 months and the total budget is $ 100K.

 8.12. Briefl y explain how work packages, binary tracking, and earned value report-
ing can be used to good advantage during the maintenance phase of the soft-
ware life cycle when various change requests and defect reports are assigned
to individuals and processed on an individual basis. Assume there is an annual
budget for maintenance activities.

 8.13. Briefl y explain why data related to productivity and quality should be made
public within software organizations at the team and project levels. Briefl y
explain why data related to productivity and quality should never be reported
at the level of individual project members.

 8.14. Download a copy of Project Control Panel © from the referenced Web site
[PROJCP].

 a. Enter the earned value data from Exercise 8.10, and compare the results
to your hand calculations.

 b. Follow the instructions in the cp21b users ’ manual to modify the control
panel display in some interesting ways.

 APPENDIX 8A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR MEASURING AND
CONTROLLING WORK PROCESSES

 See Appendix 7A (Chapter 7) for an overview of the measurement and control
elements of CMMI - DEV - v1.2, ISO/IEEE Standard 12207 , IEEE 1058 , and the PMI
Body of Knowledge.

361

363

9
 MANAGING PROJECT RISK

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 When a software project is successful, it is not because there were no problems but
because the problems were overcome.

 — Paul Rook

 9.1 INTRODUCTION TO MANAGING PROJECT RISK

 The goal of risk management is to identify and mitigate potential problems with
suffi cient lead time to prevent adverse impacts on project factors, such as budget,
schedule, resources, and cost, and on product features and quality attributes. If unat-
tended, potential problems can become real problems that may lead to crisis situa-
tions. For software projects, a crisis is a “ show - stopper ” that halts or seriously
impedes progress. You do not want to be the manager of, or a member of, a project
that is in a crisis situation; risk management can help you mitigate potential prob-
lems and avoid crises.

 Informally, it can be said that risk is the chance a bad thing might happen and
the associated consequences should the bad thing happen. More formally, the chance
of a bad thing happening is expressed as the probability of occurrence. The bad
thing that might happen is a potential problem that hasn ’ t happened yet but, if it
occurs, will have a negative impact on one, some, or all of budget, schedule, resources,
cost, product features, and quality attributes. The consequences of the negative
impact could be loss of human life, property, information, money, reputation, late
delivery of an unacceptable product, unacceptable cost, or your job.

 Risk is thus characterized by probability p , where 0 < p < 1, and potential loss L .
For software projects, the potential loss is usually expressed on an ordinal scale of

364 MANAGING PROJECT RISK

(Low, Medium, High), or in monetary units, or in dimensionless units of utility. 28
In mission - critical situations, risk may be expressed as the potential for loss of
human life or the potential for signifi cant loss of information or property. Both
characterization (probability and potential loss) are important. If p = 0, it means
that the potential loss will never become a real loss; if p = 1, it means that the loss
has already occurred or will occur with certainty. If the potential loss is negligible
there is no reason for concern. If the potential loss is great, effort may be exerted
to reduce the impact or the probability even if the probability of occurrence is
already very low.

 Risk exposure (RE) is the product of probability and potential loss:

 RE = ∗p L.

 A risk factor having probability p = 0.25 of occurrence and potential loss of
 L = $ 100,000 has a risk exposure of $ 25,000.

 Quantitative values of probability and potential loss can be used to determine
levels of risk exposure, as in Table 9.1 a . It is not always possible to quantify the
probabilities and potential impacts of risk factors. In those cases risk exposure is
characterized in a qualitative manner using an ordinal measurement scale. Risk
exposure is then determined by combinations of probability and potential impact,
as in Table 9.1 b .

 TABLE 9.1A Quantitative determination of risk exposure levels

 Potential Impact L = 25 L = 50 L = 75 L = 100

 Probability

 p = 0.25 6.25 12.5 18.75 25

 p = 0.5 12.5 25 37.5 50

 p = 0.75 18.75 37.5 56.25 75

 p = 0.90 22.5 45 67.5 90

 28 Utility is a dimensionless unit of measure, usually on a scale of 0 to 100, of relative value within a given
context. A glass of water, for example, has much greater utility to a person lost in the desert than to a
person in the comfort of her or his home.

 TABLE 9.1B Qualitative determination of risk exposure levels

 Potential Impact Low Medium High Very high

 Probability

 Low Low Medium High Medium

 Medium Low High High High

 High Medium High Very high Very high

 Very high Medium High Very high Extremely high

 Risk is the probability something bad will happen and the associated loss if the
bad thing does happen. Conversely, it can be said that opportunity is the probability
something good will happen, with an associated gain if it happens. Viewing oppor-
tunity as the converse of risk is mirrored in the sayings: “ one person ’ s risk is anoth-
er ’ s opportunity ” and “ you see the glass as half - empty, but I see it as half - full. ”

 A risk - averse organization, or individual, will typically choose lower risk alterna-
tives while a risk - taking organization, or individual, will typically choose higher risk
alternatives because high - risk situations typically have high gains, if successful, but
high losses if unsuccessful. Some organizations pursue opportunity management,
which involves assessing potential gains to be made and the risk involved, and being
prepared to take advantage of situations, should potential gains overcome the
potential for losses in the judgment of project stakeholders.

 9.2 OBJECTIVES OF THIS CHAPTER

 This chapter presents methods and techniques for managing risk factors in your
software projects. After reading this chapter and completing the exercises you
should understand:

 • the terminology of risk management for software projects
 • the role of conventional project management techniques in managing generic

risk factors for software projects
 • methods and techniques used to identify, analyze, prioritize, and mitigate

project - specifi c risk factors
 • risk mitigation strategies of avoidance, transfer, acceptance, immediate action,

and contingency plans and actions
 • contents of risk management plans
 • top - N risk tracking and reporting
 • format, content, and use of risk registers
 • crisis management for software projects
 • risk management at the organizational level
 • joint risk management with customers and subcontractors

 Because projects, in general, and software projects, in particular, are character-
ized by many uncertainties (i.e., they are inherently high - risk endeavors), each of
the frameworks, standards, and guidelines presented in this text (CMMI - DEV - v1.2,
ISO/IEEE Standard 12207 , IEEE Standard 1058 , and PMBOK) include processes
and recommended practices for risk management. The relevant aspects of these
standards and guidelines are contained in Appendix 9A of this chapter. In addition
an overview IEEE/EIA Standard 1540 - 2001 for Life Cycle Processes — Risk Man-
agement is presented in Appendix 9A . Terms specifi c to risk management are
defi ned in Appendix 9B to this chapter and in [Fairley05] .

 Additional terms used in this chapter and throughout this text are defi ned in the
Glossary at the end of the text. Presentation slides for this chapter and other sup-
porting material are available at the URL listed in the Preface.

9.2 OBJECTIVES OF THIS CHAPTER 365

366 MANAGING PROJECT RISK

 9.3 AN OVERVIEW OF RISK MANAGEMENT FOR
SOFTWARE PROJECTS

 Software projects are inherently risky endeavors because achieving a successful
outcome (i.e., delivering an acceptable product on time and within budget) involves
establishing and maintaining a balance among many technical, organizational, social,
and political constraints, any or all of which may change as a project evolves. Each
potential problem for a software project is called a risk factor because it represents
a threat to a successful outcome. Table 9.2 lists some commonly occurring kinds of
risk factors for software projects.

 The risk of inadequate calendar time may result from:

 • committing to a bad estimate,
 • customer or management compression of a schedule without a corresponding

adjustment to resources and/or requirements,
 • addition of requirements without corresponding adjustments to schedule and

resources, or
 • reduction in planned resources without corresponding adjustments.

 The risk of insuffi cient funds to conduct a project may involve lack of enough
money in the budget to carry out all of the necessary work activities (perhaps caused
by a bad estimate or by agreeing to a “ mandated ” budget), or it may involve not
receiving the money in a timely manner. In the latter case, for example, the customer
who is paying for a project may delay incremental payment of funds or your man-
agement may defer allocation of needed funds until next fi scal quarter or fi scal
year.

 Lack of adequate requirements management can create may different kinds of
potential and real problems. As indicated in Table 9.2 , requirements may be infea-
sible because:

 TABLE 9.2 Some commonly occurring risk factors for software projects

 Risk Factors Examples

 Schedule Inadequate calendar time
 Budget Insuffi cient funds when needed
 Requirements Infeasible, unstable, incorrect, incomplete, inconsistent
 Personnel Recruitment, ability, retention
 Process Ineffi cient and/or ineffective procedures
 Resources Host and target machines; supporting organizations
 Technology Platform and domain
 Geography Multiple development sites
 External factors Vendors and subcontractors
 Operational risks Missing features, inadequate performance
 Quality User and customer dissatisfaction
 Maintenance Corrections, missing features

 • your organization lacks skill and/or experience in the application domain;
 • the requirements may be constantly changing and fail to stabilize after a rea-

sonable amount of time;
 • they may be incorrectly state user needs and customer expectations;
 • they may be incomplete, thus requiring the software engineers to “ fi ll in the

blanks ” as they think best (and which may be wrong); or
 • they may be inconsistent, which can result in failure of various product features

to interact correctly.

 Other requirements - based risk factors arise from requirements creep and “ gold
plating, ” as termed by Boehm [Boehm91] . Requirements creep, as the name implies,
occurs when requirements increase over time without compensating adjustments to
schedule, resources, budget, and technology. Requirements creep is the result of
ineffective requirements management.

 Gold plating occurs when features and quality attributes that are not cost -
effective (as determined by users and customers) are included. Gold plating often
occurs when software developers add features that are not specifi ed in the require-
ments and are not needed to support primary requirements (i.e., they are not
derived features).

 Personnel risks include:

 • recruitment risk: potential inability to recruit the necessary numbers of
personnel;

 • ability risk: potential lack of the necessary skills and abilities among project
personnel; and

 • retention risk: the potential for loss of project personnel.

 Work processes have the potential to be ineffi cient and/or ineffective. An ineffi -
cient work process requires more effort, time, resources, and money than an effi cient
one. An ineffective work process fails to achieve the desired results. A work process
can be effective but ineffi cient; that is, it can produce the desired result but at an
inordinate cost or an excessive amount of time. An (absurdly) effi cient process that
is ineffective is one that does little work and produces no results. Clearly, work
process should be both effi cient and effective to reduce risk of project failure.

 There are two kinds of resource risk factors:

 1. risk factors in physical assets such as processor speed and memory capacity,
which can occur in the host machine used to develop software and in the target
machine on which the software will be operated; and

 2. risk factors in supporting organizations such as confi guration management and
independent testing on which you must rely but over which you have no direct
control.

 Risk factors in technology include risks in the platform technology used to
develop software, such as networks, workstations, operating systems, compilers,
debuggers, database tools, and testing tools, plus risks in the technology of the user/
customer domain.

9.3 AN OVERVIEW OF RISK MANAGEMENT FOR SOFTWARE PROJECTS 367

368 MANAGING PROJECT RISK

 Risk factors in the customer domain may arise because your organization and
your project personnel are not suffi ciently familiar with factors in the customer
domain such as accounting practices, tax laws, the physics of interplanetary naviga-
tion, or critical patient care. Or, the technology of the user/customer domain may
be immature and thus beyond the known capabilities of computer science and soft-
ware engineering. Examples of the latter situation include comprehensive diagnosis
of human diseases using automated DNA analysis or automatic discrimination of
friend and foe in missile defense.

 Globalization and Internet technology have resulted in the increasing use of
multiple development sites for software projects. Risk factors created by developing
software at multiple sites include increased diffi culties of communication when face -
 to - face meetings are not possible, plus the diffi culties created by differing time zones
and differing cultures of the team members.

 External risk factors are created when your project depends on the performance
of vendors and subcontractors. Risk factors in procuring components from vendors
and subcontractors may result in failure of a vendor or subcontractor to deliver a
satisfactory component, or components, on time and within budget.

 A vendor may:

 • fail to make the requested modifi cations to a software package you have
licensed,

 • fail to release a next version that contains features you need in a timely
manner,

 • release a next version that is not compatible with the present version, or
 • discontinue support of the package.

 Risk factors in subcontracting include potential problems in communication between
you and your subcontractor, and potential problems internal to the subcontractor
(i.e., the risk factors in Table 9.2).

 Operational risks are risk factors that may become problems if you fail to include
all the required features or quality attributes in the delivered system or product,
thus rendering the system or product unusable or less useful than envisioned.
Quality risk factors are potential problems that will become real problems if users
and/or customers are dissatisfi ed with the performance or results produced by the
delivered system.

 User dissatisfaction may arise from factors such as:

 • lack of system availability (i.e., frequent crashes),
 • production of erroneous results, or
 • diffi culty of learning and use.

 It is possible for user needs to be fulfi lled but not customer expectations, and vice
versa. For example, the users of an Automated Teller System (you and I) may be
satisfi ed with the system, but the customer (the fi nancial institution) may not satis-
fi ed because the reports produced by the system are diffi cult for fi nancial personnel
to use and sometimes erroneous.

 Risk factors for software maintenance include the potential need for excessive
numbers of maintainers to fi nd and fi x defects in the delivered software, and the
need to add features that should have been included in the delivered software but
were not. The 12 factors itemized in Table 9.2 are some commonly occurring risk
factors for software project but the list is not exhaustive; there are many kinds of
things that have the potential to go wrong in a software project.

 The overall risk for your software project is the total set of risk factors that
have been identifi ed as potential problems for that project. Managing project risk
involves mitigating each identifi ed risk factor individually and dealing with the
interactions among risk factors. It may be, for example, that avoiding the problem
of a schedule overrun by reducing planned verifi cation activities creates the risk of
unacceptable product quality, or that violating the principles of coupling and cohe-
sion to avoid the problem of exceeding available memory creates a risk for code
maintainability.

 In general, risk factors in the following areas, and the trade - offs among them,
must be identifi ed and confronted:

 • cost
 • schedule
 • resources
 • product objectives

 ° product features
 ° quality attributes

 • assumptions
 • constraints

 In addition risk factors in areas such as the platform technology, domain technology,
and communication and coordination with customers, users, and acquirers must be
managed.

 9.4 CONVENTIONAL PROJECT MANAGEMENT TECHNIQUES

 The conventional techniques of project management presented in this text can be
thought of as institutionalized risk management. Over time it has become apparent
that applying conventional techniques such as:

 • planning and estimating
 • managing requirements,
 • preparing work breakdown structures,
 • establishing schedule networks, and

 and measuring progress using techniques such as:

 • iterative development,
 • binary tracking, and
 • earned value reporting,

9.4 CONVENTIONAL PROJECT MANAGEMENT TECHNIQUES 369

370 MANAGING PROJECT RISK

 improve the chance of success by reducing risk exposure. In other words, it is better
to do conventional project management than to not do it.

 Risk management augments conventional project management techniques.
Explicit management of assumptions and constraints, for example, is a key element
of risk management. As described previously in this text (Chapter 4) assumptions
are conditions that you assume will be true but cannot verify during planning. You
might assume, for example, that suffi cient numbers of personnel who have the neces-
sary skills will be available when needed. Or, you might assume that product com-
plexity will not be a problem because you expect to have software developers who
are familiar with this kind of system. Assumptions are potential problems (risk
factors); assumptions proved to be false create real problems.

 Constraints are externally imposed conditions that your project must satisfy (i.e.,
factors that are beyond your control as project manager). They are limitations that
have been imposed on project attributes such as:

 • the schedule,
 • budget,
 • available resources,
 • software to be reused,
 • technologies to be used, and
 • interfaces to other systems.

 Constraints can be categorized as design constraints and process constraints. A
design constraint might require reuse of existing components or building specifi ed
interfaces to another system. A process constraint might limit the money, resources,
and/or time available to conduct the project. More restrictive constraints create risk
factors having higher probabilities of becoming problems that will impede deliver-
ing an acceptable product within schedule and budget.

 Risk factors created by project constraints can sometimes be avoided by modify-
ing the constraints. Process constraints (schedule, budget, resources) and product
constraints (features and quality attributes) should be examined. Some constraints
may be essential to a successful outcome. Others, on closer examination, may be
relaxed or removed. An operational requirement for “ near instantaneous response
time ” may be acceptably satisfi ed with a 5 - second response time rather than the
stated requirement for a 2 - second response time, for example. The increased response
time may signifi cantly decrease the probability that a risk factor will become a
problem.

 Risk management augments conventional project management in (at least) three
ways. First, you can actively manage assumptions and constraints by:

 • explicitly itemizing them,
 • identifying the associated risk factors,
 • prioritizing the risk factors,
 • tracking risk indicator metrics,
 • periodically reviewing the risk factors, and
 • pursuing mitigating actions as necessary.

 Second, you can:

 • set threshold values for the risk indicator metrics and other project parameters
(e.g., schedule performance index, cost performance index, requirements
volatility) and

 • prepare responses (i.e., develop mitigation plans) to be initiated if those thresh-
olds are violated.

 You, your customer, and your managers may tolerate a 2 - day delay in achieving a
major project milestone but you and they may agree, in advance, that a delay of
more than 2 weeks in achieving a major milestone will trigger mitigating actions.
Or, you may agree that a memory overrun of more than 10% on any weekly build -
 demonstration cycle will trigger a mitigating action.

 As indicated throughout this text, there are acceptable and unacceptable ways
to compensate for problems in a software project. Acceptable methods include:

 • increasing the schedule,
 • increasing the budget,
 • applying more resources,
 • applying better resources,
 • reducing the requirements; and
 • improving the work processes.

 Unacceptable methods include:

 • requiring excessive overtime;
 • reducing verifi cation and validation activities; and
 • reducing user, customer, support, and maintenance aids and documentation.

 The third way in which risk management augments conventional project manage-
ment is by using a systematic approach to identify, analyze, prioritize, and mitigate
specifi c risk factors for your project, during initial planning and on an ongoing basis.
You may be using the conventional methods, tools, and techniques presented in this
text to plan and estimate, measure and control, and lead and direct your project,
but if you are not doing systematic risk management, you may fail to identify and
respond to specifi c risk factors with suffi cient lead time to avoid crisis situations.

 Identifi ed risk factors must be prioritized because some risk factors, and some
interactions among risk factors, may have larger probabilities and/or greater poten-
tial impact than others and thus should receive more attention and resources. Risk
mitigation strategies must be devised. In some cases, risk mitigation involves taking
immediate action to reduce the probability and/or potential impact of an identifi ed
risk factor. In other cases, risk mitigation involves tracking a risk indicator and
taking action if (when) a potential problem becomes a real problem (i.e., when a
trigger value crosses a predetermined threshold — the problem trigger). In some
cases, decisions about how to deal with identifi ed risk factors may be deferred until
the situation is better understood.

9.4 CONVENTIONAL PROJECT MANAGEMENT TECHNIQUES 371

372 MANAGING PROJECT RISK

 In cases where the correct course of risk management is uncertain, 29 and in cases
where a mitigating action is not apparent, you should place identifi ed risk factors
on a watch list that is reviewed at frequent intervals; risk mitigation actions are then
initiated as appropriate. Techniques for prioritizing risk factors and strategies for
mitigating project risk are discussed later in this chapter.

 Software projects often have risk factors that are unknown during initial planning
but become apparent later in a project. It is not uncommon to allocate a contingency
reserve to be used when unknown risk factors appear later in a project. The amount
of money in the contingency reserve may range from 10% to 50% or more of the
project budget, depending on the level of uncertainty during initial planning.

 Many of the conventional techniques of project management can be used to
manage risk factors. Table 9.3 lists some of the techniques that can be used to
manage the risk factors listed by Boehm in his top - 10 list of risk factors for software
projects [Boehm91] . The following sections present techniques for risk identifi ca-
tion, analysis and prioritization of risk factors, and risk mitigation strategies.

 29 Uncertainty results from lack of knowledge or information; it is often the root cause of a risk factor.

 TABLE 9.3 Risk factors and risk management techniques

 Risk Factors Risk Management Techniques

 Personnel shortfall Staff with top talent; match jobs to skills; make key -
 personnel agreements; provide cross - training; pre -
 schedule key personnel

 Unrealistic schedule and/or
budget

 Multiple estimation techniques; design to cost and
schedule; incremental development; software reuse;
requirements scrubbing

 Developing the wrong software
functions

 Organization analysis; mission analysis; developed
Concept of Operations; conduct user surveys;
prototyping; early development of user manuals

 Developing the wrong user
interface

 Prototyping; scenarios; user - task analysis; user
characteristics (user classes, work loads, work
styles)

 Gold plating Requirements scrubbing, prototyping; cost - benefi t
analysis; designing to cost and schedule; traceability

 Continuing stream of
requirements changes

 Change control boards; setting a high threshold for
changes; information hiding (to ease changes);
incremental development (to defer changes to later
increments)

 Shortfalls in externally furnished
components

 Benchmarking of potential components; inspections;
reference checking; compatibility analysis

 Shortfalls in externally
performed tasks

 Reference checking of potential subcontractors; pre -
 award audits; award - fee contracts; competitive
design or prototyping; team building

 Real - time performance
shortfalls

 Simulation; benchmarking; modeling; prototyping;
instrumentation; tuning

 Straining computer science
capabilities

 Technical analysis; cost - benefi t analysis; prototyping;
reference checking

9.5 RISK IDENTIFICATION TECHNIQUES 373

 9.5 RISK IDENTIFICATION TECHNIQUES

 As indicated in the various standards and guidelines for risk management, project
risk factors must be identifi ed as they develop. Risk factors should be identifi ed,
analyzed, prioritized, and mitigation plans developed, to the extent possible, during
initial project planning, but risk factors must also be identifi ed, analyzed, prioritized,
and mitigated on a continuous, ongoing basis. Some potential problems will not
materialize; for example, the hardware you need is delivered on schedule, so the
risk of late delivery does not become a problem. Other unforeseen risk factors will
arise as the project evolves; for example, your software architect tells you she may
be moving to another city for personal reasons, but she is not certain she will and
she is not sure when she will move, if she does.

 Some risk factors thought to be settled may re - emerge. For example, a former
risk of failure to achieve consensus on the layout of the user interface that was
previously achieved may now re - emerge because some new users who have recently
joined the users ’ organization are saying they want major changes. This re - institutes
the risk of late product delivery based on lack of consensus among the users.

 Some techniques for identifying risk factors are listed in Table 9.4 . In general,
any technique you use to identify potential problems for your project can be used
for risk identifi cation.

 9.5.1 Checklists

 Checklists are often used to identify risk factors. They can be used by individuals,
in group meetings, or as aids to those participating in a Delphi process (see Chapter
 6). The risk taxonomy developed at SEI is one of the best - known checklists for
risk identifi cation [Carr93] . The taxonomy is a three - level hierarchy of commonly
occurring risk factors for software projects. Table 9.5 a lists the top two levels of
the hierarchy. Table 9.5 b lists some of the second - level and third - level elements in
the hierarchy. The report that contains the full taxonomy and other aspects of
risk identifi cation and risk management can be accessed at the URL cited in
 [Carr93] .

 TABLE 9.4 Some techniques for identifying risk factors

 • Checklists
 • Brainstorming
 • Expert judgment
 • SWOT analysis
 • Assumptions analysis
 • Constraints analysis
 • Lessons - learned fi les
 • Cost modeling
 • Schedule analysis
 • Requirements triage
 • Assets inventory
 • Trade - off analysis

374 MANAGING PROJECT RISK

 TABLE 9.5A Top levels of the SEI risk taxonomy [Carr93]

 Top - Level Elements Second - Level Elements

 A. Product engineering (technical aspects of the work) A.1. Requirements
 A.2. Design
 A.3. Code and unit test
 A.4. Integration and test
 A.5. Engineering specialties

 B. Development environment (methods, procedures, and
tools to be used)

 B.1. Development process
 B.2. Development system
 B.3. Management process
 B.4. Management methods
 B.5. Work environment

 C. Program constraints (contractual, organizational, and
operational factors that are outside the control of local
management)

 C.1. Resources
 C.2. Contract
 C.3. Program interfaces

 TABLE 9.5B Some second - and third - level elements of the SEI risk taxonomy
 [Carr93]

 Second - Level Elements Third - Level Elements

 A.1. Requirements A.1a. Stability
 A.1b. Completeness
 A.1c. Clarity
 A.1d. Validity
 A.1e. Feasibility
 A.1f. Precedent
 A.1g. Scale

 B.1. Development process B.1a. Formality
 B.1b. Suitability
 B.1c. Process control
 B.1d. Familiarity
 B.1e. Product control

 B.3. Management process B.3a. Planning
 B.3b. Project organization
 B.3c. Management experience
 B.3d. Program interfaces

 B.5. Work environment B.5a. Quality attitude
 B.5b. Cooperation
 B.5c. Communication
 B.5d. Morale

 C.1. Resources C.1a. Schedule
 C.1b. Staff
 C.1c. Budget
 C.1d. Facilities

9.5 RISK IDENTIFICATION TECHNIQUES 375

 9.5.2 Brainstorming

 Brainstorming is a widely used technique for generating lists of risk factors. The
rules of brainstorming are “ anything goes ” (excluding distasteful racial, ethnic, reli-
gious, or sexual comments) and “ no criticisms allowed. ” Criticism and critiquing
occur in a later analysis session.

 It is quite easy for a group of individuals to generate long lists of risk factors in
a one or two hour brainstorming session. The group is usually restricted to 10 or
fewer people so that everyone has an opportunity to participate. A round - robin, one
idea in each turn, process provides everyone the opportunity to participate. A
second session, held after a break, can be used to discuss and prioritize the risk
factors using a ranking method such as open voting by show of hands, allocating a
total number of points to the risk factors, or a Delphi process (see Chapter 6).

 9.5.3 Expert Judgment

 Expert judgment relies on the expertise and memories of past experiences among
a selected group of experts. The biases (both optimistic and pessimistic) of the con-
sulted experts should be taken into account when discussing risk factors and prob-
lems in past projects. The Delphi process can be used in conjunction with expert
judgment to reduce biases among the experts (see Chapter 6).

 9.5.4 SWOT

 SWOT stands for strengths, weaknesses, opportunities, and threats. Four lists are
prepared, one for each of S, W, O, and T. Checklists, brainstorming, and expert judg-
ment can be used to facilitate a SWOT session. As in the case of brainstorming, free
association of ideas should be encouraged. After a break in the meeting, the results
of the SWOT exercise can be examined to identify risk factors in each of the four
categories. A SWOT analysis can identify opportunities as well as risk factors.

 9.5.5 Analysis of Assumptions and Constraints

 An assumption is a situation or an event that is believed to be true, or believed will
be true but which cannot be verifi ed at the present time, or which you are unwilling
to verify at this time. For example, it might be assumed that the requirements will
not be modifi ed without corresponding adjustments being made to schedule,
resources, budget, and technology as necessary to maintain an acceptable probabil-
ity of delivering a satisfactory product, on time and within budget. Or, it might be
assumed that the hardware will be delivered as scheduled and will be available when
needed.

 Constraints are external conditions imposed on the development process and/or
the deliverable product. As discussed previously, constraints should be examined
for necessity and for possibilities of fl exibility. It might be, for example, that the
scheduled delivery date cannot be extended but some of the lower priority require-
ments could be deferred for inclusion in a second version of the product.

 Assumptions and constraints for both the process and the product should be
explicitly enumerated and examined for risk factors. An assumption that later proves

376 MANAGING PROJECT RISK

to be false is a potential problem (a risk factor) that becomes a real problem when
proved false. A constraint that might not be satisfi ed is a risk factor that becomes a
problem if the constraint is not satisfi ed.

 The results of checklist analysis, brainstorming, expert judgment, SWOT analysis,
and other risk identifi cation techniques should be examined for implicit assump-
tions and implied constraints. Those assumptions and constraints should be made
explicit and analyzed as risk factors.

 9.5.6 Lessons - Learned Files

 Lessons - learned fi les are (or should be) prepared as a project termination activity
for each project. A lessons - learned fi le should indicate:

 • what went right in the project,
 • what went wrong in the project,
 • what could have been done better,
 • root causes for both successes and failures, and
 • recommendations for future projects.

 Risk factors identifi ed and confronted throughout the life cycle of the project
should be included in the lessons - learned. You should consult the lessons - learned
fi les within your organization when planning a project. You should also speak with
project managers, software architects, team leaders, project members, and customers
(to the extent possible) to understand social and political risk factors that may not
be stated in lessons - learned fi les.

 9.5.7 Cost and Schedule Modeling

 Cost and schedule modeling can be used in several ways to identify and assess risk
factors for your project. Recall, from Chapter 6 , that an estimate is a projection from
past to future, suitably adjusted to account for differences between past and future.
The past is summarized by calibration of the cost model using historical data from
past projects. The future is summarized by a size estimate based on the requirements.
The adjustment factors account for differences between the “ typical ” past project
and the future one caused by differences in factors such as product attributes,
project attributes, personnel attributes, and technology factors.

 The fi rst way a cost and schedule estimation model can be used to identify risk
factors is to examine the cost model(s) used:

 • Is it (are they) appropriate, and appropriately calibrated for your kind of
project?

 • Does the scope of activities estimated match the scope of your project?
 • Is the calibration data based on industry averages or local projects?
 • Is the calibration recent or ancient?

 A second way to identify risk factors using cost and schedule models is to
examine the assumptions and constraints on which the estimate is based, and to do

9.5 RISK IDENTIFICATION TECHNIQUES 377

explicit management of assumptions and constraints, as described above. Some of
the estimation parameters may be constrained (e.g., project duration and/or total
cost); other estimation parameters are assumptions that cannot be verifi ed during
initial planning (e.g., adjustment factors that refl ect the assumption of availability
of adequate numbers of skilled personnel).

 A third way of using cost and schedule models to identify risk factors is to do
 “ what - if ” analysis and sensitivity analysis of the estimate(s) produced by the
model(s). What - if analysis involves varying the input parameters to a model and
observing the outputs in a “ what - if this were the case ” manner:

 • what if estimated size is bigger (or smaller) than assumed?
 • what if the skill levels and experience of the software developers was higher

(or lower)?
 • what if other estimation parameters are not as assumed?

 Sensitivity analysis is concerned with determining which input parameters
produce large variations in estimated values for correspondingly small changes in
those input parameters. For example, the combined effect of the personnel cost
drivers in the COCOMO models exert the second strongest infl uence on estimated
values, after estimated size. The effort - schedule trade - off in the SLIM model is very
sensitive to the schedule duration (effort varies with the inverse fourth power of
schedule in SLIM).

 Analysis of the project ’ s activity network can be used to identify risk factors
associated with the project schedule. An activity network, such as the one illustrated
in Figure 9.1 , can be analyzed to determine:

 • accuracy of estimated task durations on the critical path,
 • paths that are “ almost critical, ” and
 • fan - in and fan - out at project milestones.

 FIGURE 9.1 A critical - path activity network

m.n = tasks; (x) = activity duration

= milestones;

1 2

3

4 6 7

8 9 10

5

3.1

3.2.2

3.2.3

3.3.1

3.4.1
3.5.1

3.4.3

3.4.2

3.5.2 3.6

(1)

(3)

(6)

3.3.2

(5) (2)

(0)

(2)
(1)

(1) (1)
(1)

(6)

(2)

3.2.1

16 weeks

2.1

n

critical path

378 MANAGING PROJECT RISK

 Because the critical path (or paths) determine the overall project schedule, it is
essential that estimates for the durations of tasks on the critical path be as accurate
as possible. Multiple critical paths, as in Figure 9.1 , present a risk factor because
slippage in the schedule for either task 3.4.2 or 3.4.3 will delay completion of the
project.

 Because software projects are dynamic entities, a path that is “ almost critical ”
can become the determinant of project completion if that path takes longer than
estimated. In Figure 9.1 , for example, the estimated duration to reach milestone 6
on the critical path is 12 weeks. The durations for tasks 3.1, 3.2.2, and 3.3.1 indicate
the duration to reach milestone 6 is 10 weeks. Those tasks must be monitored closely
determine that they do not use more than 2 weeks of slack time; otherwise, a con-
tingency plan must be invoked.

 The fan - in at a project milestone is determined by the number of incoming arrows
that are incident on the milestone. Milestone 6 in Figure 9.1 has a fan - in of 2 and
milestone 8 has a fan - in of 3. Because successor tasks cannot start until all predeces-
sor tasks are completed, delay in completing any predecessor tasks that exceeds
the scheduled time to reach the milestone will delay the start of predecessor tasks.
Critical - path tasks 3.4.2 and 3.4.3 will be delayed if the path for tasks 3.1, 3.2.2, and
3.3.1 takes more than 12 weeks.

 Fan - out is determined by the number of arrows leaving a milestone node. The
fan - out is 3 at milestone 3 in Figure 9.1 . Because none of the successor tasks can
start until the predecessor tasks are completed, delay in any of the predecessor tasks
will delay the start of all successor tasks. In Figure 9.1 , for example, delayed comple-
tion of tasks 3.1 and 3.2.2 will delay the start of tasks 3.2.3, 3.3.1, and 3.4.1.

 Milestones having high fan - in and/or high fan - out thus represent areas of poten-
tial problems in the schedule network, especially if they are on the critical path or
a “ near - critical ” path. It may be possible to redesign the schedule network to reduce
the fan - in and fan - out at high - risk milestones, provided that the work products
produced by predecessor tasks are available when needed. Other options include
preparing contingency plans and closely monitoring the predecessor and successor
tasks, and redesigning the schedule network by extending the schedule to reduce
fan - in and fan - out.

 The fourth way a schedule network can be used to manage risk factors is to use
the Monte Carlo method of estimation, as described in Chapter 6 , to produce ranges
of estimates with associated probabilities. Monte Carlo techniques can be used
produce estimates of the probabilities of achieving various project milestones,
including the completion milestone, as illustrated in Figure 9.2 [Fairley94] . Work
packages for the tasks in the schedule network can be examined to determine risk
factors associated with availability of needed resources on the dates needed, risk
factors associated with predecessor tasks and work products, and the risk factors
explicitly documented in the work packages.

 Still another way to use estimates to identify risk factors is to examine the items
documented using the estimation template in Section 6.10 of Chapter 6 :

 • when was the estimate made?
 • who made the estimate?
 • how much time and effort was spent in making the estimate?

9.5 RISK IDENTIFICATION TECHNIQUES 379

 • what estimation methods and tools were used?
 • what was the basis of estimation for each method and tool used (industry aver-

ages, expert judgment, local historical data, etc.)?
 • how were differences in the estimates reconciled?
 • what assumptions were made for each method or tool used?
 • what constraints were observed in making the estimates?
 • what inputs were used for each method or tool used (e.g., size, PI, MBI, adjust-

ment factors)?
 • what are the probability levels for effort, schedule, resources, cost, and quality

attributes for each method or tool used?
 • what other estimation data was provided by the estimation methods and tools

(e.g., project milestones, effort for various project activities, estimated pre -
 release and post - release defects, estimated reliability at product delivery, total
life cycle costs)

 • what risk factors were identifi ed for the project?
 • what is the estimator ’ s (estimators ’) level of confi dence in the accuracy of the

estimate (0 to 10; low, medium, high)?
 • what information, resources, and time do the estimators need to make an

improved estimate?

 9.5.8 Requirements Triage

 Requirements triage is the process of determining which requirements a product
should satisfy given the time and resources available [Davis03] . In Chapter 3 , this
was described as the process of prioritizing requirements into Essential, Desirable,
and Optional categories. Risk management can be applied to requirements triage
to determine that time and resources are suffi cient to provide a very high level of
probability that the Essential requirements can be implemented.

 Desirable requirements must be prioritized and the time and resources needed
to implement them must be negotiated with project stakeholders, perhaps at
decreased probability of success for the lower priority requirements. In both cases

 FIGURE 9.2 A Monte Carlo estimate of project completion date

Schedule
(months)

Probability

9.1 Mo

0.01

0.02

0.03

0.04

11.4 Mo 16.4 Mo 13.1 Mo 14.4 Mo 15.5 Mo

Frequency
of occurrence

 3

 6

 9

12

300 Trials

380 MANAGING PROJECT RISK

(Essential and Desirable requirements) risk factors must be identifi ed and mitigated
to provide the necessary levels of probable success.

 Optional requirements specify features that “ would be nice to have ” if there is
suffi cient time and resources. The Optional list is also a place to record ideas for
future releases of the product and for future products. Requirements on the Optional
list are, by defi nition, optional and do not contribute to project risk.

 Value engineering is a similar approach that uses value added for the customer
versus cost as the criterion for prioritizing requirements [VALUE] .

 9.5.9 Assets Inventory

 Assets are organizational resources that can be applied software projects. Another
way to identify risk factors is to do an inventory of assets within your organization
and to determine the quantities and qualities of assets that are available to your
software project. Examples of organizational assets are listed in Table 9.6 .

 TABLE 9.6 Examples of organizational assets

 • Project managers
 • Requirements engineers
 • Software architects
 • Development team leaders
 • Software developers
 • Software testers
 • Software development processes
 • CM personnel, procedures, and tools
 • QA personnel, procedures, and tools
 • Analysis and design tools
 • Testing tools
 • Integrated development environments
 • Workstations
 • Local area networks
 • Printers
 • Quiet work spaces
 • Private meeting rooms

 Each type of asset can be analyzed for strengths and weaknesses in quantity and
quality. Mitigation strategies can be developed to mitigate risk factors associated
with assets. For example, you might determine that, for your project, there are insuf-
fi cient software developers who have adequate experience using the Java program-
ming language. Your mitigation process might involve providing training for your
developers, hiring skilled developers, or subcontracting the work to an organization
that has the necessary capabilities.

 9.5.10 Trade - Off Analysis

 Trade - off analysis is concerned with identifying permissible trade - offs and the risk
factors associated with the trade - offs. It may be permissible to increase resources
to maintain schedule progress but not permissible to de - scope any Essential require-
ments. In this case the risk factors to be identifi ed are those related to availability

of additional resources when (if) needed and the potential problems of implement-
ing all the Essential requirements within the schedule constraint using reasonable
amounts of resources.

 9.6 RISK ANALYSIS AND PRIORITIZATION

 Risk analysis is concerned with assessing the probabilities, potential impacts, and
time frames of likely occurrence of identifi ed risk factors. Prioritization ranks risk
factors by probability, impact, and/or time frame when a potential problem might
become a real problem. Ideally you will be able to perform quantitative risk analysis
by assigning numeric values to probabilities and potential impacts for each identi-
fi ed risk factor, using a ratio scale, so that numerical risk exposure (i.e., the product
of probability and potential impact) can be computed for each risk factor.

 In some cases, you may be able to quantify probabilities and impacts by examin-
ing past projects, by consulting individual experts within your organization, or by
using the Delphi method to obtain group consensus. Experts may differ in their
assessments. If so, you can use their ranges of values to assess the ranges of risk
exposures for various risk factors. In other cases, you may try “ what - if ” analysis that
involves specifying various values of probability and impact for different risk factors
and calculating the resulting risk exposures.

 In other cases, you may not be able to quantify probabilities and impacts, so you
may have to conduct risk analysis using a qualitative ordinal scale and assigning
values such as Low, Medium, High, and Very High to the probability and potential
impact of each identifi ed risk factor. Risk exposure is then determined using Table
 9.1 . The ordinal values can be obtained by analyzing historical data, by consulting
experts, by a Delphi process, or by what - if analysis.

 Some organizations convert ordinal scales to ratio scales by assigning numeric
values to probabilities and potential impacts as indicated in Table 9.7 . In this case
all involved parties must bear in mind the pitfalls of converting an ordinal scale to
a ratio scale and thereby placing too much emphasis on the resulting values. For
example, the involved parties may not agree as to what constitutes a Medium prob-
ability or impact as compared to a High probability or impact and the corresponding
numeric values may be misleading.

 TABLE 9.7 Ratio - scale equivalents of ordinal symbols

 Ordinal Value
 Approximate
Ratio - scale Value

 Probability Very low 0.10
 Low 0.25
 Medium 0.50
 High 0.75
 Very high 0.90

 Impact Very low 10
 Low 25
 Medium 50
 High 75
 Very high 90

9.6 RISK ANALYSIS AND PRIORITIZATION 381

382 MANAGING PROJECT RISK

 In addition to the assessment of probability and impact, the time frame in which
the risk factor might become a problem must be assessed. The risk of having insuf-
fi cient personnel for work activities scheduled three months hence, for example,
provides suffi cient time to make arrangements. As the time for the work to com-
mence draws nearer, the probability that a staffi ng risk will become a staffi ng
problem becomes higher. According to Table 9.1 , the risk exposure of having insuf-
fi cient personnel for tasks scheduled in the coming week will be Very High, assuming
that the probability is Very High and the Impact is High. As mentioned earlier, the
goal of risk management is to identify and mitigate potential problems with suffi -
cient lead time to avoid crisis situations. If you do not fi nd the needed personnel
during the present week you may well be in a crisis situation next week.

 Risk factors can be prioritized using risk exposures (probability × potential
impact) and the time frames of probable occurrence. Suppose, however, that two
risk factors have equal risk exposures and similar time frames of occurrence. For
example, suppose risk factor A has probability of 0.25 and potential impact of 75
on a utility scale of 100, and that risk factor B has probability of 0.75 and potential
impact of 25. Both have risk exposures of 18.75. Assuming there are insuffi cient
resources to effectively mitigate both A and B , which should receive the mitigation
resources?

 Suppose, for example, that if risk factor A becomes a problem it will negatively
impact response time for the primary users of the system (i.e., customers of an
Automated Teller System) and risk factor B will negatively impact response time
for secondary users of the system (i.e., operational personnel who maintain the
ATS). In this case resources probably would be allocated to mitigating risk factor
 A . Risk factor B would be placed on a watch list. Additional resources may have to
be found, or existing resources reallocated to mitigate risk factor B , if it later
becomes apparent that the risk exposure for B has increased to an unacceptable
level.

 This example illustrates an important point about risk management: risk manage-
ment decisions are based on objective factors, such as risk exposure, and also on
subjective factors that involve social and political considerations.

 9.7 RISK MITIGATION STRATEGIES

 Risk mitigation is concerned with developing and implementing strategies to handle
risk factors. Mitigation is usually concerned with reducing either the probability of
occurrence of a potential problem or reducing the impact of the potential problem,
should it become a real problem. Mitigation strategies must be developed for the
risk factors that have been identifi ed, analyzed, and prioritized. As indicated in Table
 9.8 , mitigation strategies include avoidance, transfer, acceptance, immediate action,
and contingent action.

 9.7.1 Risk Avoidance

 Risk avoidance is concerned with changing the situation to reduce the probability
of a potential problem to an acceptable level. If a timing constraint in a real - time
system is of concern, perhaps the timing constraint can be relaxed or perhaps a

faster hardware processor can be used; if there is insuffi cient time to complete the
project, perhaps the schedule can be extended, thus avoiding the risk of late
delivery.

 As mentioned above, risk factors are often created by project constraints and can
sometimes be avoided by modifying the constraints. Process constraints (schedule,
budget, resources), product constraints (features and quality attributes), and tech-
nology constraints (processor speed, available memory) should be examined. Some
constraints may be essential to a successful outcome. Others, on closer examination,
may be relaxed or removed.

 9.7.2 Risk Transfer

 Risk transfer involves reallocating the requirements that created the risk factor to
another system component or another organizational unit that can better handle
the risk factor. Data compression, for example, may have to be implemented in a
special purpose chip if the data compression algorithm cannot be executed rapidly
enough in software. Or, you may decide to use a subcontractor for certain parts of
your project if your project team does not have the necessary expertise to imple-
ment those parts.

 Care must be taken that transfer of a risk factor does not create other unaccept-
able risks. The time and expense required to design and develop a special purpose
chip may create unacceptable risks to cost and schedule. Managing a subcontractor
may represent a greater risk to success than the learning curve required for your
team, and your project will fail if the subcontractor fails to deliver acceptable com-
ponents within an acceptable time frame.

 9.7.3 Risk Acceptance

 Risk acceptance is the third strategy for mitigating a risk factor. Acceptance involves
acknowledging the risk factor but taking no action at the present time other than
placing the risk factor on a watch list. Although risk acceptance does not result in
a specifi c mitigation activity, each risk factor on a watch list is frequently re - exam-
ined on a periodic basis to determine if the level of probability, impact, or time frame
has become prominent enough to warrant additional mitigation activities (e.g.,
avoidance, transfer, immediate action, or contingent action).

 A watch list thus serves as a constant reminder to re - examine risk factors that
may become more serious as your project progresses. Project staffi ng for example,
might be suffi cient for the next 3 months, but a concern for future staffi ng might

 TABLE 9.8 Risk mitigation Strategies

 Strategy Approach

 Avoidance Change the project or the product
 Transfer Reallocate the requirement(s)
 Acceptance Watch list
 Immediate action Reduce probability and/or impact
 Contingent action Delayed action, if warranted

9.7 RISK MITIGATION STRATEGIES 383

384 MANAGING PROJECT RISK

result in placing staffi ng issues on the watch list. If staffi ng issues have not been
resolved as the time of need approaches, an immediate action plan might be devel-
oped and implemented to acquire the needed staff members.

 9.7.4 Immediate Action

 Immediate actions are mitigation activities that are undertaken now to reduce the
probability that a potential problem (i.e., a risk factor) will become a real problem,
and/or actions to reduce the impact of a potential problem should it become a
become real problem. Immediate actions are specifi ed in immediate action plans.
Suppose, for example, that your project team has insuffi cient skill in using the Java
programming language. You might implement an immediate - action training plan to
improve their skills and thereby reduce the risk of delivering an unacceptable
product and/or overrunning the delivery schedule.

 Documentation of an immediate - action plan includes:

 • an identifi er,
 • the individual who is responsible for seeing that the plan is executed,
 • responsibilities of others involved in implementing the plan,
 • a description of the risk factor to be mitigated,
 • the actions to be completed,
 • the resources needed,
 • the planned duration of the indicated actions,
 • the progress milestones to be achieved, and
 • the success criteria that will indicate successful completion of the planned

activities.

 An example is provided in Table 9.9 .
 You will never have enough time, money, or resources to perform adequate miti-

gating actions for all identifi ed risk factors. Risk factors that have the highest priori-
ties, as determined by risk exposures and subjective factors, should receive the
majority of your limited resources.

 One way to determine investment strategies is to calculate and compare risk
leverage factors (RLF) for various investment strategies for your highest priority
risk factors. RLF is calculated by calculating the risk exposure before mitigation,
the risk exposure after mitigation, and dividing the difference by the cost of
mitigation:

RLF

RE RE
cost of mitigation

before after=
−

.

 Suppose, for example, that you are considering an investment of $ 25,000 to reduce
the probability from 0.4 to 0.1 of a risk factor with potential impact of $ 500,000.
Risk exposure before mitigation is $ 200,000 (0.4 × $ 500,000), risk exposure after
mitigation would be $ 50,000 (0.1 × $ 500,000), and the cost of mitigation is estimated
to be $ 25,000. The RLF is thus

RLF =

−
=

200 000 50 000
25 000

6 0
, ,

,
. .

 Larger risk leverage factors indicate better investment strategies.
 There is no guarantee, of course, that the investment will reduce the probability

from 0.4 to 0.1, nor is it certain that the risk factor will become a problem if it is
not mitigated. The probability is “ only 40%. ” However, $ 500,000 would be a severe
fi nancial loss to your organization and a severe loss of reputation for you. If you do
not spend $ 25,000 to mitigate the risk factor and the problem occurs, you will be
criticized. If you do spend $ 25,000 and the problem does not occur, you (and others)
will never know if it would have occurred without spending $ 25,000.

 In this regard investing in risk mitigation is akin to investing in insurance. You
may be one of the fortunate ones who has never had a serious auto accident. It
could be said that you have wasted a lot of money paying for auto insurance (espe-
cially if you are my age). However, the potential fi nancial impact created by not
buying insurance is so great that most rational people will continue to buy insurance,
even though the probability of an accident based on historical evidence is low, and
even if it were not required by law.

 9.7.5 Contingent Action

 Contingent actions are specifi ed in contingency plans that are prepared for potential
problems for which no immediate actions are warranted. If, for example, you are
pursuing an incremental development strategy, lack of suffi cient memory or inade-
quate response time may become a problem later, but for now, there is suffi cient
memory and the response time is acceptable. These kinds of risk factors become
problems when objective risk indicators (objective measures) cross predetermined
thresholds (the problem triggers).

 Figure 9.3 (repeated from Chapter 7) provides an example of tracking allocated
memory versus memory used in an embedded system project. The risk factor is lack

 TABLE 9.9 Example of an immediate - action plan

 • Action plan number and name: AP#3, Java Training
 • Responsible party: Sue Smith
 • Other responsible parties: Joe Williams will set up the workstations; as - yet unidentifi ed

instructor will deliver the course.
 • Risk factor to be mitigated: lack of suffi cient Java skill
 • Actions to be completed: training class and lab exercise for 20 programmers
 • Responsible party: Sue Smith
 • Resources needed: instructor, classroom with work stations, release time for attendees
 • Duration of this action: 4 weeks
 • Milestones for this action:

 Week 1: fi nd instructor, reserve classroom, identify attendees
 Week 2: load software on computers, obtain/reproduce class materials
 Week 3: conduct 5 - day class
 Week 4: complete lab project (1/2 time, 4 days)

 • Success criteria for this action: 19 of 20 attendees successfully complete the lab project

9.7 RISK MITIGATION STRATEGIES 385

386 MANAGING PROJECT RISK

of suffi cient memory to implement the required software. The system is being imple-
mented in a series of weekly incremental builds. Memory is allocated to each suc-
cessive build of the system and the cumulative amount of memory used for each
demonstrated build is compared to the allocated amount. As indicated in Figure 9.3 ,
10% of memory is held in reserve. The software will fi t in the available memory if
this margin is never exceeded.

 In Figure 9.3 , actual memory used in incremental builds B1 and B2 exceed the
allocated amount planned but not by more than 10%. Build B3, however has caused
actual memory used to exceed the 10% threshold. This is the trigger for invoking a
contingency plan (see Table 9.11). One of the common failures of risk management
is to “ wait and see ” whether the situation will improve without invoking the con-
tingency plan.

 Spontaneous improvement in a bad situation almost never happens. Recall that
the purpose of risk management is to identify potential problems with suffi cient
lead time to avoid crisis situations. Although there is lots of memory still available
after build B3, there is still a lot of functionality to be implemented. The trend, based
on builds B1, B2, and B3, indicates that successively more memory is being used
than was planned on each build. Now is the time to invoke the contingency plan to
avoid the crisis of memory overrun.

 A template for contingency plans is presented in Table 9.10 . As indicated, a con-
tingency plan specifi es:

 • the risk indicator to be measured;
 • the frequency of measurement;
 • the threshold value for contingent action (i.e., the problem trigger), the contin-

gent - action plan; and
 • the specifi ed duration for the contingent actions to resolve the problem.

 FIGURE 9.3 Illustrating a 10% memory threshold for risk management

Incremental
Builds

Memory

B1 B2 B3 B4 B5

256K

225K

10% reserve

Actual

 = Plan

 TABLE 9.10 Template for a contingency plan

 Contingency plan number and name: CP#1 [name]

 • Responsible party: [your name]
 • Risk factor to be mitigated: [brief description]
 • Risk indicator(s) to be tracked: [brief description]
 • Frequency of measurement: [include units of time]
 • Threshold value(s) for contingent action(s): [include units of measure]

 Contingency action plan

 • Actions to be completed: [brief description]
 • Responsibilities: [list of who will do what]
 • Resources needed: [list them]
 • Milestone for this action: [frequency of progress measurement]
 • Success criteria for this action: [how will we know when the problem is solved?]
 • Maximum duration of this action: [when will we declare a crisis?]

 TABLE 9.11 Example of a contingency plan

 Contingency plan number and name: memory CP #5

 • Responsible party: John Smith
 • Risk factor to be mitigated: lack of suffi cient memory in the microprocessor
 • Risk indicator to be measured: planned versus actual memory used in successive

incremental builds
 • Frequency of measurement: weekly measurement of memory usage for successive

incremental builds
 • Threshold value: 10% over plan on any incremental build

 Contingency action plan

 • Actions to be completed: re - engineering of the software to fi t within allocated memory
 • Responsibilities: Joe Williams and Sue Smith will attempt to rectify the memory overrun;

they will be released from all other duties and receive paid overtime
 • Resources Needed: an additional target machine will be fl own in overnight from San Jose
 • Milestones for this action: no objective milestones; brief stand - up status meetings will be

held at 11:00 AM and 6:00 PM each day
 • Success criteria for this action: memory usage reduced to not more than 5% over

allocated amount
 • Maximum duration of this action: 7 days

 A project enters crisis mode if the contingent actions do not achieve the success
criteria specifi ed in the plan within the specifi ed duration.

 The contingency plan for the risk factor in Figure 9.3 is presented in Table 9.11 .
Exceeding the 10% margin provides the trigger for activating the contingency plan.
Figure 9.3 indicates that the contingency plan should be activated because incre-
mental build B3 has exceeded the cumulative memory allocation for the build.

 As discussed in Chapter 7 , measuring attributes of a system to determine how
well the system or some elements of the system satisfy specifi ed requirements is
known as Technical Performance Measurement (TPM). Measuring the amount of

9.7 RISK MITIGATION STRATEGIES 387

388 MANAGING PROJECT RISK

memory used versus the amount of memory allocated, as in Figure 9.3 , is an example
of TPM.

 9.8 TOP - N RISK TRACKING AND RISK REGISTERS

 Risk factors, the priorities among them, and their status can be displayed on top - N
lists, where N is roughly 10. Different levels of your project and in your organization
should have different lists. The top - N list is limited to roughly 10 risk factors because
you, your project members, and your organization will not have the resources or
time to effectively deal with more than 10 signifi cant risk factors at any given level
of the project (team, subsystem, project). You, your organization, and your customer
should seriously consider re - scoping, or perhaps canceling your project if you have
identifi ed more than 10 signifi cant risk factors (i.e. risk factors having High or Very
High risk exposures as indicated in Tables 9.1 a and 9.1 b).

 As illustrated in Table 9.12 , each risk factor is ranked, its ranking in the previous
reporting period is indicated, and the status of risk mitigation is indicated. Ranking
is determined by consensus among those who will be affected if the risk factor
becomes a problem. A risk factor may move up or down in the ranking based on
periodic reassessment of the risk factor and the criticality of other risk factors. Both
objective and subjective considerations should be taken into account in ranking the
risk factors.

 As indicated in Table 9.12 , entry number 7 is a new risk factor in the top - N list.
The last two entries are risk factors that were closed during the past week. If you
were the project manager of the project in Table 9.12 , you would be (should be)
thinking about plans for contingent actions if the current actions fail to satisfactorily
resolve the indicated risk factors in the indicated time frames.

 Organizations that use top - N lists often have different lists of risk factors at dif-
ferent levels in the organization. Each team within a project has its list, each project
has its list, each supporting organization has its list, and departments in which soft-
ware projects are conducted have their lists. Project teams identify risk factors and
pursue mitigation actions that are within the scope of their responsibility and
authority. Risk factors that cannot be mitigated within the team are moved upward
to the project level. Risk factors that can be mitigated within a project or a support-
ing organization are mitigated at that level. Risk factors that cannot be mitigated
within a project or a supporting organization are reported upward and provide
inputs to the department ’ s top - N list.

 Many organizations that use top - N lists update the lists on a weekly basis and
post the lists in publicly accessible work spaces. This facilitates communication about
potential problems and, in the words of a colleague, “ decriminalizes ” risk, which is
to say that it becomes acceptable to discuss potential problems, their probabilities,
their impacts and time frames, and mitigation strategies. Weekly updating of top - N
lists ensures that ongoing, continuous risk management will occur. Use of top - N lists
can have a revolutionary, positive effect on software projects and the culture of the
work place within an organization.

 Top - N risk tracking can be incorporated into a Risk Register, which is a table
that can be implemented as a spreadsheet used to manage risk factors. As indicated
in Table 9.13 , each row of a Risk Register table includes the following items:

 T
A

B
L

E
 9

.1
2

 E
xa

m
pl

e
of

 a
 t

op
 - N

 r
is

k
re

po
rt

 (
 N

 =
 8

)

 P
ro

je
ct

:
 w

w
w

 D
at

e:

 xx
/y

y/
zz

 R
an

k
T

hi
s

W
ee

k

 R
an

k
L

as
t

W
ee

k
 W

ee
ks

on

 L
is

t
 R

is
k

F
ac

to
r

 P
ot

en
ti

al
 I

m
pa

ct

 M
it

ig
at

in
g

A
ct

io
n

 T
im

e
F

ra
m

e
fo

r
R

es
ol

ut
io

n

 1
 4

 2
 R

ep
la

ce
m

en
t

fo
r

se
ns

or
 - c

on
tr

ol
 t

ea
m

le

ad
er

 D
el

ay
 in

 c
om

pl
et

io
n

of
 c

od
in

g;
 lo

w
er

qu

al
it

y
co

de

 M
ee

ti
ng

 w
it

h
de

pa
rt

m
en

t
m

an
ag

er
 o

n
M

on
da

y
 Im

m
ed

ia
te

 2
 6

 2
 R

eq
ue

st
ed

 c
ha

ng
es

 in

th
e

us
er

 in
te

rf
ac

e
 D

el
ay

ed
 d

el
iv

er
y

da
te

 A

ss
ig

ne
d

2
ad

di
ti

on
al

pe

op
le

 M

us
t

co
m

pl
et

e
ch

an
ge

s
by

 n
ex

t
F

ri
da

y

 3
 2

 5
 C

om
pi

le
r

bu
gs

 D

el
ay

 in
 c

om
pl

et
in

g
th

e
co

di
ng

 o
f

ha
rd

w
ar

e
dr

iv
er

s

 V
al

id
at

io
n

te
st

s
in

pr

og
re

ss

 N
ew

 r
el

ea
se

 m
us

t
be

 v
al

id
at

ed
 b

y
th

is

F
ri

da
y

 4
 3

 6
 A

va
ila

bi
lit

y
of

 w
or

k
st

at
io

ns
 f

or
 s

ys
te

m

te
st

 C
os

t
an

d
sc

he
du

le

de
la

y
 M

ee
ti

ng
 w

it
h

cu
st

om
er

an

d
de

pa
rt

m
en

t
m

an
ag

er

on
 W

ed
ne

sd
ay

 M
us

t
ha

ve
 w

or
k

st
at

io
ns

 in
st

al
le

d
w

it
hi

n
on

e
m

on
th

 5
 5

 3
 D

efi
 n

it
io

n
of

ha

rd
w

ar
e

te
st

 - b
ed

 D

el
ay

 o
f

sy
st

em

in
te

gr
at

io
n

 R
ev

ie
w

 m
ee

ti
ng

sc

he
du

le
d

fo
r

ne
xt

T

ue
sd

ay

 D
efi

 n
it

io
n

m
us

t
be

av

ai
la

bl
e

by
 e

nd
 o

f
th

is
 m

on
th

9.8 TOP-N RISK TRACKING AND RISK REGISTERS 389

390 MANAGING PROJECT RISK

 P
ro

je
ct

:
 w

w
w

 D
at

e:

 xx
/y

y/
zz

 R
an

k
T

hi
s

W
ee

k

 R
an

k
L

as
t

W
ee

k
 W

ee
ks

on

 L
is

t
 R

is
k

F
ac

to
r

 P
ot

en
ti

al
 I

m
pa

ct

 M
it

ig
at

in
g

A
ct

io
n

 T
im

e
F

ra
m

e
fo

r
R

es
ol

ut
io

n

 6
 1

 3
 Im

pa
ct

 o
f

fa
ul

t -
 to

le
ra

nc
e

re
qu

ir
em

en
ts

 o
n

pe
rf

or
m

an
ce

 C
ou

ld
 r

eq
ui

re
 m

aj
or

ch

an
ge

 t
o

th
e

hw
/s

w

ar
ch

it
ec

tu
re

 P
ro

to
ty

pe
 d

em
on

st
ra

ti
on

sc

he
du

le
d

fo
r

on
e

w
ee

k
fr

om
 T

hu
rs

da
y

 A
s

so
on

 a
s

po
ss

ib
le

 7
 —

 1

 Sp
ec

ifi
ca

ti
on

 o
f

te
le

co
m

m
un

ic
at

io
ns

in

te
rf

ac
e

no
t

co
m

pl
et

ed

 D
el

ay
ed

 p
ro

cu
re

m
en

t
of

 h
ar

dw
ar

e
su

bs
ys

te
m

 M
ee

ti
ng

 t
o

co
ns

id
er

al

te
rn

at
iv

es
 s

ch
ed

ul
ed

 f
or

W

ed
ne

sd
ay

 M
us

t
co

m
pl

et
e

th
e

sp
ec

ifi
ca

ti
on

 b
y

en
d

of
 t

hi
s

m
on

th

 8
 8

 4
 U

na
va

ila
bi

lit
y

of

te
ch

ni
ca

l
w

ri
te

r/
ed

it
or

 P
oo

r
qu

al
it

y
m

an
ua

ls

 H
R

 h
as

 p
la

ce
d

ad
 w

it
h

jo
b

ag
en

cy

 N
ee

de
d

as
 s

oo
n

as

po
ss

ib
le

 —

 7
 4

 C
M

 p
er

so
n

ne
ed

ed

 In
ad

eq
ua

te
 s

up
po

rt

fo
r

in
cr

ea
si

ng

w
or

kl
oa

d

 E
xp

er
ie

nc
ed

 C
M

 p
er

so
n

ha
s

jo
in

ed
 t

he
 p

ro
je

ct

 R
es

ol
ve

d

 —

 9
 5

 In
te

rf
ac

e
to

 t
he

 d
at

a
ba

se

 T
im

e
an

d
ef

fo
rt

 t
o

im
pl

em
en

t
a

ne
w

in

te
rf

ac
e

 R
es

ol
ve

d
in

 t
he

 la
te

st

de
m

on
st

ra
ti

on

 R
es

ol
ve

d

T
A

B
L

E
 9

.1
2

(C
on

ti
nu

ed
)

 As indicated in Table 9.13 , the responsibility for managing each risk factor should
be assigned to an appropriate person. Responsibilities include:

 • assuring that a mitigation plan is developed for the risk factor,
 • tracking the risk indicator metric (or metrics),
 • implementing and tracking the progress of action plans and contingency plans,

and
 • reporting status to designated parties.

 The status of a risk factor can be Closed, Action, or Monitored:

 • A Closed risk factor is one that did not happen (e.g., the hardware was
delivered on time) or one for which a mitigation activity has successfully
reduced the probability of occurrence and/or the potential impact to acceptable
levels;

 • Active status of a risk factor indicates that an immediate - action plan or a con-
tingent - action plan has been invoked and is currently in progress; and

 • A Monitored risk factor is one that is being tracked on a watch list or is being
monitored by one or more risk indicator metrics. If a risk indicator crosses a
predetermined threshold value, a contingent - action plan will be initiated and
status will be changed from monitored to active.

 Various kinds of reports can be generated from a risk register. For example, a list
of all Closed, Active, or Monitored risk factors can be generated. Or, all of the risk

 TABLE 9.13 Elements of a risk register

 Risk factor identifi er
 Revision number and revision date
 Responsible party
 Risk category (schedule, resources, cost, technical, other)
 Description
 Status (closed, action, monitored)
 If closed: date of closure and disposition (disposition: avoided, transferred, removed from

watch list, immediate action or contingent action completed, crisis managed)
 If active: action plan number or contingent - action plan number and status of the action

(status: on plan; or deviating from plan plus risk factors in completing the plan)
 If monitored: the following items apply:
 • Top - N rank
 • Previous rank
 • Weeks on the list
 • Potential impact
 • Current action
 • Time frame for resolution
 • Relationship to other risk factors
 • Related contingency plan

9.8 TOP-N RISK TRACKING AND RISK REGISTERS 391

392 MANAGING PROJECT RISK

factors for which particular individuals are responsible. Or, only the Top - M in the
list of risk factors.

 Different risk registers should be used at different levels of your organization.
Each team should maintain a risk register that is updated weekly. The project team
members should meet with you, the project manager, on a weekly basis to update
the register, or with their team leaders who meet with you in turn. Items to be
included in the project register are those risk factors that individual teams cannot
handle and those that will have an impact beyond the individual team, should those
risks become problems.

 The department in which your project occurs should have a risk register that is
updated on a weekly, bi - weekly, or monthly basis. Items in the department ’ s risk
register include those risk factors that cannot be handled at the project level or that
are better handled at the department level. Similarly you and your customer, and
you and your subcontractors (if any), should maintain jointly managed risk registers
that are updated on a periodic basis, either monthly or quarterly depending on the
duration and criticality of the project.

 Each version of each risk register should be identifi ed by number, date, type
(team, project, department, customer, or subcontractor). Each version should be
under version control to provide traceability and a historical log. As indicated above,
using publicly displayed top - N risk lists and risk registers can have a positive, revo-
lutionary effect on project and organizational communication.

 Risk Radar is software tool that based on Microsoft Access that can be used to
implement a risk register. Many of the items in Risk Radar are similar to those listed
in Table 9.13 , although Risk Radar uses a somewhat different format. Sample screen
shots from Risk Radar can be seen at http://www.iceincusa.com/Content/RRFlyer.
pdf . A free demo copy of Risk Radar can be downloaded from http://www.iceincusa.
com/Products.aspx?p=Products_RiskRadar .

 9.9 CONTROLLING THE RISK MANAGEMENT PROCESS

 Like all processes of software engineering, the risk management process must be
tailored to fi t the needs of each of your projects. In a small project consisting of a
single development team (5 or fewer developers), a weekly updated risk register in
the form of a single spreadsheet is suffi cient. You, as project manager, software
architect, and team leader, would be the keeper of the risk register and control the
risk management process.

 Like all processes the risk management process becomes more complex in larger
projects that involve multiple development teams and that may involve multiple
departments, multiple customers, and multiple subcontractors. In these cases each
risk factor should be documented using a risk reporting form, such as the one illus-
trated in Table 9.14 .

 Each reported risk factor is analyzed and controlled by a Risk Management
Board (RMB), which is similar in operation to a Change Control Board (see Section
 3.4.5). Your project RMB should be headed by you, the project manager, and should
include your software architect, your team leaders, and representatives of the CM,
QA, support, and maintenance functions. You should have separate RMBs to jointly
manage acquirer - supplier risk factors that have the potential to affect relations with

your customer and to jointly manage risk factors with your subcontractor(s), if any
(see Section 9.11 and 9.12).

 As indicated in Figure 9.4 , items of concern to project stakeholders are reported
using risk reporting forms. Items are analyzed by a risk analyst (you, on a small
project; perhaps by a staff assistant on larger projects). The submitter is notifi ed if
the risk factor is already known and is being handled. Otherwise, the analyst reviews
the risk report, adds her or his concurrence or other recommendations, and forwards
the report to the RMB.

 The RMB takes action (or directs others to take action) to:

 • avoid,
 • transfer,
 • accept the risk factor and place it on a watch list,
 • develop and execute an immediate - action plan (“ Act ” in Figure 9.4), or
 • develop a contingency plan and monitor the risk factor (“ Defer ” in Figure

 9.4);

 or the RMB may decide to reject the risk report.

 TABLE 9.14 Format of a risk reporting form

 Risk report number:
 Submitter: [name and contact information]
 Risk category: [schedule, resources, cost, technical, other]
 Severity level:
 Description:
 Potential impact:
 Time frame:
 Recommended disposition: [avoid, transfer, accept, immediate action, contingent action]

 FIGURE 9.4 Process fl ow for controlling the risk management process

Project
RMB

Contingency
Plan

Track
Metrics

Update &
 Report Status

Invoke
Contingent-Actions

Risk Reporting Form

Risk
Analysis

Close & Report

Defer

• Customer
• Marketing
• Managers
• Team leaders
• Developers
• Subcontractors

• Avoid
• Transfer
• Accept
• Act
• Reject

Manage
Crisis

Close &
Report

Known

new

9.9 CONTROLLING THE RISK MANAGEMENT PROCESS 393

394 MANAGING PROJECT RISK

 In all cases other than rejection of the risk report, a new item is entered in the
appropriate risk register (team, project, department, customer, subcontractor). Like
all important work products, the risk register is placed under version control to
prevent unauthorized changes and provide a historical log of risk management
activities.

 If the decision is to monitor the risk factor, a contingency plan is developed
(see Tables 9.10 and 9.11), one or more risk indicator metrics are tracked, and
status is reported on a periodic basis. At some point the entry in the risk register
may be closed because the risk did not materialize, or a risk indicator metric may
trigger contingent actions because the metric crossed a predetermined threshold
value.

 Contingent actions may successfully handle a risk factor that has become a
problem. In that case the risk factor is closed in the risk register. Or, the contingent
actions may fail to overcome the problem in the specifi ed time frame and the project
enters crisis mode.

 9.10 CRISIS MANAGEMENT

 A project enters crisis mode when an event or a situation stops progress. Crisis
management is the process of clearing the roadblock so that progress can resume.
Recall that the goal of risk management is to identify risk factors with suffi cient
lead time to prevent crisis situations. Thus a project would never enter crisis mode
if risk management were 100% effective. However, no process is 100% effective, so
the possibility of crisis situations must be acknowledged. There are several ways a
project can get into crisis mode:

 • failing to systematically identify, prioritize, and mitigate potential problems;
 • identifying potential problems but taking no mitigating actions;
 • unforeseen and unforeseeable situations and events; and
 • failure of a contingent - action plan to solve the problem in the allocated time

frame.

 It could be, for example, that no one foresaw lack of suffi cient memory would
be a problem, or perhaps the possibility of insuffi cient memory was discussed
but no mitigating actions were taken (including failure to put the risk factor
on a watch list), or perhaps the contingent - action plan, as executed by Joe and
Sue, failed to solve the problem within the 7 days allocated to fi xing the
problem.

 Guidelines for managing crisis situations include:

 • acknowledging the situation,
 • allocating suffi cient resources,
 • seeking creative solutions,
 • reviewing status frequently, and
 • setting a “ drop - dead ” date.

 A project in crisis mode is in jeopardy of failure. Appropriate stakeholders,
including the customer and upper level managers, must be notifi ed; painful as that
may be. A drop - dead date for the project must established by those stakeholders.
Because the project is in jeopardy, all available resources that can be productively
used must be allocated to overcome the crisis even if other work activities must be
temporarily halted. Creative solutions should be explored but not to the extent that
progress is overcome by “ analysis paralysis. ” Status should be reviewed on a daily,
or even twice daily basis, in short status meetings with participants limited to those
directly involved in attempting to overcome the crisis (e.g., 15 to 30 minute stand - up
meetings).

 If the crisis is overcome within the allocated time for crisis management, sched-
ules, budgets, and work plans must be revised to account for the time and resources
spent on crisis management.

 The last guideline, setting a “ drop - dead ” date, is particularly important to force
decisive action when a crisis cannot be overcome within a specifi ed time frame;
otherwise, a project may languish in crisis mode far beyond a reasonable decision
point. The resulting decision at the drop - dead date will be to:

 1. cancel the project or
 2. signifi cantly re - scope it.

 If the project is canceled a termination plan must be prepared and executed. The
plan must include a redeployment plan for the project members and may require
diffi cult negotiations with the customer, who may be internal or external to your
organization. If the project is re - scoped, the requirements and a project plan must
be developed for the (new) project.

 In any case (successfully overcoming the crisis, canceling the project, or
signifi cantly re - scoping it), the staff members who have made extraordinary
contributions in attempting to overcome the crisis must be rewarded for their
efforts. The reward may take the form of a couple of days off to catch up on sleep
and to see family members plus a letter or e - mail of appreciation (the recommended
reward), or a dinner for the family, or conference travel, or some combination
of these.

 9.11 RISK MANAGEMENT AT THE ORGANIZATIONAL LEVEL

 Most of the processes, methods, and techniques presented in this chapter are con-
cerned with managing risk factors at the level of individual projects. Managing risk
factors in your software projects will be easier, and more likely to be successful, if
risk management is supported at the organizational level of the organization in
which your project is conducted. Communications with senior managers and cus-
tomers that are based on risk management will enable them to understand the
competitive, fi nancial, and strategic options for systems, products, and product
suites.

 Factors that result in successful risk management at the organizational level
include [Fairley96] :

9.11 RISK MANAGEMENT AT THE ORGANIZATIONAL LEVEL 395

396 MANAGING PROJECT RISK

 • explicit defi nition of development and management practices,
 • communication based on risk management,
 • risk reporting to senior managers, and
 • a corporate policy for risk management of software projects.

 At the corporate level risk management policies should require, for all projects:

 • risk management plans developed at the planning stage of a project and incor-
porated into the overall project plan;

 • project - specifi c tailoring of the development process and the risk management
methods, tools, and techniques to be used; and

 • explicit review of risk factors on a regular, ongoing basis.

 As indicated earlier in this chapter, uniform risk management processes throughout
the organizational unit is a level 3 process area in the staged representation of
CMMI - DEV - v1.2.

 9.12 JOINT RISK MANAGEMENT

 Some risk factors may require mitigation strategies that involve an external cus-
tomer, your organization (the supplier), and you (the project manager). For example,
reducing risk factors created by ambiguous operational requirements may require
greater involvement of representative users; mitigation of technical risk factors may
require increased allocation of resources (i.e., money) from the customer, increased
involvement with a hardware group, or de - scoping of the requirements. Effective
risk management at this level requires a great deal of trust and cooperation between
the customer and the supplier (your organization). On the other hand, if there is no
trust or cooperation between acquirer and supplier the project will probably fail in
any case.

 Similarly risk factors that arise in using subcontractors should be jointly managed
by you (the subcontractor ’ s customer) and the subcontractor (your supplier). Each
subcontract should require the subcontractor to practice internal and joint risk
management.

 9.13 KEY POINTS OF CHAPTER 9

 • A risk factor is a potential problem that becomes a real problem when an
objectively measured risk indicator crosses a predetermined threshold.

 • Risk factors are characterized by probability of occurrence and potential loss.
 • Project risk is the set of risk factors that have the potential to negatively impact

a software project.
 • Most standards and guidelines for software project management include risk

management as a key process.
 • Conventional project management techniques for planning and estimating,

measuring and controlling, and leading and directing software projects are
institutionalized techniques used to manage generic risk factors.

 • Risk management techniques are used to identify, analyze, prioritize, and miti-
gate project - specifi c risk factors.

 • Risk mitigation strategies include avoidance, transfer, acceptance, immediate
action, and contingent action.

 • Successful risk mitigation reduces the probability and/or the loss of a potential
problem to acceptable levels.

 • Managing risk factors in your software projects will be easier, and more likely
succeed, if risk management is supported at the organizational level of the
organization in which your project is conducted.

 • You and your customer, and you and your subcontractors (if any), should
engage in joint risk management.

 REFERENCES

 [Boehm91] Boehm , B. W. Software risk management: Principles and practices . IEEE Soft-
ware (January 1991). vol. 8 , No. 1 . pp 32 – 41 .

 [Carr93] Carr , M. J. , et al. Taxonomy - Based Risk Identifi cation . www.sei.cmu.edu/pub/
documents/93.reports/pdf/tr06.93.pdf , 1993.

 [CMMI06] SEI. CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,
2006.

 [Davis03] Davis , A. The art of requirements triage . IEEE Computer (March 2003). Vol.
 32 , No. 3 . pp 42 – 49 .

 [Fairley94] Fairley , R. E. Risk management for software projects . IEEE Software (May
 1994). vol. 11 , No. 3 , pp 57 – 67 .

 [Fairley96] Fairley , R. , and P. Rook . Risk management for software development. IEEE
Tutorial on Software Engineering . IEEE Computer Society, 1996 . pp 387 – 400 .

 [Fairley05] Fairley , R. E. Software risk management glossary . IEEE Software (May/June
 2005). Vol. 22 , No. 3 , pp 101 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology — Software Life
Cycle Processes . Engineering Standards Collection. IEEE Product: SE113.
Institute of Electrical and Electronic Engineers, August 2003.

 [IEEE1540] IEEE Std 1540 ™ – 2001. IEEE Standard for Software Life Cycle Processes —
 Risk Management , Engineering Standards Collection. IEEE Product: SE113.
Institute of Electrical and Electronic Engineers, August 2003.

 [PMI04] PMI. A Guide to the Project Management Body of Knowledge , 3rd ed.
(PMBOK ® Guide). Project Management Institute, 2004.

 [VALUE] http://www.value - eng.org/ .

 EXERCISES

 9.1. CMMI - DEV - v1.2 lists three related process areas in the risk management
process area: project planning, project monitoring and control, and decision

EXERCISES 397

398 MANAGING PROJECT RISK

analysis and resolution. Access the CMMI Web site at http://www.sei.cmu.edu/
publications/documents/06.reports/06tr008.html . Review the risk management
process area, and briefl y explain how each of the three related process areas is
related to risk management.

 9.2. Table 9.1 lists some commonly occurring risk factors for software projects. List
three additional risk factors that can occur in software projects and provide an
example of each one.

 9.3. One of the risk factors listed by Boehm in [Boehm91] is straining computer
science capabilities; that is, attempting to implement software for which the
algorithms are not known. Give three examples not mentioned in this text of
areas where a customer might request features that would strain computer
science capabilities. Briefl y explain each.

 9.4. In Section 9.1 it is stated that one might create a risk to maintainability by
violating the principles of coupling and cohesion in order to avoid the problem
of exceeding available memory.

 a. Briefl y explain how memory usage could be reduced by violating the prin-
ciples of coupling and cohesion.

 b. Briefl y explain how violating those principles could create a maintainability
risk.

 9.5. Excessive overtime is an unacceptable method for overcoming problems in a
software project.

 a. Briefl y explain how much overtime is excessive, in your opinion.
 b. Briefl y explain three risk factors for project success that are created by

excessive overtime.
 9.6. Software projects often have risk factors that are not apparent during initial

planning of a software project. Give three examples of risk factors not men-
tioned in this text that might not be apparent during initial planning of a soft-
ware project. Briefl y explain each.

 9.7. Select one risk management technique (avoid, transfer, accept, act, defer, reject)
for each of the risk factors listed in Table 9.2 (10 total). Briefl y explain how
each of the risk management techniques you selected can be used to manage
risk factors for software projects. Select each of the six techniques at least
once.

 9.8. In Section 9.2 an example is given of a risk factor that will become a problem
if your software architect leaves your company. Briefl y explain 3 techniques
you might use to mitigate the problems that would be created if she leaves.
Note that she has not yet left and that she may not leave.

 9.9. Prepare a spreadsheet to implement a risk register using the format in Table
 9.13 . Populate the spreadsheet with some risk factors from Exercises 9.7 and
9.8, and/or some hypothetical risk factors. Hand in your spreadsheet program
and a printed listing of the output from it.

 APPENDIX 9A

FRAMEWORKS, STANDARDS,
AND GUIDELINES FOR
RISK MANAGEMENT

 9A.1 THE CMMI - DEV - v 1.2 RISK MANAGEMENT PROCESS AREA

 The CMMI - DEV - v1.2 process framework includes risk management as a process
area at level 3 in the staged representation and as a project management process
area in the continuous representation. As stated in CMMI - DEV - v1.2 30 :

 The purpose of Risk Management (RSKM) is to identify potential problems before
they occur so that risk - handling activities can be planned and invoked as needed across
the life of the product or project to mitigate adverse impacts on achieving objectives.

 The specifi c goals and specifi c practices of risk management in the CMMI process
models are:

 SG 1 Prepare for risk management
 SP 1.1 Determine risk sources and categories
 SP 1.2 Defi ne risk parameters
 SP 1.3 Establish a risk management strategy

 SG 2 Identify and analyze risks
 SP 2.1 Identify risks
 SP 2.2 Evaluate, categorize, and prioritize risks

 SG 3 Mitigate risks
 SP 3.1 Develop risk mitigation plans
 SP 3.2 Implement risk mitigation plans

 Process areas related to risk management in the CMMI models are:

 30 CMU/SEI - 2006 - TR - 008, page 432.

399

400 MANAGING PROJECT RISK

 • Project Planning,
 • Project Monitoring and Control, and
 • Decision Analysis and Resolution.

 9A.2 ISO / EIC AND IEEE / EIA STANDARDS 12207

 Appendix G, Section G.10, of IEEE/EIA Standard 12207.0 (management process)
includes the following objectives:

 • determine the scope of risk management to be performed for the project;
 • identify risks to the project as they develop;
 • analyze risks and determine the priority in which to apply resources to mitigate

those risks;
 • defi ne, implement, and assess appropriate risk mitigation strategies; and
 • defi ne, apply, and assess risk metrics to measure the change in the risk state

and the progress of the mitigation activities.

 The scope of risk management includes the activities to be performed, which are
listed in Annex L of IEEE/EIA 12207.2 :

 • risk planning
 • risk identifi cation
 • risk analysis
 • risk mitigation
 • risk tracking and control

 IEEE/IEA Standard 12207.2 , Section L.2 (risk planning), states that a risk man-
agement plan should be developed and that the plan should include methods of
performing risk management, ways in which risk management activities will be
documented and reported, those responsible for risk management activities, and
ways in which risk factors and their status will be communicated to other organiza-
tions, such as the acquirer and subcontractors. It is also noted that the risk manage-
ment plan may be part of the project management plan.

 Section l.1 of Annex L in 12207.2 emphasizes that risk management is part of the
overall management process and is not a replacement for other project management
activities (i.e., risk management augments conventional project management).

 9A.3 IEEE / EIA STANDARD 1058

 Subclause 5.4 of IEEE Standard 1058 - 1998 for software project management plans
(risk management plan) states that risk management plans shall specify:

 • processes and procedures that will be used to identify, analyze, prioritize, and
mitigate project risk factors, both initially and throughout the life cycle of the
project;

 • methods that will be used to track the various risk factors;
 • methods of evaluating changes in the levels of risk factors; and
 • plans for responding to changes.

 In addition a risk management plan should specify who will be responsible for the
various aspects of risk management, how often risk factors will be reviewed, the
review process, and who will be involved. Also the plan should specify how risk
status will be reported and to whom.

 Risk factors that should be considered include potential problems in:

 • acquirer - supplier relationship;
 • contractual factors;
 • technological factors;
 • size and complexity of the product;
 • development and target environments;
 • personnel acquisition, skill levels, and retention;
 • schedule and budget; and
 • acquirer acceptance of the product.

 Section 5.4 of Appendix B in Chapter 4 of this text poses a set of questions to be
addressed in preparing a risk management plan.

 9A.4 THE PMI BODY OF KNOWLEDGE

 Chapter 11 of the Guide to the PMI Project Management Body of Knowledge
(PMBOK) is concerned with risk management. The introduction to Chapter 11
states that the objectives of project risk management are to increase the probability
and impact of positive events, and decrease the probability and impact of events
adverse to the project.

 Topics addressed in Chapter 11 of PMBOK include:

 • Risk Management Planning,
 • Risk Identifi cation,
 • Qualitative Risk Analysis,
 • Quantitative Risk Analysis,
 • Risk Response Planning, and
 • Risk Monitoring and Control.

 According to PMBOK, the distinction between quantitative and qualitative risk
management is determined by the degree to which objectively derived numbers can
be assigned to probabilities and impacts of potential problems, as illustrated in
Tables 9.1 a and 9.1 b of this chapter.

9A.4 THE PMI BODY OF KNOWLEDGE 401

402 MANAGING PROJECT RISK

 9A.5 IEEE STANDARD 1540

 Although risk management is mentioned throughout ISO/IEC and IEEE/EIA Stan-
dards 12207 , they do not contain an explicit risk management process. IEEE Stan-
dard 1540 – 2001 is the IEEE Standard for Life Cycle Processes — Risk Management
[IEEE 1540].

 According to IEEE 1540, the procedures that implement the risk management
process should specify:

 • frequency at which risks are to be reanalyzed and monitored,
 • type of risk analysis required (quantitative and/or qualitative),
 • measurement scales to be used to estimate risk likelihood and consequences,
 • types of risk thresholds to be used,
 • types of measures used to track and monitor the state of the risks,
 • how risks are to be prioritized for treatment,
 • which stakeholder(s) perspectives the risk management process supports,

and
 • risk categories to be considered.

 The standard contains 5 annexes (i.e., appendixes):

 • Annex A: risk management plan
 • Annex B: risk action request
 • Annex C: risk treatment plan
 • Annex D: application of risk management in the IEEE/EIA 12207 series
 • Annex E: annotated bibliography

 The outline for risk management plans in Annex A of IEEE Standard 1540
contains the following items to be included in the risk management plan for each
project:

 • policies and guidelines to be followed
 • responsibilities for risk management
 • risk management orientation and training
 • costs and schedules for risk management
 • a description of the risk management process

 ° risk analysis
 ° risk monitoring
 ° risk treatment

 • risk management process evaluation
 ° capturing risk information
 ° assessing the risk management process
 ° generating lessons learned

 • risk communication
 ° documentation and reporting

° coordination of risk management with stakeholders
 ° coordination of risk management with interested parties

 • change procedures and history

9A.5 IEEE STANDARD 1540 403

 APPENDIX 9B

SOFTWARE RISK
MANAGEMENT GLOSSARY

 Contingency plan A plan for dealing with a risk factor, should it become a
problem.

 Continuous risk management The process of analyzing the progress of a
planned activity, project, or program on a periodic, ongoing basis and handling
identifi ed risk factors; includes developing options and fallback positions to
permit alternative solutions to reduce the impact if a risk factor becomes a
problem.

 Crisis A critical state of affairs in which a decisive, undesirable outcome is
impending.

 Crisis management Steps to take when a contingency plan doesn ’ t solve the associ-
ated problem.

 Problem A negative situation to overcome. A risk factor becomes a problem when
a risk metric (an objective measure) crosses a predetermined threshold (the
problem trigger).

 Risk The probability of incurring a loss or enduring a negative impact.
 Risk acceptance Acknowledgment of a risk factor ’ s existence along with a decision

to accept the consequences if the corresponding problem occurs; also called risk
assumption .

 Risk analysis The process of examining identifi ed risk factors for probability of
occurrence, potential loss, and potential risk - handling strategies.

 Risk avoidance A course of action that removes a risk factor from further consid-
eration (e.g., by changing the requirements, extending the schedule, or transfer-
ring the cause of the risk factor to another domain).

 Risk exposure The product of probability times potential loss for a risk factor;
usually on a ordinal scale (e.g., Low, Medium, High) or expressed on a ratio scale
in monetary units or utility.

 Risk factor A potential problem that would be detrimental to a planned activity,
project, or program, characterized by the probability of problem occurrence

404

(0 < p < 1) and a potential loss (of life, money, property, reputation, etc) should
the problem occur. Both probability and potential loss might change over time.

 Risk handling A course of action taken in response to a risk factor; includes risk
acceptance, risk avoidance, risk transfer, and risk mitigation.

 Risk identifi cation An organized, systematic approach to determining the risk
factors associated with a planned activity, project, or program.

 Risk leverage factor (rlf) rlf (reb − rea)/ rmc , where reb is risk exposure before risk
mitigation, rea is risk exposure after risk mitigation, and rmc is the risk mitigation
activity ’ s cost. A larger rlf indicates a better mitigation strategy.

 Risk management An organized process for identifying and handling risk factors;
includes initial identifi cation and handling of risk factors as well as continuous
risk management.

 Risk metric An objective measure associated with a risk factor to be mitigated.
 Risk mitigation A course of action taken to reduce the probability of and/or

potential loss from a risk factor; includes executing contingency plans when a risk
metric crosses a predetermined threshold (when a risk factor becomes a
problem).

 Risk reduction Reducing the probability and/or potential impact of a risk factor;
might involve research, prototyping, and other means of exploration.

 Risk transfer Transferring responsibility for managing a risk factor to another
organization or functional entity better able to mitigate the risk factor.

 Risk trigger The predetermined threshold value of a risk metric that triggers
invocation of a contingency plan when the risk metric crosses the threshold.

 Root - cause analysis Determination of a potential problem ’ s (a risk factor ’ s)
underlying cause or causes.

 Uncertainty The result of not having accurate or suffi cient knowledge of a situa-
tion; often the root cause of a risk factor.

 Utility A measure of value within a given context, often measured on a scale of 0
to 100.

SOFTWARE RISK MANAGEMENT GLOSSARY 405

407

10
 TEAMS, TEAMWORK, MOTIVATION,
LEADERSHIP, AND COMMUNICATION

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 If your actions inspire others to dream more, learn more, do more, and become more,
you are a leader.

 — John Quincy Adams

 10.1 INTRODUCTION

 The three key assets for software projects are people, processes, and technology. To
succeed, you must have the correct number of people who have adequate skills and
are motivated to do their best work. Processes include procedures for accomplishing
the work and coordinating work activities. Technology includes the infrastructure,
methods, hardware, software tools, and other equipment needed to develop the
product. People are the most important asset; people of outstanding ability and
motivation can often overcome inadequate processes and technology, but excellent
processes and technology cannot compensate for lack of ability and motivation.
Also salaries for project members are typically the largest component of project
costs.

 In addition to individual ability and motivation, software projects require closely
coordinated teamwork. Teams are essential because the variety of skills possessed
by different team members are needed and because no one is interested in waiting
10 years for 1 person to complete a 10 person - year project that could be completed
in 1 year by 10 people. In addition the synergy that occurs when team members
work together in a collaborative manner often results in a product superior to the
one that would have resulted from the efforts of several individuals working in isola-
tion. Software developers must be individual contributors as well as willing and
enthusiastic team members.

408 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 Because software development and modifi cation are intellectual efforts, close
coordination of your team ’ s (or teams ’) efforts is essential. Unfortunately, some
software engineers with outstanding technical skills are not interested in being, nor
are psychologically suited to be, members of a cohesive team.

 Too often software organizations are guilty of suboptimizing the productivity of
a team by catering to the idiosyncrasies of technically skilled but socially inept
individuals. In some cases it may be necessary to remove a disruptive team member
for the greater good of the team, the project, and the organization.

 This chapter is concerned with issues of teamwork, motivation, and leadership
styles for software projects. These factors exert a strong infl uence on the morale of
individuals and teams, and as a result, on productivity, production rate, product
quality, and customer satisfaction.

 10.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises you should understand:

 • managing versus leading,
 • the nature of teams and teamwork,
 • techniques for maintaining morale and motivation,
 • personality styles, and
 • the 5 - layer behavioral model of software development.

 The standards and guidelines presented in each of the preceding chapters, namely,
CMMI - DEV - v1.2, ISO/IEEE Standard 12207, IEEE Standard 1058, and the PMI
Body of Knowledge, address people issues to a limited degree. Other guidelines for
leading and directing individual and team efforts include the people CMMI, the
team software process (TSP) which is based on the personal software process (PSP),
and the dos and don ’ ts in the text Peopleware . A summary of these guidelines is
provided in Appendix 10A to this chapter.

 Terms used in this chapter and throughout this text are defi ned in Appendix A
to the text. Presentation slides for this chapter and other supporting material are
available at the URL listed in the Preface.

 10.3 MANAGING VERSUS LEADING

 Your duties, as project manager, include managing the project and leading the
project personnel. Managing is concerned with making plans and estimates, collect-
ing and analyzing project and product data, reporting progress, controlling the
development process and the work products, and identifying and mitigating risk
factors. Leading is concerned with communicating with your project personnel and
other stakeholders, coordinating the work activities, and maintaining morale.

 Good managers are not necessarily good leaders, and good leaders are not neces-
sarily good managers. Managing is an analytical activity, whereas leading involves
human relations. Different personality traits and different skill sets are required for

managing and for leading. Some excellent managers are poor leaders and some
excellent leaders are poor managers.

 An effective leader is a good listener who listens for, hears, and responds to the
subtext as well as the main text of a conversation; is a facilitator who provides the
catalyst for effective teamwork; is a coach who provides guidance and encourage-
ment; and is an enthusiast who believes in the project team and the goals of the
project. Attributes of effective leaders are listed in Table 10.1 .

 To be an effective project manager, you must identify those activities of managing
and leading for which you have an aptitude and which you enjoy doing. You must
then fi nd ways to compensate for the other work activities that you do not enjoy
and for which you do not have the aptitude. As Tom DeMarco has said, “ Find out
what you are not good at and don ’ t do it. ” 31

 You may fi nd, for example, that you are an excellent leader who easily establishes
good working relationships with others and that others enjoy working with you, but
that you do not enjoy preparing earned value reports or analyzing defect data. In
this case you and your organization may fi nd it cost - effective to delegate the analyti-
cal tasks to a designated person who will work with you on those tasks which, for
you, are unappealing. That person might be a staff assistant working with you on a
part - time or full - time basis, depending on the scope of your project or, the person
might be someone whom you are mentoring and preparing to become a project
manager.

 Or it may be, by dint of your personality and skill set, you are an excellent
manager but less capable as a leader. You may fi nd that your technical leader (i.e.,
software architect) is the de facto leader of the software developers to whom they
look for technical decisions and guidance. This can be a very effective arrangement,
provided that you and your technical leader have a close working relationship, a
clear understanding of your realms of responsibility, and the ability to work out your
differences in private, thus presenting a united front.

 The division of responsibilities between you, as project manager, and your techni-
cal leader are as follows:

 TABLE 10.1 Some attributes of effective leaders

 • Listens carefully
 • Delegates authority
 • Facilitates teamwork
 • Coordinates work activities
 • Facilitates communication
 • Speaks with individuals on a daily basis
 • Says “ thank you ” when warranted
 • Coaches and trains
 • Maintains enthusiasm
 • Reconciles differences
 • Resolves confl icts
 • Indoctrinates newly assigned personnel
 • Helps employees develop career plans and achieve their professional objectives
 • Reassigns, transfers, and terminates personnel as necessary

 31 Private conversation.

10.3 MANAGING VERSUS LEADING 409

410 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 • You are responsible for delivering an acceptable product on schedule and
within budget.

 • Your technical leader is responsible for leading the project team to achieve the
 “ acceptable product ” part of the equation, within the constraints of schedule
and budget.

 As Fred Brooks observed, you, the project manager, are akin to the movie pro-
ducer who is responsible for the overall project. Your technical leader is akin to the
movie director who is responsible for the content of the product [Brooks95] . The
most successful movies (and software projects) are those in which the producer and
director have a harmonious working relationship. The failures are often the result
of incompatibilities in viewpoints and personality confl icts between producer
(project manager) and director (technical leader). Your software developers and
support personnel are the actors and stage hands who work to develop an accept-
able product within the constraints of schedule, budget, and technology.

 In the best case you will fi nd that you are effective as both a manager and a
leader. On small projects you may function as both manager and technical leader
or, on small projects, you (the producer) and your technical leader (the director)
may work simultaneously together on two or more small projects, thus applying
your separate skill sets in the most benefi cial way.

 You may fi nd some management tasks are unpleasant because you do not have
the training, tools, or organizational infrastructure to do your tasks in an effi cient
and effective manner. One of the ironies of software organizations (and of engineer-
ing organizations in general) is that the best technical people are often selected to
be project managers without benefi t of training, apprenticeship, or mentoring in
management and leadership. If you are fortunate enough to receive proper support
from your organization, you can become effective in areas you formerly regarded
as your weaknesses.

 10.4 TEAMS AND TEAMWORK

 One of your primary tasks as a leader is to foster a teamwork atmosphere within
your project. A team is a group of individuals working in a cooperative and coordi-
nated manner to achieve shared objectives and goals. A group of people working
together is not a team if they do not have a cooperative attitude and share common
objectives and goals. Team members are individuals who have individual goals,
agendas, motivations, desires, aptitudes, and attitudes; but to be a team, the individ-
ual members must also have a shared vision and shared work products. Each
member must be willing to subordinate some of their individual goals to the shared
goals of the team; better yet, individual goals should be aligned with team goals. In
return, rewards (and penalties) should be for the project team as a whole, and for
subteams as appropriate, but never for individual project members.

 Coalescence of individuals into cohesive teams seldom happens spontaneously.
Factors that contribute to team formation include the personalities of the individu-
als and the social and cultural conditions in the organization [Katzen93] . Some
factors that contribute to effi cient and effective software teams are listed in
Table 10.2 .

10.4 TEAMS AND TEAMWORK 411

 One of your primary responsibilities, as project manager, is to facilitate the condi-
tions listed in Table 10.2 so that your project members will coalesce into a team, or
teams. Your project team(s) must have a suffi cient number of people who have the
necessary skills, tools, and training to achieve the project objectives within the con-
straints of schedule, budget, requirements, and technology.

 In many organizations team members are selected by applying for, and being
interviewed for, membership in the project team. The applicant may be an employee
of the organization or a potential new hire from outside the organization. In the
former case (a present employee), personnel throughout the organization are
allowed to apply for jobs that constitute lateral transfers at the same skill level or
that constitute promotions to positions such as lead designer, leader of a develop-
ment team, leader of the testing team, or tester to developer. Applicants are not
accepted without the approval of the appropriate persons, including you (the project
manager), your lead designer, and the present team members who would work with
the applicant, and the applicant ’ s present manager.

 Respect, as is often said, must be earned. You, the project manager, must work
to earn the respect of your project team members by exhibiting:

 • competence,
 • ability,
 • integrity, and
 • concern for their welfare.

 Every project member must likewise exhibit these characteristics to earn and keep
the respect of other team members.

 You may fi nd some individuals have no interest in being members of a team.
These so - called lone wolves should be removed from your project team. If this is
not possible, you must fi nd tasks they can perform in relative isolation from the rest
of the team; they should not receive special perquisites and rewards that result from
the team ’ s efforts. As the saying goes, “ one rotten apple can spoil the barrel; ” one
uncooperative individual can destroy a project team.

 A key indicator of an effective team is shared ownership of the work products.
While each individual is responsible for her or his work assignments and work

 TABLE 10.2 Factors that contribute to effi cient and
effective software engineering teams

 • Appropriate number of people
 • Correct skill mixture
 • Good tools
 • Adequate training
 • Respect for one another
 • Respect for managers and leaders
 • Willingness to be team members
 • Shared ownership of the work products
 • Good communication skills
 • Good communication channels
 • Good working environment
 • Having some fun together

412 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

products, shared ownership of work products is evident when project members are
willing to help one another. Conversely, dysfunctional groups are characterized by
an unwillingness of individuals to help others, perhaps because excessive schedule
pressure, excessive overtime, and/or competition among team members that does
not reward cooperation.

 Good communication skills, good communication channels, and a pleasant physi-
cal environment are all conducive to team coalescence. Finally, having some fun
together is the glue that can bond a team; however, the “ fun ” activities must be
carefully selected. Not everyone enjoys bowling or paintball.

 Other techniques that contribute to team coalescence include:

 • conducting off - site planning and review meetings that include suffi cient time
for informal socializing,

 • arranging for team members to participate together in off - site training
courses,

 • providing pizza or cookies to celebrate achievement of project milestones,
and

 • organized social events such as attending baseball games or “ family days ” at
amusement parks.

 In their text Peopleware , Tom DeMarco and Tim Lister describe a “ jelled team ”
as “ a group of people so strongly knit that the whole is greater than the sum of the
parts ” [DeMarco99] . Jelled teams thus exhibit synergy in their work activities. In
their text, DeMarco and Lister describe the attributes of jelled teams, which
include:

 • low turnover of team members,
 • a strong sense of identity with the team,
 • a sense of elitism,
 • joint ownership of the product,
 • willingness to help one another, and
 • obvious enjoyment of the work and of one another.

 DeMarco and Lister then introduce the concept of “ teamicide, ” which is “ sure
fi re ways to inhibit formation of teams and disrupt project sociology. ” Teamicide
techniques include:

 • defensive management,
 • mindless bureaucracy,
 • physical separation of team members,
 • fragmentation of time,
 • unrealistic schedules,
 • lack of suffi cient time to produce quality work products,
 • clique control, and
 • excessive overtime.

10.4 TEAMS AND TEAMWORK 413

 Avoiding teamicide is a necessary condition for building and maintaining jelled
teams. Table 10.3 lists some antidotes for teamicide.

 For many organizations, physical separation of different teams is a reality in the
age of globalization. In these cases the work must be carefully partitioned so that
geographically separated teams can pursue their work activities in relative isolation
from other teams.

 You, as project manager, must develop trust between you and your team members
and foster trust among your team members. Trust, like respect, must be earned by
exhibiting:

 • honesty,
 • candor,
 • sincerity, and
 • follow - through

 on agreements and commitments in your interactions with your team members.
 A common area of mistrust by team members is concern for how productivity

and quality data collected from individual team members will be used. Data col-
lected from individuals should always be consolidated, analyzed at the level of small
teams, and aggregated among small teams as needed for purposes of analysis and
reporting. You must do everything in your power to prevent association of individu-
als with the collected data. Nothing will kill trust faster than disclosure or use of
data promised to be held in confi dence.

 You, as project manager, must avoid the temptation to “ be one of the boys (or
girls) ” by joining in on programming, testing, and review activities unless you are
the manager/technical - leader of a small project (5 or fewer people) where you are
a technical contributor.

 When data indicate that an individual ’ s performance is not up to expectations,
you should hold a private meeting with the individual. The goal and tone of the

 TABLE 10.3 Some antidotes for teamicide

 Teamicide Practice Antidote

 Defensive management Trust your team members until proved otherwise; fi x personnel
problems as they occur

 Mindless bureaucracy Use cost - effective procedures and paperwork; demonstrate the
benefi t of them to all involved parties

 Unrealistic deadlines Set deadlines that have a reasonable probability of being met
 Physical separation Provide group workspaces and opportunities for casual

interactions
 Fragmentation of time Assign people to one task at a time, and to one team at a time;

avoid “ fi refi ghting ” assignments
 Clique control Allow team members to work together for extended periods of

time
 Quality reduction Don ’ t compress schedules without de - scoping the requirements;

don ’ t add requirements without extending the schedule
 Excessive overtime Avoid it!

414 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

meeting should be to determine the conditions that are causing inadequate perfor-
mance and to help the individual develop an action plan that will remedy those
conditions. Remedies may include one or more of:

 • training,
 • mentorship,
 • better tools,
 • clarifi cation of responsibilities,
 • reassignment of duties within the project, or
 • reassignment to another project or department.

 Poor performance may require that you and the individual work with your human
resources department to resolve the issue (perhaps personality differences make
you, in the view of the individual, the problem to be resolved).

 The leaders of small teams (3 to 5 members) are responsible for monitoring
the productivity and quality of output of their team members, and for working
with their members to apply corrective actions for defi ciencies in performance.
On larger projects, it may be necessary for the team leader and you, the project
manager, to work privately with team members that are not performing, or
cannot perform up to expectations. Team members, team leaders, and others
who prove to be untrustworthy and who do not improve must be removed from
your project.

 Other teamicide techniques listed in Table 10.1 include mindless bureaucracy and
unrealistic deadlines. Mindless bureaucracy is sometimes truly mindless but is often
perceived as mindless based on lack of understanding, because:

 What is productive for the team or the project is not always viewed as productive by
individuals.

 Completing defect reports and recording time and effort spent on each task, for
example, may detract from time available to write code or run test cases; however,
these data are essential for effective measurement and control of a project. Each
individual must see tangible results from the “ paperwork ” that are benefi cial to
them, to the project, to the organization, and to the customers. For example, analysis
of defect data may result in better processes, methods, and/or tools that reduce
rework and overtime.

 You must ensure that each team member understands the purpose and benefi ts
of each element of “ paperwork, ” you must provide feedback to the team members
based on the data they provide, and you must incorporate into their schedules suf-
fi cient time to complete the necessary paperwork. If the time is not well spent, you
must either eliminate that aspect of paperwork or make it an effective mechanism
for the project. If you cannot justify, and demonstrate to your project members, the
purpose, benefi ts, and value of the time spent preparing requested data, you should
not ask your project members to report it. For example, explaining to team members
that accurate reporting of overtime work - hours can be of benefi t them by providing
you the data you need to convince your managers and customer that the schedule
needs to be extended.

10.4 TEAMS AND TEAMWORK 415

 Managers and customers often set unrealistic deadlines in the belief that unreal-
istic deadlines will encourage workers to achieve greater productivity in an effort
to meet the deadlines. This is a wrong - headed, Machiavellian, Theory X approach
to managing people [Mach13] , [McGreg85] . It is wrong - headed for several
reasons:

 1. it engenders cynicism among project members,
 2. it results in poor quality work products,
 3. it results in job dissatisfaction because team members are not allowed to

produce quality work products, and
 4. it results in excessive overtime in attempting to meet unrealistic schedules

 Excessive overtime results in mental fatigue and burnout, which demoralizes
workers and results in mistakes that show up as defects in the work products.
Excessive overtime also leads to voluntary turnover of personnel, which is disrup-
tive to progress, as it is expensive and time - consuming to replace personnel. You
must resist the pressure from your managers and customer to set unrealistic
deadlines.

 As indicated in Table 10.3 , physical separation is another technique of teamicide
to be avoided. Team members must be co - located because software engineering is
an intellect - intensive, teamwork activity. Team members developing common work
products must be within physical proximity of one another so that continuous ad
hoc communication is possible. E - mail and conference calls are useful but they are
not substitutes for face - to - face discussions and meetings. Physical separation of
team members is a major issue for geographically dispersed projects. These projects
are most successful when work activities are partitioned in a manner that requires
little communication among the partitioned teams. Learning about other cultures
can be helpful, as can exchange of personnel between and among geographically
disperse project teams. Investing in one or more face - to - face meetings, even when
expensive travel is involved, is a worthwhile investment.

 Opportunities for casual interactions must be created. Organizations have noted
declines in team cohesion, productivity, and quality of work products when oppor-
tunities for casual interactions such as the communal coffee pot or the afternoon
tea break are discontinued.

 Fragmentation of time among multiple job assignments or projects is another
teamicide technique to be avoided. Assignment to multiple projects prevents team
members from working together over extended periods of time to learn one anoth-
er ’ s idiosyncrasies, to regard work products as shared artifacts, and to build trust
with one another.

 A related issue is disruption of an individual ’ s concentrated fl ow of thought
processes. Flow (or “ being in the zone ”) is a mental state in which a person is fully
immersed in what he or she is doing; it is characterized by effortlessness of activity
and a loss of sense of time. The concept of fl ow was proposed by psychologist Mih á ly
Cs í kszentmih á lyi in 1975 and has been widely referenced across a variety of fi elds.
Many of the intellect - based work activities of software development are best accom-
plished by concentrated mental effort that occurs when one is “ in the fl ow ” or “ in
the zone. ” In their text Peopleware , DeMarco and Lister indicate that it takes

416 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

approximately 15 minutes to enter in the state of fl ow; 32 if you are interrupted by
phone calls and other people every 15 or 20 minutes you will never enter the state
of mental fl ow needed for full concentration on the task at hand.

 DeMarco and Lister observe that small offi ces with doors that can be closed,
perhaps shared by two or three people, provide better opportunities to perform
concentrated work than do the ubiquitous carrel spaces of modern offi ce buildings.
This author once observed an organization that had a policy of “ quiet hours ” from
1:30 to 3:30 each work day. During this time phone calls were diverted and no
meetings were scheduled. The resulting quiet atmosphere allowed individuals to
enter the fl ow and perform concentrated mental work. Other techniques include
erecting a small fl ag or a sign that indicates “ I ’ m busy just now ” and/or wearing
noise - canceling headphones.

 Clique control is yet another teamicide technique sometimes used by insecure
and distrustful managers who fear rebellions by united team members. At other
times detrimental clique control is the unintended consequence of rotating staff
members among job assignments in the belief that constant job rotation broadens
the skill sets of workers and injects new thinking into projects. You and your orga-
nization should work with each software engineer to develop and implement career
plans that will provide the depth and breadth of skills that are benefi cial to the
organization and are in line with the individual ’ s career goals. However, these
growth plans should be implemented at intervals that do not disrupt continuity of
the current job assignment or team membership.

 Quality reduction is a major teamicide technique to be avoided. One of the major
frustrations of software developers is not being allowed suffi cient time to produce
work products that have the features and quality attributes their personal creeds
and senses of responsibility demand. Quality reduction occurs when a schedule is
compressed without compensating actions such as descoping the requirements or
increasing the resources. Quality reduction can also occur because of virtual sched-
ule compression. This happens when new requirements are added and no compen-
sating actions are taken; as a result more work must be done in the available time.
Quality reduction must be avoided if team cohesiveness and individual morale are
to be maintained. On the other hand, you (the project manager or manager/team
leader) must guard against “ gold plating, ” which occurs when software developers
add features or improve quality attributes (e.g., performance) beyond what is needed
to satisfy the requirements, users ’ needs, and customer ’ s expectations.

 Excessive overtime is the fi nal item in Table 10.3 . Overtime is time worked
beyond the obligated time commitment, which is typically 8 work - hours per day.
Because software development and modifi cation are intellect - intensive activities, it
is not reasonable to expect that software engineers can be intellectually productive
on a continuing basis when they work more than 8 hours per day, 5 days per week.
Every software engineer and software manager knows there will be times when
short bursts of overtime are required. However, more than 10% overtime per week
(4 hours) or 10% per month (two 8 - hour days) should be regarded as excessive.
Short bursts of excessive overtime (i.e., 1 to 2 weeks ’ duration) must be compen-
sated with time off to allow individuals to recharge physically, mentally, and
emotionally.

 32 [DeMarco99] , page 63.

 In a simple phrase, the only way to deal with excessive overtime is to avoid it. To
summarize the danger of teamicide, we quote DeMarco and Lister: “ Most organiza-
tions don ’ t set out to consciously kill teams. They just act that way. ” 33

 10.5 MAINTAINING MORALE AND MOTIVATION

 It is your responsibility, as project manager and leader, to maintain the morale of
your project team. Morale is evident when a project team exhibits confi dence,
cheerfulness, discipline, and willingness to perform assigned tasks. Morale is the
outward manifestation of motivation. Maintaining morale is thus largely a matter
of providing the environment and conditions in which project personnel are moti-
vated to willingly perform their assigned tasks with confi dence, cheerfulness, and
discipline.

 To motivate is to provide an incentive for performing an action. People can be
motivated by fear and intimidation, which may take the form of fear of reprimand,
fear of humiliation, or fear of losing one ’ s job. This approach is not likely to produce
the desired result of cheerfulness and willingness to confi dently perform assigned
tasks with discipline. A more positive approach is to create the conditions in which
individuals can satisfy their psychological needs while pursuing their work activities.
Individuals will thus derive satisfaction from their jobs and be motivated to do high -
 quality work in a timely manner.

 33 Ibid , page 139.

 TABLE 10.4 Psychological elements of job satisfaction

 For psychological needs to be satisfi ed people need:

 • To believe their work is important
 • To have a continuing sense of achievement
 • To receive recognition for their contributions
 • To use a variety of skills
 • To perform well defi ned tasks
 • To have profession growth opportunities
 • To have some autonomy
 • To have pleasant social interactions

10.5 MAINTAINING MORALE AND MOTIVATION 417

 Some of the ways people fi nd psychological satisfaction at work are listed in Table
 10.4 . It is probably true that most people, in order to derive psychological satisfac-
tion from work, need to believe their work is important, to have a continuing sense
of achievement (i.e., “ closure ” in psychological terms), and to receive recognition
for their contributions. Other items listed in Table 10.4 vary in order of importance
for different individuals.

 The prevailing view is that those who work in marketing, sales, or human relations
derive job satisfaction from social interactions, whereas software engineers prefer
autonomy over social interactions (i.e., to be left alone to do their job in their own
way). However, people are not so easily characterized or caricaturized. Some mar-
keteers may prize autonomy to deal with customers in their own way over pleasant
social interactions with offi ce mates, and some software engineers may derive more

418 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

satisfaction from performing well - defi ned tasks that contribute to their team ’ s
results than having a great deal of individual autonomy in performing those
tasks.

 In order to provide a positive work environment, you must understand which
motivational factors are important to each individual and attempt, to the extent
possible, to create those conditions for the individuals. Joe Tester may enjoy per-
forming the well - defi ned tasks of debugging more than interacting with users, and
Sue Analyst may enjoy interacting with users more than debugging code. If circum-
stances allow, each should be assigned to the tasks that permit them to satisfy their
psychological needs.

 TABLE 10.5 Factors that make software engineers happy at work

 • A quiet place to work
 • Challenging technical problems
 • Autonomy in solving problems
 • Ability to control own schedule
 • A chance to learn new things and try new ideas
 • Adequate computing facilities and software tools
 • Competent technical leaders
 • Communication with peers via electronic mail, bulletin boards, news groups, blogs, and

technical conferences

 TABLE 10.6 Four combinations of can ’ t and won ’ t

 Unable and unwilling A realistic situation
 Unable but willing A dangerous situation
 Able but unwilling Lack of motivation
 Able and willing The best situation

 Table 10.5 provides an anecdotal list of job satisfi ers for software engineers. The
lists in Tables 10.4 and 10.5 are not intended to be defi nitive but rather illustrative
of factors that should be taken into consideration when creating a work environ-
ment in which workers can derive psychological satisfaction and thereby exhibit
positive morale.

 10.6 CAN ’ T VERSUS WON ’ T

 As observed by Andy Grove, a founder and former CEO of Intel Corporation,
workers who are not performing up to expectations either can ’ t or won ’ t [Grove95] .
If a software developer wants to do a good job but can ’ t, it may be because she or
he lacks training, skill, experience, tools, time, or basic ability to do the job. When a
person has the necessary prerequisites to do a good job but won ’ t, it is because they
lack motivation (or perhaps are perversely motivated to derail a project). Those
who can ’ t are unable, and those who won ’ t are unwilling. Table 10.6 lists the four
possible combinations and the resulting situation.

 As indicated, unable and unwilling is a realistic situation because the person who
is not qualifi ed to do a job is unwilling to do it and should not be assigned to that

job. Unable and willing is a dangerous situation because the person will most likely
make serious mistakes in attempting to do a job for which he or she is not qualifi ed.
Able and unwilling is the situation in which a person is qualifi ed to perform a task
but refuses to do it, or will do it grudgingly and with lack of enthusiasm. Able and
willing is the most desirable situation; the person has the ability and is willing to
perform assigned tasks.

 To be an effective leader, you must understand the personalities, skills, and moti-
vations (or lack thereof) of each individual and respond as the situation requires.
This approach is known as situational leadership [Hershey99] . Each of the can ’ t
versus won ’ t situations listed in Table 10.6 can be dealt with using the techniques
of situational leadership indicated in Table 10.7 .

 TABLE 10.7 Four situations and leadership styles

 Can ’ t versus Won ’ t Leadership Style

 Unable and unwilling Teaching plus selling
 Unable but willing Teaching plus reinforcing
 Able but unwilling Selling plus reinforcing
 Able and willing Reinforcing plus delegation

10.6 CAN’T VERSUS WON’T 419

 For those who are unable and unwilling, a teaching style is appropriate to enable
them and a selling style is appropriate to motivate them. Teaching techniques
include attending classes, reading papers, being mentored, and working with consul-
tants. Selling techniques include anecdotes, testimonials of respected individuals,
guest speakers, papers to be read, and classes. Teaching plus selling would be appro-
priate for individuals who do not have the training or experience to participate in
software inspections, for example, and are skeptical of the value of inspections.

 For those who are unable but willing, a teaching plus reinforcing style is appropri-
ate; teaching to impart the skills, and reinforcing to channel their efforts in the
desired ways. Reinforcing techniques include a combination of teaching, selling, and
other techniques, such as attending workshops, being coached, and apprenticeship
to increase ability to do the job. Teaching plus reinforcing would be appropriate for
those individuals who are willing to give software inspections a try but lack the
necessary skill.

 Those who are able but unwilling must be motivated by creating the conditions
under which they are willing to do the job with enthusiasm. Motivational techniques
include selling and reinforcing, plus other techniques such as removing barriers
that de - motivate the individual. Selling and reinforcing would be an appropriate
approach for those individuals who have had bad experiences participating in poorly
managed software inspections because the participants were not trained to do
inspections. The de - motivating barrier could be removed by providing training and
coaching.

 The best situation is when individuals are able and willing to do the assigned
job. The appropriate leadership style is reinforcement and delegation. Reinforce-
ment will bolster their ability and delegation will strengthen their motivation. Del-
egation techniques include working with individuals to set goals, giving them the
authority and autonomy to do the job in the way they think best, and establishing
procedures for reporting progress and problems. Individuals who are able and

420 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

willing to perform software inspections, for example, are candidates to become
inspection moderators.

 10.7 PERSONALITY STYLES

 Personality is determined by the behaviors, mental traits, and emotions that distin-
guish one person from another; personality is what makes a person a person. Indi-
viduals will respond best when the leadership style you exhibit is compatible with
their personality. If you are interacting with someone who is methodical and detail -
 oriented, he or she will respond positively to carefully thought - out, detailed plans.
Conversely, if you are dealing with a creative “ big picture ” person, she or he will
want to understand the scope of the work and the impact of his or her tasks on the
overall outcome; these people will be impatient with detailed explanations.

 Many different models of personality have been developed. Some of these models
are useful to provide insight into ourselves and insight into how best to interact with
others who have personality traits that differ from ours. The following sections
briefl y summarize three models of personality:

 • Jungian personality traits,
 • Myers – Briggs Type Indicators, and
 • Wilson ’ s Dimensions of Social Styles.

 It must be emphasized that these models portray some aspects of personality and
none are complete or comprehensive portrayals of human personality.

 10.7.1 Jungian Personality Traits

 A personality trait is a characteristic way in which a person perceives, feels, believes,
or acts. One of the most comprehensive models of personality traits was developed
by Carl Jung in the 1920s [Jung23] . He fi rst distinguished between introversion and
extroversion, which is determined by how one perceives his or her environment,
makes decisions, and “ recharges ” her or his energy level. Introverts prefer the inter-
nal world of thoughts and feelings; a good time for an introvert is reading a book,
working on a puzzle, or listening to music. Extroverts prefer the external world of
things, people, and actions; they enjoy parties and social gatherings. The stereotype
of a software engineer is the introverted nerd; extroversion is the stereotype of a
salesperson.

 Jung then defi ned four ways in which we deal with our surroundings, independent
of whether we are introverts or extroverts. These four ways are sensing, thinking,
intuiting, and feeling. A sensing person obtains knowledge of the world using his or
her fi ve senses and reacts to information as it is received from external sources.

 A person who is predominately a thinker collects information and evaluates it
in a logical manner before acting (or not acting) on the information. Decisions are
made on a rational basis rather than by reacting to stimuli as does one who is pre-
dominately a sensing person. Thinkers are thus less spontaneous than sensers.

 Intuiting is a perception of the world that occurs outside of conscious processes.
Intuition is based on integrating large amounts of information in a subconscious

manner rather than simply seeing, hearing, and reacting as is the case for the sensing
person, or by logical reasoning processes, as is the case for the thinking person.

 Feeling is the fourth way in which Jung observed that people deal with the world.
Feeling involves evaluating information based on one ’ s emotional responses to that
information.

 Jung observed that most individuals tend to be introverts or extroverts, and
although all individuals use all four ways of dealing with the world (sensing, think-
ing, intuiting, feeling), most people predominately use one way most of the time,
secondarily use another, and weakly use the other two. Predominant traits are com-
pensated for, in the case of introverts who make excellent public presentations and
extroverts whose jobs require extensive periods of individual effort. However, the
introvert is most comfortable (i.e., in his or her “ comfort zone ”) when not making
public presentations and the extrovert is most comfortable when interacting with
people rather than when developing software in an isolated environment.

 Jung stressed that not everyone has a predominant trait. However, most research-
ers agree that introversion and extroversion and the four personality traits identifi ed
by Jung are universal across cultures, although the proportion of individuals that
exhibit different predominant traits varies across different cultures. Wurster pro-
vides a comprehensive review of Jung ’ s work and the associated MBTI personality
types [Wurster93] .

 10.7.2 MBTI Personality Types

 In the 1940s, Katharine Briggs and her daughter Isabel Briggs Myers developed the
Myers – Briggs Type Indicator (MBTI) based on Jung ’ s personality traits. It is one of
the most widely used tests for evaluating personality styles.

 The test involves answering approximately 100 questions. Several Web sites
provide on - line, self - scoring version of the MBTI questionnaire; they can be found
by using your favorite search engine to fi nd “ MBTI ” links. Test results are evaluated
on four scales:

 • extroversion – introversion,
 • sensing – intuiting,
 • thinking – feeling, and
 • judging – perceiving.

 Based on results from thousands of MBTI tests, it has been determined that
about 75% of test takers in the United States score as extroverts (25% introverts),
and about 75% of test takers score on the sensing side of the sensing – intuiting scale.
Although the thinking – feeling percentages are almost equal by gender, about 2/3
of men score on the thinking side of the thinking – feeling scale and about 2/3 of
women score on the feeling side. Conversely, it can be said that 1/3 of men score on
the feeling side and 1/3 of women score on the thinking side [Boeree06] .

 The fourth scale (judging – perceiving) is not one of Jung ’ s dimensions. Myers and
Briggs included it to indicate which of Jung ’ s styles predominates and which is sec-
ondary in the test results. “ Judging ” does not imply that one is judgmental; those

10.7 PERSONALITY STYLES 421

422 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

who score on the judging side of the judging – perceiving scale tend to be orderly
and methodical. Those who score more toward the perceiving end of the scale are
more fl exible and spontaneous. If you score on the extrovert side of the extrover-
sion – introversion scale and on the judging side of the judging – perceiving scale, your
predominant style is thinker or feeler, depending on which side of the thinking –
 feeling scale your score is on and your secondary style is the other one. If you score
as an introvert with a high judging score, your predominant style is sensing or intuit-
ing, depending on which side of the sensing – intuiting scale your score lies on, and
your secondary style is the other one.

 Using the 16 combinations of extroversion – introversion, sensing – intuiting, think-
ing – feeling, and judging – perceiving, Myers and Briggs identifi ed 16 personality
styles. Most people who take the MBTI test fall somewhere within the 16 categories.
However, some individuals place somewhere between two or three different
styles.

 The 16 MBTI personality styles are listed in Table 10.8 , and abbreviated as

 TABLE 10.8 MBTI styles and career choices

 MBTI Personality
Style

 Predominant and
Secondary Styles Typical Career Choices

 ENFJ Extroverted feeling with intuiting Therapists, teachers,
salespersons

 ENFP Extroverted intuiting with feeling Marketeers, advertisers,
politicians, actors

 ENTJ Extroverted thinking with
intuiting

 Executives and administrators

 ENTP Extroverted intuiting with
thinking

 Analysts, entrepreneurs

 ESFJ Extroverted feeling with sensing Service occupations involving
personal contact

 ESFP Extroverted sensing with feeling Performance arts, public
relations

 ESTJ Extroverted thinking with sensing Public service, volunteer
organizations

 ESTP Extroverted sensing with thinking Promoters, entrepreneurs
 INFJ Introverted intuiting with feeling Therapists, ministers, general

practitioner doctors
 INFP Introverted feeling with intuiting Psychology, architecture,

religion
 INTJ Introverted intuiting with

thinking
 Applied science, engineering

 INTP Introverted thinking with
intuiting

 Philosophy, mathematics,
theoretical science

 ISFJ Introverted sensing with feeling Nurses, librarians, teachers
 ISFP Introverted feeling with sensing Arts and nature
 ISTJ Introverted sensing with thinking Accountants, auditors,

engineers
 ISTP Introverted thinking with sensing Soldiers, technicians

 • E: Extroversion; I: Introversion;
 • S: Sensing; N: Intuiting;
 • T: Thinking; F: Feeling;
 • J: Judging; and P: Perceiving.

 If you score as an ENFJ, for example, it indicates that your personality style is
Extrovert with Feeling as your predominant style and Intuiting as your secondary
style (because of the J score). If you score as an ENFP, it indicates that your per-
sonality style is Extrovert with Intuiting as your predominant style and Feeling as
your secondary style (because of the P score). The distribution of personality styles
among the North American population is as follows [Wideman98] :

 • Extrovert: 75%; Introvert: 25%;
 • Sensing: 75%; Intuitive: 25%;
 • Thinking: 50%; Feeling: 50%;
 • Perceiving: 50%; Judging: 50%.

 Over time Myers, Briggs, and others have matched MBTI personality types with
career choices, compatibility with the personality types of others, and many addi-
tional behavioral characteristics of individuals. Personality styles have been matched
to occupations in which people having those personality types have successful and
satisfying careers. Some of those occupations are indicated in the right - hand column
of Table 10.8 . The MBTI test is widely used in career counseling, but such use is not
without controversy.

 MBTI results indicate that more than 50% of software engineers are introverts,
compared to about 25% in the general population. MBTI results also indicate that
software engineers are predominately thinkers (80% to 90%) [McConnell99] . Soft-
ware engineers are thus more attuned to logic and analytical reasoning and less
concerned with human relations than the general population.

 The most common personality types for software engineers are INTJ and ISTJ
with an equal split between N (intuiting) and S (sensing) [McConnell99] . An INTJ
might be your most creative designer, and an ISTJ might be your best programmer.
When it is possible, your projects might benefi t by including different personality
types in the mix of personalities; N personalities are concerned with broad under-
standing of a situation and S personalities are concerned with deep exploration of
narrow topics. Mixing them together can bring more viewpoints to solving problems.
However, caution must be taken to avoid confl icts among distinctly different per-
sonality types; interactions between INTJs and ISTJs, for example, can lead to
confl ict.

 Other observers believe that competent software engineers tend to fall into the
NT and SJ classifi cations, for example: “ NT types tend to visualize the complete
solution to a problem, while SJ types tend to visualize the steps necessary to imple-
ment the solution. ” [Hardiman97] .

 Some researchers believe that your style as a project manager is most closely
related to your position on the Judging – Perceiving scale of the MBTI profi le
 [Hammer01] . If you are on the Judging side of the scale you will probably
prefer to:

10.7 PERSONALITY STYLES 423

424 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 • set clear, measurable goals,
 • break large tasks down into subtasks and proceed methodically,
 • develop a time line with milestones to monitor progress carefully,
 • come to closure quickly and be reluctant to change decisions,
 • like to work in a structured environment,
 • believe that a recipe for success is “ Plan the work, then work the plan, ”
 • be motivated by achievement,
 • want to achieve results on one project and then move on,
 • establish rules for who makes decisions when, and
 • trust their ability to organize the project to achieve the desired goal.

 Many elements of this list (from [Hammer01]) refl ect techniques presented in this
text (e.g., work breakdown structures, critical paths, earned value), but this should
not be interpreted to mean that you cannot succeed as a project manager if you are
on the Perceiving side of the scale (see below).

 Cautions for those project managers who are predominantly Judging include:

 • confusing the plan with the project,
 • missing opportunities by failing to adapt to new information,
 • mistakenly assuming that everyone is as motivated by deadlines as you are,
 • irritating others by continually reminding them of deadlines,
 • making decisions without all the information you need,
 • appearing rigid to others,
 • limiting creativity or spontaneity that could prove valuable, and
 • setting unrealistic time lines that don ’ t account for human behavior.

 If you are predominantly a Perceiver, you will probably:

 • realize that a clear plan doesn ’ t ensure that everything will go well;
 • stay open to changing the plan as more information becomes available;
 • fi nd out what motivates others in addition to achievement of deadlines (e.g.,

autonomy, opportunity for learning new skills);
 • develop ways to regularly scan the environment for new information or consult

with someone who does this naturally (e.g., marketing or sales staff);
 • allow people to work in their own ways while still holding them accountable

for the fi nal product;
 • plan for spontaneity, for example, set a time period for brainstorming and then

let the process emerge; and
 • early in the process, seek feedback on the feasibility of time lines.

 Most of the attributes on the perceiver list are also emphasized throughout this text
(e.g., rolling - wave planning, iterative development, and ongoing risk management).

 Clearly, all of the attributes of judging and perceiving are valuable personality
traits for a project manager. Understanding your personality type can help you to

compensate for traits that may not be natural for you and also help you to guard
against overzealousness in the traits that are natural for you.

 10.7.3 Dimensions of Social Styles

 In the 1960s Larry Wilson introduced his model of social styles. According to the
Wilson Learning Center ’ s Web site (see [Wilson04]), the dimensions of social styles
are useful for:

 • fi rst - line managers who have experienced interpersonal diffi culties in the tran-
sition from employee to manager;

 • managers at all levels who desire to improve their working relationships with
managers, peers, direct reports, and internal or external customers;

 • employees who wish to establish effective team working relationships;
 • managers or team leaders who facilitate teamwork;
 • salespeople or sales managers who work as a team;
 • individuals who collaborate with others to reach innovative solutions; and
 • all people in organizations who want to develop a better understanding of

others and to adapt their behavior to have more effective interactions.

 Social styles might be better named “ communication styles; ” it is based on the
dimensions of assertiveness and responsiveness in communication, as illustrated in
Figure 10.1 . Assertiveness is on a continuous scale of ask - oriented to tell - oriented.
Those who are ask - oriented are listeners; those who are tell - oriented are talkers.
Responsiveness is on a scale of task - oriented to people - oriented. Those who are
task - oriented have little time for personal interactions; the task comes fi rst, people
second. Those who are people - oriented believe that the task is best accomplished
when people issues are addressed fi rst.

 FIGURE 10.1 Dimensions of social styles [Wilson04]

Driver:
• Focuses on results
• Takes charge
• Makes quick decisions
• Likes challenges

Expressive:
• Shares ideas
• Creates excitement
• Generates enthusiasm
• Motivates and inspires

Amiable:
• Seeks agreement
• Provides support
• Communicates sincerity
• Generates trust

Analytical:
• Seeks evidence
• Applies logical reasoning
• Does not commit too early
• Acts when payoff is clear Tell-oriented

Assertiveness
Ask-oriented

Assertiveness

Task-oriented
Responsiveness

People-oriented
Responsiveness

10.7 PERSONALITY STYLES 425

426 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 The resulting four quadrants are labeled Driver, Expressive, Amiable, and Ana-
lytical. As indicated in Figure 10.1 , Drivers exhibit no - nonsense behavior. They are
task - oriented and tell - oriented; getting the task done is of higher priority than per-
sonal relations and a Driver will tell you how it is to be done rather than asking
your opinion. Drivers quickly get to the point when dealing with others, and they
may be regarded as brusque. They are results - oriented and are often workaholics.
The tough, but fair, fi rst sergeant is the stereotypical Driver, as is the no - nonsense
project manager.

 Expressives are also tell - directed, but personal relations come before tasks. They
are enthusiastic, talkative, competitive, and creative. Expressives like to see every-
one having a good time; they are the “ life of the party. ” They prefer to start interac-
tions with a conversation on a personal level before addressing the task to be done;
however, they are more interested in telling you about their weekend than asking
about yours, for example. Willy Lohman (the protagonist in “ Death of a Salesman ”)
is a stereotypical Expressive [Miller98] , as is the project manager who develops a
cordial relationship with the customer (who may be external to your organization
or in your organization ’ s marketing department).

 Amiables share with Expressives the emphasis on personal relations. Amiables
are quieter than Expressives and their assertiveness takes the form of asking rather
than telling. An Expressive will tell you about their weekend, and Amiable will ask
you about yours. Amiables are easy going and seek to minimize confl ict whenever
possible. They believe that the task will go smoother if people are comfortable with
one another. The kindly shopkeeper who inquires about, and is genuinely interested
in your family, is a stereotypical Amiable as is the project manager who is genuinely
concerned about the welfare of his or her project members and takes an interest in
their personal lives.

 Analyticals, like Amiables, are ask - oriented, but as with Drivers the task comes
before people. They are quiet and unassuming and do not seek social interactions.
Analyticals exhibit competence and initiative to work through problems in a logical
manner. The popular image of an accountant provides a stereotype of an Analytical
social style. A project manager who is primarily concerned with schedule and
budget data, defect reports, and earned - value tracking would be classifi ed as an
Analytical.

 To make the four stereotypes more realistic, Wilson embedded the grid in Figure
 10.1 in each of the four quadrants so that an individual might be an Amiable but
more toward the Analytical style than the Expressive, or a Driver might be primarily
a Driver with a secondary Driver style (the extreme upper right in Figure 10.1).
Individuals who share common attributes of social styles are more compatible than
those who share few attributes. A strong Amiable and a strong Driver do not have
many shared personality traits, nor do a strong Analytical and a strong
Expressive.

 Stereotypes of confl ict from Figure 10.1 include a strong Driver interacting with
a strong Amiable, as in the case of the “ brow - beaten ” husband (Amiable) and the
brow - beating wife (Driver), or the “ slap - em - on - the - back ” salesman (Expressive)
interacting with a no - nonsense statistician (Analytical). In software projects the
counterparts might be a project manager who is predominantly a Driver interacting
with a laid - back but productive team leader or software developer (an Amiable) or
an Analytical team member interacting with an Expressive project manager. In

these cases interactions go better when each individual understands the communica-
tion style of the other and adjusts their behavior to accommodate the personality
traits of their counterpart.

 10.8 THE FIVE - LAYER BEHAVIORAL MODEL

 In their paper, “ A Field Study of the Software Design Process for Large Systems, ”
Curtis, Krasner, and Iscoe presented a fi ve - layer behavioral model of software
development processes [Curtis88] . The model is depicted in Figure 1 of their paper
and reproduced here as in Figure 10.2 ; it illustrates behavioral issues at the levels
of individual, team, project, company, and business milieu. The model emphasizes
psychological, social, and organizational processes at each level. Their goal was to
understand how these processes affect software productivity and quality.

 The individual level is concerned with cognitive and motivational processes of
individual software developers. At the team level, cognitive and motivational pro-
cesses interact with the social processes of the team; issues of communication and
coordination arise within and among teams. At the organizational level, projects
undertaken by the organization are determined by, and are affected by, corporate
politics and corporate culture. At the business level, the organization in which proj-
ects are conducted interacts with other elements of the parent organization, with
customer organizations, and may interact with subcontractor, vendor, and affi liate
contractor organizations. Curtis et al. emphasize that problems in a layer of the
model can promulgate into, affect, and be affected by other levels.

 The size and structure of a project determines how much infl uence each layer
has on the software development process. The higher layers of the model may exert
little or no infl uence if you are doing a small project for an internal customer within
your local organization. If you are doing a large project for an acquirer who repre-
sents multiple customers (or multiple customers without a single point of contact)
and the project involves vendors and subcontractors, the higher levels of the model
may exert a strong infl uence on how you organize and conduct your project.

 FIGURE 10.2 Five - layer behavioral model of software development [Curtis88]

Individual

Cognition &
Motivation

} } }

Content of Analysis GroupDynamics
Organizational

Behavior

Team

Project

Company

Business Milieu

10.8 THE FIVE-LAYER BEHAVIORAL MODEL 427

428 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 Curtis et al. report on the results of studying 17 large projects across the 5 behav-
ioral levels. They analyze three problems:

 1. the thin spread of application domain knowledge,
 2. fl uctuating and confl icting requirements, and
 3. communication and coordination breakdowns.

 They investigated how these problems “ affected software productivity and quality
through their impact on cognitive, social, and organizational processes. ” 34

 Figure 6 in the Curtis et al. paper, reproduced here as Figure 10.3 , illustrates the
levels of communication from individual software engineer to business milieu. In
the fi gure DOD is Department of Defense. Remoteness of communication is deter-
mined by the number of nodes information has to pass through in order to link two
nodes. As these authors observe, the more nodes information has to traverse, the
less likely it is that accurate and adequate communication will occur.

 The fi ve - layer model illustrates that a software developer communicates most
frequently with team members, slightly less frequently with other project teams,
much less often with corporate groups, and very seldom with external groups. Curtis
et al. also considered communication diffi culties caused by cultural differences and
by geographic separation (and the accompanying differences in time zones).

 Some of their fi ndings, in each of the three areas studied are as listed below.
 Thin spread of application domain knowledge:

 • at the individual level, exceptional designers exerted extraordinary infl uence
because they were able to map deep application knowledge into a computa-
tional architecture;

 34 From the abstract of [Curtis88] .

 FIGURE 10.3 Layers of communication in the behavioral model [Curtis88]

Purchasing
managers

Prime
contractor

Sub-
contractor

Business
prospects

Vendors

DOD

COMPANY

PROJECT

TEAM

INDIVIDUAL

Team
leader

Colleagues
Human
factors

Finance

Personnel

Other
projects

Senior
management

Systems
engineering

Quality
assurance

Marketing

Legal
Other
teams

Testing

Hardware
engineering

Contiguration
management

Project
manager

BUSINESS
MILIEU

Federal
regulators

Standards
groups

Auditors

End
users

 • at the team level, substantial effort was spent coordinating a common under-
standing of both the application domain and how the system should perform
within it;

 • at the project level, time was spent to ensure that the development teams
shared a common model of the system;

 • at the company level, the cost of learning an application area was a signifi cant
corporate expense, and the time required for a new project member to become
productive in an unfamiliar application domain ranged from six months to one
year; and

 • within the business milieu, common understanding of the application domain
and the system architecture for large, complex systems developed by several
companies was hindered by the organizational boundaries between and among
the companies.

 Fluctuating and confl icting requirements:

 • at the business milieu level, fl uctuations and confl icts among requirements
usually resulted from market factors such as differing needs among customers,
the changing needs of a single customer, changes in underlying technologies or
in competitors ’ products, and misunderstandings of the application domain;

 • at the company level, requirements problems also emerged from internal
sources such as marketing, corporate politics, and management of product
lines;

 • at the project level, the design team often negotiated to reduce confl icts and
limit requirements to those that could be implemented within schedule, budget,
and technology constraints;

 • at the team level, it was diffi cult to enforce those agreements across teams;
and

 • at the individual level, programmers often created a hidden source of require-
ments fl uctuation when they added enhancements that were not required.

 Communications and coordination:

 • at the individual level, the need for extensive communication was not reduced
by documentation;

 • at the team level, teams spend considerable time defi ning terms, coordinating
representational conventions, and creating channels for the fl ow of
information;

 • at the project level, artifi cial (often political) barriers to communication among
project teams created a need for individuals to span team boundaries and to
create informal communication networks;

 • at the company level, organization boundaries hindered understanding of
requirements, while temporal boundaries buried the design rationale; and

 • at the business milieu level, no single group served as the sole source of
requirements; organizational communications became crucial to managing
projects.

10.8 THE FIVE-LAYER BEHAVIORAL MODEL 429

430 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 In summary, aggregating the issues caused by the thin spread of application
domain knowledge across behavioral levels points to the importance of managed
learning (e.g., training classes and mentorship) as a major factor in productivity,
quality, and costs. The communication and coordination processes within a project
often became crucial in coping with the fl uctuation of and confl ict among require-
ments. Effective communication at all levels is crucial to all aspects of managing a
project. As Curtis et al. put it:

 [T]hese problems have survived for several decades despite serious effort at improving
software productivity and quality. We are not claiming to have discovered new insights
for engineering management. Rather, we are trying to organize observations about the
behavioral processes of large systems design to help identify which factors must be
attacked to improve overall project performance. 35

 10.9 KEY POINTS OF CHAPTER 10

 • Managing and leading are distinct activities; a competent project manager is
good at both, or fi nds ways to compensate for his or her weaknesses.

 • A team is a group of individuals working in a cooperative manner to achieve
common, shared goals.

 • Many organization do not intentionally kill teams, they just act that way;
antidotes can be applied to overcome commonly occurring teamicide
techniques.

 • When people are not performing up to expectations, it is because they can ’ t
and/or because they won ’ t.

 • Your job as a leader is to create the conditions in which your followers can
satisfy their psychological needs in their work environments.

 • You and your personnel can communicate more effectively when each person
understands and compensates for the personality styles of the others.

 • The fi ve - layer behavioral model illustrates problems of communication and
coordination at the individual, team, project, company, and business milieu
levels.

 35 Ibid, p. 1282.

 REFERENCES

 [Boeree06] Boeree , G. C. Assessment. Personality Theories . http://www.ship.edu/
%7Ecgboeree/jung.html , 2006.

 [Brooks87] Brooks , F. W. No silver bullets: Essence and accidents of software engineer-
ing . IEEE Computer (April 1987) Vol. 20 , No. 4 . pp 10 – 19 .

 [Brooks95] Brooks , F. W. The Mythical Man - Month . Addison Wesley , 1995 .
 [CMMI06] SEI . CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,

2006.

 [Curtis88] Curtis , B. , H. Krasner , and N. Iscoe . A fi eld study of the software design
process for large systems . CACM . Vol. 31 , No. 11 , November 1988 . pp
 1259 – 1267 .

 [Curtis01] Curtis , B. , W. Hefl ey , and S. Miller . People Capability Maturity Model Guide-
lines for Improving the Workforce . Addison Wesley , 2001 .

 [DeMarco82] DeMarco , T. Controlling Software Projects . Yourdon Press , 1982 .
 [DeMarco99] Demarco , T. , and T. Lister . Peopleware, Productive Projects and Teams , 2nd

ed. Dorset Publishing , 1999 .
 [Grove95] Grove , A. S. High Output Management . Vintage Books , 1995 .
 [Hammer01] Hammer , A. L. Myers – Briggs Type Indicator Work Styles Report . Consulting

Psychologists Press . 2001 . http://www.cpp.com/images/reports/smp261182.
pdf .

 [Hardiman97] Hardiman , L. T. Personality types and software engineers . IEEE Computer
(October, 1997) Vol. 30 , No. 10 . pp 10 .

 [Hershey99] Hershey , P. , and K. H. Blanchard . Leadership and the One Minute Manager .
 William Morrow , 1999 .

 [Hump97] Humphrey , W. S. Introduction to the Personal Software Process . Addison
Wesley , 1997 .

 [Hump00] Humphrey , W. S. Introduction to the Team Software Process . Addison Wesley ,
 2000 .

 [IEEE1058] IEEE Std 1058 ™ – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2, Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology – Software Life
Cycle Processes , Engineering Standards Collection; IEEE Product: SE113,
The Institute of Electrical and Electronic Engineers, Inc. August, 2003.

 [Jung23] Jung , C. W. Psychological Types . Pantheon Books , 1923 (English translation
H. Godwyn Baynes).

 [Katzen93] Katzenbach , J. , and D. Smith . The Wisdom of Teams . Harvard Business
School Press , 1993 .

 [Mach13] Machiavelli , N. The Prince . Bantam classics , 1984 .
 [McConnell99] McConnell , S. After the Gold Rush . Microsoft Press , 1999 .
 [McGreg85] McGregor , D. The Human Side of Enterprise . McGraw - Hill . 1985 .
 [Miller98] Miller , A. Death of a Salesman . Penguin, [1949] 1998 .
 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed.

(PMBOK ® Guide). Project Management Institute , 2004 .
 [Wideman98] Wideman , R. M. Project teamwork, personality profi les and population at

large: Do we have enough of the right kind of people? Proceedings of the
29th Annual Project Management Institute Seminar/Symposium, Long Beach,
CA, Project Management Institute 1998 . Also available at http://www.
maxwideman.com/papers/profi les/profi les.pdf .

 [Wilson04] Wilson , L. The Social Styles Handbook: Find Your Comfort Zone and Make
People Feel Comfortable with You , Wilson Learning Library, 2004 . Also avail-
able at http://portalcenter.wilsonlearning.com .

 [Wurster93] Wurster , C. W. Myers – Briggs Type Indicator: A Cultural and Ethical Evalua-
tion . National Defense University , Washington, DC , 1993 . Also available at
 http://www.ndu.edu/library/ic6/93S86.pdf .

REFERENCES 431

432 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 EXERCISES

 10.1. List and briefl y explain three of the attributes of an effective leader listed
in Table 10.1 that you have observed in a favorite teacher, manager, or
other leader. List and briefl y explain three attributes in Table 10.1 you have
observed that were not present in an ineffective teacher, manager, or other
leader.

 10.2. List and briefl y explain three of the techniques listed in Table 10.2 that you
have observed or that you can imagine might realistically be important for a
software development team.

 10.3. List three additional teamicide techniques, in addition to those in Table 10.3 ,
that you have observed or that you can imagine might realistically happen.
Briefl y state some antidotes for each of your three items.

 10.4. List and briefl y explain the three most important techniques in Table 10.4 that
contribute or would contribute to satisfying your psychological needs at work.
You may include factors that are important to you that are not listed in the
table.

 10.5. List and briefl y explain three factors in Table 10.5 that make you, or would
make you, happy at work. You may include factors that are important to you
that are not listed in the table.

 10.6. List and briefl y explain a situation from your personal, academic or profes-
sional life for each of the four combinations listed Table 10.6 . For each one,
briefl y explain which of the leadership styles in Table 10.7 was, or would be,
most effective in helping you.

 10.7. Locate and use a (free) on - line testing and scoring service for an MBTI
evaluation. Briefl y explain why the results do, or do not, refl ect your image
of yourself. Ask some friends if they think the results mirror your
personality.

 10.8. The social styles model depicted in Figure 10.1 can often be observed in the
archetypes of personality (caricatures) played by characters in movies, televi-
sion shows, and plays. Give an example of each of the four styles (Driver,
Expressive, Amiable, Analytical) in characters from movies, television shows,
or plays with which you are familiar. Briefl y explain the aspects of personality
observed in each of your example characters that place them in the selected
category.

 10.9. The fi ve - layer behavioral model in Figure 10.2 was used to study three prob-
lems often observed in the design of large software - intensive systems: the thin
spread of application domain knowledge, fl uctuating and confl icting require-
ments, and problems in communications and coordination. Choose another
problem in addition to the three in the model (such as rapidly changing tech-
nology or competitive changes in a competitor ’ s product) that you have
observed or that you can imagine could realistically happen. Briefl y explain
the impact of that problem at each of the fi ve levels (individual, team, project,
company, business milieu).

 APPENDIX 10A

FRAMEWORKS, STANDARDS, AND
GUIDELINES FOR TEAMWORK AND
LEADERSHIP

 10A.1 THE CMMI - DEV - v 1.2 FRAMEWORK PROCESSES

 The CMMI framework processes, including CMMI - DEV - v1.2 [CMMI06] , continue
to have a major positive impact on the discipline of software engineering, but the
models are not panaceas. In particular, they do not address issue of expertise in
application domains, specifi c software development methods and technologies, or
personnel issues (e.g., selection, training, motivation, and retention). This appendix
is concerned with other models and guidelines that have been developed to improve
the ability and motivation of individuals and the effectiveness of teams and
teamwork.

 10A.2 ISO / IEC AND IEEE / EIA STANDARDS 12207

 The 12207 standards for software life cycle processes covers fi ve primary life cycle
process areas, eight supporting process areas, and four organizational process areas
 [IEEE12207] . Organizational processes include the management, infrastructure,
improvement, and training processes. The training process is concerned with ensur-
ing that the correct numbers and kinds of personnel who have the necessary skills
are available when needed. The training process is the only process area in 12207
that is concerned with people issues.

 10A.3 IEEE / EIA STANDARD 1058

 IEEE Standard 1058 for software project management plans includes a Staff Train-
ing Plan in Subclause 5.1.4, which is consistent with IEEE/EIA Standard 12207. This
is the only section in 1058 that addresses issues of teamwork, motivation, and lead-
ership [IEEE1058] .

433

434 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 10A.4 THE PMI BODY OF KNOWLEDGE

 The PMI Guide to the Project Management Body of Knowledge (PMBOK ®)
includes Human Resource Management (Chapter 9) and Communications Manage-
ment (Chapter 10) [PMI04] . Topics covered in Chapter 9 of PMBOK are:

 • Human Resource Planning
 • Acquire Project Team
 • Develop Project Team
 • Manage Project Team

 Topics covered in Chapter 10 are:

 • Communications Planning
 • Information Distribution
 • Performance Reporting
 • Manage Stakeholders

 In addition section 2.3.2 — Organizational Cultures and Styles discusses aspects of
organizational cultures and factors that shape these cultures, such as:

 • shared values, norms, beliefs, and expectations;
 • policies and procedures;
 • view of authority relationships; and
 • work ethic and work hours.

 10A.5 OTHER SOURCES OF INFORMATION

 Four additional sources of information concerning individuals, teams, and leadership
in software projects are:

 • People CMM [www.sei.cmu.edu/cmm - p/]
 • Introduction to the Personal Software Process [Hump97]
 • Introduction to the Team Software Process [Hump00]
 • Peopleware: Productive Projects and Teams , 2nd ed. [DeMarco99]

 10A.5.1 The People CMM

 The People Capability Maturity Model (People CMM) is sponsored by the Software
Engineering Institute. According to the Web site, the People CMM is:

 [A] framework that helps organizations successfully address their critical people issues.
Based on the best current practices in fi elds such as human resources, knowledge
management, and organizational development, the People CMM guides organizations
in improving their processes for managing and developing their workforces. The

10A.5 OTHER SOURCES OF INFORMATION 435

People CMM helps organizations characterize the maturity of their workforce prac-
tices, establish a program of continuous workforce development, set priorities for
improvement actions, integrate workforce development with process improvement,
and establish a culture of excellence. Since its release in 1995, thousands of copies of
the People CMM have been distributed, and it is used worldwide by organizations,
small and large.

 FIGURE 10A.1 Maturity levels of the People CMM

competency integration
empowered workgroups
competency-based assets
quantitative performance management
organizational capability management
mentoring

staffing
communication and coordination
work environment
performance management
training and development
compensation

level 2
(managed)

level 3
(defined)

level 4
(predictable)

continuous capability improvement
organizational performance alignment
continuous workforce innovation

level 5
(optimizing)

competency analysis
workforce planning
competency development
career development
competency-based practices
workforce development
participatory culture

 The People CMM is structured as a 5 - level model, similar in structure to the
staged representations of the CMMI models. The elements of the model are indi-
cated in Figure 10A.1 .

 The book People Capability Maturity Model Guidelines for Improving the Work-
force describes the People CMM and the key practices that comprise each of its
maturity levels. It shows how to apply the model in guiding organizational improve-
ments and includes case studies [Curtis01] .

 10A.5.2 The Personal Software Process

 The Personal Software Process (PSP) is concerned with keeping records and learn-
ing from one ’ s personal experiences. Forms are provided to allow recording of per-
sonal performance on software projects. By periodically analyzing the information,
one learns how to better estimate personal productivity and to avoid mistakes (i.e.,
creation of defects).

 The PSP addresses, at the level of individual software developers, many of the
CMMI - DEV - v1.2 process areas and recommended practices, including:

436 TEAMS, TEAMWORK, MOTIVATION, LEADERSHIP, AND COMMUNICATION

 • requirements development
 • project planning
 • project monitoring and control
 • peer reviews
 • measurement and analysis
 • technical solution
 • product integration
 • verifi cation
 • validation
 • risk management
 • decision analysis and resolution

 10A.5.3 The Team Software Process

 The Team Software Process (TSP) is based on PSP. According to Humphrey, a team
that practices TSP, where each member uses the processes of PSP, will function at
Level 5 of the CMMI staged representation [Hump00] . Process areas incorporated
into TSP in addition to those included in PSP include:

 • requirements management
 • process and product quality assurance
 • software confi guration management
 • quantitative project management

 PSP, TSP, and CMMI - DEV - v1.2 thus form a hierarchy:

 • PSP is concerned with individual processes,
 • TSP is concerned with team processes, and
 • CMMI - DEV - v1.2 is concerned with processes at the project and organizational

levels.

 10A.5.4 Peopleware

 The Peopleware text [DeMarco99] advances the premise that the root causes of
most of the problems faced by project managers and software developers are orga-
nizational and managerial, not technical. The text is in six parts:

 Part I: Managing the Human Resource
 Part II: The Offi ce Environment
 Part III: The Right People
 Part IV: Growing Productive Teams
 Part V: It ’ s Supposed to be Fun to Work Here
 Part VI: Son of Peopleware

10A.5 OTHER SOURCES OF INFORMATION 437

 The sixth part of the second edition includes 8 additional chapters beyond those
in the fi rst edition of the text. For example, among the topics addressed in these
additional chapters are of teamicide and “ teamicide revisited. ” Teamicide is described
as a way to “ inhibit the formation of teams and disrupt project sociology. ” Table
 10A.1 lists teamicide techniques and examples. Table 10.3 in this chapter lists some
antidotes for teamicide.

 At the end of Chapter 20 , DeMarco and Lister conclude: “ Most organizations
don ’ t set out to consciously kill teams. They just act that way. ”

 TABLE 10A.1 Teamicide techniques and examples

 Teamicide Techniques Examples

 Defensive management Lack of trusting your team members
 Bureaucracy Mindless procedures and excessive paper

work
 Physical separation No group work space; no chances for casual

interactions
 Fragmentation of work time Assigning people to multiple projects and

teams
 Phony deadlines Unrealistic deadlines everyone knows cannot

be met
 Quality reduction Compressing schedules without descoping

the requirements
 Clique control Not allowing team members to stay together

over extended periods of time
 Excessive overtime No time to help one another; fatigue and

burnout
 Demeaning aspects of motivational

posters and plaques
 Substitution of mindless phrases in place of

providing concrete opportunities for
individual motivation

 An unanticipated aspect of overtime Differing abilities of team members and
willingness to work overtime

439

11
 ORGANIZATIONAL ISSUES

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 The achievements of an organization are the results of the combined effort of each
individual.

 — Vince Lombardi

 11.1 INTRODUCTION TO ORGANIZATIONAL ISSUES

 Because software is built and maintained by humans, and because organizations are
composed of humans, software projects and the organizations that conduct software
projects are complex social networks. The term organization is used to denote “ an
administrative structure in which people collectively manage one or more projects
as a whole, and whose projects share a senior manager and operate under the same
policies. ” [CMMI06] .

 At the organizational level:

 • the corporate culture must be established and maintained;
 • strategic goals must be determined and pursued;
 • intellectual assets must be nurtured;
 • software development processes must be established; and
 • technical infrastructure, methods, tools, and techniques must be provided.

 These organizational concerns are addressed in this chapter.
 As a project manager within an organizational unit, you must establish com-

munication channels among organizational entities, for example, between your
software development group and the independent testing group, and between

440 ORGANIZATIONAL ISSUES

your project and the separate confi guration management group (if there is one).
Informal communication channels that are benefi cial to the project must be encour-
aged and informal communication channels detrimental to the project must be
discouraged.

 You may, on one hand, want to encourage informal communication between
software developers and system engineers in order to clarify and refi ne the software
requirements. On the other hand, you may want to discourage informal communica-
tion between individual software implementers and end users because these com-
munications can result in unauthorized requirements creep and may create false
expectations among the users. Communication between users and developers should
be limited to requirements elicitation sessions that involve representative users and
software engineers who are skilled in requirements elicitation, and to technical
interchange meetings between software developers, their team leaders or project
manager, and users. The intent is not to discourage interactions but rather to ensure
that the interactions occur in an orderly manner.

 To facilitate communication internal to your project, a workfl ow model similar
to Figure 1.1, repeated here as Figure 11.1 , and a project structure similar to Figure
1.3, repeated here as Figure 11.2 , should be established for your software project.
The intent of a hierarchical structure, as in Figure 11.2 , is not to discourage informal
communication among developers in different teams, but to allocate the require-
ments and decompose the software architecture so that each team can pursue their
work activities with high internal cohesion among the team members and loose
couplings to other teams (see Chapter 4).

 11.2 OBJECTIVES OF THIS CHAPTER

 After reading this chapter and completing the exercises you should understand:

 FIGURE 11.1 A workfl ow model for managing software projects

delivered

work
products

Requirements
and Constraints

Customer

Managers

Planning
and

Replanning

Activity
Definition

Work
Assign
ments

Development
Process

Quality
Assurance

Independent
V&V

Measuring

Controlling

Data
Retention

Estimating and
Re-estimating

Reporting
Status Reports Project Reports

Directives and
Constraints

Change Requests and Problem Reports

Configuration
Management

 • the elements of corporate cultures,
 • the importance of mission and vision statements,
 • assessing and nurturing intellectual capital,
 • key personnel roles,
 • responsibility versus authority, and
 • 15 guidelines for organizing and leading software engineering teams

 The frameworks, standards, and guidelines presented in each of the preceding chap-
ters, namely CMMI - DEV - v1.2, ISO/IEC and IEEE/EIA Standard 12207, IEEE/
EIA Standard 1058, and the PMI Body of Knowledge address organizational issues
to varying degrees. The relevant elements of these standards and guidelines are
summarized in Appendix 11A of this chapter.

 Terms used in this chapter and throughout this text are defi ned in Appendix A
to the text. Presentation slides for this chapter and other supporting material are
available at the URL listed in the Preface.

 11.3 THE INFLUENCE OF CORPORATE CULTURE

 Corporate culture is comprised of the beliefs, values, and behavior patterns that
exist within an organization. Cultural norms fl ow from the top down. Individuals

 FIGURE 11.2 An organizational model for software projects

 Project Manager

Team
Leader #1

Team
Leader#2

Team
Leader #3

V&V CM

Member

Member Member

Member

Software Architect

Customer

XX

.

Each team has 2 to 5
members plus a team leader

V&V: Verification and Validation
 CM: Configuration Management
 XX: other supporting processes

11.3 THE INFLUENCE OF CORPORATE CULTURE 441

442 ORGANIZATIONAL ISSUES

look to their senior colleagues and supervisors for indicators of acceptable and
unacceptable behaviors and to learn the ways of “ getting ahead ” in the organization.
Supervisors look to their managers, who in turn look to their managers for guidance.
From the individual ’ s perspective, corporate culture provides the answer to the
question “ What does it feel like to work in this organization? ” Some factors that
determine cultural patterns are listed in Table 11.1 .

 Different organizations have different dress codes, ranging from formal attire at
all times (e.g., neckties, jackets, dresses), to formal when meeting with customers
and informal otherwise, to “ business casual, ” to “ dress - down ” Fridays, to jeans - and -
 tee - shirts at all times. In a similar manner the degree of formality varies from fi rst
names throughout the organization to more respectful forms of address for supervi-
sors and managers.

 Some organizations are quite fl exible in working hours, and others have strictly
enforced times to be at work. In the case of fl exible hours, some organizations
require everyone to be present between 10:00 AM and 3:00 PM so that meetings
can be scheduled during times when people are available to attend. Strictly enforced
working hours may be based on the desires of higher level management or perhaps
required by security considerations that dictate the facility must be locked down
from 6:00 PM until 7:00 AM Monday through Friday and on weekends.

 Some organizations encourage competition among individual contributors in the
belief that the stress of competition improves productivity and quality of work. Other
organizations encourage cooperation and teamwork in the belief that the synergy
that results from cooperative teamwork improves productivity and quality of work.
The reward structure in some organizations recognizes and rewards individual
achievements, whereas other organizations encourage and reward team efforts.

 The approaches to confl ict resolution and disciplinary action vary from laissez
faire to intervention and amelioration. Disciplinary actions vary from hands - off to
well - defi ned procedures that include documentation of unacceptable behaviors,
counseling sessions, probationary periods, and dismissal policies.

 Some organizations have well - defi ned career ladders, career development plans
for each employee, qualifi cations and procedures for advancing up a career ladder,
and a human relations department that works with employees to advance each
employee ’ s career. Career advancement in other organizations is on an ad hoc
basis.

 TABLE 11.1 Elements of organizational culture

 • Dress code
 • Degree of formality
 • Working hours
 • Cooperation versus competition
 • Reward structure
 • Confl ict resolution
 • Disciplinary policies
 • Career progression
 • Attitudes about quality
 • Customer relations
 • Ethical behavior
 • A vision statement
 • A mission statement

 Customer relations, attitudes about quality, vision statements, mission statements,
and ethical behavior are interrelated elements of organizational culture. In contrast
to conventional wisdom, the customer is not always right and not all customers are
the right customers for an organization. Some organizations promulgate throughout
the organization positive attitudes toward customers, quality, and ethics, whereas
others are silent on these issues. Regard for customers, attitudes toward quality, and
ethical behavior are often instilled by the mission statement and the vision state-
ment of an organization. The mission and vision statements serve distinct purposes
and should be clearly differentiated.

 A mission statement defi nes the purpose and goals of an organization. For
example,

 We provide information systems of highest quality to customers who value quality

 is a mission statement.
 Organizational values and ethical behavior must be aligned with the mission

statement. If providing information systems of highest quality is the mission, con-
cerns for quality must be reinforced and supported throughout the organization and
ethical considerations must prevent delivery of software with known defi ciencies.
The phrase “ to customers who value quality ” indicates that the organization places
value on these customers and must be selective in the customers it deals with if the
mission statement is to be fulfi lled; that is, customers who demand short schedules
that sacrifi ce quality products should not be pursued.

 In contrast, a vision statement has specifi c objectives and a time frame for achiev-
ing them. An example of a vision statement is

 We will be one of the top three providers of information systems for critical - patient
care in the United States by 2010.

 A mission statement and a vision statement, taken together, provide the basis for
strategic planning and norms of organizational behavior.

 Some organizations live by their mission and vision statements; others do not
have them or have them but pay no attention to them.

 11.4 ASSESSING AND NURTURING INTELLECTUAL CAPITAL

 The primary assets of a software organization are the skills and abilities of the
project managers, the software developers, and other software personnel. Human
assets are termed intellectual capital [Stewart97] . Because people are corporate
assets, they should be managed to maximize return on investment and not to mini-
mize cost. Organizations that regard workers as costs to be minimized include fast
food restaurants and many retail - sales organizations. In these cases workers are
regarded as interchangeable, replaceable units; they are paid the minimum amount
possible and are often replaced when they become eligible for increases in wages
and benefi ts.

 Organizations that regard people as assets systematically determine the skill
levels needed, recruit the best candidates available, ensure that the workers have

11.4 ASSESSING AND NURTURING INTELLECTUAL CAPITAL 443

444 ORGANIZATIONAL ISSUES

the processes, procedures, methods, and tools they need, and invest in training and
career development activities for the workers. A litmus test of an organization ’ s
commitment to its intellectual capital is to observe what happens when times are
tough. Unfortunately, many organizations stop investing in training and tools and
reduce or cancel travel funds for workers to attend conferences and professional
development seminars. These practices indicate that the organization ’ s managers
regard their software people as costs to be controlled rather than assets to be
nurtured.

 Table 11.2 lists some of the (direct and indirect) measures that organizations can
use to assess their intellectual capital [Stewart97] .

 Like all elements of a well - run organization, intellectual capital should be assessed,
weaknesses determined, and actions taken to improve the intellectual capital of
your organization.

 11.5 KEY PERSONNEL ROLES

 Your key personnel are those project members who are assigned responsibilities
and are given the authority to carry out those assignments by you, the project
manager. If you are project manager, team leader, and software architect for a
project of 5 or 6 members, every project member is a key person on your project.
If you are project manager of a project consisting of multiple small teams (i.e., 5 or
6 members per team) your key personnel include the team leaders and the software
architect (who may be you). It is the responsibility of your team leaders to coordi-
nate the work activities of their team members, who are in turn their key personnel.
Team leaders must be given the authority to make work assignments within their
teams, and accept the responsibility of producing high - quality work products on
schedule.

 They, the team leaders, are responsible for the quantity, quality, and timeliness of
the work products produced by their teams. Table 11.3 lists some key personnel roles
for software projects. Note that process and product quality assurance, verifi cation,
and validation are not listed in Table 11.3 . Quality assurance personnel are not
project members, nor are they members of independent verifi cation and validation
groups because you, the project manager, do not have (should not have) authority
to direct their work activities. The confi guration manager for your project should
be a member of your team, whether or not that person or persons reports directly
to you or to another manager; either arrangement is acceptable provided that the
goals and procedures of confi guration management are satisfi ed. The software tester
role is not a verifi cation or validation role; it is the role that conducts independent
testing within your project; this role could be shared among team members who test
one another ’ s code.

 One of your fi rst tasks as project manager is to determine the extent of your
responsibilities and authority. You may, for example, have a great deal of autonomy
in hiring and fi ring of your project personnel, or you may be constrained to use the
personnel assigned to your project. You may work directly with an external cus-
tomer and negotiate schedule, budget, and deliverables with the customer organiza-
tion, or your customer may be a system engineering group or a marketing department
within which you are in a subordinate position.

 TABLE 11.2 Direct and indirect measures of intellectual capital

 Measures of Intellectual
Capital Examples

 • Measures of
innovation

 • New products or services delivered in the past 12 months
 • Numbers of patents and copyrights fi led and obtained in the

past 12 months
 • Percentage of sales attributable to new products or services

 • Measures of
employee attitudes

 • On a scale of (Unhappy, OK, Very Happy), how happy are
you with your job?

 • Compared to a year ago, are you happier, about the same, or
less happy at work?

 • Do you understand how your job is of benefi t to customers
(not at all, a little, somewhat, etc.)

 • Measures of
experience, turnover,
and tenure

 • Essential personnel: percentage of employees whose expertise
is essential to the business of the company

 • Average number of years experience among essential
personnel

 • Rookie ratio: percentage of essential personnel with less than
two years experience

 • Turnover among essential personnel
 • Average number of years of experience of all employees
 • Reasons people leave to accept jobs elsewhere

 • Measures of
education and
training

 • Degrees, by level, of essential personnel
 • Degrees being sought by essential personnel with corporate

sponsorship
 • Nondegree courses being taken by essential personnel with

corporate sponsorship
 • Average training hours per year for essential personnel

 • Other measures • Revenue generated per employee
 • Revenue generated per essential employee
 • Percentage of customers who challenge us
 • Which skills are most important in satisfying customer needs?
 • Which skills are most admired by other employees?
 • What are the most desired assignments by high - potential

managers and workers? Where do they least want to work?
What explains the differences?

 • What accounts for any differences between what customers
value and what employees value?

 • What emerging technologies or skills could undermine the
value of your organization ’ s special knowledge and skills?

 • What percentage of essential personnel time is spent in
activities of low value to your customer base?

 • What percentage of all employees ’ time is spent in activities
of low value to your customer base?

 • What is the reputation of your company among experts in
your fi eld?

11.5 KEY PERSONNEL ROLES 445

446 ORGANIZATIONAL ISSUES

 TABLE 11.3 Some key personnel roles for software projects

 • Project manager
 • Requirements engineer
 • Software architect
 • Team leader
 • Software implementer
 • Software tester
 • Confi guration manager

 AUTHORITY AND RESPONSIBILITY

 Responsibility is the obligation to perform the assigned tasks and duties of your
job position. In a well - organized company, each organizational role has a job
description that itemizes the primary duties of that role. The primary duties of a
project manager, for example, are to:

 • prepare and update estimates and plans;
 • measure and control the work process and the work products;
 • communicate, coordinate, and lead; and
 • manage risk.

 The primary duties of a software architect (i.e., lead designer) are itemized in
Table 11.4 .

 The responsibilities of team leaders are itemized in Table 11.5 . Similar lists of
duties should be included in the job descriptions for all of the roles to be played
in your projects. In a well - managed organization, job descriptions will exist for
each of the roles to be played. In a chaotic organization you might have to
develop the job descriptions yourself.

 Authority is the power to make the decisions that must be made in fulfi lling
one ’ s responsibilities, and the power to implement those decisions, or to see that
they are implemented. A CCB, for example, must have the authority to establish
work - product baselines and to accept, reject, or defer change requests and defect

 TABLE 11.4 Responsibilities of the software architect role

 • Interacts with requirements engineering personnel
 • Develops design options and presents the trade - offs among them to decision makers
 • Leads the design team
 • Leads and coordinates the implementation team leaders
 • Keeps the product vision
 • Coordinates technical activities with other design teams, other disciplines, and other

organizations

reports. Each job description should include the authority vested in the job as
well as the assigned responsibilities. An individual software developer, for
example, has (or should have) the authority, within the constraints of the project ’ s
(or organization ’ s) style guidelines, to implement code in the way she or he thinks
will best satisfy the requirements, but he or she does not have the authority to
change the requirements baseline for the product.

 Authority can be delegated but responsibility cannot. You can, for example,
delegate authority to your chief architect to negotiate requirements with the
customer. However, you are still responsible, as project manager, for delivering
an acceptable product within the constraints of schedule and budget. If your
architect fails to successfully negotiate the requirements and your project fails,
you will be responsible for the failure. And, of course, you deserve to share the
credit for successful outcomes.

 A common complaint among those who work in organizations is that they do
not have the authority to carry out their responsibilities. Sometimes this is the
result of the ineptitude of a manager who delegates authority insuffi ciently,
sometimes it is based on the desire of a manager to exert control over every
aspect of the work for which he or she is responsible (perhaps because of the
manager ’ s insecurity or perhaps because she or he does not trust the team
members to carry out their assigned responsibilities), and sometimes those who
complain about lack of authority mistakenly think their responsibilities are larger
than they are in fact.

 Personnel assignments are made by fi rst identifying the roles that must be played.
The roles to be played include project manager, software architect, software imple-
menter, confi guration manager, and others, as listed in Table 11.6 . One person may
play multiple roles as, for example, one person (you) playing the project manager,
software architect, and team leader roles in a small project. One role may require
multiple individuals as, for example, the implementer role or tester role. One indi-
vidual may play different roles at different times, for example, as software designer
and later as software tester.

 Some roles, such as confi guration manager, may be a part - time role for one of
the software implementers on a small project, a full - time role on a larger project,
or a role performed by a separate organizational entity. Some roles, quality

11.5 KEY PERSONNEL ROLES 447

 TABLE 11.5 Responsibilities of the team leader role

 • Supervises personal and team processes
 • Assures personal and team product quality
 • Mentors and coaches team members
 • Maintains team morale, energy, and drive
 • Keeps management informed of progress and problems
 • Coordinates work activities with other teams and groups
 • Resolves problems and issues within his or her control
 • Elevates problems and issues beyond his or her control

448 ORGANIZATIONAL ISSUES

assurance and independent verifi cation and validation, for example, must be played
by individuals from organizational entities separate from the project.

 Having identifi ed the roles to be played and the number of individuals needed
to fi ll those roles, the next step is to state the qualifi cation of individuals who will
play the roles, when those individuals will be needed, and for how long. It may be,
for example, that your software implementers must be profi cient in using the Java
programming language or that your confi guration manager must be profi cient in
using a specifi c version control tool.

 If, during initial planning, the names of those who will play the roles are known,
they can be entered in the personnel assignment matrix, as in Table 11.7 . If their
names are not known, a personnel acquisition plan should be developed. The plan
should state the roles to be played, the number of personnel needed to fi ll the roles,
the job qualifi cations for the roles, and the dates when the roles must be fi lled.

 TABLE 11.6 Some software project roles

 • Project manager
 • Requirements engineer
 • Software architect
 • Team leader
 • Implementer
 • Tester
 • Confi guration manager
 • Process and product quality assurer
 • Independent verifi er
 • Independent validator
 • Technical writer
 • Trainer
 • Installer
 • System maintainer

 TABLE 11.7 Assignment of individuals to roles

 Role Person PM RE SA IT CM CCB

 Joe S. P P M

 Sue W. P P

 Bill P. B B P

 Mai L. P B M

 PM: Project Manager; RE: Requirements Engineer; SA: Software Architect; IT: Independent Tester; CM:
Confi guration Manager; CCB: Change Control Board; P: Primary; B: Backup; M: Member.

 Your human resources department or some other organizational entity may be
of assistance in fi lling the roles, or you may be on your own in staffi ng your
project, depending on the infrastructure of your organization and possibly on the
conditions stated in the contract between the customer ’ s organization and your
organization. The personnel acquisition plan should be reviewed when developing
the risk management plan to determine potential problems in acquiring the needed
personnel.

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 449

 In Table 11.7 note that each role, except for software architect and confi guration
manager, has a primary person and a backup person. Every role should have a
backup person to fi ll in when the primary person is not available (for whatever
reason). Note that Bill P. is backup for both project manager and requirements
engineer roles; perhaps he is serving as an apprentice in these roles in preparation
for becoming a project manager and/or requirements engineer. Joe S. is primary for
both requirements engineering and independent testing which are compatible roles;
Joe can develop requirements - based tests during requirements analysis and apply
them as the implementers develop the code. Mai has no backup for the architect
role and Bill has no backup for confi guration management. These assignments
should be made. The head of the CCB is Sue, the project manager. CCB members
are Joe, the requirements engineer and Mai, the software architect.

 If the project depicted in Table 11.7 is a small one all project members, except
Joe, may be software implementers in addition to their other roles. If the project is
a large one with multiple development teams, each team leader and his or her
backup should be listed in the table.

 11.6 FIFTEEN GUIDELINES FOR ORGANIZING AND LEADING
SOFTWARE ENGINEERING TEAMS

 This concluding section of the text is an updated version of a paper previously
published by the author [Fairley93] . It summarizes many topics covered in the text
and presents a few new ones.

 11.6.1 Introduction to the Guidelines

 Software, unlike other artifacts of engineering, is exclusively a product of the human
intellect; our raw materials are the gray matter inside the human skull. As the size
and complexity of software grows and as the demand for higher quality software
and shorter development cycles increase, the ability of individual software engineers
to work as members of teams, and the ability of the team leaders to direct the efforts
of team members become more critical to success. This section presents 15 guide-
lines for organizing and leading software engineering teams.

 There are several reasons that teams are more effective than a collection of
individuals working alone. Scheduling and skill sets are primary reasons. Customers
won ’ t wait 5 years for one person to develop or modify a software product requiring
60 staff - months of effort. At the other extreme, it is not reasonable to assign 60
people for 1 month. We might scope a 60 staff - month project as a job for 5 people
over 12 months or 6 people over 10 months, or using the square root rule 8 people
for 8 months.

 Teams are also needed to provide the variety of skills and aptitudes required to
develop or modify a software system. In addition the synergy that occurs when team
members work together in a collaborative manner often results in a product supe-
rior to the one that would have resulted from the efforts of several individuals
working in isolation.

 Organizing and coordinating the activities of individuals engaged in intellect -
 intensive teamwork is a relatively new kind of human endeavor. Over time we have
learned how to organize agricultural and manufacturing activities to utilize the skills

450 ORGANIZATIONAL ISSUES

of multiple individuals, but we have not yet mastered the corresponding organiza-
tional and leadership techniques for intellect - intensive work teams.

 To illustrate the problems of intellect - intensive teamwork, consider the diffi cul-
ties that would arise if a group of individuals were to write a book as a team effort,
and on a predetermined schedule and within a specifi ed budget of staff - hours that
could be devoted to the project. The problems encountered would be similar to
those encountered by a group of software engineers working as a team (this analogy
is repeated from Chapter 1).

 Determining the type of book to write and documenting the requirements for
the book in a clear, complete, and unambiguous manner are procedures analogous
to specifying the requirements for a software system. Deciding on the structure of
and relationships among chapters, sections, and (perhaps) volumes of the book is
the analogue of architectural design in software. Specifying style, voice, tense, and
page layout for each chapter is similar to detailed design of software.

 Writing the chapters and checking spelling, syntax, and grammar is analogous to
coding and unit testing of software modules. Merging the chapters corresponds to
software integration. When the book is completed, the integrated text should fl ow
smoothly, as if written by a single individual in a single session. An editor performs
independent verifi cation and makes suggestions for improvements to the product,
both during development and upon completion of the book. The perceived value
of the fi nished product is largely determined by reviews of critics and work of mouth
among customers. If the book is popular, it may be updated and released through
several editions following initial release.

 Because there are no physical laws that govern book writing and no mathematical
theories of how to write a book, a successful outcome for the team effort would
depend on clearly defi ned goals, common understanding and acceptance of those
goals, a common approach, adequate resources and calendar time, the skills of the
individual contributors, and their ability to work as a cohesive team.

 Over time we have observed a number of factors and developed a number of
techniques that differentiate capable software teams from the less capable. We call
these teams Software Engineering Teams (SETs). The following guidelines summa-
rize our observations and explain our techniques for organizing and leading SETs.
These techniques are equally applicable to the development of new software -
intensive systems and modifi cation (maintenance) of existing systems.

 11.6.2 The Guidelines

 1. Hire the best people you can fi nd.
 In the context of software engineering teams, “ best ” means people who have

adequate technical skills and suffi cient interpersonal skills to interact with other
team members. Some software engineers have outstanding technical skills but are
neither interested in being, nor psychologically suited to be members of cohesive
teams. Too often organizations are guilty of suboptimizing the productivity of a team
by catering to the idiosyncrasies of technically skilled but socially inept individuals.
In some cases it may be necessary to remove a dis ruptive team member for the
greater good of the team, the project, and the organization.

 Hiring the best people you can fi nd means you will probably have to pay
more than the going rate for individuals within a given skill category. It has been

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 451

repeatedly shown that programmer productivity varies by factors of 10 : 1 or more
among individual programmers who have similar backgrounds and experiences.
Simple economics would indicate that paying 10% to 20% more in return for a gain
of 500% or 1000% is a bargain.

 2. Treat people as assets rather than costs.
 The fi rst rule of business is to manage corporate assets to maximize return on

investment in those assets; the second rule is to control costs. Unfortunately, many
software organizations confuse the second rule with the fi rst one and treat their
software engineers as costs rather than assets. Companies that regard their software
engineers as assets invest in the engineers by providing adequate compensation, a
work environment that enhances productivity and quality of work, and a manage-
ment environment that is supportive of software workers and work activities. The
work environment for software engineers includes the social, cultural, and intellec-
tual work environment; the automated development environment; and the physical
workspace.

 According to DeMarco and Lister [DeMarco99] the ability to divert phone calls
and other interruptions, thereby preventing disruptions to thought patterns, is one
of the most effective mechanisms for improving individual productivity. Co - locating
team members engaged in a joint work activity in adjacent workspaces is essential.
Providing private breakout areas where two or three individuals can converse
without disturbing others is another example of a workspace factor that can improve
the effi ciency and effectiveness of individuals and teams. A policy of quiet hours
during part of each working day can improve the intellectual work environment of
software engineering teams. During quiet hours no phone calls are accepted, no
meetings are held, and each team member works on individual tasks, as in a library
environment.

 3. Provide a balance between job specialization and job variety.
 Many software engineers are motivated by apparently confl icting needs: the need

to be recognized for their expertise within a subdiscipline, and the need to learn
and apply new skills.

 In the software fi eld, tasks that are initially challenging can quickly become
repetitive and boring. On the other hand, the organization often needs highly skilled
specialists in various arcane technologies. It is reasonable to assign tasks to those
who are best qualifi ed to perform those tasks; however, new and challenging job
assignments need also to be provided so that individual contributors do not become
technically stagnant. Short - term productivity may benefi t from prolonged and con-
centrated specialization by individuals, but in the long term the individual and the
organization will both benefi t from a judiciously chosen variety of job assignments
for team members.

 4. Keep team members together.
 It takes time for team members to learn one another ’ s work habits, aptitudes,

skills, likes, and dislikes, and for team members to become comfortable with their
team environment. On of the potential problems of matrix organizations is lack of
team cohesion; project members drawn from functional homes for short periods of
time often have more allegiance to their functional managers and their functional
colleagues than to their project manager and project colleagues. Keeping a team
together over extended periods of time and using explicit team - building techniques

452 ORGANIZATIONAL ISSUES

such as off - site planning and review meetings, team participation in training courses,
and corporate - sponsored recreational activities are effective techniques for building
a cohesive team. Weekly status meetings can be team - building experiences if prop-
erly conducted (see guideline 10).

 5. Limit team size.
 Closely coordinated, intellect - intensive teamwork is best accomplished by small

teams. We have observed two types of cohesive software engineering teams, the fi rst
being the more common. This team structure consists of three to six team members
plus a team leader, which results in a maximum team size of seven. If a team grows
to eight or more, it is split into two teams of three to six members each plus team
leaders. When a team grows larger than six or seven, it is diffi cult for team members
to coordinate their work activities with each of the other team members. It is also
impossible for the team leader to provide the necessary level of planning, coordina-
tion, and leadership.

 Teams larger than seven may be a symptom of inadequate partitioning of the
requirements and insuffi cient decomposition of the software architecture. The
product should be structured as a collection of loosely coupled, highly cohesive
elements, where each element can be implemented by a small team. The teams are
then highly cohesive and loosely coupled.

 The second team structure consists of 7 to 12 individuals plus a team leader.
Within these larger teams, individual team members are more autonomous and tend
to be more loosely coupled to other team members than in the 3 to 6 person teams.
To be effective, these larger teams must satisfy some special conditions; namely:

 • each team member must be a highly skilled and experienced professional;
 • each team member must have a well - defi ned functional role; and
 • everyone must have a clear understanding of his or her role, and the roles of

the other team members.

 In addition, each team member must have suffi cient initiative and discipline to
plan and organize his or her individual work activities and to communicate with the
other team members and the team leader (see guideline 8).

 These larger cohesive teams have been observed in domains such as telecom-
munications, process control, and systems engineering. Members of these teams are
often highly skilled and experienced in their functional specialties, functional roles
are clearly differentiated, and the role of each person is clearly understood by others.
It must be emphasized that teams and project are placed at risk when teams larger
than seven (six member plus leader) are utilized without the prerequisites of
individual skill, experience, job specialization, and initiative.

 6. Differentiate the role of the team leader.
 In both types of teams, the team leaders plays the pivotal roles of:

 • planning, negotiating, and coordinating work activities of the team members;
 • setting performance goals for each team member;
 • tracking progress of individuals and the team;
 • updating plans;

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 453

 • validating the work products produced by team members; and
 • communicating with the project manager, the software architect, other ele-

ments of the project, the parent organization, and the customer organization.

 Although the responsibilities are the same, the team leader ’ s activities are
somewhat different for teams of 3 to 6 than they are for teams of 7 to 12 (see
guideline 8).

 In all cases a team leader may assist a team member but never takes the initiative
in generating work products — the job of a team leader is to plan and coordinate
work activities, set performance goals, validate work products, monitor progress,
advise and help team members, anticipate problems, and be spokesperson for the
team. Given these roles of planner, coordinator, progress monitor, communicator,
and quality control agent (see guideline 7), the leader of a software engineer team
is not “ management overhead ” but rather is the catalyst that causes a group of
individuals to coalesce into a cohesive, productive team.

 The Chief Programmer Team is another type of cohesive software team [Baker72] .
The primary distinction between our approach (SETs) and that of the Chief Pro-
grammer Team is that the SET leader does not generate the work products, nor is
she or he required to be the technical guru (but a SET leader must be familiar with
the application domain and must be competent in the software technologies being
used).

 In a cohesive SET, team members, individually and collectively, have the author-
ity to make technical decisions and are responsible for the technical content of their
work. In the Chief Programmer approach, the Chief Programmer makes all techni-
cal decision and generates most, if not all, of the software. Also it is diffi cult for the
Chief Programmer to perform all of the necessary technical and managerial duties
because of the heavy workload involved, and because of the variety of skills required
to do both jobs well. In addition it is diffi cult to scale up the Chief Programmer
technique to multiple - team projects; the techniques described in this chapter can be
scaled to projects of arbitrary size (see guideline 14).

 7. Make each team leader the team ’ s quality control agent.
 An important task for a team leader is specifying or tailoring the validation cri-

teria for work products and determining that the work products satisfy those crite-
ria. In teams of three to six, the team leader is the moderator of peer reviews (i.e.,
inspections) and determines that other quality engineering activities are conducted
in an effective manner; for example, determining that unit - test completion criteria
are satisfi ed.

 In larger teams (7 to 12 members) the team leader does not usually validate all
the work products generated by all team members, but rather assigns validation
tasks, such as moderator duties for review teams, to team members in a “ round -
 robin ” manner so that everyone takes his or her turn. This is possible because each
member in the larger teams has suffi cient skills and experience to lead peer reviews
and apply objective validation criteria to the work products generated by other team
members. Each team member is trained to serve as moderator, reader, and recorder
for formal peer reviews.

 The leader thus does “ real work, ” stays in close contact with the efforts of each
team member, and takes responsibility for the quality of work products generated

454 ORGANIZATIONAL ISSUES

by the team. In software projects organized around SETs, the team leaders are thus
the primary quality control agents for those projects. The role of the quality assur-
ance group is then to advise the team leaders, analyze quality metrics data, recom-
mend process improvements, and to ensure that the team leaders and their teams
are fulfi lling their responsibilities.

 Note that on a small project (i.e., 6 or fewer team members) the team leader may
also play the roles of project manager and software architect.

 8. Decompose tasks into manageable units of work.
 Lowest level tasks are sized to achieve a balance between micromanagement of

individual team members and macromanagement of an entire team. At the level of
job assignments for individuals, we recommend the “ one - to - two ” rule: one to two
persons, one to two weeks, but not to exceed 80 staff - hours per task. The one - to - two
rule thus brackets work tasks in a 40 staff - hour to 80 staff - hour range. A task
assigned to one person for two weeks or two persons for one week would satisfy
the one - to - two rule. Forty staff - hours of effort on the lower end avoids microman-
agement of individuals who can plan and arrange their work activities week by
week, perhaps on a fl ex - hour schedule. Eighty staff - hours on the upper end avoids
macromanagement by forcing attention to detailed planning and monitoring of
progress by team leaders and project managers.

 In teams of three to six, the one - to - two rule provides a manageable workload for
the team leader. For a team of fi ve individual contributors, each working on a 40
staff - hour task, the team leader will, on average, have one completed task to validate
and one new task to initiate each day. A team of three, each working on 80 staff -
 hour tasks, represents one - and - a - half tasks to validate and initiate each day; however,
the tasks are twice as large to initiate and the work products to be validated are
larger and/or more complex than 40 - staff hour tasks and may require more effort
per task.

 In SETs of 7 to 12 members, the team leader delegates some duties. Each
team member is responsible for generating and documenting 40 to 80 hour work
plans, each of which generates a work product that is accepted by objective valida-
tion criteria, and for coordinating her or his plans with the team leader and other
team members. However, the team leader is still responsible for reviewing, approv-
ing, and coordinating plans; setting performance goals; monitoring progress; opti-
mizing the allocation of team members and other resources; ensuring that work
products satisfy their validation criteria; communicating with the software architect,
project manager, other elements of the organization, and customer entities; and
assuring that individual team members are meeting their performance goals (see
guideline 11).

 9. Use an augmented rolling - wave approach to planning.
 In software projects it is usually not possible, nor desirable, to plan work activities

at the one - to - two staff - week level of detail more than one or two months in advance
of the work to be accomplished. To plan at the one - to - two level of detail, one should
adopt an augmented rolling - wave approach to detailed planning. The rolling - wave
approach involves refi ning and revising plans on a monthly basis. The augmented
rolling - wave approach to planning augments traditional rolling - wave planning by
maintaining 3 levels of detail in the plan as illustrated in Figure 11.3 .

 The most detailed level is for the coming month, and is planned at the one - to - two
(40 to 80 staff - hours) level of detail. The second, less detailed level of planning is

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 455

for the subsequent month; this plan is as detailed as possible, but it will by necessity
be less detailed than the coming - month version. The third level of detail is for the
third subsequent month. Each of these levels of detail must be consistent with the
overall constraints on effort, schedule, budget, and technology. On projects of long
duration, it may be desirable to roll forward a six - month level of detail in addition
to the one - month, two - month, and three - month levels of detail.

 Each month the planning “ wave ” is rolled forward by updating each level of the
plan in light of the evolving situation. We call this approach an augmented rolling -
 wave because we indicate three (or four) levels of detail in the plan. This prevents
short - sighted focus on activities for the coming month to the exclusion of future,
less well - defi ned, but foreseeable tasks.

 10. Adopt a contractual model for task assignments.
 Large work activities (requirements development, design, coding, testing) are

decomposed into tasks of 40 to 80 staff - hours using the augmented rolling wave
approach to planning. Each task is documented in a work package and each work
package becomes a negotiated contract between the team leader and the individual(s)
assigned to that work package.

 Each work package provides a description of the task, the relationships of that
task to other tasks and activities (i.e., hierarchical relationships between activities
and tasks in the work breakdown structure; and precedence relationships among
tasks in the schedule network); the planned duration of the task, the numbers and
kinds of resources needed to accomplish the tasks, the work products to be pro-
duced, the risk factors that might create problems for successful completion of the
task, and the acceptance criteria for the work products. Each work package must
produce one or more tangible work products that must satisfy objective acceptance
criteria. An example of a typical work package is presented in Table 11.8 .

 The Member_of and Preceded_by relations in Table 11.8 are used to impose a
work breakdown structure and a schedule network on a collection of work packages.
Member_of identifi es the larger activity to which a work package belongs; the set
of subordinate activities and tasks defi nes the larger activity. Preceded_by specifi es
the tasks and work products that must be completed before a work package can be
initiated. The schedule network can be determined from the Preceded - by relation-
ships of the work packages; the critical path that determines the duration of a
project can be determined from the schedule network.

 A collection of work packages can be analyzed for attributes such as complete-
ness, consistency, critical path, collective resource requirements, and risk factors. The
implementation status of tasks and their parent activities (pending/open/closed) can
be determined by examining work package status. Personnel assigned and start date

 FIGURE 11.3 Augmented rolling - wave planning

month n planning: n n+1 n+2

n+2 n+3 n+4

n+1 n+2 n+3month n+1 planning:

month n+2 planning:

project duration

456 ORGANIZATIONAL ISSUES

 TABLE 11.8 An example of a work package

 Work package 3.2.2.1

 Activity_name: DESIGN_INPUT_SUBSYSTEM
 Description: Specify the architectural structure of INPUT and

develop the test plan for INPUT
 Member_of: 3.2.2
 Preceded_by: 3.1.1 and 3.1.2

 Plan

 Planned_duration: 2 weeks
 Resources_needed:
 Personnel: 1 senior telecomm designer
 Skills: must know the X25 protocol
 Methods: state - based OO design

 IEEE Std. 829 for test plan
 Tools: 1 MACBOOK workstation; iLogix Prodigy
 Travel: None
 Work_products: Architectural spec for INPUT

 Test plan for INPUT
 Acceptance_criteria: Successful peer reviews of design and test plan

 Sign - off by chief architect
 Risk_factors: Telecomm designer not identifi ed

 Schedule constraint
 Responsible_party: R. Fairley

 Implementation

 Status: (pending/open/closed)
 Personnel_assigned: (planned/actual)
 Start_date: (planned/actual)
 Completion_date: (planned/actual)
 Work products generated: (planned/actual)
 Resources_consumed: (planned/actual)
 Legacy_comments:

 End 3.2.2.1

can be determined and compared to plan for open work packages. The actual com-
pletion date, resources consumed, work products generated, and legacy comments
can additionally be determined for closed work packages.

 Assignment of work packages to individuals and estimates of time durations
needed to complete tasks are negotiated by the team leader and each team member,
subject to overall resource and scheduling constraints. Agreement on a work package
between the team leader and a team member constitutes a contract for completion
of one or more work products within the specifi ed time duration that will demon-
strably satisfy the acceptance criteria for those work products.

 Binary tracking of deliverables can (and should) be used to track task comple-
tions [DeMarco82] . Binary tracking requires that a work package be credited as 0%
complete until the associated work products satisfy their acceptance criteria; the

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 457

work package then becomes 100% complete. Decomposing work packages to a
granularity of 40 to 80 staff - hours and using binary tracking provide accurate
information for an earned value reporting system [Webb03] , which in turn provides
a concise summary of project status and early warning of impending problems.

 11. Set performance goals for the team and for each team member.
 In their book, The Wisdom of Teams , Katzenbach and Smith observe that the

most effective way to build a cohesive team is to set challenging performance goals
for the entire team and for each member of the team. [Katzen93] The goals should
be challenging but not impossible. DeMarco and Lister include impossible schedules
(phony deadlines) as one of the “ sure fi re ways to inhibit formation of teams and
disrupt project sociology. ” [DeMarco99] Other factors cited by Katzenbach and
Smith that distinguish effective teams include having a meaningful purpose, a
common approach, complementary skills, and mutual accountability.

 It is important to set performance goals for each team member as well as for the
entire team. This approach eliminates the possibility that collective team efforts
might dilute individual accountability, initiative, and recognition. Elements of a
performance goal include objective, measurable criteria, and a time frame for
achievement of the goal. For example, a team goal might be to reduce schedule
overrun from 20% to 10% in the next quarter by reducing the number of mistakes
made (i.e., defects injected) and thus reducing corrective rework [Fairley05] .

 It is also important that team goals be discussed and negotiated in an open
manner with the entire team, and that individual goals are discussed, negotiated,
and reviewed in private with each individual. Goals should be challenging but not
impossible. Progress toward goals should be monitored and corrective action taken
if extrapolation of the current trend indicates that a goal will probably not be met
within the specifi ed time frame. Failure to achieve an ambitious goal should be
regarded as an opportunity to learn from the experience and to improve future
performance.

 Performance is reviewed periodically (e.g., monthly) with the team and with each
team member. Achievement of ambitious goals is celebrated, problems are identi-
fi ed, and impediments to better performance are identifi ed. Team goals, progress
toward those goals, and team achievements are displayed in a public manner. Review
of individual performance is a confi dential matter between the individual and the
team leader. Team members who consistently fail to meet agreed - to goals should
be counseled to determine the reasons they are unable to meet the goals and to
develop courses of action that will enable the team member to improve his or her
performance.

 Setting of new goals is an ongoing process. This can be done in conjunction with
the rolling - wave approach to planning and control (see guideline 9). Goals setting
and performance measurement do not have to be, and should not be, Machiavellian
 [Mach13] . Attributes of cohesive teams include a collective sense of humor, healthy
skepticism, and enjoyment of working together. These attributes facilitate collective
setting of team goals.

 12. Ensure daily interactions with each team member and among team members.
 It is important that the team leader interact with each team member and that

team members interact with one another on a daily basis. One mechanism for ensur-
ing daily interaction is a 15 to 20 minute “ stand - up ” meeting in which each team

458 ORGANIZATIONAL ISSUES

member briefl y reports on work accomplished the previous day, work in progress
for the current day, and any issues that should be brought to the attention of other
team members. Issues to be resolved between two or three individuals should be
noted but handled apart from the team meeting. Issues that require the attention
of the entire team should be scheduled for later in the day or perhaps the following
day, depending on the urgency of the situation.

 A daily forum provides an opportunity for the team leader to communicate any
new information, report on the status of work in progress, to comment on the latest
rumors, and to provide advance notice of upcoming events. It also provides an
opportunity for team members to “ pair - off ” and discuss issues of mutual interest
following the meeting.

 Electronic mail, video conferencing, and groupware tools should never be used
in place of daily “ face - to - face ” meetings. Electronic media can be effective com-
munications mechanisms and should be fully utilized, but they should augment and
not replace human contact among team members and between team members
and the team leader. Team members who are on travel should speak, by phone,
with their team leader on a daily basis. News of their activities should be communi-
cated by the team leader to other team members during the daily stand - up meetings.
An acting team leader should be designated when the offi cial leader is absent and
the acting and offi cial team leaders should communicate, by phone, on a daily
basis.

 13. Conduct weekly status review meetings.
 The team should meet each week to review project status and to assist the team

leader in preparing a weekly status report and a list of action items for problems
that have been newly encountered. The status report includes a summary of progress
against the planned schedule and summarizes tasks completed during the past week,
tasks to be initiated in the coming week, tasks to be completed in the coming week,
and the status of risk factors and action items.

 Problem status is categorized into problems solved during the past week, new
problems that have surfaced in the past week, ongoing problems, and old problems
thought to have been solved that have resurfaced. Risk factors are potential prob-
lems that might happen but haven ’ t yet; a problem is a risk factor that has material-
ized. Risk factors are characterized by probability, impact, time frame, and mitigation
activities. Mitigation activities are concerned with reducing the probability and/or
the potential impact of a risk factor; they include avoidance, transfer, acceptance,
immediate action, and contingent action. Problems and risk factors that cannot be,
or should not be, handled by the team are brought to the team leader ’ s weekly
meeting with the project manager. In small projects, where the team leader is also
the project manager, problems and risk factors that cannot be handled within the
project are elevated to the project manager ’ s weekly meeting with the department
manager.

 Based on the weekly review of resolved, new, continuing, and resurfaced prob-
lems, team members assist the team leader in developing the team ’ s prioritized
 “ top - N ” problem list (where N ≤ 10) [Boehm89] . Each problem on the top - N list
has an associated action item that specifi es the nature of the problem, the actions
to be pursued, the responsible individual, and the scheduled closure date. Authority
for decision making and resources to be applied are specifi ed, as appropriate.

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 459

 Action items are entered into a tracking system and the status of each open
action item is reviewed at the weekly status meeting. Action items are treated as
discrepancy reports against the development process, as such they are tracked to
closure in the same way problem reports (bug reports) are tracked against the
product. It is important that team members agree on priorities among problems and
the associate action items so that task priorities and allocation of resources are
understood and supported by all.

 An effective technique for weekly status reporting is to adopt a standard format
for the reports, as in Table 11.9 . Each team member submits, by electronic mail, his
or her individual weekly report to the team leader and to all other team members
on the afternoon before the weekly meeting. Everyone comes to the weekly meeting
having reviewed all individual reports.

 Weekly status reviews are limited to not more than two hours. Items that do not
involve the entire team are handled separately. An effective technique is to schedule
weekly reviews as working lunches. In one of my former jobs, I was fortunate to
have funds available to purchase sandwiches and soft drinks for the Friday review
meetings. These two - hour lunch meeting were so effective as status reviews and as
team - building experiences that if (and when) I lead another team in the future,
I will pay for the sandwiches (pizza, Chinese, …) myself if necessary.

 A recommended agenda for weekly status meetings and follow - up activities is
presented in Table 11.10 . Some re - negotiation of contracts with team members (item
4 of follow - up activities) may occur and may involve trading off of responsibilities
among team members (with the team leader ’ s concurrence). In a cohesive team, it
is quite common for those individuals who are running ahead of schedule on their
tasks to volunteer to help those who are running behind. Job sharing and willingness
to help one another are key indicators of a cohesive software engineering team.

 14. Structure large projects as collections of highly cohesive, loosely coupled
small projects.

 TABLE 11.9 Format of a weekly status report

 Weekly status report

 Date:
 To:
 From:
 Work status:
 Tasks completed:
 Tasks to be initiated:
 Tasks to be completed:
 Problem areas:
 Problems solved:
 New problems:
 Ongoing problems:
 Resurfaced problems:
 Risk factors:
 Description of each:
 Probability, potential impact, timing of each:
 Recommended mitigation strategy for each:

460 ORGANIZATIONAL ISSUES

 Projects requiring more than six team members plus a team leader (or 7 to 12
members in certain circumstances; see guideline 5) must use multiple teams. Figure
 11.2 illustrates a project structure that can be tailored to fi t the needs of projects
ranging from 3 or 4 members to projects having hundreds of members. In the case
of a small project (6 or fewer members), one person may play the roles of customer
contact, project manager, software architect (i.e., lead designer), and team leader.
On projects of medium size (7 to 50 members), multiple team leaders (6 or fewer
members per team) report to a project manager; in addition they are members of
the software architect ’ s design team. On large projects (more than 50 members) the
team leaders depicted in Figure 11.2 are managers of subsystems; each subsystem
manager will have multiple teams and team leaders. Depending on the size and
complexity of a subsystem, the manager may also be the software architect for that
subsystem or may be assisted by a subsystem architect. On a large project the project
manager may be assisted by one or more staff members, and the chief architect may
head a design team consists of the subsystem architects.

 Different teams and different subsystem groups may use different methods and
tools, as appropriate within the overall framework of the project. Some teams might
practice pair programming and other Agile development techniques while others
might use an incremental development strategy with weekly builds and demos; some
teams might use a state - based approach to design and implementation while others
are using functional decomposition or object - oriented techniques.

 The rule of thumb for structuring software projects, as with software itself, is
to design a collection of highly cohesive, loosely coupled elements. In a 1968
article Mel Conway observed that the structure of a software product tends to
resemble the structure of the team that develops it [Conway68] . Like many pro-
found statements, this one is obvious once pointed out: the protocols and conven-
tions worked out among team members and between teams become the interfaces
among the software modules and subsystems developed by those team members
and teams.

 TABLE 11.10 Agenda and follow - up activities for weekly status meetings

 Meeting agenda (2 hours)

1. Have lunch — avoid technical discussions (1/2 hour)
 2. Review individual status reports
 3. Review status of open action items
 4. Generate a revised, collective top - N problem list
 5. Generate a revised, prioritized list of action items
 6. Generate a revised list of risk factors and mitigation strategies

 Team leader ’ s follow - up activities

1. Enter new action items into the tracking system
 2. Re - prioritize existing action items as necessary
 3. Generate work packages for new action items
 4. Re - negotiate contracts with individual project members as necessary
 5. Initiate risk mitigation strategies as necessary
 6. Revise schedule and resource allocations as necessary
 7. Report upward action items and risk factors that cannot be, or should not be, handled

by the team

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 461

 Conway ’ s observation can be termed as “ Conway ’ s law ” in order to introduce
 “ Fairley ’ s corollary: ”

 To maximize effi ciency and effectiveness, task assignments for project teams and for
individual project members must be structured to refl ect the desired product
structure.

 One technique for ensuring adherence to Fairley ’ s corollary is to embed the
product structure in the work breakdown structure (WBS) by partitioning the
development tasks in the WBS in one - to - one correspondence with the software
architecture.

 Figure 11.4 illustrate a partial WBS in which the product structure is denoted by
the work products that will result from completion of the corresponding work pack-
ages. The work packages are thus the specifi cations for the WBS elements; note that
each element of the WBS is a verb phrase denoting an activity or task to be accom-
plished. Task assignment for teams and individuals are generated from the work
packages.

 FIGURE 11.4 A partial work breakdown structure

 ATM
Project

2 Do System
Analysis

3 Develop
Software

4 Verify
System

5 Validate
System

6 Perform
CM

7 Prepare
Tech. Pubs.

1 Manage
Project

3.1. Build
ATMHD

3.2. Build
FINAT

3.3. Build
DIAGN

3.2.5 Integrate
FINAT modules

3.2.1.2
CUTV

3.2.1.1
DESV

3.2.1.3
ITVM

–

–

–

–

–

–

–

–

–

3.2.2.2
CUTP

3.2.2.1
DESP

3.2.2.3
ITPM

3.2.3.2
CUTR

3.2.3.1
DESR

3.2.3.3
ITRM

–

–

–

3.2.4.2 CUTT

3.2.4.1 DEST

3.2.4.3 ITTM

3.5. Integrate
ATMHD, FINAT,
MAINT & COMM

3.2.1 Build
Validator
[E1, E2]

3.2.2 Build
Processor

[E3, D1, D2, D3,
O1, O2, O3]

3.2.3 Build
Recorder
[E4, E5]

3.2.4 Build
Terminator

[E6, D4]

3.4. Buy
COMM

ATMHD: ATM Hardware Drivers; FINAT: Financial Transactions; DIAGN: Diagnostics;
COMM: Communications package

DESx: detailed design of x; CUTx: code & unit test x; ITxC: integrate and test x module

8 Install
System

 For example, task 3.2.1.2, (code and unit test the validator) might be a 40 - hour
work package that becomes a contract with one individual team member for one
week; the resulting work product would be the validator module. Use of process -
 oriented work breakdown structures and work packages to specify tasks ensures
that the product structure will be refl ected in the work assigned to teams and to

462 ORGANIZATIONAL ISSUES

individual team members, since each work package must generate one or more
tangible work products that are accepted using objective acceptance criteria. Note
that the requirements for the Validator, Processor, Recorder, and Terminator
elements of the ATM are allocated to those modules as Essential (Ei), Desirable
(Di), and Optional (Oi) requirements.

 Aggregation of the work packages and work products completed by a team rep-
resent the contributions of that team to a larger project. The work package for a
team is specifi ed as a contract between the team and the larger project. That work
package is then decomposed by the team leader, in consultation with the team
members, into a collection of work packages and work assignments for individual
team members, using the one - to - two decomposition rule and augmented rolling -
 wave planning.

 Large systems (those requiring the effort of perhaps hundreds of people) should
be partitioned so that no individual team member or team leader has to be aware
of, or concerned about, the efforts of more than 25 or 30 other people who are
working on the same subsystem. This might amount to fi ve teams of six people plus
team leaders; collectively the teams are responsible for developing a subsystem of
the larger system.

 By Conway ’ s law and Fairley ’ s corollary this approach will result in a product
with loosely coupled interfaces between the subsystems, loose coupling among the
elements of each subsystem, and high cohesion within the elements generated by
each small team. Equally important, it is possible for each individual contributor,
and each team leader to know the names and faces of all other individuals working
on the subsystem, which provides individual identifi cation with the larger effort thus
avoiding feeling of anonymity in a large bureaucracy.

 Perhaps most important, this approach allows the subsystem team leaders to
function as a small team that reports to the subsystem manager and works with
the subsystem architect. The subsystem manager can manage the team leaders
using the same techniques that the team leaders use to manage their teams,
including individual and collective performance goals, augmented rolling - wave
planning, work packages, work breakdown structures and activity networks, contrac-
tual models, binary acceptance criteria for work products, weekly status meetings,
top - N problem lists, action item tracking, risk management, and earned value
reporting.

 In turn, the subsystem managers are a team that reports to their manager and
the subsystem architects are members of the chief architect ’ s design team. Perfor-
mance goals and work packages fl ow downward through the hierarchy; negotiated
commitments, work products, and performance metrics fl ow upward. This way the
described team techniques can be generalized from individuals to projects of arbi-
trary size.

 15. Remember that organizations are nothing more than individuals and groups
of individuals.

 It is easy to forget this rule when you are in the midst of a software project. The
techniques presented in this section make it possible to achieve a balance between
the needs of individuals and the needs of organizations. Fred Brooks ’ s famous
observation — there are no silver bullets in software engineering — is by now a clich é ,
albeit an important one [Brooks87] . However, groups of individuals, working in

11.6 FIFTEEN GUIDELINES FOR ORGANIZING 463

small, well - organized and well - led teams are the “ silver - plated ” bullets of software
engineering. The technical skills of individuals and the ability of individuals to func-
tion as members of cohesive teams engaged in intellect - intensive teamwork are the
keys to success.

 Every engineering discipline is dependent on people, processes, and technology.
In software engineering people are the most important factor. Competent people
and cohesive teams can overcome weak processes and poor technology. But excel-
lent processes and outstanding technology can never compensate for inadequate
skills or dysfunctional teams.

 11.6.3 Summary of the Guidelines

 This section has provided 15 guidelines for organizing and leading software engi-
neering teams (SETs). The guidelines are summarized in Table 11.11 . These guide-
lines can be, and should be, tailored to fi t your particular situation. If you are
involved in development of a large system the techniques described in guideline 15
can be applied. If you are involved in an agile project of 10 or fewer members the
guidelines for using work packages to develop work breakdown structures and criti-
cal - path networks may not be appropriate. However, most of the guidelines are
applicable to all kinds and sizes of software projects.

 TABLE 11.11 Fifteen guidelines for organizing and leading SET s

 1. Hire the best people you can fi nd.
 2. Treat people as assets rather than costs.
 3. Provide a balance between job specialization and job variety.
 4. Keep team members together.
 5. Limit team size.
 6. Differentiate the role of team leader.
 7. Make the team leader the team ’ s quality control agent.
 8. Decompose tasks in manageable units of work.
 9. Use an augmented rolling - wave approach to planning.

 10. Adopt a negotiated contractual model for task assignments.
 11. Set performance goals for the team and for each team member.
 12. Ensure daily contact among team members.
 13. Conduct weekly status review meetings.
 14. Structure large projects as collections of highly cohesive, loosely coupled small projects.
 15. Remember that organizations are nothing more than individuals and collections of

individuals.

 Do not be misled by the 15 easy steps to SETs. The guidelines presented here
are by no means complete or comprehensive, nor are they foolproof. There are no
physical laws or mathematical theories for building and maintaining cohesive soft-
ware engineering teams. Interpersonal skills and goodwill are key ingredients of
successful teams. Good intentions, alone, are not suffi cient. The techniques pre-
sented in this section, when applied with common sense and within a supportive
organization can produce gratifying results.

464 ORGANIZATIONAL ISSUES

 11.7 KEY POINTS OF CHAPTER 11

 • Corporate culture is comprised of the beliefs, values, and behavior patterns that
exist within an organization.

 • A mission statement defi nes the purposes and goals of an organization.
 • A vision statement has specifi c objectives and a time frame for achieving

them.
 • The primary assets of a software organization are the skills and abilities of the

project managers, the team leaders, the software developers, and other software
personnel.

 • The fi rst rule of business is to manage corporate assets to maximize return on
investment in those assets; the second rule is to control costs. Unfortunately,
many software organizations confuse the second rule with the fi rst one and
treat their software engineers as costs rather than assets.

 • Your key personnel are those project members who are assigned responsibili-
ties and are given the authority to carry out those assignments by you, the
project manager.

 • Responsibilities are (or should be) documented in job descriptions. Authority
is the power to make the decisions that must be made in fulfi lling one ’ s respon-
sibilities, and the power to implement those decisions.

 • Authority can be delegated; responsibility cannot.
 • The 15 guidelines for organizing and leading software engineering teams are

by no means complete or comprehensive, nor are they foolproof. There are no
physical laws or mathematical theories for building and maintaining cohesive
software engineering teams.

 • However, the 15 guidelines, when applied with common sense and within a
supportive organization, can produce gratifying results.

 REFERENCES

 [Baker72] Baker , F. T. Chief programmer team management of structured programming .
 IBM Systems Journal . 11 (1): 1972 , pp. 56 – 73 .

 [Boehm89] Boehm , B. W. Tutorial: Software Risk Management . Computer Society Press ,
 1989 .

 [Brooks87] Brooks , F. W. No silver bullets: Essence and accidents of software engineering .
 IEEE Computer (April 1987). 20 (4), pp. 10 – 19 .

 [CMMI06] SEI . CMMI ® Models and Modules . http://www.sei.cmu.edu/cmmi/models/ ,
2006.

 [Conway68] Conway , M. How do committees invent? Datamation (April): 1968 . 14 (2), pp.
 28 – 31 .

 [DeMarco82] DeMarco , T. Controlling Software Projects . Yourdon Press , 1982 .
 [DeMarco99] Demarco , T. , and T. Lister . Peopleware . Dorset Publishing , 1999 .
 [Fairley05] Fairley , R. E. , and M. J. Willshire . Iterative rework in software development:

The good, the bad, and the ugly . IEEE Computer (September 2005). 38 (9), pp.
 34 – 41 .

 EXERCISES

 11.1. Briefl y summarize the ways in which each of the cultural factors in Table 11.1
applies to your school or work environment.

 11.2. Find the mission and vision statements for your school or your work organiza-
tion. Copy them into your answer for this exercise and briefl y state how your
school or work organization does or does not adhere to the mission statement
and the vision statement. Provide some examples.

 11.3. The term “ essential personnel ” is used in Table 11.2 . Briefl y explain
your understanding of the difference between “ essential personnel ” and
 “ nonessential personnel. ”

 11.4. Provide another example, in addition to those in Table 11.2 , of a measure that
might be used to assess the level of innovation in a software organization.
Briefl y explain.

 11.5. List and briefl y explain fi ve responsibilities of an individual software devel-
oper, similar to those in Tables 11.4 and 11.5 .

 11.6. The difference between responsibility and authority is explained in Section
 11.5 .

 a. Provide and briefl y explain a situation you have experienced or observed
in your personal or professional life for which authority was or is com-
mensurate with responsibility.

EXERCISES 465

 [Fairley93] Fairley , R. E. , Organizing and leading software engineering teams. Interna-
tional Perspectives in Software Engineering . Rocky Mountain Institute of Soft-
ware Engineering, 1993 .

 [Hardgr05] Hardgrave , B. C. , and D. J. Armstrong. Software process improvement: It ’ s a
journey, not a destination. Communication of the ACM. Vol. 48, No. 1, Novem-
ber, 2005. pp. 219 – 228 .

 [IEEE1058] IEEE Std 1058TM – 1998. IEEE Standard for Software Project Management
Plans . Engineering Standards Collection. IEEE Product: SE113. Institute of
Electrical and Electronic Engineers, August 2003.

 [IEEE12207] IEEE/EIA 12207.0/.1/.2. Industry Implementation of International Standard
ISO/IEC 12207:1995 Standard for Information Technology — Software Life
Cycle Processes . Engineering Standards Collection. IEEE Product: SE113.
Institute of Electrical and Electronic Engineers, August 2003.

 [Katzen93] Katzenbach , J. R. , and D. K. Smith . The Wisdom of Teams: Creating the High -
 Performance Organization . Harper Collins , 2003 .

 [Mach13] Machiavelli , N. The Prince . Bantam Classics . 1984 .
 [PMI04] PMI . A Guide to the Project Management Body of Knowledge , 3rd ed.

(PMBOK ® Guide). Project Management Institute , 2004 .
 [Stewart97] Stewart , T. Intellectual Capital . Doubleday Publishing , 1997 .
 [Webb03] Webb , A. Using Earned Value. A Project Manager ’ s Guide . Gower Publishing ,

 2003 .

466 ORGANIZATIONAL ISSUES

 b. Provide and briefl y explain a situation you have experienced or observed
in your personal or professional life for which authority was or is not com-
mensurate with responsibility.

 11.7. At the end of Section 11.6 it is stated: “ If the project depicted in Table 11.7 is
a small one, all project members, except Joe, may be software implementers
in addition to their other roles. ”

 a. Briefl y explain why Joe is excluded from being a software implementer.
 b. Briefl y explain how a small project might be organized so that Joe could

be a software implementer.

 11.8. Provide an example of a risk factor that could not be handled at the team
level. Briefl y explain. Provide an example of a risk factor that could be, but
should not be, handled at the team level. Briefl y explain.

 11.9. For the 15 guidelines listed in Table 11.11 ,

 a. List the ones you think would be easiest for a software organization to
implement. Briefl y explain your reasoning.

 b. List the ones you think would be hardest for a software organization to
implement. Briefl y explain your reasoning.

 APPENDIX 11A

FRAMEWORKS, STANDARDS,
AND GUIDELINES FOR
ORGANIZATIONAL ISSUES

467

 11A.1 THE CMMI - DEV - v 1.2 PROCESS FRAMEWORK

 As stated on the SEI Web site, the Capability Maturity Model ® Integration
(CMMI) was developed by the Software Engineering Institute of Carnegie Mellon
University to

 … guide process improvement across a project, a division, or an entire organization.
CMMI helps integrate traditionally separate organizational functions, set process
improvement goals and priorities, provide guidance for quality processes, and provide
a point of reference for appraising current processes.

 (see http://www.sei.cmu.edu/cmmi/general/general.html).
 The level 2 process areas in the staged representation of CMMI - DEV - v1.2 are

concerned with processes that apply to individual projects. The level 2 processes are
listed in Table 11A.1 [CMMI06] . It is possible for all of the projects in your organi-
zation to be at level 2 but for each project to accomplish the goals of the processes
listed in Table 11A.1 in different ways. For example, different projects could achieve
the goals of confi guration management using different methods and tools.

 At level 3 of the staged representation, all of the level 2 processes and the level
3 processes are conducted in uniform ways across the organization. Level 3 pro-
cesses include development processes for individual projects and processes that
apply at the organizational level. The processes for software and systems develop-
ment are, or should be tailored from a common framework of processes within your
organization that satisfy the goals of the level 2 and level 3 processes. The level 3
process areas that apply to individual projects are listed in Table 11A.2 ; those that
apply at the organizational level are listed in Table 11A.3 .

 The organization training process is intended to promulgate the organizational
processes throughout the organization, as well as to provide understanding of
methods, tools, and techniques for all the level 2 and level 3 processes to all project

468 ORGANIZATIONAL ISSUES

members in all projects. Integrated project management ensures that all projects
are managed to satisfy project goals and organizational goals in a uniform manner.
IPPD (integrated process and product development) is included for projects
that involve coordinated software and systems development. Note that risk manage-
ment is listed at both the project level and the organizational level. Risk factors
that cannot be handled at the project level and risk factors that have the potential
to negatively impact the entire organization are handled at the organizational
level.

 Levels 4 and 5 in the staged representation of the CMMI process frameworks
are concerned with collecting uniform data across all projects in your organization
in order to:

 • identify areas in need of improvement,
 • make improvements in processes and technology, and
 • assess the impact of improvement efforts.

 The level 4 and level 5 processes are listed in Table 11A.4 .
 Level 4 is termed quantitatively managed, which denotes the use of uniformly

collected, reported, and validated metrics across all projects in the organization;
hence the two processes at level 4: organizational process performance and
quantitative project management. Note that level 5 is termed optimizing and not

 TABLE 11A.1 CMMI - DEV - v 1.2 level 2 process areas

 • Requirements management
 • Project planning
 • Project monitoring and control
 • Supplier agreement management
 • Measurement and analysis
 • Process and product quality assurance
 • Confi guration management

 TABLE 11A.2 CMMI - DEV - v 1.2 level 3 process areas for projects

 • Requirements development
 • Technical solution
 • Product integration
 • Verifi cation
 • Validation
 • Risk management

 TABLE 11A.3 CMMI - DEV - v 1.2 level 3 organizational process areas

 • Organizational process focus
 • Organizational process defi nition +IPPD
 • Organization training
 • Integrated project management +IPPD
 • Risk management

optimized. Optimizing is meant to imply that improvements in productivity, quality,
and customer satisfaction are always possible. As has often been said, the journey
of process improvement is more important than the destination of achieving a par-
ticular maturity level [Hardgr05] .

 11A.2 ISO AND IEEE STANDARDS 12207

 The 12207 standards for software life cycle processes cover fi ve primary life cycle
process areas, eight supporting processes, and four organizational processes
 [IEEE12207] . The primary life cycle processes are:

 • acquisition,
 • supply,
 • development,
 • operation, and
 • maintenance.

 The eight supporting process areas are:

 • documentation,
 • confi guration management,
 • quality assurance,
 • verifi cation,
 • validation,
 • joint reviews,
 • audits, and
 • problem resolution.

 The organizational processes are the

 • management,
 • infrastructure,
 • improvement, and
 • training processes.

 These processes integrate the customer and supplier processes at the level of indi-
vidual projects and at the organizational level of customer and supplier.

 TABLE 11A.4 CMMI - DEV - v 1.2 levels 4 and 5 processes

 Level 4: quantitatively managed processes • Organization process performance
 • Quantitative project management

 Level 5: optimizing processes • Organizational innovation
 • Causal analysis and resolution

11A.2 ISO AND IEEE STANDARDS 12207 469

470 ORGANIZATIONAL ISSUES

 11A.3 IEEE / EIA STANDARD 1058

 The major sections (clauses) of IEEE Standard 1058 for software project manage-
ment plans (SPMPs) include [IEEE1058] :

 • project organization,
 • managerial process plans,
 • technical process plans,
 • supporting process plans, and
 • additional process plans.

 As explained in Chapter 4 , and emphasized throughout this text, the project plan
for each project should be tailored from a standard organizational template for
project plans, which could be based on IEEE 1058.

 11A.4 THE PMI BODY OF KNOWLEDGE

 Section I of the Project Management Body of Knowledge , 3rd ed. (PMBOK ® Guide)
covers the project management framework [PMI04] . Section I includes chapter 1
(Introduction) and chapter 2 (Project Life Cycle and Organization). Section 1.5.5
of PMBOK covers interpersonal skills. Topics listed include:

 • effective communication,
 • infl uencing the organization,
 • leadership,
 • motivation,
 • negotiation and confl ict management, and
 • problem solving.

 Topics presented in Chapter 2 of PMBOK include:

 • organizational infl uences,
 • organizational systems,
 • organizational cultures and styles,
 • organizational structure,
 • the role of the PMO (project management offi ce) in organizational structures,

and
 • the project management system.

471

 GLOSSARY OF TERMS

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 See also Appendix B to Chapter 9 for defi nitions of terms specifi c to risk manage-
ment. Italicized terms are defi ned in this glossary.

 Acquirer The person or organization that is the primary point of contact between
a supplier and a customer in a contractual situation. See also Contract .

 Activity An element of work in a software project ; higher level activities are
decomposed into subordinate activities and tasks .

 Allocation The process of parceling out a monetary budget , a technology budget,
system requirements, software requirements, effort or any other quantity that can
be subdivided and assigned to elements of a process or a system .

 Architecture decomposition view (ADV) A hierarchical view of the elements in a
software architecture. Each element of an ADV is named using a noun to denote
the product - oriented nature of an ADV. See also Work breakdown structure .

 Assumption A condition accepted as true but which cannot be verifi ed at the
current time or which would be too expensive to verify at the current time.

 Authority The power to make and implement decisions that must be made to fulfi ll
one ’ s responsibilities .

 Avoidable rework Work that in principle should not have to be done to a baselined
work product . See also Baseline, Retrospective rework , and Corrective rework .

 Baseline A work product that has satisfi ed its predetermined acceptance criteria
and has been placed under version control. Baselines provide the basis for future
work during software development and maintenance. Synonymous with Base-
lined work product .

 Baselined work product A work product that has satisfi ed its predetermined
acceptance criteria and has been placed under version control; a baselined work

472 GLOSSARY OF TERMS

product can be changed only if the change is in response to an approved change
request or defect report. Synonymous with Baseline .

 Binary tracking The practice of counting work products as 0% complete until they
satisfy their predetermined acceptance criteria; they are then counted as 100%
complete.

 Change control board (CCB) The stakeholders who approve initial baselines and
control baselined work products. See also Change request and Defect report.

 Change request (CR) A documented request to change a baselined work product
because of external factors such as a change to the requirements or a change to
a hardware or software interface. See also Defect report .

 COCOMO COnstructive COst MOdel; acronym for a family of estimation models.
 Completion date The calendar date on which the software elements of a software -

 intensive system must be ready for delivery to a customer or ready for integration
into a system .

 Confi guration management (CM) The process and mechanisms used to track and
control baselined work products . See also Change control board .

 Constraint A limitation imposed by external agents on some or all of the opera-
tional domain, operational requirements, software requirements, project scope,
monetary budget, technology budget, resources, completion date , and platform
technology .

 Contract A statement of understanding between two or more parties. A contract
may be informal or legally binding (i.e., formal). See also Acquirer, Memo of
understanding , and Statement of work .

 Corrective rework Work performed in response to a defect report for a baselined
work product . See also Rework, Avoidable rework, Evolutionary rework , and
 Retrospective rework.

 Crisis An event that halts or seriously impedes progress .
 Critical path A shortest path through a schedule network .
 Critical path method (CPM) The process of determining the set of (one or more)

longest paths through a schedule network . See also PERT .
 Customer (1) The person or organization that specifi es the operational require-

ments for and the constraints on development of a software system , provides the
 monetary budget , and accepts the deliverable work products from an acquirer or
a supplier . (2) The person or organization that evaluates a software product and
purchases it from a vendor for one or more users ; the customer may or may not
be a user.

 Defect A fl aw in a work product that renders it incorrect, incomplete, and/or
inconsistent. See also Error and Failure .

 Defect report (DR) A documented report of a defect that has been found in a
 baselined work product . See also Change request.

 Delphi technique An iterative estimation technique that relies on the judgments
of multiple experts; each expert ’ s estimates are provided individually, in isolation
from the other experts.

 Derived requirement (1) An elaboration of a primary requirement ; (2) a software
requirement added to support a primary requirement.

GLOSSARY OF TERMS 473

 Design The process of synthesizing a system that optimizes specifi ed design criteria
while satisfying specifi ed constraints.

 Development phase A set of related tasks that produce one or more work prod-
ucts . Development phases can be interleaved, overlapped, and iterated as speci-
fi ed by the development process being used.

 Development process The technical process used to develop the software elements
of a software - intensive system ; examples include the Waterfall, Incremental - build,
Agile, Evolutionary, and Spiral development processes.

 Development team A small group of individuals (3 to 5 persons) plus a team
leader that is responsible for developing or modifying part or perhaps all of the
software elements of a software - intensive system. See also Project team .

 Domain technology The technological basis of the operational domain .
 Earned value Cumulative value of the allocated monetary budget for all tasks

completed. See also Allocation and Binary tracking.
 Earned value tracking The processes of (1) comparing earned value to the actual

cost of work performed and (2) comparing earned value to the budgeted cost of
work scheduled. See Table 8.9 for the terminology and calculations of earned
value tracking.

 Effectiveness The characteristics of a process that facilitate incorporation of
desired attributes in the resulting work products . See also Effi ciency .

 Effi ciency The characteristics of a process that facilitate development of the asso-
ciated work products without wasting time, effort, or other resources. See also
 Effectiveness .

 Effort A measure of work computed as the product of people × time; typically
measured in units of person - days, person - weeks, person - months, or
person - years.

 Embedded system A system contained within another system, as in the case of
one or more digital devices and the associated software embedded in a larger
system such as an airplane or a DVD player. See also Software - intensive
system .

 Error A human mistake that results in a software defect . See also Failure .
 Evolutionary rework Work performed in response to an approved change request

for a baselined work product . See also Confi guration management and Change
control board.

 External size measure (ESM) A software measure determined by counting the
numbers of unique inputs, outputs and passive interfaces for the software ele-
ments of a software - intensive system . See also Function Point.

 Failure A situation that, when encountered in operation, renders a software -
intensive system unable to produce the desired, expected, or required response.
See also Defect and Error .

 Fan - in The number of tasks that immediately precede another task in a schedule
network .

 Fan - out (1) The number of tasks that immediately succeed another task in a
 schedule network ; (2) the number of activities or tasks emanating from another
 activity in a work breakdown structure .

474 GLOSSARY OF TERMS

 Functional requirement A feature of a software - intensive system typically specifi ed
as an input/response pair. See also Operational requirement, System requirement,
Software requirement , and Quality attribute .

 Function Point A software measure determined by applying well - defi ned counting
rules to determine the number of unique inputs, outputs, fi les, queries, and inter-
faces in the software elements of a software - intensive system .

 Gantt chart (1) A task - Gantt chart is a graph that indicates the time in which each
 task in a software project is scheduled to occur; (2) a resource - Gantt chart is a
graph that indicates when a particular resource will be needed to accomplish
some of the tasks in the project schedule .

 Goal An unquantifi ed statement of intent or desired outcome. See also
 Objective .

 Guideline A pragmatic statement of a practice that has been found to be effective
in practical situations.

 Impact analysis The process of assessing the need for and making necessary
changes to schedule, budget, resources, technology, and risk factors commensurate
with changes to baselined requirements. See also Change request and Baselined
work product .

 Inspection A formalized review process conducted by small teams (i.e., 2 to 5
people) for the purpose of fi nding defects in work products . See also
 Walkthrough .

 Iterative development The process by which a work product is repeatedly elabo-
rated to add value to the work product during each of the development
iterations.

 Measure (n) A symbol that is assigned to some attribute of a real - world phenom-
enon; the symbol must be from a set of symbols for which well - defi ned operations
are specifi ed. See also Measurement and Metric .

 Measure (v) To assign a symbol to a real - world phenomenon; the symbol must be
from a set of symbols for which well - defi ned operations are specifi ed. See also
 Measurement and Metric .

 Measurement The process of mapping some attribute of a real - world phenomenon
to a symbol within a set of symbols for which well - defi ned operations are speci-
fi ed. See also Measure and Metric .

 Memo of understanding (MOU) Specifi cation of the scope of work activities to
be performed on a software project for an internal customer ; an MOU is typically
an informal contract . See also Statement of work.

 Metric A generic term used to denote measure and measurement .
 Milestone A specifi ed time within a project schedule by which specifi ed progress

should be achieved.
 Monetary budget The money available to acquire and pay for the use of resources .
 Monte Carlo estimation A statistical estimation method that uses samples from

input probability distributions to produce output probability distributions.
 Objective A quantifi ed statement of a desired outcome to be achieved within a

specifi ed time frame. See also Goal .
 Operational domain The environment in which delivered software will be used.

GLOSSARY OF TERMS 475

 Operational requirement A statement of a need, desire, expectation, or constraint
for a software - intensive system specifi ed by a user, customer, acquirer , or other
 stakeholder .

 Opportunity management The process of assessing potential gains to be made and
the risk factors involved, and being prepared to take advantage of situations,
should the potential for gains overcome the potential for losses in the judgment
of project stakeholders . See also Risk management .

 Original work Effort expended to develop initial baselines of work products . See
also Rework .

 PERT A statistical method used to determine the probability distributions for
achieving various milestones in a schedule , including the end - date milestone.
PERT is an acronym for Program Evaluation and Review Technique. See also
 Critical path method .

 Platform technology The set of software tools, development environment, hard-
ware, and operating system used to produce or modify the software elements of
a software - intensive system .

 Policy A statement of general principles to be observed throughout an organiza-
tion. A policy may apply to managerial, technical, human resource, or other
aspects of an organization.

 Primary requirement A software requirement developed directly from an opera-
tional requirement or a system requirement . See also Derived requirement .

 Procedure A set of tasks to be completed in accomplishing a process . See also
 Technique .

 Process A way of accomplishing one or more work activities and tasks ; typically
involves, procedures , and the use of software tools.

 Process engineering The process of developing and constantly improving software
engineering processes to make them more effi cient and more effective .

 Process model A model of one or more elements of a software project that
emphasizes work activities and the fl ow of work products among work
activities.

 Process standard A specifi ed collection of procedures for conducting one or more
work activities of a software project . See also Process and Activity .

 Process framework A generic process model that can be tailored and adapted to
fi t the needs of particular projects and organizations.

 Program A collection of projects , typically involving multiple technical disciplines,
concerned with developing a complex software - intensive system consisting of
hardware, software, and people elements. Diverse kinds of hardware elements, in
addition to digital devices, may be included.

 Progress A measure of work products completed, accepted, and baselined .

 Project A group of coordinated work activities and tasks that utilizes resources to
achieve specifi ed objectives within a prescribed time frame.

 Project management The collection of work activities concerned with planning
and estimating, measuring and controlling, coordinating and leading, and manag-
ing risk factors for a software project .

476 GLOSSARY OF TERMS

 Project manager The individual who is responsible for accomplishing project man-
agement and for delivering acceptable software elements of a software - intensive
system on schedule and within the monetary budget.

 Project risk The aggregated collection of identifi ed risk factors for a software
project.

 Project team Stakeholders who are directly involved in development or modifi ca-
tion of a software - intensive system . See also Development team .

 Quality assurance The process of assuring that a software project is fulfi lling its
commitments to the planned software processes and work products as specifi ed
in the requirements, software project management plan, supporting plans , and any
 policies, procedures, standards, or guidelines to which the process or the product
must adhere. Contrast to Verifi cation and Validation .

 Quality attribute A desirable characteristic of a software - intensive system ; quality
attributes include factors such as safety, security, reliability, and ease of modifi ca-
tion. See also Operational requirement, System requirement, Software require-
ment , and Functional requirement .

 Resource Any asset used in developing or modifying the software elements of a
 software - intensive system ; resources include but are not limited to calendar time,
 monetary budget, technology budget , project personnel, other stakeholders , soft-
ware to be reused, and platform technology .

 Responsibility The obligation to perform the assigned tasks and duties of your job
position in satisfactory manner. See also Authority .

 Retrospective rework Work that could have been done sooner and must now be
done to modify a baselined work product . See also Rework, Avoidable rework ,
and Corrective rework .

 Rework Work performed to modify a baselined work product . See also Evolution-
ary rework, Avoidable rework, Retrospective rework , and Corrective rework .

 Risk The aggregated collection of risk factors for a software project .
 Risk exposure The product of probability × potential - impact for a risk factor.
 Risk factor A potential problem that, should it become a real problem, will

inhibit the ability to deliver acceptable software elements for a software - intensive
system on schedule and within the constraints of the monetary budget and/or the
 technology budget . A risk factor is characterized by probability and potential
impact.

 Risk management The process of identifying risk factors, and developing and
implementing risk mitigation strategies on a continuing basis. See also Opportu-
nity management .

 Risk mitigation strategies Different approaches to confronting identifi ed risk
factors ; strategies include avoidance, transfer, acceptance, immediate action, and
contingent action.

 Rolling - wave planning The process of iteratively developing detailed plans on a
monthly basis.

 Schedule The time frame within which the software elements of a software - inten-
sive system are to be built or modifi ed. A schedule typically has intermediate
 milestones .

GLOSSARY OF TERMS 477

 Schedule network An acyclic directed graph that indicates the ordering in time of
the is - preceded - by and is - followed - by relationships among tasks in a software
 project .

 Scope The extent of all work activities required to develop or modify the work
products of a software project .

 Software architect Chief designer of the software elements of a software - intensive
system ; also coordinator of the technical activities of the development teams for
a software project .

 Software engineering The engineering discipline concerned with developing and
modifying software for digital devices.

 Software - intensive system A system that includes one or more digital devices and
the associated software. Software - intensive systems include Software products,
Software systems, and Embedded systems . Some software - intensive systems proj-
ects are part of a program ; some are stand - alone systems projects; others are
 software - only projects .

 Software - only project A project concerned with developing software for which the
hardware and operating system are provided by an off - the - shelf computer,
no special - purpose hardware is needed, and no special training is required for
users, operators, or operational support personnel. Software requirements for a
software - only project are derived from the operational requirements . See also
 Software - intensive system.

 Software - only system A software - intensive system for which there are no special
hardware or human elements; the platform technology for developing a software -
 only system may be specifi ed as a constraint . Software - only systems are often
 software products.

 Software process A collection of procedures performed to develop or modify the
software elements of a software - intensive system .

 Software product Software built by a vendor for sale to multiple customers . See
also Software - only project .

 Software project management plan (SPMP) The controlling document for devel-
oping or modifying a software - intensive system .

 Software requirement A statement that specifi es a functional requirement or a
 quality attribute that a software component of a software - intensive system must,
should, or might possess to satisfy the operational requirements and system
requirements . Software requirements include primary requirements, derived
requirements, design constraints , and design goals . See also Objectives.

 Software system Software built by a supplier for a specifi c customer on a contrac-
tual basis. See also Contract, Software - only project, Software product, and Soft-
ware - intensive system.

 Software - intensive system A system that contains one or more digital devices and
associated software; the operational requirements, system requirements and con-
straints for a software - intensive system may specify: (1) functional requirements
and quality attributes that the hardware, software, and human elements of the
system must possess or (2) the operational requirements may specify constraints
on the platform technology plus functional requirements and quality attributes

478 GLOSSARY OF TERMS

for a software - only system . Software - intensive systems include software products,
software systems , and embedded systems .

 Stakeholder Any individual who affects or is affected by development, operation,
or maintenance of a software - intensive system . Stakeholders include users, cus-
tomers, acquirers, managers, software project personnel, operations personnel,
maintenance personnel, and others.

 Standard A codifi cation of practices and procedures that is usually developed and
endorsed by a professional society or independent agency.

 Statement of work (SOW) A specifi cation of the scope of work activities to be
performed on a software project for an external customer ; the SOW is typically
part of a legally binding contract . See also Memo of understanding .

 Supplier A software development organization that develops or modifi es a soft-
ware system or the software elements of an embedded system for an individual
 acquirer subject to a legally binding contract.

 Supporting process A process that supports the tasks of developing and modifying
 work products ; supporting processes include but are not limited to confi guration
management, quality assurance, verifi cation, and validation .

 System A collection of interacting components that exist within and interact with
an environment.

 System requirements A document that specifi es the functional requirements and
 quality attributes for a system that includes hardware, software, and (perhaps)
operational personnel. System requirements are derived from operational require-
ments; software requirements are derived from operational requirements and
 system requirements.

 Task (1) The smallest unit of management accountability in a software project ; (2)
a lowest level unit of work in a work breakdown structure . See also Activity .

 Team A small group of individuals (typically 2 to 5) plus a team leader who work
in a cooperative manner to achieve common objectives.

 Technical performance measurement (TPM) The process of comparing planned
to actual values of technical parameters such as performance, memory usage, or
 system throughput.

 Technique The way in which an individual accomplishes a procedure ; techniques
are often idiosyncratic to the individual.

 Technology budget The constrained technology available to support implementa-
tion of software; includes constraints on one or more factors such as memory
space, execution time, and communication bandwidth.

 Traceability matrix A two - dimensional table that indicates correspondences
between elements of two work products such as operational requirements and
 software requirements or system requirements and associated test plans.

 User An individual (or another system, as in the case of an embedded system) who
will utilize a software - intensive system to perform her or his (or its) work activities
or pursue his or her recreational activities.

 Validation The process of determining the degree to which work products satisfy
their intended purposes in their intended environments.

GLOSSARY OF TERMS 479

 Vendor An organization that builds a software product for sale to multiple
 customers.

 Verifi cation The process of determining the degree to which work products satisfy
the conditions placed on them by other work products and work processes. A
verifi ed work product is correct, complete, and consistent with respect to other
work products and work processes.

 Walkthrough A review process conducted for the purpose of communicating
information among a group of project stakeholders . See also Inspection .

 Work breakdown structure (WBS) A hierarchical decomposition of the work
activities in a software project . The lowest level activities in the hierarchy are
 tasks . Each element of a WBS is named using a verb phrase to denote the process -
 oriented nature of a WBS. See also Architecture decomposition view.

 Work package Specifi cation of a task in a work breakdown structure . Work pack-
ages for activities are aggregates of the work packages for subordinate activities
and tasks.

 Work product Any document, in either electronic or printed form, produced by a
software project ; work products include the source code.

481

 GUIDELINES FOR TERM PROJECTS

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

 INTRODUCTION

 This appendix describes some projects for which software project management
plans can be prepared. Also include are a schedule for completing various sections
of the plan, and a template for the fi nal report. Each of the projects is large enough
to be interesting and small enough to allow completion of a project plan in a quarter
or semester course. For example, the projects described here would require on the
order of 10 to 12 people on a 10 to 12 month schedule; that is, 100 to 144 staff - months
of effort.

 Students sometimes misunderstand the nature of a term project in a project
management class. It must be emphasized to students that the term project does not
involve development of any software but rather will require them to develop ele-
ments of a plan for developing the software. Some creativity may be required of the
students to complete some elements of their project plans, for example, in describing
the acquiring organization or the development process model to be used. The
instructor can specify some of the elements of a hypothetical project for students
who may not have the background or experience to complete those elements.

 Also students sometime confuse development of the software for a system with
development of hardware and software. The term project for a course in software
project management should concentrate on a plan for developing software with the
assumption that the necessary hardware and software development environment
will be available.

 Possibilities for term projects other than those described here include real proj-
ects that students with work experience are currently involved in, have been involved
in, or will be involve in, as well as projects assigned by class instructors. Term projects

482 GUIDELINES FOR TERM PROJECTS

should be of suffi cient size to warrant a signifi cant planning effort but not so large
to prevent development of a plan within the constraints of a quarter or semester
length course.

 Although it is common practice in software engineering courses for students to
work in small teams, it is recommended that students work individually in preparing
their project plans so that each student can gain experience in preparing artifacts
such as work breakdown structures, schedule networks, and risk management
plans.

 The recommended schedule for completion of term projects requires weekly
deliverables from the students. The chapters of the text are structured to allow
instructors to cover the material needed to complete each weekly assignment in
advance of the assignment. Instructors can provide feedback on the weekly deliv-
erables and allow students to revise those deliverables in an iterative manner. Stu-
dents ’ fi nal reports can then contain the integrated results of the (perhaps revised)
weekly deliverables. The following sections of this guideline describe topics for term
projects, a schedule for preparing the project plans, and a template for the fi nal
report.

 Additional guidance for term projects, some software tools, and an electronic
version of the fi nal report template can be found at the URL listed in the Preface
to this text.

 PROJECT DESCRIPTIONS

 Project Plan for Developing the Software Elements of
an Automated Teller Machine

 Planning a software project for the software elements of an Automated Teller
Machine is used as the running example in this text. A term project would involve
collecting and augmenting the various elements of the ATM example from the text
to produce a software project management plan.

 Project Plan for Developing a Web - based Application

 Various kinds of Web - based applications might form the basis for a term project.
Examples include a video - rental service such as that provided by Netfl ix or Block-
buster, or a point - of - sale system for a large chain of retail stores, or a nationwide
inventory control system for a wholesale distributor. Other examples are limited
only by your imagination.

 Project Plan for Developing the Software Elements of a
Programmable Home Control Unit

 A programmable Home Control Unit (HCU) integrates sensing and control of the
various elements of a house or apartment, including but not limited to elements
such as security, lighting, Web cams, entertainment system, appliances, heating and
cooling, and irrigation. The HCU must be programmable to allow control of ele-
ments such as the heating and cooling system (by zones) and a security system (for

PROJECT DESCRIPTIONS 483

a variable number of devices, individually controlled). Other elements an HCU
might control refrigerator and oven, a lawn sprinkler system (by zones) and the
lighting system (by electrical outlet). An HCU might include control of the home
entertainment system (by individual device), and anything else you want to include
(e.g., opening and closing blinds, automatic dispensing of pet food).

 An HCU system would include a user interface having password protected
modes of operation, including a system confi guration mode that allows a trained
technician to set the installation parameters, an adult mode, a child mode, and
perhaps a vacation mode. The software would include a local area network to sense
and control various devices, the software device drivers for the devices to be sensed
and controlled, and a communication package to provide interfaces to a security
company, to the local fi re and police departments, and to the Internet. In the latter
case you might, for example, call up on your cell phone and instruct your oven to
turn on, or you might instruct a robot to remove a prepared meal from the refrig-
erator and place it in the oven. The range of possibilities for an HCU is limited only
by your imagination.

 Project Plan for Developing the Software Elements of
a Driving System Simulator

 A Driving System Simulator (DSS) is envisioned as a realistic simulator that would
allow drivers to experience various driving situations in a simulated environment.
The simulator would consist of a student cabin that contains the elements of a
modern automobile (or truck or bus or race car). A projection system in the cabin
would provide realistic front, side, and rear views. A sound system in the cabin would
provide realistic sounds of driving. The cabin would be mounted on a hydraulic
platform that would simulate the experience of driving on various kinds of roads
under various kinds of weather conditions (e.g., normal, wet, slick, icy, snowy, and
foggy conditions).

 An instructor ’ s station would permit creation, playback, and monitoring of driving
scenarios as well as the ability to create obstacles and other emergency conditions
during driving scenarios. A data repository would contain the driving scenarios and
software to control the hydraulics, and would provide the ability to store and
retrieve scripts, to retain records of student performance, and to generate various
kinds of reports.

 Your DSS might have various modes of operation, for example, novice student
mode, advanced student mode, race driving mode, instructor mode, and mainte-
nance and diagnostics mode. The project plan should include work activities to
verify and validate that the system will be safe, secure, easy to use, and reliable.

 Hardware for a DSS would include (1) the elements of a realistic simulator,
including the usual features of an automobile: door, seat, steering wheel, windshield,
side window, rear window, mirror displays, dashboard controls and indicators, stereo
system, and anything else you might want to include; (2) the projection system
hardware in the student cabin; (3) a hydraulic system on which the student cabin is
mounted; (4) the instructor ’ s work station; (5) the data repository hardware; (6) a
local area network to support communication among the various elements of the
hardware; (7) the server for the LAN and the software components of the DSS; and
(8) any other hardware needed for the DSS.

484 GUIDELINES FOR TERM PROJECTS

 You would assume that the hardware is available and provides the necessary
capabilities. The term project would be to develop a project management plan for
building, modifying, and perhaps purchasing (some of) the necessary software ele-
ments for a DSS.

 A SCHEDULE FOR TERM PROJECTS

 This eight - week schedule is suitable for a quarter length or semester length class.
Week 1 of the project will most likely start in week 2 of the class. The eight - week
schedule also allows time for slippage of deliverables should it be necessary or
desirable to extend the schedule for the term project.

 As indicated in Chapters 4 and 5 of the text, the various elements of a project
plan for a student term project can be prepared at various levels of detail; for
example, the WBS may be partially decomposed and a few work packages prepared
rather than doing extensive decomposition of a WBS and preparation of extensive
work packages.

 Week 2 deliverables (due at the end of class week 2):

 • system overview
 ° a short description of the system to be built
 ° primary features and quality attributes of the system
 ° modes of system operation

 Week 3 deliverables (due at the end of class week 3; see Chapters 2 and 3):

 • a description of user classes and other stakeholders

° classes of users
 ° other stakeholders and their needs

 • a set of operational requirements
 ° partitioned into subsets of Essential, Desirable, and Optional requirements
 ° prioritized as E1, E2, … D1, D2, … , O1, O2, …

 • the software development model to be used
 ° such as Incremental - build, Evolutionary, Agile

 • the software development environment to be used
 ° such as Unix, Windows, Eclipse

 Week 4 deliverables (due at the end of class week 4; see Chapter 5):

 • an architectural breakdown structure (ADV) with allocated requirements
 ° in both graphical and indented forms

 Week 5 deliverables (due at the end of class week 5; see Chapter 5):

 • a work breakdown structure (WBS) with allocated requirements
 ° in both graphical and indented forms

 Week 6 deliverables (due at the end of class week 6; see Chapter 6):

 • estimates of effort, schedule, and cost to include an estimation summary sheet,
a copy of the estimation spreadsheet results, and a summary table of effort,
schedule, and cost

 Week 7 deliverables (due at the end of class week 7; see Chapter 5):

 • a schedule network, a milestone chart, a Gantt chart, and a staffi ng profi le
 ° prepared manually or using a software tool (e.g., Microsoft Project)

 Week 8 deliverables (due at the end of class week 8; see Chapter 5):

 • work packages for some WBS elements

 Week 9 deliverables (due at the end of class week 9; see Chapter 9):

 • some identifi ed risk factors for the envisioned project and a mitigation strategy
for each one

 • the fi nal report

 A TEMPLATE FOR THE FINAL REPORT

 Cover page

 • to include course name and number, instructor, project name, preparer ’ s name,
and date of submission

 Abstract

 • intended purpose of this report (as if this were a real project for a real
company)

 • intended audience for this report
 • summary of effort, schedule, and cost of this project

 Section 1: System overview [the week 2 deliverable]
 1.1 Short description
 1.2 Primary features and quality attributes
 1.3 Modes of operation

 Section 2: Users and other stakeholders [a week 3 deliverable]
 2.1 Classes of users

 2.1.1
 2.1.2
 etc.

A TEMPLATE FOR THE FINAL REPORT 485

486 GUIDELINES FOR TERM PROJECTS

 2.2 Other stakeholders and their objectives
 2.2.1
 2.2.2
 etc.

 Section 3: Operational requirements [a week 3 deliverable]
 3.1 Essential requirements (prioritized)
 3.2 Desirable requirements (prioritized)
 3.3 Optional requirements (prioritized)

 Section 4: Development model and development environment [a week 3
deliverable]

 4.1 Software development model to be used
 4.2 Software development environment to be used

 Section 5: Architectural breakdown structure (ADV) with allocated requirements
[the week 4 deliverable]

 5.1 Indented ADV
 5.2 Graphical ADV

 Section 6: Work breakdown structure (WBS) [the week 5 deliverable]
 6.1 Indented WBS with allocated requirements
 6.2 Graphical WBS with allocated requirements

 Section 7: Estimates [the week 6 deliverable]
 7.1 Estimation summary sheet (as in Figure 6.14)
 7.2 Estimation spreadsheet
 7.3 Summary table of detailed effort, schedule, and cost

 Section 8: Schedule [the week 7 deliverable]
 8.1 Schedule network
 8.2 Milestone chart
 8.3 Task - Gantt chart
 8.4 Staffi ng profi le

 Section 9: Work packages [the week 8 deliverable]
 9.1 Work package #1 [name]
 9.2 Work package #2 [name]

 etc.

 Section 10: Risk analysis [the week 9 deliverable]
 10.1 Identifi ed risk factors and mitigation strategies

 10.1.1 Risk factor #1 [name]
 Brief description
 Mitigation strategy with explanation

 10.1.2 Risk factor #2 [name]
 Brief description
 Mitigation strategy with explanation
 etc.

487

INDEX

Acquirer, see Stakeholder
Acquisition, 87
Agile development process, 66
Allocation

budget, 141
requirements, 80, 88

Architect, 446
Architecture, 47
Architecture Decomposition View (ADV),

177
Avoidable rework, see Rework

Baseline,
acceptance criteria, 339, 342, 345,

351
change control board (CCB), 107, 135.

See also Supporting Processes
change request (CR), 338, 347
defect report (DR), 338, 342, 347
version control, 107. See also Supporting

Processes
Binary tracking, 342
Brooks Law, 7

Change control board (CCB), 107, 135. See
also Supporting Processes

Change request (CR), 283
workfl ow of processing, 283

Managing and Leading Software Projects, by Richard E. Fairley
Copyright © 2009 IEEE Computer Society

CMMI-DEV-v1.2, 22, 28, 79, 116, 125, 156,
204, 262, 319, 336, 399, 433, 467

COCOMO, 238. See also Estimation
Communication, see also Leading, Teams

and Teamwork, and Brooks Law
5-layer behavioral model, 427

Complexity
COCOMO CPLX, 296
coupling and cohesion, 297
cyclomatic complexity, 294
product, 293
software, 3

Concept of Operations, 93
Confi guration management (CM), 141, 144,

146. See also Baseline and
Supporting Processes

Constraint, 9, 86, 102, 375. See also
Requirement and Project

Contingency plan, 385. See also Risk
Management

Continuous risk management, see Risk
Management

Contractual agreement, 110
memo of understanding (MOU), 122
statement of work (SOW), 122

Control
of work processes, 333
of work products, 265

488 INDEX

Corrective rework, see Rework
Crisis management, see Risk Management
Critical path method (CPM), 190. See also

Schedule and Planning
Customer, see Stakeholder

Defect
checklist, 324
detection and repair process, 304
matrices, 307, 341
measuring and analyzing, 301
relative effort to fi x, 341
report (DR), 284, 305
tracking, 307
versus mistake, 301

Delphi estimation, 227
Derived requirement, see Requirements
Design,

constraint, 86, 91, 102
goal, 89, 101
measurement and control of, 285
of an iterative development process, 72

Development models, 39
agile, 66
evolutionary, 64
guidelines for iterative development, 71
hacking, 54
incremental-build, 59
iterative, 58
requirements-to-code, 55
Scrum, 68
spiral meta-model, 69
traditional, 54
waterfall, 55

Earned value tracking and reporting, 347
Estimation, 207

calibration for, 244
COCOMO models, 238
constraints on, 214
Delphi, 227
effort, cost, schedule, 199
estimating future status, 345
external size measure (ESM), 220
function points, 217
fundamental principles of, 209
lifecycle, 249
Monte Carlo, 233, 244
of product size, 216
PERT, 190
pragmatic techniques, 222
procedure for, 251

regression-based models, 234, 245
SLIM model, 231
template for recording, 256
theory-based, 230
tools, 249
WBS/CPM/PERT, 229

Evolutionary development, 64
Evolutionary rework, see Rework

Feature, see Requirements
Foundations

introduction to, 85
process, 86, 109
product, 86

Frameworks, see also Guidelines, Standards,
and Workfl ow Models

CMMI-DEV-v1.2, 22, 28, 79, 116, 125, 156,
204, 262, 319, 336, 399, 433, 467

people CMM, 434
practical software and system

measurement (PSM), 311, 321
project control panel (PCP), 353
software project management plan

(SPMP), 119, 156, 173, 204
spiral meta-model, 69
technical performance measurement

(TPM), 311, 387
Function points, 217. See also Estimation
Functional requirement, see Requirements

Gantt chart, 138, 193, 199
Glossary, 404, 471
Goal, see Design
Guidelines, 22. See also Frameworks,

Standards, and Workfl ow Models
designing a WBS, 182
development process, 42
estimation, 262
iterative development, 71
managing and leading teams, 449
measuring and controlling

work processes, 361
work products, 319

organizational, 467
organizing and leading software

engineering teams, 449
personal software process (PSP),
PMI Body of Knowledge, 22, 37, 81, 118,

158, 206, 263, 321, 401, 434, 470
product foundations, 116
project planning, 125, 156
project planning techniques, 204

INDEX 489

risk management, 399
software development process models, 79
team software process (TSP), 436
teamwork and leadership, 407, 434
term projects, 481

IEEE/EIA Standard 1058: Standard for
Software Project Management Plans,
22, 36, 81, 118, 158, 159, 205, 263, 320,
400, 433, 470

Incremental-build development model, 59
Inspection, 289, 322
ISO/IEC and IEEE/EIA Standards 12207

Standard for Information Technology–
Software life cycle processes, 22, 33,
80, 117, 157, 205, 263, 320, 400, 434,
469. See also ISO/IEC and IEEE/
EIA Standard 12207:2008 Systems
and Software Engineering–Software
Life Cycle Processes.

Iterative development models, 58. See also
Development models

design of, 72
guidelines for, 71
tailoring of, 82

Leading, 407. See also Teams and Teamwork
can’t versus won’t, 418
morale and motivation, 417
peopleware, 412, 436
personality styles, 420
responsibilities, 447
versus managing, 408

Measurement and control, 270, 333
architectural design specifi cations, 285
binary tracking, 342
change requests (CR), 283
choosing product measures, 309
defect reports (DR), 284
direct measures, 273
earned value, 347
effort, 199, 336
guidelines, 311
implementation, 288
indirect measures, 273, 275
integration and verifi cation, 298
measures and measurement, 270
milestone, 123, 141, 167
of defects, 301
operational requirements and technical

specifi cations, 276

practical software and system
measurement (PSM), 311, 321

product attributes, 276
project control panel (PCP), 353
reliability and availability, 302
rework effort, 339
rework matrices, 340
rolling wave adjustments, 313
schedule, 133, 137, 140, 156, 166, 334, 342,

345, 347
software code, 293
system verifi cation and validation, 299
use cases, 278
what to measure?, 269
why measure?, 268
work processes, 333
work products, 265, 281, 287
verifi cation and validation, 299

Memo of understanding (MOU), 122. See
also Contractual Agreement and
Statement of Work

Milestone, 123, 141, 167
Mission statement, 443. See also Vision

statement
Mythical Man-Month, 1

Ninety-fi ve percent complete syndrome,
343

Operational requirement, see Requirements
Organizational issues, 439

assessing intellectual capital, 443
assets, 380
corporate culture, 441
intellectual capital, 443
joint risk management, 396
key personnel, 444
mission statement, 443
risk management, 395
structures for software projects, 16, 19,

136
vision statement, 443

Peopleware, 412, 436
PERT, 190
Planning, 173

agile projects, 128
and controlling iterative development, 71
CMMI-DEV-v1.2 planning process area,

125
critical path method (CPM), 190
developing the project schedule, 188

490 INDEX

Planning (cont’d)
developing the work breakdown

structure, 183
incremental-build projects, 153
PERT, 190
preplanning, 123
process, 121
rolling wave, 175, 454
resource-Gantt chart, 199
resource profi les, 193
scenarios for, 176
schedule, 133, 137, 140, 156, 166, 334, 342,

345, 347
scope of, 123, 124, 175
task-Gantt chart, 193
techniques, 173
under constraints, 9, 86, 102
work package, 140, 165, 185, 339, 456

Plans, 119
annotated outline, 159
contingency, 387
immediate action, 385
project, 129, 130, 149
scenarios for developing, 176
software project management plan

(SPMP), 119, 156, 173, 204
tailoring of, 150
techniques for preparing, 150
template for, 130, 157

Platform technology, 10
PMI Body of Knowledge, 22, 37, 81, 118,

158, 206, 263, 321, 401, 435, 470
Practical software and system measurement

(PSM), 311, 321
Primary requirement, see Requirement
Process, see also Frameworks, Guidelines,

Standards, and Workfl ow
managerial, 137
models, 41, 58
supporting, 14
tailoring of, 52, 55, 65, 82, 150,
technical, 143

Process models, see Development Models
and Workfl ow Models

Project, 2
constraints, 9, 375
control panel (PCP), 353
management plan, 119, 156, 173, 204
organization, 16, 19, 136
risk management, 363. See also Risk

management
roles, 448

schedule, 133, 137, 140, 156, 166, 334, 342,
345, 347

scope, 110, 123, 175
software-only, 52
team, 6, 19, 153, 407, 410. See also

Leading, and Teams and Teamwork
workfl ow model, 13, 41, 120, 174, 210,

267
Project management plan, see also Planning

minimal, 129
tailoring of, 150
template for, 131, 137, 144

Prototyping, 74

Quality, see also Defect and Rework
assurance, 14, 29, 34, 148
attributes, 89, 93, 95, 98

Requirements
analysis, 96
derived, 100
design constraint, 86, 91, 102
design goal, 89, 97, 100
desirable, 95
development, 89
engineering, 88
essential, 95
IEEE/EIA Standard 830: Recommended

Practice for Software Requirements
Specifi cations, 104

management, 106
operational, 90, 97
optional, 95
primary, 89, 97, 99
prioritized, 179
problems and examples, 91
quality attributes, 89, 93, 95, 98
system, 46
technical, 98, 104
traceability, 105
use cases, 94
validation, 91, 97, 105
verifi cation, 105

Retrospective rework, see Rework
Reviews, 293
Rework, 336, 339
Risk management, 363. See also Earned

Value and Technical Performance
Measurement

analysis and prioritization, 381
assumptions and constraints, 375
contingent action, 385

INDEX 491

continuous, 366
controlling the process, 392
conventional techniques, 369
crisis management, 394
exposure, 364
factors, 143, 366
glossary, 404
identifi cation techniques, 373
IEEE/EIA Standard 1540: Standard for

Software Life Cycle Processes-Risk
Management, 402

immediate action, 384
impact, 363, 381
joint, 396
leverage factor, 384
loss, 363
mitigation strategies, 382
organizational, 395
overview, 366
risk registers, 388
SEI taxonomy, 374
techniques, 372
top-N risk tracking, 388
uncertainty, 372
utility, 364

Schedule, 133, 137, 140, 156, 166, 334, 342,
345, 347

Scope, 110, 123, 175
Software

acquisition, 87
engineer, 407
intensive system, 5, 41
management process, 13, 41, 120, 174, 210,

267
product, 6
project management plan (SPMP), 119,

156, 173, 204
work product, 14

Scrum, 68
SLIM, 231
Spiral meta-model, 69
Stakeholder, 43
Standards, 10, 22. See also Frameworks,

Guidelines, and Workfl ow Models
IEEE/EIA Standard 830: Recommended

Practice for Software Requirements
Specifi cations, 104

IEEE/EIA Standard 1058: Standard for
Software Project Management Plans,
22, 36, 81, 118, 158, 159, 205, 263, 320,
400, 433, 470

IEEE/EIA Standard 1540: Standard for
Software Life Cycle Processes-Risk
Management, 402

ISO/IEC and IEEE/EIA Standards 12207
Standard for Information Technology–
Software life cycle processes, 22, 33,
80, 117, 157, 205, 263, 320, 400, 433,
469. See also ISO/IEC and IEEE/
EIA Standard 12207:2008 Systems
and Software Engineering–Software
Life Cycle Processes.

Statement of Work (SOW), 122. See also
Contractual Agreement and Memo
of Understanding

Status reviews, 459
Structures for software projects, 16, 19,

136
Supplier, 29, 34, 44
Supporting processes, 145

confi guration management (CM), 141,
144, 146

change control board (CCB), 107, 135
documentation, 147
quality assurance (QA), 14, 29, 34, 148
validation, 91, 97, 105
verifi cation, 105
verifi cation and validation (V&V), 50,

147
version control, 107

System
engineering workfl ow, 41
requirements and design, 46
software-intensive, 5, 41
software-only, 52

Tailoring
iterative development, 65, 82
project plans, 150
requirements-to-code, 55
system engineering framework, 52
waterfall, 56

Teams and Teamwork, 6, 19, 153, 407, 410.
See also Leading

peopleware, 412, 436
team software process (TSP), 436

Technical Performance Measurement
(TPM), 311, 387

Term projects, 481
Traceability matrix, 105, 448

Uncertainty, 372
Use cases, 278

492 INDEX

User, see Stakeholder
Utility, 364

Vendor, 6
Verifi cation and Validation, 50

validation, 91, 97, 105
verifi cation, 105

Vision
maintaining the process and product

vision, 21
statement, 443. See also Mission

statement

Walkthrough, 292
WBS, see Work breakdown structure
Work

breakdown structure (WBS), 177, 179,
180, 182, 461

guidelines for designing a WBS, 182

package, 140, 165, 185, 339, 456
product, 14

Workfl ow Models, see also Frameworks,
Guidelines, and Standards

agile, 67
CCB, 107
change request, 282
defect detection and repair, 304
estimation, 210
evolutionary development, 65
incremental build, 60
inspection, 289, 323
project workfl ow, 13, 41, 120, 174, 210,

267
risk management, 393
software-only projects, 53
software system engineering, 41
Sprint, 69
waterfall, 56

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

