
 [image: SweetStudy (HomeworkMarket.com)] .cls-1{isolation:isolate;}.cls-2{fill:#001847;}

	[image: homework question]

[image: chat]

 .cls-1{fill:#f0f4ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623}.cls-4{fill:#001847}.cls-5{fill:none;stroke:#001847;stroke-miterlimit:10}

0

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up[image:] .cls-1{fill:none;stroke:#001847;stroke-linecap:square;stroke-miterlimit:10;stroke-width:2px}

[image:]

	[image:]

Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

Help with Operating Systems Theory (CPU Scheduling, and Java Synchronization using monitors)
[image: profile]
engineero
[image:]

 .cls-1{fill:#dee7ff}.cls-2{fill:#ff7734}.cls-3{fill:#f5a623;stroke:#000}

comp346_w12_assignment3.pdf

Home>Computer Science homework help>Help with Operating Systems Theory (CPU Scheduling, and Java Synchronization using monitors)

COMP 346 – Winter 2012
Assignment 3 – page 1 of 2

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING
CONCORDIA UNIVERSITY

COMP 346: Operating Systems
Winter 2012

ASSIGNMENT 3
Due date: Wednesday March 21st before midnight

Theory Questions [50 marks]:

Q.1. Consider the following preemptive priority-scheduling algorithm based on dynamically
changing priorities. Larger priority numbers indicate higher priority (e.g., priority 3 is higher priority
than priority 1; priority 0 is higher priority than priority -1, etc.). When a process is waiting for the
CPU in the ready queue, its priority changes at the rate of α per unit of time; when it is running, its
priority changes at the rate of β per unit of time. All processes are assigned priority 0 when they
enter the ready queue. Answer the following questions:
(a) What is the scheduling algorithm that results when β > α > 0? Explain.
(b) What is the scheduling algorithm that results when α < β < 0? Explain.

Q.2. Somebody proposed a CPU scheduling algorithm that favors those processes that used the least
CPU time in the recent past. For calculating the CPU time of a process in the recent past, a time
window of size τ is maintained and the recent CPU time used by a process at time T is calculated as
the sum of the CPU times used by the process between time T and T- τ. It is argued that this
particular scheduling algorithm (a) will favor I/O-bound programs, and (b) will not permanently
starve CPU-bound programs. Do you agree/disagree with (a) and (b)? Explain.

Q.3. Consider a variant of the round robin (RR) scheduling algorithm in which the entries in the
ready queue are pointers to the PCBs. A malicious user wants to take advantage and somehow
manages to put two pointers to the PCB of his/her process with the intention that it can run twice as
much. Explain what serious consequence(s) it could have if the OS is not aware about the specific
action by the user.

Q.4. Consider the version of the dining philosopher’s problem in which the chopsticks are placed in
the centre of the table and any two of them can be used by a philosopher. Assume that requests for
chopsticks are made one chopstick at a time. Describe a simple rule for determining whether a
particular request can be satisfied without causing deadlock given the current allocation of
chopsticks to philosophers.

Q.5. Consider a system consisting of m resources of the same type being shared by n processes. A
process can request or release only one resource at a time. Show that the system is deadlock free if
the following two conditions hold:

1. The maximum need of each process is between 1 resource and m resources.
2. The sum of all maximum needs is less than m + n.

Programming Questions [50 marks]:

This programming assignment is a slight extension to the classical problem of synchronization – the
Dining Philosophers problem. You are going to solve it using the Monitor synchronization construct
built on top of Java’s synchronization primitives. The extension here refers to the fact that
sometimes philosophers would like to talk, but only one (any) philosopher can be talking at a time

COMP 346 – Winter 2012
Assignment 3 – page 2 of 2

while he/she is not eating. Note that this question is not related to the Q.4 in theory questions in the
previous page.

The source code for this assignment is supplied separately in a zip file. You will need to fill in the
missing code. You have to answer the following questions as part of this assignment:

Note: All code written by you should be well commented. This will be part of the grading scheme.

QP. 1 The Philosopher Class
Complete implementation of the Philosopher class, i.e., all its methods according to the comments in the
code. Specifically, eat(), think(), talk(), and run() methods have to be implemented entirely. Some hints are
provided within the code. Your added code must be well commented.

QP.2. The Monitor
Implement the Monitor class for the problem. Make sure that it is correct, both deadlock- and starvation-
free (Note: this is an important criterion for the grading scheme), uses Java’s synchronization primitives
such as wait() and notifyAll(), and does not use any Java Semaphore objects. Implement the four methods of
the Monitor class; specifically, pickUp(), putDown(), requestTalk(), and endTalk(). Add as many member
variables and methods to meet the following specifications:

1. A philosopher is allowed to pick up the chopsticks if they are both available. It has to be atomic so that no

deadlock is possible. Refer to the related discussion in your textbook.

2. If a given philosopher has decided to make a statement, he/she can only do so if no one else is talking at
the moment. The philosopher wishing to make the statement first makes a request to talk; and has to wait
if someone else is talking. When talking is finished then others are notifies by endTalk.

QP.3. Variable Number of Philosophers
Make the application accept the number of philosophers as a command line argument, and spawn exactly that
number of philosophers instead of the default specified in code. If there is no command line argument, the
given default should be used. If the argument is not a positive integer, report an error to the user and print the
usage information as in the example below:

% java DiningPhilosophers -7.a
"-7.a" is not a positive decimal integer

Usage: java DiningPhilosophers [NUMBER_OF_PHILOSOPHERS]
%

Use Integer.parseInt() method to extract an int value from a character string. Test your implementation with a
varied number of philosophers. Submit your output from “make regression” (refer to Makefile).

Deliverables: Submit your answers to theory questions in PDF or text formats only. For the
programming questions, you must submit the modified source files together with the outputs of
executions and answers to the questions. The solutions to theory and programming questions should
be submitted in two separate archived files (e.g., .zip) via EAS.

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		[image: twitter][image: twitter]

	[image: facebook][image: facebook]

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

