Question 10 (418)

profiletandr102

 NEED THIS DONE ON MICROSOFT WORD!!!!

Theorem:
If X is a metric space with induced topology Ƭ, then (X,Ƭ) is Hausdorff.

The contrapositive of this theorem must be true:
If (X,Ƭ) is not Hausdorff, then X is not a metric space.

1)  Consider (ℝ,Ƭ) with the topology induced by the taxicab metric.  Using the definition for Hausdorff, give an example of why (ℝ,Ƭ) is Hausdorff.

2)  The finite complement topology on ℝ is not Hausdorff.  Explain why ℝ with the finite complement topology is non-metrizable.

    • 7 days ago
    • 10
    Answer(1)

    Purchase the answer to view it

    blurred-text
    • attachment
      Topology.docx