# Daceptin Hypotheses what would conviace you that ESP

### A Useful Tool for Very Low/High Probabilities

- very low/very high posterior probability assignments We've seen some very unlikely data (e.g., bag of all green candies), and
- Convenient to express probabilities in terms of odds (0) and log-odds (e):

$$O(A|X) = P[A|X]/P[\sim A|X] = P[A|X]/(1-P[A|X])$$
  
$$e(A|X) = 10*log(O(A|X))$$

e(A|X) is called "evidence", in units of **decibels** 

# Converting from Probability to Odds/Evidence

Note that O = P/(1-P) and P = O/(1+O)

| 1-P | $10^n/(10^n+1) \approx 1-10^n(-n)$ | 100/101 | 10/11 | 2/3 | 1/2 | Prob |
|-----|------------------------------------|---------|-------|-----|-----|------|
| 1/0 | 10^n                               | 100     | 10    | 2   | _   | Odds |
| Ф   | 10n                                | 20      | 10    | ~3  | 0   | Ф    |

### Bayes' Theorem in Evidence Terms

- From Bayes' Thm we have  $P[\sim H|DX] = P[\sim H|X] * P[D|\sim HX]/P[D|X]$ P[H|DX] = P[H|X] \* P[D|HX]/P[D|X]
- Dividing first equation by the second gives: P[H|DX]/P[~H|DX] = P[H|X]/P[~H|X] \* P[D|HX]/P[D|~HX]
- In Odds/Evidence terms this is:  $e(H|DX) = e(H|X) + 10*log(P[D|HX]/P[D|\sim HX])$  $O(H|DX) = O(H|X) * P[D|HX]/P[D|\sim HX]$

Most useful for Binary Hypothesis Test, where this is computable

# What is Your Prior for An Unlikely Hypothesis?

- Imagine someone claims to be able to read your mind, specifically H: "If you write down a number from 1-10, I can tell you the number."
- What would be your prior P[H|X]? Here X = (everything you know).
- possibilities are H and C = "Pure chance." ≡ ~H Imagine you have complete control over the experiment, and the only
- Assume you do n rounds of guesses, D = "He guesses n/n correct."

#### Hypothesis Test in Reverse

- Claim: P[D|HX] = 1 $P[D|\sim HX] = 10^{-n}$
- So e(H|DX) = e(H|X) + 10n
- What value of *n* would make you **uncertain**? Meaning  $e(H|DX) \approx 0$ .
- It follows that  $e(H|X) \approx -10n$ , that is, your  $P[H|X] \approx 10^{\circ}(-n)$

"Prior elicitation."

### The Soal-Goldney Experiments

- experimentally verify the existence of ESP In the 1940s, British mathematician/parapsychologist Samuel Soal claimed to
- pictures of animals that the test subject would try to guess Experiment involved card-guessing: translating sequence of numbers 1-5 to
- One subject, Gloria Stewart, was able to guess 9410/37100 ≈ 25.3% correct
- $(37100 \text{ choose } 9410) (.2)^9410 (.8)^27690 \approx 10^{-139})$ Under "pure chance" hypothesis H\_C, probability of this is

That is,  $e(D|H_CX) \approx -1390$  db.

#### How Strong is This Evidence?

- "Pure chance" is H\_0.2 Suppose we only allow a range of hypotheses {H\_q; 0<q<1} H\_q = "Subject is able to guess correctly at long-run rate q."
- For D = "r successes out of n" we have P[D | H\_q X] = (n choose r) q^n (1-q)^(n-r)
- sharply peaked bell curve, centered at  $f \approx 0.253$ . If we treat them all uniformly at first, posterior distribution over q will be very
- P[D | H\_f X] ≈ 0.005, about **136 orders of magnitude** greater

"54 sigma" deviation

#### Why Don't We Believe It?

- Any hypothesis other than H\_0.2 would suggest some kind of ESP!
- So why don't we believe the evidence?
- "Results were faked/produced by some trick." Likely because we haven't completely eliminated other possible hypotheses!
- Even with low prior probabilities, these could be revived based on the data.

### Comparing Deception and ESP

- Imagine we entertain the hypothesis H\_D = "Results were produced by deception."
- Assume P[D|H\_D X] ≈ P[D|H\_f X] where H\_f has highest data-likelihood from among possible other hypotheses
- Assuming very low data probability kills off all other hypotheses, we have:

$$P[D|X] \approx P[H_D|X] * P[D|H_DX] + P[H_f|X] * P[D|H_fX]$$

$$P[H_f|X] \approx P[H_f|X] / (P[H_f|X] + P[H_D|X)$$

#### The Effect of Deception

- to accept any other hypothesis! The possibility of the deception hypothesis puts a cap on how willing we are
- how "unlikely" the data is to occur by chance! E.g., if P[H\_D | X] >> P[H\_f | X] we will never be convinced of H\_f no matter
- you must eliminate other possibilities that would equally well explain the Lesson: In order to convince someone of something very unlikely (to them),

This becomes part of the background X and the prior assignment P[H\_D | X].

#### Famous Examples in Science

Many scientific findings have been hard to believe at first because of the perceived possibility of deception/error:

"Discovery" of cold fusion (Fleischmann and Pons, 1989)

Non-existence of "aether" (Michelson and Morley, 1887)

Detection of gravitational waves (LIGO, 2015)

Epilogue: It turned out Soal had fabricated his data by changing the target numbers to match the guesses.

#### Summary

- "draw out" our prior probability assignments for unlikely hypotheses. Imagining a "perfect experiment" where deception is impossible can help
- may block us from believing extraordinary claims. In practice, no experiment is perfect! Any residual probability of deception
- Probabilistic thinking can give us a language to describe this, even without exact numbers
- "chance" hypothesis.) Standard statistics is mostly useless, other than telling us to reject the