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As a reminder, a Finite State Automata (FSA for short) can be mathematically
modelled as follows:

M = 〈Q,∆, qs, Qa,Σ〉

where,

Q is the set of states in the FSA.

∆ is the set of transitions in the FSA.

qs is the start state and it has to be one and only one state.

Qa is a set of accept states and it could be one or more.

Σ is the alphabet. Remember the alphabet is the set of tokens on the
transitions and remember λ is not an alphabet.
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M = 〈Q,∆, qs, Qa,Σ〉

Q = {q0, q1, q2, q3}.
qs = q0.

Qa = {q3}.
Σ = {a, b, c, d}.
∆ :

1 δ(q0, a) = q0
2 δ(q0, b) = q1
3 δ(q0, c) = q2
4 δ(q1, a) = q2
5 δ(q1, b) = q1
6 δ(q1, c) = q0
7 δ(q1, d) = q3
8 δ(q2, b) = q1
9 δ(q2, c) = q3

q0start q1 q3

q2

a b

a b

b

c

d

cc
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Grammar

Linear Grammar

RLG LLG CFG

Nonlinear Grammar

CFG Other

RLG≡ Right Linear Grammar

LLG≡ Left Linear Grammar

CFG≡ Context Free Grammar

The types of grammar that are underlined are the types you are going to be
dealing throughout this semester. In these slides, you will be dealing with:

↪→ Left Linear Grammar

↪→ Right Linear Grammar

↪→ Context Free Grammar (Linear case)

Any thing that is called regular is called this way because you can translate it to
a finite state automata, and you can translate a finite state automata back to it.
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Grammar
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G = 〈N,Σ,R, Ns〉

where

↪→ N is a set of non-terminals (written in capital letters).

↪→ Σ is a set of terminals (written in small letters).

↪→ R is a set of rules.

↪→ Ns is the starting non-terminal.

Regular grammar and FSA equivalence

↪→ N to Grammar is Q to FSA.

↪→ Σ to Grammar is Σ to FSA.

↪→ R to Grammar is ∆ to FSA.

↪→ Ns to Grammar is qs to FSA.
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Right Linear Grammar
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A→ aB
A→ bC
B → cA
C → bD
C → d
D → a
D → λ

Note the following
1 For any rule, the left hand side of the rule has always one and only one

Non-terminal.
2 It is called linear because in the right hand side of the rule there is one and

only one non-terminal.
3 It is called right because for the right hand side. If there is a non-terminal

then it is in the right hand side of the terminal.
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Left Linear Grammar
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A→ Ba
A→ Cb
B → Ac
C → Db
C → d
D → a
D → λ

Note the following
1 For any rule, the left hand side of the rule has always one and only one

non-terminal.
2 It is called linear because in the right hand side of the rule there is one and

only one non-terminal.
3 It is called left because for the right hand side. If there is a non-terminal

then it is in the left hand side of the terminal.
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Linear Context Free Grammar
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Linear Context free grammar
A→ aAb
A→ cBd
B → λ

Note the following
1 For any rule, the left hand side of the rule has always one and only one

non-terminal.
2 It is called linear because in the right hand side of the rule there is one and

only one non-terminal.
3 It is context free because it is neither left or right.
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Nonlinear Context free grammar
A→ aAbBc
B → CDE
C → bDD
D → aEv
D → λ

1 For any rule, the left hand side of the rule has always one and only one
non-terminal.

2 It is called nonlinear because in the right hand side of the rule there is
more than one non-terminals.

3 It is context free because in the right hand side of the rule there is more
than one non-terminal.
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Trick: To convert from a finite state automata to grammar, it is a good idea to
give labels. the easiest way to do it is to use the same state name but in capital
letters. in other words, q0 gets the label Q0 and q2 gets the label Q2.

Finite State Automata to Grammar and Vice Vera: The outcome of the conver-
sion is as follows:

1 Q0 → aQ0‖bQ1‖cQ2

2 Q1 → cQ0‖bQ1‖aQ2‖dQ3.
3 Q2 → bQ1‖cQ3.
4 Q3 → λ ( because it is an

accept).

q0start q1 q3

q2

a b

a b

b

c

d

cc

Q0 → aQ0‖bQ1‖cQ2 are three separate rules joined together:
Q0 → aQ0 and Q0 → bQ1 and Q0 → cQ2 same applied for all the rules above.
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Discussion: How is the conversion done from FSA to grammar?!
1 Assign a label to every state.
2 For every transition create a rule. In other words, if you have q0 foes to q1

with alphabet a, then it is translated this way: Q0 → aQ1.
3 If there is a self loop then the rule goes to the same non-terminal. In other

words, if you have q0 with a self loop using label b then it is translated as
follows: Q0 → bQ0

4 Accept states are rules with λ. In other words, the FSA in Slide 15 has q3
as an accept. it translates to adding this rule to the grammar: Q3 → λ.

Note that any string that can be recognized by an FSA can be generated by the
equivalent grammar. Recognition means the string is accepted by the FSA.
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Discussion: How is the conversion done from grammar to FSA?!
1 For every non-terminal create a state.
2 For every rule create a transition as follows:

↪→ If the rule is like this A→ aB then create a transition from
state A to state B with a label a.

↪→ If the rule is like this A→ B then create a transition from
state A to state B with a label λ.

↪→ If the rule is like this A→ aA then create a self loop on A
with a label a.

↪→ If the rule is like this A→ a then create a new state call it
qnew and create a transition from A to qnew with a label a.
Note that in this case qnew has to be an accept state.

↪→ If the rule is like this A→ λ then make A an accept state.

Note that any string that can be generated by certain grammar can be recog-
nized by the equivalent FSA. Recognition means the string is accepted by the
FSA.
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for the shown FSA find the equivalent grammar

q0start

q1 q2 q4 q5

q3b

a

b a

a

d

b b

d c

b

λ

λ
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We have the following state Q = {q0, q1, q2, q3, q4, q5}. Therefore we will be
having the following non-terminals N = {Q0, Q1, Q2, Q3, Q4, Q5}, simply the
same name of the states but in capital letters. The starting state is q0 and that
is why the starting non-terminal is Q0

Solution

Q0 → aQ0

Q0 → bQ0

Q0 → dQ1

Q1 → aQ1

Q1 → dQ1

Q1 → cQ0

Q1 → bQ2

Q2 → bQ3

Q2 → bQ4

Q3 → aQ2

Q4 → bQ5

Q4 → Q1

Q5 → dQ0

Q5 → λ

To save space, it can be written this way

Q0 → aQ0‖bQ0‖dQ1

Q1 → aQ1‖dQ1‖cQ0‖bQ2

Q2 → bQ3‖bQ4

Q3 → aQ2

Q4 → bQ5‖Q1

Q5 → dQ0‖λ

Dr.Nawaf Ali & Dr.Yehia Kotb CE468 19 / 53



For the following grammar find the FSA

Q0 → aQ0‖bQ1

Q1 → cQ1‖Q2

Q2 → dQ2‖Q3

Q3 → aQ4‖cQ5

Q4 → bQ3

Q5 → aQ6‖Q7

Q6 → eQ5

Q7 → Q0‖Q3‖aQ8‖λ
Q8 → bQ9

Q9 → cQ7
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Solution

q0 q1 q2 q3

q4

q5

q6

q7

q9q8

a

b

dc

λ λ

a b a e
c

λ

λ

λ a

b

c
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String Derivation: Using the given grammar, generate aaaaaa

1 S → aS

2 S → λ

1 S starting non-terminal.
2 aS applying rule number 1
3 aaS applying rule number 1
4 aaaS applying rule number 1
5 aaaaS applying rule number 1
6 aaaaaS applying rule number 1
7 aaaaaaS applying rule number 1
8 aaaaaa applying rule number 2
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String Derivation: Using the given grammar, generate aaab generate string aaab
Given the following grammar:

1 A→ aA

2 A→ B

3 B → bB

4 B → λ

1 Apply A→ aA now you
generated aA

2 Apply A→ aA now you
generated another a. total
generation aaA

3 Apply A→ aA now you
generated another a. total
generation aaaA

4 Apply A→ B now you can
apply B rules. total generation
aaaB

5 Apply B → bB now you
generated another a. total
generation aaabB

6 Apply B → λ to get rid of B.
total generation aaab
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The generation shown in last slide is formulated this way:
A⇒ aA⇒ aaA⇒ aaaA⇒ aaaB ⇒ aaabB ⇒ aaab

You will see two kinds of arrows in this course:
1 → and this is used to define a rule like A→ cB

2 ⇒ and it is used in derivation.
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Having the following left grammar show how you can generate: abb
A→ Ba
A→ Cb
B → Ac
C → Db
C → d
D → a
D → λ

Derivation goes this way:
A⇒ Cb⇒ Dbb⇒ abb
It is Recursive. it derives the end of the string first then it goes all the way to
derive the beginning of the string.
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Left Grammar is evil because it is recursive and it a memory hungry monster.
That is why Translation engineers do not like it and they tend to convert it to right
linear grammar.

Red Green Blue

Red Green Blue

We did it in three steps:
1 The beginning becomes an end.
2 The end becomes a beginning.
3 Flip the direction of arcs.
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For the following left grammar find the equivalent right grammar
1 A→ Ba‖Ce‖D
2 B → Ba‖C‖a
3 C → Db‖b
4 D → Ab‖λ

1 You need to deal with every rule separately.
2 You need to create a new start state S.
3 You need to specify which is the starting non-terminal in the lest grammar

and make it an ending non-terminal in the right grammar.
4 You need to specify which is the ending non-terminal in the left grammar

and make it a starting non-terminal in the right grammar.
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Starting non-terminal is non-terminal A. How did I know? Usually You should
be told but if it not specified then take it alphabetically. Since A is the starting
non-=terminal, it has to be the end. How will we do that? in the right grammar
add the following production rule: A → λ. This means there is nothing after A
which makes it the end.

Ending non-terminals The ending non-terminals in the left grammar is every
non-terminal that:

1 goes to λ. An example since we have the rule D → λ then D is an ending
non-terminal in the left grammar.

2 goes to a token. An example since we have the rule C → b then C is an
ending non-terminal in the left grammar. B is also an ending non-terminal
since there is a rule B → a.

We need will be solving it with a table based solution. Do not forget to write
every single rule in a separate line.
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Solution of problem in slide 27
Left Right Comments

A→ Ba B → aA, A→ λ A→ λ as A is an ending non-terminal
A→ Ce C → eA flip the arc
A→ D D → A flip the arc
B → Ba B → aB flip the arc
B → C C → B flip the arc
B → a S → aB make B a start
C → Db D → bC flip the arc
C → b S → bC make C a start
D → Ab A→ bD flip the arc
D → λ S → D make D a start

S is an added new non-terminal that works as a starting non-terminal. Every
other none-terminal that is supposed to be a start has to be linked to it as seen
from the solution above.
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Right Linear grammar is a power tool when we need to describe certain state-
ments. Not all statements however can be described by right linear grammar.
Some statements need balance. Example of those cases:

1 Number of begin words has to equal the number of end words.
2 Number of if words has to equal the number of then words which also

need to equal the number of end if words.
3 In a mathematical expression, number of open brackets has to equal the

number of close brackets.
4 Number of for words has to equal the number of end for words.
5 Number of while words has to equal the number of end while words.
6 Number of do words has to equal the number of while words.
7 Number of repeat words has to equal the number of until words.
8 Number of Loop words has to equal the number of exit loop words which

also need to equal the number of end Loop words.
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taking the case of begin and end as an example;
1 Use two counters. Count number of begin then generate as many end.
2 There is a better way without using any counters

Lets say there is an organization that wants to make sure that the number of
desks is equal to the number of seats without counting. How can this be done?
Every time the organization buys one desk , they buy one seat right after. or
buy the two of them together. As a result, the number of desks is equal to the
number of seats guaranteed without even counting.
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What is the difference between:
1 a∗b∗

2 anbn

a∗b∗ means many a followed by many b. How many? we do not know and we do
not care to know. As you know from last chapter the expression says: number
of a followed by number of b without specifying the number at all. it could be
zero it could be two billions. The expression basically describes the pattern but
not the count.

anbn means the number of a has to equal the number of b regardless what that
n is.
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Find the context free grammar that describes anbn.

S → aSb ‖ λ

Every time S is going to be replaced by aSb, we will be generating a and b
together. That is why without counting it is guaranteed that the number of a is
equal to the number of b.

Use the above grammar to generate a5b5 S ⇒ aSb → aaSbb ⇒ aaaSbbb ⇒
aaaaSbbbb⇒ aaaaaSbbbbb⇒ aaaaabbbbb ≡ a5b5

All generation steps used S → aSb except for when we are done we used
S → λ.
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Example 2: Find the context free grammar that describes ancmdmbn.

Solution :
S → aSb‖A
A→ cAd‖λ

The problem says that the number of a is equal to the number of b. and then
after generating equal number of a and b, we need to generate number of c
equal to the number of d. That is why the grammar worries about generating
a and b first from the production S → aSb. After the required n is generated,
we move to generate c and d. We move to the second line by executing the
production S → A. After we are on non-terminal A, we generate c and d by
using the production A → cAd. Finally we get rid of A using the production
A→ λ.
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Example 3: Find the context free grammar that describes ancmdm+1bn.

Solution S → aSb‖A
A→ cAd‖d

The problem is similar to the last one except that we need to generate one more
d. So if there is 5 c we need to generate 6 d. This is done by adding one more
d using the production A→ d after generating the equal number of c and d.
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Example 4: Find the context free grammar that describes an+2c2mdm+1bn.

Solution S → aSb‖aaA
A→ ccAd‖d

Now try to explain this yourself. Note that the aa in production S → aaA is
added to the left of A and that is because it is in the left of c2mdm+1.
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Grammar Ambiguity
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As we known by now, grammar is used to test if certain text belong to certain
language. This is done by trying to regenerate the text and if can be generated
then it does belong to the language. If the generation failed however, this means
that the string does not belong to that particular language expressed by the
given grammar.
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Having The following grammar generate string: aa
A→ aA ‖C ‖ aB ‖ cC ‖ a
B → aC ‖ bD ‖ cC ‖ a
C → bD ‖ cC ‖ aD ‖λ
D → aD ‖ a ‖ b ‖λ

First parsing path:
A⇒ aA⇒ aa

Second parsing path:
A⇒ aB ⇒ aa

Third parsing path:
A⇒ aB ⇒ aaC ⇒ aa

First parsing path:
Can you find some more?
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As seen from the example in the last slide, there are strings that can be gener-
ated using many different parsing trees. This makes the grammar an ambigu-
ous grammar.

In order to show that a grammar is ambiguous, you need to find one string that
can be generated by multiple parsing trees. One string is enough to prove the
ambiguity of the grammar.

Showing that a grammar is not ambiguous is a very difficult task. In order to
achieve this, you need to show that each and every string that belongs to the
language described by that grammar has one and only one parse tree. One
way to do it is using proof by induction but it is still a very easy task since the
magnitude of the problem is really big.
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Given the following grammar, show that the grammar is ambiguous:

A→ B ‖C ‖ aB ‖ bC
B → bB ‖D ‖ cC ‖ a
C → aD ‖ bC ‖ λ
D → aD ‖ bD ‖ λ
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First try to find a string:
The string I will be using here is ab

First path :
A⇒ aB ⇒ abB ⇒ abD ⇒ ab

Second Solution:
A⇒ B ⇒ D ⇒ aD ⇒ abD ⇒ ab

Exercise 1:
Can you find any other parse tree?

Exercise 2:
Can you find any other string?
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Given the following grammar, show that the grammar is ambiguous
A→ B ‖C ‖λ
B → aA ‖ aC ‖ bB ‖D
C → bA ‖ bC ‖ λ
D → aA ‖ bA ‖ λ
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First try to find a string The string I will be using here is ba

First path:
A⇒ B ⇒ bB ⇒ baA⇒ ba

Second Solution: A⇒ C ⇒ bA⇒ bB ⇒ bD ⇒ baA⇒ ba

Exercise 1:
Can you find any other parse tree?

Exercise 2 Can you find any other string?
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Grammar Equivalence
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Two grammars G1 and G2 are equivalent if and only of:

G1 ⊆ G2 and G2 ⊆ G1

In other word, Every string that can be generated by grammar G1 can also be
generated by G2 and every string that can be generated by grammar G2 can
also be generated by G1. Note that this is the condition for any set equivalence.

So in order to prove equivalence of two grammars:G1 and G2 You need to show
that all string in G1 are in G2 and visa verse. which is technically very hard to
achieve since the number of strings that can be generated from every grammar
is infinite. Again, there is a way to do it through proof by induction, but it is still
very hard to achieve.

it is much easier to show that two grammars:G1 and G2 are not equivalent You
need to find one string that can be generated by one of them but not the other.
Note that a single string that satisfies this criteria is enough to show that the two
grammar are nor equivalent.
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Grammar G1

A→ aB ‖C ‖λ
B → bC ‖D
C → bB ‖ aC‖λ
D → aD ‖ bD ‖λ

Grammar G2

A→ B ‖C
B → aA ‖ aC ‖ bB ‖ bD
C → bA ‖ aC ‖ b
D → aA ‖ bA ‖ λ

Show that the two grammars G1 and G2 are not equivalent.
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How to show it?
Find a string that can be generated by one of them but not the other one. The
string I will be using is aa.

Generation from grammar G1

A⇒ C ⇒ aC ⇒ aaC ⇒ aa

Generation from grammar G2

A⇒ B ⇒ aA⇒ aB ⇒ aaA⇒ aaB ⇒????

Lets then try to generate from G2 through A→ C
A⇒ C ⇒ aC ⇒ aaC ⇒????B ⇒????

Discussion:
It can be generated from G1 but not from G2. Therefore G1 and G2 are not
equivalent.
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Grammar G1

A→ B ‖C ‖λ
B → aA ‖ aC ‖ bB ‖D
C → bA ‖ bC ‖ λ
D → aA ‖ bA ‖ λ

Grammar G2

A→ B ‖C
B → aA ‖ aC ‖ bB ‖ bD
C → bA ‖ aC ‖ b
D → aA ‖ bA ‖ λ

Show that the two grammars G1 and G2 are not equivalent.
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How to show it?
Find a string that can be generated by one of them but not the other one. The
string I will be using is λ.

Generation from grammar G1 A⇒ λ or
A⇒ B ⇒ D ⇒ λ
A⇒ c⇒ λ
(Ambiguous grammar)

Generation from grammar G2

A⇒ B ⇒????

Lets then try to generate from G2 through A→ C
A⇒ C ⇒????

It can be generated from G1 but not from G2. Therefore G1 and G2 are not
equivalent.
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PARSING AND PARSE TREES
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EXTRACTING GRAMMAR FROM HIGH LEVEL
CODE
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