he statement of David Henderson highlights the central position of the law of demand in economics. As Publilius Syrus noted more than 2,000 years ago, demand reflects the willingness of individuals to pay for what is offered in the marketplace. In this section, we begin our examination of microeconomic markets for specific products with an analysis of the demand side of markets. In essence, we will be going "behind" the market demand curve to see how it is made up of individual consumer demands and what factors determine the choices of individual consumers.³ #### 7-1 FUNDAMENTALS OF CONSUMER CHOICE Each of us must decide how to allocate our limited income among the many possible things we would like to buy. The prices of goods, *relative to each other*, are important determining factors. If your favorite cereal doubled in price, would you switch to a different brand? Would your decision be different if all cereals, not just yours, doubled in price? Your choice *between* brands of cereal will be affected only by the change in relative prices. If the prices of all cereals rose by a proportional amount, you might quit purchasing cereal, but this would not give you a strong reason to switch to a different brand. Relative prices measure opportunity cost. If cereal is \$5 per box when movie tickets are \$10, you must give up two boxes of cereal to purchase one movie ticket. Several fundamental principles underlie the choices of consumers. Let's take a closer look at the key factors influencing consumer behavior. - 1. Limited income necessitates choice. Because of scarcity, we all have limited incomes. The limited nature of our income requires us to make choices about which goods we will and will not buy. When more of one good or service is bought, we must buy less of some other goods if we are to stay within our budget. - 2. Consumers make decisions purposefully. The goals that underpin consumer choice can usually be met in alternative ways. If two products cost the same, a consumer will choose to buy the one expected to have the higher benefit. Conversely, if two products yield equal benefits, the consumer will choose to buy the less expensive one. Fundamentally, economics assumes that consumers are rational—that they are able to weigh the costs and benefits of alternative choices. - 3. One good can be substituted for another. Consumers can achieve utility—that is, satisfaction—from many different alternatives. Either a hamburger or a taco might satisfy your hunger, whereas going either to a movie or to a football game might satisfy your desire for entertainment. With \$600, you might either buy a new TV set or take a short vacation. No single good is so precious that some of it will not be given up in exchange for a large enough quantity of other goods. Even seemingly unrelated goods are sometimes substituted one for another. For example, high water prices in Southern California have led residents there to substitute cactus gardens and reduced flow showerheads for water. - 4. Consumers must make decisions without perfect information, but knowledge and past experience will help. In Chapter 1, we noted that information is costly to acquire. Asking family and friends, searching through magazines such as Consumer Reports, and contacting your local Better Business Bureau are all ways of gathering information about products and potential sellers. The time and effort consumers spend acquiring information will be directly related to the value derived from it. Predictably, consumers will spend more time and money to inform themselves when they are ³You may want to review the section on demand in Chapter 3 before proceeding with this chapter. Consumers will seek to spend their income in a manner that will provide them with the maximum value (total utility). buying "big ticket" items such as automobiles or air-conditioning systems than when they are buying pencils or paper towels. While no one has perfect foresight, your own experiences—and those of others—will help you make better-informed choices. You have a pretty good idea of what to expect when you buy a cup of coffee and a bagel at your favorite restaurant. Your expectations might not always be fulfilled precisely the same way every time (for example, the coffee may be weak or the bagel too crispy), but even then, you will gain valuable information that will help you project the outcome of future choices more accurately. 5. The law of diminishing marginal utility applies: As the rate of consumption increases, the marginal utility gained from consuming additional units of a good will decline. Utility is a term economists use to describe the subjective personal benefits that result from taking an action. The law of diminishing marginal utility states that the marginal (or additional) utility derived from consuming successive units of a product will eventually decline as the rate of consumption increases. For example, the law says that even though you might like ice cream, your marginal satisfaction from additional ice cream will eventually decline as you eat more and more of it. Ice cream at lunchtime might be great. An additional helping for dinner might also be good. However, after you have had it for lunch and dinner, another serving as a midnight snack will be less attractive. When the law of diminishing marginal utility sets in, the additional utility derived from still more units of ice cream declines. The law of diminishing marginal utility explains why, even if you really like a certain product, you will not spend your entire budget on it. As you increase your consumption of any good, the utility you derive from each additional unit will become smaller and smaller, eventually becoming less than the price. At that point, you will not want to purchase any more units of the good. ## Law of diminishing marginal utility The basic economic principle that as the consumption of a product increases, the marginal utility derived from consuming more of it (per unit of time) will eventually decline. #### Marginal utility The additional utility, or satisfaction, derived from consuming an additional unit of a good. # 7-2 MARGINAL UTILITY, CONSUMER CHOICE, AND THE DEMAND CURVE OF AN INDIVIDUAL The law of diminishing marginal utility helps us understand the law of demand and the shape of the demand curve. The height of an individual's demand curve at any specific unit is equal to the maximum price the consumer would be willing to pay for that unit—its marginal benefit to the consumer—given the number of units he or she has already purchased. Although marginal benefit is measured in dollars, the dollar amount reflects the opportunity cost of the unit in terms of other goods forgone. If a consumer is willing to pay, at most, \$5 for an additional unit of the product, this indicates a willingness to give up, at most, \$5 worth of other goods. Because a consumer's willingness to pay for a unit of a good is directly related to the utility derived from consuming the unit, the law of diminishing marginal utility implies that a consumer's marginal benefit, and thus the height of the demand curve, falls as the quantity consumed increases. Exhibit 1 shows this relationship for a hypothetical consumer Jones, relative to her weekly consumption of pizza. Because of the law of diminishing marginal utility, each additional pizza consumed per week will generate less marginal utility for Jones than did the previous pizza. For this reason, Jones's maximum willingness to pay—her marginal benefit—will fall as the quantity consumed increases. In addition, the steepness of Jones's demand curve, or its responsiveness to a change in price—its elasticity—is a reflection of how rapidly Jones's marginal utility diminishes with additional consumption. An individual's demand curve for a good whose marginal value declines more rapidly, will be steeper. Given what we now know about a consumer's maximum willingness to pay for additional units of a good, we are in a position to discuss how many units the consumer will choose to purchase at various prices. At any given price, consumers will purchase all units of a good for which their maximum willingness to pay—their marginal benefit—is greater than the price. They will stop at the point at which the marginal benefit of the next unit would be less than the price. Although there are some problems related to dividing up certain kinds of goods (for example, it is hard to purchase half a car), we can generally say that a consumer will purchase all units of a good up to the point at which the marginal benefit from it equals the price of the good (MB = P). #### Marginal benefit The maximum price a consumer will be willing to pay for an additional unit of a product. It is the dollar value of the consumer's marginal utility from the additional unit, and therefore it falls as consumption increases. #### **EXHIBIT 1** #### Diminishing Marginal Utility and the Individual's Demand Curve An individual's demand curve, Jones's demand for personal pizzas in this case, reflects the law of diminishing marginal utility. Because marginal utility (MU) falls with increased consumption, so does the consumer's maximum willingness to paymarginal benefit (MB). A consumer will purchase until MB = Price, so at a price of \$12.50 per pizza, Jones would purchase three pizzas and receive a consumer surplus shown by the shaded triangle. 134 Returning to Exhibit 1, if the price of pizza were \$12.50, Jones would purchase three pizzas per week.⁴ Remember from Chapter 3 that consumer surplus is defined as the difference between the maximum price the consumer is willing to pay and the price actually paid, summed over all units consumed. Because the height of the demand curve reflects Jones's maximum willingness to pay for pizza, the shaded triangle that lies above the price shows the total consumer surplus derived from her consumption of the three pizzas. When a consumer has purchased all units
to the point at which MB = P, total consumer surplus is maximized. Within this framework, how would a consumer respond to a decrease in the price of a good? The consumer will increase purchases to the point at which marginal benefit diminishes to the level of the new lower price. If marginal utility declines rapidly with consumption, the consumer will expand his or her purchases only slightly. If marginal utility declines less rapidly, it will take a larger expansion in purchases to reach this point. The law of diminishing marginal utility underlies a person's demand curve for a product. The shape and steepness of the curve, for example, depend on his or her marginal utility. #### 7-2a CONSUMER EQUILIBRIUM WITH MANY GOODS The last time you were at the mall, you probably saw something that you liked, perhaps a nice shirt. After all, there are many things we would like—many different alternatives that would give us utility. Next, you looked at the price tag: "Fifty dollars, wow! That's too much." What you were really saying was, "I like the shirt, but not as much as the \$50 worth of other goods that I would have to give up for it." Consumer choice is a constant comparison of value relative to price. Consider another example: Perhaps you prefer expensive steak to a hamburger. Even if you do, your happiness may often be better served if you buy the hamburger and then spend the savings on something else. The idea that consumers choose among products by comparing their relative marginal utility (MU) to price (P) can be expressed more precisely. A consumer with a limited amount of income to spend on a group of products is not likely to do the following math, but will act as though he or she had, and will end up consuming a bundle of goods and services such that $$\frac{MU_{\rm A}}{P_{\rm A}} = \frac{MU_{\rm B}}{P_{\rm B}} = \cdots = \frac{MU_{\rm n}}{P_{\rm n}}$$ In this formula, MU represents the marginal utility derived from the last unit of a product, and P represents the price of the good. The subscripts A, B,..., indicate the different products available to the consumer. This formula implies that the consumer will maximize his or her satisfaction (or total utility) by ensuring that the last dollar spent on each good purchased yields an equal degree of marginal utility. Alternatively stated, the last unit of each item purchased should provide the same marginal utility per dollar spent on it. Thus, if the price of a gallon of ice cream is twice as high as the price of a smoothie, the ice cream should provide twice the marginal benefits to justify its purchase. Thus, a consumer will purchase these items to the point at which the marginal utility of the last gallon of ice cream is exactly twice as high as the marginal utility derived from the last smoothie. Perhaps the best way to grasp this point is to think about what happens when your ratios of marginal utility to price are not equal for two goods. Suppose that you are at a local restaurant eating buffalo chicken wings and drinking Coke. For simplicity, assume that a large Coke and an order of wings each costs \$2. With your \$10 budget, you decide to purchase four orders of wings and one large Coke. When you finish your Coke, there are still lots of wings left. You have already eaten so many wings, though, that those remaining $^{^4}$ Jones would certainly purchase the first and second pizzas because MB > P. For the third pizza, MB = P, so Jones would be indifferent to buying the unit or not purchasing it. For a good that is easily divisible, say, pounds of roast beef, the consumer could continue purchasing up to 2.9999 pounds at a deli counter. Thus, economists are comfortable with simply concluding that the consumer will purchase this final unit, implying that Jones will purchase three pizzas. do not look as attractive. You could get more utility with fewer wings and another Coke, but it is too late. You have not spent your \$10 in a way that gets you the most for your money. Instead of satisfying the preceding condition, you find that the marginal utility of wings is lower than the marginal utility of a Coke, and because they both have the same price (\$2), this implies that $$\frac{MU_{\text{WINGS}}}{P_{\text{WINGS}}} < \frac{MU_{\text{COKE}}}{P_{\text{COKE}}}$$ If you had purchased fewer wings and more Coke, your total utility would have been higher. Consuming the added Coke would have lowered its marginal utility, decreasing the value of the right side of the equation. Simultaneously, spending less on wings would have raised the marginal utility of wings, increasing the value of the left side of the equation. You will maximize your utility—and get the most "bang for the buck" from your budget—when you make these values (the ratios) equal. The equation can also be used to illustrate the law of demand. Beginning with a situation in which the two sides were equal, suppose that the price of wings increased. It would lower the value of MU/P for wings below the MU/P for Coke. In response, you would real-locate your budget, purchasing fewer of the more costly wings and more Coke. Thus, we have the law of demand—as the price of wings rises, you will purchase less of them. When people try to spend their money in a way that gives them the greatest amount of satisfaction, the consumer decision-making theory outlined here is difficult to question. In the next section, we will take the theory a little further. #### 7-2b PRICE CHANGES AND CONSUMER CHOICE AS A COMMON PROPERTY OF THE demand curve or schedule shows the amount of a product that consumers are willing to buy at alternative prices during a specific time period. The law of demand states that the amount of a product bought is inversely related to its price. We have seen how the law of demand can be derived from fundamental principles of consumer behavior. Now, we go further and distinguish two different phenomena underlying a consumer's response to a price change. First, as the price of a product declines, the lower opportunity cost will induce consumers to buy more of it—even if they have to give up some other products, whose price had not fallen. This tendency to substitute a product that has become cheaper for goods that are now relatively more expensive is called the substitution effect of a price change. Second, if a consumer's money income is unchanged, a reduction in the price of a product they consume will increase his or her real income—the amount of goods and services he or she is able to purchase with that fixed amount of money income. If your rent were to decline by \$100 per month, for example, that would allow you to buy more of many other goods. This increase in your real income has the same effect as if the rent had remained the same but your income had risen by \$100 per month. As a result, this second way in which a price change affects consumption is called the **income effect**. Typically, consumers will respond to the income effect by buying more of the cheaper product and other products as well because they can better afford to do so. Substitution and income effects generally work in the same direction: They both cause consumers to purchase more of a good as its price falls and less of a good as its price rises.⁵ #### 7-2c TIME COSTS AND CONSUMER CHOICE You may have heard the saying that "time is money," It is certainly true that time has value and that this value can sometimes be measured in dollars. As we have learned, the monetary price of a good is not always a complete measure of its cost to the consumer. Consuming #### Substitution effect That part of an increase (decrease) in amount consumed that is the result of a good being cheaper (more expensive) in relation to other goods because of a reduction (increase) in price. #### Income effect That part of an increase (decrease) in amount consumed that is the result of the consumer's real income being expanded (contracted) by a reduction (rise) in the price of a good. The substitution effect will always work in this direction. The income effect, however, may work in the reverse direction for some types of goods known as inferior goods. These will be addressed later in this chapter. most goods requires not only money but also time; and time, like money, is scarce to the consumer. So a lower time cost, like a lower money price, will make a product more attractive. For example, one study showed that patients in a dentist's office are willing to pay more than \$5 per minute saved to shorten their time spent in waiting rooms.⁶ Similarly, fast food and air travel are demanded mainly for the time savings they offer. Time costs, unlike money prices for goods, differ among individuals. They are higher for people with higher wage rates, for example. Other things being equal, high-wage consumers choose more time-saving commodities than do people with lower time costs and wages. For example, high-wage consumers are overrepresented among airplane and taxicab passengers but underrepresented among television watchers, chess players, and long-distance bus travelers. Failure to account for time costs can lead to bad decisions. For example, which is cheaper for consumers: (1) waiting in line three hours to purchase a \$25 concert ticket or (2) buying the same ticket for \$40 without standing in line? A consumer whose time is worth more than \$5 per hour will find that \$40 without the wait in line is less costly. As you can see, time costs matter. For example, when government-imposed price ceilings (discussed in Chapter 4) create shortages, rationing by waiting occurs. For many consumers, the benefit of the lower price due to the ceiling will be largely, if not entirely, offset by their increased time cost of having to wait in line. ## 7-2d MARKET DEMAND REFLECTS THE DEMAND OF INDIVIDUAL CONSUMERS The market demand schedule is the relationship between the market price of a good and the amount demanded by all the individuals in the market area. Because
individual consumers purchase less at higher prices, the amount demanded in a market area as a total is also inversely related to price. Exhibit 2 shows the relationship between individual demand and market demand for a hypothetical two-person market. The individual demand curves for both Jones and Smith are shown. Jones and Smith each consume three pizzas per week at a price of \$12.50. The ⁶Rexford E. Santerre and Stephen P. Neun, *Health Economics: Theories, Insights and Industry Studies* (Orlando, FL: Harcourt, 2000), 113. amount demanded in the two-person market is six pizzas. If the price rises to \$17.50 per pizza, the amount demanded in the market will fall to three pizzas, one demanded by Jones and two by Smith. The market demand is simply the horizontal sum of the individual demand curves of consumers—in this case, Smith and Jones. In the real world, there can be millions of consumers in a market. But the relationship between the demand curves of individuals and the market demand curve will still be just like the one shown in Exhibit 2. At any given price, the amount purchased in the market will be the sum of the amounts purchased by each consumer in the market. Furthermore, the total amount demanded in the market will decline as price increases because individual consumers will purchase fewer units at the higher prices. The market demand curve reflects the collective choices of the individual consumers. #### 7-3 ELASTICITY OF DEMAND Although it is important to recognize that consumers will buy less of a product as its price increases, it is also often important to know whether the increase will lead to a large or small reduction in the amount purchased. Economists have designed a tool called the price elasticity of demand to measure this sensitivity of amount purchased in response to a change in price. The equation for the **price elasticity of demand** is as follows: Price elasticity of demand = $$\frac{\text{Percentage change in quantity demanded}}{\text{Percentage change in price}} = \frac{\% \Delta Q}{\% \Delta P}$$ This ratio is often called the *elasticity coefficient*. To express it more briefly, we use the notation $\%\Delta Q$ to represent percentage change in quantity and $\%\Delta P$ to represent percentage change in price. (The Greek letter delta $[\Delta]$ means "change in.") The law of demand states that an increase in a product's price lowers the quantity of it purchased, whereas a decrease in price raises it. Because a change in price causes the quantity demanded to change in the opposite direction, the price elasticity coefficient is always negative, although economists often ignore the sign and use the absolute value of the coefficient. To see how the concept of elasticity works, suppose that the price of the Ford Explorer rises 10 percent, while other prices remain the same. Ford could expect Explorer sales to fall substantially—perhaps 30 percent—as sport-utility vehicle (SUV) buyers respond by switching to other SUVs whose prices have not changed. This strong response by buyers means that the demand for the Explorer is elastic. Now consider a different situation. Suppose that, because of a new tax, the price of not only the Explorer but of all new SUVs rises 10 percent. In this case, consumers' options are much more limited. They can't simply switch to a cheaper close substitute as they could when the price of the Explorer alone rose. They might either simply pay the extra money for a new SUV or settle for a used SUV instead. Because of this, the 10 percent rise in the price of all new SUVs will lead to a smaller consumer response, perhaps a 5 percent decline in sales of new SUVs. To calculate the elasticity coefficient for the Explorer in the initial example, we begin with the 30 percent decline in quantity demanded and divide it by the 10 percent increase in the price. Thus, the elasticity of demand for the Explorer would be $$\frac{\%\Delta Q}{\%\Delta P} = \frac{-30\%}{+10\%} = -3$$ (or 3.0 if we ignore the minus sign). This means that the percentage change in quantity demanded is three times the percentage change in price. To calculate the demand elasticity for *all* SUVs (our second example), we see that the percentage change in quantity, 5 percent, divided by the percentage change in price, 10 percent, gives us -1/2, or -0.5. When it comes to the price elasticity of demand for all SUVs, the percentage change in quantity demanded (using our hypothetical numbers) is ### Price elasticity of demand The percentage change in the quantity of a product demanded divided by the percentage change in the price that caused the change in quantity. The price elasticity of demand indicates how responsive consumers are to a change in a product's price. only half the percentage change in price, not three times the percentage change in price as it was with the Explorer. Often, we will have to derive the percentage change in quantity and price. If you know the quantities that will be purchased at two different prices, you can then derive the percentage change in both the price and the quantity. For example, suppose that a price change from P_0 to P_1 causes a change in quantity demanded from Q_0 to Q_1 . The change in quantity demanded would therefore be $Q_0 - Q_1$. To calculate the percentage change in quantity, we divide the actual change by the midpoint (or average) of the two quantities. Although it is often easy to find the midpoint without a formula (halfway between \$4 and \$6 is \$5), it can also be found as $(Q_0 + Q_1)/2$. Finally, because 0.05 is simply 5 percent, we multiply by 100. Thus, we can express the percentage change in quantity demanded as $$\frac{(Q_0 - Q_1)}{[(Q_0 + Q_1)/2]} \times 100$$ Similarly, when the change in price is $P_0 - P_1$, the percentage change in price is $$\frac{(P_0 - P_1)}{[(P_0 + P_1)/2]} \times 100$$ Dividing the resulting percentage change in quantity by the percentage change in price gives us the elasticity. Using substitution, it is possible to derive a version of the elasticity formula that incorporates these two percentage calculations. Because each term is multiplied by 100 and the denominator of each term contains a 2, these factors cancel out of the final expression. After simplification this version is $$\frac{[(Q_0 - Q_1)/(Q_0 + Q_1)]}{[(P_0 - P_1)/(P_0 + P_1)]}$$ A numerical example will help you understand this. Suppose that Trina's Cakes can sell fifty specialty cakes per week at \$7 each, or it can sell seventy specialty cakes per week at \$6 each. The percentage difference in quantity is the difference in the quantity demanded (50 - 70 = -20) divided by the midpoint (60) times 100. The result is a -33.33 percent change in quantity $(-20 \div 60 \times 100 = -33.33)$. Now that we've calculated the percentage change in quantity demanded of cakes, let's calculate the percentage change in the price. The percentage change in price is the difference in the two prices (\$7 - \$6 = \$1) divided by the midpoint price (\$6.50) times 100, or a 15.38 percent change in price ($1 \div 6.5 \times 100 = 15.38$). Dividing the percentage change in quantity by the percentage change in price ($-33.33 \div 15.38$) gives an elasticity coefficient of -2.17. Alternatively, we could have expressed this directly as $$\frac{[(50-70)/(50+70)]}{[(7-6)/(7+6)]} = \frac{(-20/120)}{(1/13)} = \frac{(-1/6)}{(1/13)} = \frac{-13}{6} = -2.17$$ The same result is obtained either way. The elasticity of 2.17 (ignoring the sign) indicates that the percentage change in quantity is just over twice the percentage change in price. The elasticity coefficient lets us make a precise distinction between elasticity and inelasticity. When the elasticity coefficient is greater than 1 (ignoring the sign), as it was for the demand for Trina's Cakes, demand is elastic. When it is less than 1, demand is inelastic. Demand is said to be of *unitary elasticity* if the price elasticity is exactly 1. ⁷This formula uses the average of the starting point and the ending point of the change so that it will give the same result whether we start from the lower or the higher price. This arc elasticity formula is not the only way to calculate elasticity, but it is the most frequently used. # 7-3a GRAPHIC REPRESENTATION OF PRICE ELASTICITY OF DEMAND Exhibit 3 presents demand curves of varying elasticity. A demand curve that is completely vertical is said to be *perfectly inelastic*, shown in part (a) of Exhibit 3. In the real world, such demand does not exist because the substitutes for a good become more attractive as the price of that good rises. Moreover, because of the income effect, we should expect that a higher price will always reduce the quantity demanded, other things remaining the same. **EXHIBIT 3** #### Price Elasticity of Demand (a) Perfectly inelastic: Despite an increase in a product's price, consumers still purchase the same amount of it. Substitution and income effects prevent this from happening in the real world, though. (b) Relatively inelastic: A percentage increase in a product's price results in a smaller percentage reduction in its sales. The demand for cigarettes has been estimated to be highly inelastic. (c) Unit elastic: The percentage change in quantity demanded of a product is equal to the percentage change in its price. A curve with a decreasing slope results. Sales revenue (price times quantity sold) is constant. (d) Relatively elastic: A percentage increase in a product's price leads to a larger percentage reduction in purchases of it. When good substitutes are available for a product (as in the case of apples), the amount of it purchased will be highly sensitive to price changes. (e) Perfectly elastic: Consumers will buy all of Farmer Jones's wheat at the market price, but none will be sold above the market price. #### Slope of the Demand Curve versus Price Elasticity With this straight-line (constant slope) demand curve, demand is more elastic in
the high price range. The formula for elasticity shows that, when price rises from \$1 to \$2 and quantity falls from 110 to 100, demand is inelastic. A price rise of the same magnitude (but of a smaller percentage), from \$10 to \$11, leads to a decline in quantity of the same size (but of a larger percentage), so that elasticity is much greater. (Price elasticities are negative, but economists often ignore the sign and look only at the absolute value.) The more inelastic the demand, the steeper the demand curve *over any specific price range*. As you can see, the demand for cigarettes (shown in part b of Exhibit 3) is highly inelastic; a big change in price doesn't change quantity demanded much. People who crave nicotine will be willing to pay the higher price. Conversely, the demand for apples (shown in part d) is relatively elastic. People will find it easy to switch to oranges or bananas, for example, if the price of apples increases dramatically. When demand elasticity is unitary, as part (c) shows, a demand curve that is convex to the origin will result. When a demand curve is completely horizontal, an economist would say that it is *perfectly elastic*. Demand for the wheat marketed by a single wheat farmer, for example, would approximate perfect elasticity (part e). Because elasticity is a relative concept, the elasticity of a straight-line demand curve will differ at each point along the demand curve. As Exhibit 4 shows, the elasticity of a straight-line demand curve (one with a constant slope) will range from highly elastic to highly inelastic. In this exhibit, when the price rises from \$10 to \$11, sales decline from 20 to 10. According to the formula, the price elasticity of demand is -7.0. Demand is very elastic in this region. In contrast, demand is quite inelastic in the \$1 to \$2 price range. As the price increases from \$1 to \$2, the amount demanded declines from 110 to 100. The ten-unit change in quantity is the same, but it is a smaller percentage change. And the \$1 change in price is the same, but it is now a larger percentage change. The elasticity of demand in this range is only -0.14; demand in this case is highly inelastic. # 7-3b HOW LARGE ARE THE DEMAND ELASTICITIES OF VARIOUS PRODUCTS? Economists have estimated the price elasticity of demand for many products. As Exhibit 5 shows, the elasticity of demand varies substantially among products. The demand is highly inelastic for several products—salt, toothpicks, matches, coffee, and gasoline (short-run)—in | ELASTIC | | APPROXIMATELY UNITARY | | |--|--------|-----------------------------|----------------| | 14 . Alabardi Sub etti ottoriot | the du | ELASTICITY | | | Salt - | - 0.1 | Movies | -0.9 | | Matches - | - 0.1 | Housing, owner occupied, | -1.2 | | Toothpicks | -0.1 | long run | | | Airline travel, short run | -0.1 | Shellfish, consumed | -0.9 | | Gasoline, short run | -0.2 | at home | | | Gasoline, long run | -0.7 | Oysters, consumed | -1.1 | | Residential natural gas, | -0.1 | at home | | | short run | | Private education | -1.1 | | Residential natural gas, | -0.5 | Tires, short run | -0.9 | | long run | | Tires, long run | -1.2 | | Coffee | -0.25 | Radio and television | -1.2 | | Fish (cod), consumed at home | - 0.5 | receivers ELASTIC | | | Tobacco products, short | -0.45 | Restaurant meals | - 2.3 | | run | | Foreign travel, long run | - 4.0 | | Legal services, short run | -0.4 | Airline travel, long run | - 2.4 | | Physician services | -0.6 | Fresh green peas | - 2.8 | | Dental services | -0.7 | Automobiles, short run – | 1.2-1.5 | | Taxi, short run | -0.6 | Chevrolet automobiles | -4.0 | | Automobiles, long run | -0.2 | Fresh tomatoes | -4.6 | | Cigarette consumption,
long run, Canada | -0.3 | Hospital care in California | - 4.8
- 4.8 | Estimated Price Elasticity of Demand for Selected Products Sources: Hendrick S. Houthakker and Lester D. Taylor, Consumer Demand in the United States, 1929–1970 (Cambridge, MA: Harvard University Press, 1966, 1970); Douglas R. Bohi, Analyzing Demand Behavior (Baltimore: Johns Hopkins University Press, 1981); Hsaing-tai Cheng and Oral Capps Jr., "Demand for Fish," American Journal of Agricultural Economics 70, no. 3 (1988): 533–42; Rexford E. Santerre and Stephen P. Neun, Health Economics: Theories, Insights and Industry Studies (Orlando, FL: Harcourt, 2000); Martin Gaynor and William Vogt, "Competition among Hospitals," The RAND Journal of Economics (Winter 2003): 764–85; and Nikolay Gospodinov and Ian Irvine, "A 'Long March' Perspective on Tobacco use in Canada," Canadian Journal of Economics 38, no. 2 (2005): 366–93. their normal price range. In contrast, the demand curves for fresh tomatoes, Chevrolet automobiles, and fresh green peas are highly elastic. The demand for movies, housing, private education, radios, and television sets is near 1.0 (unitary). # 7-3c WHY DO THE PRICE ELASTICITIES OF DEMAND VARY? The primary determinants of a product's price elasticity of demand are the availability of good substitutes and to the share of the typical consumer's total budget expended on a product. Let's consider each of these factors. Availability of Substitutes The most important determinant of the price elasticity of demand is the availability of substitutes. When good substitutes for a product are available, a price increase induces many consumers to switch to other products. Demand is elastic. For example, if the price of apples increases consumers might substitute oranges or bananas. When good substitutes for a product are unavailable, the demand for it will tend to be inelastic. Medical services are an example. When we are sick, most of us find witch doctors, faith healers, palm readers, and aspirin to be highly imperfect substitutes for the services of a physician. Not surprisingly, the demand for physician services is inelastic. The availability of substitutes increases as the product class becomes more specific, thus increasing price elasticity. For example, as Exhibit 5 shows, the price elasticity of Chevrolets, a narrow product class, exceeds that of the broad class of automobiles in general. If the price of Chevrolets alone rises, many substitute cars are available. But if the prices of all automobiles rise together, consumers have fewer good substitutes. **Product's Share of the Consumer's Total Budget** If the expenditures on a product are quite small relative to the consumer's budget, the income effect will be small even if there is a substantial increase in the price of the product. This will make demand less elastic. Compared to one's total budget, expenditures on some commodities are minor. Matches, toothpicks, and salt are good examples. Most consumers spend less than a couple of dollars per year on each of these items. A doubling of their price would exert little influence on a family's budget. Therefore, even if the price of such a product were to rise sharply, consumers would still not find it worthwhile to spend much time and effort looking for substitutes. Exhibit 6 provides a graphic illustration of both elastic and inelastic demand curves. In part (a), the demand curve for fast-food hamburgers is elastic because there are good substitutes—for example, tacos, burritos, salads, chicken, and other sandwiches. Therefore, when the price of the hamburgers increases from \$4.00 to \$6.00, the quantity purchased declines sharply from 100 million to only 25 million. The calculated price elasticity equals –3.0. The fact that the absolute value of the coefficient is greater than 1 confirms that the demand for hamburgers is elastic over the price range shown. Part (b) of Exhibit 6 shows the demand curve for cigarettes. Because most smokers do not find other products to be a good substitute, the demand for cigarettes is highly inelastic. As the price of cigarettes increases from \$4.00 to \$6.00, the number of packs purchased falls by only a small amount (from 100 million to 90 million). The price elasticity coefficient is -0.26, substantially less in absolute value than 1, confirming that the demand for cigarettes is inelastic. (*Exercise:* Use the price elasticity formula to verify the values of these elasticity coefficients.) #### **EXHIBIT 6** #### Inelastic and Elastic Demand As the price of fast-food hamburgers (a) rose from \$4 to \$6, the quantity purchased fell sharply from 100 million to 25 million. The percentage reduction in quantity is larger than the percentage increase in price. Thus, the demand for the hamburgers is elastic. In contrast, an increase in the price of cigarettes from \$4 to \$6 leads to only a small reduction in the number of packs purchased (b). Because the percentage reduction in quantity is smaller than the percentage increase in price, demand is inelastic. (a) Half-pound hamburgers per week (in millions) (b) Cigarette packs per week (in millions) #### 7-3d TIME AND DEMAND ELASTICITY As changing market conditions raise or lower the price of a product, both consumers and producers will respond. However, the response will not be instantaneous, and it is likely to become larger over time. In general, when the price of a product increases, consumers will reduce their consumption by a larger amount in the long run than in the short run. Thus, the demand for most products will be more elastic in the long run than in the short run. This relationship between elasticity and the length of the adjustment period is sometimes referred to as the second law of demand. The first law of demand says that buyers will respond predictably to a price change, purchasing more when the price is lower than when the price is higher, if other things remain the same. The second law of demand says that the response of buyers will be greater after they have had time to adjust more fully to a price change. # 7-4 HOW DEMAND ELASTICITY AND PRICE CHANGES AFFECT TOTAL EXPENDITURES (OR REVENUES) ON A PRODUCT By looking at demand
elasticity, we can determine changes in total consumer spending on a product when its price changes. We can do this in three different ways: by looking at (1) changes in an individual's total spending, using the demand elasticity from his or her demand curve for the product; (2) changes in the total combined spending of all consumers, using the elasticity from the total market demand curve; or (3) changes in total consumer spending on the product, using the demand curve facing the firm that produces it. This third method allows us to look at elasticity based not on what consumers spend, but on what the producer receives from selling the product. Total expenditures (or revenues) simply amount to the price of the product times the number of units of it purchased (or sold). Because total expenditures are equal to the price times the quantity, and because the price and the quantity move in opposite directions, the net effect of a price change on the total spending on a product depends on whether the (percentage) price change or the (percentage) quantity change is greater. | CHANGE IN TOTAL EXPENDITURES | | PRICE | × | QUANTITY | | |------------------------------|---|-------|----------|----------|--| | ? | = | 1 | \times | 1 | | | ? | - | 1 | × | ↑ | | When demand is inelastic, the price elasticity coefficient is less than 1. This means that the percentage change in price is greater than the percentage change in quantity. Therefore, when demand is inelastic, the change in the price will dominate and, as a result, the price and total expenditures will change in the same direction. In other words, when the price of an inelastic product (say, cigarettes) increases, spending on it will increase, too—and vice versa. Conversely, when demand is elastic, the change in quantity will be greater than the change in the price. As a result, the impact of the change in quantity will dominate, and therefore the price and expenditures will move in opposite directions. In other words, when the price of a product with an elastic demand (say, fast-food hamburgers) increases, spending on it will decrease. When demand elasticity is unitary, the change in quantity demanded will be equal in magnitude to the change in price. With regard to their impact on total expenditures, these two effects will exactly offset each other. Thus, when price elasticity of demand is equal to 1, total expenditures will remain unchanged as price changes. #### Demand Elasticity and How Changes in Price Affect Total Consumer Expenditures or a Firm's Total Revenue | PRICE ELASTICITY
OF DEMAND | Numerical Elasticity Coefficient (in absolute value) | Impact of Raising Price on
Total Consumer
Expenditures or a Firm's
Total Revenue | Impact of Lowering Price on Total Consumer Expenditures or a Firm's Total Revenue | |-------------------------------|--|---|---| | Elastic
Unit Elastic | 1 to ∞
1 | decrease
unchanged | increase
unchanged | | Inelastic | 0 to 1 | increase | decrease | Exhibit 7 summarizes the relationship between changes in the price of a product and changes in total spending on it when demand is elastic, inelastic, and unit elastic. The demand curves shown in Exhibit 6 can also be used to show the link between elasticity and changes in total spending. When the price of cigarettes (part b), increases from \$4.00 to \$6.00, the price elasticity of demand is 0.26, indicating that demand is inelastic. This increase in cigarette prices leads to an increase in spending on the product from \$400 million ($$4.00 \times 100$ million units) to \$540 million ($$6.00 \times 90$ million units). If the change had occurred in the opposite direction, with the price falling from \$6.00 to \$4.00, total expenditures would have declined. The price elasticity of demand for fast-food hamburgers when the price increases from \$4.00 to \$6.00 (part a of Exhibit 6) is 3.0, indicating that demand is elastic. In this case, price and expenditures will move in opposite direction. The increase in the price of hamburgers lowers total consumer spending on the product from \$400 million (\$4.00 \times 100 million hamburgers) to \$150 million (\$6.00 \times 25 million hamburgers). If the price change had been in the opposite direction, with the price falling from \$6.00 to \$4.00, total expenditures would have risen. When a firm increases the price of its product, its revenues may rise, fall, or remain the same. If the demand for the firm's product is inelastic, the higher price will expand the firm's total revenue. However, if the demand for the firm's product is elastic, a price increase will lead to substantially lower sales and a decline in total revenue. In the case of unitary elasticity, the price increase will leave total revenue unchanged. Beyond the price elasticity of demand, two other elasticity relationships are important. We therefore end this chapter with a brief discussion of income elasticity of demand and price elasticity of supply. #### Income elasticity The percentage change in the quantity of a product demanded divided by the percentage change in consumer income that caused the change in quantity demanded. It measures the responsiveness of the demand for a good to a consumer's change in income. #### Normal good A good that has a positive income elasticity, so that as consumer income rises, demand for the good rises, too. #### 7-5 INCOME ELASTICITY Increases in consumer income will increase the demand (the quantity demanded at each price) for most goods. Income elasticity tells us how responsive the demand for a product is to income changes. **Income elasticity** is defined as $$Income \ elasticity = \frac{Percentage \ change \ in \ quantity \ demanded}{Percentage \ change \ in \ income}$$ As Exhibit 8 shows, although the income elasticity coefficients for products vary from one good to another, they are normally positive. In fact, the term **normal good** refers to any good with a positive income elasticity of demand. Some normal goods have lower income elasticities than others, however. In general, goods that people , | L | OW-INCOME ELASTICITY | ŀ | HIGH-INCOME ELASTICITY | | | |---|----------------------|-------|---------------------------|------|--| | | Margarine | -0.20 | Private education | 2.46 | | | | Fuel | 0.38 | New cars | 2.45 | | | | Electricity | 0.20 | Recreation and amusements | 1.57 | | | | Fish (haddock) | 0.46 | Alcohol | 1.54 | | | | Food | 0.51 | | | | | | Tobacco | 0.64 | | | | Estimated Income Elasticity of Demand for Selected Products Sources: Hendrick S. Houthakker and Lester D. Taylor, Consumer Demand in the United States, 1929–1970 (Cambridge, MA: Harvard University Press, 1966); L. Taylor, "The Demand for Electricity: A Survey," Bell Journal of Economics 6, no. 1 (1975): 74–110; F. W. Bell, "The Pope and the Price of Fish," American Economic Review 58, no. 5 (1968): 1346–50; and Rexford E. Santerre and Stephen P. Neun, Health Economics: Theories, Insights and Industry Studies (Orlando, FL: Harcourt, 2000). 0.69 regard as "necessities" will have low income elasticities (between 0 and 1). Significant quantities are purchased even at low incomes, and, as income increases, spending on these items will increase by less than a proportional amount. It is understandable that items such as fuel, electricity, bread, tobacco, economy clothing, and potatoes have a low income elasticity. Goods that consumers regard as "luxuries" generally have a high (greater than 1) income elasticity. For example, private education, new automobiles, swimming pools, and vacation travel are all highly income-elastic. As the consumer's income increases, the demand for these goods expands even more rapidly, and therefore spending on these items increases as a proportion of income. A few commodities, such as margarine, low-quality meat cuts, and bus travel, actually have a negative income elasticity. Economists refer to goods with a negative income elasticity as **inferior goods**. As income expands, the demand for inferior goods will decline. Conversely, as income declines, the demand for inferior goods will increase. ### 7-6 PRICE ELASTICITY OF SUPPLY Hospital care The price elasticity of supply is the percentage change in quantity supplied, divided by the percentage change in the price causing the supply response. Because this measures the responsiveness of sellers to a change in price, it is analogous to the price elasticity of demand. However, the price elasticity of supply will be positive because the quantity producers are willing to supply is directly related to price. As in demand elasticity, time plays a role. In the next two chapters, we will discuss more fully the factors that determine supply elasticity. For now, it is important simply to recognize the concept of supply elasticity and the fact that suppliers (like buyers) will be more responsive to a price change when they have had more time to adjust to it. #### Inferior good A good that has a negative income elasticity, so that as consumer income rises, the demand for the good falls. #### Price elasticity of supply The percentage change in quantity supplied, divided by the percentage change in the price that caused the change in quantity supplied. LOOKING AHEAD Market demand indicates how strongly consumers desire a good or service. In the following chapter, we will turn to a firm's costs of production—costs that arise because resources are demanded for alternative uses. These two topics—consumer demand and the cost of production—are central to understanding how markets work and the conditions necessary for the efficient allocation of resources. ### KEY POINTS - Consumers will try to allocate their limited incomes among a multitude of goods in a way
that maximizes their utility. The role of relative prices, information, and preferences, as well as the law of diminishing marginal utility, help explain the choices consumers make and the downward slope of a person's demand curve for products. - The market demand curve for a product is the horizontal sum of the demand curve of the individuals for the product. - The price elasticity of demand measures the responsiveness of the quantity of a product purchased to a change in its price. - The availability of substitutes is the primary determinant of the price elasticity of demand for a product. When there are good substitutes available, and the item is a sizable component of the consumer's budget, its demand will tend to be elastic. When only poor substitutes are available, demand will tend to be inelastic. - Typically, the price elasticity of a product will increase as consumers have had more time to adjust to a change in its price. This direct relationship between the size of the elasticity coefficient and the length of the adjustment period is often referred to as the second law of demand. - The concept of elasticity helps us determine how a change in price will affect total consumer expenditures on a product or a firm's total revenues derived from it. When the demand for a product is elastic, a price change will cause total spending on it to change in the opposite direction. When demand for a product is inelastic, a change in price will cause total spending on it to change in the same direction. - The concept of elasticity can also be applied to consumer income (which is called the income elasticity of demand) and supply (which is called the price elasticity of supply). ### CRITICAL ANALYSIS QUESTIONS - 1. Suppose that, in an attempt to raise more revenue, Nowhere State University (NSU) increases its tuition. Will this necessarily result in more revenue? Under what conditions will revenue (a) rise, (b) fall, or (c) remain the same? Explain this, focusing on the relationship between the increased revenue from students who enroll at NSU despite the higher tuition and the lost revenue from lower enrollment. If the true price elasticity were -1.2, what would you suggest the university do to expand revenue? - 2. *A bus ticket between two cities costs \$150 and the trip will take 25 hours, whereas an airplane ticket costs \$450 and takes five hours. Kathy values her time at \$12 per hour, and Rachel values her time at \$18 per hour. Will Kathy take the bus or the plane? Which will Rachel take? Explain. - 3. *Recent research confirms that the demand for cigarettes is not only inelastic, but it also indicates that smokers with incomes in the lower half of all incomes respond to a given price increase by reducing their purchases by amounts that are more than four times as large as the purchase reductions made by smokers in the upper half of all incomes. How can the income and substitution effects of a price change help explain this finding? - 4. A consumer is currently purchasing three pairs of jeans and five T-shirts per year. The price of jeans is \$30, and T-shirts cost \$10. At the current rate of consumption, the marginal utility of jeans is 60, and the marginal utility of T-shirts is 30. Is this consumer maximizing his or her utility? Would you suggest that he buy more jeans and fewer T-shirts, or more T-shirts and fewer jeans? - 5. When residential electricity in the state of Washington cost about half as much as in nearby Montana, the average household in Washington used about 1,200 kilowatthours per month, whereas Montanans used about half that much per household. Do these data provide us with two points on the average household's demand curve for residential electricity in this region? Why or why not? - 6. *People who are wealthy are widely believed to have more leisure time than people who are poor. However, even though we are a good deal wealthier today than our great-grandparents were 100 years ago, we appear to live more hectic lives and have less free time. Can you explain why? - 7. What are the major determinants of a product's price elasticity of demand? Studies indicate that the demand for Florida oranges, Bayer aspirin, watermelons, and airfares to Europe are elastic. Why? - 8. Most systems of medical insurance substantially lower the out-of-pocket costs consumers have to pay for additional units of physician services and hospitalization. Some reduce these costs to zero. How does this method of payment affect the consumption levels of medical services? Might this method of organization result in "too much" consumption of medical services? Discuss. - Are the following statements true or false? Explain your answers. - a. A 10 percent reduction in price that leads to a 5 percent increase in the amount purchased indicates a price elasticity of more than 1. - **b.** A 10 percent reduction in price that leads to a 2 percent increase in total expenditures (or total revenue) indicates a price elasticity of more than 1. - c. If the percentage change in price is less than the resultant percentage change in quantity demanded, demand is inelastic. - 10. *Respond to the following questions: If you really like pizza, should you try to consume as much pizza as possible? If you want to succeed, should you try to make the highest possible grade in your economics class? - 11. *Sue loves ice cream but cannot stand frozen-yogurt desserts. In contrast, Carole likes both foods and can hardly tell the difference between the two. Who will have the more elastic demand for yogurt? - **12.** 'Jill's Sausage Dog Stand projects the following demand for Jill's sausage dogs: | PRICE (\$) | QUANTITY PURCHASED (per day) | |------------|------------------------------| | 2 | 50 | | 4 | 40 | | 6 | 20 | - a. Calculate the price elasticity of demand between \$2 and \$4. Is demand in this range elastic or inelastic? - b. Calculate the price elasticity of demand between \$4 and \$6. Is demand in this range elastic or inelastic? 13. Suppose John, the owner-manager of a local hotel projects the following demand for his rooms: | PRICE (\$) | QUANTITY PURCHASED (per Night) | |------------|--------------------------------| | 90 | 100 | | 110 | 90 | | 130 | 70 | - a. Calculate the price elasticity of demand between \$90 and \$110 - **b.** Is the price elasticity of demand between \$90 and \$110 elastic, unit elastic, or inelastic? - c. Will John's total revenue rise if he increases the price from \$90 to \$110? - d. Calculate the price elasticity of demand between \$110 and \$130. - **e.** Is the price elasticity of demand between \$110 and \$130 elastic, unit elastic, or inelastic? - f. Will John's total revenue rise if he increases the price from \$110 to \$130? ^{*}Asterisk denotes questions for which answers are given in Appendix B.