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Example 33.2 Principal Factor Analysis 


This example uses the data presented in Example 33.1 and performs a principal factor analysis 


with squared multiple correlations for the prior communality estimates. Unlike Example 33.1, 


which analyzes the principal components (with default PRIORS=ONE), the current analysis is 


based on a common factor model. To use a common factor model, you specify PRIORS=SMC in 


the PROC FACTOR statement, as shown in the following:  


 


ods graphics on; 


proc factor data=SocioEconomics  


   priors=smc msa residual  


   rotate=promax reorder 


   outstat=fact_all  


   plots=(scree initloadings preloadings loadings);run; 


ods graphics off; 


In the PROC FACTOR statement, you include several other options to help you analyze the 


results. To help determine whether the common factor model is appropriate, you request the 


Kaiser’s measure of sampling adequacy with the MSA option. You specify the RESIDUALS 


option to compute the residual correlations and partial correlations.  


The ROTATE= and REORDER options are specified to enhance factor interpretability. The 


ROTATE=PROMAX option produces an orthogonal varimax prerotation (default) followed by 


an oblique Procrustes rotation, and the REORDER option reorders the variables according to 


their largest factor loadings. An OUTSTAT= data set is created by PROC FACTOR and 


displayed in Output 33.2.15.  


PROC FACTOR can produce high-quality graphs that are very useful for interpreting the factor 


solutions. To request these graphs, you must first enable ODS Graphics by specifying the ODS 


GRAPHICS ON statement, as shown in the preceding statements. All ODS graphs in PROC 


FACTOR are requested with the PLOTS= option. In this example, you request a scree plot 


(SCREE) and loading plots for the factor matrix during the following three stages: initial 


unrotated solution (INITLOADINGS), prerotated (varimax) solution (PRELOADINGS), and 


promax-rotated solution (LOADINGS). The scree plot helps you determine the number of 


factors, and the loading plots help you visualize the patterns of factor loadings during various 


stages of analyses.  


Principal Factor Analysis: Kaiser’s MSA and Factor Extraction Results 


Output 33.2.1 displays the results of the partial correlations and Kaiser’s measure of sampling 


adequacy.  


Output 33.2.1 Principal Factor Analysis: Partial Correlations and Kaiser’s MSA  


Partial Correlations Controlling all other Variables 


  Population School Employment Services HouseValue 




http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect028.htm



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect028.htm



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorpriorsop



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorpriorsop



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factormsa



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorresiduals



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorrotate



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorreorder



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorrotate



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorreorder



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factoroutstat



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.pprint1__



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorgplots



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.facex2a







Partial Correlations Controlling all other Variables 


  Population School Employment Services HouseValue 


Population 1.00000 -0.54465 0.97083 0.09612 0.15871 


School -0.54465 1.00000 0.54373 0.04996 0.64717 


Employment 0.97083 0.54373 1.00000 0.06689 -0.25572 


Services 0.09612 0.04996 0.06689 1.00000 0.59415 


HouseValue 0.15871 0.64717 -0.25572 0.59415 1.00000 


 


Kaiser's Measure of Sampling Adequacy: Overall MSA = 0.57536759 


Population School Employment Services HouseValue 


0.47207897 0.55158839 0.48851137 0.80664365 0.61281377 


 


If the data are appropriate for the common factor model, the partial correlations (controlling all 


other variables) should be small compared to the original correlations. For example, the partial 


correlation between the variables School and HouseValue is , slightly less than the original 


correlation of (see Output 33.1.3). The partial correlation between Population and School is 


, which is much larger in absolute value than the original correlation; this is an indication of 


trouble. Kaiser’s MSA is a summary, for each variable and for all variables together, of how 


much smaller the partial correlations are than the original correlations. Values of or are 


considered good, while MSAs below are unacceptable. The variables Population, School, and 


Employment have very poor MSAs. Only the Services variable has a good MSA. The overall 


MSA of is sufficiently poor that additional variables should be included in the analysis to 


better define the common factors. A commonly used rule is that there should be at least three 


variables per factor. In the following analysis, you determine that there are two common factors 


in these data. Therefore, more variables are needed for a reliable analysis.  


Output 33.2.2 displays the results of the principal factor extraction.  


Output 33.2.2 Principal Factor Analysis: Factor Extraction  


Prior Communality Estimates: SMC  


Population School Employment Services HouseValue 


0.96859160 0.82228514 0.96918082 0.78572440 0.84701921 


 


Eigenvalues of the Reduced Correlation Matrix: Total = 4.39280116 Average = 0.87856023 


  Eigenvalue Difference Proportion Cumulative 


1 2.73430084 1.01823217 0.6225 0.6225 


2 1.71606867 1.67650586 0.3907 1.0131 


3 0.03956281 0.06408626 0.0090 1.0221 


4 -.02452345 0.04808427 -0.0056 1.0165 


5 -.07260772   -0.0165 1.0000 
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The square multiple correlations are shown as prior communality estimates in Output 33.2.2. The 


PRIORS=SMC option basically replaces the diagonal of the original observed correlation matrix 


by these square multiple correlations. Because the square multiple correlations are usually less 


than one, the resulting correlation matrix for factoring is called the reduced correlation matrix. In 


the current example, the SMCs are all fairly large; hence, you expect the results of the principal 


factor analysis to be similar to those in the principal component analysis.  


The first two largest positive eigenvalues of the reduced correlation matrix account for of 


the common variance. This is possible because the reduced correlation matrix, in general, is not 


necessarily positive definite, and negative eigenvalues for the matrix are possible. A pattern like 


this suggests that you might not need more than two common factors. The scree and variance 


explained plots of Output 33.2.3 clearly support the conclusion that two common factors are 


present. Showing in the left panel of Output 33.2.3 is the scree plot of the eigenvalues of the 


reduced correlation matrix. A sharp bend occurs at the third eigenvalue, reinforcing the 


conclusion that two common factors are present. These cumulative proportions of common 


variance explained by factors are plotted in the right panel of Output 33.2.3, which shows that 


the curve essentially flattens out after the second factor.  


Output 33.2.3 Scree and Variance Explained Plots  


 
 


Principal Factor Analysis: Initial Factor Solution 


For the current analysis, PROC FACTOR retains two factors by certain default criteria. This 


decision agrees with the conclusion drawn by inspecting the scree plot. The principal factor 
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pattern with the two factors is displayed in Output 33.2.4. This factor pattern is similar to the 


principal component pattern seen in Output 33.1.5 of Example 33.1. For example, the variable 


Services has the largest loading on the first factor, and the Population variable has the smallest. 


The variables Population and Employment have large positive loadings on the second factor, and 


the HouseValue and School variables have large negative loadings.  


Output 33.2.4 Initial Factor Pattern Matrix and Communalities  


Factor Pattern 


  Factor1 Factor2 


Services 0.87899 -0.15847 


HouseValue 0.74215 -0.57806 


Employment 0.71447 0.67936 


School 0.71370 -0.55515 


Population 0.62533 0.76621 


 


Variance Explained by Each 


Factor 


Factor1 Factor2 


2.7343008 1.7160687 


 


Final Communality Estimates: Total = 4.450370 


Population School Employment Services HouseValue 


0.97811334 0.81756387 0.97199928 0.79774304 0.88494998 


 


Comparing the current factor loading matrix in Output 33.2.4 with that in Output 33.1.5 in 


Example 33.1, you notice that the variables are arranged differently in the two output tables. This 


is due to the use of the REORDER option in the current analysis. The advantage of using this 


option might not be very obvious in Output 33.2.4, but you can see its value when looking at the 


rotated solutions, as shown in Output 33.2.7 and Output 33.2.11.  


The final communality estimates are all fairly close to the priors (shown in Output 33.2.2). Only 


the communality for the variable HouseValue increased appreciably, from to . 


Therefore, you are sure that all the common variance is accounted for.  


Output 33.2.5 shows that the residual correlations (off-diagonal elements) are low, the largest 


being . The partial correlations are not quite as impressive, since the uniqueness values are 


also rather small. These results indicate that the squared multiple correlations are good but not 


quite optimal communality estimates.  


Output 33.2.5 Residual and Partial Correlations  


Residual Correlations With Uniqueness on the Diagonal 
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  Population School Employment Services HouseValue 


Population 0.02189 -0.01118 0.00514 0.01063 0.00124 


School -0.01118 0.18244 0.02151 -0.02390 0.01248 


Employment 0.00514 0.02151 0.02800 -0.00565 -0.01561 


Services 0.01063 -0.02390 -0.00565 0.20226 0.03370 


HouseValue 0.00124 0.01248 -0.01561 0.03370 0.11505 


 


Root Mean Square Off-Diagonal Residuals: Overall = 0.01693282 


Population School Employment Services HouseValue 


0.00815307 0.01813027 0.01382764 0.02151737 0.01960158 


 


Partial Correlations Controlling Factors 


  Population School Employment Services HouseValue 


Population 1.00000 -0.17693 0.20752 0.15975 0.02471 


School -0.17693 1.00000 0.30097 -0.12443 0.08614 


Employment 0.20752 0.30097 1.00000 -0.07504 -0.27509 


Services 0.15975 -0.12443 -0.07504 1.00000 0.22093 


HouseValue 0.02471 0.08614 -0.27509 0.22093 1.00000 


 


Root Mean Square Off-Diagonal Partials: Overall = 0.18550132 


Population School Employment Services HouseValue 


0.15850824 0.19025867 0.23181838 0.15447043 0.18201538 


 


As displayed in Output 33.2.6, the unrotated factor pattern reveals two tight clusters of variables, 


with the variables HouseValue and School at the negative end of Factor2 axis and the variables 


Employment and Population at the positive end. The Services variable is in between but closer to 


the HouseValue and School variables. A good rotation would place the axes so that most 


variables would have zero loadings on most factors. As a result, the axes would appear as though 


they are put through the variable clusters.  


Output 33.2.6 Unrotated Factor Loading Plot  
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Principal Factor Analysis: Varimax Prerotation 


In Output 33.2.7, the results of the varimax prerotation are shown. To yield the varimax-rotated 


factor loading (pattern), the initial factor loading matrix is postmultiplied by an orthogonal 


transformation matrix. This orthogonal transformation matrix is shown in Output 33.2.7, 


followed by the varimax-rotated factor pattern. This rotation or transformation leads to small 


loadings of Population and Employment on the first factor and small loadings of HouseValue 


and School on the second factor. Services appears to have a larger loading on the first factor than 


it has on the second factor, although both loadings are substantial. Hence, Services appears to be 


factorially complex.  


With the REORDER option in effect, you can see the variable clusters clearly in the factor 


pattern. The first factor is associated more with the first three variables (first three rows of 


variables): HouseValue, School, and Services. The second factor is associated more with the last 


two variables (last two rows of variables): Population and Employment.  


For orthogonal factor solutions such as the current varimax-rotated solution, you can also 


interpret the values in the factor loading (pattern) matrix as correlations. For example, 
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HouseValue and Factor 1 have a high correlation at , while Population and Factor 1 have a 


low correlation at .  


Output 33.2.7 Varimax Rotation: Transform Matrix and Rotated Pattern  


Orthogonal Transformation Matrix 


  1 2 


1 0.78895 0.61446 


2 -0.61446 0.78895 


 


Rotated Factor Pattern 


  Factor1 Factor2 


HouseValue 0.94072 -0.00004 


School 0.90419 0.00055 


Services 0.79085 0.41509 


Population 0.02255 0.98874 


Employment 0.14625 0.97499 


 


Variance Explained by Each 


Factor 


Factor1 Factor2 


2.3498567 2.1005128 


 


Final Communality Estimates: Total = 4.450370 


Population School Employment Services HouseValue 


0.97811334 0.81756387 0.97199928 0.79774304 0.88494998 


 


The variance explained by the factors are more evenly distributed in the varimax-rotated 


solution, as compared with that of the unrotated solution. Indeed, this is a typical fact for any 


kinds of factor rotation. In the current example, before the varimax rotation the two factors 


explain and , respectively, of the common variance (see Output 33.2.4). After the 


varimax rotation the two rotated factors explain and , respectively, of the common 


variance. However, the total variance accounted for by the factors remains unchanged after the 


varimax rotation. This invariance property is also observed for the communalities of the 


variables after the rotation, as evidenced by comparing the current communality estimates in 


Output 33.2.7 with those in Output 33.2.4.  


Output 33.2.8 shows the graphical plot of the varimax-rotated factor loadings. Clearly, 


HouseValue and School cluster together on the Factor 1 axis, while Population and Employment 


cluster together on the Factor 2 axis. Service is closer to the cluster of HouseValue and School.  


Output 33.2.8 Varimax-Rotated Factor Loadings  
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An alternative to the scatter plot of factor loadings is the so-called vector plot of loadings, which 


is shown in Output 33.2.9. The vector plot is requested with the suboption VECTOR in the 


PLOTS= option. That is:  


plots=preloadings(vector) 


This generates the vector plot of loadings in Output 33.2.9.  


Output 33.2.9 Varimax-Rotated Factor Loadings: Vector Plot  
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Principal Factor Analysis: Oblique Promax Rotation 


For some researchers, the varimax-rotated factor solution in the preceding section might be good 


enough to provide them useful and interpretable results. For others who believe that common 


factors are seldom orthogonal, an obliquely rotated factor solution might be more desirable, or at 


least should be attempted.  


PROC FACTOR provides a very large class of oblique factor rotations. The current example 


shows a particular one—namely, the promax rotation as requested by the ROTATE=PROMAX 


option.  


The results of the promax rotation are shown in Output 33.2.10 and Output 33.2.11. The 


corresponding plot of factor loadings is shown in Output 33.2.12.  


Output 33.2.10 Promax Rotation: Procrustean Target and Transformation  


Target Matrix for Procrustean Transformation 


  Factor1 Factor2 
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Target Matrix for Procrustean Transformation 


  Factor1 Factor2 


HouseValue 1.00000 -0.00000 


School 1.00000 0.00000 


Services 0.69421 0.10045 


Population 0.00001 1.00000 


Employment 0.00326 0.96793 


 


Procrustean Transformation Matrix 


  1 2 


1 1.04116598 -0.0986534 


2 -0.1057226 0.96303019 


 


Normalized Oblique Transformation 


Matrix 


  1 2 


1 0.73803 0.54202 


2 -0.70555 0.86528 


 


Output 33.2.10 shows the Procrustean target, to which the varimax factor pattern is rotated, 


followed by the display of the Procrustean transformation matrix. This is the matrix that 


transforms the varimax factor pattern so that the rotated pattern is as close as possible to the 


Procrustean target. However, because the variances of factors have to be fixed at 1 during the 


oblique transformation, a normalized version of the Procrustean transformation matrix is the one 


that is actually used in the transformation. This normalized transformation matrix is shown at the 


bottom of Output 33.2.10. Using this transformation matrix leads to the promax-rotated factor 


solution, as shown in Output 33.2.11.  


Output 33.2.11 Promax Rotation: Factor Correlations and Factor Pattern  


Inter-Factor Correlations 


  Factor1 Factor2 


Factor1 1.00000 0.20188 


Factor2 0.20188 1.00000 


 


Rotated Factor Pattern (Standardized Regression Coefficients) 


  Factor1 Factor2 


HouseValue 0.95558485 -0.0979201 


School 0.91842142 -0.0935214 


Services 0.76053238 0.33931804 
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Rotated Factor Pattern (Standardized Regression Coefficients) 


  Factor1 Factor2 


Population -0.0790832 1.00192402 


Employment 0.04799 0.97509085 


 


After the promax rotation, the factors are no longer uncorrelated. As shown in Output 33.2.11, 


the correlation of the two factors is now . In the (initial) unrotated and the varimax solutions, 


the two factors are not correlated.  


In addition to allowing the factors to be correlated, in an oblique factor solution you seek a 


pattern of factor loadings that is more "differentiated" (referred to as the "simple structures" in 


the literature). The more differentiated the loadings, the easier the interpretation of the factors.  


For example, factor loadings of Services and Population on Factor 2 are and , 


respectively, in the (orthogonal) varimax-rotated factor pattern (see Output 33.2.7). With the 


(oblique) promax rotation (see Output 33.2.11), these two loadings become even more 


differentiated with values and , respectively. Overall, however, the factor patterns 


before and after the promax rotation do not seem to differ too much. This fact is confirmed by 


comparing the graphical plots of factor loadings. The plots in Output 33.2.12 (promax-rotated 


factor loadings) and Output 33.2.8 (varimax-rotated factor loadings) show very similar patterns.  


Output 33.2.12 Promax Rotation: Factor Loading Plot  
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Unlike the orthogonal factor solutions where you can interpret the factor loadings as correlations 


between variables and factors, in oblique factor solutions such as the promax solution, you have 


to turn to the factor structure matrix for examining the correlations between variables and 


factors. Output 33.2.13 shows the factor structures of the promax-rotated solution.  


Output 33.2.13 Promax Rotation: Factor Structures and Final Communalities  


Factor Structure (Correlations) 


  Factor1 Factor2 


HouseValue 0.93582 0.09500 


School 0.89954 0.09189 


Services 0.82903 0.49286 


Population 0.12319 0.98596 


Employment 0.24484 0.98478 


 


Variance Explained by Each 


Factor Ignoring Other Factors 
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Factor1 Factor2 


2.4473495 2.2022803 


 


Final Communality Estimates: Total = 4.450370 


Population School Employment Services HouseValue 


0.97811334 0.81756387 0.97199928 0.79774304 0.88494998 


 


Basically, the factor structure matrix shown in Output 33.2.13 reflects a similar pattern to the 


factor pattern matrix shown in Output 33.2.11. The critical difference is that you can have the 


correlation interpretation only by using the factor structure matrix. For example, in the factor 


structure matrix shown in Output 33.2.13, the correlation between Population and Factor 2 is 


. The corresponding value shown in the factor pattern matrix in Output 33.2.11 is , 


which certainly cannot be interpreted as a correlation coefficient.  


Common variance explained by the promax-rotated factors are 2.447 and 2.202, respectively, for 


the two factors. Unlike the orthogonal factor solutions (for example, the prerotated varimax 


solution), variance explained by these promax-rotated factors do not sum up to the total 


communality estimate 4.45. In oblique factor solutions, variance explained by oblique factors 


cannot be partitioned for the factors. Variance explained by a common factor is computed while 


ignoring the contributions from the other factors.  


However, the communalities for the variables, as shown in the bottom of Output 33.2.13, do not 


change from rotation to rotation. They are still the same set of communalities in the initial, 


varimax-rotated, and promax-rotated solutions. This is a basic fact about factor rotations: they 


only redistribute the variance explained by the factors; the total variance explained by the factors 


for any variable (that is, the communality of the variable) remains unchanged.  


In the literature of exploratory factor analysis, reference axes had been an important tool in factor 


rotation. Nowadays, rotations are seldom done through the uses of the reference axes. Despite 


that, results about reference axes do provide additional information for interpreting factor 


analysis results. For the current example of the promax rotation, PROC FACTOR shows the 


relevant results about the reference axes in Output 33.2.14.  


Output 33.2.14 Promax Rotation: Reference Axis Correlations and Reference Structures  


Reference Axis Correlations 


  Factor1 Factor2 


Factor1 1.00000 -0.20188 


Factor2 -0.20188 1.00000 


 


Reference Structure (Semipartial Correlations) 


  Factor1 Factor2 


HouseValue 0.93591 -0.09590 
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Reference Structure (Semipartial Correlations) 


  Factor1 Factor2 


School 0.89951 -0.09160 


Services 0.74487 0.33233 


Population -0.07745 0.98129 


Employment 0.04700 0.95501 


 


Variance Explained by Each 


Factor Eliminating Other 


Factors 


Factor1 Factor2 


2.2480892 2.0030200 


 


To explain the results in the reference-axis system, some geometric interpretations of the factor 


axes are needed. Consider a single factor in a system of common factors in an oblique factor 


solution. Taking away the factor under consideration, the remaining factors span a 


hyperplane in the factor space of dimensions. The vector that is orthogonal to this 


hyperplane is the reference axis (reference vector) of the factor under consideration. Using the 


same definition for the remaining factors, you have reference vectors for factors.  


A factor in an oblique factor solution can be considered as the sum of two independent 


components: its associated reference vector and a component that is overlapped with all other 


factors. In other words, the reference vector of a factor is a unique part of the factor that is not 


predictable from all other factors. Thus, the loadings on a reference vector are the unique effects 


of the corresponding factor, partialling out the effects from all other factors. The variances 


explained by a reference vector are the unique variances explained by the corresponding factor, 


partialling out the variances explained by all other factors.  


 


Output 33.2.14 shows the reference axis correlations. The correlation between the reference 


vectors is . Next, Output 33.2.14 shows the loadings on the reference vectors in the table 


entitled "Reference Structure (Semipartial Correlations)." As explained previously, loadings on a 


reference vector are also the unique effects of the corresponding factor, partialling out the effects 


from the all other factors. For example, the unique effect of Factor 1 on HouseValue is . 


Another important property of the reference vector system is that loadings on a reference vector 


are also correlations between the variables and the corresponding factor, partialling out the 


correlations between the variables and other factors. This means that the loading 0.936 in the 


reference structure table is the unique correlation between HouseValue and Factor 1, partialling 


out the correlation between HouseValue with Factor 2. Hence, as suggested by the title of table, 


all loadings reported in the "Reference Structure (Semipartial Correlations)" can be interpreted as 


semipartial correlations between variables and factors.  
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The last table shown in Output 33.2.14 are the variances explained by the reference vectors. As 


explained previously, these are also unique variances explained by the factors, partialling out the 


variances explained by all other factors (or eliminating all other factors, as suggested by the title 


of the table). In the current example, Factor 1 explains of the variable variances, partialling 


out all variable variances explained by Factor 2.  


Notice that factor pattern (shown in Output 33.2.11), factor structures (correlations, shown in 


Output 33.2.13), and reference structures (semipartial correlations, shown in Output 33.2.14) 


give you different information about the oblique factor solutions such as the promax-rotated 


solution. However, for orthogonal factor solutions such as the varimax-rotated solution, factor 


structures and reference structures are all the same as the factor pattern.  


Principal Factor Analysis: Factor Rotations with Factor Pattern Input 


The promax rotation is one of the many rotations that PROC FACTOR provides. You can 


specify many different rotation algorithms by using the ROTATE= options. In this section, you 


explore different rotated factor solutions from the initial principal factor solution. Specifically, 


you want to examine the factor patterns yielded by the quartimax transformation (an orthogonal 


transformation) and the Harris-Kaiser (an oblique transformation), respectively.  


Rather than analyzing the entire problem again with new rotations, you can simply use the 


OUTSTAT= data set from the preceding factor analysis results.  


First, the OUTSTAT= data set is printed using the following statements:  


proc print data=fact_all;run; 


The output data set is displayed in Output 33.2.15.  


Output 33.2.15 Output Data Set  


  


  


Factor Output Data Set 


 


Obs _TYPE_ _NAME_ Population School Employment Services HouseValue 


1 MEAN   6241.67 11.4417 2333.33 120.833 17000.00 


2 STD   3439.99 1.7865 1241.21 114.928 6367.53 


3 N   12.00 12.0000 12.00 12.000 12.00 


4 CORR Population 1.00 0.0098 0.97 0.439 0.02 


5 CORR School 0.01 1.0000 0.15 0.691 0.86 


6 CORR Employment 0.97 0.1543 1.00 0.515 0.12 


7 CORR Services 0.44 0.6914 0.51 1.000 0.78 


8 CORR HouseValue 0.02 0.8631 0.12 0.778 1.00 
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Obs _TYPE_ _NAME_ Population School Employment Services HouseValue 


9 COMMUNAL   0.98 0.8176 0.97 0.798 0.88 


10 PRIORS   0.97 0.8223 0.97 0.786 0.85 


11 EIGENVAL   2.73 1.7161 0.04 -0.025 -0.07 


12 UNROTATE Factor1 0.63 0.7137 0.71 0.879 0.74 


13 UNROTATE Factor2 0.77 -0.5552 0.68 -0.158 -0.58 


14 RESIDUAL Population 0.02 -0.0112 0.01 0.011 0.00 


15 RESIDUAL School -0.01 0.1824 0.02 -0.024 0.01 


16 RESIDUAL Employment 0.01 0.0215 0.03 -0.006 -0.02 


17 RESIDUAL Services 0.01 -0.0239 -0.01 0.202 0.03 


18 RESIDUAL HouseValue 0.00 0.0125 -0.02 0.034 0.12 


19 PRETRANS Factor1 0.79 -0.6145 .  .  .  


20 PRETRANS Factor2 0.61 0.7889 .  .  .  


21 PREROTAT Factor1 0.02 0.9042 0.15 0.791 0.94 


22 PREROTAT Factor2 0.99 0.0006 0.97 0.415 -0.00 


23 TRANSFOR Factor1 0.74 -0.7055 .  .  .  


24 TRANSFOR Factor2 0.54 0.8653 .  .  .  


25 FCORR Factor1 1.00 0.2019 .  .  .  


26 FCORR Factor2 0.20 1.0000 .  .  .  


27 PATTERN Factor1 -0.08 0.9184 0.05 0.761 0.96 


28 PATTERN Factor2 1.00 -0.0935 0.98 0.339 -0.10 


29 RCORR Factor1 1.00 -0.2019 .  .  .  


30 RCORR Factor2 -0.20 1.0000 .  .  .  


31 REFERENC Factor1 -0.08 0.8995 0.05 0.745 0.94 


32 REFERENC Factor2 0.98 -0.0916 0.96 0.332 -0.10 


33 STRUCTUR Factor1 0.12 0.8995 0.24 0.829 0.94 


34 STRUCTUR Factor2 0.99 0.0919 0.98 0.493 0.09 


 


Various results from the previous factor analysis are saved in this data set, including the initial 


unrotated solution (its factor pattern is saved in observations with _TYPE_=UNROTATE), the 


prerotated varimax solution (its factor pattern is saved in observations with 


_TYPE_=PREROTAT), and the oblique promax solution (its factor pattern is saved in 


observations with _TYPE_=PATTERN).  


When PROC FACTOR reads in an input data set with TYPE=FACTOR, the observations with 


_TYPE_=PATTERN are treated as the initial factor pattern to be rotated by PROC FACTOR. 


Hence, it is important that you provide the correct initial factor pattern for PROC FACTOR to 


read in.  








In the current example, you need to provide the unrotated solution from the preceding analysis as 


the input factor pattern. The following statements create a TYPE=FACTOR data set fact2 from 


the preceding OUTSTAT= data set fact_all:  


data fact2(type=factor); 


   set fact_all; 


   if _TYPE_ in('PATTERN' 'FCORR') then delete; 


   if _TYPE_='UNROTATE' then _TYPE_='PATTERN'; 


In these statements, you delete observations with _TYPE_=PATTERN or _TYPE_=FCORR, 


which are for the promax-rotated factor solution, and change observations with 


_TYPE_=UNROTATE to _TYPE_=PATTERN in the new data set fact2. In this way, the initial 


orthogonal factor pattern matrix is saved in the observations with _TYPE_=PATTERN.  


You use this new data set and rotate the initial solution to another oblique solution with the 


ROTATE=QUARTIMAX option, as shown in the following statements:  


proc factor data=fact2 rotate=quartimax reorder; 


run; 


As shown in Output 33.2.16, the input data set is of the FACTOR type for the new rotation.  


Output 33.2.16 Quartimax Rotation With Input Factor Pattern  


  


  


Quartimax Rotation From a TYPE=FACTOR Data Set 


 


The FACTOR Procedure 


Input Data Type FACTOR 


N Set/Assumed in Data Set 12 


N for Significance Tests 12 


 


The quartimax-rotated factor pattern is displayed in Output 33.2.17.  


Output 33.2.17 Quartimax-Rotated Factor Pattern  


Orthogonal Transformation Matrix 


  1 2 


1 0.80138 0.59815 


2 -0.59815 0.80138 


 


Rotated Factor Pattern 


  Factor1 Factor2 


HouseValue 0.94052 -0.01933 
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Rotated Factor Pattern 


  Factor1 Factor2 


School 0.90401 -0.01799 


Services 0.79920 0.39878 


Population 0.04282 0.98807 


Employment 0.16621 0.97179 


 


Variance Explained by Each 


Factor 


Factor1 Factor2 


2.3699941 2.0803754 


 


The quartimax rotation produces an orthogonal transformation matrix shown at the top of Output 


33.2.17. After the transformation, the factor pattern is shown next. Compared with the varimax-


rotated factor pattern (see Output 33.2.7), the quartimax-rotated factor pattern shows some 


differences. The loadings of HouseValue and School on Factor 1 drop only slightly in the 


quartimax factor pattern, while the loadings of Services, Population, and Employment on Factor 


1 gain relatively larger amounts. The total variance explained by Factor 1 in the varimax-rotated 


solution (see Output 33.2.7) is , while it is after the quartimax-rotation. In other words, 


more variable variances are explained by the first factor in the quartimax factor pattern than in 


the varimax factor pattern. Although not very strongly demonstrated in the current example, this 


illustrates a well-known property about the quartimax rotation: it tends to produce a general 


factor for all variables.  


Another oblique rotation is now explored. The Harris-Kaiser transformation weighted by the 


Cureton-Mulaik technique is applied to the initial factor pattern. To achieve this, you use the 


ROTATE=HK and NORM=WEIGHT options in the following PROC FACTOR statement:  


ods graphics on; 


proc factor data=fact2 rotate=hk norm=weight reorder  


     plots=loadings;run; 


ods graphics off; 


 


Output 33.2.18 shows the variable weights in the rotation.  


Output 33.2.18 Harris-Kaiser Rotation: Weights  


Variable Weights for Rotation 


Population School Employment Services HouseValue 


0.95982747 0.93945424 0.99746396 0.12194766 0.94007263 


 




http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.facex2q



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.facex2q



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.facex2g



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.facex2g



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factorrotate



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect006.htm#statug.factor.factornorm



http://support.sas.com/documentation/cdl/en/statug/63347/HTML/default/statug_factor_sect029.htm#statug.factor.facex2s







While all other variables have weights at least as large as , the weight for Services is only 


. This means that due to its small weight, Services is not as important as the other variables 


for determining the rotation (transformation). This makes sense when you look at the initial 


unrotated factor pattern plot in Output 33.2.6. In the plot, there are two main clusters of 


variables, and Services does not seem to fall into either of the clusters. In order to yield a Harris-


Kaiser rotation (transformation) that would gear towards to two clusters, the Cureton-Mulaik 


weighting essentially downweights the contribution from Services in the factor rotation.  


The results of the Harris-Kaiser factor solution are displayed in Output 33.2.19, with a graphical 


plot of rotated loadings displayed in Output 33.2.20.  


Output 33.2.19 Harris-Kaiser Rotation: Factor Correlations and Factor Pattern  


Inter-Factor Correlations 


  Factor1 Factor2 


Factor1 1.00000 0.08358 


Factor2 0.08358 1.00000 


 


Rotated Factor Pattern (Standardized Regression Coefficients) 


  Factor1 Factor2 


HouseValue 0.94048 0.00279 


School 0.90391 0.00327 


Services 0.75459 0.41892 


Population -0.06335 0.99227 


Employment 0.06152 0.97885 


 


Because the Harris-Kaiser produces an oblique factor solution, you compare the current results 


with that of the promax (see Output 33.2.11), which also produces an oblique factor solution. 


The correlation between the factors in the Harris-Kaiser solution is ; this value is much 


smaller than the same correlation in the promax solution, which is . However, the Harris-


Kaiser rotated factor pattern shown in Output 33.2.19 is more or less the same as that of the 


promax-rotated factor pattern shown in Output 33.2.11. Which solution would you consider to be 


more reasonable or interpretable?  


From the statistical point of view, the Harris-Kaiser and promax factor solutions are equivalent. 


They explain the observed variable relationships equally well. From the simplicity point of view, 


however, you might prefer to interpret the Harris-Kaiser solution because the factor correlation is 


smaller. In other words, the factors in the Harris-Kaiser solution do not overlap that much 


conceptually; hence they should be more distinctive to interpret. However, in practice simplicity 


in factor correlations might not the only principle to consider. Researchers might actually expect 


to have some factors to be highly correlated based on theoretical or substantive grounds.  


Although the Harris-Kaiser and the promax factor patterns are very similar, the graphical plots of 


the loadings from the two solutions paint slightly different pictures. The plot of the promax-
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rotated loadings is shown in Output 33.2.12, while the plot of the loadings for the current Harris-


Kaiser solution is shown in Output 33.2.20.  


Output 33.2.20 Harris-Kaiser Rotation: Factor Loading Plot  


 
 


The two factor axes in the Harris-Kaiser rotated pattern (Output 33.2.20) clearly cut through the 


centers of the two variable clusters, while the Factor 1 axis in the promax solution lies above a 


variable cluster (Output 33.2.12). The reason for this subtle difference is that in the Harris-Kaiser 


rotation, the Services is a "loner" that has been downweighted by the Cureton-Mulaik technique 


(see its relatively small weight in Output 33.2.18). As a result, the rotated axes are basically 


determined by the two variable clusters in the Harris-Kaiser rotation.  


 As far as the current discussion goes, it is not recommending one rotation method over another. 


Rather, it simply illustrates how you could control certain types of characteristics of factor 


rotation through the many options supported by PROC FACTOR. Should you prefer an 


orthogonal rotation to an oblique rotation? Should you choose the oblique factor solution with 


the smallest factor correlations? Should you use a weighting scheme that would enable you to 


find independent variable clusters? While PROC FACTOR enables you to explore all these 
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alternatives, you must consult advanced textbooks and published articles to get satisfactory and 


complete answers to these questions.  
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