Week 9
patsolLab Report Name: ____________________
Section: ___________________
EXPERIMENT: Simple Machine - Lever
Experiment 1:
DATA TABLE 1: Fulcrum at _______ cm
Trial | Load (Mass) | Distance of Load from fulcrum | Effort (Mass) | Distance of Effort from fulcrum | Ratio: Effort Distance/ Load Distance |
1 | 1 quarter |
| 1 quarter |
|
|
2 | 2 quarters |
| 1 quarter |
|
|
3 | 3 quarters |
| 1 quarter |
|
|
4 | 4 quarters |
| 1 quarter |
|
|
Experiment 2: Part 1 - First-class lever:
DATA TABLE 2: First-class Lever, Fulcrum at _____ m
Trial | Load (Mass, g) | Load (Mass, N) | Load distance, m | Mass of 500-g Spring scale | Spring scale reading, N | Effort Force, N | Effort Distance, m |
M.A. |
1 |
|
|
| 62g = 0.61N |
|
|
|
|
2 |
|
|
| 62g = 0.61N |
|
|
|
|
3 |
|
|
| 62g = 0.61N |
|
|
|
|
Example Data Table
Trial | Load (Mass, g) | Load (Mass, N) | Load distance, m | Mass of 500-g Spring scale | Spring scale reading, N | Effort Force, N | Effort Distance, m |
M.A. |
1 | 100 | 1 | 0.3 | 62g = 0.61N | 10g =0.1N | 0.71N | .45 | 1.41 |
2 | 153 | 1.5 | 0.3 | 62g = 0.61N | 45g =0.44N | 1.05N | .45 | 1.42 |
Checking results: Workin = Workout or 1N*0.3m = 0.71N*.45m
* MA = 1/0.71 = 1.41
Experiment 2: Part 2 - Second-class lever:
DATA TABLE 3: Second-class Lever, Fulcrum at _____ m
Trial | Load (Mass, N) | Load distance, m | Effort Force, N | Effort Distance, m |
M.A. |
Example | 1.47 | 0.2 | 80g = 0.78N | .90 | 1.9 |
1 |
|
|
|
|
|
2 |
|
|
|
|
|
3 |
|
|
|
|
|
4 |
|
|
|
|
|
etc |
|
|
|
|
|
Experiment 2: Part 3 - Third-class lever:
DATA TABLE 4 (Third-class Lever), Fulcrum at _____ m
Trial | Load (Mass, N) | Load distance, M | Effort Force, N | Effort Distance, m |
M.A. |
Efficiency |
1 |
|
|
|
|
|
|
2 |
|
|
|
|
|
|
3 |
|
|
|
|
|
|
Average |
|
|
|
|
|
|
Calculations:
1. In Experiment 1 calculate the ratios of the measured distances; i.e. the rations of Effort Distance/Load Distance
2. In Experiment 2, Parts 2, 3 and 4 convert grams as needed to Newtons.
3. In Parts 2, 3, and 4 calculate M.A. for each trial of each lever type.
Questions:
- In Experiment 1 you calculated the ratios of the measured distances, i.e. the ratios of Effort Distance/Load Distance. What is the significance of these ratios? How did your calculations compare to your expectations?
- The spring balance is reasonably accurate for determining the load mass. However, the spring balance weighs 62 grams. Explain how to use the Workin = Workout principle to verify the mass of the spring balance.
- After examining the 1st class lever data what kind of general statement can be made with regards to mechanical advantage and the relationship of load distance to effort distance?
- What happens to the mechanical advantage for 2nd class levers as the load moves further away from the fulcrum?
- What is the significance of the mechanical advantage of class 3 levers?
- What class lever is represented by a fishing pole? Why?
- What kind of lever is represented by an oar used in rowing? Why?
- 10 years ago
- 5
Purchase the answer to view it
- week_9.docx